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In this paper, we propose a novel model-free approach for tracking multiple objects from RGB-D point set
data. This study aims to achieve the robust tracking of arbitrary objects against dynamic interaction cases in
real-time. In order to represent an object without prior knowledge, the probability density of each object is
represented by Gaussian mixture models (GMM) with a tempo-spatial topological graph (TSTG). A flexible
object model is incrementally updated in the pro-posed tracking framework, where each RGB-D point is
identified to be involved in each object at each time step. Furthermore, the proposed method allows the
creation of robust temporal associations among multiple updated objects during split, complete occlusion,
partial occlusion, and multiple contacts dynamic interaction cases. The performance of the method was
examined in terms of the tracking accuracy and computational efficiency by various experiments, achieving
over 97% accuracy with five frames per second computation time. The limitations of the method were also
empirically investigated in terms of the size of the points and the movement speed of objects.

Crown Copyright � 2013 Published by Elsevier Inc. All rights reserved.
1. Introduction

Identifying and tracking multiple moving objects from visual
information is an ongoing challenge in many autonomous systems.
With the advent of RGB-D cameras and improvements to point
cloud data processing technologies [33], the observed environment
can be represented as point set data P ¼ fp1; . . . ; png, wherein each
point contains not only the RGB color but also 3-d position infor-
mation, pi 2 R6. In particular, robust tracking of multiple objects
from the RGB-D point data is necessary for service robots operating
in human environments in order to reconstruct 3-d indoor envi-
ronments [6], understand the semantic information of a human
environment [6], and organize cluttered objects [7,21].

Especially in cases of learning complex actions manipulating
multiple objects from human demonstrations [1,9,12,28], the
tracking procedure presents difficult problems due to the lack of
pre-knowledge of the objects and their movements. First, there
are many flexibilities in the task. An object can be flexible and have
articulated parts such as a human hand. The number of objects to
track can also be flexible, because an object can newly appear in
the scene or disappear from the scene. Second, dynamic move-
ments of multiple objects cause various interaction cases between
objects. Without object models, these situations distort the
observed point data of each object, thus reducing the robustness
013 Published by Elsevier Inc. All r
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of the tracking performance. For example, an element that was rec-
ognized as a single object can be separated into two individual ob-
jects, as in Fig. 1(a), and an object can be occluded by another
object completely or partially, as in Fig. 1(b) and (c). In addition,
multiple objects can be recognized as a single object when they
are adjoining each other, as in Fig. 1(d).

The multiple object tracking problem of point set data involves
identifying each point data, Pt ¼ fpt

1; . . . ; pt
ng, to each true object

track, Tt ¼ fpt
1; t

t
1g; . . . ; fpt

n; t
t
ng

� �
, at each time. In order to solve

this problem without any prior knowledge, this paper proposes a
framework of incremental object learning and tracking for multiple
moving objects from RGB-D point set data, as illustrated in Fig. 2.
In this framework, each object model is incrementally updated at
each time from the identified point data, which are feedback re-
sults of the robust tracking process based on the previously con-
structed object model. This method aims to achieve the three
following objectives: flexibility to represent arbitrary objects, ro-
bust tracking against interactions between multiple objects, and
real-time implementation. In order to achieve flexibility, Gaussian
mixture models (GMM) and its tempo-spatial topological graph are
used to represent any object shapes and sizes, and their parame-
ters are incrementally updated at each time. The problems of
achieving robustness, as illustrated in Fig. 1, is tackled by
GMM-based 3-d registration for estimating the movements of ob-
jects and the multi-frame tracking (MFT) method for constructing
robust temporal associations of objects among multiple time
frames. The real-time implementation and tracking performance
of the proposed method is evaluated and analyzed with several
ights reserved.
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(a) Split (b) Complete occlusion

(d) Multiple contacts

Fig. 1. Four interaction cases between multiple objects.

Fig. 2. The framework of incremental object learning and tracking.
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experiments involving various movements of human hands with
manipulation of multiple objects.

The remainder of this paper is structured as follows. Related
work and preliminaries involving object representation and robust
tracking methods are described in chapter 2, and an overview of the
proposed tracking method and detailed explanations of the pro-
cesses are provided in chapter 3 and chapter 4, respectively. In
chapter 5, the results of the proposed methods are discussed with
several experiments. Finally, a conclusion is given in chapter 6.
2. Related work and preliminaries

In this chapter, the preliminaries of the proposed method for
incremental object learning and robust multiple object tracking
are introduced with a historical research background.

2.1. Object representation from RGB-D point set data

When an object detector is used to identify each object based on
pre-learned object models, the tracking problem simply involves
collecting identified object information in its track at each time
step. In reality, however, the modeling and learning of all objects
in advance are not always possible, and new objects that are not
modeled can be present while performing a tracking task. In this
case, it is necessary to construct a model representing an arbitrary
object in online manner.

One approach to solve this problem is to represent an object as
a set of primitives. [27,34] constructed each object based on 3-d
primitive shapes such as a sphere, a plane, a cylinder, and a cone
from a point data set. Meanwhile, [32] obtained a more precise ob-
ject model by combining the primitive shapes and triangular
meshes for the remaining point parts. In more recent robotics re-
search, [23] modeled a new object as a set of surfels that is robust
to noise and occlusions by using both the shape and appearance
information. Another approach is to model the objects as a set of
features from the appearances of shape and/or color information.
[18] suggested combining a 2-d feature-based online boosting
tracker and a 3-d model-based tracker. In their framework, any ob-
ject model shape can be constructed in the 2-d image domain by
using an online multi-class boosting approach, and the 3-d position
Please cite this article in press as: S. Koo et al., Incremental object learning and
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and orientation are estimated by a 3-d registration method. They
used 6 types of Haar-like features and color features as a feature
vector of an object. In order to represent a model of multiple ob-
jects, on the other hand, [21] suggested a graphical model to rep-
resent the appropriate features of multiple objects, such as
supporting contacts, caging, and object geometry for placing the
objects in another space.

