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Precedence relations Resource constraints Objective functions Project scheduling problems

Project scheduling problem

Consider project with n activities i ∈ V of durations pi ∈ Z≥0

Project scheduling problem: assign execution times to each activity i

yi : R≥0 → {0, 1} such that
∫∞

0
yi(t) dt = pi

Non-preemptive problem: activities cannot be interrupted

→ Solution to scheduling problem specified by start times Si or
completion times Ci = Si + pi of all activities i ∈ V

Preemptive scheduling problem: activities can be interrupted and
resumed later on

→ Solution to scheduling problem specified by trajectories

zi : R≥0 → [0, 1], t 7→ zi(t) =
1
pi

∫ t

0
yi (t) dt

for all activities i ∈ V
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Precedence relations Resource constraints Objective functions Project scheduling problems

Precedence relations and resource constraints

Activities have to be scheduled subject to precedence relations and
resource constraints so as to optimize one or several measures of
project performance

Precedence relations: elements (i , j) of binary relation E ⊆ V × V

on activity set V defining conditions on execution times of
activities i and j

Pairs (i , j) may be associated by some extra data like time lags δij
or execution percentages ξi and ξj

Resource constraints: limited availability of manpower, machinery,
materials, money, energy supply, . . .

Scheduling goals formulated as objective function(s) in decision
variables Si , Ci or functions yi , zi
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Precedence relations Resource constraints Objective functions Project scheduling problems

Types of precedence relations

1 Ordinary precedence relations (Kelley 1961)

(i , j) : Sj ≥ Ci

2 Generalized precedence relations (Roy 1964)

(i , j , δij) : Sj ≥ Si + δij

3 Feeding precedence relations (Kis 2005, Alfieri et al. 2011)

(i , j , ξi ) : Sj ≥ min{t | zi (t) = ξi}

4 Generalized work precedence relations (Quintanilla et al. 2012)

(i , j , ξi , ξj) : max{t | zj(t) = ξj} ≥ min{t | zi (t) = ξi}

5 Generalized feeding precedence relations (S. and Paetz 2014)

(i , j , ξi , ξj , δij) : max{t | zj(t) = ξj}︸ ︷︷ ︸
t+
j
(ξj )

≥ min{t | zi(t) = ξi}︸ ︷︷ ︸
t
−

i
(ξi )

+δij

1

2 3

4

5
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Precedence relations Resource constraints Objective functions Project scheduling problems

Example

Generalized feeding precedence relation (i , j , 0.25, 0.4, 3)
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Precedence relations Resource constraints Objective functions Project scheduling problems

Resource constraints

Different types of resources considered in project scheduling:
renewable, nonrenewable, doubly-constrained, storage, partially
renewable, continuous resources

In this talk: renewable resources k from a set R

Each resource k ∈ R consists of Rk ∈ N identical units
(capacity)
Each activity uses rik ∈ Z≥0 units when being in progress

Resource constraints: joint requirements of activities i for resources
must not exceed the resource capacities at any point in time

∑

i∈V

rikyi (t) ≤ Rk (k ∈ R; t ≥ 0)
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Precedence relations Resource constraints Objective functions Project scheduling problems

Objective functions

Scheduling goals specified by single or several objective functions f

In this talk: single-criterion problems

Regular objective function

C ≤ C ′ ⇒ f (C ) ≤ f (C ′)

Project duration f (C ) = maxi∈V Ci

Total tardiness cost f (C ) =
∑

i∈V wi(Ci − di)
+

Nonregular objective functions

Net present value f (C ) =
∑

i∈V cFi β
Ci

Total squared utilization cost (resource leveling)

f (y) =
∑

k∈R ck
∫∞

0

(∑
i∈V rikyi (t)

)2
dt
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Precedence relations Resource constraints Objective functions Project scheduling problems

Resource-constrained project scheduling problem

General project scheduling problem with generalized (feeding)
precedence relations and renewable-resource constraints

(P)























