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1 Abstract

This thesis deals with HRTF customization by regression. Five different regression ap-
proaches were investigated, implemented and compared to one another. All the regres-
sion algorithms were executed with different variations and modifications in order to find
ways to improve the results.

These results were then compared to both non-customized HRIRs and individually mea-
sured HRIRs, acquired at the LDV audio laboratory. The evaluation is based on spectral
distortion, but the run time, the complexity and the effort of the different methods were
taken into consideration as well.

The goal of this thesis is to provide a wide comparison between several different possible
solutions in order to provide a good foundation for further research.

The results showed that the PCA’s results were the worst and that changing it to a 2DPCA
improved the results significantly. GLRAM and Tensor SVD, despite better SD values,
are less suited for regression as they take much longer to execute than the PCA and the
2DPCA. The best results were achieved by using the PLSR.

*k*k

Diese Arbeit behandelt das Thema HRTF customization by regression. Es wurden fiinf
verschiedene Regressionsanséatze untersucht, implementiert und miteinander verglichen.
Alle Regressionsalgorithmen wurden mit verschiedenen Variationen und Modifikationen
ausgefiihrt, um einen Weg zu finden, die Ergebnisse zu verbessern.

Diese Ergebnisse wurden dann sowohl mit nicht personalisierten HRIRS als auch mit in-
dividuell gemessenen HRIRs - aufgenommen im LDV Audio Labor - verglichen.

Die Evaluierung beruht auf spectral distortion, jedoch wurden ebenfalls die Laufzeit, die
Komplexitat und der Aufwand der verschiedenen Methoden in Betracht gezogen.

Das Ziel dieser Arbeit ist es, einen breiten Vergleich zwischen mehreren verschiedenen
mdglichen Lésungen zu bieten, um eine gute Grundlage fir weitere Forschung zu bilden.
Die Ergebnisse haben gezeigt, dass die Ergebnisse der PCA die schlechtesten waren
und dass durch das Andern in eine 2DPCA die Ergebnisse deutlich verbessert wurden.
GLRAM und Tensor SVD sind trotz der besseren SD Werte zur Regression weniger
geeignet, da sie deutlich mehr Zeit zur Ausfiihrung benétigen als die PCA und die 2DPCA.
Die besten Ergebnisse wurden mit der PLSR erzielt.
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2 Introduction and Objectives

In recent years the number of scientists dealing with the generation of 3D sound has been
growing rapidly. With 3D television becoming more and more dominant, it is only logical
to take sound to the next level as well. Especially with our world becoming increasingly
connected, the importance of teleconferences has risen significantly. As of now, there are
several systems for this kind of communication, but they all lack the feeling of the person
at the other end being in the same room. This would of course change if there was 3D
sound. People would be able to talk one another as though they were standing next to
each other.

Another area that takes great interest in three dimensional sound is robotics. Especially
when it comes to tele-operating a robot it can be useful to know where the perceived sound
originates.

Since it is clear to see where 3D sound can be of use the next logical step is to ask how it
can be accomplished.

In order to make sound seem three-dimensional for the human ear one has to be in pos-
session of the Head Related Impulse Response. Since every individual has its own Head
Related Impulse Response, there are two possibilities: you can either take a Head Related
Impulse Response from a different person or the subject’s own Head Related Impulse Re-
sponse. In the first case the feeling of surround sound will not be as good as in the latter.
However, since no two humans are the same, each and every individual will perceive
sound differently. So in order to produce the perfect 3D illusion for everyone you have to
take the individually measured Head Related Impulse Response of every single person
who intends to enjoy three dimensional sound which takes a lot of time and professional
equipment.

The preferred way to obtain one’s Head Related Impulse Response is to put small micro-
phones into a person’s ears and measure how a signal played from a speaker is perceived
by the test subject and thus the microphone. This approach entails several problems. Not
only is it extremely time consuming to measure the Head Related Impulse Response for
every individual but it is also complicated to find microphones that are both exact and small
enough so they will neither contort the signal nor change the shape of the ear. The lat-
ter point is crucial as the Head Related Impulse Responses are mainly influenced by the
shape and size of the different body parts. Which is why it is of utmost importance that dur-
ing the measurement there are no changes to the actual proportions caused by equipment
such as microphones. And last but not least there is the problem of the subject not being
allowed to move the slightest bit during the measurements because otherwise it would ruin
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the measurements.

So it has been tried to find a way to produce surround sound for everyone as good as when
using individual HRIRs without the effort of measuring them separately. Ideally, a person
would only have to know some of his or her anthropometric measurements and be able
to calculate the perfect, customized Head Related Impulse Response (HRIR). Currently,
there exists a theory of how to achieve this. How they work in reality and whether the
results will be able to compare to those from any Head Related Impulse Response (HRIR)
from the CIPIC database will be investigated in this thesis. Rothbucher et al. [17] have
already done some research in this field. Their paper will be the starting point of this the-
sis. Its main goal then is to research the topics above even further and compare different
approaches.



3 Definitions

In order to understand the basic terms and abbreviations of this thesis, the most important
ones are explained beforehand.

HRIR

Short for Head Related Impulse Response.

The HRIR describes how sound is perceived by a human ear. On its way from the source
to the ear the sound is influenced by parts of the ear, the head, the torso and other an-
thropometric features that function as filters. The HRIR varies depending on the direction
of the sound. The location of the sound source influences the amplitude and the initial
time delay. Just like most impulse responses, a HRIR is close to zero until the sound hits
the ear which then results in a peak. The length of this delay will be shorter if the sound
source is close by and longer if for instance the sound source is on the far side of the head.
The amplitude behaves similarly. The closer the source, the greater the amplitude. As the
human ear processes sound much the way a microphone does, HRIRs can be measured
with small microphones inside the ear. The HRIRs can then be used in a convolution to
create three-dimensional sound. In this thesis, the CIPIC data base was used. Refer to
[28] for more information on this data base.

HRTF

Short for Head Related Transfer Function. It is the Fourier Transform of the HRIR.



3 Definitions
DTF

Short for Directional Transfer Function.
It is a method to remove the logarithmic mean of a HRTF and thus center it according to

No

. . 1 .
P(i.J, K) = 20l0g1o| A, K| — - > 20/0go| (i J, K)
P k=1

, (3.1)

where 7 € RNoXNexNo is an HRTF and Z is the resulting DTF. The subtracted mean has
to be added to the newly calculated HRTF after regression before using it to generate 3D
sound.

Regression

Regression is used to investigate and express the influence of one or more independent
variables on one or more dependent ones. In this thesis, it is used to find the influence of
a persons’ anhtropometric data on his or her personal HRIRs.

Spectral Distortion

A method to evaluate the difference between two signals in the frequency domain. It is
computed according to

N¢ 2
1 | >
SD=,|— 20lo , 3.2
NfZ < g10|%ew/| ( )

=1

where 7% € RNeNixNo i an HRTF at its i-th frequency from a data base and ey, is a
HRTF calculated with a regression algorithm at its i-th frequency. Nr denotes the number
of frequencies.
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4 State of the Art

This chapter deals with what has already been researched in the field of HRTFs and sur-
round sound creation. There is for instance the option to simply use KEMAR HRTFs which
were measured for a dummy. This approach assumes that the KEMAR is close enough to
most people and that most people will not hear any difference.

The second approach is to select suited HRTFs from existing data bases like in [5] and
[26].

The third and probably most complex solution is measuring HRTFs individually, which
though very precise, is also very time consuming.

A rather new method is HRTF customization by regression. Even though some sources like
[17] did some research in this field, it is not as well explored as the first three approaches.
As of the time of this thesis there are no indications that the PLSR has ever been used for
customizing HRTFs. This chapter includes a short description of this solution and of what
has already been done in this field.

4.1 KEMAR HRIRs

The first and probably most basic approach to create 3D sound is to simply use KEMAR
HRIRs. They were measured using a plastic dummy by G.R.A.S. with microphones in its
ears. On the one hand, this means it certainly did not move and thus did not disturb the
measurements. On the other hand, it also means that the HRTFs are highly unlikely to
perfectly fit most people since hardly any people look exactly like the KEMAR manikin.

4.2 Selection

Some sources like [5] and [26] suggest to choose fitting HRTFs from existing data bases
instead of creating new ones. The main idea of this approach is for the subject to listen
to several sounds created with different HRIRs. Based on a tournament style comparison,
the ones with better localization move on. Whenever the subject is not able to correctly
localize a sound based on a HRIR, this HRIR is eliminated.

11
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4.3 HRIR Measurement

Since hardly any two people look exactly the same, everyone needs an individual HRIR in
order to experience the best 3D sound possible. A HRIR is influenced a great deal by the
outer appearance of the individual which is why it does not suffice to simply take someone
else’s HRIR. Even though it most probably would create a 3D impression, the result is
expected not to be as good as with the individual HRIR.

