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Abstract 

When designing monitoring systems and planning inspections, engineers must assess the 

benefits of the additional information that can be obtained and weigh them against the cost of 

these measures. The Value of Information (VoI) concept of the Bayesian statistical decision 

analysis provides a formal framework to quantify these benefits. This paper presents the 

determination of the VoI when information is collected to increase the reliability of 

engineering systems. It is demonstrated how structural reliability methods can be used to 

effectively model the VoI and an efficient algorithm for its computation is proposed. The 

theory and the algorithm are demonstrated by an illustrative application to monitoring of a 

structural system subjected to fatigue deterioration.  
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1 Introduction 

When it is required to make decisions under uncertainty and risk, one often has the possibility 

to gather further information prior to making the decision. Such information reduces the 

uncertainty and thus facilitates improved decision making. This explains the success of 

structural health monitoring (SHM), advanced inspection methods, remote sensing and other 

monitoring techniques for civil infrastructures, to which I will refer collectively as monitoring 

systems.  

As experienced engineers are well aware, collecting the information comes at a price that is 

not always justified by its benefit. Unfortunately, this is often discovered only after the 

installation of a monitoring system. A mathematical framework exists for quantitatively 

assessing the benefit of a monitoring system prior to installing it: the value of information 

(VoI) analysis from Bayesian statistical decision theory [1-3] that has been considered by civil 

and structural engineers since the early 1970s [4]. The late Prof. Wilson Tang was one of the 

first to notice the potential of Bayesian methods and VoI concepts to optimize engineering 

decisions [5-7]. In his paper published in 1973 [5], he described Bayesian updating of 

probabilistic models of flaws with inspection results, which preceded the optimization of 

inspections in aircraft and offshore structures subject to fatigue deterioration in the 1970s and 

80s [8-12]. These works were among the first applications of Bayesian decision analysis for 

optimizing the collection of information in an industrial context. Similar efforts were made in 

the field of transportation infrastructure management, based on Markovian deterioration 

models [13]. In recent years, the optimization of monitoring systems through explicit 

computation of the VoI has found increased interest in various fields of civil and 

infrastructure engineering. Explicit computation of the VoI for optimizing inspections and 

structural health monitoring in deteriorating structures was proposed in [14-18]. Optimization 

of sensor placement based on VoI has been studied in [19]. In geotechnical engineering, 

which has always been strongly relying on monitoring, the effect of information quality has 

been investigated [20]; an explicit quantification of the VoI for head monitoring of levees is 

described in [21]. In the field of natural hazards, the VoI concept has been applied for 

prioritizing post-earthquake inspections of bridges [22] and for quantifying the value of 

improved climate models when designing offshore structures against extreme wave loads [23]. 

VoI analysis is and has been applied in many other fields of engineering and science, 

including oil exploration [24] and environmental health risk management [25]. 

Determining the VoI requires significant modeling and computational efforts. 

Computationally efficient evaluations of the VoI was considered mainly in the field of 
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machine learning and artificial intelligence [19, 26-28]. In these areas, prediction models used 

for the VoI computations are typically based on known probabilistic dependences among a 

potentially large number of random variables. In contrast, in infrastructure and civil 

engineering, prediction models are often based on advanced physically-based models, which 

describe the monitored phenomena.  As an example, when planning the monitoring of a 

bridge, one can make use of detailed mechanical models of the structure. Furthermore, the 

monitoring is often installed not to guide the every-day operation of the system, but for early 

detection of deterioration or damages that may impair the safety of the system. These 

applications motivate the combination of the VoI concept with structural reliability methods, 

which were developed to efficiently compute the probability of system failure via advanced 

physically-based models.  

This paper presents the modeling and computation of VoI based on structural reliability 

methods. A modeling framework is proposed, which is especially suitable when probabilistic 

physically-based models of the monitored systems and processes are available, e.g. in 

structural engineering applications. On this basis, a computationally efficient algorithm is 

developed for estimating the VoI. The framework and the algorithm are illustrated through an 

application to monitoring of a structure subject to fatigue deterioration, which demonstrates 

the effectiveness and efficiency of the proposed approach. The paper closes with a discussion 

on the difficulties encountered in determining the VoI in realistic engineering problems. 

2 Value of information analysis 

2.1 Decision-theoretic framework     

As a premise, I assume that all consequences (costs of monitoring, mitigation actions as well 

as failure consequences) can be expressed either in monetary values or in a common measure 

of utility ܷ . I adopt the classical expected utility framework [29] according to which an 

optimal decision under uncertainty is the one maximizing the expected utility Eሾܷሿ . For 

simplicity, I further restrict the presentation to situations in which all consequences can be 

expressed as monetary costs ܥ and in which utility is proportional to െܥ, corresponding to a 

risk-neutral decision maker. The optimal decision is thus the one that minimizes the expected 

cost Eሾܥሿ. It is straightforward to adapt the methods presented in this paper to the case of a 

risk-averse decision maker or to situations with non-monetary consequences, if preferences of 

the decision maker can be expressed through utility functions.  
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Following the classical structural reliability modeling framework [30], the uncertainty 

associated with the phenomena under consideration is characterized by a vector ܆ of random 

variables. The relation between ܆ and the events of interest is a deterministic one, e.g. the 

failure event is described through the limit state function ݃ிሺ܆ሻ as ܨ ൌ ሼ݃ிሺ܆ሻ ൑ 0ሽ. In this 

framework, model uncertainties are included through additional random variables in ܆.    

In a classical decision analysis under uncertainty, the goal is to identify the actions ܽ that 

minimize Eሾܥሿ, e.g. the maintenance and repair actions ܽ  that ensure an optimal balance 

between the cost of ܽ and the risk associated with failure. Additionally, information can be 

collected prior to making the action decision ܽ. Therefore, a so-called test decision ݁ is made 

on what information to collect (݁ stands for experiments).  This is, e.g., a decision on the 

design of a monitoring system or a decision on the inspection schedule. The extended 

decision problem is to find the combination of monitoring decision ݁ and action decision ܽ 

that minimizes Eሾܥሿ. This problem is known in the literature as preposterior decision analysis 

[4]. These problems can be graphically modeled through decision trees and decision graphs 

(also called influence diagrams), Figure 1. The decision tree explicitly depicts all possible 

states of random variables and decisions. In contrast, the decision graph provides a more 

concise representation, which additionally reflects the causal relations between the random 

variables and the decisions. Implementations of the decision graph for computing the VoI can 

be found in [16, 31]. 

 

Figure 1.The basic decision problem when planning monitoring and inspection measures: (a) decision 
tree and (b) corresponding decision graph. Here it is assumed that the cost of monitoring ܿ௘ሺ݁ሻ and 
the cost of the action and system state ܿሺܽ,   .ሻ are additiveݔ
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This paper focuses on the computation of the value of information (VoI) of a given 

monitoring system. The optimization of the monitoring system (the test decision ݁) is not 

explicitly considered. However, the VoI is the total expected net benefit of a given monitoring 

system and is thus the central part of any preposterior decision analysis. The optimal 

monitoring system is the one maximizing the VoI minus the cost of monitoring.  

In the following, the optimization of the decision ܽ  is presented prior to considering the 

monitoring results. This follows the logic that monitoring results enable improved action 

decisions and that their benefit can thus only be quantified when explicitly modeling the 

action decision. 

2.2 Prior decision optimization 

Before applying monitoring, the optimization of the decision ܽ must be based on the prior 

knowledge, characterized through the prior probability distribution of ܆ . The prior 

optimization problem is: 

ܽ௢௣௧ ൌ argmin
௔
E܆ሾܿሺܽ, 	ሻሿ܆

ൌ argmin
௔
න ܿሺܽ, ሻܠ ܠሻdܠሺ܆݂
܆

	. 
(1)

ܿሺܽ,  denotes ܆and E ,ܠ ሻ is the cost associated with a given set of actions ܽ and realizationܠ

the expectation with respect to ܆ . Throughout the paper I use the notation ׬ d܆ܠ ൌ

׬ ׬… dݔଵ …dݔ௡
ஶ
ିஶ

ஶ
ିஶ .  

