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Abstract
Nowadays, a table-top microphone system, which is used for teleconferencing, is usually in-
stalled in conferencing rooms. Using such conference phones, all active speakers are recorded
simultaneously and a mixture of the speakers is transmitted. For convenience, it would be great
to have a device which acquires remotely a high-quality speech signal for every single partici-
pant. So this thesis regards an appliance for remote acquisition of speech signals in common
office environments. A combination of a microphone array and signal processing has been
applied to localize and separate the speech contributions of the participants. Audio based lo-
calization is performed through a Steered Response Power Beamformer and smoothed through
particle filtering. The separation process is based on Geometric Source Separation which joins
the benefits of Beamforming and Blind Source Separation algorithms.

Performance evaluations have shown that separation quality depends strongly on localization
stability and accuracy. The audio-based localization detects the sound sources with a success
rate of more than 80 percent the correct position with an accuracy of 4 degree, in an office
environment. With these localization data a continuous separation of the speakers can be
performed with a mean signal-to-interference ratio of more than 27 dB.

All obtained results presented in this thesis show that reliable remote acquisition of speech
signals is possible. In future, devices separating different speakers are entirely conceivable.

Normalerweise wird die Sprache in Telefonkonferenzen mittels Headsets oder speziellen
Konferenztelefonen aufgezeichnet. Derzeit kommerziell erhältliche Geräte nehmen alle
Sprachsignale gleichzeitig auf und übertragen daher eine Mischung aller aktiven Sprecher.
Es wäre wünschenswert ein Gerät zu haben, welches den Komfort eines Tischgeräts mit der
Sprachqualität von separaten Ansteckmikrofonen verbindet.

Die vorliegende Arbeit untersucht daher Ansätze zur gerichteten Aufnahme von unter-
schiedlichen Sprechern in gewöhnlichen Büroräumen. Dazu wird eine Kombination aus Mikro-
fonarray und Signalverarbeitung verwendet, um die Sprache der Konferenzteilnehmer getrennt
aufzunehmen. Die Sprach-Separierung basiert auf einem Algorithmus der Blind Source Sep-
aration und Beamforming vereint. Die dafür notwendigen Lokalisationsdaten der Sprecher
werden mittels eines Steered Response Power Verfahrens mit anschließender Partikelfilterung
ermittelt.

Anschließende Experimente und deren Auswertung haben gezeigt, dass die Qualität der
getrennten Aufnahmen stark von der Lokalisierung abhängen. Die rein audiobasierte Ortung
der Sprecher erzielt dabei in normalen Büroräumen eine Erkennungsrate von mehr als 80%
bei einer Genauigkeit von 4 Grad. Damit kann eine kontinuierliche Separierung mit einem
durchschnittlichen Signal-Rausch-Verhältnis von mehr als 27 dB durchgeführt werden.

Alle erzielten Ergebnisse belegen, dass eine verlässliche separierte Aufnahme unter-
schiedlicher Sprecher durch ein neuartiges Konferenztelefon möglich wäre.
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1. Introduction

Teleconferencing is great because it allows people on the opposite side of the world to talk to
each other direct from desk to desk in their own offices. There is no need to do business travels
for short meetings. Therefore, teleconferencing saves a lot of money and time in companies.

At a time of rising energy prices and growing environmental awareness, this means to com-
panies that the quality and productivity of teleconferences should be as high as in real meetings.
In recent years, the teleconferencing technology has made great progress in quality features
like noise reduction and speech processing. New innovative functionalities are rare. There
aren’t any really new ways to communicate with each other. Traditionally the participants speak
into microphones and receive the counterpart stations over headphones or speakers. So in
this project, it is tried to invent a new way to interact with the communication system. In prelim-
inary work [17] a system was build to present the participants spatially distributed around the
listeners head using ordinary headsets. But, the positions to generate this 3D effect applying
Head Related Transfer Functions (HRTFs) were manually obtained. This kind of presentation is
useful in conferences where single speakers are connected to each other. But in conferences
connecting a meeting room with various speakers to remote single speakers or other conferenc-
ing rooms, the individual positions must be detected automatically. This is one aspect studied
in this thesis. Another aspect discussed in this thesis is the recording of the speakers in the
conference room. The convenience of a teleconference would be diminished if the participants
have to use tethered lapel microphones. Recording the voice of each active speaker with a
hands-free device would therefore be a convenient new way to enhance a conference system.

Thus, the focus of this thesis lies on the localization and separation of active speakers in a
teleconference situation.

1.1. Motivation for Study

Immersive communication is a wide-ranging research topic. Every day people are faced with
huge amounts of information of their surrounding world. They have to acquire, select, and
process all these informations. The human body provides the ability to decipher, separate
and emphasize certain informations within the perceived signals. Depending on the acquired
informations the human has to make decisions and execute appropriate reactions.

Scientists all over the world are inspired from nature and try to mimic it. A similar problem
should also be tackled in this thesis. Basically the problem can be abstracted from the classic
scenario of a cocktail party (also called the Cocktail Party Effect). During a cocktail party many
people talk simultaneously on different locations in small groups. Each person of a group can
listen to the actual talking person without disruption of other speakers or groups. It’s difficult
to transfer this ability of selecting and distinguish a speaker into a technical device. Previously
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1. Introduction

published works have their focus on one aspect of the problem, meaning either localization or
separation. Most of the current research is done in the field of robotic. In the context of robotics
the applicability of the developed algorithms are not considered for the use in teleconferencing
environments. These robotic based approaches are investigated in the scope of this thesis on
their strengths and weaknesses with respect to teleconferencing.

1.2. System Overview

This section introduces an immersive teleconferencing system, as developed at the Institute
for Data Processing, and the different components it consists of. Two of them, the localization
process and the separation algorithm, will be examined more detailed in this thesis.

The system considered in this thesis has a modular design. Its architecture can be simpli-
fied to a classic communication system, composed of a sender, transmitter and receiver. The
sender records a speech signal, the transmitter transfers it to the receiver, the receiver repro-
duces the signal. In a teleconference scenario, the sender is a conference telephone with the
correspondent hardware to record a speech signal. The transmitter is a server structure with
the functionality of receiving and sending audio signals. The receiver is a telephone or Voice-
over-IP (VoIP) client with the respective hardware to reproduce an audio signal. To evolve
this system into a new generation immersive communication system, every block needs to be
enhanced and extended. However, the architecture keeps its tripartite and serially ordered
design, so it can be easily extended and is compatible to current communication systems.

Every block (sender, transmitter, receiver) contains several modules. Every module adds a
certain functionality to the system. So the whole system is not only able to communicate with
other external systems, but it can easily be extended by additional modules. Every module has
defined interfaces and can be tested and developed independently. In the described scenario,
the conference telephone will be extended by speaker recognition, localization and separation
features. The server will have the ability to recognize speech, store it centrally and process all
the incoming sounds for 3D sound rendering. If compatible, the receiver will be extended by a
client software to easily define the spatial position in the virtual environment.

Altogether, the different modules, as described in the following sections, turn a classic tele-
conferencing system into an immersive audio conferencing system.

Speaker recording and localization

A big issue for conference telephones placed on a table in a room with multiple conference
participants is the distant acquisition of the speech signal. It is very vulnerable to interference
from concurrent sound sources and noise distortion through reflection. The audio recording
module needs to be able to handle all types of noise occurring. Different types of noise can be
defined: Additive noise, echo, reverberation, and competing sound sources.

To control noise, reverberation, and competing speech, the speakers must robustly be local-
ized and recorded separately. Both tasks are more precisely considered within this thesis.

8



1.2. System Overview

Speaker recognition

The speaker recognition is part of the sender block, to enable a separate transmission of every
speaker on its own channel, although only one device in the conference room is used for
recording. The input of the speaker recognition module ideally is a single channel speech
recording or stream. This audio input, with its preprocessing, separation and filtering, is as
much as possible free of noise, interference, echo and reverberation.

The result of the speaker recognition is the classification of a speech signal to a defined
speaker name and the assignment to a certain output channel corresponding to the speakers
name.

The development of this component is not covered by this thesis, but is currently developed
at the Institute for Data Processing.

Speech recognition

The speech recognition is part of the transmission block, so mainly a module of the server
handling the teleconference. It performs speech recognition on each incoming voice stream.
As mentioned above, each voice channel is assigned to an individual speaker and therefore, it
is possible to create autonomously a transcript of the conference. The quality of this transcript
strongly depends on the used speech recognition module. Nowadays, there are commercial
solutions available on the market basing on huge training databases. With these professional
speech recognizers it is possible to achieve fair recognition rates.

Because of the high development effort generating such large training sets the speech recog-
nition module will be considered as external module.

Speech transmission

Transmissions are handled by a central server, no peer-to-peer technique is used. This is ben-
eficial to create different mixtures for the receiving devices. The mixer processes all incoming
signals and creates according to device capabilities appropriate streams presenting the confer-
ence in an optimal manner. That means, for single channel devices a mono signal is created
and for multichannel room solutions a spatially distributed signal is generated. For this pur-
pose the central transmission component needs efficient sound rendering and management
techniques. Additionally, after the mixing process, the transmission component picks an appro-
priate compression codec according to the receiving device, so that the signals are transmitted
with a minimum delay and the highest possible quality, while acquiring a minimal bandwidth.

A further aspect of this component is to ensure the downward compatibility between differ-
ent devices. For example, it should be possible to connect mobile phones with a VoIP client
presenting 3D sound and the new recording device with its separation feature to a conventional
desktop phone. Therefore, every device should be handled according to its specific capabilities
delivering the best possible conferencing experience.

A first version of this component was already developed, and is currently tested at the insti-
tute.
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1. Introduction

Speech synthesis

As already mentioned, the system is developed to connect conventional telephones and VoIP
clients with the new developed devices recording and presenting spatial distributed speakers.
It creates for each participating device an appropriate sound signal. In order to exploit the
full potential of separately recorded speakers, a client presenting three dimensional sound is
needed. Therefore, in previous work [17] a VoIP software client was developed which presents
each teleconference participant spatially distributed over a stereo headset. This client uses a
set of HRTFs to generate the spatial sound signal.

In future, additional sound synthesis techniques will be investigated to improve the quality
of the headphone based sound synthesis and to bring this lifelike multi-party conferencing to
full room solutions using multichannel audio systems and techniques like wave field synthesis
(WFS).

1.3. Scope of this Thesis

This thesis, as a part of a project at the Institute for Data Processing, researches new tech-
nologies for teleconferencing systems. The thesis will cover the recording part of the system
described above. So an appropriate microphone array needs to be found, that is able to lo-
calize and record speakers sitting around a conference table. Therefore different geometrical
configurations will be examined and constructed. Furthermore, a fast localization and sepa-
ration algorithm needs to be selected and implemented. The final system will be tested in an
anechoic chamber and under real conditions. For these tests, a complete test sequence will be
developed and the results will be evaluated.

In Figure 1.1 an overview of the smart "recording device" as a part of the system proposed in
the previous is depicted. The red-coloured parts are covered by this thesis and will be studied
further.
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Figure 1.1.: Overview of the conference recording device
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2. Background

The speech mixture of two or more speakers is the initial point of this study. In meeting situa-
tions, these mixtures arise when speakers change or if a speaker interjects a brief comment. It
can be said, that 10 to 15% of words contain overlapping speech during a meeting [43]. These
overlapping speech segments distinguish between the different voices, also the speaker posi-
tions in the room around the "recording device". Today most commercial conference phones
use an arrangement of several microphones, or a so called microphone array, to record the par-
ticipants. To understand the functional principles of microphone arrays, this section explains
some basics of the theory of wave propagation, continuous apertures, and finally discrete sen-
sor arrays.

2.1. Wave Propagation

Acoustic signals can be categorized into different sound fields according to their statistical
properties. These statistical properties are mainly influenced by the room acoustics. In re-
verberant rooms sound waves are reflected by walls and furniture. As a consequence the
impinging microphone signals can be divided into direct and indirect components. The direct
sound travels directly from the sound source to the microphones, the indirect component re-
sults due to multipath propagation, which can still be splitted into early arriving echoes and a
diffuse signal of later arriving components. A complete description of the sound field is almost
impossible. There are methods like sound ray tracing or the measurement of the Room Im-
pulse Response (RIR) to estimate the sound wave propagation. In general these algorithms
are computational intense and complex compared to the statistical description of a sound field.

In this statistical model of the room acoustic, the sound field is described as spatial regions
with corresponding acoustic parameters. Two important parameters are reverberation time
which characterizes the duration how long acoustic energy remains in a room, and the critical
distance stating the distance at which the energy value of the direct signal is equal to the
reflected signal.

The reverberation time is given by the Sabine equation and was developed in the late 1890s
by Wallace C. Sabine [11]. It establishes a relation between the RT60 (the reverberation time)
of a room, its volume, and its total absorption:

RT60 =
4ln106

c
V
Sa

(2.1)

where c is the speed of sound, V is the volume of the room in cubic meters, S the total surface
area of the room in square meters, and a is the average absorption coefficient of the surfaces.
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2. Background

This equation is useful for simulating sound propagation in rooms with given reverberation
times. In this thesis the separation algorithm is partly based on this relation.

The other interesting parameter, the critical distance, is important if speakers are recorded in
small rooms with high reverberation. Than the proposed recording device detects the reflection
as an additional source. The critical distance is calculated by

dc =

√
V

100πRT60
. (2.2)

In general, it can be said that high reverberation environments are a major problem for local-
ization and separation algorithms.