Min. f (y)

s. t.
∫

∞

0
yi (t) dt = pi (i ∈ V )

t+j (ξj) ≥ t−j (ξi) + δij ((i , j) ∈ E)
∑

i∈V
rikyi (t) ≤ Rk (k ∈ R; t ≥ 0)

Non-preemptive version with A(S , t) := {i ∈ V | Si ≤ t < Si + pi}

(P)























Min. f (S)

s. t. Sj ≥ Si + δij ((i , j) ∈ E)
∑

i∈A(S,t) rik ≤ Rk (k ∈ R; t ≥ 0)

Si ≥ 0 (i ∈ V )

Set of feasible schedules: S, set of time-feasible schedules: ST
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Time-constrained project scheduling problem

(PT )





Min. f (S)

s. t. Sj ≥ Si + δij ((i , j) ∈ E )

Si ≥ 0 (i ∈ V )

Generalized precedence relations (i , j , δij) represent minimum and
maximum time lags between starts of activities i and j

δij = pi : ordinary precedence relation Sj ≥ Si + pi = Ci

δij > pi : delayed precedence relation Sj ≥ Ci + (δij − pi )

0 ≤ δij < pi : minimum time lag allowing overlapping of i and j

δij < 0: maximum time lag of −δij between starts of j and i

Sj ≥ Si + δij ⇔ Si ≤ Sj − δij

Completion-to-start, completion-to-completion, and start-to-completion
time lags can be transformed into start-to-start time lags

Christoph Schwindt Clausthal University of Technology
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MPM (activity-on-node) project network (Roy 1964)

Generalized precedence relations represented by MPM network
N = (V ,E , δ)

Activities correspond to nodes, precedence relations to arcs

Introduce nodes 0 and n + 1 for project beginning and termination

Nonnegativity conditions Si ≥ 0 can be replaced by S0 = 0

Example: MPM network for project with four real activities
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Modeling practical constraints

Release date ri of activity i : δ0i = ri

Quarantine time qi of activity i : δi(n+1) = pi + qi

Deadline d i for completion of activity i : δi0 = −d i + pi

Fixed start time ti for activity i : δ0i = ti , δi0 = −ti

Simultaneous start of activities i and j : δij = δji = 0

Simultaneous completion of activities i and j : δij = pi − pj , δji = pj − pi

Processing activities i , j immediately one after another: δij = pi , δji = −pi

Minimum overlapping time ℓij of i and j : δij = ℓij − pi , δji = ℓij − pj

Maximum makespan CU
max for activity set U: δij = −CU

max + pi for i , j ∈ U

Time-varying resource capacities: dummy activities with fixed start times

Time-varying resource requirements: sequence of sub-activities pulled
tight

. . .
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Temporal analysis with MPM

MPM: Metra Potential Method

Interpret project network as electric circuit

Potential: assignment S : V → R≥0

Tensions: differences Sj − Si of potentials

Generalized precedence relations: lower bounds δij on tensions Sj − Si

Dual (D) of problem (PT ) with f (S) =
∑

i∈V\{0} Si − (n + 1)S0

(D)





Max.
∑

(i ,j)∈E δij · ϕij

s. t.
∑

(i ,j)∈E ϕij −
∑

(j,i)∈E ϕji =

{
−1 for i ∈ V \ {0}

(n + 1) for i = 0

ϕij ≥ 0 ((i , j) ∈ E )

is longest-walk problem in N
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Temporal analysis with MPM

Fundamentals

ST 6= ∅ iff N does not contain any cycle of positive length

Induced time lag dij := minS∈ST
(Sj − Si ) = length of longest walk

from i to j in N (“distance”)

Earliest start time ESi = d0i , latest start time LSi = −di0

Algorithms and complexities (with m := |E |)

ST 6= ∅ and single time lag dij : transformation of Bianco and
Caramia (2010) to unit-capacity transshipment problem, O(m)

All time lags (distance matrix D = (dij)i ,j∈V ):
Floyd-Warshall-Algorithm, O(n3)

Update of distance matrix after increase of single dij : Algorithm of
Bartusch et al. (1988), O(n2)

Earliest and latest schedules ES and LS : label-correcting algorithm
for longest-walk calculations, O(mn)
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Characterization of the feasible region Efficient solutions Generic solution approaches

Resource-constrained problem (P): Complexity and decomposition

Problem (P) is NP-hard

The feasibility variant of problem (P) is NP-complete

Decomposition theorem (Neumann and Zhan 1995)

An instance of problem (P) is feasible if and only if for each strong
component G of project network N there exists a feasible subschedule for
the execution of all activities of G .