In engineering decision problems involving reliability, the consequences typically depend on 

discrete events describing the system state, such as failure ܨ or a set of damage levels (e.g., in 

performance-based earthquake engineering). In the structural reliability framework, these 

events correspond to domains in the outcome space of ܆ . Let ܧଵ, ,ଶܧ … , ௠ܧ  denote the 

mutually exclusive, collectively exhaustive system states in the general case. (If only failure ܨ 

is of interest, it is ܧଵ ൌ ଶܧ and ܨ ൌ  ത.) The optimization problem can then be written asܨ

ܽ௢௣௧ ൌ argmin
௔
෍ܿா೔ሺܽሻ Prሺܧ௜ሻ

௠

௜ୀଵ

	. (2)

Here, ܿா೔ሺܽሻ  is the cost associated with event ܧ௜  and decision ܽ . Let ܥ௣௥௜௢௥  denote the 

expected cost associated with this optimal decision ܽ௢௣௧, i.e. 
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௣௥௜௢௥ܥ ൌ min
௔
෍ܿா೔ሺܽሻ Prሺܧ௜ሻ

௠

௜ୀଵ

ൌ෍ܿா೔ሺܽ௢௣௧ሻ Prሺܧ௜ሻ

௠

௜ୀଵ

. (3)

The probability of ܧ௜ is computed using structural reliability methods as 

Prሺܧ௜ሻ ൌ න ܠ൫ܫ ∈ Ωா೔൯ ܠሻdܠሺ܆݂
܆

	

ൌ 	 න ܠሻdܠሺ܆݂
ஐಶ೔∋ܠ

	. 

(4)

 corresponding ܆ ሺ∙ሻ is the indicator function and Ωா೔ is the domain in the outcome space ofܫ

to event ܧ௜. In structural reliability, Ωா೔ is defined in terms of limit state functions ݃௜ሺܠሻ. In 

case of a single limit state function, it is Ωா೔ ൌ ሼ݃௜ሺܠሻ ൑ 0ሽ. More generally, Ωா೔ is defined 

through unions and intersections of multiple ሼ݃௜ሺܠሻ ൑ 0ሽ, [32]. 

To make these abstract concepts more apprehensible, consider the simple example of a 

mechanical system that either functions during its entire service life or fails at some point in 

time. For simplicity, the time of the failure is considered irrelevant. The failure event is 

described as ܨ ൌ ሼ݃ிሺ܆ሻ ൑ 0ሽ, where ܆ includes parameters describing deterioration of the 

system. It is possible to perform maintenance actions during the service life. Let ܽ଴  (do 

nothing) and ܽ௠  (maintenance) denote the two decision alternatives. If maintenance is 

performed, instead of ܨ  one needs to consider ܨ௠ , failure of the maintained system. This 

event is described through a corresponding limit state function ݃ி௠ሺ∙ሻ as ܨ௠ ൌ ሼ݃ி௠ሺ܆ሻ ൑ 0ሽ. 

Therefore, there are four distinct events (system states): ܧଵ ൌ തܨ ∩ ത௠ܨ ଶܧ , ൌ ܨ ∩ ത௠ܨ ଷܧ , ൌ

തܨ ∩ ସܧ ௠, andܨ ൌ ܨ ∩   .௠ܨ

The cost of maintenance is ܿ௠. The cost of failure is ܿி. The expected cost of the two action 

alternatives are:  

Eሾܥ|ܽ଴ሿ ൌ E܆ሾܿሺܽ଴, ሻሿ܆ ൌ න ܿሺܽ଴, ሻ܆ ܠሻdܠሺ܆݂
܆	

ൌ නሼܿி	ܫሾ݃ிሺ܆ሻ ൑ 0ሿሽ ܠሻdܠሺ܆݂
܆

	

ൌ ܿி න ሻ܆ሾ݃ிሺܫ ൑ 0ሿ ܠሻdܠሺ܆݂
܆

	

ൌ ܿி Prሺܨሻ, 

(5)
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Eሾܥ|ܽ௠ሿ ൌ E܆ሾܿሺܽ௠, ሻሿ܆ ൌ න ܿሺܽ௠, ሻ܆ ܠሻdܠሺ܆݂
܆

ൌ නሼܿ௠ ൅ ܿி	ܫሾ݃ி௠ሺ܆ሻ ൑ 0ሿሽ	 ܠሻdܠሺ܆݂
܆

	

ൌ ܿ௠ ൅ ܿி න ሻ܆ሾ݃ி௠ሺܫ ൑ 0ሿ	 ܠሻdܠሺ܆݂
܆

	

ൌ ܿ௠ ൅ ܿி Prሺܨ௠ሻ. 

(6)

The integrals in Eqs. (5) and (6) are classical structural reliability problems and can be solved 

e.g. with FORM/SORM or sampling-based methods.  

The results in Eq. (5) and (6) are rather trivial, and the decision optimization ܽ௢௣௧ ൌ

argmin௔ሺEሾܥ|ܽ଴ሿ, Eሾܥ|ܽ௠ሿሻ is straightforward. Nevertheless, it will later prove beneficial to 

explicitly model the mutually exclusive events ܧଵ, ,ଶܧ ,ଷܧ  ସ. The costs associated with theseܧ

events and decisions ܽ଴ or ܽ௠ are summarized in Table 1. 

Table 1. Costs associated with the mutually exclusive events ܧଵ ൌ തܨ ∩ ଶܧ ,ത௠ܨ ൌ ܨ ∩  ,ത௠ܨ
ଷܧ ൌ തܨ ∩ ସܧ ௠, andܨ ൌ ܨ ∩  .௠ܨ

ܿாభሺܽ଴ሻ ൌ 0,  ܿாమሺܽ଴ሻ ൌ ܿி,  ܿாయሺܽ଴ሻ ൌ 0,  ܿாరሺܽ଴ሻ ൌ ܿி,  

ܿாభሺܽ௠ሻ ൌ ܿ௠,   ܿாమሺܽ௠ሻ ൌ ܿ௠,   ܿாయሺܽ௠ሻ ൌ ܿ௠ ൅ ܿி,  ܿாరሺܽ௠ሻ ൌ ܿ௠ ൅ ܿி.    

 

Since it is ܨ ൌ ଶܧ ∪ ௠ܨ ସ andܧ ൌ ଷܧ ∪  ସ,  it should be clear that the optimization followingܧ

Eq. (2) gives the same result as the above solution through Eqs. (5) and (6).  

Note: For many applications, it is initially more intuitive to model the effect of a decision 

through changes of the probability distribution of ܆, i.e. by replacing ݂܆ሺܠሻ with ݂܆|௔ሺܠ|ܽሻ in 

Eq. (1). In the above example, this would signify not making a distinction between ܨ and ܨ௠. 

The effect of the maintenance would instead be modeled through the difference between 

 ௠ሻ. However, such a modelingܽ|ܨ଴ሻ and Prሺܽ|ܨ௠ሻ, resulting in Prሺܽ|ܠ௔ሺ|܆݂ ଴ሻ andܽ|ܠ௔ሺ|܆݂

approach is less rigorous, as the model parameters before and after the maintenance are in fact 

different random variables. For this reason, the intuitive approach has several disadvantages 

over the proposed approach: (a) The random variables representing the same model parameter 

before and after an action are often dependent. This cannot be modeled with the intuitive 

approach, where the parameter is represented with only one random variable that is defined 

through two or more conditional distributions. With the proposed approach, modeling the 

dependence is straightforward since the parameter is represented through multiple random 
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variables, which are included jointly in ܆  and can thus be correlated. (b) The intuitive 

approach hinders the standardization of the computations. With the proposed approach, the 

optimization of the action decision in Eq. (2) is completely general. It is only necessary to 

identify the correct limit state functions and the corresponding domains Ωா೔. (c) The proposed 

structural reliability based modeling facilitates the computations of the VoI, as presented later.  

2.3 Perfect information 

Perfect information corresponds to the hypothetical situation in which there is no uncertainty 

on ܆. In this case, the decision maker is always able to select the best action ܽ. In the outcome 

space of ܆, one can identify domains in which one action is optimal, Figure 2. These domains 

are described by one or multiple limit state functions and are equal to the domains Ωா೔ or 

unions thereof. The case shown in Figure 2 corresponds to the simple example provided 

earlier. The decision ܽ௠  (maintenance) is optimal only under ܧଶ ൌ ሼ݃ிሺ܆ሻ ൑ 0ሽ ∩

ሼ݃ி௠ሺ܆ሻ ൐ 0ሽ, i.e. when the component fails without maintenance ܨ but does not fail with 

maintenance ܨ௠തതതത. For all other events, i.e. for ܧଵ ∪ ଷܧ ∪  ସ, ܽ଴ (do nothing) is optimal. Thisܧ

follows directly from Table 1 (given that the cost of maintenance is smaller than the cost of 

failure, ܿ௠ ൏ ܿி). Note that perfect information means here that the failure is known to occur 

(or not) at the time of making the decision, i.e. before it actually does occur (or not).  

