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Abstract— An algorithm which allows the robot to avoid
moving obstacles and to reach the assigned goal is proposed.
For this purpose, a dynamical system (DS) modulation matrix
is calculated using the distance from the obstacles and their
velocity, without the need of an analytical representation of the
obstacles. This matrix modulates a generic first order DS, used
to generate the desired path, saving the equilibrium points of the
modulated system. The effectiveness of the proposed approach
is validated with numerical simulations and experiments on a
7 DOF KUKA light weight arm.

I. INTRODUCTION

In human-robot interaction scenarios the robot is required
to adapt quickly to various situations and to eventual external
disturbances ensuring the operator safety. A feasible solution
for reacting in real-time to the external perturbations consists
in representing the task as a dynamical system (DS). Indeed,
a DS is robust against perturbations, and it ensures the
convergence to the goal [1][2].

The trajectory generated from the DS must be modified,
in real-time, to avoid possible collisions when unknown
obstacles and humans enter in the scene. Moreover, after the
avoidance, it is desirable that the robot fulfils the assigned
task as long as possible.

In the literature, two categories of approaches have been
proposed to generate collisions free paths: path planning
approach and reactive motion generation approach. The
former is capable to find, if it exists, the shortest collision
free path even in very complex scenarios with multi degree-
of-freedom robots [3]. These algorithms are computationally
expensive and, despite the possibility to parallelise them [4],
at present they can be applied only off-line.

The latter includes local algorithms which modify the
robot trajectory on-line. A widely used approach is based
on an artificial potential field [5]. The idea is to assign an
attractive force to the goal and to shape the obstacles as
repulsive forces, so as to reach the target avoiding obstacles.
In [6], for example, an approach to calculate the repulsive
force directly from the image plane of an RGB-D sensor
is proposed. One drawback of the potential field approach is
that the motion can stop in a local minima even if a collision-
free path to the goal exists.

A solution to skip the local minima is proposed in [7]. The
initial elastic band (collision-free path) is computed off-line
using a path planning algorithm. During the motion, the band
is deformed by applying repulsive forces to avoid collisions
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with moving and unknown obstacles. However, the described
reshaping method fails to avoid obstacles coming towards the
robot, and an off-line replanning step is needed [8].

The gradient of an harmonic potential field is used in
[9] to eliminate the local minima problem. The harmonic
fields are solutions of the Laplace’s equation, and their
analytical expression is known only for simple shaped ob-
stacles. Because it is hard to find numerical solutions of
the Laplace’s equation in real-time, some algorithms to
approximate complex shaped obstacles have been proposed
[10]. However, these algorithms can work in real-time only
in the planar case.

Other researchers propose to avoid local minima by mod-
ifying the dynamics of a particular system of differential
equations. For example in [11] an additive term is applied
to a discrete Dynamic Movement Primitive (DMP) [2] in
order to deform the trajectory and avoid a point obstacle. The
global stability of the modified system is proved with static
obstacles using the Lyapunov theorem. In [12] a combination
of potential fields and circular fields is applied to a second
order system to generate a smooth collision-free path. The
mentioned approaches work only with a specific dynamical
system, reducing the possibility of encoding many different
tasks, such as periodic motions.

A technique to modulate a generic first order DS is
proposed in [13]. Given the analytical representations of
the obstacles surface, a modulation matrix is computed that
locally deforms the original system. This approach can be
applied on a variety of DS (both stable and unstable) and
it guarantees the impenetrability of static obstacles, without
modifying the equilibrium points of the modulated system.
This approach has been extended in [14], in which the
modulation matrix is computed directly from a point cloud
and the analytical representation is no longer needed.

In this paper, we further extend our previous work [14],
proposing a modified modulation technique to guarantee the
avoidance and impenetrability of moving obstacles. As in the
static case, we show that the modulation does not affect the
equilibrium points of the modulated DS. The effectiveness
of our approach is proved with numerical simulations and
experiments on a KUKA LWR IV+.