Another aspect of wave propagation besides reverberation is intensity distribution in time of
sound waves. Sound waves follow the inverse-square law given by

I =
P

4πr2 , (2.3)

where I is the sound intensity at the surface of the sphere, and r is the radius of the sphere,
and P is the net power radiated by the source. The equation says, that the energy of a point
source is distributed as spherical wave, which has to be considered in the development of the
recoding device. Because, in most cases the assumption of plane wave fronts is made, which
is not always given. For that reason, the far-field assumption is made, so that the wave fronts
could be assumed as plane. This is valid for speaker distances r greater than:

|r|> 2L2

λ
(2.4)

where L represents the complete aperture size (e.g. array length) and λ the wavelength of a
specific frequency.

Using equation 2.4 for voice signals with a highest frequency of 3400 Hz and a microphone
array with a diameter of 0.24 meters this means far field can be assumed if r > 1.14m. So, for
an array of 0.24 m diameter, the minimal recording distance corresponds to r.

With the above formal measures a description of the different sound field types is possible.
Distinction must be made between diffuse sound fields and directed sources . A diffuse sound
field cannot be localized and occurs behind the critical distance, at the points where the direct
energy of the sound source and the reflected energy is the same. On the other hand directed
sources are recorded within the critical distance and can therefore be localized. A recording de-
vice also has to distinguish between noise and speech sources. This can be done by analysing
the spectral characteristics and post-filters.

Considering a directed source, the transmission of a speech signal to a microphone can be
described by a linear transfer function. A full treatment of this subject is beyond the scope of
this thesis but the subject has already been well-researched and the results summarized in
ISO 9613-1 (1993). The essence of this ISO standard is that the transfer function of sound is
exponentially dependent on the distance r of the sound source, the absorption coefficient α
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2.2. Microphone Arrays

of the room, which is a function of temperature T , humidity σ , atmospheric pressure p, and
frequency f . This can be modelled as:

Speaker

H(r,α(T,σ , p, f ))

Microphone

Besides this influences on the sound wave each signal in a room travels a specific distance to
the microphone in a specific amount of time. This duration depends on the speed of sound:

cair = (331.3+(0.606◦C−1 ·θ))m
s

(2.5)

where θ is the temperature in degrees Celsius (under the assumption of dry air, 0% humidity).
Based on this relation, microphone arrays exploit these different points in time of arriving sound
waves to localize or emphasize specific signals.

2.2. Microphone Arrays

It is well known that humans can localize and perceptually segregate different sound sources of
their immediate vicinity with only two ears. This human ability is copied to technical approaches
like binaural processing. In the book Computational auditory scene analysis: Principles, algo-
rithms, and applications by Richard M. Stern, Guy J. Brown and DeLiang Wang [52] the various
approaches are described. Most technical adaptions of two channel array approaches are lim-
ited in the detection of either elevation or azimuth differences and suffering under front-back
ambiguities.
So a complete different approach to localize sound sources in contrast to binaural approaches
are microphone arrays. Since the computational complexity of array processing is mostly less
than of binaural approaches, for this thesis a microphone array was selected.

Microphone arrays are discrete passive apertures. The term aperture is used to refer to
a spatial region that receives or transmits waves [30]. Receiving apertures are refereed as
passive, transmitting ones as active. For example, in acoustics, a passive aperture is an elec-
troacoustic transducer that converts acoustic signals into electrical signals (microphone). And
finally, discrete means that the ideal continuous aperture is transferred to a sampled version.
This sampling is necessary because there aren’t any continuous sensors. Thus a discrete
aperture consists of several discrete sensors building an array, in case of acoustic sensors it is
called a microphone array. But the arrangement and number of microphones determines the
directivity and frequency dependence of the whole array.

For each application a trade-off between number of microphones, size of the array, and man-
ageable bandwidth has to be found. Localization quality is strongly dependent on the number
of microphones. With only two microphones only an estimation of the azimuth is possible, and
additionally front-back confusion happens. A minimum of four microphones are necessary for
localizing sounds without ambiguities.

15



2. Background

The level difference between the main lobe and the side lobes depends also on the number
of microphones M. In an ideal case, the level of the main lobe is 10lgM higher than the side
lobes [31]. Figure 2.2 shows the directivity pattern for an array consisting of 25 microphones
steered to φ ′ = 0◦ at a frequency of 1kHz. The main lobe is about 10lgM higher than the side
lobes.
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Figure 2.1.: Directivity Pattern of a microphone array with M = 25 elements (φ ′ = 0◦, f = 1kHz,d =
0.08m)

The main lobe width is also proportional to 2/M hence it decreases slowly with increasing
number of microphones. Both the level difference and the main lobe width can be increased
with additional filters and different geometrical configurations.

Another important issue of a microphone array is the inter-element distance between each
sensor. It determines the highest frequency without spatial aliasing. If spatial aliasing occurs,
the directivity pattern shows so called grating lobes. This means that the wave front cannot
be assigned to the correct direction of arrival due to phase ambiguities. These grating lobes
appear if the inter-microphone distance is greater than half of the wavelength of the signal.
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2.3. Geometrical Array Configuration

Thus the inter-element distance should be chosen to

d 5
λmin

2
=

c
2 fmax

, (2.6)

where d is the maximal microphone pair distance, λmin the minimal wave length, and fmax the
maximum frequency without spatial aliasing.

To overcome this problem so called harmonically nested subarrays are used. These arrays
do not have one fixed inter-element distance, but rather a combination of arrays with different
spacings is used. Figure 2.3 shows a composited array of four different arrays with a frequency
range of 0.5 - 8 kHz. One advantage using subarrays is the reduced number of microphones.
Compared to four stand alone arrays with 30 microphones the composite array only needs 18
microphones.

0.16m0.5 - 1 kHz subarray

1 - 2 kHz subarray

2 - 4 kHz subarray

4 - 8 kHz subarray

Composite array

Figure 2.2.: Harmonically nested subarray covering four frequency bands

In harmonically nested subarrays the beamwidth keeps constant over a greater frequency
range compared to a fixed distance array. Only the signal processing must be extended with
bandpass filters and the microphone signals have to be shared to the corresponding delay
elements. This extension of the signal processing is minor compared to the gained quality
improvements (further informations in [5] and [31]).

Besides the discussed linear composite arrays alternative geometrical array configurations
feature additional properties like increased three dimensional localization or a more homoge-
neous directivity.

2.3. Geometrical Array Configuration

The geometrical array configuration is one of the most important criterion developing a beam-
forming application. It influences significantly the system functionality and constrains the max-
imum of the directivity and the precision of the system. In the following the basic geometrical
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2. Background

configurations, their behaviours and limitations are depicted. Later on, in the experimental part
of this thesis, three different configurations are analysed in relation to the use in conferencing
environments.
According to the book Optimum Array Processing [48], the various array configurations can be
divided into three categories:

• Linear
• Planar
• Volumetric (3-D)

To shorten this discussion, a pre-selection was done. Linear arrays are not further consid-
ered because their configuration is limited to one angular component (e.g. azimuth). This leads
to front/back or left/right ambiguities (according to Chapter 2, pp. 17 et seq. in [48]), which is
disadvantageous for the proposed teleconferencing scenario. So the different geometries are
splitted into planar and non-planar configurations. Following, the requirements on the array for
the intended purpose are stated.

2.3.1. Array Requirements

In this thesis a microphone array should be used to improve the recoding capabilities in a
conference scenario. The scenario consists of a round conference table (radius about one
meter) with several speakers sitting around the table talking freely to a recoding device which
is placed in the middle of the table. Additionally the recording device should only consist of one
centralized entity with a form factor comparable to existing table-top conferencing phones. The
device should be used in different reverberant environments like common offices, which means
the microphone array must be able to record speakers of all directions (all azimuths) around
the table with a limitation in distance and aperture angle (elevation). The limited aperture angle
is based on the fact, that the device is placed on the table and speakers only can speak from
directions in the upper half-plane.

Another limiting factor is the online capability which constrains the maximum number of
microphones. Actual available processing power limits the maximum manageable bandwidth
which is direct proportional to the number of microphones. Processing complexity is in most
algorithms directly related to the number of sensors.

A further aspect to be considered is the frequency range and the sampling frequency. The
frequency of voice ranges from 300 Hz to 3400 Hz, resulting in a minimum sampling rate of 8
kHz. Recording with this sampling rate is necessary to reproduce a natural sounding voice, but
the sampling rate also influences the localization accuracy, which is discussed in section 3.1.

As seen in this section, the array geometry isn’t only influenced by design criteria but also
by technical requirements and restrictions. Under these aspects the following sections will give
an overview over existing array configurations.
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2.3. Geometrical Array Configuration

2.3.2. Planar Configurations

A planar array configuration is an array whose elements all lie in one plane. Basically all shapes
are imaginable, but in practice shapes with specific symmetrical properties show certain acous-
tic capabilities. It is possible to subdivide planar configurations into arrays with microphones
covering the surfaces and into such arrays which have only elements on their edges. In relation
to the teleconferencing scenario, it is always important to consider the processing complexity.
With regard to this, the arrays with surfaces fully covered with microphones normally are com-
putationally too demanding. Two examples of this type are shown in Figure 2.4 and 2.5. These
array configurations were primary developed for radio communication or radar. But there is
one special case, acoustic cameras, in which surface arrays are used in acoustical engineer-
ing. Figure 2.6 shows such a acoustic camera build up on a four by four microphone array.
In principle these cameras base on rectangular arrays (Figure 2.5) which are orientated like a
optical camera towards a scene. Then they receive the radiate sound waves and calculate an
acoustical image of the scene. Usually these cameras only have a limited angle of entry which
disqualify them for the use on a conference table.

Figure 2.3.: Circular Array with hexagonal microphone distribution

The second type, arrays with microphones only on the edge of the shape, are supposed to
be the better choice for teleconferencing. These microphone arrays consist of microphones
arbitrary aligned on the boundary of a shape. By intuition, a rotationally symmetrical shape
seems logical and in literature these types show the most homogeneous directivity patterns
(Chapter 4.2, pp. 285 et seq. in [48] or Chapter 6, pp. 394 et seq. in [31]). The circular or ring
array of Figure 2.7 is the simplest form of a rotationally symmetrical array. Other shapes like
spiral or star shaped ones only show a increased accuracy detecting the elevation [31], which
is not of particular importance for the given scenario.
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Figure 2.4.: Rectangular Microphone Array Figure 2.5.: Acoustic Camera (www.isemcon.
com)
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Figure 2.6.: Circular Microphone Array
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2.4. Acoustic Beamforming

2.3.3. Nonplanar Configurations

If the sound sources can occur in all spatial directions, then a volumetric array is needed.
Those arrays use a third dimension for microphone placement. Possible configurations are
three dimensional line arrays or geometrical bodies like spheres, cubes or cylinders. Volumet-
ric bodies, like spherical arrays should either have a structure which not affects the propagating
sound field or the influence must be considered in signal processing. This is the case, if the
sensors are mounted on surfaces like the body of a robot. In contrast this circumstance is pre-
vented using volumetric line arrays, whose structures only consist of small microphone fixings.
The main advantage of a volumetric array is the possibility to detect the correct angular com-
ponents without the lack of front/back ambiguities. Linear arrays and planar arrays can only
detect the correct direction with additionally constrains, like a defined looking direction [31].
Regarding to the proposed scenario the array geometry is established by physical constrains
like the table-top design and the positioning on the table. This already constrains the localisa-
tion to the upper hemisphere and a real volumetric configuration is not needed. Nevertheless
in the experiments two volumetric line arrays are analysed for accuracy improvements.

Consideration of all possible configurations would exceed the scope of this thesis. There are
many books about this interesting field of array geometry and it is fascinating to see the various
acoustic properties, like the beam and directivity patterns, frequency dependences, and the
range of array gains. Reference is therefore made to the book Optimum Array Processing of
H. Van Trees [48] and to the book Messtechnik der Akustik of M. Möser [31].

2.4. Acoustic Beamforming

Beamforming removes interferences introduced by noise and reverberation. It can be consid-
ered as multidimensional filtering in space and time. The technique originated in radio astron-
omy during the 1950’s as a way of combining antenna information from collections of antenna
dishes. By the 1970’s beamforming began to be explored as a generalized method of signal
processing for any application involving spatially-distributed sensors [44, 6]. Examples of this
expansion includes:

• Radar
• Radio Astronomy
• Sonar
• (Wireless-)Communications
• Sound Source Localization
• Seismology
• Medical diagnosis and treatment

Today beamforming is an active area of research and takes part in a variety of applications.
The focus of this thesis is on Acoustic Beamforming, which tries to place a virtual microphone
at various positions without physical sensor movement. Those virtual microphones are useful
for applications like the human-computer interaction or hands-free telephony. Several beam-
forming algorithms exist for combining the sensor data, but they all base on delaying the signals
and filter them in some way.
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2. Background

Beamforming can be divided broadly in two different approaches:

• data-independent: conventional beamformers with a fixed or switched beam

They only depend on delaying the input signals. In advanced data-independent sys-
tems like Filter-and-Sum beamformers, filters additionally form the main lobe and try to
suppress side effects.

• data-dependent: adaptive beamformers maximizing desired output signals

The idea of a time-variant spatial-time response stands behind data-dependent beam-
formers. This response is adapted to maximize the main signal and to suppress interfer-
ences.