  

Figure 2. The optimal action corresponding to each outcome ܠ ൌ ሾݔଵ;  ଶሿ can be described throughݔ
limit state functions ݃ሺܠሻ. The situation shown here corresponds to the basic example of section 2.2 
with two action alternatives. Action ܽ௠ (maintenance) is optimal only in the event ܧଶ ൌ ሼ݃ிሺ܆ሻ ൑
0ሽ ∩ ሼ݃ி௠ሺ܆ሻ ൐ 0ሽ, else action ܽ଴ (do nothing) is optimal. 

To formalize the concept of decisions under perfect information, let ܽ௢௣௧∗ ሺܠሻ  denote the 

optimal decision for given ܠ. It is 
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ܽ௢௣௧∗ ሺܠሻ ൌ argmin
௔
ܿሺܽ, ሻ. (7)ܠ

When comparing the cost associated with this optimal action ܽ௢௣௧∗ ሺܠሻ to the one of choosing 

the prior optimal action ܽ௢௣௧, the so-called conditional value of perfect information (CVoPI) 

is obtained for given system state ܆ ൌ  :ܠ

ሻܠሺܫܲ݋ܸܥ ൌ ܿ൫ܽ௢௣௧, ൯ܠ െ ܿ൫ܽ௢௣௧∗ ሺܠሻ, ൯ܠ . (8)

Since the costs are uniquely determined by the events ܧ௜, the CVoPI depends only on which 

event ܧ௜ occurs. Therefore, the CVoPI can be expressed for given ܧ௜: 

ா೔ܫܲ݋ܸܥ ൌ ܿா೔൫ܽ௢௣௧൯ െ ܿா೔൫ܽ௢௣௧,௜
∗ ൯	, (9)

where the notation ܽ௢௣௧,௜
∗  is introduced for the optimal decision under event ܧ௜. 

From Eq. (9) it can be observed that the CVoPI is non-zero only if the optimal decision under 

a known system state ܧ௜, ܽ௢௣௧,௜
∗ , differs from the optimal decision that is taken under prior 

information, ܽ௢௣௧. In case ܽ௢௣௧,௜
∗ ് ܽ௢௣௧, the former will lead to lower cost and therefore the 

CVoPI cannot be negative.  

A-priori, the true value of ܆ and the true event ܧ௜ are not known. Nevertheless, it is possible 

to compute the hypothetical value of perfect information (VoPI) [1], defined as the expected 

value of the CVoPI:  

ܫܲ݋ܸ ൌ E܆ሾܫܲ݋ܸܥሺ܆ሻሿ 

ൌ න ܿ൫ܽ௢௣௧, ൯ܠ െ ܿ൫ܽ௢௣௧∗ ሺܠሻ, ܠ൯dܠ
܆

 

ൌ න ܿ൫ܽ௢௣௧, ܠ൯dܠ
܆

െ න ܿ൫ܽ௢௣௧∗ ሺܠሻ, ܠ൯dܠ
܆

 

ൌ min
௔
න ܿሺܽ, ሻ܆ ܠሻdܠሺ܆݂
܆

െ න min
௔
ܿሺܽ, ሻܠ dܠ

܆

 

ൌ ௣௥௜௢௥ܥ െ න min
௔
ܿሺܽ, ሻܠ dܠ

܆

		, 

(10) 

or alternatively as: 
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ܫܲ݋ܸ ൌ෍ܫܲ݋ܸܥா೔ Prሺܧ௜ሻ
௠

௜ୀଵ

 

ൌ ௣௥௜௢௥ܥ െ෍ܿா೔൫ܽ௢௣௧,௜
∗ ൯ Prሺܧ௜ሻ

௠

௜ୀଵ

. 

(11) 

This value thus corresponds to the difference in expected utility between the situation a-priori 

and the expected utility under a situation of perfect information. The VoPI is the upper limit 

of the value any monitoring system can have, irrespective of its capabilities. Any monitoring 

system that is more expensive than the VoPI will not be efficient.  

By definition, the VoPI cannot be negative, since min௔ ׬ ܿሺܽ, ܆ܠሻdܠ ൒ ׬ min௔ ܿሺܽ, ሻܠ d܆ܠ . 

This follows also from the fact that the CVoPI cannot be negative. 

Note: Viable action alternatives may exist, which are not optimal under any known ܠ and 

therefore would not appear in Figure 2, but which may be optimal under conditions of 

uncertainty.  

2.4 Imperfect information 

In real applications, monitoring systems provide only imperfect information on ܆ . Most 

measurements are subject to random errors or uncertainty. But even in the absence of these, 

monitoring systems are imperfect because they do not provide direct information on all ܆. As 

an example, for a case where perfect knowledge of material parameters is available, if the 

future loading remains uncertain, the failure event cannot be predicted with certainty. 

Additionally, most measurements are indirect, in particular for monitoring of existing 

structures and geotechnical applications [33]. 

2.4.1 Bayesian updating 

Imperfect information can be used to learn about ܆  and, consequently, about the events 

…,ଵܧ , ௠ܧ . Bayesian updating is the mathematical framework for learning the probability 

distribution of ܆ and the probabilities of ܧଵ,… ,   .௠ with new imperfect information [5, 34, 35]ܧ

Following Bayes’ rule, the conditional distribution of ܆ given an observation ܼ, the posterior 

distribution, is: 

ሻܠ௓ሺ|܆݂ ൌ
ሻܠሺܮ ሻܠሺ܆݂

׬ ሻܠሺܮ ܆ܠሻdܠሺ܆݂

	. (12) 
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The likelihood function ܮሺܠሻ describes the relation between the monitoring outcome event ܼ 

and the uncertain variables ܆. It is defined as [36]: 

ሻܠሺܮ ∝ Prሺܼ|܆ ൌ  ሻ. (13)ܠ

In the structural reliability context, the monitored quantities are modeled as functions ݍ௜ of ܆, 

and the monitoring outcome event ܼ can be expressed by means of ݍ௜ሺ܆ሻ. The most common 

case is that of measurements ܡ ൌ ሾݕଵ, … , ሻ܆ሺݍ ௠ሿ of quantitiesݕ ൌ ሾݍଵሺ܆ሻ, ,ሻ܆ଶሺݍ … ,  .ሻሿ܆௠ሺݍ

If measurement errors ߳௜  are additive and statistically independent random variables, the 

relation between measurements ݕ௜  and ܠ is ݕ௜ ൌ ሻܠ௜ሺݍ ൅ ߳௜ . Thus the event ܼ is defined as 

ܼ ൌ ሼܡ ൌ ሻ܆ሺݍ ൅ ૓ሽ, with ૓ ൌ ሾ߳ଵ, … , ߳௠ሿ. 

It follows that ݕ௜ െ ሻܠ௜ሺݍ ൌ ߳௜, and the likelihood function of the monitoring outcome ܡ is 

ሻܠሺܮ ൌ ሻܠ|ܡሺ܇݂ ൌෑ ૓݂೔ሾݕ௜ െ ሻሿܠ௜ሺݍ
௠

௜ୀ૚

. (14) 

For further details on how to model observations with likelihood functions, the reader is 

referred to [35, 37].  

In structural reliability analysis, the explicit computation of ݂܆|௓ሺܠሻ can be circumvented and 

instead Prሺܧ௜|ܼሻ can be obtained directly from the definition of the conditional probability as 

Prሺܧ௜|ܼሻ ൌ
Prሺܧ௜ ∩ ܼሻ
Prሺܼሻ

. (15) 

As shown in [37], structural reliability methods can be used to compute both the numerator 

and the denominator in Eq. (15). Thereby it is relevant to distinguish between two classes of 

monitoring outcomes: Those that provide inequality information and those that provide 

equality information [37, 38]. Monitoring outcomes of the inequality type can be 

characterized through a function ݄ሺ܆ሻ as follows: 

ܼ ൌ ሼ݄ሺ܆ሻ ൑ 0ሽ		. (16) 

Examples include monitoring outcomes such as “deformations are larger than a threshold” or 

“no defect found”. For inequality information, reliability updating is straightforward, since 

݄ሺ܆ሻ  can be interpreted as a limit state function describing the event ܼ  and any of the 

available structural reliability methods can be applied. In this case, it is not necessary to 

explicitly formulate the likelihood function.  
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Monitoring outcomes of the equality type are thus called because they can be described by an 

equality, such as ܼ ൌ ሼܡ ൌ ሻ܆ሺݍ ൅ ૓ሽ introduced above. In the general case we can write 

ܼ ൌ ሼܡ ൌ  is the monitoring outcome as predicted by the model (for the special ܇ ሽ, where܇

case it is ܇ ൌ ሻ܆ሺݍ ൅ ૓ ). Examples include measurements of defect sizes, deformations or 

loads. Most monitoring outcomes are of this form. For equality observations, measurements 

are best described through the likelihood function ܮሺܠሻ, such as Eq. (14). Direct application of 

Eq. (15) is not straightforward for equality information, because it requires the solution of 

surface integrals to compute the probabilities [39, 40]. An efficient alternative was proposed 

by the author in [37], which is based on transforming the likelihood function ܮሺܠሻ, into 

equivalent inequality information, which can be efficiently and effectively combined with 

existing structural reliability methods to evaluate Eq. (15).  