However, it is quite time consuming to measure a person’s HRIR. Not only does it take a
lot of time, but it also requires a lot of precise equipment and expertise. The exact way to
measure HRIRs at the LDV audio laboratory is as follows:

1. Get a person’s ears prints using a special silicone and let it dry and harden
2. Cut the prints into shape and drill a hole in both of them for the microphones
3. Set up the turning table, the speaker and pre load all the scripts

4. Play MLS while the subject sits on a chair placed on the turning table

5. Calculate the HRIRs from the recorded noise sounds

6. Cut and maybe post process the HRIRs to improve quality

This first picture shows the mold of an ear canal created using a special silicone. The

Figure 4.1: Mold of an ear canal

second picture shows the turn table on which the subject has to sit. It was built with the
goal of altering the shape of a human body as little as possible in order to not distort or
influence the HRIRs in any way.

Obviously it is not the easiest procedure as it is rather uncomfortable to sit on the rotating
chair in 4.2 without even the slightest movement and it requires a lot of equipment. Fur-
thermore, the room in which the HRIRs are measured has to be absolutely anechoic for
optimal results. Another problem is posed by the microphones. As they have to fit into

12



4.3 HRIR Measurement

Figure 4.2: Turn table

a person’s ear canal, they have to be fairly small. This third picture 4.3 shows how the
microphones were placed in the ears.

13



4 State of the Art

Figure 4.3: Microphone and mold placed inside an ear for measurement
4.4 HRTF Customization by Regression

This approach has not been investigated as thoroughly as the other ones yet. Its main
idea is to use existing HRTF from data bases, train a regression model with that data and
obtain a personalized HRTF by including the new subject’s anthropometric data. The aim
of this thesis is to investigate this approach, to implement and compare different regression
algorithms and compare them to the existing approaches.

14



5 HRTF Customization by Regression

With the traditional approach of measuring individual HRIRs being very complex and the
goal still being perfect three-dimensional sound, one is tempted to ask: Isn’t there any
other way to achieve this goal?

And the answer is yes. It is the HRTF Customization based on regression algorithms. It
simply requires a person’s anthropometric data - or just 8 of all the features to be precise
- and a few seconds of computer run time in order to result in a personalized, individual
HRIR. And this method opens a whole new world of possibilities. When someone wants
to have a conference in 3D sound, the user can not take the time to have his or her HRIR
measured in an anechoic room. But having his or her anthropometric features measured
only takes a few second and maybe could even be done by a laser scanner or a webcam
based application. A method to accomplish this was proposed in [18].

As for the math behind this approach, it basically comes down to this:

Since every HRIR is influenced by anthropometric data, it can be described as

Wk=Bék+€, (5-1)

where 3y includes the anthropometric data and ¢ is an error as Rothbucher et al. have
shown in [17]. The result w is called features. The anthropometric data ax includes sev-
eral sizes of the human body, such as length and width of the ears. According to [9] it is
sufficient to use only 8, namely head width, head depth, shoulder width, cavum concha
height, cavum concha width, fossa height, pinna height and pinna width. In [19] slightly
different sizes of the human head were used which were less simple to measure as they
included radial distances whereas the measurements used by [17] only required linear
distances. As a main aspect of this thesis is to make HRTF personalization as easy as
possible, the easier way was chosen. Furthermore, the used method maybe allows for
future work to develop a camera based algorithm that automatically measures the relevant
values based on a picture or a laser scanner.

The result of (5) wy is a matrix of r, chosen features with w € R»*Ne [17].

These features can either be calculated using PCA, 2DPCA, Tensor SVD, GLRAM, PLSR
or potentially another regression algorithm.

The PCA’s and the 2DPCA'’s features are the eigenvectors - also called principal compo-
nents or PCs - whereas the Tensor SVD uses singular value decomposition and with the
GLRAM, the features are the matrix R. Hwang et al. [22] found that the first ten principal
components are sufficient to cover 86.4% of the variances, Hugeng et al. [29] found slightly

15



5 HRTF Customization by Regression

different results as can be seen in the appendix.

Rothbucher et al. [17] found that the first 10 largest PCs are sufficient to cover plenty of
the information as well.

Since there were three separate findings, it was assumed that results in this thesis would
be similar which is why it was not pursued any further, but rather used as a starting point
and ground truth.

With the features extracted and by using the Pseudo-Inverse it is possible to find the matrix
B that does not include any anthropometric data:

B=WAATA)™ (5.2)

where A = [1A]". For more information on customization by regression please refer to [8],
[91, [17], [19], [23], or [29].

5.1 Regression Methods

As explained in the definitions above, regression is used to find the influence of indepen-
dent variables on one or more dependent ones. In this thesis, it is used to determine
the connection between a person’s anthropometric data and his or her HRTFs. There are
several more or less common regression methods, some of which will be explained and
applied in the following. Since the scope of this thesis is limited, not all existing regression
algorithms could be tested. Instead, the ones described in [17] were explored. In addition
to those algorithms, the PLSR was used as a fifth approach.

16



5.1 Regression Methods

PCA

The PCA is one of the most common regression methods and thus very well known. This
is why it was used as a ground truth in this thesis. Even if the results turned out to be
worse than those of the other approaches, the PCA still works great as a starting point to
which other results can be compared. Furthermore, it is very easy to implement and to
use. Rothbucher et al. also used it as a ground truth in [17].

The PCA uses the eigenvectors of the covariance matrix as regression weights. It can
come in useful for achieving data reduction, because the most important principal compo-
nents - according to Hwang et al. [22] the first 12 - are sufficient to cover a large percentage
of the original variance while only using a small part of the original data’s space.

The procedure once the eigenvectors - also called regression weights - are calculated is
the same as with the 2DPCA. For more information on PCA, refer to [21], [23], [12], [17],
[11], [30], [12] or [7]. The way the PCA was applied in this thesis is described in figure 5.1.

Principal Component Analysis

Step 1: Calculate the DTFs

Step 2: Calculate the eigenvectors W from the covariance matrix ¢ = 2(i,:, )T 2(i, )
Step 3: Use eigenvectors W to solve B = WA(ATA)~!

Step 4: Multiply the new anthropometric data e, on B to obtain wpey = Banew

Step 5: Calculate 2 = 2W where Z is the DTF of the CIPIC HRIRs.

Step 6: Reverse the DTF by adding the logarithmic mean:

Hrow(i. ] k)_10;—0<0new<i,j,k>+,vip v, 20l0g10] A#(i,j,K)])
new\'s J, -

Step 7: Calculate ifft and add the initial delay to be able to listen to results

Table 5.1: Pseudo Code for the PCA

17



5 HRTF Customization by Regression

2DPCA

With the PCA being the most basic approach in this thesis, the step to improve it to a
2DPCA lies very close. As it was shown in [17], the 2DPCA should deliver better results
while still being relatively simple regarding implementation and use. Another advantage of
the 2DPCA is that the whole tensor is used in the eigenvalue decomposition whereas the
PCA can only be applied to one matrix at a time. This should help reducing the errors.
Just like the regular PCA, this method uses eigenvalue decomposition. The only difference
is that it doesn’t just use one covariance matrix but the scatter matrix S, since the input
data is three-dimensional. The scatter matrix is the mean of all covariance matrices. It is
calculated as described by [13] using the equation

Ny
1 Z . AT . Npx N,
Sp = Ny i=1 D(i,0) D,y 0), € R, (5:3)

with Ny being the number of directions, in case of the CIPIC data this means 1250, and
N, being the number of subjects used for training; & is the DTF of the HRTF. For more
information on 2DPCA, refer to [13] or the sources on PCA. Based on this, the algorithm
can be described as follows:

2D Principal Component Analysis

Step 1: Calculate the DTFs (or use HRTFs or HRIRs respectively)

Step 2: Calculate the eigenvectors W from the Scatter matrix

Sp = Nid SN D0, )T D, 3, ), € RNXMo

Step 3: Use eigenvectors W to solve B = WA(ATA)~"

Step 4: Multiply the new anthropometric data &ne,, on B to obtain wpey = Banew
Step 5: Calculate 2 = ZW where Z is the DTF of the CIPIC HRIRs.

Step 6: Reverse the DTF by adding the logarithmic mean:

Frow(i.j k)_m;—O(Dnew(/,/,k)wip W, 20l0g10]7(1,j,K) )
new\'s Js -

Step 7: Calculate ifft and add the initial delay to be able to listen to results

Table 5.2: Pseudo Code for the 2DPCA

18



5.1 Regression Methods

Tensor SVD

Short for Tensor Singular Value Decomposition. The SVD - much like the PCA - decom-
poses a signal into its main components. Instead of eigenvalue decomposition(PCA) it
uses singular value decomposition. Just like with the PCA, data reduction can be achieved
by using only the most important singular values to represent the signal.

The main advantage of performing calculations using tensors is that the three dimensional
data from the CIPIC data base does not have to be split up into two dimensional matrices
only to be put back together again later on. This entails the risk of errors being made in
the course of splitting it up and rebuilding it which can be avoided by using tensors.

The Tensor SVD is probably the worst of the demonstrated algorithms in terms of usability
and especially in terms of availability. The user first needs to download the n-way tool box
[6] before being able to start the actual work. The run time is not great either. While the
other algorithms take less than a minute, the Tensor SVD takes at least several minutes,
depending on the chosen parameters.

There is an algorithm from the n-way Toolbox [6] called tucker() that calculates the desired
singular values of a tensor which was used in this thesis. Apart from it using tensors in-
stead of matrices, its main functionality is still a singular value decomposition. For more
information on Tensors and the Tensor SVD refer to [6], [27], [4] and [24]. The following
algorithm was adapted from [17].