2.2. Gaussian mixture models

Most approaches in the previous section have been introduced
to represent arbitrary rigid objects from the data in several fixed
scenes. One of the main objectives of this research is to represent
not only rigid objects but also nonrigid or articulated objects in
the dynamic situations in the presence of interacting multiple ob-
jects. In order to guarantee greater flexibility of the object model in
those situations, the model should be flexible and incrementally
updatable. We represent an arbitrary object based on a continuous
probability density function of a discrete point set involved in the
object. This representation is useful for manipulating the object
models analytically owing to its functional expression. The most
simple case is to design one d-dimensional multivariate Gaussian
distribution consisting of a mean (l 2 Rd) and a covariance matrix
(R 2 Rd�d) from the d-dimensional feature data of an object. The
probability density function of the point (x 2 Rd) belonging to
the object can be represented as (1).

/ðxjl;RÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞd Rj j

q exp �1
2
ðx� lÞTR�1ðx� lÞ

� �
: ð1Þ

In particular, the Gaussian mixture model, which is a weighted
summation of multiple Gaussians defined as (2), can represent any
arbitrary shape of functions when the number of Gaussians (k)
goes to infinity.

pðxÞ ¼
Xk

i¼1

wi/ðxjli;RiÞ;
Xk

i¼1

wi ¼ 1: ð2Þ

Learning the unknown parameters, k;w; �l, and �R, from the given
data set has been investigated in many ways. One of the typical
methods involves using the Expectation-Maximization (EM) algo-
rithm [5,11] given the number of Gaussians (k). In recent years, a
hierarchical GMM has been proposed to determine the number of
Gaussians efficiently through a hierarchical clustering method
[14]. On the other hand, if the assumption that the point set of an
object P ¼ fp1; . . . ;png is obtained using the same sampling dis-
tance, the corresponding GMM can be represented by evenly
weighted n Gaussians centered at each point with the same spher-
ical covariance matrix [20]. Although a parameter learning process
is not needed in such a case, the model includes such massive point
data that related algorithms are inefficient due to the expensive
computation time.

For this reason, several GMM simplification methods have been
suggested. The hierarchical clustering (HC) method [16] utilizes a
component grouping algorithm that iterates the process of ‘refit-
ting’ a Gaussian function to the local group and ‘regrouping’ points
to minimize Kullback–Leibler (KL) divergence between the original
GMM and the approximated GMM. Later, this was improved by
using a Gaussian-matching clustering algorithm to maximize the
cross-entropy approximation between two models [15]. The func-
tion approximation (FA) method [41], which used L2 distance mea-
sure to minimize the upper bound of the approximation error,
showed better performance than [16] in terms of model approxi-
mation. [29] suggested a fast algorithm based on the Bregman k-
means clustering method to reduce the KL-divergence between
two models; they estimated the number of Gaussians, as also done
robust tracking of multiple objects from RGB-D point set data, J. Vis. Com-

http://dx.doi.org/10.1016/j.jvcir.2013.03.020


S. Koo et al. / J. Vis. Commun. Image R. xxx (2013) xxx–xxx 3
in [14]. In addition, [3] presented a new measurement approach in
the multi-class approximation case to maximize the discriminative
quality of simplified models among different classes and minimize
the similarity between models in the same class.

The similarity measure, which presents the degree to which two
GMMs are equivalent, is a useful tool for handling GMMs. It can be
a source of cost functions to optimize GMMs in many cases as well
as a weight value of an association between two GMMs. Many dis-
tance measures between two continuous functions, gðxÞ; f ðxÞ, orig-
inates from the density power divergence [4]. The most widely
used variants for comparing probability density functions are the
KL divergence (3) and the L2 distance (4).

dKLðg; f Þ ¼
Z

gðxÞ log
gðxÞf ðxÞ

d
x; ð3Þ

dL2ðg; f Þ ¼
Z
ðgðxÞ � f ðxÞÞ2dx: ð4Þ

These two measures have a trade-off relation between robust-
ness and asymptotic efficiency [20]. In terms of comparing two
probabilistic density functions, the robustness means that the dis-
tance is not likely affected by the global change of the functions,
but it can reflect the local properties of the functions. The asymp-
totic efficiency has the opposite meaning. These properties of two
measures show different behaviors in the distance of two functions
with respect to the change of one function: the L2 distance has an
exact global minimum with many local minima, but the KL dis-
tance has one minimum point that is biased by global effects.
Therefore, the KL distance is appropriate for estimating the dis-
tance in the cases of two functions with a large difference, and
the L2 distance can reflect more exact distance in the case of rela-
tively close functions around the global minimum.1

2.3. Robust tracking methods for a single target

The conventional tracking method of a single object uses a
bayesian filtering method to stochastically estimate the current
position of an object from the past observations with transition
and measurement noise models. Many kinds of filtering methods
have been developed according to the modeling of the target object
[2]. Once it is possible to use the useful information of the dynam-
ics of moving objects, the estimation can be achieved by Kalman-
based filtering methods while particle filtering-based methods
can be applied in the cases of tracking objects without dynamic
models. In [25,42], particle filtering was performed to track a hu-
man body with a pre-defined skeleton model while any kind of ob-
ject can be tracked using particle filtering with an on-line
constructed model [39]. However, particle filtering can be applied
to observed data only with outliers corresponding to the noise
model. When the observed point data is obtained from multiple
objects with arbitrary outliers, particle filtering should be applied
after the observed data is segmented as a source for each target.

In particular, object tracking from 3-d point set data with many
outliers can be achieved using 3-d registration methods which
match the shapes of two point data sets by transforming a set of
points to another in 3-d space. This is data-based optimization
method that employs the assumption that there is one global min-
imum point of 3-d transformation parameters. The most well-
known method is the Iterative Closest Point (ICP) algorithm, which
has many variants [31]. In the case of tracking non-rigid objects
such as the human body, an articulated ICP with a structure model
was introduced in [10,22,23]. The structure model of the target ob-
1 In this research, L2 distance is used for evaluating the temporal associations
between two GMMs, and KL divergence is used for evaluating spatial associations
between two Gaussians. This is explained in chapter 4 in detail.
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ject facilitates robust tracking in the presence of occlusions or out-
liers. In the case of tracking multiple arbitrary objects, where the
structure models of objects are not available, the measurement
of the target object should be refined from all detected points by
rejecting occluded points or outliers. [18] used the ray-casting ap-
proach, where 2-d projections of the reference points to the ob-
served points are used to detect the occlusions. On the other
hand, for robust tracking with outliers, a GMM-based robust regis-
tration method was proposed in [19] without an outlier rejection
process. [20] showed the robustness of the method compared with
the conventional ICP method in a situation of considerable outliers
and occlusions by introducing the robustness of the L2-distance.