A simple solution to updating with equality information, which is also a special case of the 

method proposed in [37], is to first update the distribution of ܆ following Eq. (12) and then 

compute the conditional probability Prሺܧ௜|ܼሻ  by performing reliability analysis with the 

posterior PDF ݂܆|௓ሺܠሻ. Using a Monte Carlo simulation approach, an estimate of Prሺܧ௜|ܼሻ is 

obtained as: 

Prሺܧ௜|ܼሻ ൌ න ܠ൫ܫ ∈ Ωா೔൯ ܠሻdܠ௓ሺ|܆݂
܆

 

ൌ න ܠ൫ܫ ∈ Ωா೔൯
ሻܠሺܮ ௑݂ሺܠሻ

׬ ሻܠሺܮ ௑݂ሺܠሻd܆ܠ

dܠ
܆

	

ൌ
׬ ܠ൫ܫ ∈ Ωா೔൯ܮሺܠሻ ௑݂ሺܠሻd܆ܠ

׬ ሻܠሺܮ ௑݂ሺܠሻd܆ܠ

	

ൎ
∑ ௞ܠ൫ܫ ∈ Ωா೔൯ܮሺܠ௞ሻ
௡ಾ಴ೄ
௞ୀଵ

∑ ௞ሻܠሺܮ
௡ಾ಴ೄ
௞ୀଵ

. 

(17) 

where ܠ௞, ݇ ൌ 1,… , ݊ெ஼ௌ, are samples from the prior PDF ݂܆ሺܠሻ. The Monte Carlo procedure 

is generally inefficient as it requires a large number of samples ݊ெ஼ௌ to achieve sufficient 

accuracy. For more efficient methods, the reader is referred to [37]. 

2.4.2 Conditional value of information 

Once an observation ܼ has been made and the conditional Prሺܧ௜|ܼሻ , ݅ ൌ 1,…݉, have been 

computed, decision optimization is in analogy to the prior decision optimization of Eq. (2): 
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ܽ௢௣௧|௓ ൌ argmin
௔
෍ܿா೔ሺܽሻ Prሺܧ௜|ܼሻ

௠

௜ୀଵ

. (18) 

The only difference to Eq. (2) is the replacement of Prሺܧ௜ሻ with the conditional Prሺܧ௜|ܼሻ. The 

optimization conditional on ܼ is called posterior decision analysis and does not represent a 

computational issue once Bayesian updating has been performed. 

For a given ܼ, it is furthermore possible to compute the conditional value of information: 

௓ܫ݋ܸܥ ൌ෍ܿா೔ሺܽ௢௣௧ሻ Prሺܧ௜|ܼሻ

௠

௜ୀଵ

െ෍ܿா೔൫ܽ௢௣௧|௓൯ Prሺܧ௜|ܼሻ
௠

௜ୀଵ

. (19) 

Note that the CVoI is zero if the posterior optimal decision ܽ௢௣௧|௓ is the same as the a-priori 

optimal decision ܽ௢௣௧, and positive otherwise. The CVoI in itself is uninteresting. Once the 

observation ܼ  is made, Prሺܧ௜|ܼሻ  represents the new state of nature according to which 

decisions should be made; it is futile to compare ܽ௢௣௧|௓ to the results of the original prior 

decision analysis ܽ௢௣௧. The true interest is in the value of information (VoI) of the monitoring 

system before an observation ܼ is made.  

2.4.3 Value of information (VoI) 

The VoI is the expected value of the CVoI with respect to all possible measurement outcomes 

ܫ݋ܸ ൌ Eሾܫ݋ܸܥሿ . In case of a finite number of mutually exclusive measurement outcome 

events ܼଵ, …ܼ௟, (monitoring outcomes of the inequality type), it is 

ܫ݋ܸ ൌ෍ܫ݋ܸܥ௓ೕ Pr൫ ௝ܼ൯

௟

௝ୀଵ

 

ൌ෍Pr൫ ௝ܼ൯

௟

௝ୀଵ

൥෍ܿா೔൫ܽ௢௣௧൯ Pr൫ܧ௜ห ௝ܼ൯

௠

௜ୀଵ

െ෍ܿா೔൫ܽ௢௣௧|௓൯ Pr൫ܧ௜ห ௝ܼ൯

௠

௜ୀଵ

൩	

ൌ ௣௥௜௢௥ܥ െ ቎෍Pr൫ ௝ܼ൯min௔
෍ܿா೔ሺܽሻ Pr൫ܧ௜ห ௝ܼ൯

௠

௜ୀଵ

௟

௝ୀଵ

቏		. 

(20) 

The first term in the last line follows from the fact that  

෍෍ܿா೔൫ܽ௢௣௧൯ Pr൫ܧ௜ห ௝ܼ൯

௠

௜ୀଵ

Pr൫ ௝ܼ൯

௟

௝ୀଵ

	ൌ෍ܿா೔൫ܽ௢௣௧൯

௠

௜ୀଵ

෍Pr൫ܧ௜ ∩ ௝ܼ൯

௟

௝ୀଵ

(21) 
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ൌ෍ܿா೔൫ܽ௢௣௧൯ Prሺܧ௜ሻ
௠

௜ୀଵ

ൌ ௣௥௜௢௥ܥ .  

This shows that the expected cost associated with the prior decision does not depend on the 

monitoring outcome (as it clearly should not).  

In case of continuous measurement outcomes ܼ ൌ ሼ܇ ൌ ሽܡ  (monitoring outcomes of the 

equality type), it is  

ܫ݋ܸ ൌ න ௓ܫ݋ܸܥ ܡሻdܡሺ܇݂
܇

	

ൌ ௣௥௜௢௥ܥ െ ቎න ሻmin௔ܡሺ܇݂
෍ܿா೔ሺܽሻ Prሺܧ௜|܇ ൌ ሻܡ
௠

௜ୀଵ

dܡ
܇

቏		, 

(22) 

wherein ݂܇ሺܡሻ is the joint PDF of the monitoring outcomes ܇. 

Numerical methods are necessary to compute the integral in Eq. (22). Thereby, the 

conditional Prሺܧ௜|܇ ൌ  ሻ will have to be computed many times. A computationally efficientܡ

procedure for computing Prሺܧ௜|܇ ൌ  ሻ repetitively is thus crucial for computing the VoI inܡ

this case. Such a procedure is proposed in the following section. 

3 Computationally efficient VoI analysis with structural reliability 

methods 

The computationally costly part in computing the VoI is the evaluation of the system model 

as a function of ܠ, which is required to assess the system performance through ܫ൫ܠ ∈ Ωா೔൯, 

and to compute the monitored quantities, ݄௜ሺܠሻ. Efficiency is thus measured by the number of 

model evaluations.  