Tensor SVD

Step 1: Solve the minimization problem: min |2 — 9|F
P eRNa XNy xNp

Step 2: Decompose the rank-(ry, 17, Ip,) tensor & as a trilinear multiplication of a rank-
(ra, rt, Ip) core tensor € € R/@>™<e with three full-rank matrices X = (x;) € RVe>/a,y =
(vj) € RN and W = (w;) € RN which is defined by & = (X, Y, W) - &
Step 3: Use eigenvectors W to solve B = WA(ATA)~!
Step 4: Multiply the new anthropometric data e, on B to obtain wpey = Banew
Step 5: Calculate Dpey = (X, Y, w)y,) - € € RNa>Nr
Step 6: Reverse the DTF by adding the logarithmic mean:
1 Co 1 M i
Hnew(i,j, k) — 1020(Dnew(’yl:k)+Np Zk=1 20/0910‘Jf(’|/|k)|)

Step 7: Calculate ifft and add the initial delay to be able to listen to results

Table 5.3: Pseudo Code for the Tensor SVD

19



5 HRTF Customization by Regression

GLRAM

Short for Generalized Low Rank Approximation. It uses three lower rank matrices X €
RNaxfa M € R and W € RM*" to approximate a matrix of higher rank. The left ma-
trix X is then - just like the eigenvectors before - used to solve the equation wy = Bax+ €
where in this case wx = R € RM>»_ After multiplication with new anthropometric data
M and W are multiplied to the result from the right side in order to reconstruct the new
personalized HRIR.

According to [17] it fares well in comparison with the 2DPCA. It is relatively easy to use
and even the run time is good. Finding the right parameters is not easy, but [17] found a
combination that provided good results. There are of course other possible combinations
as well, but this thesis’ main goal is to further explore the methods and results of [17].
Regarding the difference between GLRAM and SVD, Ye [14] says:

"Both GLRAM and SVD aim to minimize the reconstruction error. The essential difference
is that GLRAM applies a bilinear transformation on the data. Such a bilinear transforma-
tion is particularly appropriate for data in matrix representation and often leads to lower
computational cost compared to SVD [14]".

For more information on GLRAM refer to [14].

The following algorithm was adapted from [17]:

GLRAM

Step 1: Solve the optimization problem: ~ min Z (2 — XMWT) ||
X w M5 o

Step 2: Construct a 3D array .# € R@>*N<%o with .#(:,i,:) = M fori = 1, ..., Ny
Step 3: Use eigenvectors W to solve B = WA(ATA)~"

Step 4: Multiply the new anthropometric data ane, 0N B to obtain Wpew = Banew
Step 5: Calculate new direct transfer functions Dpew (i, i, 1) = X A (2, i, ) Whew
Step 6: Reverse the DTF by addlng the logarithmic mean:

Hrow(iiJ. K) = 020 (Dnew!ij.k)+ 5 P 20l0g10| 7 (i,j,K)))

Step 7: Calculate ifft and add the initial delay to be able to listen to results

Table 5.4: Pseudo Code for the GLRAM

20
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PLSR

The PCA bears the problem that even if the found PCs describe the original data very well,
it does not necessarily also provide a good prediction for new data. The PLSR on the other
hand uses the new anthropometric data and tries to find a connection between this data
and the HRTF data base. It calculates the weights from both the new anthropometric data
and the DTF training data. This means it takes the new information already into account
which should make for a better prediction than the one from the PCA or 2DPCA.
In addition to the promising approach the run time of the PLSR algorithm is very short.
The PLSR was implemented using the Matlab Help while referring to [25], [20] and [10].
For more information on PLSR refer to [20], [10] or [25].

PLSR

Step 1: Center X and Y thus obtain Xj and Yy

Step 2: Calculate the weights W and C by applying SVD on R = XY to obtain W and
C with R= WACT

Step 3: Calculate t; = Xpwy and uy = Yy

Step 4: Calculate X7 = Xy — l'1(t4Xo)/(t1, ti)and Yy = Yy — t1(t1, Yo)/(t1/ t)

Step 5: Calculate the loadings P of factor t; on X with py = X{t1 /(t{t1)

Step 6: Calculate the estimated regression coefficient by: by = ujt; /(t;t;) where uy are
the Y factor scores

Step 7: Calculate the new DTF with Y, = Tdiag(b)C’

Step 8: Reverse the DTF by adding the logarithmic mean:

Hrow(i.j. K) = 1 Ozio(onew(i,j,k)wip SN2 20l0g1o| 2 (i1j,K)])

Step 9: Calculate ifft and add the initial delay to be able to listen to results

Table 5.5: Pseudo Code for the PLSR
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5 HRTF Customization by Regression

Summary and Comparison

While 2DPCA, GLRAM, TSVD and PLSR only need to be performed once per subject, the
PCA needs to be calculated for every direction or for every frequency, depending on which
plane it was performed on. This means the PCA needs to split up the tensor, whereas the
other algorithms use the whole tensor, which is likely to reduce computational errors.
Another big difference is between PCA, 2DPCA, GLRAM and Tensor SVD on the one side
and PLSR on the other one. While the first four approaches only use existing data to cal-
culate features, the PLSR uses both training data and the new subject’s anthropometric
data. This should ensure that the prediction is closer to the measured HRTF than when
using the other algorithms.

Besides the differences regarding the math behind the algorithms, they also differ regard-
ing run time. GLRAM and Tensor SVD take considerably longer than the other methods,
with Tensor SVD being the slowest.

5.2 Dimensionality Reduction

By not using all the Principal Components dimensionality reduction can be achieved. As
shown by [16] some dimensions can be reduced significantly while still retaining the original
quality while others could not be cut without resulting in a loss of quality. This reduction
results in both storage and run time reduction, which while not being the main aspect of this
thesis could prove to be useful nevertheless. According to [17], using only the 10 largest
eigenvectors in PCA or 2DPCA also improves the SD values compared to the results that
used all the PCs.

5.3 Removing the Initial Time Delay

Before the main calculations can begin, there is preprocessing that needs to be done.
There are two suggestions on how to improve signal quality. One is to remove the notice-
able time delay between the beginning of the sound being played and the time when the
sound hits the ear drum which is visible in the HRIR as a close to zero part before the
first peaks. The other approach calculates a minimum phase approximation of the training
HRIRs which results in HRIRs without initial delay. The two methods proposed to eliminate
this delay are explained in the following.

22



5.3 Removing the Initial Time Delay

Direct Approach

The first way to approach this problem is very straight forward as it simply cuts off the
initial delay at the point where the HRIR first reaches 12% of its maximum amplitude like it
was proposed by [22].

Apart from these findings, the initial delay can be added after regression performed in the
frequency domain and the following ifft which improves the sense of direction provided
by the HRIRs. Without adding the delay, there would be no difference between the two
channels besides the different amplitudes. This does create a 3D impression, but it should
be improved by using the original delays. Since the initial delay should - in theory - be
zero as there is no sound played yet and anything different from zero has to be noise it
does not need to be stored. It is sufficient to simply append zeros of the same length as
the original delay to the results of the different regression algorithms’ results. A side effect
of discarding the original delay is an improvement in the needed memory as well as a
reduced run time. Experimental results will show if the approach really yields the expected
improvements.

Minimum Phase Approach

The second way to get rid of the initial delay is less straight forward. According to Hugeng
et al. [29] an approximation of the HRIR without the initial time delay can be achieved with
a minimum phase HRIR.

Unlike the first approach that likely changes the amplitude by simply cutting the signal, this
second method only changes the phase. This means that the SD values should remain
the same as when not using the minimum phase approximation but the normal HRIRs for
training.

Experiments will show if either one of the above attempts to improve quality is suitable and
does in fact work properly.

23






6 Experimental Set Up

Having investigated and implemented the different approaches with the different modifica-
tions, an experimental set up was designed to test the developed algorithms.

6.1 Procedure

While some sources like [8] and [2] also use the so-called snowman or HAT (Head And
Torso) model along with other approaches, this thesis will focus on the comparison be-
tween individually measured HRTFs, the most similar HRTFs from the CIPIC data base -
as done by [8] - and the customized HRTFs using different regression methods.

With the algorithms implemented and ready to use, they were applied to create HRIRs and
HRTFs with the CIPIC data used for training. The subject whose HRIR was to be created
was not included in the training. The goal is to create a new HRIR simply from known
training data and a person’s anthropometric features.

This excluded subject’'s HRIR was produced using PCA, 2DPCA, Tensor SVD, GLRAM
and PLSR in both time and frequency domain. The result was then compared to the sub-
ject’s HRIR from the CIPIC data base. In order to evaluate the results objectively, the MSE
for results in the time domain and the spectral distortion for results in the frequency domain
are used.