There are many beamforming algorithms in literature, most of them are only suitable for
narrowband signals and inappropriate a wideband speech signal. Human voice covers about
four octaves between 500 Hz, 1000 Hz, 2000 Hz and 4000 Hz. This wide range is only covered
by special broadband beamformers. Traditionally, a narrowband beamformer has a directivity
pattern which broadens towards lower frequencies.

Figure 2.7.: Directivity pattern of a continuous aperture for 0 <= f <= 4800Hz

Figure 2.8 depicts the directivity pattern of a theoretical continuous linear array without any
additionally frequency dependent filtering. The main beam shows a strong frequency depen-
dence and widens towards lower frequencies. This causes interference at low frequencies
because every signal besides the main beam will be low-pass filtered rather than uniformly
attenuated over its entire frequency range [6]. As described later, the various discrete aper-
tures have all their individual patterns, depending on their dimensions, configurations and inter-
element distances.

Signal leakage due to multipath propagation or crosstalk between the microphones de-
creases also significantly the signal-to-noise ratio in reverberant environments. Crosstalk is
minimized automatically with increasing number of microphones. Another approach to over-
come leakage effects is post-filtering the output signals with specific multi-channel filters. In
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2.4. Acoustic Beamforming

most cases pretty good crosstalk reduction can only achieved either by increasing the number
of microphones or advanced filtering which consumes more computational power.

In the following chapters starting with the simplest form of a beamformer going further to
more complex array processors, a short introduction in beamforming techniques is given as
a theoretical basis for the developed algorithms in this thesis. In the following two different
beamformer groups are explained in detail. At first the data-independent delay-and-sum beam-
former is explained, than going further to more complex array processors which adapting their
responses to the desired signal. A full mathematical description of each approach will be omit-
ted in reference to specialized literature (for example, see H.L. Van Trees: Optimum Array
Processing [48]).

2.4.1. Data-independent beamforming

Data-independent beamforming means that the algorithms do not adapt their transfer functions
to the input signals. The best-known algorithm is the delay-and-sum beamformer (DSB) which
has a simple principle. It applies on each incoming microphone signal time-shifts according to
the steering angle and microphone array configuration. These short delays compensate the
propagation time differences between the source and each microphone. After delaying the
signal they are summed up to generate one single output signal. Because of the constructively
or destructively superposition of the microphone signals the desired signal at the steering angle
is enhanced. In Figure 2.9 the structure of a delay-and-sum beamformer is depicted. It shows
the source sc(t), a variable number of microphones N with corresponding signals xn(t) and
delay elements τn. The summation is shown as the addition sign and the output is y(t).

+τ1

+τ2 y(t)

+τn

sc(t)

x1(t)

x2(t)

xn(t)

Figure 2.8.: Delay-and-sum beamformer

So in general, the delay-and-sum beamformer output y(t) is computed by:

y(t) =
N

∑
n=1

xn(t− τn). (2.7)
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This formula represents the most basic version of a delay-and-sum beamformer. In practice
it is often extended by a real weighting factor wn,

y(t) =
N

∑
n=1

wnxn(t− τn), (2.8)

which allows compensation of different microphone gains. As already mentioned above, the
DSB strongly depends on the frequency. A beam pattern of a linear array with equidistant
microphones and a steering angle of 90 degree is plotted in Figure 2.10. It shows again that
the main beam broadens towards lower frequencies and that beyond the maximum frequency
strong side lobes occur. That implies that the standard delay-and-sum beamformer has a
low-pass characteristic, so that interfering signals are low-pass filtered and added to the output
signal. Additionally beyond fmax =

c
d , which is determined by the inter-element distance, spatial

aliasing causes ambiguities and so strong interferences in the output. Over the whole frequency

Figure 2.9.: Delay-and-sum beam pattern of a discrete linear array steered to 90 degree

range, the side lobes interfere with the output signal which can be reduced by a increasing
number of microphones or through post-filtering.

Filtering the output signal is mostly limited, therefore approaches were developed which
apply filters on each microphone signal before summing them up. These sophisticated beam-
formers with integrated filters are widely known as filter-and-sum beamformers. They try to
optimize the beam shape to produce a more homogeneous response for speech acquisition.
Further information are denoted in the chapter Constant Directivity Beamforming (pp. 3 et
seq.) by Darren B. Ward in [6]. These methods assume that the nature of the interferences
(its statistics in particular) and the signal characteristic is known a priori. According to these
assumptions the filters are designed ahead of time for particular applications. But in practice
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2.4. Acoustic Beamforming

involving human talkers and a realistic audio scene the prediction of filter responses fail. For
these rapidly changing scenarios an adaptive technique would be better. This is the motivation
behind the study of data-dependent array processing and is the focus of the next section.

2.4.2. Data-dependent beamforming

An adaptive, or data-dependent beamformer tries to apply weights to each microphone in an
optimal sense. This means, in dependence of the source signal all filter weights of a sophisti-
cated beamforming system are adapted accordingly.

A first attempt at inventing such a beamformer was done by Otis Lamont Frost in 1972 [18].
The basic concept behind is the minimization of the output power through an optimal weighting
of the beamformer inputs. Several derivations of the algorithm can be found in literature [18,
57, 55] and therefore omitted here.

Simulations of a Frost beamformer show quite narrow main beams [57]. Therefore Frost
beamforming does not tolerate errors in the steering vector. Also in reverberant environment
the algorithm eliminates parts of the target signal due to correlations of reverberant signals
with the target signal. And finally the Frost algorithm depends on precise microphone gains
and positioning which is mostly not achievable in practice.

All these drawbacks make the Frost Beamformer not applicable in practical environments,
like the proposed teleconferencing scenario. So a more robust approach where considered,
the Griffiths-Jim beamformer.

In 1982 L. J. Griffiths and C. W. Jim published their paper about An Alternative Approach
to Linearly Constrained Adaptive Beamforming, today widely known as the Griffiths-Jim beam-
former (GJBF) [19]. The technique belongs to the data-dependent beamformers which ac-
cording to the source signals adaptively form its directivity patterns. A Griffiths-Jim beam-
former (GJBF) or also known as generalized side lobe canceller consists of a fixed beamformer
(e.g. filter-and-sum beamformer), a multiple-input canceller and a blocking matrix.

The simple fixed beamformer is steered to a specific direction enhancing the target signal
and attenuating as good as possible interfering signals. On the contrary, the blocking matrix
generates a signal, which blocks the signal in look direction and let simultaneously pass all
other signals besides the target. The simplest realization of a blocking matrix is generally a
delay-and-subtract beamformer which delays the microphone signals according to the steering
vector and subtracts them from the earliest arriving microphone signal. After this the multiple-
input canceller uses multiple adaptive filters which are driven by the blocking matrix outputs
to correlate them with previous output signals of the GJBF. Through the correlation the unde-
sirable signals are detected and enhanced and finally subtracted from the fixed beamformer
output signal. Through the subtraction all interfering signals besides the look direction are
subtracted from the standard fixed beamformer signal yielding a better signal to interference
ratio. So the Griffiths-Jim beamformer (GJBF) achieves fair target signal extraction and feasible
interference suppression compared to data-independent beamformers [6].

The biggest problem of the Griffiths-Jim beamformer (GJBF) is that it depends strongly on
the correctness of the steering vector. The target signal is disproportional attenuated if the
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looking direction between two time steps varies too much because the target signal is leaked
to the multiple input canceller resulting in target signal attenuation. Steering vector errors are
not only caused by a false direction of arrival (DOA) estimation, but also through errors in the
microphone positions and those in the microphone characteristics (e.g. inhomogeneous polar
plots) [6].

For the particular use case of teleconferencing the localization of the source positions is a
difficult task, so that the Griffiths-Jim beamformer (GJBF) is too sensitive and therefore not the
best choice for the proposed scenario. There are various techniques to overcome the target-
signal leakage problem but most of them induce a additionally delay due to advanced adaptive
steps needing previous samples.

2.4.3. Geometric Source Separation

In the previous section a introduction to beamforming solutions was given. Beamforming can
be used to enhance a specific signal out of a mixture of signals. Therefore it relies primary
on geometric informations and in some cases additionally on statistical properties or special
signal characteristics. A completely different approach is Blind Source Separation (BSS) which
relies completely on statistical and signal characteristics. Most of them assume that source
signals and noise signals are mutually independent or decorrelated. The BSS algorithms try to
maximize the statistical independence between the target signals. Best known basic algorithms
are Principle Component Analysis, Singular Value Decomposition, or Independent Component
Analysis. A good overview of these algorithms is given in the book Blind speech separation by
Shoji Makino et al. [29].

However, Blind Source Separation (BSS) algorithms are mostly computational complex and
need a lot of processing time. Often they are also iterative algorithms and their convergence
time can be long. So such BSS approaches are in general not suitable for online signal
separation.

Recently a new kind of algorithm, the so called Geometric Source Separation (GSS) has
been published combining Blind Source Separation (BSS) and beamforming in a beneficial
manner. Geometric Source Separation (GSS) were proposed by L. C. Parra and C. V. Alvino
in the paper Geometric Source Separation: Merging Convolutive Source Separation With Ge-
ometric Beamforming [37].

Overcoming the main problem of adaptive beamforming, cross-talk and signal leakage, GSS
uses mostly readily available source localization informations. For this purpose, Parra and
Alvino combine beamforming with conventional source separation by using cross-power min-
imization with geometric linear constraints. They assume that the source signals are inde-
pendent. This causes ambiguities in terms of permutations and scaling because convolutive
source separation does not identify the source s(t) and their corresponding frequency bins di-
rectly. So it can be formulated a permutation matrix which assigns and scale each frequency
to the correct source. This matrix increases with the number of microphones as the number of
possible permutations increases.
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2.4. Acoustic Beamforming

In the past, most separation approaches have tried to resolve these ambiguities by exploiting
the continuity in the signal spectra [8], or the co-modulation of different frequency bins [2].
These methods depend on polyspectra [42, 13], which are in practice for speech signals hard
to obtain and are normally computationally very demanding.

Additional ambiguities are introduced by using more sensors than sources. In this overde-
termined case conventionally subspace analysis is done to determine the signal and noise
subspace. This problem is also handled in the GSS algorithm by constraining the filter based
on geometric assumptions.

In general, the separation problem in the discrete time Fourier domain can be denoted as
(according to [37]):

y(ω) = W(ω)x(ω), (2.9)

with
x(ω) = A(ω)s(ω), (2.10)

where A(ω) is the matrix of linear transfer functions between the sources s(ω) and the micro-
phones and with W(ω) the filters inverting the effect of convolutive source mixing. Equation
(2.9) can be rewritten to

y(ω) = W(ω)A(ω)s(ω) = PS(ω)s(ω), (2.11)

which shows, that the separation problem can be solved except for a arbitrary permutation
matrix P and a arbitrary scaling matrix S(ω) per frequency.

Now, this separation problem can be implemented as cross-power minimization to reduce
off-diagonal elements of

Ryy(t,τ) = E[y(t)yH(t + τ)] (2.12)

for different values of t. Minimization of this equation means that the correlation between each
channel is minimized and this can be implemented as diagonalization of the cross-power spec-
tra Ryy(t,τ) in time domain. But as well as, for efficiency, this can also be expressed in fre-
quency domain.

Calculating the cross-power spectra in an on-line algorithm would cause an additionally de-
lay, thus only a running estimate of Ryy(t,τ) (denoted in frequency domain) directly from the
outputs y(t) is computed as

Ryy(t,τ)≈W(ω)Rxx(t,τ)WH(ω). (2.13)

This calculation (according to [16]) rewrites the cross-correlation of the outputs y(t) using equa-
tion (2.9) with the matrix W(ω) of the most recent filter coefficients and with a current estimate
of the cross-correlation of the recorded signals x(ω) as a running estimate. This approximation
is only accurate for a filter length Q much shorter than the analysis window length T [24].

For the minimization task of Ryy(t,τ) a fast gradient decent algorithm is used. This algorithm
minimizes the filter coefficients W which in turn diagonalizes Ryy(t,τ). For this minimization
task in the paper of Parra and Spence an algorithm minimizing the sum of squares of the
off-diagonal elements under various optimization criteria is proposed [37, 36].
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A drawback of this "original" GSS algorithm is the estimation of the correlation matrices
Ryy(t,τ) and Rxx(t,τ) over several seconds leading to a time delay. A different approach
related to the algorithm of Parra et al. is proposed by J. M. Valin in Enhanced robot audition
based on microphone array source separation with post-filter [47]. In this paper the focus
lies on a simple, fast and robust source separation for the audition of a robot. Therefore, the
correlation matrices estimations were simplified to

Rxx(t,τ) = x(t,τ)x(t,τ)H (2.14)

Ryy(t,τ) = y(t,τ)y(t,τ)H (2.15)

which is an instantaneous estimation of the correlation. This simplification has not shown any
reduction in accuracy and furthermore eases the implementation of an on-line algorithm [47].