The rest of the paper is organised as follows. Section II
describes the DS modulation with moving objects. Section
IIT discusses the impenetrability of convex and concave
obstacles. Section IV analyses the equilibrium point of the
modulated system. Finally, Section V presents the experi-
mental results, and Section VI states the conclusions and the
future works.



II. DYNAMICAL SYSTEM MODULATION
A. Problem Definition

The modulation algorithm is based on the assumption that
the path to follow is generated by a first order dynamical
system. This system can be autonomous (time-independent)
or non-autonomous (time-dependent). Considering the posi-
tion p € R? of the robot as the state of the system, the DS
becomes:

p(t) = f(p(t)),
p(t) = £(p(1), 1),

where f(-) is a continuous function and p is the first time
derivative of p. Knowing the starting point p, the desired
trajectory can be calculated by integrating f.

By modulating (1) or (2) with a suitable matrix M(p) by

p = M(p)f 3)

one can avoid obstacles and keep the stability properties of
the DS. In the following pages, p denotes the generic point,
P a point on the object surface, and p = p — p a generic
point with respect to p.

autonomous @))

non-autonomous 2)

B. Modulation with a Fixed Obstacle

We consider that a d-dimensional obstacle is present in
the scene!, and that the normal vector to the obstacle surface
0(p) = [A1(P) - -+ na(p)]” is defined for all p. A tangential
hyperplane can be defined at each point on the surface, using
the normal vector. One particular basis of the tangential
hyperplane is

— fi+1(P) j=1
87 (p) = { M1 (p) j=itli=1l.d—1,j=1.d

0 j#Lj#i+1

) )
where o] corresponds to the j-th component of
the i-th basis vector. Then, the matrix V(p) =
[A(p) Vvi(P) -+ V4—1(p)] is an orthonormal basis o

the d-dimensional space.

Now, let us call &' = ®(p) — « the distance between
the robot and the surface of the obstacle, where the positive
scalar « is a safety margin determining how close to the
object the robot can pass. The function ®’ is continuous,
positive definite, and &’ — oo if ||p|| — oo. We can define
the diagonal matrix E(p) = diag (A1(D), ..., \n(D)), where

1—
M=1-—"°"" pTp<Oorm=1
(@ +1)r
M o=1 p'p>0and m=0 5)
1
N=1+4+—"— i=2,3,....d
(' +1)°

In (5), the positive scalar p is the reactivity parameter, used to
change the magnitude of the modulation, the boolean variable
m = 0,1 is used to interrupt the modulation (m = 0)
after passing the obstacle? ®Tp < 0), and € > 0 is an

IThe extension to the multiple obstacles case is discussed in Sec. II-C.
2Note that only A1 (p) = 1, since the modulation of the other components
is anyway necessary to ensure the continuity of the velocity.

arbitrary small positive scalar, introduced to guarantee the
positive definiteness of the modulation matrix. The effects on
the modulated path, obtained with different values of safety
margin, reactivity and modulation interrupt, are shown in
Fig. 1.

Then, the modulation matrix in (3) can be calculated as

M(p) = V(p)E(p)V(p) ™" (6)

By modulating a DS with the matrix (6), it is possible to
prove that a trajectory p(t) starting from outside an obstacle
can never penetrate the convex obstacle®. Moreover, the
modulation does not affect the equilibrium points of the
modulated DS, saving its stability properties.

The modulation consists basically in a local deformation
of the DS, that generates collision free paths. The effect of
the modulation is maximum at the boundary of the obstacle,
and vanishes for points far from it.Note that, by construction,
the modulation matrix is symmetric and positive definite for
all p.

D2

(a) Safety Margin

p1

(b) Reactivity

m=1

p1
(c) Modulation Interrupt (Off/On)

Fig. 1. Characterizing the path during the obstacle avoidance. The scalars
« and p are used to modify the size of the safe area and the magnitude of
the modulation. The boolean value m is used to interrupt the modulation
after passing the obstacle.