There are several options from which it is possible to create a variety of combinations. The
options are listed below:

e time domain, with and without removal of the initial delay

time domain, with and without removal of the mean over all subjects

time domain, PCA and the 2DPCA with different numbers of principal components

time domain, GLRAM and Tensor SVD with different parameters

time domain, with the PCA applied to different planes

frequency domain, with and without removal of the initial delay

frequency domain, with and without using the DTFs
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6 Experimental Set Up

e frequency domain, PCA and the 2DPCA with different numbers of principal compo-
nents

e frequency domain, GLRAM and Tensor SVD with different parameters

e frequency domain, with the PCA applied to different planes

6.2 Time Domain

Even though in [17] all the experiments were performed in the frequency domain using
DTFs, this thesis also includes results from algorithms in the time domain. However, in
time domain, the DTFs can not be calculated, which means that the mean over all subjects
had to be subtracted from the training data in order to center it.

6.3 Frequency Domain

Having performed the various transformations in the time domain, the algorithms were then
applied to data in the frequency domain. In the frequency domain, there are two options:
one is to simply use the HRTF, the other is to first calculate the DTF and use it. Both
approaches were tested thoroughly.

DTF
According to Rothbucher et al. [17] and [7] it is suitable to use the DTFs instead of the
regular HRTFs. The directional transfer function is calculated using the equation

Np
1
., k) = 20l0g1o(| A, K)I) = 7 > 2000gro(|- (i j, K], (6.1)
k=1

where 7% € RNexNixNo s an HRTF.

Regression Set Up

The basic idea is to solve the equation wy = Bax+ € for B where wy are the eigenvectors
of a HRIR’s covariance matrix and & is an array consisting of the subjects’ anthropometric
data. Once B is calculated, it can then be multiplied with the anthropometric data of any
person. This will - via a few steps - result in a personalized HRIR. At the beginning of this
thesis there were no individually measured HRIRs which is why the ones from the CIPIC
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6.3 Frequency Domain

data base were used for training. In this set up, one subject from the CIPIC data base was
left out of the training and later on its anthropometric data was used to create a new HRIR.
This was then compared to the measured one from the CIPIC data base.

PCA and 2DPCA

Since the HRIRS are three-dimensional and the input to a PCA has to be € R? the
squeeze() command has to be used. Naturally, there are three options when picking 2
dimensions out of 3. However, in reality you can only perform it in two different ways,
because one would be to perform it N, times on matrices of € R¥>*Ne. This contradicts
the idea of using several subjects in the regression which only leaves two variations. You
could for instance perform the PCA on matrices € RNe*Me for each frequency or time
sample. In [17], however the PCA was performed on matrices € RV <M where Np is the
number of subjects included in the training which means it had to be performed Ny times.

Tensor SVD

The Tensor SVD was implemented using the n-way toolbox [6]. The parameters of the
tucker algorithm were varied and several combinations were tested. One set up was the
one used by [17] using r, = 10, ry = 100 and r = 200. The other ones were randomly
chosen. The best combination would then be used in the comparison.

GLRAM

According to [14] it is suitable to choose /; = kL because this yields both a small recon-
struction error and a fairly good compression rate while at the same time keeping the
computational costs small enough.

On the other hand, [17] used r, = 10, ry = 100 and ry = 200 which was implemented as
well in order to get [17] .

Since the choice of the initial low Ly did not make much of a difference, it was not varied
after the first tests. See figure 7.6 for the comparison of the results using different param-
eters.
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6 Experimental Set Up

PLSR

The PLSR does not offer many parameters that can be changed. As an input it needs
the CIPIC HRTFs and the anthropometric data of the new subject. The only thing
left to be varied is the dimension of the input variables. They have to be identical which
means that ones had to be appended to the anthropometric data similar to apey, = [1 aﬁew]T.

6.4 Removing the Initial Time Delay

As mentioned earlier, it might be suitable to remove the initial time delay. As the delay of the
to be customized HRIR is unknown before the regression, the mean over all subjects from
the training data was calculated. This resulted in one HRIR for every direction. Similar
to the HAT model, which adds a certain delay depending on the location, this approach
adds a delay based on the mean of the training data. This could be more precise than the
HAT model, seeing as it is more likely that a person looks like the mean of several other
subjects than like a snowman. In the following, the initial delay refers to the delay of this set
of HRIRs. The summary of how it was implemented and used is described in the following.

Direct Approach

This method allows to regain the directional information stored in the time delay which
would otherwise be lost due to the fft and the following DTF. With this approach the initial
time delay is cut off, fft, DTF and regression are performed and after all is done, the result
is transformed back into time domain using ifft where the removed delay can be added
again. The initial delay was not saved directly to be added again. Instead - to improve
run time - the length of the initial delay was stored. After the ifft, zeros of the length of the
original delay were added in front of the HRIR.

The first time the left and the right HRIR exceeded an amplitude of 12% of their maximum
values, the part of the vector from the beginning to this 12% mark was cut off and its length
was stored separately. It is important that the left and the right channel were treated sep-
arately - otherwise, the delay would be the same and the adding after the ifft would not
make any difference.

For instance: let the sound source be to the right of the subject’s head. Then the signal
will arrive at the right ear noticeably earlier than at the left ear. This difference has to be
preserved when preparing the HRIRs. Before using the regressions’ results, the initial time
delays have to be added again.

In order for the regression to still work after removing the initial time delay, matrix dimen-
sions have to agree. Meaning that if the signal without the initial delay is shorter than the
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6.5 Measuring the Quality

original one the PCA will not work. To avoid these kinds of complications, the shortened
HRIRs had zeros added at the end. As most if not all HRIRs are close to zero towards the
end, this should not make a big difference.

Minimum Phase Approach

Since simply cutting off a part of a vector can lead to errors, another method was imple-
mented. In this version, rceps() was used to create a minimum phase approximation of
the HRIR. This effectively leads to a HRIR without the initial delay. In order to regain the
directional information after the regression, the length to the point of the HRIR where it first
exceeds 12% of its maximum value was stored. This allowed for zeros to be appended at
the beginning of the personalized HRIR. All in all, this algorithm was a combination of the
minimum phase approach and the cutting off approach. It thus combines the preservation
of the directional information from the first approach and the smoothness of the cutting
from the second one.

6.5 Measuring the Quality

How to measure quality and furthermore the question of what defines quality is a wide
stretched field. This is why two very common methods of evaluation were used: MSE and
SD.

The method of choice in this case is cross validation: The regression was applied to the
CIPIC data without one of the 37 subjects. This subject’s anthropometric data was used
later on to produce a customized HRIR for this individual. For evaluation purposes this
personalized HRIR was compared to the subject’s measured HRIR from the CIPIC data
base using the two different algorithms mentioned above.

MSE

The Mean Square Error is a common tool of evaluating the difference between two signals.
However, the error might be caused only by a shift of a few samples. Knowing this, the
results of an MSE evaluation are not too strong an indicator. Another problem with the
MSE is that with small amplitudes of the compared signals, the difference and thus the
MSE will be small. Even if the two signals are not very similar, the error will not be much
larger than the maximum of the amplitudes. This would lead to the illusion of a good result
where really the signals are just too small to cause a large error.

So to make sure the error was not caused by a small shift or looked small because of small
amplitudes, only the spectral distortion was used.
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6 Experimental Set Up

Spectral Distortion

The customized HRTFs were compared to the CIPIC HRTFs using the spectral distortion
which is calculated in the frequency domain. For regression methods using the DTFs this
is not a problem. Those, however, that are performed in the time domain need their results
to be transformed using the fft first. This is why the MSE - even though it might not be the
perfect evaluation tool - was originally used as well.

When performing regression on DTFs, the subtraction of the logarithmic mean has to be
reversed by calculating

K) = {00 Drenli)+ 55 312, 20logrol #1170

Hnew(i,j, ’ (62)

where Dy, is the customized DTF, J# is the original HRTF from the training data and
Hrew is the resulting HRTF.

Once this is done, the spectral distortion can be calculated and it is the equivalent in the
frequency domain to the MSE in the time domain. It calculates the logarithmic difference
between two signals. A comparison between the 2DPCA result and the HRTF from the
CIPIC data base can be found in figure 6.1. The setting was Azimuth = —80°, elevation =
0° and it shows the left channel.

Listening Tests

In some cases it might be necessary to use a third, less mathematical method of evalua-
tion: listening tests. In case the personalized HRIR does not look much like the measured
HRIR from the data base, the SD and the MSE results will be bad. But just because it
does not look exactly like the measured one does not automatically mean it does not work
properly. The measured HRIRs are not the one and only perfect solution which means that
even if the regression results are different, they can still produce very good sound. This is
why this third approach is needed.

Since at the time of this thesis there were only 14 individually measured HRIRs in the LDV
data base that could be compared to customized ones, it was not possible to perform a
listening test with a larger survey group.

This is why preliminary listening tests were only done by the author. The tests included
CIPIC HRIRs, customized HRIRs and the individually measured ones. They were com-
pared regarding both localization and overall sound quality. The direction was measured
listening to pink noise, while the quality was evaluated using sound samples. The direction
is harder to evaluate when listening to sound samples as the song or text might distract
from the direction, which is why for this part, noise is used.
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6.6 Selective Algorithm

Regression result and the original CIPIC HRTF
4.5 T T T T
2DPCA result
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Figure 6.1: CIPIC HRTF and the 2DPCA HRTF of Subject 31.