Additionally the separation problem of equation (2.9) is reformulated to a form estimating
directly the separation matrix W(ω) under two constraints. The first constraint (eq. (2.16))
contains the minimization problem of equation (2.12), the second (eq. (2.17)) takes the geo-
metrical informations into account:

Ryy(t,τ)−diag[Ryy(t,τ)] = 0 (2.16)

W(ω)A(ω) = I (2.17)

Equation (2.17) is the geometric constraint, which ensures unity gain (I denotes the identity
matrix) in source direction and places zeros in all other directions. Both constraints could be
used for separation, the first constraint would minimize correlation between the signals and the
second would cancel interference of unwanted directions (e.g. reverberation). Together both
constraints are to strong, but can be used as cost functions in a gradient decent algorithm.
These cost functions are calculated by:

J1(W(ω)) = ‖Ryy(t,τ)−diag[Ryy(t,τ)‖2 (2.18)

J2(W(ω)) = ‖W(ω)A(ω)− I]‖2 (2.19)

And with this, the corresponding gradient for the cost functions with respect to W(ω) are:

δJ1(W(ω))

δW∗(ω))
= 4E(ω)W(ω)Rxx(t,τ) (2.20)

δJ2(W(ω))

δW∗(ω))
= 2[W(ω)A(ω)− I]A(ω) (2.21)

where E(ω) = Ryy(t,τ)−diag[Ryy(t,τ)].
With this gradient functions taking decorrelation and geometric properties into account, the

separation matrix is then updated as follows:

Wn+1(ω) = Wn(ω)−µ

[
α(ω) δJ1(W(ω))

δW∗(ω)) + δJ2(W(ω))
δW∗(ω))

]
(2.22)

where µ is the adaptation rate and α(ω) = ‖Rxx(t,τ)‖−2 is an energy normalization factor [47].
For calculation, the instantaneous estimations of the cross-correlation matrices of equation
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(2.14) and (2.15) are used, which significantly reduces the complexity requiring only matrix-by-
vector products:

δJ1(W(ω))

δW∗(ω))
= 4[E(ω)W(ω)x(t,τ)]x(t,τ)H (2.23)

and the energy normalization factor reduces to

α(ω) =
[
‖x(t,τ)‖2

]−2
. (2.24)

The final question is the initialization of the separation matrix. The paper of the original
version of the GSS algorithm denotes various resolutions for the initial values of W(ω) [37].
Finally, the best working matrix with acceptable separation quality, contains the filter coefficients
of a delay-and-sum beamformer steered into source direction.

With the given algorithm, for each time frame of the captured signal a separation matrix is
calculated and then convolved with the input signal according to equation (2.9). More about
the implementation aspects can be found in chapter 3.2.

2.5. Audio Based Localization

In this section a short introduction to audio based localization of sound sources is given. Lo-
calization of acoustic sources is useful in many practical applications like surveillance systems,
video conferencing or for hands-free speech acquisition. The focus will be on locators using
microphone arrays, because this is a well known field of research and promises good results.
Other solutions like binaural approaches will be omitted and refereed to appropriate literature.

The considered approaches should be adequate for the use in a reverberant environment
and should be able to detect at least two simultaneous sources.

Existing source localization procedures basing on microphone arrays may be divided into
three groups [6] those based upon maximizing the Steered Response Power (SRP), techniques
adopting high-resolution spectral estimation concepts, and approaches exploiting Time Delay
of Arrival information.

2.5.1. High-Resolution Subspace Techniques

In the category of the High-Resolution Subspace Techniques or Spectral-Estimation-Based Lo-
cators, MUSIC is one of the most popular algorithm [40] besides ESPRIT [38] or MIN-NORM
[26]. The term MUSIC means MUltiple SIgnal Classification and in the field of multiple source
localization MUSIC shows its advantages. The method bases on the exploitation of the prop-
erties of the so called Cross-Sensor Covariance Matrix. This is a correlation matrix calculated
across all spatial distributed sensors.

Generally, High-Resolution Subspace Techniques base on the assumption that the consid-
ered signal characteristics are known and that only some parameters have to be estimated.
The estimation of these parameters is implemented by a Principle Component Analysis (PCA)
on the array covariance matrix in order to separate the signal subspace and the noise sub-
space. The PCA is used in a matrix operation that results in peak responses in the source
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directions.

The following gives a short overview of the MUSIC algorithm (as described in [40]). As
mentioned MUSIC assumes the signal characteristic (data model) as

X1
X2
...

XM

=

 a(θ1) a(θ2) · · · a(θD)




F1
F2
...

FD

+


W1
W2
...

WM

 (2.25)

or
X = AF+W, (2.26)

where XM denotes the M microphone signals, FD the D original source signals, and WM the
noise vector introduced through the recording hardware. The elements of A, a(θD) represent
the transfer functions between the microphones and the sources relative to their directions of
arrival θ . But this equation is unresolvable due to the ambiguities of source assignment.

Calculating the Cross-Sensor covariance matrix:

S , XX∗ = AFF∗A∗+WW∗ (2.27)

of the microphone signals and hence

S = APA∗+λS0 (2.28)

where P is the positive definite matrix of the pair-wise correlation of the source signals and
S0 the metric of S. If there are less sources than microphones APA∗ is singular. Therefore it
follows of eq. 2.28

|APA∗|= |S−λS0|= 0 (2.29)

and this equation is only satisfied for the minimum eigenvalue λmin. It is not always simple
to derive one single λmin as solution to |S−λS0| = 0, because there are as much as incident
signals. The smallest eigenvalues of eq. 2.29 refer to the eigenvectors which span the signal
subspace. The remaining eigenvalues correspond to the eigenvectors spanning the noise
subspace. Both subspaces are disjoint. In [40] Schmidt presents an algorithm to calculate
these solutions.

There are two main limitations of subspace techniques. First, they are unable to detect
more source signals than number of sensors. And for this limiting source number not only real
sources count, but also strong interferes like echoes. Second, their computational complexity
is too demanding for easy on-line speaker localization. Hence, for the proposed scenario,
subspace techniques will not be considered further in this thesis.
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2.5.2. Estimation of Time Delay of Arrival

Time Delay of Arrival (TDOA) based localization calculates time delay estimations of impinging
signals relative to microphone pairs [41, 12]. In combination with the microphone positions and
the time delays hyperbolic curves are generated and intersected. These intersecting curves
yield a suboptimal position estimation.

In figure 2.11 two examples of regions where the Time Delay of Arrival (TDOA) is equal are
shown. Often in literature this is called the cone of confusion. These two cone shaped areas
are intersected, resulting in a hyperbolic curve. Every point on this curve is a possible source
location. With an additional cone from another pair of microphones the first bearing line is
intersected in one point. With more than three microphones several hyperbolic curves intersect
in one single point (the source position), under ideal conditions. But under real conditions the
bearing lines intersect at different points. These slight displacements of the lines are introduced
due to imperfect recording hardware, noise and reverberations. So an estimation algorithm has
to find the most likelihood source position. These estimation process differentiates the various
TDOA algorithms.

y

x

z

x

y

z

Figure 2.10.: Examples of regions where the Time Delay of Arrival is equal

The multi source localization is a problematic aspect of TDOA based algorithms. Most ap-
proaches calculate the time delays by the Generalized Cross-Correlation (GCC) method [25].
Assigning the peaks of the cross-correlation functions to the different sources are a separate
task and need special attention [39]. Therefore TDOA localization primarily works well for a
single source which is for the intended purpose relatively uninteresting.

2.5.3. Steered Response Power Localization

Beamforming normally is used for capturing signals (e.g. voice) of one specific region. Gen-
erally beamforming exploits the knowledge of particular acoustical transfer functions between
sources and sensors. Applying this transfer function to captured signals would therefore yield
the source signal. Unfortunately, these transfer functions are in most cases only approxima-
tions. But this ability to approximate and apply these functions for arbitrary environments results
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in a great system flexibility and adaptation capability. Furthermore, the filter function for simple
beamformers can be pre-calculated fast and stored in look-up tables.

These efficiency is used in SRP localization techniques. That means, a focused beamformer
is steered to various locations and searches for the highest output power. Looking for further
peaks in the output extends this approach to a robust and fast multi source localizer.

In time domain the delay-and-sum beamformer provides the simplest type of steered re-
sponse. The beamformer applies simple time shifts to each microphone signal compensating
the propagation delays from the source position to the microphones. The shifted signals are
then summed together and the energy of the signal is calculated. In cases, with limited noise,
equal source-microphone distances, and low reverberation this simple solution is appropriate.
On the other side, this simple solution produces very wide energy peaks which overlap in case
of near sources.

Advanced beamformers, as mentioned in previous chapters, like filter-and-sum beamformers
apply filters to the microphone signals additional to the delays in order to shape the frequency
dependent beams. This beam shaping produces smaller peaks in the energy function, which
is required in practical environments with reverberation and varying microphone-source dis-
tances. So advanced beamforming solutions with signal filtering and weighting distinguish the
different SRP localizers.

One of the most robust localization algorithms is the so called SRP-PHAT (Steered Re-
sponse Power - Phase Transform) method. Which combine the beneficial GCC and its PHAT
implementation with the principle of SRP algorithms.

SRP-PHAT relies on a filter-and-sum beamformer applying a Phase Transform (PHAT) which
weights each frequency component equally [14, 25]. This can be formulated in the frequency
domain as

Y (ω,p) =
N

∑
n=1

Gn(ω)Xn(ω)e jωτn , (2.30)

which is the general form of a filter-and-sum beamformer where q denotes the source position
with the corresponding delays τn between the source and each microphone. With this, the
output power for a specific position q is defined as

P(q) =
∫ +∞

−∞

‖Y (ω)‖2dω (2.31)

and a possible source location is found from

q̂s = argmax
q

P(q) (2.32)

evaluated for each considered location q. With this basic formulas the SRP algorithm with
additionally PHAT weighting is expressed as

P(q) =
N

∑
l=1

N

∑
k=1

∫ +∞

−∞

Ψlk(ω)Xl(ω)X∗k (ω)e jω(τk−τl)dω, (2.33)

where Ψlk(ω) corresponds to the multi-channel version of GCC-PHAT weighting and is given
by

Ψlk(ω) =
1

‖Xl(ω)X∗k (ω)‖
, (2.34)
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where index k and l denotes the summation over all different microphone pairs. The positions
p are related to points of a search region, like a sphere around the array. For each point of this
region equation 2.33 is evaluated and analyzed for peaks. Besides an energy threshold which
determines the energy value of a valid source, a value for the maximal number of sources is
defined. This value specifies the number of further peaks considered besides the first one,
which corresponds to the number of multiple tracked sources.

Normally the SRP-PHAT algorithm is the best trade-off between computationally complexity
and localization performance [14]. In [1] SRP-PHAT were compared to a TDOA method (also
based on GCC-PHAT) in relation to the speakers head orientation. The results show that the
SRP-PHAT algorithm is robust against rotations of the speaker’s head. Another comparison
of different localization principles is done in [28] with the result that the SRP-PHAT method
performs well in a wide variety of different parameters like number of microphones or used
frame size. Because of its great robustness against a wide range of interference, its flexibility
and efficiency the SRP-PHAT algorithm was selected for the proposed scenario.

2.6. Audio-Visual Tracking

In the last chapters the three basic concepts for audio based localization were presented. There
are for each concept a variety of different approaches and modifications. But the limitation to
only one type of sensor (in this case microphones) may not be the best solution. Each type of
sensor has a specific strength and weakness and a combination of sensor modalities can often
achieve better results. For source localization of teleconference participants a combination of
video based tracking and acoustic source localization promises a more robust position esti-
mate. So the following chapter presents some basic topics of audio-video based localization.

2.6.1. Face Tracking and Omnidirectional Vision

As mentioned above, a practical example of a multi sensor system may combine a microphone
array and a video camera. Either sensor can be used to estimate a speaker position. But only
the microphone can detect the voice activity for sure and only the camera can track the speaker
in periods of silence. So a combination ensures a continuous and robust position estimation.
There are different possibilities for combination of audio based localization and video tracking.
Therefore, at first the techniques for camera based face tracking and then the approaches for
the sensor fusion are stated.

Several problems arise using camera based object tracking. Generally, camera based track-
ing is inappropriate for absolute position estimation. Only a calibrated tracking system can
perform this task [45]. Normally camera calibration is done in advance using special objects
with known dimensions. After calibration the system can recognize the position and distance
of an object, under ideal conditions.

In most cases, however, the absolute position of the conference participants is not needed.
For steering the beams of a beamformer, the Direction of Arrival (DOA) is sufficient. This task
has been researched extensively over the recent years and therefore is well known and can be
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used "out of the box". For example the OpenCV library1 delivers various functions to detect
faces and their directions. The face tracking components, included in OpenCV base on trained
classifiers and where originally developed by Paul Viola [51] and later improved by Rainer
Lienart [27]. There are many more approaches for face detection and tracking. Performance
evaluations and selection of an approach is beyond the scope of this thesis.

Another aspect which has to be considered in the proposed scenario of teleconferencing
is the ability to detect all participants around the table. An omnidirectional camera device
mounted on top of the microphone array can perform this. There are approaches using at least
two cameras with fish eye lenses facing in opposite directions [35] to acquire an omnidirectional
view or systems using a convex paraboloidal shaped mirror to record a full 360 degree image of
one hemisphere [32]. Both systems acquire a distorted image and therefore a reconstruction
is needed. But it is possible to record a full panoramic view of a teleconference scene and
perform on-line face tracking [7, 35]. With this, face tracking can deliver additional informations
of present speakers and their estimated directions which can be used for speaker recognition
and improvements of the reception quality.

