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Abstract

This thesis presents rigorous global error bounds and automatic shift selection strategies

in model order reduction of linear time-invariant systems by Krylov subspace methods.

The spatial discretization of partial differential equations, which can describe dynamic

systems in various engineering domains, often leads to very large systems of ordinary

differential equations, whose number increases with the demands on the accuracy of the

model. To perform tasks like simulation, control, and optimization while complying with

given limitations of available storage and time, a simplification of the model is there-

fore frequently inevitable. Numerous methods for this purpose have been described in

the literature, which exhibit specific advantages and disadvantages. Krylov subspace

methods, which are in the focus of this work, require comparably little numerical effort

and are therefore practical for the reduction of very large models. However, they do not

necessarily preserve stability of the model, nor do they provide information on the ap-

proximation quality, and they require the judicious choice of certain parameters, the so-

called expansion points (or shifts), and of the order of the reduced model.

Starting from a novel formulation of the approximation error that results from the

reduction, new approaches to these problems are presented. A cumulative reduction

procedure, during which the reduced model is set up iteratively instead of all at a sudden,

enables the adaptive choice of the reduced order. The shift selection is accomplished by

optimization and leads to a descent method which yields optimal expansion points after

a very small number of steps. Also, global error bounds for a class of state space models

are introduced; their overestimation is faced by suitable modifications of the mentioned

optimization problem. Finally, it is shown how the proposed methods can be applied

efficiently to many second order systems.

Case studies including models from structural mechanics, electrothermics, and acous-

tics show the effectiveness of the presented methods.





Zusammenfassung

Die vorliegende Arbeit stellt rigorose Fehlerschranken und Verfahren zur automatischen

Entwicklungspunktwahl bei der Modellordnungsreduktion linearer, zeitinvarianter Sys-

teme mittels Krylow-Unterraum-Methoden vor.

Die örtliche Diskretisierung partieller Differentialgleichungen, welche zur Beschreibung

dynamischer Systeme in diversen ingenieurwissenschaftlichen Bereichen zum Einsatz kom-

men, führt meist zu sehr großen Systemen gewöhnlicher Differentialgleichungen, deren An-

zahl mit steigenden Ansprüchen an die Modellgenauigkeit zunimmt. Zur Erfüllung von

Simulations-, Regelungs- oder Optimierungsaufgaben ist eine Vereinfachung des Modells

daher oft unumgänglich; hierzu wurden zahlreiche Methoden mit spezifischen Vor- und

Nachteilen beschrieben. Krylow-Unterraum-Methoden, die im Zentrum dieser Arbeit

stehen, erfordern verhältnismäßig geringen numerischen Aufwand und sind daher zur Re-

duktion auch sehr großer Modelle geeignet. Allerdings erhalten sie nicht zwangsläufig die

Stabilität des Modells, bieten keine Information über die Reduktionsgüte und erfordern

die günstige Wahl gewisser Parameter, der sogenannten Entwicklungspunkte (“Shifts”)

sowie der Ordnung des reduzierten Modells.

Ausgehend von einer neuen Formulierung des Fehlersystems werden neue Zugänge zu

diesen Problemstellungen aufgezeigt. Ein kumulatives Reduktionsvorgehen, während-

dessen das reduzierte Modell iterativ aufgebaut wird, ermöglicht die adaptive Wahl der re-

duzierten Ordnung und der Entwicklungspunkte. Letztere erfolgt mittels Optimierung in

einem Abstiegsverfahren, das oft nur wenige Schritte benötigt. Schließlich werden globale

Fehlerschranken für eine Klasse von Zustandsraummodellen eingeführt; der verursachten

Überschätzung wird durch Umformulierung des Optimierungsproblems begegnet.

Die vorgestellten Methoden können z. B. effizient auf viele Systeme zweiter Ordnung

angewandt werden. Fallstudien anhand von Modellen aus der Strukturmechanik, Elek-

trothermik, Akustik u. a. belegen ihre Effektivität.
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nnz(A) Number of nonzero entries in matrix A

‖x‖2 Euclidian vector norm, ‖x‖2 =
√

xHx

‖A‖2 Spectral matrix norm, ‖A‖2 = max
i

√
λi(AHA)

‖·‖F Frobenius norm, ‖A‖F = tr(AHA)

λi(A) Eigenvalues (spectrum) of matrix A

λi(A,E) Generalized eigenvalues; λi(A,E) = λi(E−1A) = λi(AE−1)

σi(A) Singular values of matrix A; σi(A) =
√
λi(AHA), i ≤ j ⇒ σi ≥ σj

Other Symbols

ei i-th unit vector

G(s) Laplace transfer function or corresponding dynamic LTI system

H(t) Impulse response

In Identity matrix of dimension n

0n×m Zero matrix with n rows and m columns

δ(t) Dirac impulse function

σ Shift, expansion point

σ(t) Heaviside step function



1. Introduction

“Das bewußte Reduzieren, das Weglassen, das

Vereinfachen hat eine tiefe ethische Grundlage:

Nie kann etwas zuwider sein, was einfach ist.”
— Egon Eiermann

1.1. A Short Motivation of Model Reduction

Mathematical models of technical or physical systems have become an indispensable tool

in countless applications and domains. The vast majority of modern control techniques,

for instance, is in one way or the other based on mathematical models of the underlying

system. Even more obviously, accurate models are part and parcel of computer simu-

lations, and therefore constitute an important part of industrial development processes,

optimization, the analysis or prediction of complex systems, and the exploration of novel

technologies.

Yet for all mentioned applications, the accuracy and reliability of the model plays an

important role. The better the model describes reality, the better the expectable results

from simulation, and the more likely predictions apply, etc. Increasing demands on the

accuracy, however, typically bring about higher complexity of the model which may com-

plicate or even inhibit the fulfillment of the given task due to limitations of memory and/or

computational capacity. Feedback controllers with state observers running on microcon-

trollers in real time are one example of such limitations; weather forecast simulations or

computational fluid dynamics (CFD) occupying supercomputers or clusters for days and

weeks are another representative of the trade-off between accuracy and manageability. [8]
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Model simplification or, synonymously, model reduction techniques can be a remedy in

such situations. Their general goal is to replace an existing high fidelity model (HFM) by

another model which is just as well suited for the engineering task but of lower complexity.

Thereby, efficiency can be dramatically increased, as comparable results can be produced

in far less time. The difficulty is to identify and extract the parts of the HFM that are

relevant for the specified task while discarding the superfluous components of the model.

As mathematical models may take very different forms, depending on the kind of system

they describe, every type of model requires customized techniques for its simplification.

One of the most important fields of application of model simplification arises in the

context of partial differential equations (PDE). This class of models is well-suited for

the description of a wide variety of physical and artificial systems, for instance in struc-

tural mechanics, diffusion and heat conduction, acoustics, and micro-electromechanics

(MEMS). Typically, the systems possess a limited number m of inputs where they are

influenced by actors or the environment. The goal in many applications is then to describe

the dynamic behavior of the system at a certain number p of outputs, which are quanti-

ties of interest, possibly measured by sensors in the real-world system. p varies strongly

with the given task; for simulation purposes, one is rather interested in a high number

of outputs to obtain a complete picture of the system, while in control applications, p

reflects the number of relevant process variables.

Either way, we consider models that are characterized by the way they map m input

signals ui(t) to p output signals yj(t); see Figure 1.1. Please note that in this classical

system theoretic view it is assumed that the outputs are determined by the inputs, but do

not influence those in return—in contrast to the behavioral approach of describing system

dynamics due to Willems [129].

But as the model is described locally by the PDE and may live on a complex geometry,

analytic solutions for the global behavior are typically not attainable. Instead, the domain

is spatially discretized in order to approximate the infinite-dimensional solution of the

boundary value problem with a finite number of degrees of freedom, for example with

the help of finite elements and a Galerkin method. The PDE is thereby replaced with

a coupled system of ordinary differential equations (ODE) whose number N depends on

the fineness of the discretization grid.
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Dynamic System

u1(t)
u2(t)
u3(t)
u4(t)

y1(t)
y2(t)
y3(t)
y4(t)
y5(t)

Figure 1.1.: Dynamic System as Operator from Input to Output Signals

Obviously, this method is another example of the goal conflict described above. On the

one hand, finer spatial discretization leads to a better approximation of the true (infinite-

dimensional) solution. On the other hand, it increases the number of ODEs, which in

modern applications may even amount to millions of equations. However, due to their

local and generic nature, the basis functions are often far from optimal, such that a small

number of their linear combinations may suffice to obtain a similar approximation of

the true model to that defined by the high-dimensional (high fidelity) ODE system. In

this particular case, one usually speaks of model order reduction (MOR), because the

number N of equations is also called the order of the model. Please note that the number

of inputs and outputs remains unchanged during this procedure; only the state space in

which the dynamics happen is replaced such that similar transfer behavior is mimicked

with far less internal variables.

In fact, fine meshing and subsequent reduction of the model typically leads to much

better results than applying a coarse grid from the beginning, which makes MOR a highly

important tool whenever spatial discretization is to be applied.

1.2. Dissertation Goals and Overview

This section will provide a rough overview of what is in the scope of this thesis, how it is

to be used, and who contributed to the presented results.
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1.2.1. Objectives and Classification

This thesis is exclusively dedicated to MOR of linear time-invariant (LTI) systems in

generalized state space realization (cf. Section 2.1.1)

E ẋ(t) = A x(t) + B u(t), (1.1)

y(t) = C x(t) + D u(t). (1.2)

Although parts of the presented methodology extend to certain “benign” DAE systems,

we restrict ourselves to regular matrices E excluding algebraic states. The reasoning for

the focus on LTI systems is discussed in Section 1.2.2.

Also, we only consider models in continuous time, i. e. systems of ordinary differential

equations, but no discrete-time models consisting of difference equations as they would

result from discretization in time. Again, modification of the presented results should

be feasible, but is not carried out in this thesis, as all considered benchmark models are

continuous in time. Note also, that exact discretization in time can be easily performed

after a ROM has been found in continuous time, because the matrix exponential is then

available.

Furthermore, as explained in the introduction, it is stressed that the philosophy behind

MOR (as it is understood in this work) is to approximate the transfer behavior of a

dynamical system, but not necessarily its internal behavior. This means, for instance,

that given an input signal u(t), our goal is only to use a reduced order model (ROM) to

approximate the output y(t) defined by (1.2), but not the whole high-dimensional state

trajectory x(t).

This is an important point with the explanations from Section 1.1 in mind, because

the basic idea of MOR is discarding the superfluous parts of the model—but of course

the output equation is of vital importance to the question which parts of the model are

dispensable. Accordingly, it is in general not an objective of MOR to provide any kind of

physical interpretability of the state variables in the ROM.1 Instead, the available degrees

of freedom are exploited to obtain optimal approximation of the transfer behavior—even

though this only gives an abstract description of the “inner life” of the HFM.

1Interestingly, the projective MOR framework as introduced in Section 2.3.1 is nevertheless based on the

assumption that the high-dimensional state vector is also well approximated by the ROM.
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This philosophy well suits typical control applications, where all quantities of interest

are part of the output vector y(t). In simulation, however, one should treat the choice of

the output matrix C with care: only output variables are regarded in the model reduction

process, but the higher their number, the higher the complexity of the reduction process

and the ROM.

Furthermore, please note that there are two basically different scenarios in which MOR

is applied, depending on the size of the HFM. Either, starting from a medium-scale model,

one may want to find an approximant with optimal accuracy-dimension ratio, for example

to use it for a controller in an embedded system. Or the HFM is so large and complex that

one is satisfied with finding any accurate ROM at all (together with error information),

regardless of optimality. In this work, we focus on the second task, as the first problem

has been solved quite comprehensively during the last decades. Also, having found a

ROM of manageable size in a first step, one can always attach a second reduction step

which aims to find a ROM of maximal compactness. Hence, we assume our given HFM

to be of very high dimension.

Finally, it is stressed that the use of MOR in practical applications involves various

challenges. First, of course, the physical system has to be modeled in some suitable

software. Then, a HFM has to be extracted or made available, which typically requires

some kind of toolchain. Next, MOR is performed to obtain a ROM in a preferably

automatic procedure which requires no input from the user. Finally, the ROM is used

to solve the given problem (simulation, controller and observer design, etc.) which may

include postprocessing. [54, 101]

Accordingly, when model reduction is to be used in an industrial process, one must

keep in mind that the actual model reduction process is only one step among many others,

which are mainly disregarded in this thesis.

1.2.2. Why Linear Time Invariant Models?!

Linear time invariant systems and their reduction have been investigated for decades by

now, and model reduction of time-variant, parameter-dependent, and nonlinear systems

recently attracts more and more attention. So dedicating a whole thesis to LTI model

reduction probably needs justification.
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In fact, Antoulas gives five good reasons for the importance of linear techniques [8],

among them the facts that many physical laws are indeed linear in “large ranges of the

operating conditions” and that “all systems are locally linear”. Two more motives are

possibly worth mentioning: Firstly, MOR of LTI systems can still not be considered

entirely solved (for open problems please refer to Sections 2.4 and 3.7). And secondly,

many reduction approaches for other system classes trace the problem back to standard

linear MOR. For instance, established reduction techniques for parametric models E(p) ẋ(t) = A(p) x(t) + B(p) u(t),
y(t) = C(p) x(t) + D(p) u(t),

(1.3)

including constant dependencies on a parameter vector p evaluate the model locally for

some reference values of p. Then, the resulting LTI models are reduced independently

by standard techniques (“offline stage”), before the local reduced models are used for

some kind of interpolation (“online stage”). Examples of such methods are, for instance,

described in [5, 17, 106, 126]; for a recent survey, see [28].

Even techniques for the reduction of nonlinear state space models ẋ(t) = f(x(t),u(t), t),
y(t) = g(x(t),u(t), t),

(1.4)

like the Trajectory Piecewise Linearization (TPWL) [130, 131] use linear MOR theory.

So extending and improving existing linear methodology can also bring about further

development of more general reduction techniques.

1.2.3. Outline

The contents of this thesis are structured as follows. Chapter 2 recalls relevant preliminar-

ies on LTI systems theory and introduces basic concepts including Petrov-Galerkin

projections. Chapter 3 gives an overview of MOR based on Sylvester equation, in-

cluding rational Krylov subspace methods, which are in the focus of this work. The

subsequent two chapters present new ideas to circumvent the problems related to rational

Krylov methods, exploiting a factorized formulation of the error model. In Chapter 4, a

cumulative reduction framework is introduced which enables the adaptive choice of pa-

rameters (expansion points and reduced order). Chapter 5 presents efficient upper bounds

on the absolute and relative H2 and H∞ error resulting from Sylvester-based model
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reduction under the assumption that the HFM is available in strictly dissipative realiza-

tion. Second order systems, which can often be formulated in such a way, are the topic of

Chapter 6. Numerical examples and demonstrations are provided in Chapter 7, followed

by conclusions in Chapter 8.
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My colleague Thomas Wolf was co-inventor of the error decomposition shown in Sec-
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based. I also owe him my understanding of Sylvester equations; but far beyond that

he commented and helped improving many parts of this thesis, which would certainly not

be the same without his influence.
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and DAE systems, which improved the respective results presented in [123].

Dr. Jens Saak recognized that the transformation towards a strictly dissipative re-

alization (cf. Section 6.2) basically led to a change of the considered inner product; this
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cf. [122]; in particular, he proposed the general idea of using a model function to speed

up optimization, which formed the basis of Section 4.4.4.

Benjamin Kleinherne in his term paper [89] dealt with generalizations of the strictly

dissipative realization of second order systems and helped extending existing proves; the

results have been jointly published in [123].

Anna Kohl further developed the idea of error-controlled model reduction based on

optimization in her master’s thesis [91] and thus contributed to Section 5.6.

Yvonne Stürz worked on the generalization of existing SISO methods to multivari-

able systems during her master’s thesis [149] and thus assisted me with the topics treated

in Sections 3.2 and 4.5.
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1.2.5. MATLAB Source Code Listings

To illustrate implementational aspects and to avoid misconception of algorithms presented

in this work, several ready-to-run functions and code snippets have been included in this

thesis.

All listings are developed for MATLAB (The MathWorks, Inc.) and have been tested

on the 64-bit version R2013b. The reason why MATLAB code is enclosed instead of

pseudocode (or other informal ways of describing high-level programs) is that MATLAB

has established in the scientific community and is very widely used, so it is the author’s

belief that the advantages of ready-to-run code (in which implementational details are

resolved) outweigh the downsides.

For convenience the source code can be directly copied from the digital pdf version of

this document. Please create new .m-files and copy the respective contents of the source

listings into them. Store all files in one directory and include it in your MATLAB path.

The listings are not intended for immediate use in industrial settings (in particular,

they come with no warranty; see license below) and are not optimized with respect to

computational performance nor robustness (exception handling). However, much effort

has been made to provide functional and modular code with a reasonable readability-

performance ratio. The main goals are to facilitate the development of powerful source

code for newcomers, to enable the reader to reproduce numerical results presented in this

work, and to simplify the adaptation and usage of the algorithms for technical applications

and further research.

The code is mainly stand-alone, but sometimes uses functions from the Control

System Toolbox. As this toolbox, however, implements LTI systems as ss-objects

which disregard sparsity of high-dimensional matrices, its usage is limited to medium-

scale systems. To draw Bode plots of high-dimensional models, for instance, one has to

replace the respective functions by manual implementations.

All source code listings enclosed are published under the BSD 3-Clause License as

stated below.

The numerical experiments presented in this thesis, by the way, have been carried out

on a standard PC architecture equipped with 6GB RAM and an Intel Core i7-2630QM

CPU (4 cores, 8 threads) running at 2GHz.
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Copyright (c) 2014, Heiko K. F. Panzer. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are

permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of

conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list

of conditions and the following disclaimer in the documentation and/or other materials

provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIM-

ITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIM-

ITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,

OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THE-

ORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUD-

ING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.2.6. Benchmark Examples

Various benchmark models have been used in this thesis for demonstrating purposes. In

the following, a short description of the respective models is given, together with their

origin.

SLICOT Benchmark Collection

The SLICOT Library [26] includes a couple of very widely used benchmark examples

for MOR of LTI systems. A description of the models is given online and in [38]. The

following table summarizes the models that were used in this thesis.
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Model name Order N nnz(A) Inputs m Outputs p

CD Player 120 240 2 2

Clamped Beam 348 60726 1 1

Continuous Heat Equation 200 598 1 1

International Space Station (ISS) 270 405 3 3

Spiral Inductor

The spiral inductor was originally modeled by Kamon, Wang, and White in [87]; it

is an integrated RF passive inductor, which can also be used as a proximity sensor. Li

and Kamon in [102] provided a SISO state space model of order N = 1434, where

nnz(A) = 18228, nnz(E) > 1.1e6. The goal is to find a ROM which can mimic the

frequency-dependent resistance Rp(ω) and inductance Lp(ω) of the device, which are

related to the transfer function via

Rp(ω) + iωLp(ω) = Zp(ω) =
[
G(iω)

]−1
. (1.5)

Steel Profile

This model describes the heat distribution in a steel profile during a cooling process.

“The cooling process, which is realized by spraying cooling fluids on the surface, has to be

controlled so that material properties, such as durability or porosity, achieve given quality

standards” [31]. The model is therefore intended for the pre-calculation of different control

laws in order to find an optimal cooling strategy.

It has six inputs which correspond to the activity of “phantom nozzles” [154] and seven

outputs describing the temperature at certain points. The model has been created for

four different meshes leading to 1357, 5177, 20209, or 79841 state variables, respectively.

Convective Thermal Flow Problems

This model was set up by Moosmann and Greiner and makes part of the Oberwolfach

Benchmark Collection [96]. It describes “the heat exchange between a solid body and a

fluid flow”, has order N = 9669, one input and five outputs. The matrix E is diagonal;

A has 67 391 nonzero entries, see Figure 1.2a).
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a) Flow Meter (v=0) b) Power System c) Acoustic Field

Figure 1.2.: Sparsity Pattern of Matrix A in Various Benchmark Models

Power System

Rommes provides a collection of models describing power systems from various types of

studies on his website [132]; details are also given in the MOR Wiki [114]. In this work,

the BIPS/1997 model (xingo_afonso_itaipu.mat) is used, which is a “planning model

for the Brazilian Interconnected Power System” [133]. It has order N = 13250, but is a

descriptor SISO model with singular diagonal E matrix having only 1664 entries on the

diagonal, all 1. The sparsity pattern of A is depicted in Figure 1.2b); nnz(A) = 48735.

Acoustic Field in Gas Turbine Combustor

Thermoacoustic effects in gas turbines and combustion units with high power density

carry the danger of damaging or even destroying the combustion chamber due to high

pressure oscillation amplitudes, which may be caused by a feedback coupling between

heat release fluctuations of the flame and the acoustic field of the chamber. For a better

understanding of the related phenomena, simplified burners are modeled to analyze such

thermoacoustic instabilities.

The model at hand describes the acoustic field inside a burner and has been provided by

Tobias Hummel from the Chair for Thermodynamics, Technische Universität München.

It has one input (acoustic excitation) and one output (pressure at some location); the

spatial discretization of the chamber led to an order of N = 62665. The number of nonzero

entries in each of the matrices A and E amounts to nnz(A) = nnz(E) ≈ 3.18 · 106. A

500× 500 section of the sparsity pattern is depicted in Figure 1.2c).
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Parametric FEM Beam

This model of a cantilever Timoshenko beam is available online in the form of an .m-

file [125]. Many parameters including discretization, length, and Young’s modulus can

be adapted. In this work, we used the preadjustment with 60 finite elements, leading to

a N̂ = 300.

Butterfly Gyroscope

“The Butterfly is a vibrating micro-mechanical gyro that has sufficient theoretical per-

formance characteristics to make it a promising candidate for use in inertial navigation

applications. [...] Repeated analyses of the sensor structure have to be conducted with

respect to a number of important issues. Examples of such are sensitivity to shock, linear

and angular vibration sensitivity, reaction to large rates and/or acceleration, different

types of excitation load cases and the effect of force-feedback.” [104]

The model is available online [34] as a second order system (6.1) of dimension N̂ =

17361 with symmetric positive definite M,K, and D = 10−6 ·K. It has a single input

and twelve outputs which describe the displacements of the four detection electrodes.

Wineglass

This model was provided by Jeong Sam Han and is described in [78, 169]. It is a second

order model of dimension N̂ = 368424, with nnz(M) ≈ 5.87e6, nnz(D) ≈ nnz(K) ≈

9.29e6, one input and six outputs. The model is not reduced in this work but merely used

for demonstration purposes in the context of second order systems.



2. Preliminaries

“Finally, we make some remarks on why linear systems are so

important. The answer is simple: because we can solve them!”
— Richard Feynman [57]

2.1. Fundamentals from LTI System Theory

In the following, important preliminaries on LTI systems are summarized. For a more

circumstantial introduction, please refer to [8, 46, 86], or other standard works.

2.1.1. State Space Models

A generalized state space model of a linear time-invariant (LTI) system is given by E ẋ(t) = A x(t) + B u(t),
y(t) = C x(t) + D u(t),

(2.1)

with E,A ∈ RN×N ,B ∈ RN×m,C ∈ Rp×N , and D ∈ Rp×m. x(t) ∈ RN is called the state

vector; its dimension N ∈ N denotes the order of the model. u(t) and y(t) contain the

input and output signals of the system, respectively. Systems with m, p > 1 are referred

to as multi-input multi-output (MIMO) systems; the special case m = p = 1 is called

single-input single-output (SISO) system.

State space models describe the way how an input signal u(t) ∈ Rm is mapped to

an output signal y(t) ∈ Rp (“transfer behavior”, “input/output-behavior”). At the same

time, they can also give insight into the physics of the underlying technical system, if the

entries of x(t) are related to “real-world” quantities—like, for instance, displacements of

nodes in finite element methods for structural mechanics. In the sense of the introduction,

however, we assume in the following that the purpose of the model is not to describe the
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internal state of a physical system, but only its transfer behavior. Accordingly, in this

work the term “system” refers to the operator which maps input signals to output signals

rather than to a physical/technical object.

Common short notations of a generalized state space model (2.1) are

(A,B,C,D,E) and

 E,A B

C D

 . (2.2)

If E = IN is the identity matrix, we call (2.1) a standard state space model, otherwise

a generalized state space model. Systems with det E = 0 are referred to as differential-

algebraic equations (DAE) or descriptor systems1, but play a minor role in this thesis: we

will assume E to be regular, unless specified otherwise.

We denote the generalized eigenvalues λi(A,E) = λi(E−1A) ∈ C of the system shortly

by λi; the largest occurring real part is named spectral abscissa and denoted by α :=

α(A,E) := max
i

Reλi. A system with strictly negative spectral abscissa is asymptotically

stable, which means that for any initial state it converges to the origin as time tends to

infinity, if no input signal is applied. In this thesis we focus on asymptotically stable

models.

2.1.2. Transfer Function and Impulse Response

The transfer behavior of an LTI system can also be described with the help of its impulse

response matrix H(t) ∈ Rp×m, whose (i, j)-th entry describes the output signal yi(t)

for the particular Dirac input signal u(t) = ej · δ(t). Given an input signal u(t), the

respective output follows by convolution:

y(t) = (H ∗ u)(t) =
∫ +∞

−∞
H(t− τ) · u(τ)dτ. (2.3)

The Laplace transform of the impulse response is called the transfer function,

G(s) = L{H(t)} . (2.4)

Assuming distinct poles pi, G(s) can be written in pole-residual formulation:

G(s) =
N∑
i=1

Φi

s− pi
. (2.5)

1Note that in the literature, “descriptor system” sometimes means E 6= I instead.
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Another important formulation of the transfer function is given by the Taylor expansion

about a complex shift σ,

G(s) =
∞∑
i=0

ησi · (s− σ)i, (2.6)

where ησi are known as the moments of G(s) about σ and given by

ησ0 = D−C (A− σE)−1 B,

ησi = −C
[
(A− σE)−1 E

]i−1
(A− σE)−1 B for i ≥ 1. (2.7)

Given a generalized state space model (A,B,C,D,E), its transfer behavior is described

by the Laplace transfer function

G(s) = C (sE−A)−1 B + D (2.8)

and for det E 6= 0 the corresponding impulse response reads

H(t) = CeE−1AtE−1B · σ(t) + D · δ(t). (2.9)

While the transfer function G(s) of an input/output-system is unique, there are ob-

viously infinitely many different state space models, which can, for instance, result from

one another by state transformation.

If equation (2.8) holds for some state space model (A,B,C,D,E) and a given transfer

function G(s), we call the state space model a realization of the transfer function or the

associated input/output-system; equivalently, one says that (A,B,C,D,E) realizes G(s).

Due to the one-to-one relationship of an LTI input/output-system and its transfer

function, the symbol G(s) is typically used for both of them. In fact, throughout this

work G(s) may even denote the realization of the system, unless the context is unclear.

2.1.3. Controllability, Observability, and Minimal Realizations

Definition 2.1 (Controllability). The pair (A,B) with dimensions as in (2.1) is called

controllable, if the matrix
[
B, AB, . . . AN−1B

]
has full row rank.

Definition 2.2 (Observability). The pair (C,A) with dimensions as in (2.1) is called

observable, if the matrix
[
CT , ATCT , . . . (AT )N−1CT

]T
has full column rank.

These matrix-based definitions provide necessary and sufficient criteria for the respec-

tive properties of a generalized state space model (2.1), which is completely controllable



16 Preliminaries

if (E−1A,E−1B) is controllable, and completely observable if (C,E−1A) is observable. A

completely controllable and observable state space model is called least order or minimal

realization of a transfer function; its order is known as McMillan degree [134]. It can

be shown that no other realization of the same transfer function can have smaller order.

2.1.4. Invariant Zeros

Definition 2.3 ([157]). A complex number η is called an invariant zero of a state space

model (2.1), if it satisfies

rank

 ηE−A B

C D

 < normal rank

 sE−A B

C D

 := max
s∈C

rank

 sE−A B

C D

 .
If an invariant zero coincides with an eigenvalue of the realization, compensation may

occur, such that the eigenvalue may be uncontrollable and/or unobservable and does not

contribute to the transfer behavior as a pole. An invariant zero which is not compensated

is called transmission zero. [109]

2.1.5. System Norms and Gramian Matrices

System norms play an important role in the analysis of LTI systems, as they quantify

certain properties of the model. In this thesis, we will concentrate on the H2 and H∞
norms. Other norms like the Hankel norm can be found in the literature, cf. [8].

Definition 2.4 ([8]). The H∞ norm of an LTI system is defined as

‖G‖H∞ := sup
ω∈R

σmax

(
G(iω)

)
= sup

ω∈R

∥∥∥G(iω)
∥∥∥

2
. (2.10)

Definition 2.5 ([8]). The H2 norm of an LTI system is defined as

‖G‖H2
:=

√√√√√ 1
2π

∞∫
−∞

tr
[
GH(iω)G(iω)

]
dω =

√√√√√ ∞∫
0

tr
[
HT (t)H(t)

]
dt. (2.11)

Given a realization of G, the H2 norm can be found algebraically as

‖G‖H2
=
√

tr (BTQB) =
√

tr (CPCT ), (2.12)

where P, Q are the solutions of the two dual generalized Lyapunov equations

APET + EPAT + BBT = 0, and (2.13)

ATQE + ETQA + CTC = 0. (2.14)
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They are closely related to the so-called Gramian matrices [30, 82]:

Definition 2.6. The Controllability and Observability Gramian of a realization (2.1) are

defined as WC := P and WO = ETQE, respectively.

Yet as a matter of fact, for what follows the solution Q of the Lyapunov equation is

often more convenient than the actual Observability Gramian WO. Despite the conflictive

definition in [82], we will therefore sometimes refer to P and Q shortly as “Gramians”

instead of “solutions of the Lyapunov equations”.

The H2 norm is induced from an inner product.

Definition 2.7 ([76, 164]). Given two LTI systems G1(s) and G2(s) with equal number

of inputs and outputs (m1 = m2, p1 = p2), their H2 inner product is defined as
〈
G1,G2

〉
H2

:= 1
2π

∞∫
−∞

tr
[
GH

1 (iω)G2(iω)
]
dω =

∞∫
0

tr
[
HT

1 (t)H2(t)
]
dt. (2.15)

Given two realizations

G1(s) =

 E1,A1 B1

C1 0

 , G2(s) =

 E2,A2 B2

C2 0

 ,
the inner product can be expressed with the help of algebraic equations〈

G1,G2
〉
H2

= tr
[
C1 X CT

2

]
= tr

[
BT

1 Y B2
]
, (2.16)

where X and Y solve the Sylvester equations

A1XET
2 + E1XAT

2 + B1BT
2 = 0, (2.17)

AT
1 YE2 + ET

1 YA2 + CT
1 C2 = 0. (2.18)

Note that Lyapunov equations (2.13),(2.14) defining the Gramians are special cases of

(2.17), (2.18) that follow for G1 = G2 in identical realization.

2.1.6. All-pass Systems

Definition 2.8 ([171, p. 176f]). A real LTI system with p = m is called all-pass, if

GT (−s)G(s) = G(s)GT (−s) = k · Im ∀s ∈ C (2.19)

for some k ∈ R, or, equivalently, if the product of its controllability and observability

Gramian is the identity matrix multiplied by k: WCWO = PETQE = k · IN .

We will refer to the particular case k = 1 as unity all-pass.
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2.2. (Strict) Dissipativity and the Matrix Measure

In the following, we recall the concept of matrix dissipativity and the logarithmic norm.

2.2.1. Basic Results

Definition 2.9 ([42, 107]). The logarithmic 2-norm (also called numerical abscissa or

matrix measure) of a matrix A ∈ CN×N is defined as and given by

µ := µ2(A) := lim
h→0+

‖I + hA‖2 − 1
h

= max
i
λi

(
A + AH

2

)
. (2.20)

If µ ≤ 0, we call A dissipative, i.e. its Hermite part is negative semidefinite, A+AH ≤ 0.

If µ < 0, which is equivalent to A + AH < 0, we call A strictly dissipative.

Please note that this definition must not be confused with “dissipativity” in the sense

of Willems [161]—which is a property of a transfer function—nor as a property of the

imaginary part of a matrix as in [52, 151].

Dahlquist [42] and Lozinskii [107] independently found the following fundamental

result:

Theorem 2.1 ([141]). The numerical abscissa fulfills ‖eAt‖2 ≤ eµ2(A)·t ∀t ≥ 0.

This has two very important consequences in the context of LTI systems. Consider

the special case of a standard state space model ẋ(t) = Ax(t) of an autonomous system

(u(t) ≡ 0). Firstly, for an arbitrary initial state x(0), the 2-norm of the state trajectory

fulfills

‖x(t)‖2 =
∥∥∥eAt · x(0)

∥∥∥
2
≤
∥∥∥eAt

∥∥∥
2
· ‖x(0)‖2 ≤ eµ2(A)·t · ‖x(0)‖2 for t ≥ 0. (2.21)

Secondly, dissipativity is a criterion for stability:

Lemma 2.1 ([41, 45, 141]). The spectral abscissa α is less or equal to the numerical

abscissa µ, i. e. the real part of all eigenvalues of A is less or equal to µ.

In particular, a standard state space model whose A-matrix is strictly dissipative

(µ < 0) is asymptotically stable, because all its eigenvalues must have strictly negative

real part. In fact, this also follows from Theorem 2.1: If µ is negative, the scalar ex-

ponential function decays and one obtains a convergent envelope for the norm of the

transition matrix eAt, so for u(t) ≡ 0 any initial state decays towards the origin, which is

the definition of asymptotic stability.
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In fact, the case µ2(A) < 0, or equivalently A + AH < 0, is of particular interest in

this dissertation. Not only does it allow for stability preservation in projective MOR (cf.

Lemma 2.4), but also for global error bounds presented in Chapter 5.

2.2.2. Generalization towards Symmetric Positive Definite E

In order to exploit the dissipativity property in model reduction, we need to get control

of the effects of the matrix E. Sure enough, in a generalized state space model, eAt is

not actually the quantity of interest. Rather, the solution of the autonomous ODE with

E 6= IN and initial state x(0) is given by

x(t) = eE−1Atx(0). (2.22)

In fact, a common way to trace back the general case to standard state space methodology

is to pre-multiply the ODE in (2.1) by E−1 in order to obtain the standard realization

(E−1A,E−1B,C,D, I). However, this transformation can have a massive impact on the

dissipativity of A, i. e. the numerical abscissa of A is in general not at all related to that

of E−1A, so µ2(A) < 0 does not imply µ2(E−1A) < 0.

The logarithmic norm for general matrix pencils (E,A) has therefore been discussed

in [79, 80]. In the following, however, we will concentrate on the special case that E is

symmetric and positive definite. Here, it is possible to take use of the results for standard

state space realizations in a quite straightforward way. We will now consider two different

ways of doing so; both utilize the Cholesky decomposition LTL = E.

The first idea is to define an inner product and a norm [44]:

Definition 2.10 (E-inner product and elliptic E vector norm).

〈x,y〉E := xHEy, (2.23)

‖x‖E :=
√
〈x,x〉E =

√
xHEx =

√
xHLTLx =

∥∥∥Lx
∥∥∥

2
. (2.24)

The induced matrix norm is given by∥∥∥A∥∥∥
E

:= max
x 6=0

‖Ax‖E
‖x‖E

= max
x 6=0

‖LAx‖2

‖Lx‖2
= max

y 6=0

‖LAL−1y‖2

‖y‖2
=
∥∥∥LAL−1

∥∥∥
2
.

The key idea is to apply this norm to (2.22) and measure x(t) in the elliptic E-norm
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instead of the Euclidian norm [44, 88]:

‖x(t)‖E ≤ ‖eE−1At‖E · ‖x(0)‖E = ‖LeE−1AtL−1‖2 · ‖x(0)‖E
= ‖eL−TAL−1·t‖2 · ‖x(0)‖E
≤ eµ2(L−TAL−1)·t · ‖x(0)‖E

(2.25)

The important observation is that µ2(A) < 0 implies µ2(L−TAL−1) < 0, so a strictly

dissipative matrix A is still guaranteed to yield a convergent bound for arbitrary positive

definite E 6= I, E = ET > 0.

For that reason, we generalize the definition of the spectral abscissa:
Definition 2.11. Given symmetric positive definite E and its Cholesky factorization

LTL = E, the generalized numerical abscissa of a matrix A is defined as

µ := µE(A) := µ2
(
L−TAL−1

)
= max

i
λi

(
A + AH

2 , E
)
.

Corollary 2.1 ([44]). The generalized numerical abscissa fulfills ‖eE−1A·t‖E ≤ eµE(A)·t

for t ≥ 0. Also, if the (Euclidian) numerical abscissa is negative, so is the generalized

one:

µ2(A) < 0 ⇔ µE(A) < 0. (2.26)

Also, Lemma 2.1 extends to the generalized spectral abscissa: α ≤ µE(A).