6.6 Selective Algorithm

Rothbucher et al. found in [17] that the results vary depending on the subject. This was
found to be true in this thesis as well.

Based on this observation, a new algorithm was implemented whose task it is to find the
subjects with anthropometric data form the CIPIC data base that is closest to the one of
the new, to be synthesized subject. The algorithm has a variable threshold which enables
the user to chose how many subjects are to be included in the training. Results have to
show whether this algorithm is able to improve the SD values.
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7 Results

This chapter includes the results to the previously explained algorithms and methods. The
first part of the experiments was aiming to create a HRIR/HRTF from anthropometric fea-
tures from the CIPIC data base with the regression being trained with CIPIC HRTFs. The
result was then compared to the corresponding measured HRIR/HRTF from the CIPIC
data base to see how well the customization algorithms worked.

The second part of this chapter includes the results of the regression algorithms being
trained with the HRTFs that were measured at the LDV audio laboratory. The relevant
anthropometric features of several people were measured. They then went on to get a
personally measured HRIR created. This way, a direct comparison would be possible to
see if HRIR personalization can replace individually measured HRIRs or not. However,
it would not be possible to train with CIPIC data and compare the results to the newly
acquired HRTFs as they were measured under rather different conditions.

7.1 Customization with CIPIC Data

In this first part, the CIPIC data was used for training to customize a new HRIR from the
anthropometric data of the CIPIC data base. This newly created HRIR was then compared
to the measured one from the CIPIC data. Most of the results were gathered using spectral
distortion. The CIPIC data base includes 37 HRIRs of 37 people whose anthropometric
data is included as well. So as soon as an algorithm produced a customized HRIR it could
be compared directly to the one that was measured and stored in the data base. Since
Rothbucher et al. [17] had done something similar, there were existing spectral distortion
results which served as an orientation and a benchmark. The different approaches showed
results that were sometimes very different from one another.

However, the results were very similar to the ones found by [17].

In first comparisons, the results based on the directional transfer functions were indeed
better than the ones with the regular HRTFs from the CIPIC data base. The spectral
distortion was significantly smaller. Figure 7.1 shows clearly that it is important to use
DTFs and not HRTFs for training as it improves the spectral distortion significantly.
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Figure 7.1: PCA results based on HRTFs and on DTFs

Regression Results

The regression was performed in both time and frequency domain. The results of these
two parts are listed in the following.

Time Domain

Results in time domain were significantly worse than the ones achieved in frequency do-
main even though the mean over all subjects was removed before the actual regression.
This means the data was centered similar to like the DTFs were. More results can be found
in table 9.3. The following plots in figure 7.4 show why the MSE was not used as the main
tool for evaluation: As the top plot in figure 7.4 shows, the two versions are often shifted
by a few samples, which would result in high MSE values even though the two signals are
rather similar. The bottom plot in figure 7.4 shows that when a sound is played from the far
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2DPCA with only 10 PCs - Left
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Figure 7.2: Spectral Distortion, mean over all 37 subjects - DTF vs time domain
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Figure 7.3: Spectral Distortion, mean over all directions - DTF vs time domain

side of the ear, the amplitude gets smaller. And even if there are differences in the signal,

the MSE will not be very high.
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7 Results

CIPIC HRIR and PCA using 10 PCs - Left
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Figure 7.4: Top: sound played from the left. Bottom: sound played from the right

Frequency Domain

There are several options when performing the PCA or the 2DPCA and the GLRAM and
the Tensor SVD can be called with different sets of parameters. The table 7.3 contains the
best results of the algorithms. The differences between the different GLRAM and Tensor
SVD versions can be found in the following to show that indeed the best one was chosen.
See table 9.2 in the appendix for the results of PCA and 2DPCA with all PCs as well as
the GLRAM with the configuration that [17] used and figure 9.1 for results of the PCA
performed on a different plane.

Tensor SVD

The following figure 7.5 shows the different spectral distortion values based on different
sets of parameters and the table 7.1.
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7.1 Customization with CIPIC Data

The first number is r,, the second one is ry and the last one is r.
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Figure 7.5: Difference in SD values based on different parameters
Used Parameters 10,100,100 10,50,50 20,20,20 36,36,36 10,10,10
Total mean L:5.79 R:5.87 || L:5.77R:5.85 | L:5.83R:592 | L:5.49R:5.56 | L:5.70R:5.78

Table 7.1: Tensor SVD SD values for different parameters
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GLRAM

This next figure 7.6 shows the results of the GLRAM being called with different parameters.
It shows the mean of the SD values of the left channel over all directions. The first number
is rp, the second one is ry and the last one is ry. Since ry was always 200, it was left out of
the legend in the figure. The numbers shown there are ry and rp.
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Figure 7.6: Difference in SD values based on different parameters

Used Parameters 10,10,200 20,20,200 36,36,200 10,100,200
Total mean L:5.71 R:5.79 L:5.84 R:5.93 L:5.93 R: 6.01 L:5.79 R: 5.87

Table 7.2: GLRAM SD values for different parameters
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7.1 Customization with CIPIC Data

All Algorithms Compared

Table 7.3 contains the results of the different regression algorithms. The PCA values
were achieved by performing it Ny times on matrices of € RN>No with only the largest
10 principal components. The 2DPCA SD values are the result of calling the 2DPCA
and using only the 10 largest eigenvectors. The GLRAM results were achieved by calling
GLRAM() with r, = 10, rs = 200, rqy = 10.

The results of the Tensor SVD in this table were achieved by calling TSVD() with r, = 36,
rr = 36, ry = 36.

All results were achieved using DTFs, all the values are in dB.
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7 Results

Subject PCA 2DPCA GLRAM PLSR Tensor SVD
Subject 1 L: 5.94R: 5.65 L:5.61R:5.17 L: 5.26R: 4.93 L: 5.32R: 5.09 L:5.30R: 5.13
Subject 2 L:6.18R: 6.85 L:5.67R: 6.53 L: 5.54R: 6.36 L: 5.23R: 5.83 L:5.28R: 5.87
Subject 3 L: 6.85R: 6.54 L:6.69R: 6.36 L: 6.46R: 6.20 L:5.20R: 5.26 L:5.22R: 5.29
Subject 4 L: 6.02R: 6.92 L: 5.50R: 6.55 L:5.43R: 6.44 L: 4.82R: 5.54 L:4.95R: 5.55
Subject 5 L:6.81R: 6.87 L: 6.64R: 6.50 L:6.51R: 6.37 L: 6.54R: 6.92 L:6.39R: 6.83
Subject 6 L: 5.63R: 5.28 L:5.41R:5.20 L:5.29R: 5.10 L:5.16R: 4.97 L:5.16R: 5.02
Subject 7 L:6.78R: 6.13 L: 6.33R: 5.64 L: 6.18R: 5.41 L: 5.70R: 5.31 L:5.71R: 5.43
Subject 8 L:6.47R:6.59 L:6.26R: 6.49 L:5.96R: 6.18 L:5.04R: 5.28 L:5.08R: 5.29
Subject 9 L:5.84R: 5.84 L: 5.56R: 5.64 L: 5.36R: 5.39 L: 5.40R: 4.98 L: 5.42R: 5.01
Subject 10 L: 6.02R: 6.45 L: 6.03R: 6.40 L: 5.95R: 6.39 L:6.02R: 6.17 L: 6.03R: 6.20
Subject 11 L:5.99R: 7.78 L:5.56R: 7.59 L:5.52R: 7.45 L:5.19R: 6.73 L:5.23R: 6.75
Subject 12 L:7.24R: 7.03 L:6.67R: 5.97 L:6.47R:5.83 L:5.82R: 5.72 L: 6.00R: 5.70
Subject 13 L: 5.93R: 6.32 L:5.73R: 6.14 L:5.67R:6.10 L: 5.37R: 5.59 L: 5.37R: 5.60
Subject 14 L: 5.44R: 5.61 L:5.34R: 5.46 L:5.29R: 5.43 L:5.17R: 5.27 L:5.17R: 5.33
Subject 15 L: 6.36R:6.79 L:5.78R: 6.56 L:5.72R: 6.45 L:5.34R: 6.26 L:5.34R: 6.32
Subject 16 L: 6.20R: 6.99 L:6.17R: 6.93 L:6.11R: 6.91 L: 6.40R: 7.20 L:6.42R:7.25
Subject 17 L: 6.76R: 6.90 L:6.71R: 6.55 L: 6.65R: 6.52 L:6.12R: 6.19 L:6.13R: 6.18
Subject 18 L:5.67R:5.82 L: 5.52R: 5.68 L: 5.40R: 5.56 L: 5.58R: 6.00 L: 5.65R: 5.96
Subject 19 L: 5.33R: 5.69 L:5.22R: 5.62 L:5.14R: 5.56 L: 5.56R: 5.50 L: 5.53R: 5.51
Subject 20 L:5.03R:5.13 L:4.85R: 4.74 L:4.70R: 4.68 L: 4.92R: 4.83 L:4.92R: 4.85
Subject 21 L: 5.88R: 6.09 L: 5.65R: 5.81 L: 5.50R: 5.70 L:5.43R: 5.54 L:5.43R: 5.54
Subject 22 L: 7.36R: 6.26 L: 7.09R: 6.07 L: 7.08R: 5.99 L: 6.08R: 5.76 L:5.91R: 5.87
Subject 23 L:6.01R:5.95 L: 5.86R: 5.75 L:5.74R: 5.59 L: 5.19R: 5.31 L:5.18R:5.32
Subject 24 L: 6.36R: 6.21 L:5.88R: 5.94 L:5.77R: 5.81 L:5.64R: 5.46 L:5.65R: 5.47
Subject 25 L:5.19R:5.12 L: 4.95R: 4.88 L:4.93R: 4.84 L: 4.86R: 4.63 L:491R: 4.62
Subject 26 L: 5.93R: 5.82 L:5.67R: 5.66 L: 5.60R: 5.57 L: 5.08R: 4.99 L:5.1R:5.12
Subject 27 L: 7.55R: 7.00 L: 7.23R: 6.55 L: 7.20R: 6.45 L: 7.25R: 6.08 L:7.10R: 6.11
Subject 28 L: 5.84R: 6.32 L:5.75R: 6.18 L: 5.66R: 6.15 L:5.10R: 5.42 L:5.11R: 5.43
Subject 29 L: 6.05R:5.13 L: 5.98R: 5.02 L: 5.98R: 4.99 L:5.61R: 4.90 L: 5.56R: 4.91
Subject 30 L: 7.24R: 6.60 L:7.21R: 6.52 L:7.19R: 6.52 L: 7.05R: 6.39 L:6.99R: 6.37
Subject 31 L:4.57R:5.32 L:4.48R:5.18 L:4.44R:5.16 L:4.34R: 4.83 L:4.35R: 4.85
Subject 32 L:6.21R: 6.26 L: 5.59R: 5.60 L:5.34R: 5.40 L:5.09R: 5.33 L:5.06R: 5.26
Subject 33 L: 5.33R: 5.22 L:5.24R:5.12 L:5.12R: 5.05 L:5.10R: 4.90 L: 5.08R: 4.89
Subject 34 L: 5.42R:5.89 L:5.12R: 5.52 L: 4.95R: 5.45 L:5.01R: 5.36 L: 5.05R: 5.34
Subject 35 L: 6.49R:5.73 L:6.13R: 5.68 L: 6.05R: 5.39 L:6.02R: 5.17 L:6.04R:5.17
Subject 36 L: 5.85R: 5.53 L:5.48R:5.27 L:5.32R:5.09 | L:5.33R:4.72 | L:5.39R:4.80
Subject 37 L:5.08R: 6.15 L:4.82 R: 5.96 L:4.76 R: 5.88 L: 4.79R: 5.68 L:4.76R: 5.73