C. Distance and Normal Vector Estimation

The distance between the robot and the obstacle, such as
the normal vector in the point of minimum distance, can
be computed knowing an analytical representation of the
obstacle surface [13]. In a realistic scenario, however, it is not
possible to get, in real-time, an analytical representation of

3The impenetrability does not depend on the choice made for the base
[V1(P) -+ Va-1(P)].



arbitrary objects from raw sensory data. In [14] we proposed
a solution to this problem, briefly described in what follows.

Let us consider a single object and a set of p,, g =
1,..., G, points on the obstacle boundary. The distance ®(p)
can be approximated with the Euclidean distance of p from
the surface points

d d

D(p) = min <Z(p1,i —pi)% ..., Z(ﬁc,i —pi)2> @)
i=1 i=1

®, =/ D(p) — (8)

where p,; denotes the i-th component of the g-th point in
Py, p; the i-th component of the current position, and «
the safety margin. Hereafter, we indicate the approximated
distance ®/, only with ®’.

To compute the modulation matrix (6), it is also necessary
to estimate the normal vector at the point of minimum
distance p,,,. This estimation is carried out using a parallel
implementation of the algorithm in [15], which allows us
to quickly reconstruct a surface from an unordered point
cloud. For each point p,, a weighted least squares plane 7 is
calculated using points in a neighbourhood of p,. Then, the
normal at p,, is chosen equal to the normal to the plane 7.
This algorithm is robust to noise, which is beneficial when
using the RGB-D cameras. Compared to other approaches,
it does not require that the surface is smooth nor a certain
density of points.

Since the density of the point cloud is not fixed, the
direction of the normal vector may vary significantly also
in close points. In order to obtain a smooth modulated path,
we calculate the normal n(p,,,) by using a weighted average
on the L points* closer to p,,:

8(P,0) = €(B,) + (1~ )i (D)
L
—e(p,)+ (107 D am)
i=1,i%k

where the scalar 0 < ¢ < 1. To ensure the impenetrability, it
must be ¢ = 1 if ®’ = 0. In addition, ¢ should be small when
the robot is far from the obstacles, and it should continuously
increase as ®' decreases. For this reason c is calculated as:

1

TP (10)
where the scalar 5 > 0 is a tunable parameter. For § =
0, ¢ becomes 1 and the contribution of N4, (P,,) in (9) is
neglected. Fig. 2 shows that greater value of /3 allows to
obtain smoother trajectories, because the contribution given
to the normal by f,,(P,,,) is dominant till the proximity to
the surface.

When multiple obstacles exist in the work space, we
simply calculate the distance from the closest point (8), (7)
and the normal at this point (9), (10). So, the number of
objects does not affect the performance of our algorithm.

“In experiments we use L = 1% of the number of points.
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Fig. 2.  Trajectories generated calculating the modulation matrix with
different values of .

D. Extension to Moving Obstacles’

In the case of moving obstacles the modulation in (3)
does not guarantee the impenetrability. Indeed, increase the
reactivity or the safety margin does not guarantee to find a
collision-free path to the goal in dynamic environments (Fig.
3(a)).

Let us consider one moving obstacle with translational and
angular velocities p, and p4. To guarantee the impenetra-
bility the modulated system becomes

p = M(p)(f(p,t) = Pr —Pa X P) + Pr +Pa XP
= M(p)(f(p,t) — Po) + Po
= M(p)f(p,t) + (I - M(p))Po
where pp = pr + P4 X P, I is the d-dimensional identity
matrix and M(p) is calculated using (6).

The term M(f — p,) is a modulation in the obstacle
coordinate system, that guarantees the impenetrability in the
current instant. The additional term p, puts the system in the
robot coordinate system and guarantees collisions avoidance
in the following time instant.