For more details, the excellent introduction in [44, Section 1.4] is recommended.

As mentioned above, there is a second way to deal with the generalized state space

model. The idea is to perform the following transformation of realization (2.1):
I︷ ︸︸ ︷

L−TEL−1 ˙̂x(t) =
Â︷ ︸︸ ︷

L−TAL−1 x̂(t) +
B̂︷ ︸︸ ︷

L−TB u(t),

y(t) = CL−T︸ ︷︷ ︸
Ĉ

x̂(t) .
(2.27)

The numerical abscissa of Â is then given by

µ2
(
Â
)

= 1
2 max

i
λi

(
L−1AL−T +

(
L−1AL−T

)T)
= max

i
λi
(

A+AT

2 ,E
)

= µE(A), (2.28)

so this procedure has the very same effect as changing the norm of interest from the Eu-

clidian one to the E-norm. Of course, the product L−1AL−T is never computed explicitly,

but still the second approach seems less elegant than the first one.
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To conclude: We have seen that a strictly dissipative matrix A in combination with

a symmetric positive definite matrix E defines a particular realization with useful prop-

erties which are related to the logarithmic norm. One can establish this connection by

performing a transformation including the Cholesky factor of E, or by regarding the

norm induced by E rather than the Euclidian norm.

Definition 2.12. Realizations with E = ET > 0 and A + AH < 0 are called strictly

dissipative; they fulfill µE(A) < 0.

Corollary 2.2. Asymptotically stable realizations with symmetric positive definite E =

ET > 0 and symmetric A = AT are strictly dissipative.

Proof. A is negative definite in this case, A = AT < 0.

2.2.3. Properties and Retrieval of Strictly Dissipative Realizations

First of all, we recall that the numerical abscissa is not a property of the transfer function,

but—in the first place—of the realization; to be precise: of A and E. Accordingly, it can

be affected by state transformations or by pre-multiplication of the ODE with a regular

matrix T.

The question is: Given the above mentioned amenities of a strictly dissipative real-

ization, can we always retrieve such a system from an arbitrary realization? Suppose we

want to preserve the state variables, so instead of a state transformation we choose the

second option and equivalently modify the ODE in (2.1) towards

TE︸︷︷︸
Ẽ

ẋ(t) = TA︸︷︷︸
Ã

x(t) + TB︸︷︷︸
B̃

u(t). (2.29)

Lemma 2.2 ([88, 123]). Define T ∈ RN×N as T := ETP, where P = PT > 0 ∈ RN×N

solves the generalized Lyapunov inequality

ETPA + ATPE < 0. (2.30)

Then the transformed realization given by (2.29) is strictly dissipative.

Proof. The transformed matrix Ẽ = TE = ETPE is clearly positive definite, so the first

condition is fulfilled. Secondly, strict dissipativity requires

Ã + ÃT < 0 ⇔ ETPA +
(
ETPA

)T
< 0.
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It is clear that the computational effort to find such a transformation matrix can

in general be tremendous for high order N , even if algorithms like in [40] may find a

solution efficiently. In general, one will probably not be able to exploit the dissipativity-

based features unless µ happens to be negative by itself. This is, for instance, the case

for symmetric systems (cf. Corollary 2.2) as they arise in the context of diffusion and

heat transfer (benchmark examples are the Spiral Inductor, the Flow Meter, or the Steel

Profile). But we will also see in Section 6.2 that for typical second order systems it is

possible to find a suitable transformation at very low computational cost.
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Figure 2.1.: The “Hump” in Norm of Matrix Exponential

Finally, it is mentioned that the matrix measure fulfills the differential inequality [41]
d

dt
‖x(t)‖E ≤ µE(A) · ‖x(t)‖E (2.31)

and can therefore be interpreted as a worst-case speed of contraction; it describes the

slowest relative decay of the E-norm of x(t) over time. Accordingly, if
∥∥∥eE−1At

∥∥∥
E
is not a

strictly monotonic function, there are states x starting from which the system expands;

a worst-case estimation can then not lead to a convergent envelope.

In fact, there is a strong connection between dissipativity and the concept of non-

normality, as already noted in [116]: “When A is normal, [...] the ‘hump’ phenomenon

does not exist. These observations lead us to conclude that the eA problem is ‘well

conditioned’ when A is normal.” The “hump” refers to the norm of the matrix exponential
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over time, as it can be seen in Figure 2.1. The first example exhibits strictly monotonic

behavior, its matrix measure µ is negative and A is indeed normal: AAT = ATA. The

bound eµt would be hardly distinguishable from the real function. Figure 2.1b) shows a

counterexample: Here, µ ≈ +1.9 · 10+3, the matrix is highly non-normal, its exponential

features a hump, and the upper bound eµ(t) diverges so steeply it would leave Figure 2.1b)

after 0.002 seconds—although all eigenvalues of A have negative real part.

Details on this connection and further references can also be found in [115, 152].

2.2.4. Computing the Matrix Measure

We conclude this section with remarks on the numerical computation of the generalized

matrix measure. A MATLAB implementation can be seen in Source 2.1. It tries to

perform a Cholesky decomposition of −A − AH . If this breaks with an error, the

matrix is not positive definite, accordingly A is not strictly dissipative and µE(A) is not

negative.

Otherwise, one needs to find the extremal solution of a generalized symmetric eigen-

value problem of dimension N . Due to the test for positive definiteness of −A−AH , we

know for sure that all generalized eigenvalues λi(sym Ã, Ẽ) are negative, so the largest of

them is the one closest to zero. Accordingly, instead of finding the eigenvalue with largest

real part, we can look for the eigenvalue of smallest magnitude. In fact, despite the

additional effort of performing a Cholesky decomposition, this works out much faster

and also seems to be more robust than using the option “Largest Algebraic” (’LA’) of

MATLAB’s eigs routine.

Table 2.1.: Simulation Results for Computation of Matrix Measure

Model Dimension nnz(A) nnz(E) µE(A) Time [s]

CD Player 120 240 120 −0.024 344 0.020

FlowMeter (v=0) 9669 67 391 9669 −1.3993 0.27

Steel Profile 20 209 139 233 139 473 −1.7969 · 10−5 0.46

Gyroscope2 34 722 4 084 636 2 042 452 −49.9994 8.2

2In strictly dissipative realization as presented in Section 6.2 with γ = 50.



24 Preliminaries

In Source 2.1, the eigs command is configured to exploit symmetry, and the start

vector is determined to avoid random influences (see [150]). The tolerance and Lanczos

options are chosen according to [123]. The settings in Source 2.1 worked well for all

considered examples. Results can be seen in Table 2.1.

Source 2.1: Computation of Generalized Spectral Abscissa µẼ(Ã)

 function [mu, L_S, P_S] = SpectralAbscissa(A,E)
 % Compute generalized spectral abscissa
 %   Input:  A, E:     HFM matrices
 %   Output: mu:       generalized spectral abscissa mu_E(A)
 %           L_S, P_S: Cholesky decomposition of S=-A-A'
 % (c) 2014 Heiko K.F. Panzer, Tech. Univ. Muenchen.
% This file is published under the BSD 3-Clause License. All rights reserved.

 p    = 20; % number of Lanczos vectors
 tol  = 1e-10; % convergence tolerance

 opts = struct('issym',true, 'p',p, 'tol',tol, 'v0',sum(E,2));

 [L_S,e,P_S] = chol(sparse(-A-A')); % L_S'*L_S = P_S'*(-A-A')*P_S
 if e, error('A is not strictly dissipative.');
 else
     symA = @(x) P_S*(L_S\(L_S'\(P_S'*x*2)));
     mu   = -eigs(symA, size(A,1), E, 1, 0, opts);
 end

2.3. Projective MOR

Having summarized the system theoretic concepts that are most important for our pur-

poses, we turn toward basics in model reduction.

2.3.1. Petrov-Galerkin Approximation

Projective MOR is based on the assumption that typically the state trajectory x(t) does

not transit all regions of the state space equally often, but mainly constrains to stay

within a subspace V of lower dimension. Given a basis V ∈ RN×n of V , one can therefore

approximate the exact trajectory with a reduced state vector xr(t) of dimension n� N :

x(t) ≈ Vxr(t). (2.32)

The difference is usually denoted by the error

e(t) := x(t)−Vxr(t). (2.33)
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Replacing x(t) with its approximation turns the state equation from (2.1) into an overde-

termined ODE and introduces a remainder ε(t),

EV ẋr(t) = AV xr(t) + B u(t) + ε(t). (2.34)

As EV, AV, and B span different subspaces of RN , in general no trajectory xr(t) can

achieve exact equality. This is remedied by projecting (2.34) onto the n-dimensional

subspace EV in which the left hand side of the equation lives. To this end, a projector

matrix

Π := EV
(
WTEV

)−1
WT ∈ RN×N (2.35)

is designed with the help of a matrix W ∈ RN×n, chosen such that det
(
WTEV

)
6= 0.

The projector Π then maps any vector x onto the subspace span EV along straight lines

that are orthogonal to the subspace W := span W; it fulfills Π2 = Π. Obviously, when

(2.34) is multiplied from the left by Π, all resulting vectors lie in span EV. The preceding

term EV
(
WTEV

)−1
can therefore be omitted in all summands of the equation:

WTEV ẋr(t) = WTAV xr(t) + WTB u(t) + WTε(t). (2.36)

As this regular reduced ODE system can be solved exactly by xr(t) for given ur(t),

the residual term WTε(t) identically amounts to zero; this is known as Petrov-Galerkin

condition.3

The final reduced order model (ROM) including the output equation is given by

Gr :



Er︷ ︸︸ ︷
WTEV ẋr(t) =

Ar︷ ︸︸ ︷
WTAVxr(t) +

Br︷ ︸︸ ︷
WTB u(t),

yr(t) = CV︸︷︷︸
Cr

xr(t) + D︸︷︷︸
Dr

u(t).
(2.37)

Please note that the feedthrough matrix D of the original system is inherited by the

ROM in this framework. It is also possible to choose Dr 6= D and exploit the additional

degrees of freedom [60], but then the H2 error (see below) is infinite. For that reason we

restrict ourselves to the trivial choice Dr := D in this thesis. This is also a more natural

approach given that feedthrough is a static component of the transfer behavior and does

not contribute to the dynamics one aims to approximate. For the ease of presentation,

we will mostly assume D = 0 in the following.
3Please note that the residual ε(t) must not be confused with the error e(t). Clearly, WT e(t) 6= 0!
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Further details on the projective MOR framework can be found in many works, e. g.

[8, 43, 73, 77] and references therein, to mention just a few of them.

Definition 2.13. Projective MOR with span V = span W, or in particular V = W, is

referred to as one-sided reduction.

2.3.2. Error Model and Error Norms

Every ROM is associated with a corresponding error system:

Definition 2.14. Given an original system G(s) and some reduced order model Gr(s),

we define the associated error model Ge(s) as Ge(s) := G(s)−Gr(s).

It is of high importance for the analysis of the approximation quality, which is typically

judged by means of ‖Ge‖, where ‖ · ‖ denotes a system norm of interest.

We therefore define the absolute and relative error norms.

Definition 2.15. The absolute H2 and H∞ error norm is defined as

εH2 := ‖Ge‖H2
and εH∞ := ‖Ge‖H∞ , (2.38)

respectively. The relative error norms are defined as

εH2,rel :=
‖Ge‖H2

‖G‖H2

and εH∞,rel :=
‖Ge‖H∞
‖G‖H∞

. (2.39)

2.3.3. Invariance Properties

Before taking on the question of how to actually choose the projection matrices V and

W in the above section, we recall an important property of projective MOR.

Lemma 2.3 ([139]). Replacing the projection matrices V,W with matrices V̂,Ŵ ∈ RN×n

of the same dimension and spanning the same respective subspace,

span V = span V̂ and span W = span Ŵ,

results in another realization of the same ROM:

Ĝr(s) :=

 ŴTEV̂,ŴTAV̂ ŴTB

CV̂ D

 =

 WTEV,WTAV WTB

CV D

 = Gr(s).

Proof. The proof is repeated here because it helps understanding the effect of a change of

basis in projective MOR. From the assumption follows the existence of regular matrices
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T,M ∈ Rn×n with V̂ = VT and Ŵ = WMT . Accordingly,

Ĝr(s) = CV̂
(
sŴTEV̂− ŴTAV̂

)−1
ŴTB + D =

= CVT
(
sMWTEVT−MWTAVT

)−1
MWTB + D =

= CV
(
sWTEV−WTAV

)−1
WTB + D = Gr(s).

The above lemma makes clear that in theory the input/output behavior of the ROM

is invariant under change of basis of the projection subsets V and W . The choice of the

subsets themselves matters; different bases, however, only lead to different realizations,

either in form of a state transformation T or pre-multiplication of the ODE system by

M, which does not even change the solution xr(t).

On the other hand, the influence of numerical effects (roundoff errors) is highly de-

pendent on the actual bases V and W. It is therefore often inevitable to exploit the

invariance property for judicious implementation in inexact arithmetics.

2.4. State of the Art and Problem Formulation

2.4.1. General Objectives and Challenges

We are now ready to express the main goals of MOR in more detail. They are threefold [8]:

• We want Gr(s) to approximate the original model well, which means the associated

error shall be small with respect to a given norm. Also, information on the absolute

or relative induced error is generally desirable.

• Properties of the HFM like stability, passivity, structure etc. shall be preserved.

• The reduction procedure must be numerically efficient (fast and robust) and au-

tomatable, i. e. it should not require interference from the user.

2.4.2. Some Selected Model Reduction Techniques

It is not in the scope of this thesis to provide extensive details on LTI model reduction

methods that exist in the literature, as a wholehearted attempt to do so would alone

fill dozens of pages. Indeed, an excellent comprehensive survey has been provided very

recently by Baur, Benner and Feng [18], so for a detailed overview the reader is referred
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to this contribution and the numerous references included, or to previous surveys like, for

instance, [12, 22, 29, 75, 140], or the MOR standard work [8].

However, to classify the results presented in this thesis it is helpful to point out the

practical problems that are related to the goals listed in Section 2.4.1, and to mention

some strengths and weaknesses of the various MOR methods.

Remember the first objective: information on the approximation quality. Methods

providing the exactH2 orH∞ error or provable bounds on the respective norm require one

or both system Gramians; examples are the Truncated Balanced Realization (TBR) [117]

and its derivatives, or the Optimal Hankel Approximation [70]. Both, by the way, preserve

stability of the HFM. Solving high-dimensional Lyapunov equations by direct methods,

however, requires high numerical effort even for sparse matrices, and is therefore not in

line with the third objective: numerical efficiency. In fact, in really large-scale settings, it

is not practicable at all to compute a full-rank solution of a Lyapunov equation. Indeed,

many methods exist to find approximate solutions in the form of low-rank factors—for

instance, the Alternating Directions Implicit (ADI) iteration [103] or Krylov Plus Inverted

Krylov (K-PIK), also known as Extended Krylov Subspace Method (EKSM), and Rational

Krylov Subspace Method (RKSM) [48, 144]—, but then the rigorous error bounds do no

longer hold and the ROM may even be unstable in theory.

Available error estimation techniques for situations in which no Gramian is available

are covered in Section 5.1. In brief one can say that they are either not rigorous (i. e. not

provably greater or equal to the true error), not global (only a narrow frequency band

is considered), or quite restrictive in their assumptions (A and E symmetric; lossless

system), cf. [18].

As to preservation of stability, one way to obtain stable ROMs without Gramians at

hand is the explicit placement of the reduced poles in the left half complex plane. Modal

truncation, for instance, features this intrinsically, and is in this regard superior.

In the range of interpolation-based reduction techniques, a combination of pole place-

ment and moment matching was presented in [9] and can be used to preserve stability.

The question where to place the poles, however, remains unanswered for the time being.

There is another approach of interest:
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Lemma 2.4 ([142, 143]). One-sided reduction of a dissipative model delivers a stable

ROM.

Proof. The proof is based on the fact that dissipativity is preserved by one-sided reduction.

To show this, we must consider the respective conditions on Er and Ar. Symmetry of Er

is clear. Positive definiteness of E implies positive definiteness of Er = VTEV because

xTEx > 0 ∀x ∈ RN ⇒ xTr Erxr = xTr VTEVxr > 0 ∀xr ∈ Rn.

Similarly, dissipativity of A implies

xT (A + AT )xr ≤ 0 ∀x ∈ RN

⇒ xTr (Ar + AT
r )xr = xTr VT (A + AT )Vxr < 0 ∀xr ∈ Rn.

Remark 2.1. Though Silveira et al. presented this result only for the special case of V

resulting from the Arnoldi algorithm, the proof comprised general one-sided reduction.

Still, it seems to have been re-worked several times since 1996.

Odabasioglu et al., by the way, extended this finding to passivity in [119, 120].

The remarkable property of Lemma 2.4 is its generality. The statement holds, no

matter whether V stems from Krylov subspace methods, Proper Orthogonal Decompo-

sition (POD) or other subspace identification techniques. Two drawbacks, however, must

be pointed out: Firstly, we have seen in Section 2.2.3 that finding a dissipative realization

is hardly possible unless the property is given a priori. Secondly, the result of one-sided

reduction is dependent on the realization of the HFM, so the procedure involves a certain

randomness.

To sum up: preservation of stability and computation of reliable error information is

closely related to the calculation of system Gramians, which, however, is time consuming

or not even feasible for large-scale HFMs.

The goal of this thesis is therefore to develop Gramian-free methods which can satis-

factorily fulfill the requirements of MOR. To this end, model reduction using Sylvester

equations, which is based on local approximation of the HFM, is introduced in the next

chapter. The subsequent Chapters 4 and 5 are then dedicated to the most important

related issues: choice of order, stability preservation and rigorous error estimation.





3. Model Reduction based on Sylvester

Equations

“These methods [model reduction techniques preserving meaningful

parameters of the full order model] provide a (more or less) large

and handy toolbox, instead of a single ‘finished product’.”
— C. De Villemagne and R. Skelton [43]

3.1. Historical Remark: Multipoint-Padé, Rational

Krylov, and Sylvester Equations

The idea of creating reduced models that interpolate the HFM at certain frequency points

of interest in the complex Laplace domain has a very rich history, see e. g. [73, 157].

Numerous methods to perform this kind of model reduction have evolved over the 20th

century and are known in the literature as Partial Realization, (standard, shifted, or

multipoint) Padé approximation, rational interpolation, asymptotic waveform evaluation

(AWE) and Padé via Lanczos (PVL) [55], to mention just the most famous of them.

“A large amount of existing work was repeated”, as Grimme remarks [73], which is

plausible from a system theoretic point of view: in the SISO case, for instance, a ROM

is uniquely determined by 2n well-posed conditions, so the various reduction methods

can only differ from each other in the formulation (i. e., the particular state space real-

ization or—in earlier days—rational transfer function) they deliver, and in the numerical

properties of the procedure, but not in the reduced model itself. In fact, explicit moment

matching algorithms like the AWE are mathematically equivalent to PVL, but numerically
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ill-conditioned and unstable [65]—even some time-domain based reduction approaches like

Laguerre methods [90] have been shown to be equivalent to Padé approximation [50].

Meanwhile, the projective MOR framework with rational Krylov subspace methods

in combination with orthogonalization procedures has turned out to constitute a robust

and general implementation of Padé approximation both for the SISO and the MIMO

case. Some of the most important contributions towards this result are due to Ruhe [135],

de Villemagne and Skelton [43], Grimme [73], Bai, Feldmann and Freund [14,

55, 65], and Gallivan, Vandendorpe and Van Dooren [66, 67, 157].

In addition, Gallivan, Vandendorpe and Van Dooren have presented the tight

connection of rational Krylov subspaces and Sylvester equations. As a matter of fact,

given the dual Sylvester equations

AVR1 + EVR2 + BY = 0, (3.1)

L1WTA + L2WTE + XC = 0, (3.2)

with R1,R2,L1,L2 ∈ Rn×n, Y ∈ Rm×n, and X ∈ Rn×p, the solutions V ∈ RN×n and

W ∈ RN×n can be written as sums of bases of Krylov subspaces and eigenspaces [68,

69, 157]. Though we will not explicitly solve Sylvester equations by numerical methods

as presented in [145], we will see below that they provide a beautiful unifying formulation

and are of great theoretical importance, cf. [13].

Note that a holistic perspective on the realization problem has been provided by An-

toulas and Anderson by means of the Löwner framework [7, 8], which is not only

suitable in the context of model reduction by rational interpolation (including tangential

interpolation and descriptor systems) [110], but also for identification purposes of linear

or parameter-dependent systems [98, 99, 100].

A very recent survey on model reduction by rational interpolation is due to Beattie

and Gugercin [22].

3.2. Projective MOR and Sylvester Equations

It is not in the scope of this dissertation to exhaustively study the links and connections

between the various MOR procedures related to Sylvester equations. Neither does this

chapter present substantial new results on that topic (except Section 3.3).
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Yet the actual results of this thesis essentially base upon Sylvester equations. The er-

ror bounds presented in Chapter 5, for instance, only apply when a particular Sylvester

equation is fulfilled and its solution is known. This is, however, indeed the case for com-

mon rational Krylov subspace methods (leading to “moment matching”) as well as for

modal truncation (preserving eigenvalues of interest).

This section is therefore intended to recall preliminary results on how the mentioned

reduction techniques can be formalized with the help of Sylvester equations. In Sec-

tion 3.3 we will then modify the deduced equations towards a MOR-related formulation

that meets the requirement of the subsequent chapters.

3.2.1. Transformations of Sylvester Equations

Assume we want to use the solution V of the Sylvester equation (3.1) for projective

MOR. Then, according to Lemma 2.3, the ROM does not change in its transfer behavior

when we replace V with another basis V̂ of the same subset.

Let therefore T be a regular matrix of generalized eigenvectors of (R2, R1), such that

R2T = R1TSV holds and SV is a matrix in Jordan canonical form. Then, define V̂

such that V = V̂T−1R−1
1 . This changes the Sylvester equation (3.1) to

AV̂T−1 + EV̂T−1R−1
1 R2 + BY = 0.

Multiplication from the right by T equivalently yields

AV̂ + EV̂ T−1R−1
1 R2T︸ ︷︷ ︸

SV

+B Y T︸ ︷︷ ︸
Ŷ

= 0 ⇔ AV̂ + EV̂SV + BŶ = 0.

Accordingly, if R1 is regular, we can always find a related formulation of Sylvester

equation (3.1) with R̂1 = In and a particular R̂2 = SV such that the column span of the

solution—and therefore the resulting ROM in projective reduction—remains unchanged.

Note that the generalized spectrum is invariant under such transformation: λi(R2,R1) =

λi(R̂2, R̂1) = λi(SV ).

In practice, one will therefore usually not use the solution V̂ of this normalized for-

mulation (which may easily be ill-conditioned) but conduct an orthogonalization of its

columns instead, for instance using a (modified) Gram-Schmidt process [136]. This

again does not affect the transfer function of the ROM, but enables a numerically stable

procedure.
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Still, the normalized formulation is of great theoretical value. In the next subsections

we will briefly discuss various MOR procedures and specify the particular Sylvester

equation they implicitly solve. We will assume the following form and notation1:

AV + EV(−SV ) + B(−C̃r) = 0. (3.3)

Please note that all results carry over to the dual Sylvester equation (3.2)

WTA + (−SW )WTE + (−B̃r)C = 0. (3.4)

3.2.2. Particular Sylvester Equations

We will see in the following that Krylov subspaces and invariant subspaces fulfill par-

ticular Sylvester equations.

Rational Krylov Subspaces

Definition 3.1. Consider a SISO LTI system with B = b ∈ RN×1, C = c ∈ R1×N . For

a given shift σ ∈ C and multiplicity n ∈ N, the corresponding rational input Krylov

subspace is defined as the column space of

V :=
[
A−1
σ b, A−1

σ EA−1
σ b, . . .

(
A−1
σ E

)n−1
A−1
σ b

]
∈ CN×n, (3.5)

where Aσ := A− σE, while the rational output Krylov subspace is the column space of

W :=
[
A−Tσ cT , A−Tσ ETA−Tσ cT , . . .

(
A−Tσ ET

)n−1
A−Tσ cT

]
∈ CN×n. (3.6)

For the basis V in (3.5), the Sylvester equation (3.3) holds with

SV =


σ 1

. . . . . .
. . . 1

σ

 ∈ Cn×n and C̃r =
[
1 0 . . . 0

]
∈ R1×n,

and W fulfills the dual equation(3.4) with SW = STV and B̃r = C̃T
r . In fact, an output

Krylov subspace can always be understood as the dual counterpart of an input Krylov

subspace which results from A → AT , E → ET , B → CT , so we will only consider the

input case in the following.

1It will become more clear in Chapter 4 why we name the matrices C̃r instead of Y.
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Note that the columns of V in (3.5) are given recursively by vi = A−1
σi

Evi−1 for i ≥ 2.

This is the reason why this basis can not only be orthogonalized a posteriori by means

of a Gram-Schmidt procedure, but one can use a modified Gram-Schmidt algorithm,

which means that every new column is orthogonalized and normalized, before the next

column is computed (cf. Source 3.1) [136]. This does not change the subspace, but is

numerically much more stable.

Remark 3.1. Please note that in the literature, “shifts” and “expansion points” are some-

times defined differently, namely with converse sign. In this thesis, both expressions mean

the same thing.

Multipoint Rational Krylov Subspaces

A true generalization is given by means of a multipoint rational Krylov subspace, which

can, however, take two different forms. Let some shifts be given by σi, i = 1 . . . n. Then

one can replace Aσ in (3.5) by Aσi , which yields

V :=
[
A−1
σ1 b, A−1

σ2 EA−1
σ1 b, . . . A−1

σnE · · ·A−1
σ2 EA−1

σ1 b
]
∈ CN×n. (3.7)

This matrix fulfills (3.3) with

SV =


σ1 1

. . . . . .
. . . 1

σn

 ∈ Cn×n and C̃r =
[
1 0 . . . 0

]
∈ R1×n. (3.8)

More widely spread, however, is the usage of the basis

V :=
[
A−1
σ1 b, A−1

σ2 b, . . . A−1
σnb

]
∈ CN×n, (3.9)

which spans the same subspace, but leads to diagonal SV in (3.3); more precisely,

SV =

σ1
. . .

σn

 ∈ Cn×n and C̃r =
[
1 1 . . . 1

]
∈ R1×n. (3.10)

Note, however, that the latter basis is at risk of being ill-conditioned if σi ≈ σj for

some i 6= j, because orthogonalization can only be performed a posteriori, while the first

formulation (3.7) can again be combined with a modified Gram-Schmidt procedure [136]

and incorporates the special case that all (or some!) σi are equal. On the other hand,

parallelization is only possible with the second formulation of the Sylvester equation,
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because for the computation of the columns of V in (3.7) one requires the preceding

column, which forces serial implementation.

Tangential Krylov Subspaces

Given a MIMO LTI system, one can choose a tangential vector t ∈ Cm×1 and treat

Bt ∈ CN×1 like the input vector of a SISO system. The Krylov subspaces defined above

in (3.5), (3.7), (3.9) then fulfill Sylvester equation (3.3) with respective SV like before;

C̃r, however, becomes a matrix (it had only one row for SISO) and changes accordingly

to

C̃r =
[
t 0 . . . 0

]
∈ Cm×n or C̃r =

[
t t . . . t

]
∈ Cm×n.

It is, however, also possible to choose one tangential direction ti per shift σi. Note that

then the “cascaded” basis (3.7) cannot be used anymore, but rather the following form:

V :=
[
A−1
σ1 Bt1, A−1

σ2 Bt2, . . . A−1
σnBtn

]
∈ CN×n (3.11)

with

SV =

σ1
. . .

σn

 ∈ Cn×n and C̃r =
[
t1 . . . tn

]
∈ Cm×n. (3.12)

For that reason, it is not easily possible to use a modified Gram-Schmidt algorithm

here, so V cannot be orthogonalized in a straightforward way like before, but requires an

a posteriori Gram-Schmidt procedure. An implementation can be seen in Source 3.3.

Block Krylov Subspaces

Alternatively, one can replace b in (3.5), (3.7), (3.9) by the whole matrix B in the MIMO

case, which increases the number of columns of V by m per shift. V is then called a block

input Krylov subspace and the respective matrices in (3.3) read

SV =


σ1Im Im

. . . . . .
. . . Im

σnIm

 ∈ Cmn×mn and C̃r =
[
Im 0m . . . 0m

]
∈ Cm×mn
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or, respectively,

SV =


σ1Im

. . .
σnIm

 ∈ Cmn×mn and C̃r =
[
Im Im . . . Im

]
∈ Cm×mn.

Note that both for tangential and block Krylov subspaces, the columns of the matrix

V may become linearly dependent. In this case, deflating techniques must be applied to

find a projection matrix of full column rank [136].

Invariant Subspaces

If V spans an invariant subspace or generalized eigenspace, it fulfills

AV = EVΛ, (3.13)

where Λ ∈ Cn×n is a diagonal matrix containing n generalized eigenvalues of (A,E), or

possibly a Jordan matrix for defective eigenvalues of higher multiplicity. Anyway, this

equation is the special case of the Sylvester equation (3.3) for SV = Λ and C̃r = 0m×n.

3.2.3. Related Model Reduction Techniques

In this section, we will recall the meaning of the Sylvester equations from above on a

ROM when the respective solutions are used as projection matrices according to (2.36).

For details, please refer to [69].

Rational Interpolation / Moment Matching / Padé approximation

Consider the SISO case first. It is well known that projective MOR with a right hand

side matrix V as in (3.5) will—independently of the choice of W, as long as all inverses

exist—deliver a ROM which satisfies the interpolation conditions

G(i)(σ) = G(i)
r (σ) ⇔ ησi = ησr,i ∀ i = 0, 1, . . . (n− 1), (3.14)

or, in other words, whose first n moments ησr,i about σ equal those of the HFM; this is

known as (singlepoint) Padé approximation.

If V spans a rational input Krylov subspace as (3.7), (3.9), then the ROM interpolates

the transfer function of the HFM at the various frequencies σi in the Laplace complex

plane, which is referred to as multipoint Padé approximation.
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More generally, one also speaks of “moment matching” or “rational interpolation”,

because the reduced (rational) transfer function Gr(s) interpolates the much more com-

plicated transfer function G(s) of the original systems.

The results extend to the MIMO case if block Krylov subspaces are employed. Here,

G(i)(σ) and G(i)
r (σ) in (3.14) are indeed complex matrices of dimension p×m.

Also, note that rational interpolation works the same way if W spans an output

Krylov subspace, so all results carry over to this dual case. For a summary see [139].

Tangential Interpolation

Using a tangential Krylov subspace (3.11) for V leads to so-called tangential interpola-

tion, i. e.

G(i)(σ)t = G(i)
r (σ)t ⇔ ησi t = ησr,it ∀ i = 0, 1, . . . (n− 1) (3.15)

for singlepoint Padé, or for general multipoint Padé:

G(σi)ti = Gr(σi)ti ⇔ ησi0 ti = ησir,0ti ∀ i = 1, 2, . . . n. (3.16)

This means that the respective moments (matrices in Cp×m) of the ROM and the HFM

are not equal, but the linear combinations defined by ti ∈ Cm×1 of their columns are. [67]

Using a tangential output Krylov subspace with some tangential vector tW,i ∈ C1×p

leads to dual interpolation behavior: tW,iG(i)(σ) = tW,iG(i)
r (σ) etc..

Tangential interpolation is a true generalization of block moment matching. Performing

tangential interpolation with all n unit vectors ei instead of only one vector t is the same

as building a block Krylov subspace by using the whole matrix B at a time.

Two-Sided Rational Krylov / Hermite Interpolation

If both V and W span input and output Krylov subspaces, respectively, then the single

implications on the interpolation behavior “sum up”, i. e. the ROM matches moments at

the eigenvalues both of SV and SW . If eigenvalues coincide, then higher moments are

matched at the respective frequency—at least in the SISO case; in the MIMO case, the

situation depends on the tangential vectors.

Two-sided rational interpolation for MIMO systems is generally a comparably inconve-

nient task, because one has to find matrices V and W with the same number of columns.



3.2 Projective MOR and Sylvester Equations 39

Input and output block Krylov subspaces, however, have n ·m and n ·p columns, respec-

tively, so in general one cannot use the same number of moments in V and W. Tangential

interpolation circumvents this problem, but may still suffer from loss of rank in general.

This can be counteracted by deflation, but then the linearly dependent columns must be

replaced ad hoc by additional information, if necessary.

The special SISO case that the same expansion points σi are used for V and for W is

called Hermite interpolation. Here, the ROM fulfills

G(σi) = Gr(σi) and d
dsG(σi) = d

dsGr(σi) ∀ i = 1, 2, . . . n. (3.17)

Modal Truncation

If the basis of an invariant subspace is used for projective model reduction, the eigen-

values of the HFM contained in Λ are preserved by the ROM. If both V and W span

right and left handed invariant subspaces, respectively, then the respective eigenvalues

are preserved together with their residuals. Obviously, this kind of model reduction of-

fers far less degrees of freedom than Krylov subspace methods, because one can only

choose among the eigenvalues of the HFM. Although modal reduction methods provide

insight in the physical meaning of the reduced state variables, this goal is typically subor-

dinate to a precise approximation of the transmission behavior—in particular for models

whose modes, unlike lightly damped mechanical structures, do not have a clear physical

interpretation.

Modal truncation is therefore not in the focus of this thesis, but rather mentioned here

to show that the results of subsequent chapters apply to this model reduction technique

as well as to Krylov subspace methods. For details, see [33, 105, 118, 146, 158] and

references therein.

3.2.4. Important Properties

In general, solutions of Sylvester equations can be used to match moments at certain

frequencies and preserve given eigenvalues at the same time. To this end, the respec-

tive bases are simply concatenated and the various implications for the ROM “sum up”.

In fact, most of the results presented in the following chapters apply to MOR by arbi-
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trary Sylvester equation. Sometimes, however, it is important to distinguish Krylov

subspaces from eigenspaces.

Lemma 3.1 ([157]). If V spans an input Krylov subspace and SV , C̃r fulfill Sylvester

equation (3.3), then the pair (C̃r,SV ) is observable.

If W spans an output Krylov subspace and SW , B̃r fulfill Sylvester equation (3.4),

then the pair (SW , B̃r) is controllable.

This can best be seen in a formulation of the Sylvester equation in which SV or

SW , respectively, is diagonal. If right or left eigenvectors are contained in the subspace

spanned by V or W, respectively, then the corresponding rows in C̃r or columns in B̃r

are zero.

Also, we recall some additional invariance properties extending the results from Sec-

tion 2.3.3.

Lemma 3.2. Let an ODE system (2.1) be pre-multiplied by a regular matrix T from the

left; this yields the equivalent realization Ẽ = TE, Ã = TA, B̃ = TB, C̃ = C. Then:

• The solution of an input type Sylvester equation (3.3) does not change, Ṽ = V.

• The solution of an output type Sylvester equation (3.4) fulfills W̃ = T−TW.

Lemma 3.3 ([139]). In two-sided Sylvester-based MOR, the ROM is independent of

the realization of the HFM.

3.2.5. Judicious Implementation

Although only the matrices V and W are needed to perform projective MOR, some of

the techniques presented in this thesis require the accompanying matrices SV , C̃r and

SW , B̃r. These, however, can be set up during the calculation of V and W, respectively,

without costly additional computations.

A possible MATLAB implementation to calculate orthogonal bases of input and output

Krylov subspaces is given in Source 3.1. It uses a modified Gram-Schmidt algorithm

Source 3.2 for the orthogonalization, during which SV , C̃r, SW and B̃r are properly

adapted. An implementation for tangential multipoint Padé approximation can be seen

in Source 3.3, which includes the respective SISO case, but requires σi 6= σj for i 6= j. Of

course these listings can be modified to include the other cases presented above.
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Source 3.1: Rational Krylov Subspace

 function [V,S_V,Crt,W,S_W,Brt] = RationalKrylov(A,B,C,E,s0,n)
 % Input and Output Krylov subspace
 %   Input:  A,B,C,E:   HFM matrices;
 %           s0; n:     (real) shift; dimension of ROM
 %   Output: A*V - E*V*S_V - B*Crt = 0,  W.'*A - S_W*W.'*E - Brt*C = 0
 % (c) 2014 Heiko K.F. Panzer, Tech. Univ. Muenchen.
% This file is published under the BSD 3-Clause License. All rights reserved.