[ Totalmean | L:6.08R:6.16 | L:5.82R

:5.90 | L:5.71 R:5.79

| L:5.48R:5.54 | L:5.49 R:5.56
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7.1 Customization with CIPIC Data

Removing Initial Delay

Having excluded a subject from the training, this subject’s HRIR can then be customized
using regression. As it is suitable to perform the calculations in the frequency domain, the
initial time delay until the HRIR’s first peak gets lost. So even if the regression worked
well, in the end, there is no initial delay after the ifft. As mentioned earlier, there are some
suggestions on how to get rid of this problem like cutting of the initial delay. However, since
the new HRIR is unknown before the regression, it is not possible to store the HRIRs own
delay. This is why the length of the initial delay of the mean over all training subjects was
stored. Zeros of that length were appended to the customized HRIR later on.

In first listening tests, this did improve the sense of direction and thus the overall quality.
However, the SD values are worse than without removing it: The 2DPCA with only the 10

2DPCA, first 10 PCs - Left Channel
1 1 T T T

Regular 2DPCA
Removed delay

| |
| i

Spectral Distortion

0 200 400 600 800 1000 1200 1400
Direction

Figure 7.7: Difference in SD values with and without removing the delay

largest PCs was used as an example here, but it is similar with all the regression methods.
The difference between the results without initial delay and the ones that did not have it
removed varies a bit, but it is always worse with the removal algorithm applied beforehand
than without it.
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7 Results

Minimum Phase

As removing the delay by cutting it off made the SD worse, the second approach was then
tested. When using the minimum phase approximation of the DTF, the SD does not change
since the spectral distortion only includes the magnitude of a signal and the phase does
not matter. When adding zeros at the beginning of the customized HRIRs of the stored
length, the sound quality was improved significantly in comparison to the results that just
used the normal DTFs.

Selective Algorithm

Rothbucher et al. [17] found that the results vary depending on the subject. This was
found to be true in this thesis as well.

Based on this observation, a new algorithm was implemented whose task it is to find the
anthropometric data form the CIPIC data base that is closest to the one of the new, to be
synthesized subject. However, there is one drawback. Even if for one subject an ideal
number of training data can be found, the same number will probably not work with the
next subject. There are two possibilities: One is to only select the subjects from the CIPIC
data that look very similar to the new subject - this is done using a threshold. This entails
the problem that there is almost no way of finding a threshold that will work equally good
for everybody.

The second option is to select only the n data sets whose anthropometric data is closest
to the subject at hand. This approach has a less obvious problem. For a person who looks
a lot like several subjects from the training data 20 might be ideal. A person however who
does not look like most of the people in the training set will need more subjects to help
improve regression results.

Regardless of which method of selection is used, it is - at least at this stage - not possible
to automatically find the perfect number of training data for every individual.

And if the chosen number is not the ideal one, the algorithm is at risk of choosing a worse
training set than the one that includes all the CIPIC data as figure 7.1 shows.

In conclusion this algorithm does bear some potential but in its current implementation can
not be used to automatically improve customized HRIRs.

The following plot shows the SD values for 3 different subjects’ customized HRIRs with
different numbers of subjects included in the training data. The regression algorithm used
in this case is the 2DPCA using the 10 largest PCs as it provided decent results. The
figure 7.1 shows that the best results were not necessarily achieved by using the most
training data. However, the number of training data that results in the best SD values for
one subject does not always work as well for other subjects. Based on these findings, it is
suitable to use as much training data as possible.
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7.2 Customization with Data from the LDV Data Base
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Figure 7.8: SD values of 2DPCA with 10 PCs with various numbers of training data - Left

7.2 Customization with Data from the LDV Data Base

After the algorithms had been proven fully functional it was time to create new HRIRs for
test subjects.

Regression Results

Since the individually measured HRIRs were not acquired in the same way as the CIPIC
data, the difference between a CIPIC-trained HRIR and the measured HRIR could be
possibly rather large even if the customized HRIR sounds very good to the listener. This
is why in this part of the evaluation, the algorithms were trained with the newly measured
HRIRs with their anthropometric data.

The SD values were significantly worse than when training with CIPIC data. However, this
does not necessarily mean that the data is worse than the CIPIC data, because in the LDV
data base there are only 14 subjects whereas the CIPIC data base contains the HRIRs
of 36 subjects. This is why the 2DPCA was then trained with CIPIC data with varying
numbers of training data ranging from 1 to 36. The results can be seen in the following
figure 7.2.
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Figure 7.9: 2DPCA with different numbers of training data - Left

7.3 Listening Tests

In subjective listening tests, the algorithms all fared well. The overall quality of the original
sound samples was not diminished by the convolution. Localization worked well, too. Apart
from front-back confusion, the author was able to determine the source of the sound with
only a small margin of error.

A small testing group of subjects that did not have any experience with 3D sound was not
able to distinguish between the customized HRIRs trained with CIPIC data and the CIPIC
HRIRs.

The difference between the CIPIC HRIRs and the newly measured HRIRs was audible,
as the resulting convolutions sounded a little bit different. However, neither one of the
sounded worse or better than the other one. Both provided good localization results.
When training with the newly acquired data - with only 14 sets of HRIRs - the sound was as
bad as the SD values already suggested. It sounded dull and the localization was flawed.
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8 Discussion and Future Work

It was shown in this thesis that HRTF customization by regression does provide usable
results - a conclusion that is based mainly on spectral distortion values. Even though the
customized HRIRs are not exactly like the measured ones, the surround impression as
well as the overall quality they can generate is decent.

When there is more data of more test subjects, a larger listening test can be used to further
investigate how well the personalized HRIRs fare against the measured ones subjectively.
The more people there are in such a testing group, the more reliant the results will be,
which would be a good conclusion to the mathematical evaluation in this thesis.

The common method to evaluate most surround sound related algorithms is to play either
pink or white noise convoluted with different HRIRs. The person doing the test then has to
determine where the sound came from. However, since this thesis’ aim is to produce the
best sound for each individual, the directional sense is not quite enough. The subjective
quality matters as well. There could be differences between the different regression
methods regarding the sound quality. In order to account for this, the evaluation included
a few song samples to determine the overall impression provided by the different HRIRs.
As the song might distract from the localization problem, there will be both noise and song
tests - one for localization the other one for overall quality.

Regression Algorithms

There were some differences between the regression algorithms regarding run time and
spectral distortion. There was no noticeable difference between the results in terms of
localization and sound quality.