2.6.2. Sensor Fusion and Particle Filtering

To estimate the location of an acoustic source in a room, an approach of chapter 2.5 describing
different audio based localizers can be used. Due to interferences, noise, and reverberation,
inaccuracies in the position estimate produces noisy localization estimates. These distortions
affect the quality of a separation process depending on these position estimates. The noisy
instantaneous position estimates can be improved by tracking them over time. For this purpose
the particle filter algorithm provides an effective way of modelling a stochastic process with
arbitrary probability density functions (pdfs) by approximating it with a cloud (also widely known
as a swarm) of points called particles. Particle filters were originally introduced in the computer
vision area by M. Isard and A. Blake [21]. The particles of such filters are described in a
process state space at a time t, by a cloud index j, and a particle number i = 1, ...,N:

s(t)j,i =

[
x(t)j,i

ẋ(t)j,i

]
, (2.35)

where x(t)j,i is the position and ẋ(t)j,i its derivative of each particle. Corresponding to this, every

particle is weighted with a weight w(t)
j,i . The particles with its states (position and derivation)

and weights represent the probability density function (pdf) for one speaker location. Each
particle with the same index j corresponds to one particle swarm and is assigned to one
present (and potentially active) voice source. Then, during the on-line location estimation the
detected locations are assigned to one swarm. This observation of a source is used to update
the particles weights.

After this update stage, the prediction stage of the particle filter follows. The prediction stage
uses the system model to predict the pdf of each location from one measurement time to the

1http://opencv.willowgarage.com (accessed September 13, 2011)
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next. This helps to compensate disturbances induced by noisy measurements or interferences
[3]. The system model describes the evolution of the particle states, like a model for their possi-
ble directions and valid locations. During the next update stage, before the weighting is applied,
the particles are propagated in time according their predicted motion model (derivation).

Repeating the update and prediction step continuously and calculating the most likelihood
position approximated by the particle swarm delivers a nearly statistical optimal tracking solu-
tions.

Practical implementation of particle filters include additional steps like a resampling stage
or advanced predictors. But these various modifications are often made to adjust the particle
filter to one specific problem. In the following, therefore, the extension of particle filters to
multi-modal sensor fusion algorithms is described, which is also an active research area.

Multi-modality means that informations of different sensors, like acoustic and visual sensors,
are used. In case of audio-visual tracking, there are principally three different ways to fuse the
audio and video data. First, it is possible to use the audio based localization to steer a camera
towards an active speaker, so that the video always shows the current speaker [53]. Second,
the camera can be used to steer multiple beams of a beamformer to potential sources such
that the reception quality is enhanced [10]. The third possibility is to combine both position
estimations to one more reliable source position [49, 33]. But then the problem arises how to
combine the two raw measurements. Both localization methods are subjected to measurement
errors, which can lead to disagreements between the audio-based and visual tracking. So an
adequate way for fusing the sensor data has to be found.

One approach is based on the above mentioned particle filters. In [56] a system is described
which combines the results of an audio based localizer with the ones of a visual tracking sys-
tem. In such a system the particles are additionally weighted by the observation result of the
video tracker. That means, if the video tracker and the acoustic source localization detects
similar positions, then particles lying near to this position get a quite high weight. Otherwise, if
the video and audio position estimates differ considerably the particle swarm widens over time
resulting in an uncertain position. This flexible weighting of particles with different sensor data
is beneficial for combining multi-modal sensor systems with a particle filter. There are again
various approaches in literature combining all possible types of sensors with different methods
through a particle filter.

2.6.3. Efficient Video Extension

Besides fusing multi-modal sensor data to one single output, different localization techniques
can be used to provide a more robust and efficient localization technique. Combining sensor
data with particle filtering adds at least an additional weighting step into the algorithm, which
leads to an increased computational complexity. The result is a more robust and accurate
estimation with a slightly increased computational time.

Another way of combining two different sensors is to constrain the search region of one
sensor with the results of the other one in order to decrease the processing time. In most
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cases this limits the accuracy or robustness of the estimation. But in case of audio-visual
tracking this can lead to a tracking stabilization and acceleration of the localization algorithm.
Especially if the audio-based localization, like SRP-PHAT, uses a predefined search region.

The proposed algorithm therefore, combines the audio-based localization with the video
tracker in such a manner that the search region of the SRP-PHAT localizer is limited. In the
case that video-based tracking fails or the confidence into the values is too low, the system au-
tomatically falls back and uses the default full search region as in the original pure audio-based
approach. Figure 2.12 shows the proposed extension.

face
tracking

Full Search Region

Region of Interest

confidence

or SRP-PHAT
Particle
Filter

position data

Figure 2.11.: Video-based tracking extension of the SRP-PHAT algorithm

Additionally the face tracking data could also be used for further simple extensions. First,
the face tracking algorithm can deliver instantaneous position estimations. The audio based
localization normally needs a minimum number of frames to deliver a valid estimation. During
that time, the separation algorithm could receive the position data directly from the face tracker.
Secondly, if the audio based localization fails, like in strong reverberant and noisy environ-
ments, the separation stage could fall back and use also directly the face tracking positions.
In future applications it might also be possible to detect the speaker activity according to their
mouth movements, which again could improve the confidence value of the face tracker.

The presented extension of Figure 2.12 will be experimentally implemented as a simulation
(see for section 3.3), but a full evaluation will be omitted until the real face-tracking extension is
ready, which is currently developed at the Institute.
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Throughout the thesis, a system locating and capturing individual speakers separately were
designed. The preceding chapters have given a system overview and an introduction to ba-
sic principles needed for this task. In the following sections a selection out of the described
theoretical approaches was made and important implementation aspects were stated.

3.1. Selection of most promising Approach

In recent years there were many approaches for localization and separation of multiple speak-
ers in a room. The previous chapters have tried to give complete but still short overview over
the different technologies. For the practical implementation, algorithms were selected, which
promise the best trade-off between speed and quality in relation to conferencing scenarios.

With some optimizations it has been shown [46], that a Steered Response Power - Phase
Transform (SRP-PHAT) localizer can be implemented efficiently. Most speed improvement is
made using pre-calculated lookup parameters and a optimized search region. Furthermore,
SRP-PHAT algorithms have a good robustness in the presence of room effects and noise [6].
The maximum achieved accuracy depends mainly on the pre-calculated candidate locations
and on the sampling frequency. In cases of small arrays the candidate locations normally lie on
a sphere or hemisphere around the aperture. Otherwise, if the array consists of microphones
spatial distributed around the acoustic scene, the search region is a point cloud inside this
scene. The density of these points is in relation to the sampling frequency the theoretical
limitation of the obtainable accuracy. That means for example at a sampling frequency of 48
kHz, the periodic time is 21 µs hence the minimal achievable distance between two coordinate
locations is about 7 mm. Due to imperfect hardware, in practice, a distance between two grid
points of several centimeters is sufficient. Also the number of candidate locations determines
directly the processing time of the SRP-PHAT algorithm. For that reasons in the implementation
a trade-off between accuracy (number of points) and processing time is chosen.

More precise localization techniques as mentioned above (ESPRIT or MUSIC) are in their
broadband implementations computationally too intensive and show comparatively poor robust-
ness to reverberation and low SNR conditions [22]. The TDOA based algorithms, described in
section 2.5.2 are limited to one source, which does not fulfil the requirement of multiple source
detection.

For the above reasons, the SRP-PHAT algorithm was selected as localizer for the discussed
teleconferencing scenario.

Pure SRP-PHAT localization would produce noisy localization results. Therefore post-
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filtering is needed to smooth the output. One method performing this kind of post-filtering
is the so called Kalman filter [23]. But the original structure of a Kalman filter is limited to one
random process and assumes a Gaussian noise distribution. Particle filters overcome these
limitations, modelling arbitrary random distributions numerically as a cloud of particles (see
section 2.6.2). This enables the efficient handling of multiple sources. Furthermore, for future
extension it might be possible integrating video tracking directly into the filter in order to im-
prove detection quality. Therefore this flexible architecture [3] of particle filter was chosen as
post-filtering stage.

In summary, for the localization part of the teleconferencing solution, an approach based
on a SRP-PHAT localizer with a following particle filter promises the best results. To avoid
reinventing the wheel ManyEars [46, 47, 48] was selected as a basis, because it bases on a
combination of a SRP-PHAT localizer followed by a particle-filter. ManyEars was developed
during several projects at the University of Sherbrooke, Canada. Today it provides an easy to
use ’C’ library and some corresponding papers. It allows to connect specific sound interfaces
and performs on-line tracking of sound sources.

Another part needed for the proposed system, is a separation method which allows to
record the localized speakers around the microphone array separated as good as possible.
Main interference is introduced by reverberation and competing speakers. Thus, it would be
good to have a method recording each active speaker individual. The first idea was to use a
beamformer, recording each speaker individually. But, as mentioned above, data-independent
beamformers can only deliver a signal distorted through strong crosstalk and reverberation. So
one could think, data-dependent beamforming solutions could separate the different speakers.
That’s correct, but in general adaptive beamforming normally needs some time to adapt the
filters until delivering acceptable quality. So in practice, most algorithms induce a high delay,
which is impractical during teleconferencing. These delays are also the main reason why Blind
Source Separation is not the first choice for the discussed problem. One promising approach is
Geometric Source Separation (GSS) [37], which is a combination of Blind Source Separation
and Beamforming. It accelerates the long lasting iterative process of Blind Source Separation
through geometrical informations. With some additional simplifications and optimal initialization
[37], this solution can deliver nearly instantaneous1 separation results. According to [37], SIR
improvements up to 10 dB are possible. Because of the efficiency and the still good separation
results, the GSS algorithm was selected for the experiments.

All the algorithms selected above depend on a microphone array. In the imagined telecon-
ferencing scenario several participants sit around a conference table. The "recording device"
should be placed in the middle of this table. Thus, the device consisting of microphones should
have a omnidirectional characteristic, which fulfills a rotational symmetric microphone array
[20]. Such an array has a homogeneous sensitivity in all radial directions. So a circular array
was selected as basic array type. In Figure 3.1 the technical drawing of the array is shown.
The diameter of 0.24 m was chosen according to other conventional table-top conferencing
phones and similar structures. A further requirement was the utilization of standard compo-
nents instead of professional measurement equipment. Therefore the Focusrite Saffire PRO

1depending on the adaptation rate and the initialization
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402 was selected as multi-channel audio interface. The interface already contains preamps
with phantom power allowing to connect up to eight cheap electret condenser microphone cap-
sules3. These cheap microphones should not be expected to deliver hi-end studio quality in
terms of noise and high frequency performance. However, the overall system consisting of
off-the-shelf hardware should show that acceptable performance is achievable using advanced
signal processing compensating the imperfect hardware. All recordings were made using the
open source recording software Audacity4 which runs on a Windows PC. A complete overview
of the experiment setup is depicted in Table 3.2.
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Figure 3.1.: Technical Drawing of the Circular Microphone Array

2http://www.focusrite.com/global/products/audio_interfaces/saffire_pro_40 accessed Septem-
ber 15, 2011

3CUI Inc. CMB-6544PF (data sheet attached in the Appendix)
4http://http://audacity.sourceforge.net accessed September 15, 2011

39

http://www.focusrite.com/global/products/audio_interfaces/saffire_pro_40
http://http://audacity.sourceforge.net
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3.2. ManyEars MATLAB implementation

There is a full ’C’ implementation of the ManyEars Project5 available. It contains the localiza-
tion, tracking, and separation algorithms as proposed by J.M. Valin in [46, 47, 48]. In order to
extent and evaluate different algorithms, a ’C’ implementation is too complex and inflexible. So,
for research purposes a complete transfer of the sourcecode to MATLAB R2010b6 was done.
This provides an easy way to integrate new features and to try various parameter sets. Also
the visualization and evaluation of results is much easier using MATLAB. But knowing that the
base source code exists as really fast ’C’ implementation is a good starting position transferring
the results back to practice.

The main drawback of the MATLAB implementation is the limitation to off-line processing. It
is only possible to analyse pre-recorded data.

For the MATLAB implementation the system was divided into two parts. One part is the
SRP-PHAT algorithm combined with the particle filter delivering the localization data. The other
part is the normalization and separation process. A first implementation of the SRP-PHAT
algorithm and the particle filter was already available at the Institute for Data Processing and
was used as basis for further extensions and studies. The Geometric Source Separation imple-
mentation was new developed during this thesis. For both parts convenient control functions,
for standalone processing of all experimental data, are provided.

In the following sections the main functions of the localization and separation system is
explained in order to give an overview to the implementation architecture.

SRP-PHAT Localizer

Basically, the SRP-PHAT algorithm is very simple to implement. But for a fast version, some
aspects need special attention. First, the coordinate candidates need only be calculated once.
So, the three dimensional coordinate points of a unit sphere or hemisphere are pre-calculated
and stored (Figure 3.2). Secondly, with these points and the known array configuration all
delays of arrival between each microphone pair are determined in advance and also cached
for further use. After this, the processing of the actual data begins. The input sound file were
loaded and each channel is transferred into the frequency domain with preceding windowing
(Hamming-Window, 50% overlap). This transformation makes the following energy calculation
more efficient and whitening of the signal is easier. With the whitening the energy peaks of
the cross-correlation can be narrowed which increases the resolution (according to [34]). In
frequency domain, the whitened cross-correlation between the microphone pair i j is computed
as:

Ri j(τ)≈
L−1

∑
k=1

Xi(k)X j(k)∗

‖Xi(k)‖‖X j(k)∗‖
e j2πkτ/L, (3.1)

5manyears.sourceforge.net accessed September 15, 2011
6http://www.mathworks.com/products/matlab/ accessed September 15, 2011
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where X(k) is one frame in the frequency domain and L the frame length. While this produces
sharper energy peaks it has also one drawback. After the whitening, each frequency bin con-
tributes the same amount of energy to the final correlation. This makes the system less robust
against noise, because if some frequency bins are dominated by noise they were also detected
beside the voice signals.