 % initialization and preallocation
 N=size(A,1); V=zeros(N,n); S_V=zeros(n,n); Crt=eye(1,n); tempV = B;

              W=zeros(N,n); S_W=zeros(n,n); Brt=eye(n,1); tempW = C.';
 [L,U,P,Q] = lu(sparse(A-s0*E)); % ==> P*A*Q = L*U

 for i=1:n
     % compute new basis vector
     tempV  = Q*(U\(L\(P*tempV)));    tempW = (tempW.'*Q/U/L*P).';
     V(:,i) = tempV; S_V(i,i) = s0;   W(:,i)  = tempW; S_W(i,i) = s0;
     if i>1, S_V(i-1,i)=1; S_W(i,i-1)=1; end
     % orthogonalize new column
     [V,S_V,Crt] = GramSchmidt(V,S_V,Crt,[i i]);
     [W,S_W,Brt] = GramSchmidt(W,S_W.',Brt.',[i i]); S_W=S_W.'; Brt=Brt.';
     tempV = E*V(:,i);                tempW = E'*W(:,i);
 end

Source 3.2: Gram Schmidt Orthogonalization

 function [X,Y,Z] = GramSchmidt(X,Y,Z,cols)
 % Gram-Schmidt orthonormalization
 %   Input:  X,[Y,[Z]]:  matrices in Sylvester eq.: V,S_V,Crt or W.',S_W.',Brt.'
 %           cols:       2-dim. vector: number of first and last column to be treated
 %   Output: X,[Y,[Z]]:  solution of Sylvester eq. with X.'*X = I
 % (c) 2014 Heiko K.F. Panzer, Tech. Univ. Muenchen.
% This file is published under the BSD 3-Clause License. All rights reserved.

 if nargin<4, cols=[1 size(X,2)]; end
 for k=cols(1):cols(2)

     for j=1:(k-1)                       % orthogonalization
         T = eye(size(X,2)); T(j,k)=-X(:,k)'*X(:,j);
         X = X*T;
         if nargout>=2, Y=T\Y*T; end
         if nargout>=3, Z=Z*T; end
     end
     h = norm(X(:,k));  X(:,k)=X(:,k)/h; % normalization
     if nargout>=2, Y(:,k) = Y(:,k)/h; Y(k,:) = Y(k,:)*h; end
     if nargout==3, Z(:,k) = Z(:,k)/h; end
 end
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Source 3.3: Multipoint Padé via Rational Krylov

 function [V,S_V,Crt,W,S_W,Brt] = TangentialKrylov(A,B,C,E,s0,t_B,t_C)
 % Tangential Input and Output Rational Krylov Subspaces
 %   Input:  A,B,C,E: HFM matrices;
 %           s0:      vector of shifts;
 %           t_B,t_C: matrices of tangential directions as column/row vectors
 %   Output: A*V - E*V*S_V - B*Crt = 0,  W.'*A - S_W*W.'*E - Brt*C = 0
 % (c) 2014 Heiko K.F. Panzer, Tech. Univ. Muenchen.
% This file is published under the BSD 3-Clause License. All rights reserved.

 % initialization and preallocation

 N=size(A,1); n=length(s0); m=size(B,2); p=size(C,1); i=1;
 V=zeros(N,n); S_V=zeros(n,n); Crt=zeros(m,n); W=V; S_W=S_V; Brt=zeros(n,p);

 while i<=n
     s = s0(i);
     % compute new basis vectors
     [L,U,P,Q,R] = lu(sparse(A-s*E)); % ==> P*(R\A)*Q = L*U
     tempV = Q*(U\(L\(P*(R\(B*t_B(:,i))))));
     tempW = (t_C(i,:)*C*Q/U/L*P/R).';
     if ~isreal(s)   % complex conjugated pair of shifts -> two columns
         V(:,i:(i+1))    = [real(tempV), imag(tempV)];
         Crt(:,i:(i+1))  = [real(t_B(:,i)), imag(t_B(:,i))];
         S_V(i:(i+1),i:(i+1)) = [real(s), imag(s); -imag(s), real(s)];
         W(:,i:(i+1))    = [real(tempW), imag(tempW)];
         Brt(i:(i+1),:)  = [real(t_C(i,:)); imag(t_C(i,:))];
         S_W(i:(i+1),i:(i+1)) = [real(s), -imag(s); imag(s), real(s)];
         i = i+2;
     else            % real shift -> one column
         V(:,i)  = real(tempV);  Crt(:,i) = real(t_B(:,i)); S_V(i,i) = s;
         W(:,i)  = real(tempW);  Brt(i,:) = real(t_C(i,:)); S_W(i,i) = s;
         i = i+1;
     end
 end
 % orthogonalization
 [V,S_V,Crt] = GramSchmidt(V,S_V,Crt,[1 n]);
 [W,S_W,Brt] = GramSchmidt(W,S_W.',Brt.',[1 n]); S_W=S_W.'; Brt=Brt.';

In order to verify if the respective Sylvester equation is fulfilled, by the way, one can

evaluate its residual:
 norm(A*V   - E*V*S_V   - B*Crt) / norm(A*V)
 norm(W.'*A - S_W*W.'*E - Brt*C) / norm(W.'*A)

Accordingly, the accompanying small-scale matrices can be assumed to be available in

general—at almost zero additional cost. If, as a matter of fact, this should not be the

case, one can also compute them a posteriori, as will be shown at the end of the following

section.



3.3 A Novel Formulation of the Sylvester Equation 43

3.3. A Novel Formulation of the Sylvester Equation

We have seen that many projective MOR methods employ matrices V, W that solve

generalized Sylvester equations (3.3),(3.4). This is a crucial property for the results

derived in the rest of this thesis. However, for our purposes we will require the Sylvester

equations to take a slightly different form. This novel formulation was presented in [166]

for the special case of Krylov subspaces, but holds in general.

Let V fulfill (3.3) for some known SV , C̃r and let W be an arbitrary matrix such that

det WTEV 6= 0. Then a projector Π is defined according to (2.35). Now multiply (3.3)

from the left with the complementary projector (IN −Π):

(IN −Π) AV− (IN −Π) EVSV − (IN −Π) B︸ ︷︷ ︸
B⊥

C̃r = 0. (3.18)

Due to the properties of the projector (EV = ΠEV, cf. Section 2.3.1), the second sum-

mand is zero. It therefore follows that

AV− EVE−1
r Ar −B⊥C̃r = 0. (3.19)

Note that B⊥ can be computed very easily:

B⊥ := (IN −Π) B = B− EV
(
WTEV

)−1
WTBr = B− EVE−1

r Br (3.20)

The dual equation for W solving (3.4) and admissible V follows from multiplication from

the right by (IN −ΠW ), where ΠW := V
(
WTEV

)−1
WTE. It reads

WTA−ArE−1
r WTE− B̃rC⊥ = 0. (3.21)

Note that (3.19) and (3.21) present a new type of Sylvester equation and also contain

different information. Consider, for instance, the input-type equation (3.19) in compar-

ison to its origin (3.3). EV is now multiplied by E−1
r Ar, whose eigenvalues present the

spectrum of the ROM, instead of SV , whose eigenvalues were given by the shifts employed

for the computation of V.

One immediate application of the novel formulation is that it allows for the a posteriori

computation of SV and C̃r if these matrices are unknown. One can then project (3.3)

towards (3.19) using an arbitrary matrix W with det WTEV 6= 0. Assuming B⊥ to have

full column rank, it follows:

C̃r =
(
BT
⊥B⊥

)−1
BT
⊥

(
AV− EVE−1

r Ar

)
. (3.22)
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Pre-multiplication of (3.3) from the left by WT yields

WTAV−WTEVSV −WTBC̃r = 0 ⇔ SV = E−1
r

(
Ar −BrC̃r

)
. (3.23)

The true significance of the novel formulation of the Sylvester equation will become

apparent in Section 4.2.

3.4. Excursus: Solving Linear Systems of Equations

The main numerical effort associated with rational Krylov subspace methods falls upon

the solution of large, sparse, linear systems of equations (LSE)

v = (A− σE)−1 b =: A−1
σ b ⇔ Aσv = b. (3.24)

Although this numerical problem is clearly not in the scope of this thesis, it constitutes the

main limiting factor from a practical point of view. This section is therefore intended to

provide a brief summary of the implications this has on Krylov-based model reduction

as it is considered in this work. Details on the numerical aspects can be found in [71].

The traditional way to solve (3.24) is Gaußian elimination including an LU-decomposi-

tion of the shifted matrix Aσ = LU. Once the triangular matrices L and U are available,

the task of solving (3.24) simplifies to two forward/backward substitutions, which work

out comparably fast. Such a procedure is referred to as a direct method. Depending on

the structure of A, pivoting may be mandatory because otherwise the LU-decomposition

would be numerically ill-posed or not exist at all [71]. Depending on the sparsity pattern

of Aσ, however, its LU-factors may become dense even though Aσ is sparse, so even for

medium-size models their storage requirements can easily exceed the available RAM.

In such situations, one must resort to iterative solvers which attempt to find v in

(3.24) by generating a converging sequence of approximate solutions v̂k and essentially

involve the matrix Aσ only in the context of matrix-vector multiplication [71]. This is

typically done by iteratively reducing the residual Av̂ − b. Examples of such methods

are the Generalized Minimal Residual method (GMRES), Preconditioned Conjugate Gra-

dient method (PCG), Biconjugate Gradient method (BiCG) and others, many of which

are also directly available in MATLAB. Their convergence behavior depends strongly on

preconditioning measures, for instance by an incomplete LU-decomposition.
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During rational interpolation, when multiple moments shall be matched about some

shift σ—and the projection matrices V and W take the forms (3.5) and (3.6), respectively-

—the use of direct methods is particularly advantageous, because the LU-decomposition

only needs to be performed once, followed by fast substitutions and orthogonalization. In

iterative methods, however, the effort is only slightly reduced if multiple solves with the

same matrix Aσ are required, because only the preconditioning can be recycled for the

subsequent solves.

The solution of linear systems of equations is therefore not an independent problem, but

of significant importance for the optimal strategy during model reduction. For instance,

the ratio of the solution time to the effort of the preliminary measures (LU-decomposition

or preconditioning) is actually essential for the decision how often some expansion point

at hand should be used (to match higher order moments) until a new shift is selected.

Still, these aspects will play a minor role in this thesis for the sake of generality, but are

rather mentioned here to sensitize the reader to their general relevance.

Also, the influence of numerical round-off errors and their propagation is out of the

scope of this thesis. For more information on the error introduced by inexact solves and

other related topics, like recycling techniques, please refer to [3, 4, 19, 168].

3.5. How to Choose the Expansion Points?

Grimme in his PhD thesis was the first to analyze the effect of the shift position on the

approximation. He discovered the rule of thumb that imaginary shifts lead to precise,

but very local approximation in the respective frequency range of the amplitude response;

real shifts, on the other hand, lead to a broader approximation, yet in general without

exact appraisal of the amplitude response for any imaginary frequency. [73]

It is indeed an interesting observation that by matching moments about some real

shift σ, one can in practice often achieve reasonable approximation in the area s ≈ σ · i

in the complex Laplace plane. Eid exploited this fact in his algorithm ICOP [50, 51],

which has also been provided in Source 3.4. It is the simplest automatic shift selection

scheme known to the author, which still fulfills some kind of optimality.

Of course one can also choose shifts σi manually, but in an ad hoc process the user is
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Source 3.4: Matlab Implementation of ICOP

 function [V,S_V,Crt,W,S_W,Brt,k,aopt_] = ICOP(A,B,C,E,n,tol,mx)
 % Iterative Computation of Optimal Point [Eid 2009]
 %   Input:  A,B,C,E:   HFM matrices;
 %           n:         dimension of ROM;
 %           [tol; mx]: convergence tolerance; maximum number of iterations
 %   Output: A*V - E*V*S_V - B*Crt = 0,  W.'*A - S_W*W.'*E - Brt*C = 0
 %           aopt:      optimal shift (real)
 % (c) 2014 Heiko K.F. Panzer, Tech. Univ. Muenchen.
% This file is published under the BSD 3-Clause License. All rights reserved.


 if size(B,2)>1 || size(C,1)>1, error('ICOP works for SISO only.'), end
 if (nargin<6), tol=1e-4; end    % standard tolerance
 if (nargin<7), mx=10; end       % maximal number of iterations
 aopt = 0; t=tic;
 for k=1:mx
     [V,S_V,Crt,W,S_W,Brt] = RationalKrylov(A,B,C,E,aopt,n);
     Ar = W.'*A*V; Er = W.'*E*V; Br = W.'*B; Cr = C*V;
     P = lyap(Ar,Br*Br.',[],Er);  P = Er*P*Er'; Y = lyap(Ar,(P+P')/2,[],Er);
     Cr_ = Cr/Er;  aopt_ = sqrt(abs((Cr_*Ar*Y*Ar'*Cr_')/(Cr*Y*Cr')));
     if norm((aopt_-aopt)/aopt) < tol, break, end
     aopt = aopt_;
 end
 disp(['ICOP required ' num2str(k) ' LUs and ' num2str(toc(t),'%.1f') 'seconds.'])

not likely to obtain good approximation by such a random shift selection.

In fact, for the SISO case it is easy to see that any ROM may result from rational

interpolation—no matter how badly it approximates the HFM. The obvious reason is

that the error model has N + n zeros (possibly at infinity), each of which corresponds

to a matched moment. Accordingly, any ROM interpolates the original model at the

same number N + n of frequencies (possibly at infinity, which corresponds to Markov

matching). Gallivan, Vandendorpe and Van Dooren were surprised to find that

in fact any reduction technique (including the truncated balanced realization) can be

instantiated by rational interpolation [66, 157].2

So one must note that moment matching is not a value per se, because any (SISO)

ROM interpolates the HFM at the same number of frequencies. The question is: where

should one force it to do so? This problem has attracted considerable attention and is

covered in the following section and in Chapter 4.

2In the MIMO case, the question whether a given ROM can be obtained by projection at all has been

considered in [77] and is not so easy to answer.



3.6 H2 model reduction 47

3.6. H2 model reduction

3.6.1. A Short Survey

One common goal in MOR is finding a ROM which minimizes the error with respect to

a given system norm. Optimal Hankel norm approximation, for instance, was treated

in [70]; H∞ model reduction by rational interpolation has recently been discussed in [60].

Yet in what follows, we will concentrate on the minimization of the H2 norm.

Necessary conditions for H2 extrema were known since 1967 due to Meier and Lu-

enberger [111], Wilson derived necessary optimality conditions for MIMO systems in

state space in 1970 [162], and various contributions followed over time (e. g. [83]). How-

ever, no practical algorithm to actually compute an optimum efficiently was available until

2006, when Gugercin, Beattie, and Antoulas first presented the Iterative Rational

Krylov Algorithm (IRKA) [74, 76], which is still considered as “gold standard” [21] and

will be revised below.

Still, other techniques have been proposed. For n = 1 and n = 2, [2] and [1], respec-

tively, reformulate H2 MOR as the search for roots of polynomials.

Beattie and Gugercin also investigated H2 MOR by means of descent algorithms

and optimization methods in [20, 21]. These works were the starting point for the idea

presented in [122] (cf. Section 4.4) and will be introduced in Section 3.6.4.

3.6.2. Definition of local H2 Optimality and Pseudo-Optimality

Unfortunately, the computation of a global H2 minimum, i. e. that (stable) ROM Gr(s)

of given order n for which ‖G−Gr‖H2
is minimal, is a hard task [76]. Instead, one

concentrates on finding a local minimum, in whose vicinity there is no other ROM with

smaller H2 error. For the SISO case, Gugercin et al. used the following result, known

as Meier-Luenberger conditions.

Theorem 3.1 ([76]). Let a ROM Gr(s) of order n have simple poles at λr,i and be a local

minimizer. Then, it interpolates both G(s) and its first derivative at −λr,i:

G(−λr,i) = Gr(−λr,i) and d
dsG(−λr,i) = d

dsGr(−λr,i) ∀ i = 1, . . . n. (3.25)

The theorem is derived from structured optimality conditions. One key observation is
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that among all ROMs sharing the same set of poles λr,i, that whose moments at −λr,i
match the moments of the HFM is the global optimum with respect to the H2 error.

This necessary condition for H2 optimality is in fact equivalent to the H2 scalar product

between Gr(s) and Ge(s) being zero. As this is a remarkable property, we make the

following definition.

Definition 3.2. A ROM Gr(s) is called an H2 pseudo-optimal approximant of G(s), if

〈Gr,Ge〉H2
= 〈Gr,G−Gr〉H2

= 0, (3.26)

or, equivalently, 〈Gr,G〉H2
= 〈Gr,Gr〉H2

.

An important consequence of such a configuration is that the ROM, the HFM, and the

error model span a kind of Thales’ circle (cf. Figure 3.1), because

‖Ge‖2
H2 = ‖G‖2

H2 − 2 〈G,Gr〉H2
+ ‖Gr‖2

H2 = ‖G‖2
H2 − ‖Gr‖2

H2 . (3.27)

Gr

G

Ge

Figure 3.1.: Thales Circle in H2 pseudo-optimal MOR

Accordingly, the three error norms are tightly related. In fact, two implications are

immediate. The relative error norm is less than one; and the larger the norm of the ROM,

the smaller the corresponding error norm. These findings about H2 pseudo-optimality

will be fundamental for several results presented in the subsequent chapters of this thesis,

because H2 pseudo-optimality is necessary for the first-order H2 optimality conditions.

The conditions (3.25) can be generalized to the MIMO case, but read slightly different

then.

Theorem 3.2 ([76]). Let a ROM be given in diagonal form with distinct eigenvalues λr,i,

such that Ar is a diagonal matrix and Er is identity. Denote by bi the n rows of the
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corresponding matrix Br,i and by cr,i the n columns of Cr. Then, first-order necessary

conditions for the ROM to be a local H2 optimum read:

i) Gr(−λr,i) bTr,i = G(−λr,i) bTr,i
ii) cTr,i Gr(−λr,i) = cTr,i G(−λr,i)

iii) cTr,i d
dsGr(−λr,i) bTr,i = cTr,i d

dsG(−λr,i) bTr,i.

(3.28)

Please note that Definition 3.2 directly carries over to the multivariable case.

3.6.3. An Iterative Rational Krylov Algorithm (IRKA)

Let us now briefly consider the algorithm that Gugercin et al. developed based on the

above findings in [76]; assume a SISO model first.

The clue insight was that given an H2 optimal ROM, Hermite interpolation about its

mirrored eigenvalues reproduces the ROM. Accordingly, a fixed-point iteration is defined

by the following: Starting with an arbitrary set of expansion points, Hermite interpo-

lation (two-sided Rational Krylov) is performed. The poles of the resulting ROM are

mirrored with respect to the imaginary axis and used as the expansion points of the next

iteration, until convergence occurs.

The extension to multivariable systems by tangential interpolation was sketched in [76],

and further developed independently in [155, 156] and [37]. The MIMO versions basically

work like the SISO version, but one uses tangential interpolation where the tangential

directions follow from the eigendecomposition of the ROM.

The stunning appeal of IRKA lies in its powerfulness despite the algorithmic simplicity.

An implementation is given in Source 3.5; the actual iteration requires only a couple of

lines.

IRKA suffers, however, from some severe drawbacks: It is not guaranteed to converge

to a local minimum3 and the H2 error norm does not decrease monotonically during the

iteration [20]. Besides, it requires a high number of LSE solves in comparison to manual

shift selection or ICOP, which can compromise performance. The choice of the initial

values has a strong influence on the process; possible ways of choosing them is computing

eigenvalues of the HFM and mirroring them at the imaginary axis, or generating the

3Local convergence for symmetric systems has been shown in [59].
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Source 3.5: Matlab Implementation of IRKA [76]

 function [V,S_V,Crt,W,S_W,Brt,k] = IRKA(A,B,C,E,n,tol,mxi)
 % Iterative Rational Krylov Algorithm [Gugercin et al. 2006]
 %   Input:  A,B,C,E:   HFM matrices;
 %           n:         dimension of ROM
 %           tol; mxi:  convergence tolerance; maximum number of iterations
 %   Output: Krylov subspaces for locally H2 optimal Hermite interpolation
 %             A*V - E*V*S_V - B*Crt = 0,  W.'*A - S_W*W.'*E - Brt*C = 0
 % (c) 2014 Heiko K.F. Panzer, Tech. Univ. Muenchen.
% This file is published under the BSD 3-Clause License. All rights reserved.


 t=tic; % time measurement
 [V,~,~,W] = RationalKrylov(A,sum(B,2),sum(C,1),E,0,n);
 [v,s0] = eig(full(W'*A*V), full(W'*E*V));
 s0 = cplxpair(diag(-s0));  t_B = (v.'*(W'*B)).'; t_C = (C*V*v).';

 if (nargin<6), tol=1e-4; end    % standard tolerance
 if (nargin<7), mxi=20;  end    % standard max. number of iterations
 for k=1:mxi
     [V,S_V,Crt,W,S_W,Brt] = TangentialKrylov(A,B,C,E,s0,t_B,t_C);
     % compute new shifts from eigendecomposition of ROM
     [v,D] = eig(full(W.'*A*V), full(W.'*E*V));
     if norm((cplxpair(s0)-cplxpair(-diag(D))))/norm(s0) < tol, break, end
     s0 = -diag(D); s0=s0.*sign(real(s0)); % new shifts (mirror if necessary)
     t_B = (v\((W.'*E*V)\(W.'*B))).';      % input  tangential directions
     t_C = (C*V*v).';                      % output tangential directions
 end
 if k==mxi, warning('IRKA stopped prematurely.'); end
 disp(['IRKA required ' num2str(k*n) ' LUs and ' num2str(toc(t),'%.1f') 'seconds.'])

zeroth ROM as some more or less heuristic Padé approximant. Finally, unstable ROMs

may occur during the iteration; in this case, however, one can simply mirror the respective

eigenvalues along the imaginary axis to obtain a set of shifts which is comprised in the

right half complex plane (see Source 3.5).

3.6.4. Descent Algorithms

Inspired by that, Beattie and Gugercin proposed ideas towards H2 model reduction

by means of descent optimization methods that would feature monotonic decay of the

error norm. In [21], the n complex shifts of a two-sided Rational Krylov reduction

(Hermite interpolation) are optimized by a Newton method. In [20], a trust region

algorithm is used to optimize poles and residues of the reduced transfer function. The

two methods may speed-up IRKA, but as was noted in [122], none of them can yet be

considered mature for the following reasons:
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• For Hermite interpolation as used in [21], unstable models may result. As was

shown in [122], starting from some initial values it may sometimes be impossible to

reach a local minimum without trespassing a region of shift configurations leading

to unstable reduced models.

• The number of optimization variables in [20] is doubled, as poles and residues are

varied independently.

• Even if

J := ‖Ge‖2
H2
− ‖G‖2

H2
= −2 〈G,Gr〉H2

+ ‖Gr‖2
H2

(3.29)

is used to avoid the necessity of computing ‖G‖H2
, the evaluation of the cost func-

tional requires additional effort for the H2 scalar product.

• Analytic gradient and Hessian expressions are derived based on “standard” bases of

Krylov subspaces like (3.7), which can be numerically ill-conditioned. Attaching

orthogonalization, however, seems to severely complicate the procedure.

• Double poles are excluded.

• It is not guaranteed that the ROM is real-valued.

• The reduced order has to be chosen ad hoc.

A certain enhancement of these descent methods will therefore be presented in Section 4.4.

3.6.5. Pseudo-Optimal Rational Krylov (PORK)

In the remainder of this chapter, the Pseudo-Optimal Rational Krylov (PORK) algorithm

is presented. It delivers the H2 pseudo-optimal ROM for a given shift configuration and

constitutes an important element in the subsequent chapters of this dissertation. PORK

was invented and firstly published by Wolf et al. in [163] for the SISO case; the

generalization to MIMO is, however, quite straightforward, at least from an algorithmical

point of view.

Theorem 3.3. Let V ∈ RN×n solve Sylvester equation (3.3) where all eigenvalues of

SV have positive real part, the pair (C̃r,SV ) is observable, and [EV, B] is of full column

rank. Let further Q̃r = Q̃T
r solve the n× n Lyapunov equation

(−STV ) Q̃r + Q̃r (−SV ) + C̃T
r C̃r = 0. (3.30)
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Define W := [EV, B] KT , where

K := [0n×m In]

Q̃−1
r C̃T

r In
Im 0m×n


−1 (

[EV, B]T [EV, B]
)−1
∈ Rn×(n+m).

Then, it holds:

i) The resulting reduced order matrices read

Br = −Q̃−1
r C̃T

r , Ar = SV + BrC̃r, Cr = CV, Dr = D, and Er = In. (3.31)

ii) The spectra of Ar and SV are mirror images with respect to the imaginary axis,

λi(Ar) = −λi(SV ). (3.32)

iii) Q̃r is the inverse of the resulting Controllability Gramian Pr.

iv) The given ROM is an H2 pseudo-optimal approximation of G(s).

Proof. For the first part, we note that

AV = [EV, B]
 SV

C̃r

 , EV = [EV, B]

 I

0m×n

 , B = [EV, B]
 0n×n

Im

 . (3.33)

Also,

WT [EV, B] = [0n×m In]

Q̃−1
r C̃T

r In
Im 0m×n


−1

=
[
In − Q̃−1

r C̃T
r

]
.

Therefore,

Er = WTEV =
[
In − Q̃−1

r C̃T
r

]  In

0m×n

 = In

Br = WTB =
[
In − Q̃−1

r C̃T
r

]  0n×n
Im

 = −Q̃−1
r C̃T

r

Ar = WTAV =
[
In − Q̃−1

r C̃T
r

]  SV
C̃r

 = SV − Q̃−1
r C̃T

r C̃r = SV + BC̃r

The second part follows directly with (3.30):

Ar = SV − Q̃−1
r C̃T

r C̃r = −Q̃−1
r STV Q̃r. (3.34)

So the eigenvalues of Ar are the negative eigenvalues of STV .
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The reduced controllability Gramian is defined by

0 = ArPr + PrAT
r + BrBT

r = −Q̃rSV Q̃−1
r Pr −PrQ̃−1

r STV Q̃r + Q̃−1
r C̃T

r C̃rQ̃−1
r

⇔ −STV Q̃rPrQ̃r − Q̃rPrQ̃rSTV + C̃T
r C̃r = 0.

(3.35)

Due to uniqueness,

Q̃rPrQ̃r = Q̃r ⇔ PrQ̃r = I ⇔ Pr = Q̃−1
r . (3.36)

For the last part, we must show that the H2 scalar product of the original and the reduced

system as defined by (2.17) fulfills

〈G,Gr〉H2
= 〈Gr,Gr〉H2

= ‖Gr‖2
H2
.

To this end, we show that VPr solves (2.17):

AVPrET
r + EVPrAT

r + BBT
r =

=
[
EVSV + BC̃r

]
Pr + EVPr

[
−Q̃−1

r STV Q̃r
]T

+ BBT
r

= EVSV Pr − EVSV Pr + BC̃rPr −BC̃rPr = 0.

(3.37)

It therefore holds: 〈G,Gr〉H2
= CVPrCT

r = 〈Gr,Gr〉H2
and 〈G−Gr,Gr〉H2

= 0.

Remark 3.2. It is important to stress that the matrix W does never have to be computed

explicitly, but the matrices of the ROM follow directly from (3.31). Accordingly, knowing

V, SV , and C̃r, the remaining numerical effort consists in matrix-vector products (Cr =

CV) and small-scale operations (mainly the reduced-order Lyapunov equation). Besides,

the full column rank of [EV, B] is not actually necessary but was supposed for simplicity

of the proof because otherwise W cannot be written as above.

The PORK algorithm implicitly places the poles of the ROM at the mirror images of the

shifts contained in the rational Krylov subspace4. Different from existing pole placement

techniques [9], however, this requires no additional large-scale computations and works

for MIMO, as well. For shifts with strictly positive real part, PORK implicitly guarantees

asymptotic stability. In addition, it features H2 pseudo-optimality, meaning that the

ROM delivers the smallest H2 error among all others sharing its pole configuration. This

was shown in [76] for the SISO case, in [167] for tangential interpolation, and in [164] for

block Krylov subspaces. A summary and more details can be found in [23].
4Note that this is the reason why the pair (C̃r,SV ) must be observable: according to Lemma 3.1, this

characterizes a Krylov subspace which does not contain eigenvectors.
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Source 3.6: Pseudo-Optimal Rational Krylov (PORK) [163]

 function [Ar,Br,Cr,Er] = PORK_V(V,S_V,Crt,C)
 % Pseudo-Optimal Rational (Input) Krylov PORK [Wolf et al. 2013]
 %   Input:  V,S_V,Crt:      solution of  A*V - E*V*S_V - B*Crt = 0
 %           C:              HFM output matrix
 %   Output: Ar,Br,Cr,Er:    ROM matrices
 % (c) 2014 Heiko K.F. Panzer, Tech. Univ. Muenchen.
% This file is published under the BSD 3-Clause License. All rights reserved.

 Qr_c = lyapchol(-S_V', Crt');
 Br = -Qr_c\(Qr_c'\Crt');

 Ar = S_V+Br*Crt;
 Cr = C*V;
 Er = eye(size(Ar));

 function [Ar,Br,Cr,Er] = PORK_W(W,S_W,Brt,B)
 % Pseudo-Optimal Rational (Output) Krylov PORK [Wolf et al. 2013]
 %   Input:  W,S_W,Brt:      solution of  W.'*A - S_W*W.'*E - Brt*C = 0
 %           B:              HFM input matrix
 %   Output: Ar,Br,Cr,Er:    ROM matrices
 % (c) 2014 Heiko K.F. Panzer, Tech. Univ. Muenchen.
% This file is published under the BSD 3-Clause License. All rights reserved.

 Pr_c = lyapchol(-S_W, Brt);
 Cr = -Brt.'/Pr_c/Pr_c.';

 Ar = S_W+Brt*Cr;
 Br = W.'*B;
 Er = eye(size(Ar));

Theorem 3.3 can also be derived in a dual way. The result is given without proof:

Corollary 3.1. Let W ∈ RN×n solve Sylvester equation (3.4) where all eigenvalues of

SW have positive real part, (SW , B̃r) is controllable, and
[
ETW, CT

]
is of full column

rank. Let further P̃r = P̃T
r solve the Lyapunov equation

(−SW )P̃r + P̃r(−STW ) + B̃rB̃r = 0. (3.38)

Then, the ROM defined by the matrices

Br = WTB, Ar = SW + B̃rCr, Cr = −B̃T
r P̃−1

r , Dr = D, and Er = In (3.39)

is an H2 pseudo-optimal approximation of G(s), whose observability Gramian is P̃−1
r and

whose eigenvalues are the mirror images of SW .

Remark 3.3. Like in a two-sided Rational Krylov method (cf. Lemma 3.3), the ROM

resulting from PORK does not depend on the realization of the HFM.
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3.7. Conclusions and Open Problems

We have seen that the Sylvester-based projective MOR framework—in particular, ra-

tional Krylov subspace methods—provides a very flexible and powerful tool for the

reduction of even very high-dimensional models. However, some drawbacks remain (and

outline the way of the next chapters):

• Preservation of stability is not generally guaranteed, but at least in special cases or

with the help of pole placement techniques like the H2 pseudo-optimal algorithm

PORK.

• One has to find suitable expansion points. Although algorithms like IRKA can

perform this task well, convergence is not generally guaranteed and does, in fact, not

always occur (especially when stability issues emerge). Existing descent algorithms

which aim at better convergence have not yet reached maturity.

• The order of the reduced system must still be determined ad hoc.

• This is particularly tricky when no information on the resulting error is available,

not even a posteriori.

In a way, the quotation of De Villemagne and Skelton at the beginning of this section

is therefore still true more than 25 years later.





4. CURE: A Cumulative Reduction Scheme

“Faust. Nun kenn ich deine würd’gen Pflichten!

Du kannst im Großen nichts vernichten

Und fängst es nun im Kleinen an.”
— Johann Wolfgang von Goethe

This chapter deals with adaptive reduction techniques. Their goal is to automatically

choose the reduced system order and all degrees of freedom (i. e. the expansion points)

during the reduction process, thus circumventing the need of their ad hoc determination

by the user. This is therefore a crucial step towards a solution “at the push of a button”

as desired in industrial processes.

The general problem of adaptive methods was pointed out in [160]: “A good new vector

is the one that is as different from the ones we already have as possible, and thus, cannot

be well approximated by the currently available subspace. However, this unleashes the

question: how can we determine if a candidate sample point will generate a block vector

that adds rank to our set without computing it? Furthermore, how can we know if this

new block vector will help to minimize the number of samples needed to obtain a good

ROM? The answer is simple, we cannot.” Existing techniques for the adaptive selection

of expansion points in moment matching methods therefore aim to find new shifts with

the help of approximate error expressions, typically based on efficient residual terms.

Section 4.1 contains a brief survey on adaptive shift selection strategies. A new ap-

proach is then presented in the remainder of the chapter. It is based on a factorization

of the error model as derived in Section 4.2. By applying the factorization iteratively,

an adaptive reduction procedure can be performed, during which an overall ROM is con-

structed by cumulative augmentation of small-scale ROMs. For their computation, a
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descent algorithm including minimization of the true H2 error is suggested in Section 4.4

to avoid the convergence and stability issues related to the “gold standard” IRKA.

4.1. State of the Art

The literature contains various approaches to an adaptive choice of expansion points; in

fact an iterative shift selection scheme was already proposed by Grimme [73].

Jaimoukha, Kasenally, and Frangos derived expressions similar to the error fac-

torization presented in Section 4.2 under the name of Arnoldi- and Lanczos-like equa-

tions [64, 85], but from an algorithmic perspective and with focus on restart mechanisms

in the Arnoldi and Lanczos processes. Nonetheless, they formed the basis for adaptive

shift selection strategies [61, 62, 63], which iteratively choose imaginary expansion points

based on various heuristic error estimates derived from residual expressions.

Druskin et al. in [49] exploit the skeleton approximation [153] to minimize a residual

expression along the boundary of a polygonial set Sm which approximates the mirrored

spectrum of A; a generalization to MIMO systems is given in [47]. Although the procedure

performed well in some numerical experiments, its use is restricted to systems in strictly

dissipative realization, descent behavior is not guaranteed, and the cost functional is

heuristic to some extent (in particular, the choice of Sm).

Other shift selection strategies are due to Villena and Silveira, who presented the

ARMS algorithms in [159, 160], to Feng and Benner, who exploited symmetry to obtain

a good error estimate in [56], and to Zhao et al. who use a formulation of the error

model similar to that presented in Section 4.2 as an “error monitor” for an adaptive

selection strategy of shifts and their multiplicity [170].

Further, Bodendiek and Bollhöfer presented the adaptive greedy-type shift selec-

tion method AORA-RK for application to MOR of Maxwell’s equation [35, 36], and

Sommer, Farle, and Dyczij-Edlinger considered the reduction of models of phased

antennas [147]. Köhler et al. described an adaptive multi-point moment matching al-

gorithm in [92] which selects imaginary shifts based on an error indicator. The procedure

includes sampling of the HFM along the imaginary axis and the judicious evaluation of a

sensitivity measure for the selection of new shifts.
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Fehr, Fischer, and Eberhard used the local error bound [94, 95] (cf. Section 5.1)

for the greedy choice of imaginary expansion points in the context of (almost) lossless

second order systems [53, 58].

To conclude, existing methods for the adaptive selection of expansion points are typ-

ically limited to the computation of one (mostly purely imaginary) new shift at a time.

Most of them are based on residual expressions and therefore heuristically motivated al-

gorithms (cf. Section 5.1) without monotonicity of the induced error, or restrictive in

their assumptions.

The Cumulative Reduction (“CURE”) framework which will be presented in the re-

mainder of this chapter provides more flexibility, because the size of the increments, from

which the overall ROM is constructed iteratively, can be chosen flexibly, as well as the

way they are computed. Also, monotonic decay of the H2 error norm can be attained

with the help of the SPARK algorithm derived in Section 4.4, which is based on efficient

descent optimization of the H2 error norm.

4.2. A Factorized Formulation of the Error System

4.2.1. Motivation

The commonly used realization of the error model Ge(s) as defined above readsE 0
0 Er

 ẋ(t)
ẋr(t)

 =
A 0

0 Ar

  x(t)
xr(t)

 +
B
Br

u(t),

ye(t) =
[
C −Cr

]  x(t)
xr(t)

 .
(4.1)

This formulation, however, suffers from a crucial drawback. Assume Gr(s) is a serviceable

approximation of G(s), such that the output error ye(t) is small. Then to some extent,

the dominant dynamics of the HFM is contained twice in the decoupled ODE system, i. e.

in the augmented, (N +n)-dimensional state vector. Only in the output equation are the

two components subtracted.