For monitoring systems whose outcome is of the inequality information type, efficient 

algorithms for evaluating Prሺܧ௜|ܼሻ are available through structural reliability methods, e.g. 

based on FORM or advanced simulation combined with Eq. (15)  [37, 38, 41]. These methods 

require computing ܫ൫ܠ ∈ Ωா೔൯ and ݄௜ሺܠሻ only for a small number of values of ܠ, typically in 

the order of 10ଶ െ 10ଷ  as long as the dimension of ܆  is limited. Once Pr൫ܧ௜ห ௝ܼ൯ , ݅ ൌ

1,… ,݉, ݆ ൌ 1,… , ݈, is computed, the VoI is obtained through Eq. (20). 
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In the following, I focus on the VoI analysis for monitoring systems whose outcomes are of 

the equality information type, since this is the more common situation and identifying 

computationally efficient solutions is less straightforward. An efficient solution to calculating 

the VoI in Eq. (22) is proposed. The main difficulty lies in the need for integrating over ܇. For 

this task, Monte Carlo methods seem appropriate. The simplest solution is offered by crude 

Monte Carlo simulation (MCS), as proposed in [16]. With the MCS approach, Eq. (22) is 

approximated by 

ܫ݋ܸ ൎ ௣௥௜௢௥ܥ െ ቎෍min
௔
෍ܿா೔ሺܽሻ
௠

௜ୀଵ

∑ ௞ܠ൫ܫ ∈ Ωா೔൯ܮ൫ܠ௞|ܡ௝൯
௡ಾ಴ೄ
௞ୀଵ

∑ ௝൯ܡ|௞ܠ൫ܮ
௡ಾ಴ೄ
௞ୀଵ

௡ೄೊ

௝ୀଵ

቏ . (23) 

Here I have employed the MCS approximation of Prሺܧ௜|ܼሻ  given in Eq. (17). ܮ൫ܠ௞|ܡ௝൯ 

denotes the likelihood of ܠ௞, where the dependence on the monitoring outcome ܡ௝ is made 

explicit. The ܠ௞, ݇ ൌ 1,… , ݊ெ஼ௌ , are samples from ݂܆ሺܠሻ , and the ܡ௝, ݆ ൌ 1,… , ݊ௌ௒ , are 

samples from ݂܇ሺܡሻ. Following [16], the latter can be obtained by sampling first ܠ௞ , then 

determining the distribution ݂܆|܇ሺܠ|ܡ௞ሻ, which is equal to the likelihood function Eq. (14), 

and sampling from this distribution. This introduces a correlation between the samples of ܆ 

and ܇, but this is not critical. The computationally expensive part is the evaluation of the 

model, which is required for determining ܫ൫ܠ௞ ∈ Ωா೔൯ and ܮ൫ܠ௞|ܡ௝൯. In most problems, one 

model evaluation will be required to determine ܫ൫ܠ௞ ∈ Ωா೔൯ and ܮ൫ܠ௞|ܡ௝൯ for every ܠ௞. The 

computational effort is thus approximately proportional to ݊ெ஼ௌ. Note that sampling from the 

conditional  ݂܆|܇ሺ࢞|ܡ௞ሻ is inexpensive, and it may thus be desirable to choose ݊ௌ௒ ൐ ݊ெ஼ௌ. In 

this case, several samples of measurement outcomes ܇  are generated based on the same 

sample ܠ௞. This introduces a correlation among the samples of ܇, which may become relevant 

when the problem dimension ݊ is large.  

The MCS approach is inefficient for problems involving reliability, where relevant 

monitoring outcomes (i.e. those which trigger mitigation actions) are expected to occur with a 

small probability only and where the probabilities of relevant events ܧ௜ are small. To obtain 

accurate solutions with MCS, therefore, a large number of model evaluations would be 

necessary. For this reason, an importance sampling (IS) scheme is proposed in the following.  

With IS, ݊ூௌ weighted samples ܠ௞ of ܆ are generated according to the IS density ߰܆ሺܠሻ. The 

IS estimate of Pr	ሺܧ௜|܇ ൌ  :௝ሻ isܡ
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Pr൫ܧ௜ห܇ ൌ ௝൯ܡ ൎ
∑ ௞ܠ൫ܫ௞ሻܠ௑ሺݓ ∈ Ωா೔൯ܮ൫ܠ௞|ܡ௝൯
௡಺ೄ
௞ୀଵ

∑ ௝൯ܡ|௞ܠ൫ܮ௞ሻܠ௑ሺݓ
௡಺ೄ
௞ୀଵ

, (24) 

with importance sampling weight 

ሻܠ௑ሺݓ ൌ
௑݂ሺܠሻ

ሻܠሺ܆߰
. (25) 

For the integration over ܇, the entire outcome space of ܇ is relevant. Furthermore, for fixed 

௞ܠ , evaluations of the likelihood function are inexpensive. For these reasons, an MCS 

approach to the integration over ܇ would be computationally efficient. Unfortunately, when 

performing an IS over ܆, the simple sampling scheme for ܇, which is applicable in the MCS 

approach, is not available. For this reason, IS must also be used for the integration over ܇. 

With an IS approach, the VoI is approximated by: 

ܫ݋ܸ ൎ ௣௥௜௢௥ܥ െ
1
݊ூௌ௒

	෍ ௝൯min௔ܡ௒൫ݓ
෍ܿா೔ሺܽሻ Pr൫ܧ௜ห܇ ൌ ௝൯ܡ

௠

௜ୀଵ

௡಺ೄೊ

௝ୀଵ

 

ൎ ௣௥௜௢௥ܥ െ
1
݊ூௌ௒

	෍ ௝൯min௔ܡ௒൫ݓ
෍ܿா೔ሺܽሻ

∑ ௞ܠ൫ܫ௞ሻܠ௑ሺݓ ∈ Ωா೔൯ܮ൫ܠ௞|ܡ௝൯
௡಺ೄ
௞ୀଵ

∑ ௝൯ܡ|௞ܠ൫ܮ௞ሻܠ௑ሺݓ
௡಺ೄ
௞ୀଵ

௠

௜ୀଵ

௡಺ೄೊ

௝ୀଵ

. 

(26) 

The importance sampling weight ݓ௒ሺܡሻ is  

ሻܡ௒ሺݓ ൌ
ሻܡሺ܇݂

ሻܡሺ܇߰
. (27) 

where ߰܇ሺܡሻ is the IS density of ܇.  

The PDF of ܇݂ ,܇ሺܡሻ, is unknown, but it can be estimated as 

ሻܡሺ܇݂ ൎ
1
݊ூௌ

	෍ݓ௑ሺܠ௞ሻ ௞ሻܠ|௝ܡሺ܆|܇݂

௡಺ೄ

௞ୀଵ

. (28) 

Noting that ܮ൫ܠ௞|ܡ௝൯ ൌ  ሻ is equal to theܡሺ܇݂ ௞ሻ, it can be seen that this estimator ofܠ|௝ܡሺ܆|܇݂

denominator in Eq. (26) divided by ݊ூௌ. Combining Eqs. (26) – (28), the final IS estimator of 

VoI is obatained: 
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ܫ݋ܸ ൎ ௣௥௜௢௥ܥ െ
1
݊ூௌ௒

1
݊ூௌ

	෍
1

௝൯ܡ൫܇߰
min
௔
෍ܿா೔ሺܽሻ෍ݓ௑ሺܠ௞ሻܫ൫ܠ௞ ∈ Ωா೔൯ܮ൫ܠ௞|ܡ௝൯

௡಺ೄ

௞ୀଵ

௠

௜ୀଵ

௡಺ೄೊ

௝ୀଵ
(29) 

It remains to select efficient IS densities for ܆ and ܇, which is crucial for the efficiency of the 

IS approach. The key to identifying an IS density ߰܆ሺܠሻ for ܆ is to consider the hypothetical 

situation of perfect information illustrated in Figure 2. Under perfect information, the regions 

in the outcome space of ܆, in which a particular decision is optimal, can be identified. Ideally, 

the IS density is focused on those parts of these regions with highest probability density. In 

agreement with classical IS approaches in structural reliability [e.g., 42], these correspond to 

the areas around the so-called most likely failure points (MLFPs), also called design points. 

When transforming all limit state functions, and hence the domains describing the events ܧ௜, 

into the space of standard normal random variables ܃, these are the areas closest to the origin. 

One possibility, which is employed in the application example described later, is to choose a 

kernel density for ߰܆ሺܠሻ, with kernels centered around the MLFPs and the origin. 

For ܇, the original PDF ݂܇ሺܡሻ would be an effective sampling density, as discussed earlier. 

Since ݂܇ሺܡሻ is not known, a sampling density ߰܇ሺܡሻ that is an approximation to ݂܇ሺܡሻ can be 

obtained from a few samples of ݂܆|܇ሺܠ|ܡ௞ሻ, where the ܠ௞ are the samples used in (29), thus 

avoiding additional model runs.  