The effect of the proposed approach are shown in Fig. 3.
A spherical obstacle is moving with velocity v = 1 m/s in
the vertical direction, while the robot is moving horizontally
towards the goal. Increase the reactivity does not work in
this case (Fig. 3(a)), while the proposed modulation is able
to find a collision-free path to the goal (Fig. 3(b)).

(1)

= Obstacle = Obstacle | .-
- Safe area \ jv =1m/s ~Safearea | /7 O\ 1\/ =1m/s
o Initial Pos. o Initial Pos. | | ]
» Goal Pos. > Goal Pos. |
p=20

)

(b) Consider obstacle velocity

(a) Increase the reactivity

Fig. 3.  Impenetrability and collision avoidance cannot be guaranteed
only increasing the reactivity (a). Instead, a collision-free path is found
considering the effect of the obstacle velocity (b).

When multiple obstacles exist in the work space, we sim-
ply consider the velocity of the closest (most dangerous) one
to calculate the modulation in (11). The complete modulation

5The same approach to consider moving obstacles has been proposed in
”S.M. Khansari-Zadeh, A Dynamical System-based Approach to Modeling
Stable Robot Control Policies via Imitation Learning, PhD Thesis, 2012.*



algorithm, able to avoid, in real-time, K moving obstacles,
is summarised in Algorithm 1.

Algorithm 1 DS Modulation with Moving Obstacles
Given f, a point cloud, the normal vector at each point
and the velocity of the closest obstacle p,
1. Calculate ®’ using (7), and (8)
2. Smooth the relative normal using (9), (10)
3. Calculate E = diag (A1, ..., \,) using (5)
4.V = [fl Vi "'{’d—l]
5. M=VEV™!

return x = Mf + (I - M)p,

III. IMPENETRABILITY

The impenetrability of convex and concave object has been
proved in [13] and [14] respectively. In this section we recall
those results, adapting them to the case of moving obstacles.

A. Impenetrability of Convex Obstacles

Let us assume that the robot is on the boundary of the
unique, fixed, convex obstacle in the scene. The impenetra-
bility is ensured if the velocity of the robot along the obstacle
normal direction vanishes:

a(p)’'p=0, Vp (12)
Substituting (3) and (6) in (12) yields:
a(p)"p = 4(p)" V(P)EB)V (D) 'f 03

=[e 05_,]V(B) "' f~0

where we considered that i(p) is equal to the first column
of V(p), that the columns of V(p) are orthogonal, and that
€ is arbitrary small.

In real scenarios, choosing ¢ ~ 0 and a safety margin
« > 0, the residual motion in the normal direction can be
neglected and the impenetrability ensured.

The impenetrability with moving obstacles is obtained
modulating the system using (11). Indeed, the term M(f —
Po) prevents the motion along the surface normal direction,
guaranteeing the impenetrability in the current time instant
t;. The additional term p, guarantees to avoid collisions
(due to the obstacle motion) in the next time instant ;.

B. Impenetrability of Concave Obstacles

In the static case, if (12) holds, the speed in a point p on
the boundary of the object has significant components only
on the tangential hyperplane. Since the tangential hyperplane
never intersects a convex surface, the impenetrability of a
convex obstacle can be immediately assumed®.

If the object is concave, the tangential hyperplane can
intersect the surface, as shown in Fig. 4. Therefore, the
point p = p + M(p)fdt, calculated by integrating (3), may
be located within the object. To prove the impenetrability,

%Note that the time discrete implementation of the algorithm can com-
promise the impenetrability if the integration time step is not sufficiently
small (so that it makes sense to assume to work in the continuous time). In
all experiments, it will be used 6t = 1ms.

consider the set I = {p;|®(p;) > 0,Vp; € R"} that is the
set of all the points external or belonging to the surface. A
subset of I is defined by

J.(p) = {pJT|r > maz(p —p),Vp; €1 C R”}

where p — p = M(p)fét. By construction, J.(p) is an
intersection-free neighbourhood of p.