2.4. Multi-frame tracking (MFT) for robust tracking multiple targets

In the case of tracking multiple objects, the objects at the previ-
ous time frames should be associated with those at the current
time frame. Temporal data associations between time frames
encompass the issues of a variable number of tracks, the initializa-
tion and termination of tracks, and false matching. Joint probabilis-
tic data association filter (JPDAF) and multi-hypothesis tracking
(MHT) methods are probabilistic approaches for the temporal
matching of objects according to frames. They calculate the proba-
bility of each track for all possible matches with a probability den-
sity function around new points. Although JPDAF assumes a fixed
number of tracks [35], MHT is extended to work with a variable
number of tracks, and it has been used in many applications
[26,24]. Although the probabilistic approach has been applied suc-
cessfully in many tracking applications, it is associated with a
number of intractable problems such as the assumption of a prob-
ability density function for all points, sensitivity of the tracking
performance to the number of parameters of the model, and the
computational complexity growing exponentially with the number
of points. On the other hand, several deterministic approaches
have been proposed to overcome the probabilistic approaches.
The greedy optimal assignment (GOA) algorithm [40] was shown
to enhance the performance of finding optimal associations to al-
low occlusions and for detection errors with a constant number
of points. Shafique and Shah [36] proposed the multi-frame track-
ing (MFT) algorithm to improve the tracking performance by con-
sidering point information in multiple frames for a variable
number of points.

MFT is an efficient and robust temporal data association meth-
od based on the noniterative greedy algorithm [40]. The maximum
matching algorithm among multi-frame data allows correction of
existing correspondences, which compensates occlusions and
detection errors of targets. Fig. 3 summarizes the processes of
the MFT method in [36]. In the first two time frames, there are
three objects in the first frame (v11;v12; v13) and in the second
frame (v21;v22;v23), respectively. Extension edges can then be con-
nected to all objects between the two frames, as shown in Fig. 3(a).
Based on the weight values at each edge, the maximum matching
algorithm is performed to find optimal correspondences, as indi-
cated by the bold arrows in Fig. 3(b). When objects in a new frame
enter the graph, extension edges are generated from all objects in
the existing k-frames, as shown in Fig. 3(c). These extended edges
can share objects with existing correspondences, resulting in cor-
rection edges and false hypotheses after maximum matching.
Fig. 3(d) shows the correction edge (v13 � v32) of the previous cor-
respondence (v13 � v23) and the false hypothesis (v23 � v33)
caused by the false correspondence (v13 � v23). Because the false
hypothesis is meaningless with the correction edge, it is removed
in the correspondences, as shown in Fig. 3(e). After the deletion
step, the remaining unconnected objects perform maximum
matching between adjacent frames, as presented in Fig. 3(f). These
processes allow corrections of existing correspondences between
robust tracking of multiple objects from RGB-D point set data, J. Vis. Com-

http://dx.doi.org/10.1016/j.jvcir.2013.03.020


Fig. 3. Processes of multi-frame tracking algorithm.

2 Any dimension of point data can be applicable. In this research, 3-dimensional
position (x, y and z) data and 6-dimensional position and color (r, g, and b) data of a
point are applied and their performance is investigated in chapter 5.

3 The construction of a GMM, gmmi from the point data set Oi is described in
chapter 4.2.

4 S. Koo et al. / J. Vis. Commun. Image R. xxx (2013) xxx–xxx
objects which compensates for occlusion and detection errors of
objects.

The size of the multi-frames, k, serves as a sliding window in
which all object histories of all tracks are extended to the objects
in a new frame. This means that corrections of existing correspon-
dences are possible in the window. If k is larger than the occlusion
time, tracks that have disappeared or that are mismatched can be
recovered as newly detected objects after the occlusion process.

3. Problem statements and the framework of the proposed
method

TThe main task of tracking multiple objects from RGB-D point
set data is to identify each instance of point data at each time,
Pt ¼ fpt

1; . . . ; pt
ng, to each true object track, Tt ¼ fpt

1; t
t
1g; . . . ;

�
fpt

n; t
t
ngg, in situations with the following three areas of difficulty.

The first problem is the changeability of the object shape. In
dynamic situations, a non-rigid object such as a human hand can
change in terms of its shape and size, and adjoining multiple
objects cause distortion of each type of detected object shape, as
shown in the multiple contacts case in Fig. 1(d). The second diffi-
culty is the separation of an object into several objects, as
demonstraed in the cases of split and partial occlusion shown in
Fig. 1(a) and (c). In both cases, the object is divided into two parts,
and the two parts should be identified as individual objects in the
Please cite this article in press as: S. Koo et al., Incremental object learning and
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split case. In contrast, they must be recognized as one object in
the partial occlusion case. The third problem is the change in the
number of objects. In the cases of the complete occlusion of a small
object covered by a larger object and objects coming in and out of
the scene, the number of detected objects varies.

In order to tackle the three problems as stated above, the pro-
posed robust multiple object tracking algorithm consists of three
steps: measurement estimation, incremental object learning, and
multiple object tracking, as shown in Fig. 4. Measurement estima-
tion is the process of identifying a set of newly observed RGB-D
points that is associated with each object. At each time step, the
Maximum weighted Likelihood (MwL) of each instance of point
data is evaluated with predictive object models that are estimated
from previous object models using GMM-based 3-d registration
(GMM-Reg). An identified point data group within an object up-
dates the corresponding object model incrementally. Each object
is represented by a GMM2 from its point data using a GMM simpli-
fication method. Each Gaussian in the updated GMM is temporally
associated with the previous GMM in an identical predictive object
using the MFT algorithm at the Gaussian-level (MFT-G) in order to
construct a temporal-spatial topological graph (TSTG) of the object.

Multiple object tracking is the process of constructing robust
temporal associations between the updated object models. In cases
where there exist new objects in the scene such as split, as in
Fig. 1(a), and objects newly entering the scene, the updated object
models are investigated and separated into individual new objects.
In order to assign a track id tt

i to each object Ot
i at each time step,

the multi-frame tracking algorithm at the GMMs-level (MFT-
GMM) determines the multi-object temporal association using a
similarity measure between the GMMs of objects, thus resulting
in Tt . This process can handle typical tracking problems of gener-
ating new tracks, deleting old tracks, and correcting false matches
due to noise and occlusions.