To overcome this problem, before calculating the cross-correlation, frequency weighting is
applied. This weighting is based on the signal-to-noise ratio according to [15] and the noise
estimate is calculated using the Minima-Controlled Recursive Average (MCRA) technique [9].
Additionally to make the system more robust to reverberation a simple reverberation model is
also applied as weighting to each frame.

With this enhanced cross-correlation, a pre-defined number of sources is extracted by com-
puting for each point of the search grid (which was previously created, Figure 3.2) the cross-
correlation energy. This is done by summing up all cross-correlation values for a specific delay
according to a microphone pair. The cross-correlation values must only be selected from the
whole cross-correlation function as they were computed previously. So, a complete cross-
correlation energy map for the search region is calculated. On this map the highest peaks
correspond to the strongest signals. According to the maximum number of assumed sources,
the highest peaks were iteratively selected. For each selected peak, the coordinate is stored
and forwarded to the particle filter.
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Figure 3.2.: Spherical search region (1861 points)
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Particle Filter

In the following the used particle filter is described in detail. The above SRP-PHAT algorithm
provides only an instantaneous, noisy measurement of possible source locations without any
information about the temporal behaviour of these sources. A probabilistic temporal integration
can minimize the lack of reliability delivering a continuously stable source tracking based on the
SRP-PHAT estimates.

A particle filter, as mentioned above, can be used for this purpose representing the possible
sources as a set of particles. These particles at the beginning are initialized with random values
of their position, velocity, and state. The particles have initially uniform weighting with a sum of
one over all particles.

Then in the first step for the frame-wise process of the particle filter, the particle prediction is
done. Prediction means, that each particle according to its state (stopped, constant, excited)
is updated. The amount of particles with a specific state also depends on the assumed state
of a tracked source. So some particles stay on their position, some are moved with a constant
velocity, and some are moved accelerated. The model behind these movement is called the
excitation-damping model and is described in [54].

After this prediction step, which is primary completely independent from the measurements,
each particle is weighted. Before doing this, some probabilities have to be calculated.

First a confidence value in the beamformer output is calculated depending on the beam-
former energy. This probability provides informations about the observation if a potential source
is a true source or a false detection. Then for each particle the probability that the observed
source is detected at the particle position is calculated according to a normal distribution. This
results in a probability density function which represents the beamformer error. After this, the
different particle swarms have to be assigned to an observation. For this source-observation
assignment problem there are three possible cases: a false detection, a source observation
corresponds to a one recently tracked source, or the observation corresponds to new source
that is not yet tracked. For the cases of a new source and a false detection an uniform prob-
ability density function (pdf) is assumed. Recently tracked sources are approximated by a
probability density function calculated by the convolution of the beamformer error pdf and the
pdf which is actually approximated by the particles.

With these probabilities and some a-priori probabilities, which assume the activity and ap-
pearance of speakers, for each observation and detected source corresponding probabilities
are calculated on which an assignment is made [46].

After the source-observation assignment problem is solved all particles get a new weighting.
This weighting is determined according to particle-source distance (the beamformer error pdf
is used) and the previous particle weighting.

The final steps of one cycle of the particle filter loop are the update of the a-priori probabili-
ties of the sources. Based on these, decisions for removing old sources or adding new ones are
made. Then at the end, the tracked coordinate estimate is obtained through the weighted av-
erage of the particle positions, which corresponds to the mean of the approximated probability
density function.
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Geometric Source Separation

The implementation of the Geometric Source Separation (GSS) bases on an iterative approach
which calculates frame-wise a new solution using the previous result and the new audio-frame
with corresponding geometric informations. The algorithm corresponds to the theoretical cal-
culations of Section 2.4.3.

The implementation starts with the variable initialization and calculation of the minimum de-
lay which is at least applied to each microphone signal during its way from the source location.
Additionally to the original algorithm, the tracking results of the particle filter can optionally be
smoothed in case of sudden tracking loss. These missing location data is then filled with previ-
ous coordinates. This smoothing works in practice quite good, but is theoretical unnecessary if
the particle filter delivers an optimal output.

After these initial steps, the autocorrelation matrix Ryy(t,τ) of the previous audio-frame is
calculated for each channel in the frequency domain. The matrix Ryy(t,τ) = y(t,τ)y(t,τ)H is
an instantaneous estimation of previous output signals and, as mentioned already, does not
significantly reduce the accuracy in practice.

According to equation (2.21) an estimation A(ω) of the transfer function between the source
and the microphone is needed. The matrix A(ω) can be estimated using the coordinates of
the SRP-PHAT localizer. Assuming that each microphone has unity gain (which is secured by
the normalization) the elements of A(ω) can be determined by

ai j(k) = e−2πkδi j , (3.2)

where δi j are the relative time delays between microphone i and source j and k denotes the
frequency. This is only a reduced model of the transfer function, but works satisfactorily in
practice.

With these matrices the cost functions of equation (2.21) and (2.23) were calculated. Both
equation require previous results. So for the first run of the Geometric Source Separation
algorithm, an initial version for the separation matrix and the previous output signal is needed.
In the original paper [37] of the GSS algorithm several initializations for the separation matrix
are discussed. They propose to initialize it with the filter coefficients of corresponding to a
delay-and-sum beamformer. But this initialization does only make sense if the direction of the
first speaker is known. If the locations are delivered by an automatic source localizer, mostly
the first location estimation is not exact and it last several frames for an accurate estimation.
During these frames the separation algorithm has enough time to adapt the separation matrix.
So in the discussed implementation it is sufficient to initialize the first separation matrix W0(ω)
with zeros. For the initial value of the previous output signal also zeros were selected.

Finally the actual separation matrix Wn+1(ω) is calculated by

Wn+1(ω) = Wn(ω)−µ

[
α(ω) δJ1(W(ω))

δW∗(ω)) + δJ2(W(ω))
δW∗(ω))

]
, (3.3)

where µ is the adaptation rate (set to 0.01) and α(ω) is an energy normalization factor equal
to
[
‖x(t,τ)‖2

]−2
. This matrix is then multiplied with the actual audio-frame in the frequency do-

main (equal to a convolution in time domain) delivering the separated signals. For all following
frames, this algorithm is repeated using iteratively the previous results. All resulting frames are
transformed back into time domain and un-windowing is performed.
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Normalization Function

Equal microphone gain is one of the requirements for good separation results. Normally exact
gain levels for each input channel of the audio interface can be set digitally. But in case of
the Focusrite Saffire PRO 40 these gain values can only be set manually though analogue
controls. This does not allow an equal levelling of each channel. Therefore, these manual gains
were set as accurately as possible. After that, a loudspeaker was positioned directly above
the array with a distance of one meter. Then artificial noise sounds were played and recorded.
With these recordings, the Normalization Function calculates a gain factor per channel which
must be applied to each following recording.

The determination of these gain factors is done by calculate the signal energy per channel
for the different noise types (pink, white and brown noise). The highest energy value of a
channel per noise type is selected and a corresponding gain factor for the other channels is
calculated and cached. After the calculation of all gain factors for each noise type the mean
value of all cached values per channel is determined. The purpose for using different noise
types is, that each has its own spectral characteristics and shows specific energy distributions.
So, not using only one type ensures to calculate an universal gain factor.

During the experiments, the recording of the noises were repeated at the beginning and the
end of each experiment to eliminate possible thermal drifts of the preamps. So, the resulting
gain factors also include these thermal effects over time.

After recording the experiments and the test noises, the gain factors were calculated and
applied to each channel before performing the source separation.

3.3. Video-Tracking Enhancement

An additional extension to the original localization approach proposed by J.M. Valin in [46] was
the introduction of a video face-tracking simulation which should assist the pure audio based
approach. The reason for using only a simulation was, that the real device was not ready at the
time of this thesis and that with a simulation additional errors introduced by real device can be
excluded.

The implementation structure corresponds to the Figure 2.12 in section 2.6.3. This approach
combines the additional video-tracking with the SRP-PHAT algorithm in a sequential manner to
accelerate the localization.

For the simulation the conditional switch depending on the video confidence values was
omitted, because the confidence of the generated data is always known in advance, hence the
switch can be set manually.

During the simulation, the virtual video tracking device generates localization data for each
recording. The data is generated based on the ground truth, which is known for each recorded
experiment. These coordinates are used to generate the search region for the SRP-PHAT
algorithm as shown in Figure 3.3.

In Figure 3.3 an example of a generated region of interest is shown, the two blue regions
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Figure 3.3.: SRP-PHAT Region of Interest constrained by the video face tracking
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correspond to detected faces of the video-tracking. Only these two regions with candidate
points are used in the SRP-PHAT algorithm as search region for possible sound sources. For
clarification, the red points illustrate the complete search region. The point density can be
chosen freely, but it is limited by the minimum detectable delay which in turn depends on the
sampling rate. So, in general a smaller number of points is generated for the region of interest,
as in case of the full search region. Because of the smaller regions, the particle filter has to
be adapted for this configuration. For the smaller regions of interest only a reduced number
of particles is needed to cover the search region. So both, the smaller search region and the
reduced number of particles accelerate the localization process.

Preliminary experiments were conducted and it has been shown, that the limited search
region could accelerate and stabilize the location process. But due to some adaption problems
of the particle filter, no full analysis of the video extension was made. During the time this thesis
took place a parallel work dealt with the real implementation of the video-tracking, so further
studies and results could be found there.

3.4. Experiments and Analysis

Experiments were performed in two different environments. The first studies were done in an
anechoic room, to exclude external interferences and to show that the algorithms work correctly
under ideal conditions. Then the same experiments were repeated in an instrumented office
room. Details of the different environments are given in Table 3.1.

Table 3.1.: Room Configurations

Anechoic Office

Dimensions 4.7m x 3.7 m x 2.84 m 5.41 x 3.48 m x 3.1 m
Noise Level < 30 dBA ≈ 35 - 40 dBA
Reverb. Time RT60 0.08s 0.16s

In order to simulate moving sound sources, the microphone array was mounted on a
turntable rotating in the azimuthal plane. For the elevation adjustment, in the anechoic room,
the first loudspeaker was mounted on a metallic arch in the elevation plane allowing free
adjustment of elevation. The second loudspeaker was mounted on a fixed elevation of 0◦.
In the office environment, both loudspeakers were mounted on tripods adjustable in height,
allowing an elevation adjustment from 0◦ to 45◦.

The same configuration of the microphone array and the loudspeakers was used in both
environments. For this, the array was placed in the room surrounded by the two loudspeakers.
The array position in the anechoic room was exactly in the center of the room. In the office
room an almost centered position was selected. The distance r between the loudspeakers and
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the array was measured for each environment. Both loudspeakers were placed with an angular
distance of 135◦ in the azimuth plane. This basic configuration is depicted in Figure 3.4.

x

y

Microphone array
LS1

LS2

135◦

r

Figure 3.4.: Microphone array and Loudspeaker Configuration

With this setup, recordings with one or two simultaneously active sound sources were
performed. First, three different speakers were played one after the other through loudspeaker
LS1 for five azimuth values (0◦, 45◦, 90◦, 135◦, 180◦). Then, during the turntable rotates,
the same speakers were recorded again. The rotation between two azimuth values should
simulate moving sound sources.

Similar recordings were performed for two simultaneously played sound files. This should
simulate two competing sound sources. On each loudspeaker (LS1 and LS2) consecutively
four different voice recordings were played. This is also repeated for five azimuth positions.
The second loudspeaker (LS2) is always shifted by 135◦ in the azimuth plane. Besides these
stationary recordings, also recordings while the turntable rotates are made. Again, as with one
single source, the turntable rotates a specific angular distance in the azimuthal plane while both
loudspeakers play different sound files.

The last recordings which were made using again both loudspeakers playing a simulated
conversation of two speakers. The simulation consists of alternately played short sound sam-
ples (with an overlapping part) as shown in Figure 3.5. Each channel is assigned to one
loudspeaker, which are positioned as described previously (Figure 3.4).

The recordings were repeated again for the five different azimuth values and the constant
angular difference of 135◦ between the two loudspeakers.

As afore mentioned, the whole system should be evaluated in terms of the usability in
conferencing environments. Therefore not only the localization of the azimuth direction is
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Figure 3.5.: Simulated Conversation

Figure 3.6.: Array Setup 1 (A1) Figure 3.7.: Array Setup 2 (A2) Figure 3.8.: Array Setup 3 (A3)

important, but also the accuracy of the detected elevation has to be considered. So, additional
experiments were performed by repeating all above described recordings at three different
elevation levels (0◦, 20◦, 45◦). In the office room, where the loudspeakers were mounted on
tripods, both loudspeakers were set to the same elevation level. In case of the anechoic room,
only one loudspeaker (LS1) was altered in its elevation level, while the second loudspeaker
(LS2) remains at 0◦ elevation.