Classical schedule-generation schemes
must be modified to avoid or to cope
with deadlocks

Decomposition theorem is basis of
heuristic decomposition methods
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Characterization of the feasible region Efficient solutions Generic solution approaches

Example

Precedence graph

0

1 2

3 4

5

6

Assume R = 3 and schedule activities with serial schedule-generation scheme

Deadlock for activity i = 2 after three iterations

Conclusion: start times of activities cannot be fixed during scheduling
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Characterization of the feasible region Efficient solutions Generic solution approaches

Bartusch’s Lemma

Forbidden set F ⊆ V :
∑

i∈F rik > Rk for some k ∈ R

Forbidden set F broken up by schedule S : A(S , t) 6⊇ F for all t ≥ 0

Lemma (Bartusch et al. 1988)

1 An ⊆-minimal forbidden set F is broken up by schedule S iff F

contains two activities i , j with Sj ≥ Si + pi .

2 Schedule S is resource-feasible iff all ⊆-minimal forbidden sets F are
broken up.

Consequences:

Resource constraints can be expressed as disjunctions of ordinary
precedence relations (i , j)

Feasible region is union of finitely many relation polyhedra

ST (ρ) = {S ∈ ST | Sj ≥ Si + pi for all (i , j) ∈ ρ}

Christoph Schwindt Clausthal University of Technology
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Characterization of the feasible region Efficient solutions Generic solution approaches

Covering of S by relation polyhedra

Capacity R = 2

F1 = {1, 2, 3},
F2 = {1, 2, 4}

1) 3 → 1, 1 → 4
2) 3 → 1, 2 → 4
3) 3 → 1, 4 → 1
4) 3 → 1, 4 → 2
5) 3 → 2, 1 → 4
6) 3 → 2, 2 → 4

Christoph Schwindt Clausthal University of Technology
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Characterization of the feasible region Efficient solutions Generic solution approaches

Feasible relations (S. 2005)

Definition: Feasible relation

Relation ρ with ∅ 6= ST (ρ) ⊆ S is called feasible relation.

Condition ST (ρ) 6= ∅: ordinary precedence relations (i , j) ∈ ρ are
compatible with generalized precedence relations (i ′, j ′) ∈ E

Condition ST (ρ) ⊆ S: all schedules S satisfying the ordinary
precedence relations (i , j) ∈ ρ are resource-feasible

Induced strict order, schedule-induced order, iso-order set

Relation network N(ρ) = (V ,E ∪ ρ, δ) with δij = pi for (i , j) ∈ ρ

Distance matrix D(ρ) associated with network N(ρ)

Relation ρ induces strict order Θ(ρ) := {(i , j) | dij(ρ) ≥ pi}

Schedule S induces strict order θ(S) := {(i , j) | Sj ≥ Si + pi}

Iso-order set S=
T (θ) := {S ∈ ST | θ(S) = θ}

Christoph Schwindt Clausthal University of Technology
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Characterization of the feasible region Efficient solutions Generic solution approaches

Example

Relation network for ρ = {(3, 2), (4, 2), (5, 1)} and strict order Θ(ρ)

0

1 2

3 4

5

6
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Characterization of the feasible region Efficient solutions Generic solution approaches

Checking feasibility of relations (Kaerkes and Leipholz 1977)

1 ST 6= ∅ iff N(ρ) does not contain any cycle of positive length

2 ST (ρ) ⊆ S:

For each resource k weight activities i ∈ V with rik
Condition is satisfied iff for each resource k , weight of any
antichain Ak(ρ) of Θ(ρ) does not exceed Rk