The main contributions of the proposed method for robust
tracking of multiple objects without prior knowledge are summa-
rized as follows:

� The proposal of a flexible object model based on a GMM with a
tempo-spatial topological graph (TSTG) and its incremental
learning method to represent arbitrary objects.
� The robust identification of all observed point data to be

involved in true individual objects by using robust 3D registra-
tion (GMM-Reg) and Maximum weighted Likelihood (MwL)
point matching.
� The development of robust temporal associations of multiple

objects in multiple frames in the cases of various interactions
between them.

In the following chapters, the details of the components in the pro-
posed framework are described and their performance and limita-
tions are evaluated with various experimental settings.
4. The proposed multiple object tracking method

4.1. Measurement estimation

In order to identify each point in newly observed point set data,
Pt ¼ fpt

1; . . . ; pt
ng, as its object to be involved, Ot ¼ fpt

1; o
t
1g; . . . ;

�
fpt

n; o
t
ngg, it is necessary to estimate the predictive object at time

t that is represented by a GMM3, dgmmt
i , from the existing object
robust tracking of multiple objects from RGB-D point set data, J. Vis. Com-
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Fig. 4. Overview of the proposed tracking processes.

Fig. 5. 3D point set registration task.
Fig. 6. 3D point set registration results using KL-divergence of the two models.
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model at t � 1, gmmt�1
i , needs to be transformed to estimate the pre-

dictive object at time t; dgmmt
i . Because there is no prior information

of the object movements, in this research, the prediction process can
be achieved by using the robust 3-d point set registration method
with the assumption that there is no substantial shape change of
an object between concatenated time frames.4

The 3-d point set registration is defined as a process that finds
the transformation parameter h to minimize the distance or max-
imize the similarity between the point set of the transformed mod-
el, TðPm; hÞ and the point set of the scene Ps. In this study, we use
GMM from the point set as an object to reduce the data size and
thereby enhance the computational efficiency. GMM can be
applied for ICP as a kernel function, as in [8,38]; [19] showed that
ICP-based registration methods have the same effect of minimizing
the KL-divergence between two GMMs of TðPm; hÞ and Ps. The
KL-divergence of two GMMs of (3) is an efficient metric for
comparing two point sets, but is not robust in the presence of
4 The breaking conditions of this assumption are empirically tested in chapter 5.2.
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outliers. [20] proposed a GMM-based registration method using
the L2 distance of GMMs as a cost function between the trans-
formed model and the scene. The L2 estimator is more robust
against outliers than the KL-divergence estimator and the maxi-
mum likelihood estimator (MLE). Another advantage of the L2 dis-
tance is its closed-form expression for GMMs. The L2 distance of
two GMMs can be expressed as (5) with the property of a Gaussian
function of (1),

R
/ðxjl1;R1Þ/ðxjl2;R2Þdx ¼ /ðxjl1 � l2;R1 þ R2Þ.

dL2ðg; f Þ ¼
Z

f 2ðxÞdx� 2
Z

f ðxÞgðxÞdxþ
Z

g2ðxÞdx

¼
Xm

i¼1

Xm

j¼1

wf
i w

f
j /ð0jl

f
i � lf

j ;R
f
i þ Rf

j Þ

� 2
Xm

i¼1

Xn

j¼1

wf
i w

g
j /ð0jl

f
i � lg

j ;R
f
i þ Rg

j Þ

þ
Xn

i¼1

Xn

j¼1

wg
i wg

j /ð0jl
g
i � lg

j ;R
g
i þ Rg

j Þ: ð5Þ
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Fig. 7. 3D point set registration results using L2-distance of the two models.

Fig. 8. The result of correcting the false segments in the Fig. 5(b).
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The numerical calculation of (5) consists of three forms of discrete
Gaussian transforms [17], and the performance in terms of the com-
putation time depends mainly on the number of Gaussians, m and n.
Hence, a reduction of the size is necessary for implementation of
the algorithm in real-time.5

The goal of the registration is to transform the past true objects
(models) into an observed point set (scene) to minimize the differ-
ences between their GMMs. As shown in Fig. 5(a), the two objects
(a human hand and a cup) have previous object models at time
t � 1 but are contacted at time t, as shown in Fig. 5(b). The two
point sets of objects in Fig. 5(a) are the model data, and the ob-
served point set in Fig. 5(b) is the scene data for 3D registrations
to estimate the true object point set of each object at time t.

For each model, the scene data have numerous outliers, which
are points belonging to another object; therefore, a robust registra-
tion method is preferable in this case. Fig. 6 shows the GMM-based
registration results with the KL-divergence distance while Fig. 7
shows the results when the L2-distance. Obviously, the KL-diver-
gence measure more efficiently reflects the global effects of the
points, as it tries to maximize the likelihood of the model matching
the scene and thus places the model at the center of the scene. On
the other hand, the L2-distance reflects local effects better than it
shows a global influence, and the registration results show that it
is more robust against most outliers.

Another advantage of GMM-based 3D registration6 is its closed
expression of the gradient of the cost function. In this research, we
5 The computation time according to the number of Gaussians is discussed in
chapter 5.2.

6 The details of the GMM-based 3-d registration method are explained in the
literature [20]. The algorithm is briefly summarized in terms of its advantages in this
research.

Please cite this article in press as: S. Koo et al., Incremental object learning and
mun. (2013), http://dx.doi.org/10.1016/j.jvcir.2013.03.020
used rigid transformation, which is defined by the rotation matrix
R and the translation vector t. Let P denote a n� d matrix of the
d-dimensional point set P. The rigidly transformed model at time t
can then be expressed as follows:

Pt
m ¼ TðPt�1

m ; hÞ ¼ Pt�1
m RT þ t: ð6Þ

The gradient of the cost function (5) can be derived by the chain
rule @F

@h ¼ @F
@Pt

m

@Pt
m

@h . The first derivative @F
@Pt

m
is the partial derivative of

the cost function with respect to each point. The derivatives of
the first and the third terms of (5) are zero due to the rigid transfor-
mation. The partial derivative of the cost function at each point is
determined as follows:

@F
@lm

i;d

¼ �2wm
i

Xn

j¼1

ws
j
@

@lm
i;d

/ð0jlm
i � ls

j ;R
m
i þ Rs

j Þ: ð7Þ

The second derivative can be simply obtained by the linear form of
(6). The gradient of the cost function can be expressed as

@F
@t
¼ @F
@Pt

m

T

1m;

@F
@ri
¼ 1T

d
@F
@Pt

m

T

Pt�1
m

 !
� @R

@ri

� � !
1d;

ð8Þ

where 1m is a m dimensional column vector of all ones, and � de-
notes element-wise multiplication. In order to optimize the trans-
formation parameter, any gradient descent optimization algorithm
can be used with the help of the gradient of (8). In this research,
we used the limited-memory Broyden Fletcher Goldfarb Shannon
(L-BFGS) minimization algorithm, which is based on a quasi-New-
ton algorithm for large-scale numerical optimization problems.7

After the registration process, each predictive object at time t,dgmmt
i , can be estimated, as shown in Fig. 7(a) and (b). All of the ob-

served points can then be evaluated in terms of the degree to
which each is involved with dgmmt

i by comparing the likelihoods
of the GMMs at each point. Here, ot

i is the identification number
of an object to which point pt

i is related; it can be determined by
the Maximum Likelihood Estimator (MLE) of GMMs as

ot
i ¼ arg maxjLð dgmmt

j jpt
i Þ ¼ arg maxj dgmmt

j ðpt
i Þ; ð9Þ

where gmmðpÞ is the evaluated value of a GMM at point p according
to (2). Although the MLE can evaluate and compare multiple GMMs
at one point, it has an inherent problem when used to compare
GMMs with different numbers of components. Due to the property
7 This is implemented in the vision-numerics library (vnl) in <http://vxl.source-
forge.net/>.
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Fig. 9. The first column denotes the n source points. The simplified GMMs are displayed as a set of 3-d ellipsoids with reduction ratios of 0.5, 0.3, 0.1, 0.05 and 0.01,
respectively, from the second to the sixth column.

8 The sampling distance is a pre-defined value for capturing point data from the
camera. In chapter 5.1, the change of this value and its relation with the tracking
performance is presented.
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of the weights in GMM,
Pk
i¼1

wi ¼ 1, GMM with more Gaussians has a
lower evaluation value at the given point. This property results in
biased evaluations of the points at the boundaries of two GMMs,
which are more likely associated with GMM with smaller Gaussi-
ans. For this reason, we propose the Maximum weighted Likelihood
(MwL) function of GMM by normalizing the number of components
as shown below,

ot
i ¼ arg maxjLð dgmmt

j jpt
i Þ ¼ arg maxj

nt
j � dgmmt

j ðpt
i ÞP

jn
t
j

; ð10Þ

where nt
j is the number of Gaussians in gmmt

i . Fig. 8 shows the result
after MwL point-matching.

4.2. Incremental object learning

4.2.1. Gaussian mixture models construction
The set of identified points that carries the same value of ot

i ¼ k
is clustered as one object Ot

k, where nt
o is the number of objects at

time t and nt
o;k is the number of points identified as the object k at

time t.
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Ot ¼ fOt
1; . . . ;Ot

nt
o
g; Ot

k ¼ fpt
1; kg; . . . ; fpt

nt
o;k
; kg

� �
: ð11Þ

Each point set of object Ot
k constructs a GMM that consists of the

same number of Gaussians as the number of points with a constant
diagonal covariance matrix determined by the sampling distance,
r.8

pðxÞ¼
Xnt

o;k

i¼1

wi/ðxjli;RiÞ;wi¼
1

nt
o;k

; li¼xi;Ri¼diagðrÞ2Rd�d: ð12Þ

The initially constructed GMM with a size of nt
o;k is approximated by

means of a simplification method. The method approximates a
GMM with a given number of Gaussians that is proportional to
the number of points involved with the object, which determines
robust tracking of multiple objects from RGB-D point set data, J. Vis. Com-
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Fig. 10. The constructed GMM and topology from RGB-D data of a human hand.
(a) The split case

(b) The partial occlusion case

Fig. 11. The sequential change (from left to right) of the topological graph in the
split and partial occlusion cases. The upper rows show the captured RGBD point set
data, and the lower rows illustrate GMMs with their topological graphs.
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the trade-off between the computation time and the model approx-
imation error.9

Fig. 9 shows the simplified GMMs of five objects in different
point sizes. The point set of the objects (an apple, a banana, a
cup, a bottle, and a juice pack) was captured by two Kinect cam-
eras and were down-sampled with a distance of 0.005 m be-
tween each point, as depicted in the first column of Fig. 9(a)–
(e). The point set generates an initial GMM with the same num-
ber of points n and a diagonal covariance matrix with r ¼ 0:005.
The initial GMM of an object was reduced to a mixture of m
Gaussians (m < n), according to the HC method10 with different
reduction ratios m=n ranging from 0.01 to 0.5. The second to the
sixth columns in Fig. 9 express the GMM simplified by a set of
3-d ellipsoids with different transparent values according to the
weighted value of the Gaussian. Each ellipsoid locates at the cen-
troid of each Gaussian, and the 3-d size and the orientations are
calculated from the eigenvalues and the corresponding eigenvec-
tors of the covariance matrix of the Gaussian.
4.2.2. Multi-frame tracking in Gaussians (MFT-G)
In order to increase the robustness of the model, motion infor-

mation of individual object is a very strong cue in separating ob-
jects [13,30]. For example, in the split and partial occlusion cases
in Fig. 1(a) and (c), one object can be recognized as two separated
objects. The movements of the separated components in an object
can be used to distinguish these two cases by comparing their
velocities. The velocity of each Gaussian can be generated in the
temporal associations by tracking the history of the position of
the Gaussian. Therefore, the Gaussians in the GMM must have
not only spatial but also temporal relations among them.

The temporal associations can be developed by the MFT algo-
rithm presented in chapter 2. In an object at each time frame t,
each Gaussian is a new node in the t frame of the graph of MFT
as nodes v21;v22, and v23 in Fig. 3(a). The only necessary parts to
construct a MFT for Gaussians are the definition of the weight func-
tion between two Gaussians and the size of the time frame k to ex-
tend the new associations. k is determined by the given situations
9 The ratio between the number of Gaussians and the number of points is tested
and the performances of the two methods are investigated and compared through
various experiments in chapter 5.1.