The impenetrability of a concave object is ensured if
a neighbourhood like (14) exists for each point on the
boundary of the obstacle. If this holds, we can conclude that
each point p, calculated by integrating (3), is external or
belonging to the surface. In the case of moving obstacles,
the same conditions still hold substituting p — p = M(f —
Po)dt + ppot in (14).

(14)

OBSTACLE

= — Intersection-free
— — Neighbourhood

FREE SPACE Tangential Hyper-Plane

Fig. 4. 1In a concave object the tangent plane can intersect the surface. If
the surface is smooth, a neighbourhood of the point of tangency with no
intersections (here is the area between the red dashed lines) can exist.

IV. EQUILIBRIA OF THE MODULATED SYSTEM

Let us assume that the velocity of the obstacle p, is
continuous and bounded’ (0 < ||ppll < Pmax) for all
t > to. Moreover, let us call p the globally asymptotically
stable equilibrium for the original system (1) or (2). Since
the system is globally asymptotically stable, the velocity
vanishes only at the equilibrium point p

f(p) =0,
£(p,t) =0, Vit =to,

autonomous (15)

non-autonomous (16)

Under these assumptions, an augmented version of the orig-
inal system in the form

-f-[)

has a globally asymptotically stable equilibrium & = [1 p”]7
if a > 0.

Using (17), and assuming that ¢(0) = 1, the modulated
system (11) can be rewritten as

a7)

! ‘OT —o(t) N e

= (M-Tpo | M £ 0

(18)

A(p.t)
Considering that the lower block-triangular matrix A in (18)
is full rank (o > 0 and M positive definite) for all p, t > ¢,

"These assumptions are not restrictive since the obstacles obey to the
Newtons’s laws and there are no impacts.



we can conclude that the modulated system (18) has the same
equilibrium of (17). Indeed, the velocity £ vanishes only at
€ =[1p”]”. This means that the modulation does not affect
the equilibria of the modulated system.

Despite the proposed algorithm saves the equilibrium
points of the modulated DS, the convergence to the goal
can be, in some cases, really slow. Let us consider a static
scenario with the robot lying on the obstacle surface, and
assume that the vector field f is parallel to the obstacle
normal vector. These condition can be expressed as:

f
ﬂ(ﬁ)Tmzil and ®(p)=2(P)=0 (19

Considering that V(p) = [0(p) Vvi(p) -+ Va—1(P)], it
is easy to show that the velocity components along the
tangential directions V; are zero. Since, from (13), ﬁTp ~ 0,
the robot will, in practise, stuck in a spurious equilibriumg.

An on-line algorithm to escape this equilibria has been
proposed in [13] and summarised in Algorithm 2. First, the
algorithm detects when the robot is in a local minimum,
checking the conditions p, < 7. and ®'(p,) = 0, where
T 1s a constant depending on the chosen e. Then, a small
perturbation ~y is applied in one of the tangential directions
Vi, until the robot exits from the basin of attraction of
the spurious equilibrium. The positive scalar v controls the
amplitude of the movements along V;. Small values of
reduce the drift due to the integration error (depending on
the 0t), guaranteeing a safe avoidance motion. However, a
very small value of v highly reduces the avoiding speed and
it is not recommended in real-time applications.

Algorithm 2 Avoid Slow Convergence
Given p,, p; and the integration time step ¢
L. ifp, <7 and &, =0 then
2. Choose one of the tangential directions v,
Define a (small) positive scalar v > 0
while continue do
Piy1 — P; +Vidt
Calculate p;,; using (11)
if ﬁTpiH > T Or f/iTpi+1 > 0 then
continue = false
end if
10. t—1t+1
11.  end while
12. end if

e T A

V. EXPERIMENTAL RESULTS
A. Numerical Simulations

Simulation 1: The robot task consists in keeping the end-
effector in a fixed position, while a fast spherical obstacle
moves toward it. The initial distance between the robot and
the obstacle is 1m, and the obstacle moves with a constant
velocity along a fixed direction.