This generally does not seem beneficial from a numerical point of view, but it is partic-

ularly unfavorable with regard to consecutive reduction steps. Imagine the quality of the
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ROM does not suffice and shall be improved in an additional reduction step by searching

a low-order approximation of the remaining error. Then as motivated in Section 2.3.1,

one would aim to find a subspace of the augmented state space which contains the “im-

portant” dynamics in the error model (4.1). As a matter of fact, this procedure is likely

to reproduce the subspace from the first reduction step, although the “important” sub-

space would be the one that captures the difference x(t)−Vxr(t). But as the impact of

observability is not captured in this approach (and particularly in one-sided projection),

it is probably doomed to failure.

For that reason, a novel formulation of the error system Ge(s) has been derived in [165,

166] and will be presented in the following.

4.2.2. Factorization Based on Sylvester Equation

Starting from (4.1), perform the state transformation x(t)
xr(t)

 =
IN V

0 In

 e(t)
xr(t)

 , (4.2)

and multiply the ODE system from the left by

M =
IN −EVE−1

r

0 In

 . (4.3)

The resulting realization then readsE 0
0 Er

  ė(t)
ẋr(t)

 =
A (I−Π)AV

0 Ar

  e(t)
xr(t)

 +
(I−Π)B

Br

u(t),

ye(t) =
[

C 0
]  e(t)

xr(t)

 .
(4.4)

Now let V fulfill the Sylvester equation (3.19). Then the upper right entry in the

augmented system matrix Ae can be resolved to

(I−Π)AV = AV− EVE−1
r Ar = B⊥C̃r.

Remember that according to (3.20), B⊥ = B − EVE−1
r Br can be computed easily, and

that C̃r is directly available from the computation of V (cf. Chapter 3) or otherwise given

by (3.22).

Anyway, one can see that the decoupled second line in the ODE system (4.4) influences

the upper line via a term B⊥C̃rxr(t). As the regular input term (I−Π)Bu(t) = B⊥u(t)
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points in the same set of directions (columns of B⊥), we can withdraw the lower part of the

ODE system and rewrite the error model using an auxiliary signal ũ(t) := C̃rxr(t)+u(t) ∈

Rm:

E ė(t) = A e(t) + B⊥(t) ũ(t), ye(t) = C e(t),

Er ẋr(t) = Ar xr(t) + Br(t) u(t), ũ(t) = C̃rxr(t) + u(t).
(4.5)

Obviously, the final error output ye(t) results from the input u(t) by composition of

two transmission lines. We can therefore rewrite the error model as a product of two

systems, as depicted in Figure 4.1:

Ge(s) =

 E,A B⊥

C 0


︸ ︷︷ ︸

G⊥(s)

·

 Er,Ar Br

C̃r In


︸ ︷︷ ︸

G̃R
r (s)

. (4.6)

G̃r(s) G⊥(s)
u(t) ye(t)ũ(t)

a) Factorized Formulation: Product

G(s)

Gr(s)

u(t)

y(t)

ye(t)

yr(t)
−
+

b) Standard Realization: Difference

Figure 4.1.: Factorized vs. Standard Formulation of the Error Model

Remarkably, the first factor G⊥(s) resembles the HFM except for its input matrix.1

The second factor G̃R
r (s) ∈ Cm×m shares the ODE of the ROM (in particular its order n)

and differs from it only in its output equation, which exhibits a unity feedthrough matrix.

All results hold true analogously if W fulfills the dual Sylvester equation (3.21).

Then the error model can be factorized as follows, where G̃L
r (s) ∈ Cp×p and C⊥ =

C−CVE−1
r WTE:

Ge(s) =

 Er,Ar B̃r

Cr In


︸ ︷︷ ︸

G̃L
r (s)

·

 E,A B

C⊥ 0


︸ ︷︷ ︸

G⊥(s)

. (4.7)

1Also, G⊥(s) has no feedthrough, even if D 6= 0 in G(s).
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4.2.3. Properties, Special Cases, and Features

One immediate feature of the factorized formulation is the physical interpretation it pro-

vides. Let u(t) be some typical input signal and assume the error model corresponding to

some ROM has been factorized according to (4.6). Then the output ũ(t) of G̃R
r (t) can be

easily computed and forms the input to G⊥(s) whose output gives the error signal ye(t).

As the input matrix B⊥ is known and the dynamics of G⊥(s) is that of the HFM, this

may give instructive insight into the approximation error from a physical point of view.

If, for instance, the model describes some heat transfer problem, then ũ(t) can be

interpreted as a disturbance heat source, and ‖B⊥ũ(·)‖ is the total energy fed in. As the

effect of the disturbance on the system describes precisely the error resulting from the

model reduction, an engineer might quickly estimate the impact of the model reduction

error based on the amount of energy applied by the disturbance.

In the following, we will analyze some system theoretic properties of the decomposition.

Proposition 4.1. If V fulfills Sylvester equation (3.3) and the error model is factorized

as in (4.6), then G̃R
r (s) has invariant zeros at the eigenvalues σi of SV in (3.3).

Proof. For simplicity we assume that SV has distinct eigenvalues σi. Let zi be an eigen-

vector of SV corresponding to σi; then SV zi = σizi. Now multiply (3.3) from the left by

WT and from the right by zi. We obtain

Arzi − Er(σizi)−BrC̃rzi = 0 ⇒

Ar − σiEr Br

C̃r Im

 ·
 zi
−C̃rzi

 = 0.

Accordingly, the Rosenbrock matrix is rank deficient, which completes the proof.

In fact, this result generalizes to the case of higher multiplicity, i. e when SV is not

diagonalizable but contains defective eigenvalues (Jordan blocks). For example, in single-

point Padé approximation, when V takes the form (3.5), then G̃R
r (s) has a transfer zero

of multiplicity n at σ. The proof, however, does not work out via the Rosenbrock

matrix as easily as above.

In the dual factorization (4.7), the invariant zeros of G̃L
r (s) are given by the eigenvalues

of SW in (3.4).
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In the case of rational Krylov subspaces, when the shifts σi have positive real part

and the HFM is asymptotically stable, compensation cannot occur. The eigenvalues of

SV or SW corresponding to rational Krylov subspaces therefore lead to transmission

zeros of G̃R
r (s) or G̃L

r (s), respectively.

In modal truncation, however, the spectrum of SV describes those eigenvalues of the

HFM that are carried over to the ROM (cf. Section 3.2.3). For that reason, the corre-

sponding invariant zero in G̃R
r (s) coincides with an eigenvalue of Gr(s) and compensation

occurs, as the concerned eigenvalue is unobservable if C̃rzi = 0. The above realization

of G̃R
r (s) is therefore not minimal. In fact, if V consists only out of eigenvectors, then

C̃r = 0 and the transfer behavior is purely static: G̃R
r (s) ≡ Im.

If, in addition, W contains the corresponding left handed eigenvectors, then the respec-

tive eigenvalues in G⊥(s) become uncontrollable as their spectral component is removed

in B⊥. Thinking of the error transfer function in pole-residue-formulation (2.5), the re-

spective modal components of G and Gr cancel, so it makes sense that the mode does

not appear in the transfer behavior of G⊥(s)G̃R
r (s).

Proposition 4.2. In two-sided Rational Krylov, i. e. when both V and W solve respec-

tive Sylvester equations (3.3) and (3.4), G⊥(s) has invariant zeros of corresponding

multiplicity at the eigenvalues of SW in V-based decomposition (4.6) or at the eigenvalues

of SV in W-based decomposition (4.7).

Proof. For simplicity, we consider the SISO case only. It is obvious that the error model

has transfer zeros of corresponding multiplicity at the eigenvalues both of SV and SW.

In V-based decomposition, the spectrum of SV leads to invariant zeros in G̃R
r (s), so the

eigenvalues of SW must induce invariant zeros in G⊥(s). Analogous considerations hold

true for W-based decomposition.

In the remainder of this subsection, we will concentrate on the interesting special case

of H2 pseudo-optimal reduction. It is obvious (in the SISO case) that matching moments

at σi and placing the reduced poles at −σi, as one does by means of PORK according

to (3.32), delivers a model G̃R
r (s) or G̃L

r (s) with poles and zeros vis-à-vis relative to the

imaginary axis: an all-pass system. In fact, this result also holds for MIMO systems:
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Theorem 4.1. If V is the basis of a rational Krylov subspace and H2 pseudo-optimal

reduction is performed with the PORK algorithm, then G̃R
r (s) is a unity all-pass system.

Moreover, the transfer functions of the error model Ge(s) and the large-scale system G⊥(s)

have the same Frobenius norm along the imaginary axis:

‖Ge(iω)‖F = ‖G⊥(iω)‖F ∀ω ∈ R.

In the SISO case, this means that their amplitude responses are identical.

Proof. According to Theorem 3.3, PrQ̃r = I holds where Q̃r solves (3.30). Therefore, we

must show that Q̃r is in fact the observability Gramian of G̃R
r (s).

AT Q̃r + Q̃rA + C̃T
r C̃r =

(
SV − Q̃−1

r C̃T
r C̃r

)T
+ Q̃r

(
SV − Q̃−1

r C̃T
r C̃r

)
+ C̃T

r C̃r

= STV Q̃r + Q̃rSV − C̃T
r C̃r = 0.

For the second part, observe that

‖Ge(iω)‖F =
∥∥∥G⊥(iω) · G̃R

r (iω)
∥∥∥

F

= tr
[
G⊥(iω) · G̃R

r (iω)
(
G̃R
r (iω)

)H
·GH
⊥ (iω)

]
= tr

[
G⊥(iω)GH

⊥ (iω)
]

= ‖G⊥(iω)‖F .

Of course the dual version of this theorem for W being the basis of an output Krylov

subspace holds true as well.

One important consequence is that the H2 norms of Ge(s) and G⊥(s) equal, which

leads to the following important statement:

Proposition 4.3. In H2 pseudo-optimal MOR, when G̃R
r (s) in (4.6) or G̃L

r (s) in (4.7),

respectively, is a unity all-pass factor, it holds

‖G⊥‖H2
< ‖G‖H2

unless the ROM is a zero element.

Proof. This is a direct consequence of Theorem 4.1 and (3.27):

‖G⊥‖2
H2

= ‖Ge‖2
H2

= ‖G‖2
H2
− ‖Gr‖2

H2︸ ︷︷ ︸
>0

< ‖G‖2
H2
.

4.3. Adaptive Model Order Reduction

We will see in this section that due to the factorized formulations (4.6) and (4.7) of the

error model, it is now perfectly possible to perform additional reduction steps.
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4.3.1. Iterative Error Factorization

Imagine one performed Sylvester-based projection with V solving (3.19) and expressed

the error model as a product according to (4.6). Then, it holds:

G(s) = Gr(s) + Ge(s) = Gr(s) + G⊥(s) · G̃R
r (s). (4.8)

If Gr(s) does not offer a sufficient approximation, one can improve it by performing an

additional reduction step, now of the error model G⊥(s) · G̃R
r (s). We have seen before

that—at least under certain conditions—the first factor is more crucial, as it contains the

relevant dynamics that has not been captured by the reduced model so far. Besides, it

is of high order and offers much potential to be approximated with another small-scale

system.Therefore, we reduce G⊥(s) in a second Sylvester-based projection as if it were

the original model (in fact, G(s) and G⊥(s) are very similar: only their input matrices

B and B⊥ differ). We can then express G⊥(s) as the sum of the second reduced model

Gr,2(s) and the corresponding error Ge,2(s), which again can be factorized:

G⊥(s) = Gr,2(s) + Ge,2(s) = Gr,2(s) + G⊥,2(s) · G̃R
r,2(s). (4.9)

Inserting this into (4.8) and renaming Gr(s)→ Gr,1(s), G̃R
r (s)→ G̃R

r,1(s) yields

G(s) = Gr,1(s) +
[
Gr,2(s) + G⊥,2(s) · G̃R

r,2(s)
]
· G̃R

r,1(s)

= Gr,1(s) + Gr,2(s) · G̃R
r,1(s)︸ ︷︷ ︸

GΣ
r,2(s)

+ G⊥,2(s) · G̃R
r,2(s) · G̃R

r,1(s)︸ ︷︷ ︸
G̃Σ,R
r,2 (s)

(4.10)

A key observation is that Gr,1(s) and G̃R
r,1(s) share the same poles, so the order of

system GΣ
r,2(s) is the order n1 of Gr,1(s) plus the order n2 of Gr,2(s), i. e. the sum of the

two reduced dimensions. In fact one can find a compact state space realization of the

system (see below).

Obviously, the second reduction step did not change the structure of equation (4.8):

The HFM G(s) is still expressed as a sum of a small-scale ROM and the product of a high-

dimensional system and another small-scale model that exhibits feedthrough and has the

same eigenvalues as the ROM. Accordingly, there is no obstacle to reduce G⊥,2(s) again

and iterate this procedure until the overall ROM is satisfactory. This line of action, which

has first been published in [122] by means of the SPARK algorithm (cf. Section 4.4), offers

two advantages:
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• We do not have to fix the order of the ROM a priori, but can perform a kind of

“salami technique”, reducing the model slice by slice rather than off the reel.

• This gives us the opportunity to adapt and optimize the reduction in each step to

the error model that actually remains at this point of the iteration.

Note that one can also perform reduction steps and error decompositions based on W

solving Sylvester equation (3.4). Then, dually to (4.10), one obtains

G(s) = Gr,1(s) + G̃L
r,1(s) ·Gr,2(s)︸ ︷︷ ︸

GΣ
r,2(s)

+ G̃L
r,1(s) · G̃L

r,2(s)︸ ︷︷ ︸
G̃Σ,L
r,2 (s)

· G⊥,2(s). (4.11)

In fact, one can even alternate between the two decompositions. For instance, starting

from (4.8) one can conduct a reduction step based on appropriate W. This leads to

G(s) = Gr,1(s) +
[
Gr,2(s) + G̃L

r,2(s) · G⊥,2(s)
]
· G̃R

r,1(s)

= Gr,1(s) + Gr,2(s) · G̃R
r,1(s)︸ ︷︷ ︸

GΣ
r,2(s)

+ G̃L
r,2(s)︸ ︷︷ ︸

G̃Σ,L
r,2 (s)

· G⊥,2(s) · G̃R
r,1(s)︸ ︷︷ ︸

G̃Σ,R
r,2 (s)

. (4.12)

In this most general case, the high-order component G⊥,k(s) of the error system is clamped

between left- and right-hand sided small-scale models, so the overall structure is indeed

more complicated than after a single reduction step.

However, we will see in the following, how the iterative reduction framework can be

implemented very efficiently by recursion. Unfortunately, the mathematical formulation is

much more complicated than the actual implementation and the notation becomes quite

confusing, therefore the syntax is explained first:

• A lower index (r) denotes a matrix of reduced order.

• An additional upper index (Σ) marks the “overall” ROMs that are set up by accu-

mulation, i. e. GΣ
r,k(s), G̃Σ,L

r,k (s), and G̃Σ,R
r,k (s).

• The lower index (k) or (k−1) refers to the current or previous step, respectively.

• An upper index R or L marks matrices belonging exclusively to G̃Σ,L
r,k+1(s) and

G̃Σ,R
r,k+1(s), respectively.

At the beginning of the iteration, B⊥,0 := B and C⊥,0 := C; all other matrices are empty.
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Theorem 4.2. The following decomposition holds after each reduction step k,

G(s) = GΣ
r,k(s) + G̃Σ,L

r,k (s) · G⊥,k(s) · G̃Σ,R
r,k (s), (4.13)

where realizations of the arising systems are given by

GΣ
r,k(s) =

 EΣ
r,k,AΣ

r,k BΣ
r,k

CΣ
r,k 0

 ∈ Cp×m, order nΣ =
k∑
i=1

ni, (4.14)

G⊥,k(s) =

 E,A B⊥,k

C⊥,k 0

 ∈ Cp×m, order N, (4.15)

G̃Σ,L
r,k (s) =

 EΣ
r,k,AΣ

r,k B̃Σ,L
r,k

CΣ,L
r,k Ip

 ∈ Cp×p, order nΣ =
k∑
i=1

ni, (4.16)

G̃Σ,R
r,k (s) =

 EΣ
r,k,AΣ

r,k BΣ,R
r,k

C̃Σ,R
r,k Im

 ∈ Cm×m, order nΣ =
k∑
i=1

ni, (4.17)

with

EΣ
r,k =

EΣ
r,k−1 0

0 Er,k

 , Er,k = WT
kEVk,

AΣ
r,k =

 AΣ
r,k−1 B̃Σ,L

r,k−1Cr,k

Br,kC̃Σ,R
r,k−1 Ar,k

 , Ar,k = WT
kAVk,

BΣ
r,k =

BΣ
r,k−1

Br,k

 , Br,k = WT
kB⊥,k−1,

CΣ
r,k =

[
CΣ
r,k−1 Cr,k

]
, Cr,k = C⊥,k−1Vk.

Also, for Vk-based decomposition, C̃r,k is known from Sylvester equation (3.19), and

BΣ,R
r,k =

BΣ,R
r,k−1

Br,k

 , C̃Σ,R
r,k =

[
C̃Σ,R
r,k−1 C̃r,k

]
, B̃Σ,L

r,k =

B̃Σ,L
r,k−1

0

 ,CΣ,L
r,k =

[
CΣ,L
r,k−1 0

]
,

B⊥,k = B⊥,k−1 − EVkE−1
r,kBr,k, C⊥,k = C⊥,k−1.

For Wk-based decomposition, B̃r,k follows from Sylvester equation (3.4), and

BΣ,R
r,k =

BΣ,R
r,k−1

0

 , C̃Σ,R
r,k =

[
C̃Σ,R
r,k−1 0

]
, B̃Σ,L

r,k =

B̃Σ,L
r,k−1

B̃r,k

 ,CΣ,L
r,k =

[
CΣ,L
r,k−1 Cr,k

]
,

B⊥,k = B⊥,k−1, C⊥,k = C⊥,k−1 −Cr,kE−1
r,kWT

kE.
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Proof. It is probably more constructive to prove the theorem with the help of an example.

An assistant visualization of the first three steps is depicted in Figure 4.2. Therein, a red

background marks a system of high order N ; blue stands for a reduced model; the small-

scale factors with feedthrough are painted orange.
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G GΣ
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r,3 G̃Σ,R
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r,3 G⊥,3 G̃Σ,R
r,3

Figure 4.2.: The CURE Framework: Three Alternating Reduction Steps (V–W–V)

In this example we perform a first reduction step such that V1 solves Sylvester

equation (3.3) and compute the input-type error decomposition. Then we reduce G⊥,1 in

a second step, where W2 solves Sylvester equation (3.4), and factorize the error model

in the output-type way. Then we perform a third reduction, again input-sided, and a

fourth one, output-sided. Then according to the above formulas, the matrices read

AΣ
r,4 =



Ar,1 0 0 0
Br,2C̃r,1 Ar,2 B̃r,2Cr,3 B̃r,2Cr,4

Br,3C̃r,1 0 Ar,3 0
Br,4C̃r,1 0 Br,4C̃r,3 Ar,4

 , BΣ
r,4 =



Br,1

Br,2

Br,3

Br,4

 ,

CΣ
r,4 =

[
Cr,1 Cr,2 Cr,3 Cr,4

]
,

BΣ,R
r,4 =


Br,1

0
Br,3

0

 , B̃Σ,L
r,4 =


0

B̃r,2

0
B̃r,4

 ,
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C̃Σ,R
r,4 =

[
C̃r,1 0 C̃r,3 0

]
,

CΣ,L
r,4 =

[
0 Cr,2 0 Cr,4

]
,

while EΣ
r,4 is simply the block-diagonal concatenation of Er,1 to Er,4.

Now let us verify (4.13) recursively. After the first step, Gr,1 and G̃R
r,1 take the standard

form of (4.6), while G̃L
r,1(s) ≡ Ip, because its input matrix is zero, so the feedthrough

makes the system an identity element and indeed (4.13) holds.

After the second step, we basically have the situation of (4.12), so we need to validate

that the quantities that appear in (4.12) match with the formulas given in Theorem 4.2.

According to (4.13), the new left-handed factor G̃Σ,L
r,2 is defined by the matrices

EΣ
r,2 =

Er,1 0
0 Er,2

 , AΣ
r,2 =

 Ar,1 0
Br,2C̃r,1 Ar,2

 , B̃Σ,L
r,2 =

 0
B̃r,2

 , CΣ,L
r,2 =

[
0 Cr,2

]
.

Obviously this realization is not minimal, as the upper part of the system is uncontrollable.

In fact, a minimal realization is given by

G̃Σ,L
r,2 (s) =

 Er,2,Ar,2 B̃r,2

Cr,2 Ip

 ,
which is indeed simply the small-scale factor resulting from the output-sided error decom-

position in the second step. Similarly, the lower part of the right-handed factor G̃Σ,R
r,2 is

unobservable, such that G̃Σ,R
r,2 (s) remains unchanged as expected, because in the second

step no right-handed system is factored out:

G̃Σ,R
r,2 (s) = G̃Σ,R

r,1 (s) =

 Er,1,Ar,1 Br,1

C̃r,1 Im

 .
It remains to show that GΣ

r,2(s) = Gr,1(s)+Gr,2(s)·G̃R
r,1(s), which follows from straightfor-

ward calculations. The further reduction steps can be proven similarly by induction.

Accordingly, the resulting realizations of G̃Σ,L
r,k+1(s) and G̃Σ,R

r,k+1(s) are not minimal,

which seems disadvantageous at first sight. However, the implementation is very much

simplified by the formulation of Theorem 4.2, as in every step the matrices only have to

be augmented by some columns and rows (cf. Section 4.3.2). Besides, due to the clear

structure, the uncontrollable and unobservable state variables can easily be truncated

after the last step of the iteration.
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Proposition 4.4. The entries of the reduced state vector arising in V-based error decom-

position during the Cumulative Reduction (CURE) framework are uncontrollable in the

left-sided factor G̃Σ,L
r,k and can be removed by truncation of all respective rows and columns

in the model.

In the dual way, reduced state variables related to W-based error factorization are

unobservable in the right-hand factor G̃Σ,R
r,k and can be truncated.

The extreme example of purely V-sided or purely W-sided decomposition naturally

leads to a static model G̃Σ,L
r,k or G̃Σ,R

r,k , respectively. Furthermore, if in such a case only

ROMs of order qi = 2 are computed in every step, then the matrix AΣ
r,k of the overall

ROM is lower or upper Hessenberg, see Figure 4.3, and EΣ
r,k is tridiagonal.

a) V-based decomposition b) W-based decomposition c) Alternating decomposition

Figure 4.3.: Pattern of ROM Matrix AΣ
r after Five Reduction Steps to Order qi = 2

4.3.2. Implementation

A possible ready-to-run implementation of the CURE scheme can be seen in Source 4.1.

The essential part of the source code provides full generality, but the actual reduction

performed in the example (lines 11–14) is only a stub; here, two block moments about

σ = 0 are matched in every iteration. In the presented form, V is used for the decompo-

sition; to perform W-based factorization, comment line 12 instead of 14. Of course, any

other reduction can be included instead, as long as Sylvester equation (3.3) or (3.4),

respectively, is fulfilled.
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Source 4.1: Matlab Implementation of CURE

 load CDPlayer; E = speye(120); D = zeros(2,2);
 sys = dss(A, B, C, D, E);  % caution: large-scale!

 [N,m] = size(B);  p = size(C,1);
 Er_tot = []; Ar_tot = []; Br_tot = []; Cr_tot = []; B_ = B; C_ = C;
 BrL_tot = zeros(0,p); CrL_tot = zeros(p,0);
 BrR_tot = zeros(0,m); CrR_tot = zeros(m,0);

 while (1)

 % compute V and W and decide:
 % V-based decomposition, if A*V - E*V*S - B*Crt = 0
     V = [A\B_ A\(A\B_)]; W = V; Crt = [eye(m), zeros(m)]; mode = 'V';
 % W-based decomposition, if A'*W - E'*W*SW - Brt*Cr = 0
 %     W = [A'\C_', A'\(A'\C_)]; V = W; Brt = [eye(m); zeros(m)]; mode = 'W';

 n = size(V,2);  Er = W.'*E*V;  Ar = W.'*A*V;  Br = W.'*B_;  Cr = C_*V;
     Er_tot = blkdiag(Er_tot, Er);
     Ar_tot = [Ar_tot, BrL_tot*Cr; Br*CrR_tot, Ar]; %#ok<*AGROW>
     Br_tot = [Br_tot; Br];  Cr_tot = [Cr_tot, Cr];
     if mode=='V'
         B_ = B_ - E*(V*(Er\Br));    % B_bot
         BrL_tot = [BrL_tot; zeros(n,p)];    BrR_tot = [BrR_tot; Br];
         CrL_tot = [CrL_tot, zeros(p,n)];    CrR_tot = [CrR_tot, Crt];
     elseif mode=='W'
         C_ = C_ - Cr/Er*W.'*E; % C_bot
         BrL_tot = [BrL_tot; Brt];   BrR_tot = [BrR_tot; zeros(n,m)];
         CrL_tot = [CrL_tot, Cr];    CrR_tot = [CrR_tot, zeros(m,n)];
     end

 if size(Ar_tot,1)>=20, break; end % some stopping criterion
 end

 sysr    = dss(Ar_tot, Br_tot, Cr_tot, zeros(p,m), Er_tot);
 sysbot = dss(A, B_, C_, zeros(p,m), E); % caution: large-scale!

 % truncate non controllable/observable states in sysrL, sysrR
 i = find(any(Ar_tot(any(BrL_tot~=0,2),:),1));
 sysrL   = dss(Ar_tot(i,i), BrL_tot(i,:), CrL_tot(:,i), eye(p), Er_tot(i,i));
 i = find(any(Ar_tot(:,any(CrR_tot~=0,1)),2));
 sysrR   = dss(Ar_tot(i,i), BrR_tot(i,:), CrR_tot(:,i), eye(m), Er_tot(i,i));

Note that the code is poor with regard to aspects of memory allocation; the respective

warning in MATLAB is suppressed by the comment %#ok<*AGROW>. However, in practice,

the while loop is not run through very often (at most, presumably, a hundred times), so

the wasted time is expected to be in the range of milliseconds. But naturally the CURE

scheme can probably be implemented in a better way, Source 4.1 is rather optimized for

readability, cf. Section 1.2.5.
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The example produces a ROM of order n = 20 which matches ten block moments

about s = 0. G̃Σ,L
r (s) (sysrL in Source 4.1) is a proportional element, G̃Σ,L

r (s) ≡ I2.

G̃Σ,R
r (s) (sysrR in Source 4.1) has a transfer zero of multiplicity 20 at s = 0 and the poles

of GΣ
r (s). Please note that lines 2 and 34 implement the large-scale systems G(s) and

G⊥(s), respectively, as ss-objects of MATLAB’s Control Toolbox, which stores the full

matrices disregarding sparsity. The lines should therefore be replaced for high-dimensional

ROMs and are only intended to demonstrate how G(s) and G⊥(s) look.

4.3.3. Properties

First of all, we recall the following observation:

Proposition 4.5. The spectrum of the overall ROM GΣ
r,k(s) is the union of the eigenval-

ues of the single ROMs Gr,i(s), i = 1 . . . (k − 1).

Accordingly, the subsequent reduction steps do not affect the poles of the previous

iterations, but eigenvalues are added to the overall ROM in a cumulative way.

This is an important property of the CURE scheme and also implies the following

consequence: concatenation of the single projection matrices in one common projector

delivers a different ROM than CURE. In particular, the overall ROM is not guaranteed

to converge towards the HFM as its order nΣ = ∑
i ni tends towards the order of the

HFM, as it would be the case in standard projective MOR (there, the projection turns

into a state transformation if n = N).

With regard to moment matching, however, one should note the following cutback of

what was derived in Proposition 4.2. Although in the k-th reduction step moments can

be matched both with Vk and Wk, in general half of them is changed in the following

step k + 1. The reason is that in V-based decompositions, the moments matched via V

correspond to invariant zeros of G̃R
r,k(s), which still occur in the preceding steps as G̃R

r,k(s)

always remains a factor in G̃Σ,R
r,k+i(s) for any i ≥ 0. The moments matched via Wk,

on the other hand, lead to invariant zeros of G⊥,k(s) whose input or output matrix is

changed in the subsequent iteration. As this may completely change its zero configuration,

the moments may no longer match. Accordingly, Wk only influences the poles of the

momentary and overall ROM, but cannot be used to explicitly match given moments. Of
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course the dual considerations hold true for W-based factorization.

To sum up, with purely Krylov-based reduction during CURE, one can match a total

of ∑k
i (ni) + nk moments in k steps, when ni are the dimensions of the single ROMs.

One important consequence is the following: If H2 optimal reduction is performed in

every step, then the resulting overall ROM will not be a local H2 optimum, but only

pseudo-optimal. One moment is still matched at the mirror images of the poles [122],

because G̃Σ,L
r,k (s) or G̃Σ,R

r,k (s) still contains the corresponding invariant zero. But the second

moment is no longer matched as the zeros of G⊥,k(s) change in every iteration.

Accordingly, the CURE framework constitutes a kind of greedy algorithm. It is very

well suited for choosing an optimal set of shifts for its momentary configuration. The sum

of the single decisions, however, must not be expected to yield an optimum, but hopefully

something close to that.

Note, in this context, that Proposition 4.3 implies a major feature of the CURE scheme:

Corollary 4.1. If during CURE H2 pseudo-optimal reduction is performed in every iter-

ation, such that G̃L
r,k(s) in W-based decomposition or G̃R

r,k(s) in V-based decomposition,

respectively, are unity all-pass elements, then the H2 norm of the error model decays

strictly monotonically, ‖Ge,k‖H2
< ‖Ge,k−1‖H2

, unless Gr,k(s) is a zero element.

An open question remains which type of factorization should be performed after two-

sided Krylov reduction, when both decompositions are valid. This question is significant

in the context of the error bounds presented in Chapter 5 and will be taken up again

therein.

4.3.4. CUREd IRKA

So far, we have ignored the problem of finding suitable ROMs in each of the reduction

steps. As a first attempt to this end, we incorporate IRKA into the CURE framework

(“CUREd IRKA”), so we search H2 optimal ROMs of order n = 2 and cumulate them

iteratively to an overall ROM of order nΣ = 2, 4, 6, . . ., whose quality gets better in every

step, because it is also H2 pseudo-optimal (cf. Corollary 4.1).

As a demonstrating example, we consider the reduction of the ISS benchmark model.

We run through ten iterations of CUREd IRKA and compare the results to the outcome
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of standard IRKA (reducing to the overall order nΣ directly). One can see in Figure 4.4

that both approaches yield equally good approximation of the HFM for a given reduced

order nΣ. However, while the error decays monotonically for CUREd IRKA, worse ap-

proximants may result for higher reduced order in standard IRKA—depending on how

good the identified local minimum actually is. Missing entries for some (even) nΣ indicate

orders for which IRKA did not converge within 20 steps, but returned an unstable ROM.

Also, Figure 4.4b) shows that the number of LSE solves required to run standard IRKA

once for some given order nΣ is typically higher than performing the whole CUREd IRKA

process from n = 2, n = 4, etc. up to n = nΣ. But CURE offers the possibility to continue

or stop at any time, while a new run of IRKA starts from scratch. Accordingly, CUREd

IRKA procedure offers more flexibility without loss of precision.

However, Figure 4.4b) also shows that the number of steps required during the single

steps of CUREd IRKA varies. In fact, there was no guarantee IRKA would converge at

all in each and every step of CURE, but unstable ROMs might have resulted as well.

To conclude: Although CURE offers a possibility to choose the reduced order on the

fly without additional effort, the stability and convergence problems of IRKA are not

remedied.
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Figure 4.4.: Comparison of Standard IRKA and CUREd IRKA
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4.4. SPARK: A Stability-Preserving, Adaptive Rational

Krylov Algorithm

We have seen that the use of IRKA inside the CURE scheme as illustrated in Section 4.3.4

brings about the convergence and stability issues related to IRKA. It is therefore the goal

of this section to develop a descent algorithm with more favorable properties.

Such an alternative was published in [122] in the form of the Stability-Preserving,

Adaptive Rational Krylov Algorithm (SPARK), which is bound to deliver ROMs of

order n = 2. So although it is not suitable for finding useful approximations of the HFM

in a single step, it very well fits into the CURE framework where the overall reduced

model is built incrementally out of many low-order models.2

So far, SPARK only applies to SISO systems; for this section we will therefore assume

m = p = 1, changing B→ b and C→ c to vectors.

4.4.1. Optimization-Based Computation of Shifts

The key idea that was presented in [122] to improve existing optimization based H2 model

reduction schemes from [20, 21] was to restrict the search space to H2 pseudo-optimal

ROMs that match moments at the mirror images of its poles, instead of modifying poles

and residues of the ROM independently. This approach is valid because any local optimum

is necessarily a pseudo-optimum; and a pseudo-optimum in whose vicinity there is no

better ROM is a local optimum and therefore a Hermite interpolant about the mirror

images of its poles [76].

This circumstance is sketched in Figure 4.5. While IRKA and the method presented

in [21] search among the ROMs resulting from Hermite interpolation, until hopefully

shifts and reduced poles lie vis-à-vis (i. e., a pseudo-optimum is found), SPARK seeks

within the set of pseudo-optima until two moments match at the expansion points. The

2Please note that in [122], “SPARK” referred to the union of the cumulative reduction framework (which

has been introduced under the name “CURE” in Section 4.3) and the descent shift selection strategy

which will be presented in this section. The reason for the renaming was that these two components

have partly been misconceived; in truth, cumulative reduction constitutes a concept on its own and can

not only be applied in combination with the descent strategy, as was shown above.
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intersection of these respective sets of ROMs contains precisely the candidates for H2

optima, so both algorithms look for the same thing but in different search spaces.

ROMs resulting
from Hermite interpolation

H2 pseudo-optimal ROMs

Candidates for H2 optimum

Figure 4.5.: IRKA vs. SPARK: Comparison of Search Space

The search among pseudo-optima has, however, a crucial advantage: The H2 error ex-

pression simplifies according to (3.27); besides, as ‖G‖H2
is independent of the reduction,

we can equivalently use the very convenient cost functional

J := ‖Ge‖2
H2
− ‖G‖2

H2︸ ︷︷ ︸
const.

= −‖Gr‖2
H2
, (4.18)

which only depends on the reduced order matrices.

In comparison to [20], the number of optimization variables is halved, as poles and

residues are manipulated together in a judicious way. In fact, for n = 2, the parameter

space reduces to the first quadrant of R2:

Lemma 4.1. The set of all minimal, asymptotically stable, and pseudo-optimal ROMs of

order n = 2 can be parametrized by two real positive parameters a, b ∈ R+.

Proof. An order 2 ROM is uniquely determined by two poles λr,1, λr,2 (with Jordan block

if λr,1 = λr,2, otherwise it would not be minimal) and the respective residuals. According

to [76], for given poles, the optimal residual configuration is uniquely determined due

to Hilbert’s projection theorem. Accordingly, the set of asymptotically stable pole

configurations and the set of pseudo-optimal ROMs are in a one-to-one relation. Now

without loss of generality, let the characteristic polynomial of the ROM be given by

det(sEr −Ar) = s2 + as+ 4b. Then following Hurwitz’ criterion, for an asymptotically

stable pole configuration, a, b > 0 is necessary and sufficient.
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In [122], unaware of the projection-based algorithm PORK [163] (cf. Section 3.6.5),

this approach was realized not in a projective way, but the reduced transfer function was

constructed in the frequency domain to feature the required properties, i. e. to match

moments at

σ1 = a+
√
a2 − b and σ2 = a−

√
a2 − b, (4.19)

and to have poles at the mirror images, λr,i = −σr,i. This basically worked well for the

actual optimization procedure, yet had two minor drawbacks. Firstly, the case σ1 = σ2

had to be excluded due to a singularity (numerical instabilities, however, could occur

even for roughly equal shifts σ1 ≈ σ2). Secondly, and perhaps more importantly, the

determined H2 optimal ROM could not be directly related to the high-dimensional state

space for lack of associated projection matrices V and W. These are, however, necessary

for the factorization of the error model according to Section 4.2 (in particular, to compute

B⊥ or C⊥) and for the application of the CURE framework.

Therefore, after convergence of SPARK, in [122] the H2 optimal shifts were used to re-

compute the ROM as a Hermite interpolant by two-sided Krylov reduction, which—

in theory—is equivalent, as discussed above: matching two moments at each of the H2

optimal shifts implicitly sites poles at their mirror images, while for a pseudo-optimum

(one moment is matched per shift and poles are explicitly placed vis-à-vis) the second

moments match unsolicited.

In practice, however, round-off errors and incomplete convergence can cause non-opti-

mal shifts as a result of the optimization, so the above considerations do not hold true

anymore, and Hermite interpolation delivers a ROM which is neither H2 optimal nor

pseudo-optimal! Therefore, the factors G̃r(s) in the error factorization are not all-pass

and the monotonicity of the H2 error (cf. Corollary 4.1) is lost.