Maximum-weight antichain can be computed in O(n3) time by
solving maximum-cut problem in precedence graph of Θ(ρ)

Example: Maximum-weight antichain for ρ = {(3, 2), (4, 2), (5, 1)}

0

1

1

2

2

2

2

3

3 4

5

6

Weight nodes with
requirements rik

Determine maximum
0− (n + 1)-cut

Here: A(ρ) = {4, 5}
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Characterization of the feasible region Efficient solutions Generic solution approaches

Schedule types (Neumann et al. 2000)

Active schedules: Minimal points of S

Stable schedules: Extreme points of S

Pseudostable schedules: Local extreme points of S

Quasiactive schedules: Minimal points of relation polyhedra

Quasistable schedules: Vertices of relation polyhedra

Christoph Schwindt Clausthal University of Technology
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Characterization of the feasible region Efficient solutions Generic solution approaches

Classes of objective functions and efficient solutions

Regular functions → project duration Sn+1

Linear(-izable) functions f (S)

→ subset makespan maxi∈U(Si + pi )−mini∈U Si

Binary monotonic functions: monotonicity in binary directions s ∈ {0, 1}n

→ net present value
∑

i∈V cFi β
Si+pi

Locally regular functions: f regular on iso-order sets S=
T

→ total resource availability cost
∑

k∈R ck maxt≥0 rk (S , t)

Locally concave functions: f concave on iso-order sets S=
T

→ total squared utilization cost
∑

k∈R ck
∫∞

0
r2k (S , t) dt

Objective function Efficient solutions Verification

Regular Active schedules NP-complete
Linear Stable schedules NP-complete
Binary monotonic Pseudostable schedules NP-complete
Locally regular Quasiactive schedules polynomial
Locally concave Quasistable schedules polynomial

Christoph Schwindt Clausthal University of Technology
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Characterization of the feasible region Efficient solutions Generic solution approaches

Generic solution approaches

Regular, linear, and binary-monotonic objective functions

Time-constrained scheduling problem (PT ) efficiently solvable

longest-walk calculations
linear programming
recursive algorithms, e. g., De Reyck and Herroelen (1998b)
steepest-descent algorithms, e. g., S. and Zimmermann (2001)

Apply relaxation-based procedure providing feasible relation ρ

Minimize f on relation polyhedron ST (ρ)

Objective function (only) locally regular or locally concave

Time-constrained scheduling problem (PT ) intractable

Apply schedule-construction procedure providing minimal or extreme
point of some relation polyhedron ST (ρ)
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Characterization of the feasible region Efficient solutions Generic solution approaches

Relaxation-based procedure

Schedule-generation scheme for problem (P)

1. Set ρ := ∅;
2. If ST (ρ) = ∅: STOP; // no feasible schedule found

3. Verify feasibility of ρ by solving maximum-cut problems;

4. If ρ is feasible: compute minimizer of f on ST (ρ) and STOP;

5. Determine resource k such that antichain Ak(ρ) is forbidden;

6. Select ⊆-minimal set B ⊂ Ak (ρ) such that A := Ak (ρ) \ B is

not forbidden, and select some i ∈ A;

7. Set ρ := ρ ∪ ({i} × B), and go to step 2;

Combination (i ,B) is called a minimal delaying mode (De Reyck
and Herroelen 1998a)

Procedure can also be used for problems with stochastic processing
times p̃i ; resulting relation defines an ES-policy (Radermacher 1981)
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Characterization of the feasible region Efficient solutions Generic solution approaches

Example

Relaxation-based procedure
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Characterization of the feasible region Efficient solutions Generic solution approaches

Schedule-construction procedure

Schedule-generation scheme for problem (PT )

1. Set C := {0}, S0 := 0, and ESi := d0i, LSi := −di0 for all i ∈ V;

2. Select some i ∈ C and some j ∈ V \ C;
3. Select time Sj ∈ {Si + δij ,Si + pi ,Si − pj ,Si − δji} ∩ [ESj , LSj ];
4. Add j to C;
5. Update ESh and LSh for all h ∈ V \ C;
6. If C 6= V, go to step 2;