10 Considering two well-known simplification methods, FA [41] and HC [16], HC is
more appropriate than FA in this research due to the difference in their computation
times with similar approximation accuracy levels.
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to consider the length of partial occlusion time. The weight func-
tion between two Gaussians, g1 ¼ fl1;R1g and g2 ¼ fl2;R2g, is
determined by using the L2 distance between them as follows.

weightðg1; g2Þ ¼ 1� dL2ðg1; g2Þ
max

i;j
ðdL2ðgi; gjÞÞ

: ð13Þ

Because the matching algorithm in MFT maximizes the sum of
weight values in the matched associations, the L2 distance, that is
0 for the closeness Gaussians, is converted to a weight value be-
tween 0 and 1 by introducing the maximum value of the distance
in the graph.
4.2.3. Tempo-spatial topological graph (TSTG) construction
In order to represent the spatial and temporal relations among

the Gaussians in a GMM, the GMM constructs a topological graph
where each node represents each Gaussian and the undirected
edge between two nodes. In formal expression, the topological
graph can be expressed as G ¼ fV ; Eg. The graph contains as
many nodes as the number of Gaussians in the object,
v i 2 V ; 1 6 i 6 m. Each undirected edge of the graph,
ei;j 2 E; 1 6 i < m; i < j 6 m, represents the association between
two Gaussians of v i and v j. Each edge contains the weight value
of the association. In order to reflect the spatial and temporal
relations between two Gaussians, the weight value of an edge
is determined as a convex combination of the differences of posi-
robust tracking of multiple objects from RGB-D point set data, J. Vis. Com-
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Fig. 12. Six hand motions with a white box in the presence of multiple contacts.

Table 1
Average number of points at each frame of the six test data according to the sampling distance (from 0.01 m to 0.025 m).

Task Time [s] # Of frames Average # of points with a sampling distance [m] of

0.01 0.015 0.02 0.025

Translation in x 24.9027 794 1518.9567 713.8847 424.1239 293.1153
Translation in y 20.8707 590 1377.9966 655.1016 381.8983 274.2372
Translation in z 24.7281 698 1158.3763 574.6112 350.6074 245.5587
Rotation in x 26.4981 756 1525.8542 721.9603 429.5926 300.1667
Rotation in y 20.8379 568 1468.0352 704.3133 420.1901 296.3767
Rotation in z 21.2505 600 1260.2286 603.6357 359.9178 256.2357

Fig. 13. Averaged tracking accuracy and computation time results of the six hand motions translating and rotating a white box in the presence of multiple contacts.
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tion and velocity between two Gaussians, which is controlled by
a parameter 0 6 a 6 1.

wðei;jÞ ¼ a�wposðei;jÞ þ ð1� aÞ �wvelðei;jÞ: ð14Þ

The position difference of two Gaussians is defined by the normal-
ized KL distance in an object and converted into a weight of associ-
ation between 0 and 1 as follows.
Please cite this article in press as: S. Koo et al., Incremental object learning and
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wposðei;jÞ ¼ 1�
dKLðgi; gjÞ

max
i;j
ðdKLðgi; gjÞÞ

: ð15Þ

In the case of defining the relation between spatially distributed
Gaussians, the KL distance is more appropriate than the L2 distance
due to its global effect. The symmetrised KL distance (16) is used for
the undirected edges.
robust tracking of multiple objects from RGB-D point set data, J. Vis. Com-
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Fig. 14. Illustrations of the tracking results in the sequence (from left to right) of the movement rotating in the z-direction. The first row show the original captured point set
data. The second row illustrate Gaussian mixture models as a set of 3D ellipsoids with tempo-spatial topological graph. The tracking results of the proposed algorithm are
depicted in the figures on the third row.

Fig. 15. Tracking accuracy results of 3-d GMM and 6-d GMM according to the increasing speed of objects.

(a) Computation time according to (b) Computation time according to
the number of objects the number of points

Fig. 16. The computation time according to the number of objects and points and the length of frames, k in MFT-GMM.
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(a) Test of the split case and a fast moving object

(b) Test of the complete occlusion case

(c) test of the partial occlusion and multiple contacts cases

Fig. 17. Snapshots of the tracking multiple objects in the sequence (from left to right) of the movements. The first row of each figure show the original captured point set data.
The second row illustrate Gaussian mixture models as a set of 3D ellipsoids with tempo-spatial topological graph. The tracking results of the proposed algorithm are depicted
in the figures on the third row.
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dKLðg1; g2Þ ¼ dKLðg1kg2Þ þ dKLðg2kg1Þ; where

dKLðg1kg2Þ ¼
1
2

trðR�1
2 R1Þ þ ðl2 � l1Þ

TR�1
2 ðl2 � l1Þ

	
� ln

R1j j
R2j j

� �
� d
�
:

ð16Þ
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The weight value for referring temporal properties of Gaussians is a
normalized velocity difference between two Gaussians. Because
each Gaussian already has a historical track from the MFT algo-
rithm, the velocity can be calculated by the change of position vec-
tors in a Gaussian as follows.
robust tracking of multiple objects from RGB-D point set data, J. Vis. Com-
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wvelðei;jÞ ¼ 1�
dvelðgi; gjÞ

max
i;j
ðdvelðgi; gjÞÞ

; where

dvelðgi; gjÞ ¼ ðlt
i � lt�1

i Þ � ðlt
j � lt�1

j Þ



 


: ð17Þ

The fully connected topological graph with initial weight values of
all edges needs to be simplified to construct a meaningful topology
of the GMM. The weight value of each edge is tested with a thresh-
old value, 0 < thedge < 1, to erase the edge in the graph.

wðei;jÞ < thedge ) erase ei;j in E: ð18Þ

Fig. 10 shows an example of the constructed GMM and its
topology graph of a human hand.

4.3. Multiple object tracking

There are two types of new objects: a separated part in the split
case and an object newly entering into the scene (entering case). In
order to generate new objects in these cases, topological graphs in
the existing objects are investigated. Because the weight value of
an edge represents the closeness of two Gaussians in terms of
the spatial positions and temporal movements, the two individual
objects are easily disconnected when they move in different ways,
as in the split case, or they are positioned at a distance from each
other in the entering case. On the other hand, even if there is partial
occlusion of an object, the Gaussians are not easily disconnected
when they have the same movement patterns. Therefore, the
disconnected parts11 in the topological graph are generated as
new objects in the split and entering cases.