For that reason, the procedure of [122] was enhanced by incorporating PORK, which

delivered a projective embedding of the pseudo-optimal ROM. The whole approach is

presented in the following.
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4.4.2. Enhanced Formulation of SPARK

We use again the abbreviation Aσ := (A− σE).

Lemma 4.2. Let a, b be real positive numbers and define σ1,2 := a ±
√
a2 − b, such that

σ1, σ2 ∈ R or σ1, σ2 = σ1 ∈ C. Then, a real basis of the corresponding Krylov subspace

is given by

V =
[

1
2A−1

σ1 b + 1
2A−1

σ2 b , A−1
σ2 EA−1

σ1 b
]
∈ RN×2 (4.20)

which solves Sylvester equation (3.3) with

SV =

 σ1+σ2
2 1(

σ1−σ2
2

)2
σ1+σ2

2

 =

 a 1

a2 − b a

 , C̃r =
[

1 0
]
.

The eigenvalues of SV are σ1 and σ2; if σ1 = σ2, SV contains a Jordan structure.

Proof. To show that V is real even for complex σ1, σ2, we notice that then Aσ2 = Aσ1 ,

so the imaginary parts in 1
2A−1

σ1 b and 1
2A−1

σ2 cancel in the first column v1. The second

column v2 is also real because it solves the purely real equation

b = (A− σ1E) E−1 (A− σ2E) v2 =
(
AE−1E− (σ1 + σ1)︸ ︷︷ ︸

∈R

A + σ1σ1︸ ︷︷ ︸
∈R

E
)
v2.

Now we consider the two columns of the Sylvester equation separately:

Av1 = A
[

1
2A−1

σ1 b + 1
2A−1

σ2

]
= 1

2Aσ1A−1
σ1 b + σ1

2 EA−1
σ1 b + 1

2Aσ2A−1
σ2 b + σ2

2 EA−1
σ2 b

= b + E
[
σ1
2 A−1

σ1 b + σ1
2 EA−1

σ2 b
]

= b + E
[
σ1+σ2

4

(
A−1
σ1 b + A−1

σ2 b
)

+ σ1−σ2
4

(
A−1
σ1 b−A−1

σ2 b
)]

= b + σ1+σ2
2 Ev1 + σ1−σ2

4 EA−1
σ2 [Aσ2 −Aσ1 ] A−1

σ1 b

= b + σ1+σ2
2 Ev1 + σ1−σ2

4 EA−1
σ2 [−σ2E + σ1E] A−1

σ1 b

= b + σ1+σ2
2 Ev1 +

(
σ1−σ2

2

)2
Ev2

Av2 = AA−1
σ2 EA−1

σ1 b

= Aσ2A−1
σ2 EA−1

σ1 b + σ2EA−1
σ2 EA−1

σ1 b

= 1
2EA−1

σ1 b + 1
2EA−1

σ1 b + 1
2EA−1

σ2 b− 1
2EA−1

σ2 b + σ2EA−1
σ2 EA−1

σ1 b

= Ev1 + 1
2EA−1

σ2 [Aσ2 −Aσ1 ] A−1
σ1 b + σ2EA−1

σ2 EA−1
σ1 b

= Ev1 + σ1−σ2
2 EA−1

σ2 EA−1
σ1 b + σ2EA−1

σ2 EA−1
σ1 b = Ev1 + σ1+σ2

2 Ev2

The proof for the eigenvalues is straightforward.
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Corollary 4.2. Let a, b be real positive numbers, define σ1,2 = a±
√
a2 − b, and compute

V ∈ RN×2 according to (4.20). Then the ROM defined by

Er = I2, Ar =
 −3a 1
−3a2 − b a

 , Br =
−4a
−4a2

 , Cr = CV (4.21)

is an H2 pseudo-optimal approximant of the HFM whose H2 norm is given by ‖Gr‖2
H2 =

CrPrCT
r with the reduced Controllability Gramian

Pr =
 4a 4a2

4a2 4a(a2 + b)

 . (4.22)

Proof. The proof is straightforward following the PORK algorithm.

It is easy to verify that the eigenvalues of Ar are given by −σ1 and −σ2, so they are

indeed the mirror images of the expansion points.

As stated above, the cost functional (4.18), J (a, b) = −‖Gr‖2
H2 = −CrPrCT

r is well

suited to find an H2 optimum by means of minimization. Note that given a, b > 0, the

only quantities in (4.21) that depend on the HFM are the elements of cr:

cr =
[
cr,1, cr,1

]
= cV =

[
cv1, cv2

]
=
[

1
2cA−1

σ1 b + 1
2cA−1

σ2 b , cA−1
σ2 EA−1

σ1 b
]
. (4.23)

These are not moments of the HFM, but encode the respective information differently.

The advantage is that complex conjugated shifts as well as real shifts and even double

shifts are incorporated in this formulation; also, it is robust to situations when σ1 ≈ σ2.

If V is not required explicitly, two LSE solves suffice to compute cr, because both entries

of cr can be written as products containing the factors l1 := cA−1
σ2 and r1 := A−1

σ1 b. So

once one has solved for l1 and r1, the vector cr can be computed as

cr =
[

1
2cr1 + 1

2 l1b, l1Er1
]
. (4.24)

4.4.3. Analytic Gradient and Hessian

To efficiently run optimization algorithms solving the constrained minimization problem

arg min
a>0,b>0

J (a, b), (4.25)

it is often beneficial to supply analytic gradient and Hessian matrix. Though not aesthetic

in their mathematical form, the respective formulas presented in the following theorem

provide an efficient way to compute the required information (cf. Remark 4.1 below).
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Source 4.2: Computation of Cost Functional, Gradient, and Hessian

 function [J, g, H] = CostFunctionH2(A, B, C, E, p, r, l)
 % Enhanced SPARK Cost Functional
 %   Input:  A,B,C,E: HFM matrices;
 %           p:       parameter vector [a,b];
 %           r,l:     left an right rational Krylov sequence;
 %   Output: cost functional J; gradient g; Hessian H
 % (c) 2014 Heiko K.F. Panzer, Tech. Univ. Muenchen.
% This file is published under the BSD 3-Clause License. All rights reserved.

     a = p(1); b = p(2);  l1 = l(1,:); r1 = r(:,1);

     Pr = [4*a, 4*a^2; 4*a^2 4*a*(a^2+b)];  Cr = [0.5*(C*r1 + l1*B), l1*E*r1];
     J = real(-Cr*Pr*Cr');
     if nargout==1, return, end
     l2 = l(2,:); r2 = r(:,2);  l3 = l(3,:); r3 = r(:,3);

     dPrda =     [4, 8*a; 8*a, 12*a^2 + 4*b];    dPrdb =     [0, 0; 0,  4*a];
     ddPrdada =  [0, 8; 8, 24*a];                ddPrdadb =  [0, 0; 0, 4];
     dcrda =     [0.5*(C*r2 + l2*B) + a*(l2*E*r1 + l1*E*r2), 2*l2*A*r2];
     dcrdb =     [-0.5*(l2*E*r1 + l1*E*r2), -l2*E*r2];
     ddcrdada =  [C*r3 + l3*B + 4*a*l1*E*r3 + 4*a*l3*E*r1 + 2*a*l2*E*r2 + 2*l2*A*r2 ...
                       + 4*a^2*l2*E*r3 + 4*a^2*l3*E*r2, ...
                  4*l3*A*r2 + 4*l2*A*r3 + 8*a*l3*A*r3];
     ddcrdadb =  [-l3*E*r1 - l1*E*r3 - l2*E*r2 - 2*a*l2*E*r3 - 2*a*l3*E*r2, -4*l3*A*r3];
     ddcrdbdb =  [ l3*E*r2 + l2*E*r3,  2*l3*E*r3];

     g = real([-Cr*dPrda*Cr', -Cr*dPrdb*Cr'] - 2*Cr*Pr*[dcrda; dcrdb]');
     H = [-2*ddcrdada*Pr*Cr'-4*dcrda*dPrda*Cr'-2*dcrda*Pr*dcrda'-Cr*ddPrdada*Cr', ...
          -2*ddcrdadb*Pr*Cr'-2*dcrdb*dPrda*Cr'-2*dcrda*dPrdb*Cr'-2*dcrda*Pr*dcrdb'-...
          Cr*ddPrdadb*Cr'; 0,-2*ddcrdbdb*Pr*Cr'-4*dcrdb*dPrdb*Cr'-2*dcrdb*Pr*dcrdb'];
     H(2,1)=H(1,2); H=real(H);
 end

Theorem 4.3. Given a parameter vector p = [a, b] with a, b ∈ R+, define σ1,2 :=

a±
√
a2 − b as before and

li := c
(
A−1
σ2 E

)i−1
A−1
σ2 ∈ C1×N

ri :=
(
A−1
σ1 E

)i−1
A−1
σ1 b ∈ CN×1

for i ∈ {1, 2, 3}.

Then the cost functional J = −‖Gr‖2
H2

= −crPrcTr , its gradient vector g, and the

Hessian matrix H follow from matrix-vector products and small-scale operations according

to the following formulas:

g = dJ
dp

=
[

dJ
da ,

dJ
db

]
=
[
−2∂cr

∂a
Prcr − cr ∂Pr

∂a
cTr , −2∂cr

∂b
Prcr − cr ∂Pr

∂b
cTr
]
,
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H = d2J
dp2 =

 d2J
da2

d2J
dadb

d2J
dadb

d2J
db2

 ,
d2J
da2 = −2∂2cr

∂a2 PrcTr − 4∂cr
∂a

∂Pr
∂a

cTr − 2∂cr
∂a

Pr
∂cTr
∂a
− cr ∂

2Pr
∂a2 cTr

d2J
db2 = −2∂2cr

∂b2
PrcTr − 4∂cr

∂b
∂Pr
∂b

cTr − 2∂cr
∂b

Pr
∂cTr
∂b
− cr ∂

2Pr
∂b2

cTr

d2J
dadb = −2 ∂2cr

∂a∂b
PrcTr − 2∂cr

∂b
∂Pr
∂a

cTr − 4∂cr
∂a

∂Pr
∂b

cTr − 2∂cr
∂a

Pr
∂cTr
∂b
− cr ∂

2Pr
∂a∂b

cTr .

Therein,

cr =
[

1
2 l1 · b + 1

2c · r1, l1Er1,

]
∈ R1×2.

∂Pr

∂a
=

 4 8a

8a 12a2 + 4b

 , ∂Pr

∂b
=

0 0

0 4a

 , ∂2Pr

∂a2 =

0 8

8 24a

 , ∂2Pr

∂a∂b
=

0 0

0 4

 ,
∂cr,1
∂a

= 1
2 l2 · b + 1

2c · r2 + a (l1Er2 + l2Er1) , ∂cr,1
∂b

= −1
2 l1Er2 − 1

2 l2Er1

∂cr,2
∂a

= 2l2Ar2,
∂cr,2
∂b

= −l2Er2.

Proof. The proof is straightforward except for the derivatives of the entries of cr with

respect to a and b; those include some lengthy linear algebraic computations and are

therefore shifted to Appendix A.1.

Remark 4.1. Note that li, ri are recursively given by

l1 =
[
c U−1

2

]
L−1

2

r1 = U−1
1

[
L−1

1 b
] and

li =
[
(li−1 · E) U−1

2

]
L−1

2

ri = U−1
1

[
L−1

1 (E · ri−1)
] for i ∈ {2, 3}

if L1,U1 and L2,U2 describe LU-decompositions of Aσ1 and Aσ2, respectively. So the

total of six LSE solves requires two LU-decompositions and twelve backward substitutions.

If σ1 = σ2, one LU suffices. If σ2 = σ1 ∈ C, one complex LU instead of two real ones is

needed, the total numerical effort of which is comparable.

Source 4.2 shows how the enhanced computation of cost functional, gradient and Hes-

sian can be realized in MATLAB. The function accepts the two-dimensional parameter

vector p containing a and b, the vectors li and ri, each concatenated in one matrix, and

the HFM matrices.
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A possible implementation of the whole extended SPARK (ESPARK) algorithm is

given in Source 4.3. Note that this enhanced version delivers almost the same result as

the first formulation presented in [122], as the underlying cost functional is the same,

just more general and more robust in the new (ESPARK) formulation. Figure 4.6 shows

simulation results for the “beam” benchmark model; in fact, this figure looks very much

alike the result printed in [122].

Source 4.3: Enhanced Stability Preserving Adaptive Rational Krylov (ESPARK)

 function [V,S_V,Crt,k] = ESPARK(A,B,C,E,s0)
 % Enhanced Stability Preserving Adaptive Rational Krylov
 %   Input:  A,B,C,E:   HFM matrices;
 %           s0:        Initial shifts
 %   Output: V,S_V,Crt: Input Krylov subspace,  A*V - E*V*S_V - B*Crt = 0
 % (c) 2014 Heiko K.F. Panzer, Tech. Univ. Muenchen.
% This file is published under the BSD 3-Clause License. All rights reserved.

 p0 = [(s0(1)+s0(2))/2, s0(1)*s0(2)];
 N = size(A,1); precond = eye(2); t = tic;

 opts=optimset('TolFun',1e-15*abs(CostFunction(p0)),'TolX',1e-20, ...
     'Display','none', 'Algorithm','trust-region-reflective', ...
     'GradObj','on','Hessian','on', 'MaxFunEvals',100,'MaxIter',100);
 precond = diag(p0);
 [p_opt,~,~,output] = fmincon(@CostFunction,p0/precond,[],[],[],[],[0;0],[inf;inf],[],opts);
 p_opt = p_opt*precond; k=output.funcCount;
 disp(['ESPARK required ' num2str(k) ' LUs and ' num2str(toc(t),'%.1f') 'seconds.'])
 v1  = Q1*(U1\(L1\(P1*B))); v12= Q2*(U2\(L2\(P2*B))); v2 = Q2*(U2\(L2\(P2*(E*v1))));
 V   = full(real([v1/2 + (v12/2+p_opt(1)*v2), v2*sqrt(p_opt(2))]));
 S_V = [2*p_opt(1), sqrt(p_opt(2)); -sqrt(p_opt(2)), 0]; Crt = [1 0];

 function [J, g, H] = CostFunction(p)
     % compute Krylov sequences l_i, r_i
     p = p*precond;  s = p(1)+[1 -1]*sqrt(p(1)^2-p(2)); r = zeros(N,3); l = r.';
     [L1,U1,P1,Q1] = lu(sparse(A-s(1)*E));
     if real(s(1))==real(s(2)) % complex conjugated or double shifts
         L2=conj(L1);U2=conj(U1);P2=P1;Q2=Q1;
     else                      % two different real shifts
         [L2,U2,P2,Q2] = lu(sparse(A-s(2)*E));
     end
     solveLSE1 = @(x) Q1*(U1\(L1\(P1*x)));  solveLSE2 = @(x) x*Q2/U2/L2*P2;
     r(:,1) = solveLSE1(B(:,1)); l(1,:) = solveLSE2(C(1,:));
     r(:,2) = solveLSE1(r(:,1)); l(2,:) = solveLSE2(l(1,:));
     r(:,3) = solveLSE1(r(:,2)); l(3,:) = solveLSE2(l(2,:));
     % compute cost, gradient, and Hessian
     [J,g,H] = CostFunctionH2(A, B(:,1), C(1,:), E, p, r, l);
     g = g * precond; H = precond * H * precond;
 end
 end
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Figure 4.6.: Process of Enhanced SPARK for Various Initial Parameter Values

4.4.4. Speed-Up due to Model Function

Although SPARK in its enhanced formulation describes a globally convergent Trust Re-

gion method (at least under mild assumptions), its convergence requires a rather high

number of LSE solves or LU-decompositions.

In the following, we will therefore exploit the benefits of a so-called model function.

As a start, we note that the trust region algorithm locally approximates the cost

functional with a quadric defined by J , gradient g, and Hessian matrix H, i. e. a quadratic

Taylor polynomial. The overall shape of the cost functional, however, is not at all of

polynomial character, but rather a rational function, as it tends to zero or finite values at

the rim of the parameter domain (“trampoline” shape). Figure 4.7, for instance, shows J

as in (4.18) over a and b for the Clamped Beam benchmark model (in fact, this is a 3D-

visualization of Figure 4.6). Accordingly, the polynomial approximation handed to the

optimizer is likely to fit only very locally.

The question is, whether the “expensive” information on the HFM which is contained

in the Krylov sequences li and ri might not be used in a more effective way than by just

building J , g, and H from them. What is more, we know from Section 3.4 that computing

more than three columns of a rational Krylov subspace increases the numerical effort

only slightly once an LU-decomposition is available anyway. Therefore, the following

procedure is suggested.
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Figure 4.7.: Typical Shape of Cost Functional J (a, b)

Given an initial parameter value p0 = (a0, b0), we reduce the large-scale model by Padé

approximation about the respective shifts defined by p0 to quite small order, say n = 6.

Then, we run the Trust Region optimizer as before, but supply it not with the true values

of J , g, and H (which require the solution of N -dimensional linear systems of equations),

but we compute the cost functional and its derivatives based on the intermediate low-

order ROM (this yields the simplified so-called “model function”). Of course this massively

speeds up the procedure, and in fact the optimizer may require as many steps as it wants

to—the numerical effort will be quite manageable.

Once the Trust Region algorithm has converged to some new parameter p1 = (a1, b1),

this point constitutes a local minimum of the model function, i. e. of the approximated

cost functional. Now, we compute the true cost functional J (a1, b1), which requires the

solution of two LSEs and typically involves an LU-decomposition about the shifts that

correspond to p1. Then we decide:

• If J (a1, b1) < J (a0, b0), then p1 yields an improvement and we are getting closer

to a minimum. Therefore, we use the available LU-factors to compute additional

Krylov vectors about the newly found shifts. These vectors are incorporated in

our projection matrices with which we update the model function by standard pro-

jection. The model function now matches moments about the initial shifts (corre-

sponding to p0) and the determined shifts (corresponding to p1), so it approximates

the true cost functional well in both vicinities. Accordingly, we can restart the trust
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region optimization with initial position p1, and proceed with the newly found local

minimum p2 of the updated model function.

• If, on the other hand, J (a1, b1) > J (a0, b0), then the model function was unfit,

because its minimum corresponds to a degradation of the true cost functional. In

this case, the update of the intermediate ROM will strongly change the model

function in the neighborhood of p1. So as we restart the trust algorithm from the

unchanged initial parameter p0, this time it will not converge to p1 but hopefully

to a point p2 which is better suited.

• If at some step the relative change between pi and pi−1 is very small, we seem to

have found a minimum of the true cost functional and can stop the algorithm. The

final parameter p is then converted towards two shifts and the discovered ROM is

incorporated into the overall ROM in the CURE scheme.

We call this basic algorithmMESPARK (Model function based Extended SPARK). The

philosophy behind it is that the information contained in the Krylov subspace vectors,

whose computation is the most expensive part of the algorithm, should be used to the full

extent. During IRKA and (standard) SPARK, the Krylov subspaces computed in one

iteration are immediately overwritten in the following one. Due to the model function,

on the other hand, it is now well possible to incorporate all available information on the

HFM transfer function in order to find a local optimum as quickly as possible.

We will demonstrate the effectiveness with the help of the Clamped Beam benchmark

example, for which we have already considered the standard SPARK algorithm before.

Again, we start from the initial shifts 1±1i and run the code given in Source 4.4. Firstly,

a Padé approximant of order n = 6 about the initial shifts is computed. Its contour

plot can be seen in the upper plot of Figure 4.8. Then the trust region algorithm is

run and requires 18 steps to find a minimum of the approximated cost function (the

path is also printed in Figure 4.8). Note that no large-scale operations are performed

during the optimization, so it lasts only milliseconds. Now, the true cost functional at

p1 is evaluated (to this end, two real LU-decomposition about the shifts are performed)

and indeed constitutes an improvement. Therefore, the model function is updated and

the optimizer restarted from p1. It converges in another 17 steps (see middle plot in
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Figure 4.8.: Process of MESPARK
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Figure 4.8) and again delivers an improvement. The model function is again updated

and the procedure continued. After one more step the parameter does not change any

more—in fact, one can see in Figure 4.8 that after the third step, the model function

hardly changes, so a minimum of the true cost functional could indeed be found in only

four steps.

4.4.5. Preconditioning and further Numerical Aspects

Preconditioning is a powerful technique to improve the convergence behavior of optimiz-

ers. Although the details of optimization go beyond the scope of this thesis, it is worth

mentioning that even elementary preconditioning can have a strong effect. In Source 4.4,

two ways of diagonal scaling are suggested. The first one (line 22, in comment) is based

on the initial parameter value and scales the a- and b-axes such that the initial value

is (1, 1); this mends the influence of significantly different magnitudes in a and b. The

other approach (line 23, active) uses the Hessian matrix at the initial parameter. More

sophisticated preconditioning techniques may of course strongly support convergence.

Another numerical aspect of the ESPARK algorithm must be highlighted. Looking at

the reduced order matrices

Ar =

 −3a 1

−3a2 − b a

 and Br =

−4a

−4a2


as defined by Corollary 4.2, it is clear that large values of a lead to numbers of very

different magnitude, which compromises the numerical condition. This is illustrated in

Figure 4.9a), which shows the common logarithm of the condition number of Ar over a

and b.

One must note that this is not related to the considered model, but an inherent property

of the formulation in Corollary 4.2: Ar only depends on a and b. Although the projection

matrix V =
[

1
2A−1

σ1 b + 1
2A−1

σ2 b, A−1
σ2 EA−1

σ1 b
]
as defined in Lemma 4.2 provides a nice

analytical parametrization, it is obviously not expedient from a numerical point of view.

Other parametrizations following from a change of basis V̂ := VT may lead to more

numerical robustness.
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Source 4.4: Model Function Based Extended SPARK

 function [V,S_V,Crt,k] = MESPARK(A,B,C,E,s0)
 % Model Function based Enhanced Stability Preserving Adaptive Rational Krylov
 %   Input:  A,B,C,E:   HFM matrices;
 %           s0:        Initial shifts
 %   Output: V,S_V,Crt: Input Krylov subspace,  A*V - E*V*S_V - B*Crt = 0
 % (c) 2014 Heiko K.F. Panzer, Tech. Univ. Muenchen.
% This file is published under the BSD 3-Clause License. All rights reserved.

     if size(B,2)>1 || size(C,1)>1, error('System must be SISO.'), end
     p0 = [(s0(1)+s0(2))/2, s0(1)*s0(2)];    % convert shifts to parameter

     t = tic; k = 0; precond = eye(2);
     % compute initial model function and cost function at p0
     computeLU(s0);  V = newColV([],3);  W = newColW([],3);
     Am=W'*A*V; Bm=W'*B; Cm=C*V; Em=W'*E*V;
     J_old = CostFunction(p0);
     options=optimset('TolFun',1e-16,'TolX',1e-16, ...
         'Display','none', 'Algorithm','trust-region-reflective', ...
         'GradObj','on','Hessian','on','MaxFunEvals',100,'MaxIter',100);

     while(1)
         k = k + 1;
         disp(['Iteration ' num2str(k) ': q = ' num2str(size(V,2))])
 %         precond = diag(p0);
         [~,~,H] = CostFunction(p0); precond = diag(1./abs(diag(H).^0.25));
         % run trust region algorithm to find minimum of model function
         p_opt = fmincon(@CostFunction,p0/precond,[],[],[],[],[0;0],[inf;inf],[],options);
         p_opt = p_opt*precond; precond = eye(2);
         % convert parameter to shifts and perform LU decompositions
         s_opt=p_opt(1)+[1,-1]*sqrt(p_opt(1)^2-p_opt(2)); computeLU(s_opt);
         % update model function by two-sided (Hermite) projection
         V = newColV(V, 2);  W = newColW(W, 2);  Am=W'*A*V; Bm=W'*B; Cm=C*V; Em=W'*E*V;
         % evaluate cost functional at new parameter point
         J = CostFunction(p_opt);

         disp(['  relative change:      ' num2str(norm((p0-p_opt)./p0), '%1.2e')]);
         disp(['  relative improvement: ' num2str((J-J_old)/J, '%1.2e')]);
         disp(['  absolute J = ' num2str(J, '%1.12e')]);

         % decide how to proceed
         if abs((J-J_old)/J) < 1e-10 || norm((p0-p_opt)./p0) < 1e-10 || size(Am,1)>=20
             break;                      % convergence in J or in p  => stop
         elseif J<J_old
              J_old = J;  p0 = p_opt; % improvement: continue with p_opt
         end
     end
     % supply output variables
     v1  = Q1*(U1\(L1\(P1*B))); v12= Q2*(U2\(L2\(P2*B))); v2 = Q2*(U2\(L2\(P2*(E*v1))));
     V   = full(real([v1/2 + (v12/2+p_opt(1)*v2), v2*sqrt(p_opt(2))]));
     S_V = [2*p_opt(1), sqrt(p_opt(2)); -sqrt(p_opt(2)), 0]; Crt = [1 0];
     disp(['MESPARK required ca. ' num2str(2*(k+1)) ' LUs ', ...
         ' and converged in ' num2str(toc(t),'%.1f') 'sec.'])
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     function [J, g, H] = CostFunction(p)
         % H2 cost functional, gradient and Hessian
         p = p*precond;  a = p(1); b = p(2);  s1 = a+sqrt(a^2-b); s2 = a-sqrt(a^2-b);
         r1 = (Am-s1*Em)\Bm;  r2 = (Am-s1*Em)\(Em*r1); r3 = (Am-s1*Em)\(Em*r2);
         l1 = Cm/(Am-s2*Em);  l2 = l1*Em/(Am-s2*Em);   l3 = l2*Em/(Am-s2*Em);
         [J, g, H] = CostFunctionH2(Am, Bm, Cm, Em, p, [r1,r2,r3], [l1;l2;l3]);
         g = g * precond;  H = precond * H * precond;
     end
     function computeLU(s0)
         % compute new LU decompositions
         if real(s0(1))==real(s0(2))  % complex conjugated or double shift
             [L1,U1,P1,Q1] = lu(sparse(A-s0(1)*E));  L2=conj(L1);U2=conj(U1);P2=P1;Q2=Q1;
         else                         % two real shifts
             [L1,U1,P1,Q1] = lu(sparse(A-s0(1)*E));  [L2,U2,P2,Q2] = lu(sparse(A-s0(2)*E));
         end
     end
     function V = newColV(V, k)
         % add columns to input Krylov subspace
         for i=(size(V,2)+1):2:(size(V,2)+2*k)
             if i==1, x=B; else x=E*V(:,i-1); end
             r1  = Q1*(U1\(L1\(P1*x)));   tmp = Q2*(U2\(L2\(P2*x)));
             v1 = real(0.5*r1 + 0.5*tmp); v2  = real(Q2*(U2\(L2\(P2*(E*r1)))));
             V = GramSchmidt([V,v1,v2],[],[],[i,i+1]);
         end
     end
     function W = newColW(W, k)
         % add columns to output Krylov subspace
         for i=(size(W,2)+1):2:(size(W,2)+2*k)
             if i==1, x=C; else x=W(:,i-1)'*E; end
             l1  = x*Q1/U1/L1*P1;          tmp = x*Q2/U2/L2*P2;
             w1 = real(0.5*l1 + 0.5*tmp);  w2  = real(l1*E*Q2/U2/L2*P2);
             W = GramSchmidt([W,w1',w2'],[],[],[i,i+1]);
         end
     end
 end

In fact, T =
1 0
a
√
b

 yields Âr = T−1ArT =
−3a

√
b

−
√
b 0

 and B̂r = T−1Br =
−4a

0

,
which seems to be a more suitable realization from a numerical point of view; the condition

number of Â is shown in Figure 4.9b).3 The corresponding matrices V̂ and ŜV read

V̂ = VT =
[

1
2A−1

σ1 b + 1
2A−1

σ2 b + a ·A−1
σ2 EA−1

σ1 b,
√
b ·A−1

σ2 EA−1
σ1 b

]
(4.26)

=
[
A−1
σ2 AA−1

σ1 b,
√
b ·A−1

σ2 EA−1
σ1 b

]
(4.27)

and ŜV =
 2a

√
b

−
√
b 0

. ̂̃cr = [1, 0] remains unchanged.

3For b
a → 0, one of the two eigenvalues of the ROM tends to zero, so bad condition in the lower right

part of the plot is unavoidable.
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Note that these formulas have been incorporated in Source 4.4 (cf. lines 46–48) due

to their superiority, but not exploited in the derivation of the cost functional and its

derivatives (cf. Source 4.2), yet.
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Figure 4.9.: Condition Number of Ar in ESPARK (log10(·))

4.5. Generalization of MESPARK to MIMO Systems

The ESPARK and MESPARK algorithms so far only work for SISO systems, because

the very particular parametrization of the underlying optimization problem exploits the

fact that here an H2 pseudo-optimal approximant of order n = 2 is uniquely determined

through two real positive numbers a and b. For MIMO systems, however, the situation is

more complicated. Although no final answer to the problem of generalizing the algorithms

to multivariable systems can be given so far, some ideas will be sketched in the following.

Thinking of tangential interpolation, two problems arise in the context of ESPARK

for MIMO systems. Firstly, to choose (possibly complex!) tangential directions together

with the shifts, one must increase the number k of optimization variables—and k will

then depend on the number of inputs and outputs of the system. And secondly, the

computation of gradient and Hessian matrix above was derived from a very particular

formulation of the ROM in which its H2 norm could be suitably expressed to obtain

manageable terms.
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For that reason, the only solution seems to be through a direct use of the available

SISO technique by defining real tangential vectors tB and tC a priori which transform the

MIMO system temporarily into a SISO model. The discovered optimal shifts σ1, σ2 are

then used together with one of the tangential vectors tB or tC to construct the solution

of a Sylvester equation and run the PORK algorithm.

On the plus side, this guarantees a monotonic decay of the H2 error. However, perfor-

mance is strongly compromised if the tangential vectors are not chosen suitably. In fact,

one can show that tangential interpolation including complex tB and tC can not be con-

stituted in this way at all. So even if one knew shifts and tangential vectors belonging to

H2 optimal reduction, this solution could not necessarily be reproduced by the described

procedure.

However, first tests suggest that at least for the SIMO and MISO case, acceptable

results may be obtained. The automatic choice of the respective tangential vector remains

an open problem, but an ad hoc approach could be to choose unity vectors and simply

alternate between the m inputs or p outputs, respectively.

A more sophisticated idea is to hand over two tangential vectors each, tB,1, tB,2 and

tC,1, tC,2 such that ESPARK can recombine them to two-dimensional real or complex sub-

spaces. The number of optimization variables would then amount to k = 4, independently

of m and p. The choice of the tangential vectors could again be carried out with a model

function to accelerate convergence.

To conclude: MESPARK can be applied to MIMO systems only in a rudimentary way

so far by choosing tangential vectors manually. Automatic selection schemes are a current

topic of research.





5. Rigorous Error Estimation in Krylov

Subspace Methods

“Truth will sooner come out from error than from confusion.”

— Francis Bacon

One major open issue in linear MOR is reliable error estimation in scenarios where

the true error cannot be computed any more due to excessive size of the HFM. The

problem of error estimation is naturally associated with Krylov subspace methods, as

in balanced truncation techniques the (full-rank) Gramians (computed by direct methods)

are available anyway, so here the computation of the H2 error is quite easily possible; an

H∞ error bound is even available a priori.

In Padé type approximation, on the other hand, all one knows about the HFM is

local information in the form of moments, which does not readily imply statements on

the global approximation quality.

Over the years, several error estimators have been presented in the literature, none of

which, however, seems to constitute a convincing rigorous and global bound. Therefore,

to the best of the author’s knowledge, the work presented in [124] is the first generic

approach that delivers global and rigorous H2 and H∞ error bounds for purely Krylov-

based reduction without further costly information on the HFM (like sampled frequency

response values etc.). The only assumptions required are the strict definiteness properties

E = ET > 0 and A + AT < 0.

Before the new approach from [124] is presented, we briefly review existing methods from

the literature.
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5.1. State of the Art

Grimme suggested two error estimation procedures in his thesis [73]. The first is the

comparison of two “completely different”, “complementary” ROMs of the same HFM.

The basic assumption is that they are both close to the HFM if they are close to each

other. This doubles the reduction effort, and although it is a good indicator, no rigorous

error information can be deduced.

Grimme’s second approach is through residual expressions

rb(s) := b− (sE−A)V(sEr −Ar)−1br and (5.1)

rc(s) := c− cr(sEr −Ar)−1WT (sE−A), (5.2)

which can be easily shown to fulfill

Ge(s) = G(s)−Gr(s) = rc(s)(A− sE)−1rb(s). (5.3)

Even if the computation of Ge(s) is still expensive due to the large-scale inverse (or the

related high-dimensional LSE), the residuals themselves can be calculated very easily.

But although “sufficiently small rb and rc at some s0 implies a small error at that

frequency by itself, [. . . ] monitoring rb and/or rc does not directly lead to an estimate for

the modeling error.” [73] This is because controllability and observability effects inherent

in the structure of A and E are disregarded. In the presence of weakly damped poles

along the imaginary axis, for instance, small residuals may still lead to very large error

values. The residuals alone may therefore indicate convergence of the ROM, but cannot

be used as rigorous bounds either. Please note, at this point, that many of the adaptive

shift selection strategies that were mentioned in Section 4.1 try to minimize residual

expressions, which is the reason for their heuristic nature.

Meanwhile, however, more sophisticated approaches have been described in the litera-

ture which are also based on the above residuals. The basic idea is to use the Cauchy-

Schwarz inequality

Ge(s) = rc(s)(A− sE)−1rb(s) ⇒ ‖Ge(s)‖ ≤ ‖rc(s)‖ · ‖(A− sE)−1‖ · ‖rb(s)‖ (5.4)

and to find an upper bound on ‖(A − sE)−1‖—or, equivalently, a lower bound on the

smallest singular value σmin
(
A − sE

)
—to estimate the error at frequency s. The main
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problem is to control the overestimation introduced by the Cauchy-Schwarz inequality

on the one side, and by the estimate of the norm of ‖(A− sE)−1‖, on the other.

Bai et al. first presented such local error bounds in the context of the Lanczos

algorithm [15, 16] and used the inequality∥∥∥(I− sA)−1
∥∥∥ ≤ 1

1− |s| · ‖A‖ , (5.5)

which holds for |s| < ‖A‖−1, i. e. in a quite narrow range for systems with high frequent

dynamics.

Odabasioglu et al. therefore suggested approximate error measures in [121], which

were valid in the whole spectrum, but not rigorous anymore. More recent results are

due to Feng and Benner, who considered the symmetric case in [27]. Amsallem and

Hetmaniuk proposed a tight error estimator in [6] to avoid overestimation, which is,

however, not rigorous.

One should generally note that the local nature of these bounds limits their use to

the estimation of accuracy within a certain frequency range and requires dense sam-

pling. Global error bounds, on the other hand, need to be evaluated only once and

offer valuable possibilities like, for instance, time domain envelopes of the output signal

(cf. Section 5.3.4).

Konkel, Farle, and Diczij-Edlinger presented a provable error bound for lossless

systems whose eigenvalues are known in a frequency range of interest [94, 95]. The

eigenvalues of the HFM which lie within this interval are included in the ROM; the

influence of the remaining eigenvalues is then upper bounded under certain assumptions

and exploiting orthogonality relations. The idea has also been translated into second

order systems by Fehr in [53, 54].

Please note that for (almost) lossless systems the use of a frequency-limited error

measure is indeed very sensible, because the eigenvalues of the HFM which are neglected

in the ROM still lead to high peaks in the amplitude response of the error model (they

lie close to or even on the imaginary axis) and therefore to large or infinite global error

norms. For that reason, H2 and H∞ error bounds cannot be expected to yield helpful

results for such models.
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An early error estimation technique similar to Grimme’s first suggestion was due to

Bechtold, Rudnyi, and Korvink [24, 25]. They observed that during an Arnoldi

process—i. e. a rational Krylov method about a single expansion point whose multiplic-

ity is iteratively increased—the difference between two consecutive (“neighboring”) ROMs

Gr,k(s) and Gr,k+1(s) reflects the actual error:∣∣∣∣∣G(s)−Gr,k(s)
G(s)

∣∣∣∣∣ ≈
∣∣∣∣∣Gr,k(s)−Gr,k+1(s)

Gr,k(s)

∣∣∣∣∣ . (5.6)

Also, they suggested to monitor the Hankel Singular Values (HSV) of the ROM and

stop the iteration as soon as no more significant changes occur in the largest HSVs, as

the dominant parts of the transfer behavior are then likely to be captured by the ROM.