4 Decisions at multiple points in time 

In most applications, action decisions ܽ can be made at multiple points in time, at which 

different amounts of information from the monitoring system are available. A classic example 

is monitoring and inspection of deteriorating structures [43]. Consider two points in time ݐଵ 

and ݐଶ with ݐଵ ൏  ଶሻ are made. The monitoring outcome ofݐଵሻ and ܽሺݐଶ, at which decisions ܽሺݐ

 ଵሻ, whereas both monitoring outcomes are availableݐଵ is available only for the decision ܽሺݐ

for making the decision ܽሺݐଶሻ. To compute the VoI, the action decisions must be optimized 

sequentially, following the sequence of available information. An approximate solution is 

obtained as follows. Expanding Eq. (18), one gets: 

ܽ௢௣௧|௓ሺݐଵሻ ൌ arg min
௔ሺ௧భሻ

൥ min
௔ሺ௧మሻ…௔ሺ௧೘ሻ

෍ܿሺܧ௜, ܽሺݐଵሻ, … , ܽሺݐ௠ሻሻ Prሺܧ௜|ܼሺݐଵሻሻ

௠

௜ୀଵ

൩  (30) 

ܽ௢௣௧|௓ሺݐଶሻ ൌ arg min
௔ሺ௧మሻ

൥ min
௔ሺ௧యሻ…௔ሺ௧೘ሻ

෍ܿሺܧ௜, ܽ௢௣௧|௓ሺݐଵሻ, ܽሺݐଶሻ, … , ܽሺݐ௠ሻሻ Pr൫ܧ௜หܼሺݐଶሻ൯

௠

௜ୀଵ

൩	 (31) 
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⋮ 

ܽ௢௣௧|௓ሺݐ௠ሻ ൌ arg min
௔ሺ௧೘ሻ

෍ܿሺܧ௜, ܽ௢௣௧|௓ሺݐଵሻ, , … , ܽ௢௣௧|௓ሺݐ௠ିଵሻ, ܽሺݐ௠ሻሻ Prሺܧ௜|ܼሺݐ௠ሻሻ

௠

௜ୀଵ

	. (32) 

ܼሺݐ௜ሻ refers to all monitoring information collected up to time ݐ௜. 

The computation of the VoI is then performed following the second line of Eq. (20), where 

ܽ௢௣௧|௓ is replaced by the set ൣܽ௢௣௧|௓ሺݐଵሻ, … , ܽ௢௣௧|௓ሺݐ௠ሻ൧. The IS solution of Eq. (29) is equally 

applicable to this case. 

The above procedure is only an approximation, as it does not take into account the possibility 

that it can be beneficial to delay an action because the decision on the appropriate action will 

be improved when more information is available later. The procedure will thus underestimate 

the overall VoI. Nevertheless, for many applications the approximation will be reasonable.  

Unfortunately, in the general case the exact computation of the VoI is associated with an 

exponential increase in computation cost with increasing number of decision times. In risk-

based inspection planning, this has motivated the identification of decisions based on simple 

decision rules, e.g. performing a repair when the measured size of an identified defect exceeds 

a threshold value [43, 44]. Through such decision rules, the decision at each time step is 

readily identified, and the VoI computation can again follow the second line of Eq. (20). For 

the special case that the relevant phenomena can be modeled as discrete Markov processes, 

algorithms for solving partially observable Markov decision processes [13, 45] can be 

employed to compute the VoI. These algorithms have a computation cost that increases only 

linearly with number of time steps; their disadvantage is the limitation to discrete random 

variables. For any problem with discrete random variables that is modeled through graphical 

models, also the limit memory decision diagrams (LIMID) may be viable alternative [22, 46]. 

5 Illustrative application to monitoring of a structure subject to fatigue 

deterioration 

An illustrative application is presented of the theory and the proposed solution strategy to 

monitoring of a structural component subject to fatigue. For the sake of a clear presentation, I 

simplify the application, yet it includes most features of a real application.  
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5.1 Life-cycle model 

The structure has a life-time of 20 years and is inspected and maintained every 5 years. 

During these campaigns, the considered component may be inspected and/or replaced. I 

consider the following action alternatives:  

ܽ଴, ܽହ, ܽଵ଴, ܽଵହ: the component is replaced in year 0, 5, 10 or 15, respectively;   

ܽ௡: the component is not replaced.  

The VoI is computed for two exemplary options: 

(1) perform a measurement in year 5;  

(2) perform measurements in year 0 and 5. 

In case of option (1), alternative ܽ଴ is not relevant, as will be seen from the prior decision 

analysis. In case of option (2), two action decisions are considered, one in year 0 and one in 

year 5, following Section 4. 

5.2 Deterioration model 

Fatigue deterioration of the component is described by a classical simplified model taken 

from the literature [38]. The crack growth due to the stress ranges Δܵ is described by Paris’ 

law as 

d݈ሺ݊ሻ
d݊

ൌ ܥ ቂΔܵඥ݈ߨሺ݊ሻቃ
௠

 (33) 

Here, ݈ is the crack depth, ݊ is the number of stress cycles, Δܵ is the stress range per cycle 

(constant stress amplitudes are assumed) and ܥ  and ݉  are empirically determined model 

parameters. In this formulation of Paris’ law, the geometry correction factor is one, which in 

theory corresponds to the case of a crack in a plate with infinite size. With the boundary 

condition ݈ሺ݊ ൌ 0ሻ ൌ ݈଴ , this differential equation can be solved for the crack depth as a 

function of time [38] ݐ: 

݈ሺܠ, ሻݐ ൌ ቈቀ1 െ
݉
2
ቁܥΔܵ௠ߨ

௠
ଶ ݐߥ ൅ ݈଴

ቀଵି௠ଶ ቁ቉

ଵ

ଵି௠ଶ . (34) 

݊ is the annual cycle rate, so that ߥ is the time in years and ݐ ൌ  The event of failure is .ݐߥ

described by the limit state function ݃ி as a function of ݈ሺܠ,  :ሻ and the critical crack depth ݈௖ݐ

݃ிሺܠ, ሻݐ ൌ ݈ሺܠ, ሻݐ െ ݈௖ (35) 
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Here, the random variables of the problem are ܆ ൌ ሾ݈଴; Δܵሿ . The model parameters are 

summarized in Table 2. 

Table 2. Parameters of the crack growth example. 

Variable Distribution Mean c.o.v.  

݈଴	ሾmmሿ exponential 1 1 

݈௖	ሾmmሿ deterministic 50 - 

Δܵ	ሾNmmିଶሿ lognormal 60 0.25 

݉	ሾെሿ deterministic 3.5 - 

ሾNିଷ.ହmm	ܥ
మఱ
ర ሿ deterministic exp	ሺെ33ሻ - 

 - ሾyrିଵሿ deterministic 10ହ	ߥ

 

Based on the limit state function for failure, Eq. (35), the relevant events, which determine the 

consequences and hence the optimal action decision, are defined as:  

 ܧଵ ൌ ሺ5yrሻܨ ൌ ሼ݃ிሺ܆, 5yrሻ ൑ 0ሽ;  

 ܧଶ ൌ ሺ5yrሻതതതതതതതതതܨ ∩ ሺ10yrሻܨ ൌ ሼ݃ிሺ܆, 5yrሻ ൐ 0ሽ ∩ ሼ݃ிሺ܆, 10yrሻ ൑ 0ሽ; 

 ܧଷ ൌ ሺ10yrሻതതതതതതതതതതതܨ ∩ ሺ15yrሻܨ ൌ ሼ݃ிሺ܆, 10yrሻ ൐ 0ሽ ∩ ሼ݃ிሺ܆, 15yrሻ ൑ 0ሽ; 

 ܧସ ൌ ሺ15yrሻതതതതതതതതതതതܨ ∩ ሺ20yrሻܨ ൌ ሼ݃ிሺ܆, 15yrሻ ൐ 0ሽ ∩ ሼ݃ிሺ܆, 20yrሻ ൑ 0ሽ; 

 ܧହ ൌ ሺ20yrሻതതതതതതതതതതതܨ ൌ ሼ݃ிሺ܆, 20yrሻ ൐ 0ሽ.  

5.3 Measurement model 

In the inspection campaign at time ݐ௜, the crack depth can be measured. The measurement ݕ௧೔ 

has independent, additive measurement error ߳௠,௧೔ . The likelihood function describing the 

measurement is 

ሻܠሺܮ ൌ ஫݂ ቀݕ௧೔ െ ݈ሺܠ,  . (36)	௜ሻቁݐ

with ஫݂ being a zero-mean normal PDF with standard deviation σ஫. Unless otherwise stated, it 

is σ஫ ൌ 1mm. 