Locally regular objective function: select t ∈ {Si + δij , Si + pi}

Pairs (i , j) selected in step 2 form a spanning tree (spanning
outtree) of relation network N(ρ) rooted at node 0

In case of resource constraints: determine ⊆-minimal feasible
relation ρ and apply procedure on network N(ρ) instead of N
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Characterization of the feasible region Efficient solutions Generic solution approaches

Example

Schedule-construction procedure for quasiactive schedule

Iteration i j time t

1 0 3 0
2 0 5 8
3 5 4 3

Iteration i j time t

4 5 1 10
5 1 2 11
6 1 6 16
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Solution approaches for the project duration problem

Minimization of project duration has received largest attention in
literature

Four categories of solutions approaches

Adaptations of schedule-construction procedures and
metaheuristics for RCPSP

Relaxation-based branch-and-bound procedures

Constraint-programming based approaches

Mixed-integer linear programming formulations and related
algorithms

Christoph Schwindt Clausthal University of Technology
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Schedule-construction procedures

Serial/parallel SGS iteratively fix start times of activities

When procedure is trapped in deadlock: call unscheduling procedure

No guarantee to find a feasible solution, but very effective on
benchmark instances

Unscheduling procedure (Franck et al. 2001)

1. Set ∆ := t − LSj; // t is earliest resource-feasible start

// time of j

2. Determine U := {i ∈ C | LSj = Si − dji};
3. For all i ∈ U: set ESi := ESi +∆;

4. Remove all h with Sh ≥ mini∈U Si from set C;
5. Update earliest and latest start times and return to

schedule-generation scheme;

Priority-rule based methods, tabu search, and genetic algorithm by
Franck et al. (2001) and evolutionary algorithm by Ballest́ın et al.
(2011) based on serial SGS with unscheduling
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Example

j = 2, t = 7, LSj = 3, ∆ = 4

U = {i ∈ C | LSj = Si − dji} = {1}

Set ES1 := 4 and unschedule activities i = 1, 3, 4
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Relaxation-based approaches

Start with solution Ŝ = ES to time-constrained problem (PT )

Identify some time t with rk(Ŝ , t) > Rk for some resource k

Branch over alternatives to resolve the resource conflict at time t

Partition forbidden set A(Ŝ , t) in minimal delaying alternative B

and feasible set A = A(Ŝ , t) \ B

Ordinary precedence relations (De Reyck and Herroelen 1998a)

Sj ≥ Si + pi (j ∈ B) for some i ∈ A

Release dates (Fest et al. 1999)

Sj ≥ δ0j := min
i∈A

(Ŝi + pi ) (j ∈ B)

Disjunctive precedence relations (S. 1998)

Sj ≥ min
i∈A

(Si + pi) (j ∈ B)
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Constraint-programming approaches
(Dorndorf et al. 2000, Schutt et al. 2013)

Associate decision variables Si with domains ∆i = {ESi , . . . , LSi}

Try to reduce domain sizes by applying consistency tests like
precedence, interval capacity, or disjunctive consistency tests

When consistency tests reach fixed point, perform dichotomic
start-time branching for activity i with smallest earliest start time
t = min∆i : Si = t ∨ Si ≥ t + 1

Replace domain ∆i by {t} or {t + 1, . . . , LSi}

Propagate update to other domains by applying consistency tests

Best results for project duration problem obtained by Schutt et al. (2013)
from combining start-time branching with SAT representation and lazy
clause generation

Alternative approach by Cesta et al. (2002) based on formulation as CSP
for posting precedence relations in minimal forbidden sets
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Mixed-integer linear programming (Bianco and Caramia 2012)

In general, MILP formulation for RCPSP easily adapted to
generalized precedence relations

MILP model of Bianco and Caramia (2012)

Binary variables sit = 1 if i has been started by time t

Binary variables fit = 1 if i has been completed by time t

Variables zit ∈ [0, 1] keeping execution percentage of i by time t

Coupling constraints: zi(t+1) − zit =
1
pi
(sit − fit)