Furthermore, to evaluate the influence of a planar array (as most commercial available
devices) on the elevation localization accuracy, two more array configurations were studied.
The basic planar circular array is labelled as A1 (Figure 3.6). Figure 3.7 and 3.8 show the
two modifications. In the first modification (A2), one microphone was removed from the circle
of the eight microphones and were placed on top of a spacer directly in the middle of the
array. The second modification (A3) places every second microphone of the previously planar
circular array on its original position on top a spacer. This modification builds a symmetrical vol-
umetric array in contrast to the second modification which is not any more rotational symmetric.

Briefly summarized, three different array configurations were used to perform recordings at
five distinct azimuth positions, each on three different elevation levels. Additionally, moving
sound sources were recorded using the microphone array mounted on a rotating turntable,
again at the three different elevations.

All these recordings were performed using the recording hardware already described in the
previous section, but for clarification consolidated in Table 3.2.
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Table 3.2.: Details of Recording Hardware

Basic Array

Number of microphones 8
Shape of array Circular
Diameter of array 24 cm
Microphone type CMB-6544PF

Recording Hardware

Interface Focusrite Saffire Pro 40
Input Channels 8
Interface Firewire
Preamps build in Focusrite preamps

Recording details

Software Audacity 1.3.13 (Beta)
Operating System Windows XP
Sampling Rate 48 kHz
Bits per sample 16
Format PCM WAV
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In this chapter the previously described experiments were evaluated. For that, quantitative and
qualitative values from all experimental data were calculated and presented. In the conclusion
these results are discussed and the solution for problem statement is evaluated. Finally, in the
last section for still existing deficiencies, potential solutions and future prospects are given.

4.1. Results

For the two parts of this thesis - the localization and the separation - corresponding quality
values were calculated. For the localization process the qualitative accuracy according to the
ground truth and the quantitative detection rate in relation to a specified tolerance range were
determined. On the other hand, for the signal separation process figures like the Signal-to-
Interference Ratios were calculated describing the objective separation quality. Additionally the
subjective auditory impression is briefly described.

All results are expressed in terms of azimuth and elevation of the sources relative to the
microphone array. Degree was used as angular unit instead of radian. All signal-to-interference
ratio values are expressed in decibels [dB].

The qualitative accuracy is given in terms of the average value over all frames with valid
localization data. So only frames where the particle filter deliver valid localization data are
taken into account to compute a qualitative figure for the localization.

In contrast to that, the quantitative analysis of the localization algorithm is more important
for the proposed teleconferencing scenario, because frequent loss of correct tracking causes
bad separation quality. So the localization success rate is given in terms of percent of time in
relation to a given tolerance (it is determined for each time frame of a recording). It can be
calculated for both angular planes - azimuth and elevation. But while generating the results
it has become apparent, that the deviations of the azimuth values correlates with those of
the elevation values. So, for clarification purposes, only the localization success ratio for the
different azimuth positions were denoted.

4.1.1. Localization Results

At first, the localization success rates will be evaluated for all stationary recordings made in
the anechoic room. These results were then compared to the real world recordings made in a
reverberant office environment.

Figure 4.1 shows the mean values for the localization success rates for all recordings with a
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single source made in the anechoic room and Figure 4.2 shows them for the office room. The
mean value is calculated over 45 recordings with about 1000 frames respectively, and for each
array.
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Figure 4.1.: Location Success Rates at given tolerance for a single sound source in the anechoic case.
Each bar corresponds to a different array configuration

It is clearly evident, that the most robust localization is achieved under the ideal conditions
of the anechoic room. But also the results for the reverberant environment are good. A
localization of one single active speaker is in more than 90 percent of time with an accuracy of
2 degrees possible.

After this, the possibility detecting two simultaneous sound sources is evaluated. This test
was done to show that the system is capable to handle crosstalk during conferences. Again,
in the first Graph 4.3 the results for the anechoic environment show that localization of two
competing sound sources is possible. In all cases, one source is localized more robust than
the second one. This can be attributed to the SRP-PHAT localizer, which detects the sound
sources successive according to the energy peaks of the cross-correlation function. Overall,
the results are worse than for one single sound source. The difference between the source
one and two is caused due to the delayed detection of the second source. The first source is
detected after a short delay, then after some frames the second source is localized. This delay,
which counts as false detections, is the main reason for the decreased success rate of the
second source. The qualitative accuracy however is only slightly affected through competing
sound sources.

However, the localization quantity is under the ideal conditions of the anechoic chamber high
enough to deliver great separation results. Slightly weaker are the localization success rates
for the echoic cases. There are only good rates for one source, the second source is localized
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Figure 4.2.: Location Success Rates for a single source in the reverberant office room
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Figure 4.3.: Location Success Rates at a given tolerance of two simultaneously active sound sources
in the anechoic case. Each light blue bar corresponds to the first detected source and the dark blue to
the second
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less robust and the accuracy decreases faster. But these results still suitable for acceptable
separation results. Especially array two (A2) performs well and achieves success rates above
80% with an accuracy of 4 degree.
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Figure 4.4.: Location Success Rates at a given tolerance of two simultaneously active sound sources
in the echoic case. Each light blue bar corresponds to the first detected source and the dark blue to the
second

Taking an overall view, the results show that a localization of the azimuth angle with an
accuracy of 5 degrees is in most cases possible (more than 80 percent for two simultaneously
active sources). It should be noted that the above accuracy is depicted for the azimuth value.
In case of the elevation the following results show that the qualitative accuracy is not always
reached and that it strongly depends on the array type.

As previously, the following figures show first the results of the ideal anechoic chamber, then
the results for office room are shown. In Figure 4.5 the statistical distribution of the measured
absolute elevation values is figured for the three array configurations in case of one single
sound source. The statistical figures take all experiments at the same elevation level with
varying azimuth positions into account. The figure show for each array configuration the results
at three elevation levels, 0◦, 20◦ and 45◦. With the first array (A1), which was the planar circular
array, small angles of incidence can not be detected correctly. Only the highest elevation value
(45◦) was correctly detected. With the volumetric arrays (A2 and A3) the accuracy clearly
increases and the variances are limited. The best values are measured with the Array 3 with a
maximum variance of 4 degree.

Similar results were achieved detecting two simultaneous sources. In Figure 4.6 the statisti-
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Figure 4.5.: Detected elevation for one single source at 0◦, 20◦ and 45◦ (Anechoic Room)

cal analysis for the three arrays in the anechoic room are shown. Each array was tested with
three different source positions. In the first experiment both sources were at 0◦ elevation, in
the second and third, one source was set to 20◦ or 45◦ the other one remains on 0◦. It can be
seen, that the accuracy slightly decreases as compared to one single sound source. But the
results of Array 2 and 3 are adequate enough for the separation process.
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Figure 4.6.: Detected elevation values for two simultaneously played sources played in the anechoic
room (ground truth: first source always at 0◦ the second at 0◦, 20◦ and 45◦)

In the following, these results are again compared to the real world studies. Figure 4.7
shows the results for one single active source at three different elevation levels (0◦, 20◦ and
45◦) and Figure 4.8 depicts a similar study with two simultaneously active sound sources. The
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accuracy is in relation to the anechoic case slightly decreased and the values are a little bit
more distributed. Together with the azimuth errors these slightly decreased accuracy in the
echoic case affects the separation quality, which can be seen by the results of the separation
quality analysis.
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Figure 4.7.: Detected elevation for one single source at 0◦, 20◦ and 45◦ (Anechoic Room)

Finally, with the above results it can be said, that a robust audio source localization with an
adequate accuracy is possible. It is evident, that the various arrays perform differently and
that the planar configuration of Array 1 suffers from low detection rates at the elevation plane.
The volumetric arrays perform in both dimensions quite well. Altogether, Array 2 seems to
be the best configuration delivering the best localization success rates and a high qualitative
accuracy. To resolve the question if these results are also applicable to a teleconferencing
scenario, additional experiments were performed. The interesting facts are the possibility to
detect moving sources, the dynamic detection of various speakers, and the speed of the local-
izing process. Due to the realistic recording scenario, it was too difficult determining an exact
ground truth for the automatic analysis of all recordings. Therefore the recordings with moving
sound sources and dialogue simulations were exemplarily analysed. The results should show
that these cases were considered through the proposed system.

At first, rotating sources were considered. As it was impossible to simulate realistically a
moving human speaker, a moving sound source was simulated through the rotation of the
microphone array. Therefore, the array was placed on a turntable which then rotates slowly a
specific angular distance while one or two sound sources were recorded. For the echoic case,
Figure 4.9 shows the results of an experiment with two simultaneously active sources while the
array rotates 90 degrees. The grey dotted line indicates the ground truth. Similar results were
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Figure 4.8.: Detected elevation values for two simultaneously played sources in the office room (ground
truth: both sources were set to 0◦, 20◦ and finally to 45◦)

achieved at different elevations, angles and rotation speeds. More robust results were achieved
in the anechoic chamber or with single sound sources.

It can be seen, that the localizer is able to track moving sound sources. The accuracy of
this tracking is accordingly to the stationary measurements. The robustness of the localization
is slightly decreased (it should be denoted, that additional noise is induced by the turntable).
Single sources are tracked robustly, but similar to the stationary cases above, the second
competing source is detected after several time frames. For appropriate operation of the
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Figure 4.9.: Tracked azimuth values for two simultaneously active sound sources moving from 0◦ to 45◦

and from 135◦ to 180◦ (grey dots depict the ground truth)

conferencing device these delays are problematic because during that time, the separation
process do not get localization data and is not able to separate the competing speakers.
Therefore additional investigations are performed to determine the time which is needed to
detect simultaneously active speakers during a conference.

The afore mentioned simulated dialogue recordings can be used to study the performance
of the system during overlapping speech. As it can be seen in Figure 4.10 two overlapping
parts occur during the simulation. In the ideal case a first tracked location can be delivered
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after a minimum time of three frames (equal to 64 ms at a sampling frequency of 48000 kHz
and a frame length of 1024 samples). Manual analysis of several tracking results reveal a de-
lay between 3 and 7 frames using real recordings of the anechoic room. Overlapping speech
extends this delay up to 10 frames. In Figure 4.11, another dialogue simulation with extended
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Figure 4.10.: Tracked azimuth values for the dialogue simulation recorded in the anechoic chamber (in
the background the original waveforms are displayed)

overlapping parts were recorded in the office environment. Due to the strong reverberation and
other room effects, the localization delay increases to 37 frames (about 0.75 s). But the de-
tection robustness and accuracy performs well in these dialogue situations, the false detection
rate remains limited and the accuracy is similar to the results above. Further investigations
on additional recordings have shown corresponding results. This means for the use in a tele-
conferencing scenario, that overlapping parts below one second can not detected perfectly,
but compared to a system without such localization and separation techniques this is a great
improvement.

4.1.2. Separation Quality

With the localization results above the recordings were separated using the proposed Geomet-
ric Source Separation (GSS) algorithm. In case of one single active source, the separation
process is used to perform dereverberation and noise cancellation. In situation with two si-
multaneously active speakers the GSS algorithm separates the signals according to the given
coordinates. In accordance with the BSS EVAL toolbox, the Signal to Distortion Ratio (SDR),
Signal to Interference Ratio (SIR) and the Signal to Artifacts Ratio (SAR) are computed to eval-
uate the separation performance. To take the effects of a real test environment into account,
the BSS EVAL toolbox [50] is enhanced by a gain-shift decomposition function, which allows a
gain factor and a time-shift of the original signal. The BSS EVAL toolbox calculates with this
decomposition function a target signal, an interference signal and an artefacts signal using a
certain ground truth. This ground truth determines mainly the results and therefore must be
selected carefully. For this reason, two references were selected. Firstly, the original played
sound file was used, so the results contain all effects starting with the audio interface, and the
room effects, and finally the separation process. In the second case, it was tried to neglect
room effects and recording hardware imperfections. Therefore, for each ground truth signal a
recording with only one simultaneously active speaker were separated with the GSS algorithm,
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Figure 4.11.: Tracked azimuth values for the dialogue simulation recorded the office environment (in the
background the original waveforms are displayed)

delivering a signal which was used to compare only the pure separation quality of two com-
peting sound sources. With these ground truth signals the decomposition function creates the
interference signals which are compared to the target signal. The results are the three different
ratios – SDR, SIR and SAR – which can be used to evaluate the separation quality according
to the specific ground truth signals.

Because of the circumstance that each recording was acquired manually, the start and end
points of each recording vary widely. Therefore, the automatic time-shift compensation of the
enhanced BSS EVAL toolbox was not able to compensate them. This has prevented a broad
evaluation of all experiments. So, each recording has to be manually time aligned and eval-
uated, which was done for six recordings of each environment. Nevertheless, the results still
depend on the correct alignment, which could not ideally achieved by hand. So the results
must be interpreted with caution. In Table 4.1 the ground truth was set to the original sound
file which was previously used for the recordings. Then, Table 4.2 show the different ratios for
the anechoic case and the reverberant office room in relation to the individual recorded and
separated signal.