Finally, they came up with the idea of sequential model reduction, which means a

two-step procedure. The very high-dimensional HFM is first reduced to an intermediate

model Gi(s) which is large enough to capture all relevant dynamics of the HFM, but

small enough to be reduced efficiently in a second step including exact computation of

the error. The error of the second step is then assumed to be the error between the final

ROM and the HFM, so the intermediate ROM is supposed to be extremely close to the

HFM.

All these ideas constitute only heuristic estimates, no rigorous bounds.

Sorensen, Teng, and Antoulas presented anH2 error bound for model reduction of

second order systems (cf. Chapter 6), which, however, requires knowledge of the dominant

eigenspace of the controllability Gramian, whose computation is expensive [148].
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5.2. Exploiting the Factorization of the Error System

In the following, we will see that the factorization of the error model which holds in

Sylvester-based model reduction is an important step towards global error bounds.

Consider the following lemma.

Lemma 5.1. Let G(s) be an LTI system which is reduced by Sylvester-based model

reduction, so that eventually it takes the general form (4.13)1:

G(s) = Gr(s) + G̃L
r (s) ·G⊥(s) · G̃R

r (s). (5.7)

Then, the H2 and H∞ norm of the respective error model Ge(s) are upper bounded by∥∥∥Ge

∥∥∥
H2
≤

∥∥∥G⊥∥∥∥H2
·
∥∥∥G̃L

r

∥∥∥
H∞
·
∥∥∥G̃R

r

∥∥∥
H∞

and∥∥∥Ge

∥∥∥
H∞
≤

∥∥∥G⊥∥∥∥H∞ ·
∥∥∥G̃L

r

∥∥∥
H∞
·
∥∥∥G̃R

r

∥∥∥
H∞

.
(5.8)

In the H2 pseudo-optimal case, when G̃R
r (s) and G̃L

r (s) are unity all-pass systems, equality

holds:∥∥∥Ge

∥∥∥
H2

=
∥∥∥G⊥∥∥∥H2

and
∥∥∥Ge

∥∥∥
H∞

=
∥∥∥G⊥∥∥∥H∞ . (5.9)

Proof. This lemma was partly presented in [124] for purely V-based decomposition (where

G̃L
r (s) ≡ I), but the proof carries over to the general case.

To start with, the equalities for unity all-pass systems G̃L
r (s) and G̃R

r (s) follow di-

rectly with Theorem 4.1, because both G̃R
r (s) and G̃R

r (s) are unitary matrices along the

imaginary axis in this case. The H∞ inequality is a direct consequence of the submulti-

plicativity of the H∞ norm [46]. From definition (2.11) of the H2 norm it follows generally

for some product Ge(s) = G⊥(s) · G̃r(s):∥∥∥Ge

∥∥∥2

H2
= 1

2π

∞∫
−∞

∥∥∥Ge(iω)
∥∥∥2

F
dω = 1

2π

∞∫
−∞

∥∥∥G̃L
r (iω) ·G⊥(iω) · G̃R

r (iω)
∥∥∥2

F
dω

≤ 1
2π

∞∫
−∞

∥∥∥G̃L
r (iω)

∥∥∥2

2
·
∥∥∥G⊥(iω)

∥∥∥2

F
·
∥∥∥G̃R

r (iω)
∥∥∥2

2
dω [108, 8.5.2(6)]

≤ 1
2π

∞∫
−∞

sup
ω

∥∥∥G̃L
r (iω)

∥∥∥2

2
·
∥∥∥G⊥(iω)

∥∥∥2

F
· sup

ω

∥∥∥G̃R
r (iω)

∥∥∥2

2
dω

= 1
2π

∞∫
−∞

tr
[
GH
⊥ (iω)G⊥(iω)

]
dω ·

∥∥∥G̃L
r

∥∥∥2

H∞
·
∥∥∥G̃R

r

∥∥∥2

H∞

=
∥∥∥G⊥∥∥∥2

H2
·
∥∥∥G̃L

r

∥∥∥2

H∞
·
∥∥∥G̃R

r

∥∥∥2

H∞
.

(5.10)

1For better readability, we omit the indices Σ and k in the following; the use of the error bounds is not

restricted to the iterative CURE scheme, anyway.
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Please note that after exclusively V- or exclusively W-based reduction, G̃L
r (s) or

G̃R
r (s), respectively, are identity proportional systems, so in (5.8) the corresponding factor∥∥∥G̃L
r

∥∥∥
H∞

or
∥∥∥G̃R

r

∥∥∥
H∞

amounts to one and can be omitted.

The above lemma is essential for the actual error bounds presented in the next section,

because instead of looking at the error model Ge(s), we only need to consider the system

G⊥(s) which is much more familiar due to the fact that it inherits the matrices E and

A from the HFM. In particular, a strictly dissipative realization of the HFM carries over

to G⊥(s). What is more: If, for instance, only V-based factorization of the error model

is performed (possibly several times), G⊥(s) also contains the original output matrix C

and therefore even shares its observability Gramian with the HFM.

It is true that a certain overestimation of the error can be introduced by the factoriza-

tion and Lemma 5.1. This is, for instance, the case, when the amplitude response of G̃L
r (s)

or G̃R
r (s) exhibits distinct peaks. The highest of them defines the H∞ norm of the system

and enters the integral in (5.10) as a worst-case estimate for the whole frequency range.

However, the lemma also states that in H2 pseudo-optimal reduction, no overestimation

occurs at all.

In fact, three basic situations have been observed in practice and will be presented

with the help of a numerical example. Figure 5.1 shows typical results for V-based

factorizations after three different reductions of the Clamped Beam benchmark model to

order n = 6. We can see the amplitude responses of the true error Ge(s) in red, of G⊥(s)

in dashed blue and of G̃R
r (s) in orange; G̃L

r (s) is ignored because |G̃L
r (s)| ≡ 1 (V-based

decomposition).

The first ROM (Figure 5.1a)) is the result of IRKA. G̃R
r (s) is all-pass and G⊥(s) exactly

describes the amplitude of Ge(s), so the bounds from Lemma 5.1 deliver the exact error

norm.

In the second case (Figure 5.1b)), IRKA was stopped prematurely. Although G̃R
r (s)

is not an all-pass system, the induced overestimation is acceptable—it amounts to about

4% in both H2 and H∞ norm—because the amplitude response of G̃R
r (s) only exhibits a

minor jitter.

Figure 5.1c), however, shows the result for Padé approximation about σ = 0. Here,

the actual H∞ norm of Ge(s) amounts to about 88 (39dB), whereas the product of the
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H∞ norms of G⊥(s) and G̃R
r (s) delivers 2200 (69dB), so one has an overestimation of

about 25 due to the peaks of G̃R
r (s) that do not correlate with the peaks of G⊥(s);

the H2 overestimation amounts to about 12. For that reason, it seems indeed advisable

to perform H2 pseudo-optimal reduction in order to avoid overestimation by the error

decomposition.
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Figure 5.1.: Various Overestimation of H∞ Error Norm due to Factorization of Error Model

Although Lemma 5.1 provides a first advance towards rigorous error estimation, the

problem remains that for high-order systems we cannot compute the norms ‖G⊥‖H2

and ‖G⊥‖H∞ . For the special case of strictly dissipative systems, however, global upper

bounds on the respective norms have recently been derived in [124] and will be discussed

in the following sections.

Before that, we remark that the local bound (5.4) is given by

‖Ge(s)‖ ≤ ‖G̃L(s)C⊥‖ · ‖(A− sE)−1‖ · ‖B⊥G̃R(s)‖, (5.11)

if the error model is factorized as in (5.7). In H2 pseudo-optimal reduction, this simplifies

to

‖Ge(s)‖ ≤ ‖C⊥‖ · ‖(A− sE)−1‖ · ‖B⊥‖, (5.12)

so the time-dependent residuals rb(t) and rc(t) do not have to be evaluated at all.
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5.3. Global H2 Error Bound for Systems in Strictly

Dissipative Realization

5.3.1. Upper Bound on H2 Norm of G⊥

Theorem 5.1 (cf. [124]). Let G(s) be given in strictly dissipative realization: E = LTL

is positive definite and µE(A) < 0 holds. Then an upper bound on the H2 norm of

G⊥(s) = (A,B⊥,C⊥,0,E) can be found in the following way.

Let P̂ ∈ RN×N be a positive semidefinite approximation of the controllability Gramian

of G⊥(s) and define the residual

RC := AP̂ET + EP̂AT + B⊥BT
⊥. (5.13)

Then an upper bound on the H2 norm of G⊥(s) is given by∥∥∥G⊥∥∥∥H2
≤
√

tr
[
C⊥P̂CT

⊥

]
+ 1
−2µE(A) · ‖L

−TRCL−1‖2 · ‖L−TCT
⊥‖

2
F . (5.14)

The dual form also holds true: For some positive semidefinite matrix Q̂, define

RO := AT Q̂E + ET Q̂A + CT
⊥C⊥.

Then an upper bound on the H2 norm of G⊥(s) is given by∥∥∥G⊥∥∥∥H2
≤
√

tr
[
BT
⊥Q̂B⊥

]
+ 1
−2µE(A) ·

∥∥∥L−TROL−1
∥∥∥

2
· ‖L−TB⊥‖2

F . (5.15)

Proof. We start from the formulation of the H2 norm given in (2.12), which reads∥∥∥G⊥∥∥∥2

H2
= tr

[
C⊥PCT

⊥

]
, (5.16)

where P is the controllability Gramian solving

AP̂ET + EP̂AT + B⊥BT
⊥ = 0. (5.17)

Given some arbitrary, positive semidefinite approximation P̂ of P, we split expression

(5.16) into two summands∥∥∥G⊥∥∥∥2

H2
= tr

[
C⊥P̂CT

⊥

]
+ tr

[
C⊥

(
P− P̂

)
CT
⊥

]
. (5.18)
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Let L be a Cholesky factor of E such that LTL = E. Then, the second summand fulfills

tr
[
C⊥(P− P̂)CT

⊥

]
= tr

[
C⊥L−1L(P− P̂)LTL−TCT

⊥

]
≤

∣∣∣tr [L(P− P̂)LT · L−TCT
⊥C⊥L−1

]∣∣∣
≤

N∑
i=1

σi
[
L(P− P̂)LT

]
· σi

[
L−TCT

⊥C⊥L−1
]

(cf. [112],[113],[72])

≤
N∑
i=1

max
j
σj
[
L(P− P̂)LT

]
· σ2

i

[
L−TCT

⊥

]
=

∥∥∥L(P− P̂)LT
∥∥∥

2
·
∥∥∥L−TCT

⊥

∥∥∥2

F
.

The remaining part of the proof is an extension of a result from [81] that allows to upper

bound the factor
∥∥∥L(P− P̂)LT

∥∥∥
2
—which contains the unknown Gramian P—with some

term that depends on the residual corresponding to P̂. To this end, we subtract (5.13)

from (5.17):

A
(
P− P̂

)
ET + E

(
P− P̂

)
AT + RC = 0. (5.19)

Now multiply (5.19) by L−T from the left and by L−1 from the right,

L−TA
(
P− P̂

)
ETL−1 + L−TE

(
P− P̂

)
ATL−1 + L−TRCL−1 = 0

⇔ L−TAL−1 L
(
P− P̂

)
LT︸ ︷︷ ︸

X

+ L
(
P− P̂

)
LT︸ ︷︷ ︸

X

L−TATL−1 + L−TRCL−1 = 0 (5.20)

This is again a Lyapunov equation whose solution X is unique and fulfills

L(P− P̂)LT = X =
∞∫
0
eL−TAL−1 t L−TRCL−1 eL−TATL−1 t dt

=⇒ ‖L(P− P̂)LT‖2 ≤
∞∫
0

∥∥∥eL−TAL−1 t
∥∥∥2

2
dt ·

∥∥∥L−TRCL−1
∥∥∥

2

≤
∞∫
0

[
eµ2(L−TAL−1) t

]2
dt ·

∥∥∥L−TRCL−1
∥∥∥

2
(Theorem 2.1)

=
∞∫
0
e2µE(A) t dt ·

∥∥∥L−TRCL−1
∥∥∥

2

= 1
−2 µE(A)

·
∥∥∥L−TRCL−1

∥∥∥
2

(µ < 0)

With this, the overall inequality (5.14) is shown. The dual formulation of the theorem

can be proven analogously (cf. [124]).

Together with Lemma 5.1 this theorem provides a global upper bound on the H2 norm

of the error system resulting from Sylvester-based model reduction.
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5.3.2. Analysis and Remarks on Implementation

For the following analysis, let us introduce some abbreviations in (5.14):∥∥∥G⊥∥∥∥2

H2
≤ tr

[
C⊥P̂CT

⊥

]
︸ ︷︷ ︸

k1

+ 1
−2µE(A) ·

∥∥∥L−TRCL−1
∥∥∥

2︸ ︷︷ ︸
k2

·
∥∥∥L−TCT

⊥

∥∥∥2

F︸ ︷︷ ︸
k3

.

The clue behind the H2 bound is to split the system norm into two parts: the first—i. e.,

k1—follows from some arbitrary approximation P̂ of the controllability Gramian, and the

second accounts for the deviation of P̂ from the real Gramian. The estimation of this latter

part, tr
[
C⊥

(
P− P̂

)
CT
⊥

]
, is only valid for systems in strictly dissipative realization and

is eventually derived from the worst case estimation (2.25) of the “contraction speed” of

the system (cf. Section 2.2). It includes several (rigorous) estimation steps, so it is clearly

the major source for possible overestimation. In fact, if P̂ exactly solves the Lyapunov

equation, then the residual RC accounts to zero, k2 = 0 holds and the bound delivers the

true norm. If, as the other extreme, one sets P̂ = 0, then k1 = 0 and RC = B⊥BT
⊥ and

the whole bound rests upon the dissipativity-based estimation. Indeed we will see in the

example below that huge overestimation can appear in this case.

Let us now consider the numerical aspects of the bounds. A MATLAB implementation

of both the controllability-based (5.14) and the observability-based (5.15) formulation of

the bound can be seen in Source 5.1. Some explanations and comments are in order.

We firstly note that k1 can be found purely by matrix-vector products. In addition,

the approximate Gramian is typically given by

P̂ = ZP̂rZH = ZLH
P̂rLP̂rZ

H , where Z ∈ CN×q̃, P̂r,LP̂r ∈ Cq̃×q̃, (5.21)

so one can write k1 even simpler

k1 = tr
[
(C⊥Z) P̂r (C⊥Z)H

]
=
∥∥∥C⊥ZLH

P̂r

∥∥∥2

F
. (5.22)

The constant k2 looks hard to compute at first sight. However, thanks to the low-rank

structure (5.21) of P̂, we do not need to calculate RC explicitly according to (5.13) nor

perform expensive operations on it (multiply by L−1 and compute 2-norm). Instead, we

note that due to symmetry, we can rewrite

k2 =
∥∥∥L−TRCL−1

∥∥∥
2

= max
i
σi
(
L−TRCL−1

)
(definition of 2-norm)

= max
i

∣∣∣λi (L−TRCL−1
)∣∣∣ (symmetry)

= max
i
|λi (RC ,E)| (generalized eigenvalue problem)
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So all we need to do is find the “largest magnitude” solution of a symmetric-definite

generalized eigenvalue problem formulated by products of sparse matrices. As was pointed

out in [124], this can be quite easily achieved by a power method. For more information

on large sparse eigenvalue problems, please refer to [136].

The computation of k3, finally, mainly requires p backward substitutions of high di-

mension. Should the Cholesky factor L not be available, k3 can be rewritten as

k3 =
∥∥∥L−TCT

⊥

∥∥∥2

F
= tr

[
C⊥E−1CT

⊥

]
. (5.23)

Note that in the original work [124], the factor corresponding to k3 read p ·
∥∥∥C⊥E−1CT

⊥

∥∥∥
2

instead, where p is the number of output variables. The new term, however, is tighter

and leads to a smaller bound in the presence of multiple outputs.

Please note that if zero is used as approximate Gramian, the bounds read∥∥∥G⊥∥∥∥2

H2
≤ 1
−2µE(A) ·

∥∥∥L−TB⊥
∥∥∥2

2
·
∥∥∥L−TCT

⊥

∥∥∥2

F
and

∥∥∥G⊥∥∥∥2

H2
≤ 1
−2µE(A) ·

∥∥∥L−TB⊥
∥∥∥2

F
·
∥∥∥L−TCT

⊥

∥∥∥2

2

and are identical in the SISO case.

5.3.3. Relative H2 Error Bound

The upper bound presented so far provides an estimate of the absolute error norm ‖Ge‖H2
.

In practice, however, one is often also interested in relative error information, i. e.

εH2,rel :=
‖Ge‖H2

‖G‖H2

.

To obtain such a relative error bound, it is suggested to take use of (3.27), according to

which an H2-pseudo-optimal ROM provides a lower bound on the H2 norm of the HFM.

Corollary 5.1. Given an upper bound εH2 on the absolute H2 norm of an error model

Ge(s), and an H2-pseudo-optimal ROM G∗r(s)—which is not necessarily associated with

Ge(s)—then a relative H2 bound is given by

εH2,rel ≤ εH2,rel := εH2

‖G∗r‖H2

.

Proof. The claim follows immediately with (3.27).

Note that the benefit of H2 pseudo-optimal reduction is therefore threefold. First of

all, we avoid overestimation caused by the error factorization in Lemma 5.1 due to the
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Source 5.1: Evaluation of H2 Error Bound

 function bndH2Con = BoundH2Con(A,B,C,E,mu,L_E,P_E,Z,L_Prh)
 % Bound on H2 norm of strictly dissipative system - Approx. Controllability Gramian
 %   Input:  A,B,C,E:  HFM matrices;
 %           mu:       Generalized Spectral Abscissa (must be negative!)
 %           L_E,P_E:  Cholesky factors of E
 %           Z,L_Prh:  Low-Rank Cholesky factor of approx. Gramian: P ~ Z*L_Prh'*L_Prh*Z'
 %   Output: bndH2Con: Upper bound on H2 norm of (A,B,C,0,E)
 % (c) 2014 Heiko K.F. Panzer, Tech. Univ. Muenchen.
% This file is published under the BSD 3-Clause License. All rights reserved.


 k_1 = norm(C*Z*L_Prh','fro')^2;
 R_C = @(x) (A*(Z*((L_Prh'*L_Prh)*(Z'*(E*x))))+(x'*A*Z*(L_Prh'*L_Prh)*Z'*E)'+B*(B'*x));
 k_2 = abs(eigs(R_C, size(A,1), E, 1, 'LM', struct('issym', true)));
 C_E = (L_E'\(P_E'*C'))';  k_3 = norm(C_E, 'fro')^2;
 bndH2Con = sqrt(k_1 + k_2*k_3/(-2*mu));

 function bndH2Obs = BoundH2Obs(A,B,C,E,mu,L_E,P_E,Z,L_Qrh)
 % Bound on H2 norm of strictly dissipative system - Approx. Observability Gramian
 %   Input:  A,B,C,E:  HFM matrices;
 %           mu:       Generalized Spectral Abscissa (must be negative!)
 %           L_E,P_E:  Cholesky factors of E
 %           Z,L_Qrh:  Low-Rank Cholesky factor of approx. Gramian: Q ~ Z*L_Qrh'*L_Qrh*Z'
 %   Output: bndH2Obs: Upper bound on H2 norm of (A,B,C,0,E)
 % (c) 2014 Heiko K.F. Panzer, Tech. Univ. Muenchen.
% This file is published under the BSD 3-Clause License. All rights reserved.


 k_1 = norm(L_Qrh*Z'*B,'fro')^2;
 R_O = @(x) (E*(Z*((L_Qrh'*L_Qrh)*(Z'*(A*x))))+(x'*E*Z*(L_Qrh'*L_Qrh)*Z'*A)'+C'*(C*x));
 k_2 = abs(eigs(R_O, size(A,1), E, 1, 'LM', struct('issym', true)));
 B_E = L_E'\(P_E'*B); k_3 = norm(B_E, 'fro')^2;
 bndH2Obs = sqrt(k_1 + k_2*k_3/(-2*mu));

all-pass property of G̃L
r (s) and G̃R

r (s). Secondly, we simply have ‖Ge(s)‖H2
= ‖G⊥‖H2

.

And finally, the resulting ROM provides a relative error bound as soon as an absolute

one is known. In fact, the additional overestimation introduced by Corollary 5.1 is very

minor even if G∗r(s) is only a mediocre approximant of Gr(s). Assume, for instance, a

considerable deviation of 20%: ‖G−G∗r‖H2
= 0.2 · ‖G‖H2

. Then,

‖G∗r‖H2
=
√
‖G‖2

H2
− ‖G−G∗r‖

2
H2

=
√

0.96 · ‖G‖H2
≈ 0.98 · ‖G‖H2

.

Accordingly, the additional overestimation amounts to 1√
0.96 − 1 ≈ 2%. For a more

“serious” ROM with an error of 1% or less, the overestimation is below 10−4.

To conclude, in practical cases the additional overestimation introduced by the relative

H2 bound is perfectly negligible in comparison to the conservativeness of the absolute

upper bound.
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5.3.4. Time Domain Envelopes

Having found an upper bound on the H2 norm of the error system, we can use this bound

for the derivation of envelopes in the time domain, understanding the reduction as an

uncertainty.

More precisely, if we use the ROM to simulate the system output yr(t) resulting from

a given input signal u(t), we are interested in the maximal deviation between the high

fidelity output signal y(t) and its approximant yr(t). As their difference ye(t) = y(t) −

yr(t) is the output of the error system when u(t) is applied, we can use the fact that the

H2 norm is related to induced norms which allow us to upper bound some norm on ye(t)

given some norm of u(t). In fact, there are several induced norms [8, 39], which may be

suitable for a given application. We only consider one of them in the following.

Proposition 5.1 (cf. [10]). Let u(t) be a finite energy input signal with u(t) = 0 for t < 0

and let y(t), yr(t), and ye(t) be the corresponding output signals of the original, reduced,

and error model, respectively. Then,

y(t) ∈
[
yr(t)−∆, yr(t) + ∆

]
∀t ≥ 0, (5.24)

where

∆ := ‖ye(·)‖(∞,∞) = max
t
‖ye(t)‖∞ ≤ εH2 · ‖u(·)‖(2,2) := εH2 ·

√∫∞
0 ‖u(t)‖2dt. (5.25)

Proof. The H2 norm is related to the induced ‖G(·)‖2,∞ norm (see [8] for details).

‖ye(·)‖(∞,∞) = max
t
‖ye(t)‖∞ ≤

√
max
i

diagi
[
CPCT

]
· ‖u(·)‖(2,2)

≤
√

tr
[
CPCT

]
· ‖u(·)‖(2,2) = ‖Ge‖H2

· ‖u(·)‖(2,2)

≤ εH2 ·
√∫∞

0 ‖u(t)‖2dt.

Accordingly, time domain simulations with a ROM whose associated H2 error is upper

bounded by εH2 can be used to envelope the output signal of the HFM; the smaller and

tighter the error bound, the thinner the envelope.
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5.4. Global H∞ Error Bound for Systems in Strictly

Dissipative Realization

5.4.1. Upper Bound on H∞ Norm

Theorem 5.2 ([124]). Let G(s) be an LTI system in strictly dissipative realization and

define S := −A − AT . Then G⊥(s) in (5.7) is strictly dissipative as well and its H∞
norm is upper bounded by∥∥∥G⊥∥∥∥H∞ ≤

∥∥∥C⊥S−1B⊥
∥∥∥

2
+
√∥∥∥BT

⊥S−1B⊥
∥∥∥

2

∥∥∥C⊥S−1CT
⊥

∥∥∥
2
. (5.26)

Proof. The elaborate proof was given in [124], but it is quite technical and had to be

presented in a very compact form due to space limitations. For that reason, and also in

order to be self-contained, it is repeated in Appendix A.2 with some additional explana-

tions.

5.4.2. Remarks and Implementation

In contrast to the H2 upper bound, the H∞ upper bound in Theorem 5.2 is unique and

offers no additional degrees of freedom.

As to the implementation, please note that the inverse S−1 is, of course, not required

explicitly, but the numerical effort reduces to the solution of linear systems of equations.

The best way to do so with regard to effort and precision is to compute the Cholesky

factor of S = LT
SLS once and a priori—if possible. Then,∥∥∥G⊥∥∥∥H∞ ≤

∥∥∥C⊥L−1
S︸ ︷︷ ︸

C⊥,S

L−TS B⊥︸ ︷︷ ︸
B⊥,S

∥∥∥
2

+
√∥∥∥BT

⊥L−1
S︸ ︷︷ ︸

BT
⊥,S

L−TS B⊥︸ ︷︷ ︸
B⊥,S

∥∥∥
2
·
∥∥∥C⊥L−1

S︸ ︷︷ ︸
C⊥,S

L−TS C⊥︸ ︷︷ ︸
CT
⊥,S

∥∥∥
2

=
∥∥∥C⊥,SB⊥,S

∥∥∥
2

+
∥∥∥B⊥,S∥∥∥2

·
∥∥∥C⊥,S∥∥∥2

.

(5.27)

MATLAB code can be seen in Source 5.2. It is assumed that the Cholesky factor LS

of S is known, which is for instance a side product of Source 2.1.

5.4.3. Relative H∞ Error Bound

Similarly to the H2 case, a bound on the relative H∞ error εH∞,rel := ‖Ge‖H∞
‖G‖H∞

can be quite

easily derived as soon as an absolute upper bound is known.
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Source 5.2: Evaluation of H∞ Error Bound

 function bndHinf = BoundHinf(L_S,P_S,B,C)
 % Upper bound on H-infinity norm of strictly dissipative system
 %   Input:  L_S,P_S: Cholesky factor of S=-A-A', and permutation matrix;
 %           B,C    : Input and output matrix
 %   Output: bndHinf: Upper bound
 % (c) 2014 Heiko K.F. Panzer, Tech. Univ. Muenchen.
% This file is published under the BSD 3-Clause License. All rights reserved.

 B_S = L_S'\(P_S'*B);
 C_S = (L_S'\(P_S'*C'))';

 bndHinf = norm(full(C_S*B_S)) + norm(full(B_S))*norm(full(C_S));

Corollary 5.2. Let εH∞ be an upper bound on the absolute H∞ norm of an error model

Ge(s), and let ω∗ ∈ R be the frequency for which the amplitude response of the ROM

Gr(s) reaches its maximum, i. e. ‖Gr(iω∗)‖2 = ‖Gr‖H∞. Then the relative H∞ error

εH∞,rel is upper bounded by

εH∞,rel ≤ εH∞,rel := εH∞
‖G(iω∗)‖2

.

Proof. The proof is obvious as ‖G(iω)‖2 ≤ ‖G‖H∞ for all ω including ω∗.

In fact one may use any real frequency ω, evaluate the HFM at iω and use the 2-norm

of the resulting block moments instead of ‖G‖H∞ to obtain an upper bound on εH∞,rel.

However, the farer ω is from the frequency where ‖G(iω)‖ exhibits its peak, the greater is

the overestimation introduced. For that reason, the idea here is to approximate the peak

frequency of the HFM by the peak frequency of the ROM, which, of course, will fairly

coincide for a reasonably good approximant Gr(s).
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5.5. Error-Controlled Model Reduction

5.5.1. Change of Paradigm

So far in this chapter, global a posteriori upper bounds on the absolute and relative H2

and H∞ error have been presented. These bounds are rigorous and easy to compute, yet

in practical settings it is not quite satisfactory to find out a posteriori that the computed

ROM does not comply with the requirements such that the reduction process has to be

repeated in order to find a better approximant. Rather, one would like to a priori define

certain specifications which the ROM has to fulfill, like, for instance, a maximum of 1%

relative deviation with respect to the H∞ norm.

Remember that the CURE framework can partially mend this problem, because in

fact one does not have to start from scratch with the search for a ROM, but one can

incorporate the revealed model into the overall ROM and perform additional reduction

steps until the given condition is satisfied. In fact, the main motivation for the incremental

CURE framework was its potential to choose the reduced order “on the fly”.

But unfortunately, the error bounds suffer from a crucial drawback: they introduce

substantial overestimation for standard reduction techniques, as could already be seen

in [124]. This means that the true error norm values can be orders of magnitude smaller

than what the error bounds suggest. Though this is not a problem per sé, one may easily

end up with an error expression certifying that some relative error is below 1000%, which

of course is of no practical value at all.

Also, there is no guarantee that during cumulative reduction the error bounds do

decay at all (see below Figure 5.3a)). Indeed, it was suggested in Sections 4.3.4 and 4.4

to perform H2 optimal model reduction in each step of the CURE framework, which

has the positive side effect that according to Lemma 5.1, one source of overestimation

is eliminated. But otherwise, H2 model reduction turns out to mostly yield even more

overestimation than less sophisticated methods like Padé approximation about σ = 0.

Accordingly, the policy that was followed in this thesis so far—finding shifts that min-

imize the true H2 error—does not seem to be constructive with regard to the goal of

finding a ROM which satisfies certain conditions on the error. In addition, given the fact
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Figure 5.2.: Change of Paradigm for Error-Controlled Model Reduction by CURE (Schematic)

that the true error remains unknown, and the only reliable criteria to hold on to are the

error bounds, the following change of paradigm seems advisable:

During cumulative reduction, find ROMs such that the error bounds decrease as effec-

tively as possible, no matter how this affects the true error norms.

This concept will be referred to as error-controlled model reduction. Figure 5.2 is an

attempt to illustrate it. The left part schematically shows results as they follow from

usual model reduction: The true error norm is effectively decreased in each iteration,

but the error bound—which is the only available quantity—does not constitute useful

information. In Figure 5.2b), on the other hand, cumulative model order reduction is

performed such that the bound decays in each step. The decline of the true error may not

be as fast as in Figure 5.2a), but it is known to lie below the bound.

To sum up: For effective error-controlled model reduction, one must concentrate on

iteratively lowering the bound of interest, even if this may diminish the decay of the true

error.
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5.5.2. How to Control Overestimation of H2 Error Bound

We start with considerations on the H2 case and assume without loss of generality that

V-based decomposition of the error is performed; all results carry over to W-sided fac-

torization.

Recall that the error bound (5.8) is given by∥∥∥Ge

∥∥∥
H2
≤

∥∥∥G⊥∥∥∥H2
·
∥∥∥G̃R

r

∥∥∥
H∞

and we can use (5.14) and (5.15) to upper bound the first factor while the second is easy

to obtain. Let us now exemplarily concentrate on formulation (5.15) of the H2 bound:∥∥∥G⊥∥∥∥2

H2
≤ tr

[
BT
⊥Q̂B⊥

]
+ 1
−2µE(A) ·

∥∥∥L−TROL−1
∥∥∥

2
·
∥∥∥L−TB⊥

∥∥∥2

F
(5.28)

It turns out that for reasonable approximate Gramians Q̂ (and even for Q̂ = 0), the

first summand is comparably small and does therefore not essentially contribute to the

overestimation the bound exhibits. In fact, even for mediocre Q̂ the term is often close

to the true squared error norm.

Indeed, it is the second summand which is responsible for the overestimation; we shall

therefore look at it more closely. We note that its first two factors are not dependent on

the ROM: 1
−2µE(A) is a property of the HFM matrices A and E only, while

∥∥∥L−TROL−1
∥∥∥

2

is determined by the approximate Gramian Q̂, which we choose independently of the

ROM. Accordingly, it is only the third factor we can influence, namely by finding a ROM

such that the singular values of the resulting term BT
⊥E−1B⊥ become as small as possible.

Proposition 5.2. Let V solve Sylvester equation (3.3) and set W := V. Then the

input matrix B⊥ of G⊥(s) in the error factorization (4.6) fulfills
∥∥∥L−TB⊥

∥∥∥
F
≤
∥∥∥L−TB

∥∥∥
F
.

Proof. W := V leads to orthogonal projection with respect to the E−1 inner product:∥∥∥L−TB⊥
∥∥∥2

F
= tr

[
BT
⊥E−1B⊥

]
= tr

[
(B− EVE−1

r Br)TE−1(B− EVE−1
r Br)

]
= tr

[
BTE−1B− 2BTE−1EVE−1

r Br + BT
r E−Tr VTETE−1EVE−1

r Br

]
= tr

[
BTE−1B− 2 BTV︸ ︷︷ ︸

BT
r

E−1
r Br + BT

r E−Tr VTEV︸ ︷︷ ︸
Er

E−1
r Br

]

= tr
[
BTE−1B

]
− tr

[
BT
r E−1

r Br

]
︸ ︷︷ ︸

≥0

.
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Accordingly, applying this E−1-orthogonal projection in every iteration of the CURE

framework delivers monotonic decay of
∥∥∥L−TB⊥

∥∥∥2

F
and therefore—under the above as-

sumptions—of the upper bound on ‖G⊥‖H2
. However, the bound on the actual error

norm ‖Ge‖H2
also contains the factor ‖G̃R

r ‖H∞ . It was already discussed in Section 5.2

that in general this term can also induce massive overestimation. For H2 pseudo-optimal

reduction, however, it amounts to one and introduces no additional overestimation at all.

So in order to guarantee monotonic decay of the error bound in the CURE framework,

we could—in addition to the condition V = W—demand that the Krylov subspace

must fulfill

λi(SV ) = −λi(VTAV,VTEV), (5.29)

where SV follows from Sylvester equation (3.3). Remember that the eigenvalues of

SV are precisely the shifts used for the Krylov subspace, so eventually the conditions

read as follows: We must find a Krylov subspace such that the employed expansion

points are the mirror images of the eigenvalues of the ROM which results from one-sided

projection.

It is quite clear that this is not fulfilled for arbitrary shifts. Indeed, it sounds very

much alike what one does when running IRKA, with the only difference that in IRKA,

both V and W span Krylov subspaces, while now the input Krylov subspace must

be used for either of the matrices V and W. However, we can very easily modify IRKA

appropriately.

In fact, it turns out that this one-sided version of IRKA exhibits similar convergence

properties as its ancestor, so a shift configuration fulfilling the given conditions can be

found as well as a local H2 optimum. This means that, unfortunately, the same difficulties

as in standard IRKA may arise: convergence is not monotonic and may take very long

or sometimes not occur at all. In such a case, one may also stop IRKA prematurely and

follow up PORK to obtain an H2 pseudo-optimum. The ROM is then not exactly the

result of an orthogonal projection, but B⊥ may still be “shorter” than B such that the

error bound decreases.

For proof of concept, we consider the numerical example of the continuous heat equa-

tion [38]. It only has order N = 200, so we can easily compare the values of the error
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Figure 5.3.: Simulation Results for H2 Error-Controlled MOR of Continuous Heat Equation

bound to the true respective error. We use the CURE scheme during which we compute

ROMs of order ni = 2 that are iteratively accumulated based on V-type error decompo-

sition. For the actual reduction we use two different approaches: firstly standard IRKA

and secondly the modified version of IRKA where we set W = V. After each step, the

H2 error bound is evaluated, where for simplicity we just set Q̂ = 0.

The results after some iterations are shown in Figure 5.3. In fact, they very much

resemble the plots in Figure 5.2: While standard H2 optimal reduction improves the true

error, the bound does not decay. The modified IRKA version with orthogonal projection,

however, achieves fast decay of the bound with slightly deteriorated true error.

So far we assumed V to be a Krylov subspace and chose W = V. Therefore, we were

only allowed to apply V-based error decomposition (4.6). Of course, everything carries

over to W solving Sylvester equation (3.4) and the corresponding factorization (4.7)

of the error model. In fact, it turns out that in practice, it is most efficient to use both

variants and alternate between them, because then both B⊥ and C⊥ are shortened during

CURE, while in purely input type factorization, for instance, C⊥ would always remain

the output matrix C of the HFM.
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5.5.3. How to Control Overestimation of H∞ Error Bound

Let us now turn to the H∞ case and again consider V-based decomposition. Here, the

upper bound (5.26) on ‖G⊥‖H∞ takes an even simpler form than in the H2 case:∥∥∥G⊥∥∥∥H∞ ≤
∥∥∥CS−1B⊥

∥∥∥
2

+
√∥∥∥BT

⊥S−1B⊥
∥∥∥

2
·
√∥∥∥CS−1CT

∥∥∥
2
. (5.30)

Obviously, only B⊥ depends on the ROM, but it is not straightforward to say how

one should try to influence it, because one would like to minimize
∥∥∥CS−1B⊥

∥∥∥
2
and∥∥∥BT

⊥S−1B⊥
∥∥∥

2
at the same time. However, one can easily show that∥∥∥CS−1B⊥
∥∥∥

2
≤
√∥∥∥BT

⊥S−1B⊥
∥∥∥

2
·
√∥∥∥CS−1CT

∥∥∥
2

(5.31)

holds because of the Cauchy-Schwarz inequality. Introducing the Cholesky decom-

position S = LT
SLS, we can therefore replace the upper bound by yet another upper

bound,∥∥∥G⊥∥∥∥H∞ ≤ 2 ·
√∥∥∥BT

⊥S−1B⊥
∥∥∥

2
·
√∥∥∥CS−1CT

∥∥∥
2

= 2 · ‖L−TS B⊥‖2 · ‖L−TS CT‖2, (5.32)

the second factor of which is independent of the reduction. Note that the worst case

additional overestimation introduced by this step is a factor of two.