Temporal constraints:
∑T

t=1 sit ≥
∑T

t=1 sjt + δij
Resource constraints:

∑
i∈V rikpi · (zit − zi(t−1)) ≤ Rk

Branch-and-bound algorithm based on MILP formulation

Each level of enumeration tree associated with one activity i

Branch over ∨t=ESi ,...,LSi
{sit = 1}

Lower bounds obtained by Lagrangian relaxation of resource
constraints
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Experimental performance analysis for project duration problem

Algorithms evaluated on ProGen/max data sets1

Results for test set CD (540 instances, n = 100, |R| = 5)

Algorithm tcpu pfeas popt pinf
De Reyck and Herroelen (1998a) 3 97.3 54.8 1.4

30 97.5 56.4 1.4
S. (1998) 3 98.1 58.0 1.9

30 98.1 62.5 1.9
100 98.1 63.4 1.9

Fest et al. (1999) 3 92.2 58.1 1.9
30 98.1 69.4 1.9

100 98.1 71.1 1.9
Dorndorf et al. (2000) 3 97.8 66.2 1.9

30 98.1 70.4 1.9
100 98.1 71.1 1.9

Bianco and Caramia (2012) 3 98.1 67.6 1.9
30 98.1 71.8 1.9

100 98.1 72.2 1.9
Schutt et al. (2013) 1 97.9 78.1 1.6

10 98.1 89.8 1.9
100 98.1 94.0 1.9

1
http://www.wiwi.tu-clausthal.de/en/abteilungen/produktion/forschung/schwerpunkte/project-generator/
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Multi-mode problem Preemptive problem

The multi-mode version of problem (P)

Each activity i can be executed in one of a finite number of execution
modes m ∈ Mi

Executions modes m differ in durations pim and resource requirements rikm
(renewable and nonrenewable resources)

Generalized precedence relations δij depend on modes mi and mj

Feasibility variant of time-constrained problem (PT ) NP-complete

Relaxation-based branch-and-bound algorithms by De Reyck and
Herroelen (1999) and Heilmann (2003), MILP model by Sabzehparvar
and Seyed-Hosseini (2008)
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Multi-mode problem Preemptive problem

Preemptive problem (P) (S. and Paetz 2014)

Activities can be interrupted at any point in time

Generalization of problem (P) since preemption can be prevented by
generalized feeding precedence relations of type (i , i , 1.0, 0.0,−pi)

(P) can be reduced to
canonical form with
nonpositive completion-
to-start time lags

Up to 2n − 1 slices needed,
one and the same antichain
can be in progress several
times, number of inter-
ruptions bounded by n(n − 1)

Subproblem with given
positive antichains still
NP-hard
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Practical applications including generalized precedence relations

Technical constraints in civil engineering (Bartusch et al. 1988)

Lot streaming in manufacturing (Neumann and S. 1997)

Perishable intermediate products in process scheduling
(Neumann et al. 2002)

Minimum and maximum durations of service activities
(Mellentien et al. 2004)

Minimum and maximum time lags between build-up and test activities in
automotive R&D projects (Bartels and Zimmermann 2009)

Overlapping of activities in aggregate production scheduling
(Alfieri et al. 2011)

Maximum duration of validity for statutory permissions in nuclear power
plant dismantling (Bartels et al. 2011)

Maximum makespan for activity sequences at service centers
(Quintanilla et al. 2012)
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Conclusions

Generalized precedence relations needed to formulate real-life scheduling
constraints

Efficient temporal analysis based on Roy’s Metra Potential Method

Feasibility variant of resource-constrained problems NP-complete

Classical schedule-generation schemes lead to deadlocks

Unscheduling techniques, relaxation-based approaches, constraint
programming methods, mixed-integer programming formulations

Significant recent advances, e. g.:

Linear-time algorithm for checking feasibility of temporal constraints
Very effective constraint-programming approaches for project
duration problem

Avenues for future research

Preemptive project scheduling under gpr’s
Stochastic/robust project scheduling under gpr’s
Lazy clause generation approach for different objective functions
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