PCA

The first regression algorithm, the PCA, was the most basic of all of them. Already before-
hand, this approach was expected to not provide the best of all results. Nevertheless, even
with it being not the most complex or refined algorithm, the results were not much worse
than the other ones. So it has been proven that the PCA indeed works well as a starting
point and ground truth - but for better results other approaches need to be used.
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2DPCA

The 2DPCA showed that a small modification to the PCA results in a noticeable improve-
ment regarding the SD values. By using the Scatter matrix instead of the covariance
matrix, all the data was taken into account in one step whereas the PCA needed to cal-
culate the eigenvectors of many different matrices. Apparently this is enough to make a
basic algorithm almost as good as the more refined ones.

GLRAM

Having delivered the best results in [17], the GLRAM was expected to behave similarly
in this thesis, which it did. It was even better than the 2DPCA. To these results there is
however also a down side: the GLRAM'’s run time. While not being terribly bad, it does
take noticeably longer than the 2DPCA which could turn into a real issue when a whole set
of HRTFs is to be customized for a conference within a couple of seconds. Admittedly this
is a small price to pay when the results are in fact better than those of the the 2DPCA.

Tensor SVD

As the Tensor SVD had returned the same results as the GLRAM in [17] its results were
expected to be equally good in this thesis. And once again, it did as it was expected to.
And it even provided slightly better results than the GLRAM with one of the tested sets of
parameters. It's implementation was based on the n-way toolbox [6]. However, it takes
even longer than the GLRAM to compute the HRIRs.

PLSR

Not only does the PLSR provide the best results, its run time, unlike with GLRAM and
Tensor SVD, is also very short - in most cases it is even faster than the 2DPCA. The
reason for the results being better than the other algorithms lies within the concept of the
PLSR. While the other regression algorithms only use the existing training data to find the
eigenvectors, the PLSR takes the eigenvectors - the weights - from a matrix that includes
both the training data and the new anthropometric data. Like this, the prediction is not only
based on existing data, but also on part of the new data. This allows for a better prediction
which becomes visible in the SD values.
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Dimensionality Reduction

The results showed that the regression algorithms were able to perform better when not
all the PCs were used. This means that while achieving data reduction, the results even
get better. Refer to [16] for more information.

Removing the Initial Delay

The results showed that simply cutting the delay off resulted in worse SD values. Calcu-
lating the minimum phase approximation of a HRIR did not change the SD values, but it
did improve the listening quality and the localization of the results compared to the results
based on the normal DTFs. Without the delay being added after the regression, the local-
ization works only based on differences in the amplitudes of the left and the right HRIR.
So a combination of the two approaches was used, where the minimum phase approxi-
mation was calculated, the length of the initial delay was stored and zeros of that length
were added after the regression. This method increased the run time a little bit, but without
it, the results would not be suited for 3D sound generation. So all in all, this combined
method is necessary for this thesis’s results.

Training with Different Data

The first results were achieved by training the regression algorithms with CIPIC data and
comparing it to the HRIRs from the CIPIC data base. The results were good, regarding
both SD values and listening tests.

Training the regression algorithms with the newly measured data from the LDV data base
did not provide good results - neither in listening tests nor in terms spectral distortion
values. One reason for this is that there was not enough data: 14 subjects are not enough
for training as 7.2 shows. With only 14 sets of HRTFs even the CIPIC data does not
provide good enough training data. Another reason for the insufficient results could be that
the measured data from the LDV data base was simply cut to a certain length and was not
filtered in any way. If they were processed it could help improve the results.

Outlook and Future Work

In further work, when there is more data available it might be useful to use the individually
measured HRIRs to make the LDV data base larger and use it instead of the CIPIC
data base for training the regression algorithms. Even now, the CIPIC data base is not
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8 Discussion and Future Work

the only one of its kind. Maybe other HRIRs with different subjects are more suited for
HRTF customization. Or all the existing data bases could be fused together to provide a
maximum of possible training data. The more subjects there are, the higher the probability
that there are subjects similar to the newly to be synthesized one.

Since the quality of the customization algorithms’ results depends strongly on the anthro-
pometric data of the new subject it could be possible to use this circumstance:

"It can be seen that, customization procedure leads to different spectral distortion values
from subject to subject. For subject 153 and subject 165, estimation of the HRTF works
quite well in comparison with subject 162" [17].

This thesis was able to reproduce those findings. So in addition to the realization that the
quality of the customized HRIR depends on the number of used principal components
there now is a new dependency that has to be taken into account.

It is possible that using more data does not automatically make the results better. In
this case, the additional less similar subjects would only mean a distortion while also
increasing the run time. This is why a new algorithm is proposed. It selects only those
subjects whose anthropometric features are very similar to the person whose HRIR is to
be synthesized. This method entails both data and run time reduction. However, it also
means a trade-off. If the number of selected subjects is too small it might at some point be
too few whilst on the other hand there must not be too many subjects in order to avoid a
faulty training. Future work could try and develop a way of combining regression with the
tournament style selection.

The described regression algorithms all vary depending on several parameters. The
possible combinations are almost limitless and only a very small fraction was tested in this
thesis. The aim of future work could be to refine the algorithms by finding better suited
parameters.

This thesis only investigated five regression algorithms, which means there are still some
regression algorithms that have not been tested. Seeing as the results vary from algorithm
to algorithm there is still a chance to find a new approach that might produce even better
results. Future work could also investigate the HAT model to see if this approach can
provide better results than the one found in this thesis.

HAT model

Several authors have found this model to be very effective. According to [8], the HAT model
performs better regarding localization than regression. "We suggest that researchers and
software developers use the HAT model to both improve subjective quality of the audio
scene and help correct localization of the acoustic signals in virtual audio environments
[8]"

It is based on a numerical approximation of the HRTFs instead of regression algorithms.
It uses a snowman model that represents a human, but only consists of two balls: a large

48



one representing the body and a smaller one representing the head. However, this thesis
focuses on customization by regression which is why the HAT model was not investigated.
It shall however not go unmentioned as it is a valid approach and it is this thesis’ goal to
be as thorough and complete as possible.

Please refer to [2] for more information on the HAT model.
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9 Appendix

PCA performed on different planes, using 10 PCs - Left PGA performed on different planes, using 10 PCs - Left
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Figure 9.1: Difference in SD values based on which plane the PCA was performed on

Times the PCA was called 1250 200
Total mean L:5.82 R:5.90 L:5.95R:6.03

Table 9.1: Mean over all spectral distortion values in dB



9 Appendix

Table 9.2: Spectral Distortion Values Frequency Domain. All the values are in dB.