However, if we succeed in lowering ‖L−TS B⊥‖2, then eventually we also diminish the

actual bound and obtain more precise information on the error.

Remarkably, the task is highly similar to the problem in the H2 case: We want to find

an H2 pseudo-optimal ROM (otherwise, the factor ‖G̃R
r ‖H∞ can prevent the bound from

being tight) which at the same time guarantees that B⊥ becomes shorter with respect to

some norm. The only difference is that now we need to consider the S−1-norm instead of

the E−1-norm as above. But this can be done in a very similar way.

Proposition 5.3. Let V solve Sylvester equation (3.3) and set W := S−1EV, such

that WT = VTES−1. Then the input vector B⊥ of G⊥(s) in the error factorization (4.6)

fulfills
∥∥∥BT
⊥S−1B⊥

∥∥∥
2
≤
∥∥∥BTS−1B

∥∥∥
2
.

Proof. BT
⊥S−1B⊥ = (B− EVE−1

r Br)TS−1(B− EVE−1
r Br)

= BTS−1B− 2 BTS−1EV︸ ︷︷ ︸
BT
r

E−1
r Br + BT

r E−Tr︸ ︷︷ ︸
E−1
r

VTETS−1EV︸ ︷︷ ︸
Er

E−1
r Br

= BTS−1B−BT
r E−1

r Br︸ ︷︷ ︸
≥0

As BT
⊥S−1B⊥ ≥ 0, it must hold

∥∥∥BT
⊥S−1B⊥

∥∥∥
2
≤
∥∥∥BTS−1B

∥∥∥
2
.
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Quite like before, one way to suitably influence the error bound is to find a shift

configuration for which the ROM resulting from the given oblique projection isH2 pseudo-

optimal, i. e. the Krylov subspace V must fulfill (3.3) such that

λi(SV ) = −λi
(
VTES−1AV,VTES−1EV

)
∀i = 1 . . . n. (5.33)

So again, we can use a modification of IRKA, this time by defining W:=S\(E*V). Of course,

one can improve computational efficiency by calculating the Cholesky factor of S only

once and then using it during IRKA’s iterations as well as for the calculation of the error

bound. The computational overhead incurred into IRKA is then again minor.

Again, we consider the continuous heat equation for proof of concept. The procedure is

as above in Section 5.5.2, just that we set W := S−1EV in the second run, and compute

the H∞ norm instead of the H2 norm. The outcome is depicted in Figure 5.4 and exhibits

the same behavior as before; the upper bound on the H∞ error norm in the second case

is very tight, as Figure 5.4b) shows.
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Figure 5.4.: Simulation Results for H∞ Error-Controlled MOR of Continuous Heat Equation
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5.6. Optimization-based Decrease of Error Bounds

It was shown in the previous section that certain modifications of IRKA yield guaranteed

decrease of the error bounds, in case the respective algorithm converges. However, as

was already commented on in Section 4.4, IRKA (and its derivates, too) suffers from un-

steady convergence behavior. This was the motivation for the optimization-based descent

algorithm SPARK (Section 4.4.2), during which we concentrated on H2 pseudo-optimal

ROMs and used the cost functional J = ‖Ge‖2
H2
− ‖G‖2

H2
= −‖Gr‖2

H2
together with a

model function (Section 4.4.4) for efficiency.

The remainder of this section is therefore intended to present ideas for an optimization-

based alternative to the modified versions of IRKA, similarly to H2 model reduction by

MESPARK. The goal is to obtain a descent algorithm for fast and reliable reduction of

the error bounds during MOR with the CURE framework.

Again, we will focus on H2 pseudo-optimal reduction, because G̃L
r and G̃R

r are unity

all-pass elements then, and the error norm is bounded above by the respective upper

bound on ‖G⊥‖H2
or ‖G⊥‖H∞ .

5.6.1. Optimization of H2 Error Bound

For a start, we assume a SISO system. Then, the plain idea is to replace the cost functional

J = −‖Gr‖2
H2

by

JH2 := bT⊥E−1b⊥
bTE−1b

− 1, (5.34)

which describes the relative improvement of the squared upper bound on the H2 norm in

V-based error decomposition, assuming P̂ = Q̂ = 0.

Given some P̂ 6= 0 or Q̂ 6= 0, one might of course also use one of the actual error bounds

as J , but this cost functional would increase complexity and not be smooth with respect

to the optimization variables a, b. Remember at this point, that the one-sided IRKA

algorithm described in Section 5.5.2 had a very similar objective (lowering bT⊥E−1b⊥) and

worked out well, too.

In fact, using the new cost functional (5.34) does not change much in comparison to

what was presented in Section 4.4. Again, PORK is used to find ROMs of order q = 2,

and we parametrize all H2 pseudo-optimal ROMs by two positive real numbers a, b, like
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in Section 4.4.2. This yields σ1,2 := a±
√
a2 − b, V =

[
1
2A−1

σ1 b + 1
2A−1

σ2 b, A−1
σ2 EA−1

σ1 b
]
,

and br = [−4a, −4a2]T as in Lemma 4.2 and Corollary 4.2. Accordingly, (5.34) can be

directly evaluated.

Gradients and Hessian, too, can be derived similarly to Section 4.4.3. The terms

become slightly more complicated, because we need the partial derivatives of the N × 2-

matrix V, and not only those of the 2-dimensional vector cr = cV as in Theorem 4.3.

But the derivatives are feasible; in fact, the formulas of Theorem 4.3 can be adapted in a

straightforward way by omitting the factor c on the left.

However, the computation of gradient and Hessian requires several LSE solves, there-

fore it is even more important than during H2 model reduction to use a model function

which avoids as many costly large-scale operations as possible. To guarantee stability of

the model function, one-sided projection is recommended.

The new cost functional then also has a nice feature: it is independent of the out-

put matrix C of the HFM. Therefore, it directly extends to SIMO systems without any

changes. And of course, it can be used in the MISO case as well by using the dual

formulation

JH2 := c⊥E−1cT⊥
c E−1cT

− 1. (5.35)

As to the implementation, the few necessary modifications starting from the standard

MESPARK algorithm Source 4.4 are summed up in Source A.1; the implementation of

the cost functional CostFunctionH2Bound is given in Source A.2; both can be found in

the appendix.

Remember that the H2 objective function has the nice property that for H2 pseudo-

optimal reduction it is negative in the whole parameter range; so even if no optimum is

found and the algorithm is stopped before convergence, PORK makes sure that the error

norm decays anyway due to Proposition 4.3. In fact, the new cost functional (5.34) has

the same property:

Proposition 5.4. The upper bound on the H2 norm of the error decreases monotonically

in the CURE framework if H2 pseudo-optimal reduction is applied in every step and

Q̂ = 0:

JH2(a, b) < 0 ∀a, b ∈ R+.
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Proof. We consider the numerator J ∗H2 of JH2 , as the denominator is positive.

J ∗H2 = (b− EVE−1
r br)TE−1(b− EVE−1

r br)− bTE−1b

= −2bTr VTb + bTr VTEVbr
= −2 tr

[
VTbbTr

]
+ tr

[
bTr VTEVbr

]
= 2 tr

[
VTAVPr

]
+ 2 tr

[
VTEVPrAT

r

]
+ tr

[
VTEVbrbTr

]
(because of (3.37))

= 2 tr
[
VTAVPr

]
+ tr

[
VTEVPrAT

r

]
+ tr

[
ArPrVTEV

]
+ tr

[
VTEVbrbTr

]
= 2 tr

[
VTAVPr

]
+ tr

[
VTEV

(
PrAT

r + ArPr + brbTr
)]

= 2 tr
[
VTAVLT

P̂rLP̂r

]
= 2 tr

[
LP̂rVTAVLT

P̂r

]
= tr

[
LP̂rVT (A + AT )VLT

P̂r

]
< 0

The new cost functional therefore resembles the one discussed in Section 4.4 and typi-

cally looks like Figure 4.7. Accordingly, starting from an arbitrary initial value, optimiza-

tion should yield a local minimum under mild assumptions. In fact, a fast decrease of the

upper H2 error bound has been observed in many applications.

5.6.2. Optimization of H∞ Error Bound

To reduce the upper bound on the H∞ norm iteratively, one can use the cost functional

JH∞ := bT⊥S−1b⊥
bTS−1b

− 1 = −2bTS−1EVbr + bTr VTES−1EVbr
bTS−1b

, (5.36)

which describes the relative improvement of the squared upper bound (5.32) on the H∞
norm,∥∥∥G⊥∥∥∥H∞ ≤ 2 · ‖L−TS B⊥‖2 · ‖L−TS CT‖2, (5.37)

in V-based error decomposition. Again, we do not use the tighter bound (5.32) because

of discontinuities; minimization of JH∞ is also related to the objective of the modified

IRKA with W = S−1EV in Section 5.5.3.

The formulas and considerations from the previous subsection carry over quite similarly,

because for the computation of JH∞ , its gradient, and Hessian matrix, one needs b⊥ and

its partial derivatives.

Unfortunately, there is a crucial difference to the cost functionals that minimize the H2

error or the upper H2 error bound: JH∞(a, b) is not necessarily negative for all a, b. In
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Figure 5.5.: Typical Shape of Cost Functional JH∞(a, b)

fact, two highly problematic situations can occur: Firstly, there may be no configuration

at all which would lead to a decrease of the H∞ error bound; so any H2 pseudo-optimal

reduction leads to an increase of the error bound, which is counterproductive, of course.

Secondly, the cost functional may be shaped as can be seen in Figure 5.5 (the light blue

plane indicates zero level). Even though there are regions where JH∞ is negative, they

are not found by the optimizer if the initial position is chosen disadvantageously.2

Obviously, minimizing the upper bound on theH∞ norm is therefore a more challenging

task and will need further research.

2Typically, the optimizer does not move towards a minimum, but towards the boundary. The reason is

that for a→∞, b→ 0, or b→∞, the cost functional approaches zero, because the ROM tends to zero

if the expansion points move towards infinity or the imaginary axis. Clearly the optimizer prefers zero

to a positive JH∞ at an unsuitable initial condition.



6. Example of Use: Second Order Systems

The error bounds presented in the previous chapter only apply to strictly dissipative state

space models and are therefore restrictive in their assumptions. This chapter is dedicated

to certain second order systems, which can often be formulated in such a state space

realization and thus constitute an interesting area of application. We will see how state

space methodology (including the newly introduced CURE framework) can be applied

efficiently to second order systems in general, and how the strictly dissipative realization

derived in [123, 127] leads to H∞ and H2 error bounds for second order systems with

positive definite mass, damping, and stiffness matrices.

6.1. Preliminaries on Second Order Systems

Definition 6.1. A second order system is given by

G(s) :

 M z̈(t) + D ż(t) + K z(t) = F u(t) ,

y(t) = Cp z(t) + Cv ż(t),
(6.1)

where z(t) ∈ RN̂ , u(t) ∈ Rm, and y(t) ∈ Rp contain the N̂ displacement variables,

m inputs, and p outputs of the system, respectively. F ∈ RN̂×m and Cp,Cv ∈ Rp×N̂ denote

the input, position-based and velocity-based output matrix, respectively. M,D,K ∈ RN̂×N̂

are called mass, damping, and stiffness matrix.

In the following, we assume M, D, and K to be symmetric positive definite:

M = MT > 0, K = KT > 0, D = DT > 0. (6.2)

Admittedly, these assumptions are restrictive. In the electrical domain, for instance,

a full-rank high-dimensional damping matrix belongs to a system with extremely many

dampening (resistive) elements—and in fact, this is not necessary for asymptotic stability;
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a rank one damping matrix can also be pervasive, as it is e. g. the case in the telegraph

equation.

In structural mechanics, on the other hand, friction is often modeled as Rayleigh

damping (also: proportional damping), meaning

D = αK + βM, α, β ≥ 0. (6.3)

For positive definite mass and stiffness matrices, this implies D > 0 unless α = β =

0. Accordingly, many FEM models of microelectronic-mechanical (MEMS) devices and

lightweight structures fulfill the definiteness conditions (6.2).

6.2. Strictly Dissipative State Space Realizations of

Second Order Systems

A standard realization of second order systems in state space is given by
E︷ ︸︸ ︷R 0

0 M

 ż(t)
z̈(t)

 =

A︷ ︸︸ ︷ 0 R
−K −D

 z(t)
ż(t)

+

B︷ ︸︸ ︷0
F

u(t),

y(t) =
[

Cp Cv

]
︸ ︷︷ ︸

C

z(t)
ż(t)

.
(6.4)

where R ∈ RN̂×N̂ is an arbitrary regular matrix, so that the state vector consists of the

positions z and velocities ż [138]. The order of the state space model is of course N = 2N̂ .

The simplest choice is naturally R = IN̂ , but Salimbahrami observed that R = K de-

livered a realization with favorable properties with respect to stability preservation [138].

In fact, the resulting matrix E is positive definite while the symmetric part of A,

sym A =
 0 0

0 −D

 ,
is clearly negative semidefinite, which characterizes a (not strictly) dissipative realization

with µE(A) = 0 and guarantees preservation of stability in one-sided projection.

But the application of the error bounds from Chapter 5 requires a strictly dissipative

realization, i. e. µ = µE(A) < 0. According to Lemma 2.2, finding such a realization is

related to solving an N -dimensional Lyapunov inequality and therefore not possible for
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general large-scale systems. For the special case of second order systems, however, the

problem was reconsidered in [127] and [123]. Indeed, it is possible to find a strictly dissi-

pative state space formulation in this case. The results are summarized in the following.

Starting from realization (6.4) above, one pre-multiplies the state equation from the

left by a matrix

T :=
 I γI
γMK−1 I

 ∈ RN×N , (6.5)

which depends on the real positive scalar γ ∈ R+. This does not affect the solution x(t)

and is neither a state transformation, but merely a change of realization, as only the “row

information” is re-ordered.

Theorem 6.1 ([123, 127]). The matrices

Ã =

−γK K− γD

−K −D + γM

 , Ẽ =

 K γM

γM M

 , B̃ =

γ F

F

 , C̃ =
[

Cp Cv

]
(6.6)

define a strictly dissipative realization (Ã, B̃, C̃,0, Ẽ) of the second order system (6.1), if

the second order matrices M,D, and K are symmetric positive definite and

0 < γ < γ∗ := λmin

[
D
(
M + 1

4 DK−1D
)−1

]
(6.7)

is fulfilled, where γ∗ is the smallest solution of the generalized eigenvalue problem

Dv = λ ·
(
M + 1

4 DK−1D
)

v, λ ∈ R, v ∈ RN̂ \ {0}. (6.8)

Although the inverse stiffness matrix appears in the above formula, it is not necessary

to compute K−1 in order to determine
(
M + 1

4 DK−1D
)

v. Instead, one can perform

a Cholesky decomposition of K and equip the sparse eigen-solver with an efficient

routine to compute LSE solves. As we only need to find one extremal eigenvalue and the

problem is real symmetric, it can be solved very easily with the help of a standard power

method [136].

A possible implementation is given in Source 6.1. It configures the eigs command

to solve the inverse problem of (6.8) and to exploit the realness and symmetry; the

start vector is determined to avoid random influences (see [150] eigs). For the Butterfly

Gyroscope, the computation of γ∗ required only 1.1s.
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Source 6.1: Computation of γ∗ in MATLAB

 function gma = gamma_max(M,D,K)
 % Maximal gamma for Strictly Dissipative Realization of 2nd Order System
 %   Input:  M,D,K:      matrices of second order system
 %   Output: gamma_max:  maximal gamma. The recommended choice for gamma
 %                           in weakly damped systems is gamma/2.
 % (c) 2014 Heiko K.F. Panzer, Tech. Univ. Muenchen.
% This file is published under the BSD 3-Clause License. All rights reserved.

 [L_K,x,P_K] = chol(sparse(K));      % direct solver
 if x, warning('Cholesky decomposition not successful.'); end

 Kinv = @(x) P_K*(L_K\(L_K'\(P_K'*x)));
 % Kinv = @(x) pcg(K,x,1e-8,20,K);       % iterative solver
 gamma_fun   = @(x) (M*x + D*Kinv(D*x/4));
 opts        = struct('issym', true, 'isreal', true, 'v0', diag(K));
 gma         = 1/eigs(gamma_fun, size(D,1), sparse(D), 1, 'LA', opts);

Accordingly, we have found a convenient way how second order systems with positive

definite mass, damping, and stiffness matrices can be expressed in strictly dissipative

state space realizations, because any value of γ within the valid interval ]0; γ∗[ delivers a

realization with µE(A) < 0.

For proof of concept, consider once more the ISS benchmark model we have already

used in Section 2.2.3. In fact, it takes the form of the standard realization (6.4) with R = I

(M = I), which is why it is not dissipative. Setting R := K changes the plot ‖eAt‖E
from what we saw in Figure 2.1b) to a macroscopically smooth curve as in Figure 6.1a),

which however shows horizontal tangents in microscopic scale (see Figure 6.1b)), and is

therefore not strictly dissipative. Using realization (6.6) with γ = 1
2γ
∗ yields the perfectly

smooth curve in Figure 6.1c).

Generalizations to singular mass matrices and to damping matrices with skew-sym-

metric components were presented in [123], but will be omitted in the following. The case

of singular damping, however, remains an open problem.

With regard to model reduction, the knowledge of a strictly dissipative realization has

two important consequences. It allows us to apply the error bounds of Chapter 5 (and

benefit from the stability preservation property, cf. Lemma 2.4). But on the other hand,

the dimension of the model is doubled and, in addition, sparsity of the new state space

matrices (6.6) is compromised by the additional entries in comparison to the standard

realization (6.4), which, of course, can have massive impact on the numerical effort.
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Figure 6.1.: Matrix Exponential of ISS Benchmark Model in Dissipative Realization

The remainder of this chapter therefore shows how the increase in numerical complexity

can be inhibited and how the error bounds can be used efficiently.

To conclude this section, it is noted that there exists a generalization of the transfor-

mation (6.5). One can in fact introduce an additional parameter ϑ ∈ R+ and replace T

from (6.5) by

T :=

 I γI + ϑKM−1

γMK−1 + ϑI I

 , (6.9)

which leads to state space matrices

Ã =

−(γM + ϑK)M−1K K− (γM + ϑK)M−1D

−K −D + (γM + ϑK)

 ,
Ẽ =

 K γM + ϑK

γM + ϑK M

 , B̃ =

 (γM + ϑK)M−1 F

F

 .
(6.10)

For simplicity, ϑ is set to zero in what follows.
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6.3. Efficient Application of State Space Methods

We will now try to apply the methods presented in Chapters 4 and 5 to the reduction of

second order systems, exploiting their particular structure. In a first step, we recall how

Krylov subspaces for standard state space realizations can be computed efficiently. Due

to invariance properties, these Krylov subspaces can be used directly for the reduction

of the strictly dissipative state space model, so that the computational overhead due to

the new realization is minimal. Finally, we focus on judicious ways to evaluate the H2

and H∞ error bounds.

6.3.1. Computation of Krylov Subspaces

In the following, we therefore recall the well-known fact that Krylov subspaces of models

in the particular form (6.4) can be computed far more easily with a two-level approach

than in the general unstructured case [54, 97, 137].

Consider, for instance, the SISO case or tangential interpolation as in Section 3.2.2.

The columns of V are defined recursively by equations of the form(
Ã− σẼ

)
vi = Ẽvi−1 ⇔

(
A− σE

)
vi = Evi−1,

where for i = 1 the right hand side is replaced by the input vector b̃ or B̃t or by b

or Bt, respectively. To solve such an LSE, one might perform an LU-decomposition of

(A− σE); yet its dimension is N = 2N̂ and the decomposition suffers from many fill-ins

due to the structure (see Figure 6.2), which drastically increases the demands on memory

and time; iterative solvers experience difficulties as well.

Instead, for matrices A and E as in (6.4) with R = K, we can divide vi into an upper

(“position”) and a lower (“velocity”) component and obtain
 0 K

−K −D

− σ
K 0

0 M



vi,p
vi,v

 =

vi−1,p

vi−1,v

 . (6.11)

From the first line, it follows that vi,v = σvi,p + K−1vi−1,p, and thus

−
(
K + σD + σ2M

)
vi,p = vi−1,v + (D + σM) K−1vi−1,p. (6.12)
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a) Butterfly Gyroscope b) Wineglass

Figure 6.2.: Sparsity Pattern of Matrix A in Standard Realization of Second Order Systems

Defining h := K−1vi−1,p, the solution vi = (A− σE)−1 vi−1 is given by

vi =

 vi,p
σ · vi,p + K−1vi−1,p

 =

 vi,p
σ · vi,p + h

 , (6.13)

where both h and vi,p = − (K + σD + σ2M)−1 (vi−1,v + (D + σM) h
)
solve symmetric

linear systems of equations of dimension N̂ . For real σ (preserving positive definite-

ness), the two problems can be solved with a Cholesky decomposition of K and of

(K + σD + σ2M), respectively; for complex σ, an LU-decomposition is mandatory for

the latter, increasing the effort slightly. Of course, indirect solvers may be applied as well

(cf. Section 3.4). Note that for the particular case that the right hand side is given by Bt

or b, the computation simplifies even more as h = 0; however, in the light of the CURE

framework, where the structured input B is replaced by some B⊥ after the first reduction

step, the general procedure was presented intentionally.

Anyway, the numerical effort is by far lower than for solving the problem in state

space, so for both the standard and the strictly dissipative realization, the above advance

delivers input Krylov subspaces efficiently.

An output Krylov subspace of the standard realization (6.4) can be found similarly.

Here, the vector wi solving (A− σE)T wi = ETwi−1 is given by

wi =

wi,p

wi,v

 =

 wi,p

−σ ·wi,p −K−1wi−1,p

 =

 wi,p

−σ ·wi,p − hW

 , (6.14)

with hW := K−1wi−1,p and wi,p = − (K + σD + σ2M)−1 (wi−1,v + (D + σM) hW
)
.
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Source 6.2: Multipoint Tangential Rational Krylov for Second Order Systems

 function [V,S_V,Crt,W,S_W,Brt] = TangentialKrylov2nd(M,D,K,B,C,s0,t_B,t_C)
 % Two-sided Rational Krylov
 %   Input:  M,D,K  : second order matrices;
 %           B,C:     input and output matrix of standard state space model;
 %           s0:      vector of shifts;
 %           t_B,t_C: tangential directions
 %   Output: A*V - E*V*S_V - B*Crt = 0,  W.'*A - S_W*W.'*E - Brt*C = 0
 % (c) 2014 Heiko K.F. Panzer, Tech. Univ. Muenchen.
% This file is published under the BSD 3-Clause License. All rights reserved.


 % initialization and preallocation
 N_=size(M,1); n=length(s0); m=size(B,2); p=size(C,1); i=1;
 V=zeros(2*N_,n); W=V; S_V=zeros(n,n); Crt=zeros(m,n); Brt=zeros(n,p); S_W=S_V;
 [L_K,e,P_K] = chol(sparse(K));
 if e, warning('Cholesky decomposition not successful.'); end
 Kinv = @(x) P_K*(L_K\(L_K'\(P_K'*x)));

 while i<=n
     s = s0(i);
     h   = Kinv(B(1:N_,:)*t_B(:,i));  h_W = Kinv(C(:,1:N_).'*t_C(i,:).');
     % compute new basis vectors
     if ~isreal(s)   % complex conjugated pair of shifts -> two new columns
         [L,U,P,Q,R] = lu(sparse(K+s*D+s^2*M));
         Vip = -Q*(U\(L\(P*(R\(B(N_+1:end,:)*t_B(:,i)+D*h+M*h*s)))));
         tempV = [Vip;s*Vip+h];
         Wip = Q*(U\(L\(P*(R\(C(:,N_+1:end).'*t_C(i,:).'-D*h_W-M*h_W*s)))));
         tempW = [Wip;-h_W-s*Wip];
         V(:,i:(i+1))    = [real(tempV), imag(tempV)];
         Crt(:,i:(i+1))  = [real(t_B(:,i)), imag(t_B(:,i))];
         S_V(i:(i+1),i:(i+1)) = [real(s), imag(s); -imag(s), real(s)];
         W(:,i:(i+1))    = [real(tempW), imag(tempW)];
         Brt(i:(i+1),:)  = [real(t_C(i,:)); imag(t_C(i,:))];
         S_W(i:(i+1),i:(i+1)) = [real(s), -imag(s); imag(s), real(s)];
         i = i+2;
     else            % real shift -> one new column
         [L,e,P] = chol(sparse(K+s*D+s^2*M));
         if e, warning('Cholesky decomposition not successful.'); end
         Vip    = -P*(L\(L'\(P'*(B(N_+1:end,:)*t_B(:,i)+D*h+M*h*s))));
         tempV  = [Vip;s*Vip+h];
         Wip    = P*(L\(L'\(P'*(C(:,N_+1:end).'*t_C(i,:).'-D*h_W-M*h_W*s))));
         tempW  = [Wip;-h_W-s*Wip];
         V(:,i) = real(tempV);  Crt(:,i) = real(t_B(:,i)); S_V(i,i) = s;
         W(:,i) = real(tempW);  Brt(i,:) = real(t_C(i,:)); S_W(i,i) = s;
         i = i+1;
     end
 end
 % orthogonalization
 [V,S_V,Crt] = GramSchmidt(V,S_V,Crt);
 [W,S_W,Brt] = GramSchmidt(W,S_W',Brt'); S_W=S_W.'; Brt=Brt.';
 end
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A MATLAB implementation of the Krylov subspaces for second order systems can

be seen in Source 6.2. The code was applied to the Butterfly Gyroscope and compared

to the generic code in Source 3.3. First, eight eigenvalues closest to zero were computed

with the eigs command and mirrored with respect to the imaginary axis to create some

shifts. Then, both routines Sources 3.3 and 6.2 were run. The second order code required

less than 30% of the execution time of the standard code, without loss of precision. For

eight purely real shifts the speed-up factor even amounted to more than five.

When the Cholesky and LU factors of K and (K +σD +σ2M) cannot be computed

any more due to shortage of RAM, the direct solvers can be replaced by iterative methods.

This typically lasts longer, but requires far less memory. In Source 6.2, one could replace

lines 13–15 by a preconditioned conjugate gradient method to solve LSEs with K,
 Kinv = @(x) pcg(K,x,1e-8,20,K);

lines 22, 23, and 25 by
 Vip = bicg(K+s*D+s^2*M,B(N_+1:end,:)*t_B(:,i)+D*h+M*h*s,1e-8,20,K);
 Wip = bicg(K+s*D+s^2*M,C(:,N_+1:end).'*t_C(i,:).'-D*h_W-M*h_W*s,1e-8,20,K);

and lines 35–37 and 39 by
 Vip = -pcg(K+s*D+s^2*M,B(N_+1:end,:)*t_B(:,i)+D*h+M*h*s,1e-8,20,K);
 Wip = pcg(K+s*D+s^2*M,C(:,N_+1:end).'*t_C(i,:).'-D*h_W-M*h_W*s,1e-8,20,K);

6.3.2. Invariance Properties in Sylvester Model Reduction

The strictly dissipative realization (6.6) of a second order system arises from the stan-

dard state space formulation (6.4) by pre-multiplication with a regular matrix T. As a

direct consequence of Lemma 3.2, any solution of an input Sylvester equation (3.3)—in

particular: the basis of a rational input Krylov subspace—carries over to the rather

complicated looking dissipative realization. Accordingly, we can follow the procedure pre-

sented in the previous section and need not explicitly solve complicated LSEs of the type

(Ã− σẼ)v = b̃.

Unfortunately, the output Krylov subspace is not equal to the one of the strictly

dissipative realization (6.6), but it must be multiplied by T−1 from the right to solve

W̃T Ã + (−SW )W̃T Ẽ + (−B̃r)C = 0, (6.15)

i. e. W̃T = WTT−1 is required in theory. In two-sided reduction, however, the resulting
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ROM is the same as for the standard realization, because its matrices

W̃T Ẽ = WTE, W̃T Ã = WTA, and W̃T B̃ = WTB

remain unchanged as well as V, so both HFMs deliver the same ROM.

Also the result of the PORK algorithm, which determines all degrees of freedom of

the ROM, is invariant under the transformation. If V spans an input Krylov subspace

and solves (3.3)—no matter, whether for the matrices A, E, B as in (6.4) or for the

transformed Ã, Ẽ, B̃ in (6.6)—the reduced order matrices (3.31) are given independently

of the high order matrices except for C, which is not affected by the change of realization.

In the dual case, if W spans an output Krylov subspace and solves (3.4) for the standard

realization, then W̃T = WTT−1 solves (6.15). As the reduced order matrices Ar, Er, and

Cr in (3.39) only depend on SW and B̃r, they remain unchanged by the transformation;

only Br is influenced by the left-handed projection matrix W̃, yet we can easily see that

Br = W̃T B̃ = WTT−1TB = WTB is also the same as when applying PORK to the

standard realization.

Only in one-sided reduction, where Ṽ := W̃ is defined or vice versa, the ROM does

change due to the transformation T. This also is to be expected as we know that or-

thogonal projection of a strictly dissipative model always yields an asymptotically stable

ROM, which is not generally the case. In fact, choosing R = IN̂ or arbitrarily in (6.4)

can easily yield an unstable ROM if the basis of an input Krylov subspace is used both

for V and W := V. If the same matrix is applied from both sides to the transformed

realization, the ROM is always stable.

6.3.3. Error Decomposition

According to the previous subsection, due to invariance properties the actual Krylov

subspaces of the strictly dissipative realization (6.6) do not have to be computed by solving

linear systems of equations in N = 2N̂ dimensional state space. In fact, for two-sided

reduction, the ROM is not even affected by the change of realization, but can be found

with the help of the standard realization (6.4) according to Section 6.3.1.

The transformation does, however, affect the factorized formulation of the error model
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presented in Section 4.2. Let V solve Sylvester equation (3.3) or, equivalently,

ÃV− ẼVS− B̃C̃r = 0. (6.16)

Then, the factorization (4.6) of the error model holds true with Ẽ instead of E, Ã instead

of A and

B̃⊥ = B̃− ẼVE−1
r Br = T

(
B− EVE−1

r Br

)
= TB⊥

instead of B⊥, with C unchanged. If, on the other hand, W solves the Sylvester

equation (6.15), the output type error factorization (4.7) holds, again with Ẽ instead of

E, Ã instead of A, B̃ instead of B, and with C⊥ unchanged.

Either way, the transformation of the HFM affects the realization of the high order

model G⊥(s) in the same way: all matrices of the ODE are pre-multiplied by the matrix T,

but no further changes occur.

To conclude, to make use of the advantages of the strictly dissipative realization, in

two-sided reduction (including PORK) it is often not necessary to actually work with

the matrices in (6.6). Instead, one can perform MOR using the standard realization and

transform the G⊥(s) model in the error decomposition to strictly dissipative realization

afterwards in order to evaluate the error bounds. In fact, γ does not even have to be fixed

a priori, but can be chosen or modified a posteriori to optimize the error bounds from

Chapter 5.

6.3.4. Evaluation of H2 and H∞ Error Bounds

To compute the upper bounds on the H2 and H∞ error norm presented in Chapter 5, one

must solve LSEs of dimension N = 2N̂ . The matrices which represent the LSEs—Ẽ and

S, respectively—are symmetric, positive definite, and sparse, but have significantly more

entries and less convenient structure than the matrices of the second order system (see

Figure 6.2). For that reason, the direct evaluation of the bounds in state space may be

unfeasible (just like the direct computation of Krylov subspaces, see above), but can be

avoided in the following way.

Proposition 6.1. Given γ ∈ R+ fulfilling (6.7) and a realization (A,B⊥,C⊥,0,E) with

E =
K 0

0 M

 and A =
 0 K
−K −D

 , the respective expressions of the H2 error bound
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evaluated for the strictly dissipative realization (6.6) read

B̃T
⊥Ẽ−1B̃⊥ = BT

⊥

 K−1 γK−1

γK−1 M−1

B⊥ and (6.17)

C̃⊥Ẽ−1C̃T
⊥ = C⊥

 (K− γ2M)−1 −γ(K− γ2M)−1

−γ(K− γ2M)−1 M−1 + γ2(K− γ2M)−1

CT
⊥. (6.18)

Proof. The proof for the first term is straightforward.

B̃T
⊥Ẽ−1B̃⊥ = BT

⊥TTE−1T−1TB⊥ = BT
⊥

 I γK−1M
γI I

 ·
K−1 0

0 M−1

B⊥.

For the second expression, we need to invert the transformation matrix T from (6.5):

C̃⊥Ẽ−1C̃T
⊥ = C⊥E−1T−1CT

⊥ =

= C⊥

K−1 0
0 M−1

 ·
 (I− γ2MK−1)−1 −γ(I− γ2MK−1)−1

−γMK−1(I− γ2MK−1)−1 I + γMK−1(I− γ2MK−1)−1

 ·CT
⊥.

If Cholesky factors of M, K, and (K − γ2M) are available, the evaluation works

out particularly fast. Otherwise, the new formulations still allows to compute the bound

by solving sparse symmetric N̂ -dimensional LSEs only, which can be also be achieved by

iterative solvers.

Now let us turn to the upper bound on the H∞ norm. Unfortunately, there is no closed

formulation as in the H2 case, but the explicit solution of 2N̂ -dimensional LSEs can still

be avoided.

Let G⊥(s) be given in a standard state space realization (A,B⊥,C⊥,0,E), and γ ∈ R+

fulfilling (6.7). Then, the upper bound (5.26) on the H∞-norm reads
∥∥∥G⊥∥∥∥H∞ ≤

∥∥∥C̃⊥S−1B̃⊥
∥∥∥

2
+
√∥∥∥B̃T

⊥S−1B̃⊥
∥∥∥

2

∥∥∥C̃⊥S−1C̃T
⊥

∥∥∥
2

=
∥∥∥C⊥S−1(TB⊥)

∥∥∥
2

+
√∥∥∥(TB⊥)TS−1(TB⊥)

∥∥∥
2

∥∥∥C⊥S−1CT
⊥

∥∥∥
2
.

For its evaluation we firstly need to find B̃⊥ = TB⊥, and secondly we must solve LSEs

including the 2N̂ -dimensional matrix S. To this end, we write

B⊥ =
B⊥,p
B⊥,v

 , C⊥ =
[
C⊥,p C⊥,v

]
. (6.19)
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Source 6.3: Computation of Upper Bound on H2 Norm for Second Order Systems

 function bndH2 = BoundH22nd(L_K,P_K,L_M,P_M,L_KM,P_KM,mu,gma,B,C)
 % Upper bound on H2 norm of Second Order System
 %   Input:  L_K,P_K; L_M,P_M: Cholesky factor of mass and stiffness matrix
 %           L_KM,P_KM:        Cholesky factor of K-gma^2*M
 %           mu:               Generalized Spectral Abscissa, mu<0!
 %           gma:              transformation parameter, 0<gma<gamma_max!
 %           B,C:              Input and output matrices of standard state space realization
 %   Output: bndH2:            Upper bound on H2 norm
 % (c) 2014 Heiko K.F. Panzer, Tech. Univ. Muenchen.
% This file is published under the BSD 3-Clause License. All rights reserved.


 N_ = size(B,1)/2;
 % compute B'*inv(E)*B
 B_1 = L_K'\(P_K'*B(1:N_,:));  B_2 = L_K'\(P_K'*B(N_+1:end,:));
 tmp = L_M'\(P_M'*B(N_+1:end,:));
 k_3 = norm(full(B_1'*B_1 + 2*gma*B_1'*B_2 + tmp'*tmp), 'fro');

 % compute C*inv(E)*C'
 C_1 = C(:,1:N_)*P_KM/L_KM;     C_2 = -gma*C(:,N_+1:end)*P_KM/L_KM;
 tmp = C(:,N_+1:end)*P_M/L_M;
 k_2 = norm(full(C_1*C_1' + 2*C_2*C_1' + tmp*tmp' + C_2*C_2'));

 % compute bound for P_hat=0
 bndH2 = sqrt(k_3*k_2/(-2*mu));

Then, for the first task, we note that the computation of

B̃⊥ =
B̃⊥,p
B̃⊥,v

 =
 I γI
γMK−1 I

B⊥,p
B⊥,v

 =
 B⊥,p + γB⊥,v
γMK−1B⊥,v + B⊥,v

 (6.20)

only requires solutions of N̂ -dimensional LSEs to find K−1B⊥,v, so B̃⊥ can be found quite

easily. Secondly, we must solve for R := S−1B̃⊥, which can be accomplished with the

Schur complement of S.2γK γD
γD 2D− 2γM

Rp

Rv

 =
B̃⊥,p
B̃⊥,v


⇔

 I. (2D− 2γM− γ
2DK−1D)Rv = B̃⊥,v − 1

2DK−1B̃⊥,p,

II. Rp = 1
2γK

−1B̃⊥,p − γDRv.