8Notice that we assumed only fixed obstacle because this problem hardly
affects the modulation in (11) due to the contribution given by pg.
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Fig. 5. The robot has to avoid a fast obstacle and return to the initial
position. The obstacle is avoided until its velocity reaches 1.4 m/s.

The end-effector trajectory is generated integrating the
linear DS p = 3(g — p), where g is the goal posi-
tion. To consider the physical limitations of the robot,
we generate the desired joint trajectories using a first-
order CLICK algorithm [16], saturating the joint positions
(velocity) that exceed the limits. For the KUKA LWR
IV+ robot, used in the simulation, the joint ranges are
Doz = —Qmin = [170,120,170,120,170,120,170] deg,
and the joint maximum velocity q,,,, = : =
[100, 110, 100, 130, 130, 180, 180] deg/s.

We performed several tests varying the velocity in the
range 0.5 ~ 1.4 m/s. The robot behaviour in four different
time instants, and for two different trials, is shown in Fig. 5.
The results are obtained choosing = 10, a = 0.03, p =
3, m=0.

The robot is able to avoid the obstacle, coming back in
the goal position, until the obstacle velocity reaches 1.4 m/s.
In this case, indeed, the joint limits are exceeded, and the
robot is not able to follow the desired trajectory. The desired
trajectory (blue) and the path the robot follows due to the
joints saturation (red) are depicted in Fig. 5(b).

Simulation 2: In this simulation the task is to reach a
goal while avoiding a fast moving obstacle. The parameters
are the same as in Simulation 1. We performed several tests
varying the velocity in the range 0.5 ~ 1.3 m/s. The robot is
able to avoid the obstacle until its velocity reaches 1.3 m/s.
The robot behaviour in four different time instants, and for
two different trials, as well as the desired and executed
trajectories in the failure case, are shown in Fig. 6.

—Amin

B. Human-Robot collisions avoidance

In this experiment the robot has to keep the end-effector
in a fixed position while the user tries to hit it. The desired
Cartesian pose is sent at 1000H z using the Fast Reaserch
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Fig. 6. The robot has to avoid a fast obstacle and converge to the goal
position. The obstacle is avoided until its velocity reaches 1.3 m/s.
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Fig. 7. The robot has to avoid collisions with the human and return to the
initial position. The norm of the estimated hand velocity comes from 0.45
to 0.6 m/s.

Interface [17]. The robot trajectory is generated integrating
the linear DS p = 3(g — p), where g is the goal (initial)
position.

The human is tracked at 30H z using an RBG-D camera
and the OpenNI library’. A Kalman filter is used to reduce
the noise on the hand position estimation and to estimate the
hand velocity. To implement the filter we assumed a constant
velocity in each time step. The robot is removed from the
sensor depth map using a shader-based filter'?.

The robot behaviour in six different time instants, together
with the robot end effector and the human hand trajectories,
are shown in Fig. 7. The results are obtained choosing 8 =
10, =0.05, p=0.5m =0.

VI. CONCLUSION AND FUTURE WORK

In this paper we presented a distance based modulation
approach to collision avoidance in dynamic scenarios. Given
the closest obstacle position with respect to the robot’s
end-effector, the unit normal vector at the closest point,
and the obstacle velocity, a modulation matrix is computed
that guarantees the impenetrability without affecting the

9www.openni.org

Vgithub.com/jhu-lcsr-forks/realtime_urdf_filter

equilibrium points of the modulated system. The of the
proposed approach is shown using numerical simulations and
experiment on a real robot.

In the future, we will focus on testing the Distance Mod-
ulation in more complex scenarios, with multiple moving
obstacles. This approach will also be extended to avoid
collisions with the whole robot by projecting the movements
in the robot null space.
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