Subject PCA-10 PCA-full 2DPCA-10 2DPCA-full GLRAM-10 GLRAM-[17]
1 L:59R:5.7 | L:6.12R:5.84 | L:5.6R:5.2 L:6.61R: 7.88 L:5.3R:4.9 | L:551R:5.14
2 L:6.2R:6.9 | L:6.37R:6.98 | L:5.7R:6.5 | L:5.82R:6.43 | L:55R:6.4 | L:5.62R:6.48
3 L:6.9R:6.5 | L:6.92R:6.60 | L:6.7R:6.4 L: 6.24R: 6.26 L:6.5R:6.2 | L:6.62R:6.30
4 L:6.0R:6.9 | L:6.19R:7.06 | L:5.5R:6.6 L:6.19R: 6.77 L:5.4R:6.4 | L:5.48R:6.52
5 L:6.8R:6.9 | L:6.88R:6.97 | L:6.6R:6.5 L:6.45R: 7.24 L:6.5R:6.4 | L:6.61R:6.48
6 L:5.6R:53 | L:5.72R:5.39 | L:54R:52 L:5.82R:5.78 L:5.3R: 5.1 L:5.38R:5.18
7 L: 6.8R: 6.1 L:6.93R:6.29 | L:6.3R:5.6 L: 7.05R: 6.58 L:6.2R:5.4 | L:6.31R:5.60
8 L:6.5R:6.6 | L:6.61R:6.70 | L:6.3R:6.5 L: 6.25R: 6.03 L:6.0R:6.2 | L:6.19R:6.44
9 L:5.8R:5.8 | L:5.92R:5.94 | L:5.6R:5.6 L:6.21R:5.90 L:5.4R:5.4 | L:5.51R:5.57
10 L:6.0R:6.5 | L:6.04R:6.47 | L:6.0R:6.4 L:6.17R: 6.75 L:6.0R:6.4 | L:6.02R:6.39
11 L:6.0R:7.8 | L:6.13R:7.87 | L:5.6R:7.6 L:5.75R: 6.88 L:5.5R: 7.5 | L:5.56R:7.57
12 L:72R:7.0 | L:748R:7.34 | L:6.7R:6.0 L: 8.25R: 7.57 L:6.5R:5.8 | L:6.61R:5.93
13 L:59R:6.3 | L:6.02R:6.38 | L:5.7R: 6.1 L: 5.86R: 6.03 L:5.7R: 6.1 L:5.71R: 6.12
14 L:54R:56 | L:5.47R:5.66 | L:5.3R:55 L:6.20R: 6.17 L:5.3R:5.4 | L:5.32R:5.46
15 L:6.4R:6.8 | L:6.47 R:6.91 L:5.8R: 6.6 L:6.18R:6.72 L:5.7R: 6.5 | L:5.77R: 6.53
16 L:6.2R:7.0 | L:6.24 R:7.01 L:6.2R: 6.9 L: 6.23R: 7.50 L:6.1R:6.9 | L:6.16R:6.92
17 L:6.8R: 6.9 L: 6.81R: 6.97 L:6.7R: 6.6 L: 6.82R: 6.43 L:6.7R: 6.5 | L:6.68R:6.54
18 L:5.7R: 5.8 L:5.75R: 5.88 L:5.5R: 5.7 L: 6.03R: 6.50 L:5.4R:5.6 | L:5.47R:5.66
19 L:5.3R: 5.7 L:5.39R: 5.75 L:5.2R: 5.6 L: 6.22R: 6.00 L:5.1R:5.6 | L:5.19R:5.59
20 L:5.0R: 5.1 L:5.14R:5.24 L:4.9R: 4.7 L: 5.43R:5.55 L:4.7R:4.7 | L:4.80R:4.70
21 L:5.9R: 6.1 L:5.95R: 6.18 L:5.7R: 5.8 L: 5.89R: 6.56 L:5.5R: 5.7 | L:5.62R:5.78
22 L:7.4R: 6.3 L:7.44R: 6.39 L:7.1R: 6.1 L:6.12R: 6.23 L:7.1R:6.0 | L:7.06R:6.03
23 L: 6.0R: 6.0 L: 6.10R: 6.07 L:59R:5.8 L:5.82R: 5.75 L:5.7R: 5.6 | L:5.83R:5.72
24 L:6.4R: 6.2 L: 6.46R: 6.32 L:5.9R: 5.9 L: 6.97R: 6.40 L:5.8R:5.8 | L:5.86R:5.88
25 L:5.2R: 5.1 L: 5.28R: 5.21 L:5.0R: 4.9 L:6.02R: 5.29 L:49R:4.8 | L:4.94R: 4.86
26 L:5.9R:5.8 L: 6.02R: 5.92 L:5.7R: 5.7 L: 5.90R: 6.53 L:5.6R:5.6 | L:5.63R:5.63
27 L:7.6R:7.0 L:7.70R: 7.14 L:7.2R: 6.6 L: 8.40R: 6.46 L:7.2R:6.5 | L:7.22R:6.53
28 L:5.8R: 6.3 L: 5.88R: 6.36 L:5.8R: 6.2 L:5.83R: 6.12 L:5.7R:6.2 | L:5.70R:6.16
29 L:6.1R: 5.1 L: 6.08R: 5.16 L: 6.0R: 5.0 L: 6.02R: 5.28 L:6.0R: 5.0 | L:5.98R:5.01
30 L:7.2R: 6.6 L:7.26R: 6.62 L:7.2R: 6.5 L:7.45R: 6.76 L:7.2R:6.5 | L:7.21R:6.52
31 L:4.6R: 5.3 L:4.63R: 5.36 L:4.5R: 5.2 L:4.92R:5.15 L:4.4R:5.2 | L:4.47R:5.17
32 L:6.2R: 6.3 L:6.41R: 6.49 L:5.6R: 5.6 L:5.79R: 8.28 L:5.3R:5.4 | L:5.53R:5.57
33 L:5.3R: 5.2 L: 5.40R: 5.30 L:5.2R: 5.1 L: 5.82R: 5.52 L:5.1R: 5.1 L: 5.20R: 5.11
34 L:5.4R: 5.9 L: 5.49R: 5.96 L:5.1R: 5.5 L:5.87R: 6.19 L:5.0R: 5.5 | L:5.09R:5.50
35 L:6.5R: 5.7 L:6.61R: 5.83 L:6.1R: 5.7 L: 6.70R: 6.04 L:6.1R: 5.4 | L:6.09R:5.60
36 L:5.9R: 55 L:5.98R: 5.67 L:5.5R: 5.3 L:6.51R: 5.65 L:5.3R: 5.1 L:5.45R: 5.23
37 L:5.1R: 6.2 L:5.16R: 6.24 L:4.8R: 6.0 L:5.37R: 6.40 L:48R:59 | L:4.81R:5.93

Mean L:6.1R: 6.2 L: 6.18R: 6.26 L:5.8R: 5.9 L: 6.25R: 6.37 L:5.7R: 5.8 | L:5.79R:5.87
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Table 9.3: SD values - time domain compared to DTF results. All values are in dB.

Subject PCA10 - DTF 2DPCA10 - DTF PCA10 - Time 2DPCA10 - Time
1 L:5.94 R:5.65 L:5.61 R:5.17 L:8.03 R:7.60 L:9.61 R:8.21
2 L:6.18 R:6.85 L:5.67 R:6.53 L:8.58 R:8.76 L:10.61 R: 9.82
3 L:6.85 R:6.54 L:6.69 R:6.36 L:9.10 R:9.00 L:11.29 R: 10.01
4 L:6.02 R: 6.92 L:5.50 R: 6.55 L:7.66 R:7.72 L:9.47 R: 8.03
5 L:6.81 R: 6.87 L:6.64 R:6.50 L:11.54 R: 11.41 L:12.96 R: 12.91
6 L:5.63 R:5.28 L:5.41 R:5.20 L:9.11 R:8.73 L:11.15R:10.23
7 L:6.78 R:6.13 L:6.33 R:5.64 L:7.89 R: 8.40 L:9.13 R: 9.81
8 L:6.47 R:6.59 L:6.26 R: 6.49 L:8.99 R:9.09 L:12.15R: 10.77
9 L:5.84 R:5.84 L:5.56 R: 5.64 L:9.91 R:9.41 L:12.66 R: 12.18
10 L:6.02 R: 6.45 L:6.03 R: 6.40 L:8.55 R:9.30 L:9.57 R:9.34
11 L:5.99R:7.78 L:5.56 R: 7.59 L:8.45R: 8.60 L:9.98 R:9.35
12 L:7.24 R:7.03 L:6.67 R:5.97 L:7.66 R:7.79 L:7.87 R:8.29
13 L:5.93 R:6.32 L:5.73R:6.14 L:10.22 R: 9.39 L:11.83R:10.33
14 L:5.44 R:5.61 L:5.34 R:5.46 L:10.38R:11.30 | L:11.34 R: 13.26
15 L:6.36 R: 6.79 L:5.78 R: 6.56 L:8.81 R:7.88 L:10.0 R: 8.40
16 L:6.20 R: 6.99 L:6.17 R:6.93 L:9.66 R:7.92 L:10.7 R: 8.24
17 L:6.76 R: 6.90 L:6.71 R:6.55 L:10.28R:10.99 | L:11.31 R: 11.36
18 L:5.67 R:5.82 L:5.52 R: 5.68 L:8.15R:7.44 L:8.75R:7.76
19 L:5.33 R:5.69 L:5.22 R:5.62 L:8.15R:9.87 L:8.61 R:11.01
20 L:5.03R:5.13 L:4.85R:4.74 L:8.91 R: 9.09 L:10.88 R: 9.79
21 L:5.88 R: 6.09 L:5.65 R: 5.81 L:8.37 R:8.10 L:10.12R:9.73
22 L:7.36 R:6.26 L:7.09 R: 6.07 L:11.47R:10.57 | L:12.99 R: 11.09
23 L:6.01 R:5.95 L:5.86 R:5.75 L:7.86 R: 8.49 L:8.47 R:10.18
24 L:6.36 R: 6.21 L:5.88 R:5.94 L:10.62R:10.13 | L:12.38 R: 11.52
25 L:5.19R:5.12 L:4.95R:4.88 L:9.04 R: 8.82 L:11.84 R:11.23
26 L:5.93 R:5.82 L:5.67 R: 5.66 L:9.00 R:9.97 L:10.50 R: 12.08
27 L:7.55R:7.00 L:7.23 R:6.55 L:8.24 R:8.14 L:8.41 R:8.45
28 L:5.84 R:6.32 L:5.75R:6.18 L:10.35R:10.89 | L:10.97 R: 11.74
29 L:6.05R:5.13 L:5.98 R: 5.02 L:9.81 R:11.12 L:11.21 R: 12.51
30 L:7.24 R:6.60 L:7.21 R:6.52 L:14.84 R: 14.51 L:16.36 R: 15.28
31 L:4.57 R:5.32 L:4.48 R:5.18 L:10.37 R: 9.24 L:11.48 R: 10.15
32 L:6.21 R:6.26 L:5.59 R: 5.60 L:7.50 R: 8.07 L:7.69 R:9.77
33 L:5.33 R:5.22 L:5.24 R:5.12 L:8.37 R:9.33 L:8.99 R: 11.45
34 L:5.42 R:5.89 L:5.12 R:5.52 L:9.03 R:9.18 L:10.65R:10.35
35 L:6.49R:5.73 L:6.13 R:5.68 L:8.24 R: 8.57 L:9.00 R:9.68
36 L:5.85 R:5.53 L:5.48 R:5.27 L:9.80 R:7.44 L:10.81 R: 8.06
37 L:5.08 R:6.15 L:4.82 R:5.96 L:9.09 R: 10.36 L:10.67 R: 11.71

Mean L:6.08 R:6.16 L:5.82 R:5.90 L:9.24 R:9.26 L:10.61 R: 10.38
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