(6.21)

While equation II. can again be solved in a straightforward way, the first equation I.

contains a term DK−1D which cannot be factored out. It turns out, however, that with

the help of iterative solvers, this equation can indeed be solved; in all considered cases,

convergence occurred when D was used as preconditioner. Note that S−1CT
⊥ can be

computed similarly.
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Source 6.4: Computation of Upper Bound on H∞ Norm for Second Order Systems

 function bndHinf = BoundHinf2nd(M,D,K,gma,B,C,L_K,P_K)
 % Upper bound on H-infinity norm of second order system
 %   Input:  M,D,K:   Mass, damping, and stiffness matrix
 %           gma:     transformation parameter, 0<gma<gamma_max!
 %           B,C:     Input and output matrices of standard state space realization
 %           L_K,P_K: Cholesky factor and pivoting matrix of K
 %   Output: bndHinf: Upper bound
 % (c) 2014 Heiko K.F. Panzer, Tech. Univ. Muenchen.
% This file is published under the BSD 3-Clause License. All rights reserved.


 N_ = size(B,1)/2;
 Kinv = @(x) P_K*(L_K\(L_K'\(P_K'*x)));  % direct solver
 % Kinv = @(x) pcg(K,x,1e-8,10,K);       % iterative solver

 % compute Btilde (of strictly dissipative realization)
 Bt = [B(1:N_,:)+gma*B(N_+1:end,:); gma*M*Kinv(B(1:N_,:))+B(N_+1:end,:)];
 % Schur complement of S (anonymous function for PCG)
 S22 = @(x) D*x*2 - M*x*2*gma - D*Kinv(D*x)*gma/2;

 % find inv(S)*Btilde by Preconditioned Conjugate Gradients
 tmp = Bt(N_+1:end,:) - D*(Kinv(Bt(1:N_,:)))/2;
 SinvB2 = pcg(S22,tmp,1e-8,10,D,[]);
 SinvB1 = Kinv(Bt(1:N_,:) - D*SinvB2*gma )/2/gma;

 % find inv(S)*C' by Preconditioned Conjugate Gradients
 tmp = C(:,N_+1:end)' - D*(Kinv( C(:,1:N_)'))/2;
 SinvC2 = pcg(S22,tmp,1e-8,10,D,[]);
 SinvC1 = Kinv(C(:,1:N_)' - D*SinvC2*gma )/2/gma;

 bndHinf = norm(SinvB1'*C(:,1:N_)' + SinvB2'*C(:,N_+1:end)') +  ...
     sqrt(SinvB1'*Bt(1:N_,:) + SinvB2'*Bt(N_+1:end,:)) * ...
     sqrt(SinvC1'*C(:,1:N_)' + SinvC2'*C(:,N_+1:end)');
 end

An implementation for SISO systems is given in Source 6.4. For the Butterfly Gy-

roscope, its execution required 2.9 seconds; in comparison, the state space based source

Source 5.2, which uses a Cholesky factor of S, lasted only 0.83 sec, of which 0.62 sec fell

upon the Cholesky decomposition of S. However, the peak amount of memory required

by Source 6.4 was only 5.3MB compared to 77MB for the Cholesky factor. Of course,

within this scale of model dimension, memory is not the limiting factor.

For the Wineglass model (first output), on the other hand, Source 5.2 loaded 1.7GB

of memory, while Source 6.4 required only 0.1GB peak memory. The calculation of the

Cholesky factor lasted 26 sec, the evaluation of the bound in state space additional

13 sec; Source 6.4 took 57 sec. In both methods, a Cholesky factorization of K was
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performed a priori; it lasted only 2.4 sec, but required 0.4GB. For even larger models,

when the memory demands even of this N̂ -dimensional triangular factors exceed the

available memory, one must also do without direct methods to solve LSEs of K; Source 6.4

can then be modified accordingly by changing the comments of lines 11 and 12 (cf. end of

6.3.1). In this case, the computation of the bound lasted 210 sec, but required less than

21MB (!) additional memory.

To conclude, direct methods are typically superior with regard to computational time.

With increasing model complexity, the use of indirect methods becomes mandatory due

to excessive storage requirements of direct methods. Note, by the way, that in both the

examples the relative difference of the error bound values amounted to less than 2 · 10−11.

6.3.5. Computation of Generalized Spectral Abscissa

To compute the generalized spectral abscissa µ, Source 6.5 can be used instead of the

state space based code Source 2.1. As we know that µ < 0, we can spare the effort to test

positive definiteness of −A−AH via a Cholesky decomposition, cf. Section 2.2.4.

In fact, for the benchmark model of the Butterfly Gyroscope, calculating µ for some

given γ lasted 3.5s—less than half the time as in the state space based formulation, cf.

Table 2.1. If the Cholesky factorization is no more feasible, the solution of LSEs must

be performed by iterative solvers as described above (cf. (6.21)).

Source 6.5: Computation of µẼ(Ã) in MATLAB

 function mu = SpectralAbscissa2nd(M,D,K,gamma)
 % Compute mu of second order system in strictly dissipative realization
 %   Input:  M,D,K,F:    matrices of second order system
 %           gamma:      transformation parameter, 0<gamma<gamma_max!
 %   Output: mu:         generalized spectral abscissa
 % (c) 2014 Heiko K.F. Panzer, Tech. Univ. Muenchen.
% This file is published under the BSD 3-Clause License. All rights reserved.

 E    = [K, gamma*M; gamma*M, M];
 symA = [-gamma*K, -gamma/2*D; -gamma/2*D, -D+gamma*M];


 p    = 20; % number of Lanczos vectors
 tol  = 1e-10; % convergence tolerance

 opts = struct('issym',true, 'isreal',true, 'p', p, 'tol',tol, 'v0', diag(E));
 mu   = eigs(symA, E, 1, 0, opts);
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6.3.6. Dependency of the Error Bounds on γ

The global error bounds presented in Chapter 5 hold true for arbitrary strictly dissipative

state space models. As we have seen in Section 6.2, however, any real number γ fulfilling

(6.7) defines such a realization of a second order system. Therefore, the question is where

in the valid interval γ should be chosen to obtain the tightest error bounds.

In [123, 127] it was shown that the dependency µ(γ) of the generalized matrix measure

µE(A) on γ resembles shifted absolute value functions and has its minimum very close to
1
2γ for lightly damped systems. Unfortunately, both the H2 and the H∞ bounds depend

on γ in a more complicated way. Although no substantiated analytical propositions on

their shape and the location of their minima could be found so far, a definite trend is

evident and presented in the following with the help of numerical examples. For simplicity,

we simply consider the upper bound on the norm of G(s), not of an error model G⊥(s).

Figure 6.3 shows simulation results for the FEM beam, the Butterfly Gyro, and the

Wineglass model. One can see that in all three cases the upper bound on the H2 norm is

U- or V-shaped and more or less symmetric; for γ → 0 and γ → γ∗, the bounds tend to

infinity. The global minimum is reached for γ ≈ 1
2γ
∗. This form has in fact been observed

for all considered cases.

Results for the upper bounds on the H∞ norm can be seen in Figure 6.4. The orange

curve is the simpler upper bound (5.32), the tighter bound (5.26) is depicted in blue.

Both tend to infinity at the boundary, yet typically in a very abrupt way on one of the

two sides.

Accordingly, it seems advisable to choose γ somewhere in the middle of the valid

interval in any case. The H2 bound thus becomes almost as tight as possible, and the

H∞ bounds are also not far from their optimal value.
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Figure 6.3.: Upper Bounds on H2 Norm of Second Order System over γ
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7. Numerical Examples

“Hic Rhodus! Hic salta!”

— Aesopus

The numerous methods presented in the preceding chapters will now be applied to

selected benchmark models in order to present their behavior in practical situations.

7.1. Spiral Inductor

We start with the PEEC model of a spiral inductor of order N = 1434, see Section 1.2.6.

It is a strictly dissipative SISO system with generalized spectral abscissa µ ≈ −1.4e7.

Performing ten iterations of the model function based MESPARK algorithm during

the cumulative reduction (CURE) scheme leads to the blue curve of the H∞ and H2 error

bounds in Figure 7.1. As the bounds—in particular, theH2 bound—decay only hesitantly,

the cost functional in MESPARK is replaced by JH2 as defined in Section 5.6.1. This

changes the course of the error bounds to the values depicted in orange. Both error bounds

decay very fast now, and the final ROM of order n = 20 is guaranteed to imply relative

errors of about 1 · 10−4 or less. In fact, the H2 error amounts to εH2 ≈1.4 · 10−5 , so the

overestimation is below ten.

A verification of the actual physical quantities of interest is provided in Figure 7.2.

One can see that both resistance and inductance are perfectly approximated by the ROM

resulting from the latter algorithm, which surprisingly outperforms the standard MES-

PARK version, whose cost functional aims at minimizing the true error norm. For some

reasons, however, probably because of unsuitable initial values, the standard MESPARK

selects inferior local minima, and requires more iterations to reach similar approximation

quality.
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Both algorithms required a total of about 100 real LU decompositions, as in each of

the ten CURE steps, MESPARK needed four steps to converge.
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7.2. Flow Meter

Next, we consider the Flow Meter (v=0), whose order is N = 9669. We run the CURE

framework and perform 30 reduction steps towards order ni = 2. For shift selection, we

use IRKA, orthogonal IRKA (W := V), H∞-IRKA (W := S−1EV), and MESPARK

minimizing the H2 bound cost function JH2 . The standard MESPARK algorithm cannot

be used as the system has five outputs. We monitor the error bounds, setting P̂ = Q̂ = 0

in the H2 upper bound. Results are given in Figure 7.3.

This time, even H2 model reduction by (standard) IRKA yields a decay of the error

bounds, but it is obvious that its derivates accomplish significantly faster decrease in

their respective bound. MESPARK compares well to all other methods, and what is

more, only required about four steps per iteration (in each of which an LU decomposition

was performed), while orthogonal IRKA, for instance, required an average of 18 steps to

converge. Stopping orthogonal IRKA after four iterations (implying a similar number of

LU decompositions as MESPARK) has a massive impact on the performance; the error

bounds after 30 steps are then orders of magnitude higher than in Figure 7.3.
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Figure 7.3.: Error Bounds during CURE of Flow Meter (v=0)
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7.3. Steel Profile

We turn to the Steel Profile from Section 1.2.6. It is strictly dissipative, but has m = 7 in-

puts and p = 6 outputs, so it is truly MIMO and one cannot benefit from the convenient

SIMO or MISO special case as above.

As a start, we therefore focus on the SISO case, and only consider the transfer behavior

from the first input to the first output of the N = 1357 version of the model. In this

scenario, CUREd MESPARK with the JH2 cost functional leads to very rapid decay of

both the H∞ and the H2 error bound, even though P̂ = Q̂ = 0; see Figure 7.4. To

demonstrate the time domain envelope derived in Section 5.3.4, a rectangular bang-bang

signal u1(t) = σ(t−1e5)−σ(t−2e5) is applied to the system. Both the HFM and several

ROMs are simulated and the corresponding envelopes in time domain are evaluated. One

can see in Figure 7.4c) that with decreasing H2 error bound, the envelope gets very tight

(the n = 80 version is almost indistinguishable from the true output y(t)).
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Figure 7.4.: Reduction of SISO Steel Profile 1357 by CUREd MESPARK with JH2

Now we move on to the MIMO case. We apply the strategy that was suggested in

Section 4.5 and switch between the input channels; thus we feed only SIMO systems into

the CUREd MESPARK (JH2) algorithm (the output matrix C does not enter anyway, so

the number of outputs does not matter). Results can be seen in Figure 7.5. Despite the

primitive strategy of selecting tangential vector, both error bounds decrease more or less

constantly. The decay rate is, however, not quite convincing, in particular when compared
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to the SISO result. One must run through 150 iterations to obtain a relative H2 error

bound of about 1%.

In fact, most of the studied multivariable systems led to considerably less performance

than when choosing a single transmission path from it. Efficient strategies for the reduc-

tion of MIMO systems are therefore clearly an open problem.
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Figure 7.5.: Reduction of MIMO Steel Profile 20209 by CUREd MESPARK with JH2

7.4. Acoustic Field in Gas Turbine Combustor

Let us now consider the model of the acoustic field in a gas turbine (cf. Section 1.2.6).

It turns out that the given model exhibits unstable modes. The reason are so-called

Kelvin-Helmholtz instabilities, which are a result of the linearization of Navier-

Stokes equations. As a matter of fact, these modes are unwanted in the model and

do not have to be mimicked by the ROM. Furthermore, they contribute little to the

amplitude response |G(s)| in the interesting frequency range, so simply “deleting” them

is the best one can do.

To remove the unstable eigenvalues from the transfer function, they must be made

uncontrollable and/or unobservable before the actual reduction process. It is shown in

the sequel that this procedure can be interpreted by means of the CURE framework. If we

perform modal truncation as a first reduction step (extracting the unstable components
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from the HFM), and perform an input type error factorization (4.6), then the unstable

eigenvalues in G⊥(s) become uncontrollable according to Section 4.2. In fact, we can then

write the HFM as

G(s) = Gr,1(s) + G⊥,1(s),

where Gr(s) contains the entire unstable dynamics, and G⊥(s) = (A,B⊥,C⊥,0,E) is

BIBO stable. The unstable ROM Gr,1(s) = (WT
SAVS,WT

SB,CVS,0,WT
SEVS) might

also be kept as the first component of the cumulatively built overall ROM, but is simply

discarded here, so basically we replace G(s) by G⊥(s). B⊥ = (I − Π)B and C⊥ =

C(I−ΠW ) are given with the help of the spectral projector as described in Section 4.2.

To find ΠW = EVS(WT
SEVS)−1WT

S and Π = VS(WT
SEVS)−1WT

SE, bases WS and VS

of the unstable left and right invariant subspaces of A,E must be identified, i. e. solutions

of Sylvester equations

AVS = EVSSV and WT
SA = SWWT

SE, (7.1)

where SV = SW are diagonal matrices containing all unstable eigenvalues. This can be

achieved with the eigs command in MATLAB.

The existence of unstable eigenvalues implies α > 0 and therefore µ > 0, so the model

cannot be strictly dissipative and the error bounds do not apply. However, we will consider

its reduction by means of the CUREd MESPARK algorithm in the following.

In the absence of rigorous error bounds, heuristic stopping criteria were used and CURE

was interrupted after 95 iterations, because then the ROM hardly changed anymore.

Figure 7.6a) shows the H2 norm of the ROM during CURE1; it grows monotonically and

approaches the H2 norm of the HFM, which it cannot exceed because of Proposition 4.3.

The Hankel singular values of the ROM are depicted in Figure 7.6b) for GΣ
r,50. Both

plots indicate that after an order of about 180, the “learning curve” of the ROM flattens.

The amplitude responses of the HFM, the stabilized high-dimensional model, and the

resulting ROM can be seen in Figure 7.7 and show a highly satisfactory result. The whole

cumulative reduction process required 94minutes.

1Please mind the vertical scaling; the graph shows the difference of the norm of the last ROM (n = 190)

to the previous ones.
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7.5. Power System

The model described in Section 1.2.6 was considered to show that some DAE models

may, in principle, be reduced within the CURE scheme, as well. The model is obviously

not dissipative, but was reduced by CUREd MESPARK successfully. Figure 7.8 shows

the amplitude response of the HFM and of three different ROMs, whose associated error

amplitude response can additionally be seen on the right hand side. Running CURE up to

an order of 150 yields a very good ROM, which may also be compressed to order n = 50

in a second reduction step by TBR without great loss of accuracy. Stopping CURE at

order 50 leads to mediocre approximation, which is however acceptable in the frequency

range of interest.

10−3 10−2 10−1 100 101 102 103

10−9

10−7

10−5

10−3

10−1

101

Frequency ω

A
m
pl
itu

de
R
es
po

ns
e

HFM
CUREd MESPARK nΣ = 150
Subsequent TBR, n = 50
CUREd MESPARK nΣ = 50

10−3 10−2 10−1 100 101 102 10310−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

Frequency ω

Er
ro
r
A
m
pl
itu

de
R
es
po

ns
e

Figure 7.8.: Amplitude Response for Power System Model



8. Summary, Conclusions, and Outlook

“The hope is that there will be devised a method which combines

the best attributes of the SVD and Krylov methods. Such a method

does not exist yet. The quest, however, continues.”
— A.C. Antoulas and D. Sorensen [11]

Several new methods for Sylvester-based model reduction of high-dimensional LTI state

space models have been presented in this thesis:

• By means of the Cumulative Reduction (CURE) scheme it is possible to perform

several consecutive reduction steps, during which the overall reduced model is iter-

atively accumulated. This framework requires almost no additional computational

effort, but opens up new possibilities for adaptive MOR. Firstly, the final order of

the ROM can be chosen on the fly instead of a priori. Secondly, it is sufficient to

determine a small number of expansion points at a time.

• The shift selection can be carried out with the stability-preserving descent algorithm

MESPARK, which uses trust region optimization to find two H2 optimal expansion

points in a very little number of steps, thus minimizing the count of high-dimensional

operations.

• For systems in strictly dissipative realization, rigorous upper bounds on the global

H2 and H∞ error have been presented, which hold for both modal truncation and

Krylov subspace methods. Both bounds are cheap to evaluate and can be moni-

tored during CURE to determine a suitable reduced order.
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• To avoid excessive overestimation, methods for so-called error controlled MOR have

been presented. During CURE, they follow the goal of reducing the error bounds

instead of the true error which is unknown anyway. This can be achieved either by

special ways of projection or by adapting the cost functional in MESPARK.

• Second order systems with positive definite mass, damping, and stiffness matrices

were shown to be an interesting application possibility, as they can be described in

strictly dissipative state space models. The induced additional numerical complexity

can essentially be avoided by judicious implementation.

Several numerical experiments verified the general applicability of the new techniques;

most algorithms are included in form of ready-to-run MATLAB source code.

Many questions, however, remain to be investigated and are specified in the sequel.

In classical projective MOR, the reduced state vector can be used to estimate the

full-order state via x(t) ≈ Vxr(t). This direct relationship is lost during the CURE

framework. Can it be restored somehow?

How can the SISO method MESPARK and its derivatives be effectively extended to

multivariable systems? Can the parametrization of the optimization problem be improved

to obtain more robust and faster convergence? How about preconditioning?

How should initial values be chosen in order to obtain fast convergence to a (possibly

global) optimum? One idea to this end might be to collect all moments of the HFM

(moments of G⊥(s) can be translated to moments of G(s) due to (4.13)) and use the

frequency where the highest deviation between GΣ
r (s) and G(s) occurs, because this

location in the complex Laplace plane has potential for improvement.

Can the CURE scheme be adapted to preserve structural properties like passivity?

What are the numerical properties of the error bounds, and how about error propaga-

tion? (When) are the bounds really reliable from a numerical point of view?

Is it possible to derive tighter bounds on the H2 and H∞ norms of a large-scale system?

Inspiration might come from results on tighter bounds on the matrix exponential [152].

Also, an interesting (rigorous) estimate of eigenvalues of Gramian matrices can be found

in [93]. Instead of a worst-case estimate based on the largest eigenvalue (i. e., the norm) of
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the Gramian, this might enable more sophisticated estimates together with linear algebraic

results like [108, 9.7.3.(3)]:

P = PT > 0, XTX = Im ⇒ tr(XTPX) ≤
m∑
i=1

λN−m+i(P). (8.1)

Also, during the CURE framework, it seems reasonable to recycle all the projection ma-

trices Vi and Wi that appear during the reduction of the small-scale models, for the

projection of the Lyapunov equations, such that the approximate Gramian becomes

better and better, while in addition B⊥ becomes shorter and shorter, which hopefully

speeds up the decrease of the error bound.

How can MESPARK be extended to the JH∞ cost functional such that the determi-

nation of a local minimum is still guaranteed? Does a local minimum with J (a∗, b∗) < 0

always exist at all? Can other adaptive MOR methods be used for the shift selection

to obtain tight error bounds? In the light of the H2 error bound, minimizing the length

of the residual vector b⊥ becomes more than a heuristic. How can the error bounds be

exploited in practical applications like, for instance, robust control?

In the context of second order systems: Is it possible to find a strictly dissipative

realization also for singular damping matrices, i. e. det D = 0? Can the state space based

procedure for the reduction of second order systems be avoided by applying a structure-

preserving projection? In other words, is there a similar error decomposition for second

order Krylov subspaces which allows for error bounds and cumulative reduction?

“There can be no universal model reduction algorithm.

The best one can hope for is a good set of tools

and some reliable guidelines for using them.”
— B.C. Moore [117]

To conclude: In this work, the toolbox has been extended by a couple of new instru-

ments. Their potential is not quite clear yet, it is hoped that the reliable guidelines for

their usage will emerge belatedly over time—indeed, the quest continues.





A. Appendix

A.1. Proof of Theorem 4.3

To begin with, note that
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σ1 EA−1
σ1 b + 1

2cA−1
σ2 EA−1

σ2 b+

+a · cA−1
σ2 EA−1

σ2 ·
[
Aσ2E−1Aσ2 −Aσ1E−1Aσ1

]
· 1

2
√
a2−b︸ ︷︷ ︸

[(A− σ2E) E−1 (A− σ2E)− (A− σ1E) E−1 (A− σ1E)] · 1
σ1−σ2

= [2 (σ1 − σ2) A− (σ2
1 − σ2

2) E] · 1
σ1−σ2

= [A− σ1E + A− σ2E] = Aσ1 + Aσ2

·A−1
σ1 EA−1

σ1 b

= 1
2c · r2 + 1

2 l2 · b + a l1Er2 + a l2Er1

∂cr,2
∂a

= 1
2c
[
A−1
σ2 EA−1

σ2 EA−1
σ1 ·

(
1− a√

a2−b

)
+ A−1

σ2 EA−1
σ1 EA−1

σ1 ·
(
1 + a√

a2−b

)]
b

= cA−1
σ2 EA−1

σ2 ·
[
Aσ1

(
1− a√

a2−b

)
+ Aσ2

(
1 + a√

a2−b

)]
︸ ︷︷ ︸

A− σ1E + A− σ2E + a√
a2−b (A− σ2E− (A− σ1E))

= 2A− (σ1 + σ2)E + a√
a2−b(σ1 − σ2)E = 2A

·A−1
σ1 EA−1

σ1 b

= 2l2Ar2
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∂cr,1
∂b

= 1
2c
[
A−1
σ1 EA−1

σ1 ·
−1

2
√
a2−b + A−1

σ2 EA−1
σ2 ·

1
2
√
a2−b

]
b

= 1
2cA−1

σ2 EA−1
σ2 ·

[
Aσ1E−1Aσ1 −Aσ2E−1Aσ2

]
· 1

2
√
a2−b︸ ︷︷ ︸

[(A− σ1E) E−1 (A− σ1E)− (A− σ2E) E−1 (A− σ2E)] · 1
σ1−σ2

= [−2 (σ1 − σ2) A + (σ2
1 − σ2

2) E] · 1
σ1−σ2

= [− (A− σ1E)− (A− σ2E)] = −Aσ1 −Aσ2

·A−1
σ1 EA−1

σ1 b

= −1
2 l1Er2 − 1

2 l2Er1

∂cr,2
∂b

= c
[
A−1
σ2 EA−1

σ2 EA−1
σ1 ·

1
2
√
a2−b + A−1

σ2 EA−1
σ1 EA−1

σ1 ·
−1

2
√
a2−b

]
b

= cA−1
σ2 EA−1

σ2 · [Aσ1 −Aσ2 ] 1
2
√
a2−b ·A

−1
σ1 EA−1

σ1 b

= cA−1
σ2 EA−1

σ2 · [A− σ1E− (A− σ2E)] · 1
σ1−σ2

·A−1
σ1 EA−1

σ1 b

= −l2Er2

The second derivatives which enter the Hessian matrix can be computed similarly.

∂2cr,1
∂a2 = c

[
A−1
σ1 EA−1

σ1 EA−1
σ1 ·

(
1 + a√

a2−b

)
+ A−1

σ2 EA−1
σ2 EA−1

σ2 ·
(
1− a√

a2−b

)]
b

+l1Er2 + l2Er1

+2a · cA−1
σ2 EA−1

σ2 EA−1
σ2 EA−1

σ1 ·
(
1− a√

a2−b

)
+a · cA−1

σ2 EA−1
σ2 EA−1

σ1 EA−1
σ1 ·

(
1 + a√

a2−b

)
+a · cA−1

σ2 EA−1
σ2 EA−1

σ1 EA−1
σ1 ·

(
1− a√

a2−b

)
+2a · cA−1

σ2 EA−1
σ1 EA−1

σ1 EA−1
σ1 ·

(
1 + a√

a2−b

)
= cr3 + l3b + l3

[
A−1
σ2 EA−1

σ2 EA−1
σ2 −A−1

σ1 EA−1
σ1 EA−1

σ1

]
· a√

a2−b︸ ︷︷ ︸
= 2a ·

[
A−1
σ2 EA−1

σ2 −A−1
σ1 EA−1

σ1 + A−1
σ2 EA−1

σ1

] r3

+l1Er2 + l2Er1 + 2a · l3Er1 + 2a · l1Err + 2a · l2Er2

+2a · l3
[
A−1
σ2 EA−1

σ2 −A−1
σ1 EA−1

σ1

]
· a√

a2−b︸ ︷︷ ︸
= 2a

(
A−1
σ1 + A−1

σ2

) r3

= cr3 + l3b + 2a · l1Er3 + 2a · l3Er1 + 2a · l2Er2

+l1Er2 + l2Er1 + 2a · l3Er1 + 2a · l1Er3 + 2a · l2Er2

+4a2 · l2Er3 + 4a2 · l3Er2

= cr3 + l3b + 4a · l1Er3 + 4a · l3Er1 + 2a · l2Er2 + 2a · l2Ar2

+4a2 · l2Er3 + 4a2 · l3Er2
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∂2cr,2
∂a2 = 4 cA−1

σ2 EA−1
σ2 EA−1

σ2 ·A ·A
−1
σ1 EA−1

σ1 b ·
(
1− a√

a2−b

)
+

+4 cA−1
σ2 EA−1

σ2 ·A ·A
−1
σ1 EA−1

σ1 bA−1
σ1 E ·

(
1 + a√

a2−b

)
= 4 l3Ar2 + 4 l2Ar3 + 4 l3 [−AE−1Aσ1 + Aσ2E−1A] · a√

a2−b · r3

= 4l3Ar2 + 4l2Ar3 + 4l3 [−AE−1A + σ1A + AE−1A− σ2A] 2a
σ1−σ2

r3

= 4 l3Ar2 + 4 l2Ar3 + 8 l3Ar3

∂2cr,2
∂a∂b

= 4cA−1
σ2 EA−1

σ2 EA−1
σ2 AA−1

σ1 EA−1
σ1 b · 1

2
√
a2−b−

4cA−1
σ2 EA−1

σ2 AA−1
σ1 EA−1

σ1 EA−1
σ1 b · −1

2
√
a2−b

= 4 l3 [AE−1 (A− σ1E)− (A− σ1E) E−1A] 1
2
√
a2−br3

= −4 l3 A r3

∂2cr,2
∂b2 = −2cA−1

σ2 EA−1
σ2 EA−1

σ2 EA−1
σ1 EA−1

σ1 b · 1
2
√
a2−b−

−2cA−1
σ2 EA−1

σ2 EA−1
σ1 EA−1

σ1 EA−1
σ1 b · −1

2
√
a2−b

= −2 l3 [Aσ1 −Aσ2 ] 1
2
√
a2−br3

= 2 l3 E r3
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A.2. Proof of Theorem 5.2

According to [32], the H∞ norm of an LTI system is correlated with asymptotic stability

of the perturbed system, namely by the so-called structured complex stability radius

rC ∈ R+: unless G(s) ≡ 0, it holds that ‖G‖H∞ = 1
rC
.

rC is the smallest number ε ∈ R+ that admits a matrix ∆ ∈ Cm×p with ‖∆‖2 < ε such

that the perturbed system

G∆(s) := C
(
sE− (A + B∆C)

)−1
B (A.1)

is no longer asymptotically stable, but has at least one purely imaginary or zero pole.

The key idea was to use strict dissipativity as a sufficient criterion for asymptotic

stability in order to compute a lower bound ε∗ on rC. More precisely: If for every ∆

fulfilling ‖∆‖ < ε∗ the perturbed system (A.1) is strictly dissipative, then it is also

asymptotically stable according to Lemma 2.1, so ε∗ is surely less or equal to rC, so its

inverse is greater or equal to ‖G‖H∞ .

It remains to find a number ε∗ for which the perturbed system is guaranteed to stay

strictly dissipative, i. e. for which µE (A + B∆C) is strictly negative as long as ‖∆‖ < ε∗.

Because of Corollary 2.1, it must hold

µ2 (A + B∆C) < 0 ⇔ xH
(
A+AH + B∆C+(B∆C)H

)
x < 0 ∀x ∈ CN

⇔ xH
(
B∆C + (B∆C)H

)
x < xH(−A−AT )x ∀x

⇔
xH

(
B∆C + (B∆C)H

)
x

xH(−A−AT )x < 1 ∀x

for all ∆ with ‖∆‖ < ε∗. Define ∆̃ := ∆
‖∆‖ . Then,

∥∥∥∆̃∥∥∥ = 1 holds and the above can be

equivalently written as

µ2 (A + B∆C) < 0 ⇔
xH

(
B∆̃C + (B∆̃C)H

)
x

xHSx
<

1
‖∆‖

∀x. (A.2)

In order to guarantee that (A.2) is fulfilled, we must choose ε∗ such that for any x ∈ CN

and for any ∆̃ ∈ Cm×p with
∥∥∥∆̃∥∥∥ = 1, the condition

xH
(
B∆̃C + (B∆̃C)H

)
x

xHSx
≤ 1
ε∗

(A.3)
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is satisfied. (A.3) implies (A.2), because by definition

1
ε∗
<

1
‖∆‖

. (A.4)

The difficulty is that the term in (A.3) depends on two independent quantities, namely

an N -dimensional complex vector x and an m × p complex matrix ∆̃ whose 2-norm

amounts to one. The key to bound the expression in (A.3) anyway is to firstly fix x and

find the particular ∆̃∗(x) which maximizes the constrained problem.

A first simplification to this end was shown in [124]: Given some x, the numerator

in (A.3) reaches its maximum for

∆̃ = ∆̃∗(x) = BTxxHCT

‖BTx‖2‖Cx‖2
(A.5)

whose rank is one. It turns out, however, that even though we know the exact value of

∆̃∗(x), it is helpful to ignore this knowledge and only exploit the rank-one property. More

precisely, we write ∆̃∗(x) as a product of two normalized vectors u ∈ Cm and v ∈ Cp,

∆̃∗(x) = uvH , where ‖u‖2 = 1, ‖v‖2 = 1. (A.6)

Also, we use the relationship of the Rayleigh quotient and the eigenvalues of a matrix

[108], to turn (A.3) into the generalized eigenvalue problem

xH
(
B∆̃C + (B∆̃C)H

)
x

xHSx
≤ max

i,∆̃
λi

[
B∆̃C + (B∆̃C)H ,S

]
≤ max

i,u,v
λi

[
BuvHC + (BuvHC)H ,S

]
= max

i,u,v
λi

[[
Bu CTv

] [0 1
1 0

] [
uHBT

vHC

]
S−1

]
=

= max
i,u,v

λi

[uHBT

vHC

]
S−1

[
Bu CTv

]
︸ ︷︷ ︸

∈R2×2

[
0 1
1 0

] =

= max
i,u,v

λi

[uHBTS−1Bu uHBTS−1CTv
vHCS−1Bu vHCS−1CTv

] [
0 1
1 0

]
= max

u,v

[
vHCS−1Bu +

√
uHBTS−1Bu · vHCS−1CTv

]
≤

∥∥∥C⊥S−1B⊥
∥∥∥

2
+
√∥∥∥BT

⊥S−1B⊥
∥∥∥

2
·
∥∥∥C⊥S−1CT

⊥

∥∥∥
2

=: 1
ε∗
.
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A.3. MATLAB Source Code Files

Source A.1: MESPARK for Minimization of H2 Error Bound

 function [V,S_V,Crt] = MESPARK_H2Bound(A,B,E,s0,L_E,P_E)
 % MESPARK for Minimization of H2 Error Bound
 %   Input:  A,B,E; L_E,P_E: HFM matrices; Cholesky decomposition of E
 %           s0:             Initial shifts
 %   Output: V,S_V,Crt:      Input Krylov subspace, A*V - E*V*S_V - B*Crt = 0
 % (c) 2014 Heiko K.F. Panzer, Tech. Univ. Muenchen.
% This file is published under the BSD 3-Clause License. All rights reserved.

     if size(B,2)>1, error('System must be SIMO.'), end
     p0 = [(s0(1)+s0(2))/2, s0(1)*s0(2)];    % convert shifts to parameter

     t = tic; k = 0; precond = eye(2);
     % compute initial model function and cost function at p0
     computeLU(s0); V = newColV([],3);
     Am=V'*A*V; Bm=V'*B; Em=V'*E*V; Em=(L_E*(P_E'*V)); Em=Em'*Em;
     J0 = B'*P_E*(L_E\(L_E'\(P_E'*B)));  J_old = CostFunction(p0);

...
     V = newColV(V, 2); Am=V'*A*V; Bm=V'*B; Em=(L_E*(P_E'*V)); Em=Em'*Em;

...
     function [J, g, H] = CostFunction(p)
         [J,g,H] = CostFunctionH2Bound(Am, Bm, Em, p*precond);
         J = full(J/J0); g = g*precond/J0; H = precond*H*precond/J0;
     end
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Source A.2: MESPARK for H2 Error Bound: Cost Functional, Gradient, and Hessian

 function [J, g, H] = CostFunctionH2Bound(A, B, E, p)
 % Cost Functional for H2 Error Bound Minimization, by A. Kohl
 %   Input:  A,B,E: HFM matrices;
 %           p:       parameter vector [a,b];
 %   Output: cost functional J; gradient g; Hessian H
 % (c) 2014 Heiko K.F. Panzer, Tech. Univ. Muenchen.
% This file is published under the BSD 3-Clause License. All rights reserved.

 a = p(1); b = p(2); s0 = p(1)+[1 -1]*sqrt(p(1)^2-p(2));
 As1 = A-s0(1)*E; As2 = A-s0(2)*E; L_E = chol(E);

 r1 = As1\B; r2 = As1\(E*r1); r3 = As1\(E*r2);
 LeB = L_E'\B;
 LeB_ = LeB + L_E*((r1 + (As2\(B+E*r1*2*a)))*2*a );
 J = LeB_'*LeB_ - LeB'*LeB;
 if (nargout==1), return; end

 lAr1 = E*(As2\(A*r1)); lAr2 = E*(As2\(E*(As2\(A*r2))));
 lAr3 = E*(As2\(E*(As2\(E*(As2\(A*r3))))));
 lEr1 = E*(As2\(E*r1)); lEr2 = E*(As2\(E*(As2\(E*r2))));
 lAEAr2 = E*(As2\(E*(As2\(A *(L_E\(L_E'\(A*r2)))))));
 tmp = A *(L_E\(L_E'\(A*r3)));
 lAEAr3 = E*(As2\(E*(As2\(E*(As2\tmp)))));
 lAEAEAr3 = E*(As2\(E*(As2\(E*(As2\(A*(L_E\(L_E'\tmp))))))));
 g_Ba = 4*a*lAEAr2 + 8*a^2*lAr2 - 4*a*b*lEr2 + 4*lAr1 + 4*a*lEr1;  g_Bb = -4*a*lAr2;

 LeB_a = L_E'\g_Ba; LeB_b = L_E'\g_Bb; g = 2*real([LeB_'*LeB_a, LeB_'*LeB_b]);
 g_Baa = 16*a*lAEAEAr3+32*a^2*lAEAr3-16*a*b*lAr3+12*lAEAr2+24*a*lAr2-4*b*lEr2+4*lEr1;
 g_Bbb = 8*a*lAr3; g_Bab = -4*lAr2 -16*a*lAEAr3;

 H = [LeB_a'*LeB_a + LeB_'*(L_E'\g_Baa), LeB_a'*LeB_b + LeB_'*(L_E'\g_Bab); ...
      0, LeB_b'*LeB_b + LeB_'*(L_E'\g_Bbb)];
 H(2,1)=H(1,2); H=2*real(H);
 end
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