Fig. 11(b) and (d) shows the sequential change of the topologi-
cal graph in the separation and partial occlusion cases. In the sepa-
ration case, the graph is separated into a moving part and a
stationary part, as in Fig. 11(b) while the graph is still connected
although there are occluded parts by the human hand.

The newly generated objects construct their own GMMs and
make new tracks in the temporal associations with existing up-
dated objects in MFT process. In order to apply MFT to multiple
GMM-based objects, each node in the graph represents each object
O and corresponding gmmðOÞ. At time t, the nodes in a new frame,
such as v21;v22, and v23 in Fig. 3(a), are generated from the seg-
mented object set Ot of (11) while at the previous time frames
t � d, the matched nodes, are assigned as the identified objects
from Tt�d and corresponding GMMs. The weight function between
the objects is characterized by the L2-distance of the GMMs, as in
(5). Because the L2-distance presents a smaller number with
greater closeness of the two GMMs, the weight function is defined
by (19), and takes a value between 0 and 1.

weightðO1;O2Þ ¼ 1� dL2ðgmmðO1Þ; gmmðO2ÞÞ
max

i;j
ðdL2ðgmmðOiÞ; gmmðOjÞÞÞ

: ð19Þ
5. Experiments and results

The purpose of the proposed method is to track multiple objects
robustly and efficiently. These two properties are in a trade-off
relationship, and several parameters in the algorithm are involved
in this trade-off. For example, the ratio of the original point set and
the sampled point set determines the extent of data and
computation time reduction, but this reduction is accompanied
by a loss of information used to represent the object. In this sec-
tion, the control variables and corresponding effects are investi-
gated in terms of the tracking accuracy and the computational
11 The connectivity of the topological graph is tested using the connectivity test
algorithm in the LEMON Graph Library (https://lemon.cs.elte.hu).
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efficiency. We conducted several experiments to examine the fol-
lowing questions:

� According to the GMM representation method, how much does
the constructed object model affect the tracking performance of
multiple objects in situations of dynamic movements and mul-
tiple interactions?
� What is the limitation of the proposed tracking algorithm to be

feasible for use in terms of the speed of objects and the number
of objects?

The experiments involve tracking human hands and multiple ob-
jects on a table. The data is captured by a RGB-D camera (ASUS
Xtion) established at a height of 90 cm on the table. The size of
the workspace is 70 � 70 � 70 cm and the surface of the table is
not included in the space. The computation device is an Intel i7
2.8 GHz CPU and RGB-D point set data, size of 640 � 480, is cap-
tured at an average of 30 Hz frequency. The data is then trans-
formed into 6-dimensional point data (x, y, z, r, g, and b) with
respect to the coordinate on the table, and data outside of the work-
space is cut out. The data in the workspace is down-sampled with a
given sampling distance by using VoxelGrid filter in [33], and the
reduced data enter the proposed tracking process. In order to ana-
lyze the proposed algorithm, the control variables to represent
the object model include sampling distance, simplification ratio,
and a 3-dðp ¼ fx; y; zgÞ or 6-dðp ¼ fx; y; z; r; g; bgÞ GMM. The size of
extension frames in MFT-GMM is also a control variable for the
tracking algorithm, and the number of objects and the speed of
movements are control variables of the object state. The perfor-
mance of the tracking results is investigated in terms of tracking
accuracy and computation time. In order to obtain ground truth
data, each object has different color in the experiments, and the
tracking accuracy here denotes the rate of the correctly segmented
points to the total points for all frames.

accuracy½%� ¼
PT

t

PNt
o

i nðpt
i jcolorðpt

i Þ ¼ colorðot
i ÞÞPT

t

PNt
o

i nt
i

 !
� 100: ð20Þ

The computation time was measured by calculating computed
frames per second (FPS) in all frames.

5.1. Performance of tracking multiple objects in dynamic movements

In this experiment, we want to measure how much the GMM rep-
resentation affects the tracking accuracy and the computational effi-
ciency. The experiments were run with multiple moving objects in
the multiple contacts situation. Fig. 12 shows six movements of
two hands translating and rotating a white object in three dimen-
sions. Each action was repeated five times, and took around 25 s in
total. Each instance of captured point set data was reduced by
down-sampling with a constant sampling distance. This experiment
was performed with four different sampling distances ranging from
0.01 to 0.025 because the size of the initial GMM, n, is a substantial
control parameter for the tracking accuracy and the computational
efficiency. The initial GMM is then constructed with a diagonal
covariance of the r value, as in the corresponding sampling distance.
Table 1 shows the details of the six experiments. Six cases were eval-
uated according to the changes in the values of n and m by control-
ling the down-sampling distance within a range of 0.01 m to
0.025 m and the simplification ratio within the range of 0.1 to 0.3,
and the choice of using 3-d or 6-d GMM representation.

Fig. 13 shows the averaged tracking accuracies and computation
times of the six tasks illustrated in Fig. 12. In order to find the opti-
mal control parameters of the sampling distance and simplification
ratio for each GMM representation, the requirement of the comput-
able frames per second was set to a minimum of 5 FPS. In Fig. 13, the
available parameter values of 3-d GMM are 0.025 m for the sam-
robust tracking of multiple objects from RGB-D point set data, J. Vis. Com-
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12 Movie clips of the tracking result of the scenario can be found at the official
webpage of this work: (http://robot.kaist.ac.kr/project/pmot).
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pling distance with any simplification ratio and 0.02 m for the sam-
pling distance with a simplification ratio of less than 0.15. Among
these values, the highest tracking accuracy with the computation
time constraint can be obtained by the parameters of 0.02 m for
the sampling distance and 0.15 for the simplification ratio, thus
achieving average 91.13% accuracy. In the same way, the 6-d
GMM representation has the optimal parameters of 0.02 m for the
sampling distance and 0.15 for the simplification ratio, and these
values achieve average 97.74% accuracy.

Fig. 14 shows selected snapshots of test data, rotation in the z-
direction, with a sampling distance of 0.02 m and a simplification
ratio of 0.15 for 6-d GMM. The figures in the first row are original
RGB-D data. Initially, two hands and the white box are separated
from each other as shown in the first columns of Fig. 14. The sec-
ond to the fourth columns show the sequence of the test motions
with multiple contacts between the three objects. The figures on
the second row illustrate the GMM with TSTG of each object, and
the final results of the proposed tracking algorithm are depicted
in the figures in the third row.