Table 4.1.: Separation quality in relation to the original sound file

Anechoic Room Office Room

SDR SIR SAR SDR SIR SAR

Source 1 -5.8628 21.1287 -5.7378 -13.2820 15.8023 -13.0311
Source 2 -6.7627 27.9194 -6.7520 -10.2631 27.5823 -10.2072
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Table 4.2.: Separation quality in relation to the individual recorded speakers

Anechoic Room Office Room

SDR SIR SAR SDR SIR SAR

Source 1 7.2185 39.8634 7.2480 -1.7768 29.2546 -1.7453
Source 2 9.7685 40.8791 9.7807 -5.8601 20.9444 -5.6647

The Signal to Interference Ratio values are quite good for the anechoic chamber as well as
for the office room. Generally, the results of the anechoic environment can be seen as the ideal
case and the SDR and SAR values are compared to other separation methods fair enough [50].
During the analysis, it has become apparent that the these performance figures are not suitable
evaluating dialogue recordings. The influence of different starting points of each speaker in the
recordings and the original sound files degenerate these values enormously. So further eval-
uations with more suitable recordings has to be done. But the subjective auditory impression
was quite good and in case of single sources the dereverberation and noise reduction were
audible. Further subjective evaluation and studies were not performed within this thesis.

4.2. Conclusion and Future Work

The goal of this thesis was to study and evaluate localization and separation technologies for
immersive teleconferencing systems. All experiments and analyses of the previous chapters
have yielded the following conclusions:

• Based on the shape of commercial conferencing solutions, a circular planar array con-
sisting of eight microphone were selected as basis array configuration. Then two mod-
ifications of this shape were designed. During the experimental phase of this thesis all
three types were tested equally resulting in the clear statement, that the planar array
achieves weak localization accuracy in both angular directions. In contrast to that, both
volumetric arrays detect both azimuth and elevation in an optimal manner. So in an inno-
vative teleconferencing system, the recording device must consist of a volumetric array
like the proposed configuration of Array 2.

• With a suitable array configuration a dynamic localization of various speakers is possi-
ble. The localization also works for more than two simultaneously active speakers. In the
anechoic chamber, nearly perfect localization results were achieved using the proposed
SRP-PHAT localizer. In previous works [46] already a live application using a fast imple-
mentation of a SRP-PHAT localizer was proposed. So, such a localizer can be used for
an immersive conferencing solution.

• The localizer gains its robustness through the combination with a particle filter. Such a
probabilistic temporal integration of the raw localization data is necessary for a robust
localization in echoic environments. Only with this temporal filtering the detection of mul-
tiple sources and the dynamic detection of dialogues with vanishing sources is possible.
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In addition the particle filter could be used for future extensions improving the detection
quality.

• For the processing of the multiple inputs of the microphone array a Geometric Source
Separation (GSS) algorithm was used. This enables separative recording of multiple
speakers, and additionally through its directional characteristic echo and interferences
were eliminated to a certain degree. So, during situations with multiple competing speak-
ers this allows a better intelligibility and additional post-processing could be applied on
each speech signal.

As can be seen the results of the thesis are numerous and substantial. Although the results
have covered many aspects of direction finding and separation, there are areas that require
further research. Additional post-filtering and a parameter estimation for the SRP-PHAT lo-
calizer show promise for improved results. Outside of the ideal conditions of the anechoic
environment, the GSS approach produces still audible crosstalk which could be further sup-
pressed through multichannel post-filtering [9]. Also the dereverberation performance could
be increased through additional multichannel acoustic echo cancellation [4]. But all these
enhancing filtering stages have to be evaluated in relation to resource expenses and induced
delays. All techniques used this thesis could be implemented as a fast near real-time system
(corresponding approaches were proposed in [47, 46]).

During the experiments it was found, that an adaption of the SRP-PHAT parameters be-
tween the echoic and anechoic achieves great accuracy improvements. Although a single
parameter set of the SRP-PHAT algorithm is applicable to various environments, a fine-tuned
parameter set could lead to optimal localization results. Therefore a parameter database for
various environments would be useful. Also a self-calibrating parameter estimation using short
autonomously initial measurements is imaginable.

A last, already discussed briefly, extension of the system would be an active generation and
limitation of the region of interest. The proposed localizer uses generally a default region of
interest, therefore an adaptive or video-based limitation of this search region would accelerate
the detection and reduces false-detections.

It’s worth emphasizing one more time that a new generation of immersive teleconferenc-
ing devices are possible. The results of this thesis show that recording devices with en-
hanced features like localization can improve the speech quality far more than conventional
post-processing techniques improving the signal-to-noise ratio.
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A.1. Audio Processing Parameters

Table A.1.: Parameters of audio processing

General Audio Processing Parameters

Sampling frequency 48 kHz
FFT length 1024
Window overlap 512
Window type Hamming

SRP-PHAT Parameters

Number of assumed sources 2
Search region Hemisphere
Number of candidate coordinates 1861

Particle Filter Parameters

Number of Particle Clouds 2
Number of Particles 800
Minimum number of frames to count a source as existing 5
Maximum number of frames while the source has not been
tracked in order to delete it 30

Geometric Source Separation Parameters

FFT length 1024
Window overlap 512
Initial separation matrix Zeros
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A.2. MATLAB Functions

A digital copy of the Matlab source code is provided alongside the thesis. The attached DVD
contains the following MATLAB functions:

[analysis_and_plot_functions\]

dialog_1_all_locs_pf.mat Localization data used for Figure 4.10
dialog_1.wav Wave file used for Figure 4.10
plot_figure_4_10.m Plot function for Figure 4.10
part_3_array_2_for_figure_4_11.wav Localization data used for Figure 4.11
part_3_all_locs_pf_for_figure_4_11.mat Wave file used for Figure 4.11
plot_figure_4_11.m Plot function for Figure 4.11
figure_4_5.m Plot function for Figure 4.5
figure_4_9.m Plot function for Figure 4.9
plot_loc_results.m Plots directly the output of the localization algo-

rithm
sdr_sir_sar_dir_analysis.m Performs the SDR/SAR/SIR analysis using the

BSS evaluation toolbox and calculates the
results of Table 4.1 tab:sep_qual2 and 4.2
tab:sep_qual1

recorded_single_speakers_after_sep.mat Reference data for the SDR/SAR/SIR calcula-
tion (single speakers after the separation pro-
cess recorded in the anechoic room)

recorded_single_speakers_org.mat Reference data for the SDR/SAR/SIR calcula-
tion (original recordings of each speaker)

recorded_single_speakers_z940.mat Reference data for the SDR/SAR/SIR calcula-
tion (single speakers after the separation pro-
cess recorded in the echoic environment)

loc_results_comp.m Compares and plots the azimuth values for the
given files and localizer results according to the
ground truth

loc_results_comp_single.m Compares and plots the azimuth values for a
single file according to the ground truth

loc_results_comp_elev.m Compares and plots the elevation values for the
given files and localizer results according to the
ground truth

loc_results_comp_elev2.m Enhanced version of the
’loc_results_comp_elev.m’ function, room
type and manual elevation value can be
specified

plot_all_locs_pf.m Plots the raw localization data
plot_all_locs_pf_sig.m Plots the raw localization data and additionally

the waveform of the recorded signal
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[BSS_eval_toolbox\]

bss_eval_SiSec2008.m Calculates the SDR/SIR/SAR values to given
reference signals

[localization_and_separation\]

srp_phat_pf.m SRP-PHAT localizer and particle filter
process_data.m Separates the given sound file for pre-

calculated localization results and a specified
array configuration

gss_sep.m Geometric Source Separation implementation
process_data_dir.m Separates all recordings of a given folder using

pre-calculated coordinates
analyze_data.m Performs the SRP-PHAT localization on full

recording sets
process_data_file.m Performs localization and separation on a given

file for a specified microphone array configura-
tion

create_region_of_interest_video.m Creates the region of interest for the SRP-PHAT
localizer in case of video assisted localization
(uses simulated video coordinates)

analyze_data_video.m Performs the SRP-PHAT localization on full
recording sets additionally using the video
tracking simulation

mics_array_1.mat Configuration data for the circular microphone
array A1

mics_array_2.mat Configuration data for the circular microphone
array A2

mics_array_3.mat Configuration data for the circular microphone
array A3

mics_array_2_hamza.mat Configuration data for the circular microphone
array A2 (used in the experiments)

mics_array_3_hamza.mat Configuration data for the circular microphone
array A3 (used in the experiments)

create_region_of_interest.m Creates the region of interest for the SRP-PHAT
localizer for given fixed coordinates

create_half_sphere.m Creates the default hemisphere shaped search
region for the SRP-PHAT localizer

apply_gain_dir.m Applies the calculated gain factors on the
recordings

calc_gains.m Calculates the gain factors for the given noise
measurements

apply_gain.m Applies the calculated gain factors on a single
recording
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inv_st_fft.m Inverses the Short Time Fourier Transformation
short_time_fft.m Performs the Short Time Fourier Transforma-

tion
fillup_mirrored_complex_conjugate.m Completes the second half of a complex spec-

trum
maxfilt1D.m Maximum filter (for one dimension)
maxfilt1.m Maximum filter
delays.m Pre-calculates all delays between the points of

the search region and the microphones
multictransp.m Transposing arrays of complex matrices
multitransp.m Transposing arrays of matrices
randomVector.m Generates a 3D random vector
linframe.m Generates a matrix with column number equal

to the frame-size and rows according to the
length of the input signal

linunframe.m Recompose frames back to a signal
gen_window.m Genrates a Hamming Window of a specified

length
create_sphere.m Creates full spherical search region for the

SRP-PHAT localizer
coord.txt Pre-calculated sphere coordinates
multiprod.m Multiplying 1-D or 2-D subarrays contained in

two N-D arrays

[miscellaneous\]

directivity_pattern_tutorial_disc.m Plots a directivity pattern for a discrete aperture
directivity_pattern_tutorial_cont.m Plots a directivity pattern for a continuous aper-

ture
beam_pattern3D_circular_array.m Plots a 3D beam pattern for a circular array
directivity_pattern3D_tutorial_disc.m Plots a 3D beam pattern for a discrete array
plot_directivity_pattern.m Plots a directivity pattern for a discrete linear

array
dsbeam.m Performs simple delay-and-sum beamforming

for a specific input signal
beam_pattern_circular_array.m Plots a beam pattern for a circular array
directivity_pattern_circular_array.m Plots a directivity pattern for a circular array
uniform_lin_array_polar_plot.m Polar plot of a linear uniform array
plot_directivitiy_pattern_3D.m Plots a 3D directivity pattern for a discrete linear

array
beampattern.m Plots a beam pattern for a discrete linear array
mmpolar.m Polar Plot with Settable Properties
polar3d.m Plots a 3D polar surface
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A.3. DVD Content

The attached DVD contains besides the MATLAB functions described in the previous section,
also the complete datasets which were used for creating the figures and tables within this
thesis.

For the two different experiments, the data is clearly structured within the both Excel files:

• dataset_anechoic.xlsx

• dataset_office.xlsx

Furthermore, the complete papers stated in the bibliography are provided digitally (All rights
remain with the publisher).

67



A. Appendix

A.4. Microphone Capsule Data Sheet

page

date

DESCRIPTION:  electret condenser microphone

1 of 4

06/2008

20050 SW 112th Ave. Tualatin, Oregon 97062   phonephone 503.612.2300  faxfax 503.612.2383   

PART NUMBER:  CMB-6544PF

SPECIFICATIONS

directivity omnidirectional

sensitivity (S) -44 ±3 db f = 1KHz, 1Pa   0dB = 1V/Pa

sensitivity reduction (ΔS-Vs) -3 dB f = 1KHz, 1Pa   Vs = 4.5 ~ 1.5 V dc

operating voltage 4.5 V dc (standard), 10 V dc (max.)

output impedance (Zout) 1 KΩ f = 1KHz, 1Pa

operating frequency (f) 20 ~ 20,000 Hz

current consumption (IDSS) 0.5 mA max. Vs = 4.5 V dc  RL = 1KΩ
signal to noise ratio (S/N) 60 dBA f = 1KHz, 1Pa  A-weighted

operating temperature -20 ~ +70° C

storage temperature -20 ~ +70° C

dimensions ø9.4 x 6.5 mm

weight 0.7 g max.

material Al

terminal pin type (hand soldering only)

RoHS yes

note: We use the “Pascal (Pa)” indication of sensitivity as per the recomendation of I.E.C. (International 

Electrotechnical Commission).  The sensitivity of “Pa” will increase 20dB compared to the “ubar” 

indication.  Example: -60dB (0dB = 1V/ubar) = -40dB (1V/Pa)

APPEARANCE DRAWING

2.54 0.3

terminal 1

terminal 2

5.0
(2 PLCS)6.5 0.2 1.0

0.29.4

0.4 0.1
(2 PLCS)

tolerances not shown: ±0.3mm
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A.4. Microphone Capsule Data Sheet

page

date

DESCRIPTION:  electret condenser microphone

2 of 4

06/2008

20050 SW 112th Ave. Tualatin, Oregon 97062   phonephone 503.612.2300  faxfax 503.612.2383   

PART NUMBER:  CMB-6544PF

MEASUREMENT CIRCUIT

FREQUENCY RESPONSE CURVE
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List of Acronyms

DSB delay-and-sum beamformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

TDOA Time Delay of Arrival . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

MUSIC MUltiple SIgnal Classification

SRP Steered Response Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30

HRTF Head Related Transfer Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

RIR Room Impulse Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

GJBF Griffiths-Jim beamformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

BSS Blind Source Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

GSS Geometric Source Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

GCC Generalized Cross-Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

PCA Principle Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

DOA Direction of Arrival . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34

pdf probability density function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35

MCRA Minima-Controlled Recursive Average . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

SDR Signal to Distortion Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

SIR Signal to Interference Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

SAR Signal to Artifacts Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60

VoIP Voice-over-IP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
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