For the case of two measurements ݕ଴ and ݕହ in years 0 and 5, the likelihood function is (see 

also Eq. (14)): 

ሻܠሺܮ ൌ ஫݂ሺݕ଴ െ ݈ሺܠ, 0yrሻሻ ஫݂ሺݕହ െ ݈ሺܠ, 5yrሻሻ . (37) 
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5.4 Repair and cost model 

For illustrative purposes, I consider two cases: 

1. Perfect repair: Following a repair, the component will not fail. 

2. Imperfect repair: Following a repair, the component is characterized by a new initial 

crack depth ݈଴
ᇱ . The repaired component is again subject to fatigue deterioration. The new 

crack depth ݈଴
ᇱ  has the same probability distribution as ݈଴, but is independent of the latter. 

The stress range Δܵ is the same before and after repair.  

The number of random variables thus depends on the modeling of the repair. In case 1, the 

set of random variables is ܆ ൌ ሾ݈଴; Δܵሿ; in case 2, it is ܆ ൌ ሾ݈଴; ݈଴
ᇱ ; Δܵሿ.  

In sections 5.5 to 5.8, the computations and results for case 1 are presented. Because this case 

includes only two random variables, it facilitates graphical representation. Extension to case 

2 is considered in section 5.9.  

The following cost model is applied, which considers discounting of costs: 

 Cost of repair in years 0, 5, 10, 15, respectively:  

ܿோ଴ ൌ 8 ∙ 10ସ, ܿோହ ൌ 5 ∙ 10ସ, ܿோଵ଴ ൌ 3 ∙ 10ସ, ܿோଵହ ൌ 1.6 ∙ 10ସ 

 Cost of failure in the periods 0-5, 5-10, 10-15, 15-20 years, respectively: 

ܿிହ ൌ 1.6 ∙ 10଺, ܿிଵ଴ ൌ 10଺, ܿிଵହ ൌ 6 ∙ 10ହ, ܿிଶ଴ ൌ 3.6 ∙ 10ହ 

5.5 Decision analysis under prior and perfect information 

The domains of the optimal actions under perfect information are shown in Figure 3. On the 

left-hand side, the domains are shown in the outcome space of ܆; on the right-hand side, the 

domains are shown in the outcome space of standard normal random variables ܃. The latter 

are computed by a transformation ܠ ൌ ܶሺܝሻ. In the general case, ܶ can be any of the classical 

transformations applied in structural reliability analysis, e.g. the Rosenblatt transformation 

[47] or the Nataf transformation [48]. For the considered example, due to the statistical 

independence of ݈଴  and Δܵ, these reduce to the marginal transformations ݈଴ ൌ ௟బܨ
ିଵሾΦሺݑଵሻሿ 

and Δܵ ൌ ୼ௌܨ
ିଵሾΦሺݑଶሻሿ. Φሺ∙ሻ is the standard normal cumulative distribution function; ܨ௟బ

ିଵሺ∙ሻ 

and ܨ୼ௌ
ିଵሺ∙ሻ are the inverse CDFs of ݈଴ and Δܵ. 
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Figure 3. Optimal actions under perfect information. (a) In the outcome space of ࢄ; (b) transformed 
to standard normal space. Circles indicate the most likely failure points (MLFPs) in standard normal 
space.  

The corresponding a-priori probabilities as obtained with FORM are summarized in Table 3. 

As evident from the almost linear behavior of the limit state surfaces around the MLFPs 

visible in Figure 3b, FORM provides accurate results. 

Table 3. A-priori probabilities (FORM results). 

Event Probability   

Failure in period 0 - 5 years 7.2	ଵ:ܧ ∙ 10ିହ 

Failure in period 5 - 10 years 8.1	ଶ:ܧ ∙ 10ିସ 

Failure in period 10 - 15 years  2.2	ଷ:ܧ ∙ 10ିଷ 

Failure in period 15 - 20 years 3.8	ସ:ܧ ∙ 10ିଷ 

 No failure before year 20 0.993	ହ:ܧ

 

5.5.1 Prior decision analysis 

A-priori, the optimal decision ܽ௢௣௧  is found using Eq. (2). With the cost model and the 

probabilities reported in Table 3, the optimal decision is  ܽ௡: do nothing. The corresponding 

expected cost is calculated with Eq. (3) as 
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௣௥௜௢௥ܥ ൌ 1.6 ∙ 10଺ ∙ 7.2 ∙ 10ିହ ൅ 10଺ ∙ 8.1 ∙ 10ିସ ൅ 6 ∙ 10ହ ∙ 2.2 ∙ 10ିଷ ൅ 3.6 ∙ 10ହ ∙ 3.8

∙ 10ିଷ ൅ 0 ∙ 0.993 

ൌ 3.62 ∙ 10ଷ. 

5.5.2 Value of perfect information VoPI 

The optimal actions under different evidence are: ܽ଴ in case ܧଵ, i.e. the component should be 

replaced in year 0 if it were to fail prior to year 5; ܽହ in case ܧଶ, i.e. the component should be 

replaced in year 5 if it were to fail in the period from year 5 to year 10; and so on. If the 

component does not fail during the service life (event ܧହ), the optimal action is ܽ௡: do nothing. 

Given ܧହ, the conditional value of perfect information (CVoPI) is zero, since the optimal 

action in this case is equal to the one found with the prior decision analysis. Given any of the 

other events, the CVoPI is positive.  

The value of perfect information is determined with Eq. (11) as 

ܫܲ݋ܸ ൌ 3.62 ∙ 10ଷ

െ ሺ8 ∙ 10ସ ∙ 7.2 ∙ 10ିହ ൅ 5 ∙ 10ସ ∙ 8.1 ∙ 10ିସ ൅ 3 ∙ 10ସ ∙ 2.2 ∙ 10ିଷ ൅ 1.6 ∙ 10ସ

∙ 3.8 ∙ 10ିଷ ൅ 0 ∙ 0.993ሻ 

ൌ 3.45 ∙ 10ଷ. 

This value is the upper limit of the benefit that can be achieved with any monitoring system.  

5.6 Importance sampling  

Based on the identified design points (MLFPs) shown in Figure 3b, an IS density ߰܆ is is 

selected. The ߰܆  is specified in the space of standard normal random variables, i.e. ߰܃  is 

specified and the samples of ܆ are obtained by sampling ܝ௞  from ܃ and transforming the 

samples, ܠ௞ ൌ ܶሺܝ௞ሻ, according to section 5.5. 

Following Section 3, a kernel density is selected for ߰܃ (and consequently for ߰܆), with five 

standard normal distributions as kernels. The first four kernels are centered around the 4 

MLFPs shown in Figure 3b, the fifth is centered around the origin. (The origin is the “MLFP” 

of the no-failure event ܧହ .) The resulting ߰܃  is shown in Figure 4, together with random 

samples generated from ߰܃. 
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Figure 4. Importance sampling density, shown together with 100 random samples. Dashed lines 
indicate the borders of the domains corresponding to ܧଵ,… ,  .ହ (see Figure 3)ܧ

The IS distribution for the measurement results ߰܇ is constructed by evaluating the model for 

the samples from ߰܃ , sampling corresponding measurement outcomes using ݂܆|܇  and then 

fitting a joint normal distribution to these samples.  

5.7 Bayesian updating 

Likelihood functions for exemplarily monitoring outcomes are shown in Figure 5. On the left-

hand side, likelihood functions are shown for a monitoring outcome ݕହ ൌ 6mm in year 5. On 

the right-hand side, likelihood functions are shown for a monitoring outcome ݕ଴ ൌ 3mm in 

year 0 and  ݕହ ൌ 6mm in year 5. The effect of the measurement error on the likelihood 

function is clearly visible.  For the case of two measurements and a monitoring system with 

small measurement error σ஫ ൌ 0.3mm, one is able to determine the uncertain parameters with 

good accuracy, i.e. the posterior variance becomes small in this case. With only one 

measurement, the resulting posterior variance remains significant even in the case of small 

measurement error, since different combinations of parameters ݈଴ and Δܵ lead to the same 

crack size.  
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Figure 5. Likelihood functions shown for measurement results ݕ଴ ൌ 3݉݉ and ݕହ ൌ 6݉݉ and 
different measurement accuracy ߪఢ. The likelihood functions on the left-hand-side are for a 
measurement at year 5 only, those on the right hand side represent the combined measurement in year 
0 and 5. Dashed lines indicate the borders of the domains corresponding to ܧଵ, … ,  .ହ (Figure 3)ܧ

5.8 Value of information 

The value of information (VoI) is computed for the case of one measurement in year 5 and for 

the case of two measurements in year 0 and 5. In the latter case, the subsequent decision 

making outlined in Section 4 is applied to identify the optimal decision after the first 

measurement.   