5.2. Limitation of the tracking algorithm in terms of the movement
speed

The objective of the second experiment is to find the limitation
of the proposed method in terms of the movement speed of the ob-
ject. Because it is not possible to change human movement accu-
rately with different velocities, we performed the experiment by
skipping frames alternately in the captured data of a original
movement. The number of skipped frames in a series corresponds
to the number of multiplication of the original speed. We used the
data of the first experiment as the original speed, average 0.86 m/s
for translation motion and average 2.11 rad/s for rotation motion,
and calculated the tracking accuracy according to the control vari-
ables of the GMM representation with a fixed sampling distance of
0.02 m. The speed of movement was changed from two to ten
times the original speed of movements.

Fig. 15 shows the tracking accuracy results of 3-d GMM and 6-d
GMM according to the increasing speed of objects. We set the
breaking point of the algorithm as 90% for 3-d GMM and 97% for
6-d GMM, because these are the values obtained from the first
experiment. As the figures show, the both accuracies decrease as
the speed increases, but 6-d GMM is more robust than 3-d GMM
in terms of tracking fast moving objects. With 6-d GMM represen-
tation, the limitation speed of the moving objects can be consid-
ered five times than the original speed, that is 4.3 m/s for
translation or 10.55 rad/s for rotation movement.

5.3. Limitation of the tracking algorithm in terms of the number of
objects

The third experiment was performed to test another limitation
of the algorithm in terms of the computation time according to the
number of objects and the length of frames, k in MFT-GMM, to con-
struct temporal associations. The search space of the extension
graph in MFT-GMM, as in Fig. 3(c), increases according to the num-
ber of objects and the length of frames, which increases the com-
putation time. In this experiment, a human incrementally carried
new objects into the scene and the computation time was mea-
sured with fixed control variables for object representation
(0.02 m sampling rate, 0.15 simplification ratio and 6-d GMM).
The number of objects increased from one to eight, which caused
the increase of the number of points from 20 to 650. The length
of frames, k in MFT-GMM, varied from 30 to 150 (from one seconds
to five seconds in 30 Hz) to track objects in the case of full occlu-
sion as much as the same length of time. As Fig. 16 shows, the com-
putation time becomes exponentially expensive according to the
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number of objects and points, and the larger length of frames re-
quires more computation time as well. The real-time performance
of the proposed algorithm depends on many combinations of the
parameters, and the limitation of the algorithm can be determined
by the given situation. For example of this experiment, with the
breaking point of 5 FPS, the proposed algorithm shows the limita-
tion of tracking around 400 points in nine objects with 30 of k.

5.4. Tracking multiple object in various interaction situations

Finally, the proposed algorithm was tested in a real situation of
tracking multiple objects on a table including various interaction
cases shown in Fig. 1. This test is not computationally analyzed
but Fig. 17 shows snapshots of the results.12 The first task aims to
test the separation case and tracking fast moving objects. As shown
in Fig. 17(a), a human hand carries a small object into the scene,
and then two hands play with the object by pushing it to each other.
The second task involves the full occlusion case. Two hands pass over
the two small objects alternatively, and hold each object for a while.
Fig. 17(b) shows that the fully occluded objects are recovered as
soon as they appeared again with constant id number of each object.
The third task tests the partial occlusion and multiple contact cases.
Even though a shadow of each hand divides an object into two ele-
ments, the object preserves its points. As shown in Fig. 17(c), there
are error points in the case of multiple contact situation because
two contacted objects (white boxes) have similar color information.

The values of the control variables are as follows: 6D GMM,
0.02 m sampling rate, 0.15 simplification ratio, 60 frames of MFT-
GMM, 10 frames of MFT-G, and 0.98 of a.

6. Conclusion and further works

In this paper, we presented a novel tracking method for multiple
moving objects from RGB-D point set data. In particular, this method
adopted a Gaussian mixture models (GMM) to represent any arbi-
trary object without prior knowledge. The flexibility of the model-
free approach suffers from the dynamic movements of the objects
and interaction cases such as contact and occlusions among multiple
objects. The proposed method enhanced the robustness of the track-
ing task by suggesting a framework of incremental object modeling
and multiple object tracking methods. The object model was repre-
sented by a GMM with a temporal-spatial topological graph (TSTG)
and each object model can be updated at every time step. In order to
estimate new measurement of each object, a GMM-based robust
registration method and Maximum weighted Likelihood point-
matching process were proposed. A multi-frame tracking algorithm
was used to make robust temporal associations among multiple ob-
jects and among Gaussians in an object. The performance of the pro-
posed algorithm was tested and the relation between tracking
accuracy and the computational efficiency was examined by various
experiments. The results showed that this method successfully at-
tains more than 97% tracking accuracy and 5 FPS computation time
with 6-d GMM representation. The optimal parameters were a sim-
plification ratio of 0.15 in the cases of about 400 points at every time
frame, which is reduced by down-sampling with 0.02 m sampling
distance from the original point data set.

Although the results showed the feasibility of the algorithm,
there are some areas that can be supplemented in further work.
First, in order to enhance robustness, the GMM-based object repre-
sentation should be combined with several filtering methods using
the history of each track. Second, the parameter values obtained by
the experiments are not truly optimal because the size of the Gaus-
sians could not reflect the shape information of each object. The
robust tracking of multiple objects from RGB-D point set data, J. Vis. Com-
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true optimal parameter values should be automatically determined
by and adapted to the observed data. This will be achieved in the fu-
ture work by introducing hierarchical bayesian nonparametrics
[37]. Third, this study only showed the results of the proposed algo-
rithm, but the comparisons with other feature-based methods in
terms of flexibility and robustness are also required in the future
work. Fourth, one of the objectives of this study is a real-time
implementation. Although the algorithm could perform with 5
FPS computation speed, the size of points are limited to 400. The
algorithm will be designed by using Graphical Processors (GPU)
and then tracking tasks will be extended to the larger workspace.
These further studies will extend the method to be used for model-
ing and tracking articulated objects without prior knowledge. That
is, a robot can learn new objects and related skills in an unstruc-
tured environment merely by observing a human demonstration.
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