To assess the efficiency and accuracy of the proposed IS approach, computations are 

performed with different numbers of samples and are compared to solutions obtained with 

MCS. The results are summarized in Table 4. The VoI of two measurements is only slightly 

larger than the VoI of one measurement only. This indicates that with σ஫ ൌ 1.0mm the first 

measurement in year 0 does not provide much useful additional information.   
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Table 4. VoI computed with importance sampling (IS) and Monte Carlo simulation (MCS). 
Mean value and standard deviations were evaluated by repeating the computations 20 times.  

  1 measurement 2 measurements 

Computation Mean St. dev. Mean St. dev. 

MCS (10ସ samples)  1447  (264) 1624 (246) 

IS (10ଷ samples)  1443 (124) 1636 (49) 

IS (10ଶ samples)  1586 (385) 1721 (404) 

 

The results in Table 4 indicate the effectiveness of the proposed IS solution. Compared to 

MCS, with IS the number of model evaluations can be reduced by approximately a factor of 

50 to achieve the same accuracy.  

5.8.1 VoI as a function of measurement accuracy 

To obtain further insights into the VoI, the resulting VoI is computed for varying 

measurement accuracy, i.e. for different values of σ஫. The results are summarized in Figure 6. 

For comparison, also the value of perfect information VoPI is shown. 

For larger measurement uncertainty ( σ஫ ൒ 1mm ), two measurements do not provide 

significantly more information than one measurement. In this case, the second measurement 

in year 5 is dominating the posterior distribution and the updated probabilities Prሺܧ௜|ܼሻ. This 

can be observed graphically by comparing the likelihood functions in Figure 5. For larger 

measurement uncertainty (upper figures), the differences between one and two measurements 

are less distinct than for smaller measurement uncertainty (lower figures). 

With a single measurement, the VoI is far from the VoPI even for σ஫ ൌ 0. The reason is that 

knowing the crack size only at one point in time does not allow one to determine the model 

parameters ܆ ൌ ሾ݈଴; Δܵሿ uniquely, as should be evident from the likelihood function for the 

case of one measurement and σ஫ ൌ 0.3mm shown in Figure 5. This demonstrates that “perfect 

information” requires not only zero measurement uncertainty, but also measuring enough 

relevant quantities. For the case of two measurements shown in Figure 6, the VoI would 

eventually reach the VoPI as σ஫ ൌ 0. In this idealized example, two exact measurements at 

two different points in time are sufficient to exactly determine the two model parameters ݈଴ 

and Δܵ, thus eliminating all uncertainty. 
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Figure 6. VoI as a function of measurement accuracy. Computations are performed with IS using 10ହ 
samples. 

5.9 Imperfect repair 

In case of imperfect repair, the problem has three random variables as discussed in section 5.4. 

After the repair, the performance of the component is described by the same mechanical 

model, but with new initial crack depth ݈଴
ᇱ  and different starting time. The limit state function 

describing a failure ߬ years after a repair is 

݃ிೃሺܠ, ߬ሻ ൌ ݈௥ሺܠ, ߬ሻ െ ݈௖	.	 (38) 

The function ݈௥ is equal to ݈ defined in Eq. (34), wherein ݈଴ is replaced with ݈଴
ᇱ . Since a repair 

is possible already in year 0, the time ߬  can be up to 20 years. ݃ிೃሺܠ, ߬ሻ  must thus be 

evaluated for ߬ ൌ 5,10,15,20 years. A total of 25 events ܧଵ,… ,  ,ଶହ must now be consideredܧ

representing combinations of possible failure times of the original component and of the 

repaired component. For each combination of events and action ܽ, the corresponding costs 

can be assigned. These are not reported here for brevity. Exemplarily, event ܧଵ଴ is equal to 

failure of the original structure in the period of 5 െ 10 years and no failure of the repaired 

structure, i.e. ܧଵ଴ ൌ ൛݃ிሺ܆, 5yrሻ ൐ 0 ∩ ݃ிሺ܆, 10yrሻ ൑ 0 ∩ ݃ிೃሺ܆, 20yrሻ ൐ 0ൟ . The costs 

associated with event ܧଵ଴ are ܿோ଴ in case of action ܽ଴, ܿோହ in case of ܽହ and ܿிଵ଴ otherwise. 

The VoI computations are then again performed following Eq. (29).  

It is found that the consideration of the possible failure following a repair has little impact on 

the result. The changes in the results compared to the case with perfect repair are within the 

range of scatter of the IS results; the results reported in Table 4 are thus also valid for the case 
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of imperfect repair. The reason for these small differences in the results? The probability of 

performing a repair is only in the order of 0.01 – 0.02. Therefore, the additional expected cost 

due to a potential second failure is only minor. This demonstrates that in this application there 

is no need to explicitly model the behavior of the repaired component when computing the 

VoI. 

6 Discussion 

The aim of this paper is to propose a rigorous modeling framework and efficient 

computational algorithms for evaluating the value of information VoI of monitoring systems 

based on structural reliability methods. An importance sampling solution was developed and 

its efficiency was demonstrated through the presented example application. To facilitate a 

graphical interpretation of the results, I studied a problem with only two random variables. 

For problems with many random variables, importance sampling solutions become inefficient. 

However, in most applications it will be possible to reduce to number of relevant random 

variables to less than ten by a-priori identifying the most influential variables, thus facilitating 

the use of the proposed solution strategy.  

Arguably the most difficult part in realistic applications is the need to explicitly model the 

relevant decision processes over the entire service life period of the monitoring system. As 

pointed out in [49], contrary to the examples of Bayesian decision analysis provided in text 

books, real situations in which the VoI should be estimated are not simple. A multitude of 

potential action alternatives ܽ exist, and engineers are not trained to prescribe quantitative 

rules for which decision to take in which circumstances, except for simple cases. The typical 

behavior of engineers under situations of uncertainty is to collect some information, and to go 

from there. Hence the popularity of monitoring systems. Nevertheless, the process of 

systematically describing the potential monitoring outcomes and the action alternatives is a 

highly useful process, even when it is not possible to provide exact and complete answers.  

In many instances, the decision model can be kept quite simple and only main events and 

actions must be included explicitly in the model. As an example, it is often not necessary to 

explicitly model the performance of a system after repair or other mitigation actions [43], as 

was also found in the example application in this paper. It is also important to point out that 

an exact assignment of costs or utility values is often not necessary. For decision making 

purposes it is typically sufficient to provide approximate estimates of costs when computing 

the VoI.  
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Finally, to compute the VoI using the proposed methodology, a probabilistic model of the 

monitored processes and engineering system is required. Although such a model can be at 

varying degrees of detailing, establishing such a model represents an additional effort if it has 

not already been prepared for other purposes. It must thus first be decided if the additional 

modeling effort is justified. This requires one to appraise the value of information of a 

probabilistic reliability analysis, in other words: estimating the VoI of a VoI analysis. While 

such an estimate will be based on expert estimates rather than on detailed modeling and 

quantitative analysis, it follows the same steps as the VoI analysis of the monitoring system, 

i.e. it must be determined what the possible actions are and how a VoI analysis allows to 

support identifying the optimal actions. If the monitoring system is inexpensive, installing it 

without further analysis might be the best option; otherwise, a VoI analysis will likely pay off. 

7 Conclusion 

Value of information (VoI) is a powerful theory to assess the usefulness of monitoring or any 

other means of obtaining information. The difficulty in practical applications of VoI lies in (a) 

proper probabilistic modeling of the monitored process and the monitoring itself, (b) the 

modeling of the action alternatives following the monitoring results, and (c) the 

computational efforts in evaluating the VoI. In this paper, it was shown that structural 

reliability methods can provide an effective framework for understanding, modeling and 

computing the VoI. The theory was developed, an efficient algorithm for computation was 

proposed and the example application, considering monitoring of a structure subject to fatigue 

deterioration, provided an illustration of the theory and its implementation. The example 

application also showed that a simplified modeling of the potential action alternatives is 

typically sufficient. This highlights that the formal process of the VoI analysis provides useful 

insights even when the VoI cannot be determined exactly due to the complexity of the 

decisions involved.    
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