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Abstract

In this thesis, a combined blind source separation (BSS) and speaker recognition approach
for teleconferences is studied. By using a microphone array, consisting of eight micro-
phones, different methods to perform overdetermined independent vector analysis (IVA)
are compared. One method is to select a subset of microphones or all available micro-
phones to perform IVA. The second method, the so called subspace method, that utilizes
a principal component analysis (PCA) for dimensionality reduction, is applied prior to IVA.

For the evaluation of IVA, the BSS Eval toolbox is used to calculate the source to dis-
tortion ratio (SDR), the source to interferences ratio (SIR) and the source to artifacts ratio
(SAR), that indicate the quality of the separation.

The speaker recognition system is based on Gaussian mixture models (GMMs), that
are trained on the mel frequency cepstral coefficients (MFCCs) of each speaker. The
performance of the speaker recognition is measured by the diarization error rate (DER).

The evaluation results of the speaker recognition show, that a combined BSS and
speaker recognition can increase the performance of the speaker recognition system. For
the case of two simultaneously active speakers, the rate of detecting both speakers cor-
rectly could be improved from 0% without separation to 66% with separation in an anechoic
room. For an echoic office room 57% could be achieved.
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1. Introduction

In times of global networking, teleconferencing gets more and more important. Using tele-
conferencing systems saves a lot of time and traveling expenses. Today’s teleconferenc-
ing systems can provide a high quality of the transmitted sound, recorded in conferencing
rooms, but high quality alone is not sufficient for the requirements of future teleconferenc-
ing systems.

A major problem in teleconferencing is, when more people in one room are talking at the
same time. In real situations a listener can easily distinguish between two simultaneously
talking speakers and bring the speaker of interest into his focus. This ability of humans
is called the cocktail party effect [4]. In the scenario of a teleconference, where the utter-
ances of several speakers are mixed together in one audio channel, it is no longer as easy
as before to distinguish between two speakers, because the listener has no geometrical
information about the positions of the speakers. In long-lasting conferences this can be
very annoying and destructive for the flow of a conversation. So it would be great to have
for every speaker a separate channel, which contains only parts belonging to his voice.
For this purpose, source separation can be used.

When we have obtained separated signals, containing only utterances of one speaker
in each channel, we can apply these signals to a speaker recognition, to find out at what
time which speaker was active.

1.1. Motivation

There are many possible ways to solve the problem of source separation and speaker
recognition [4]. Most of the algorithms, solving this problem, perform well and are also
able to work online (that means in real time). This is very important for a teleconferencing
system, because too long delays due to long computation times decrease the performance
of the system. Thus, in most cases there has to be made a compromise between quality
and computational complexity.

Although a low computational complexity is important, in this thesis we focus mainly on
the quality and assume that there is enough computer performance to perform the calcu-
lations in real time. The reason for this approach is that we want to study, what separation
results and speaker recognition results can be achieved, if there are no constraints regard-
ing the computation time. This can be used for the future, when more powerful computers
are available, or if we want want to analyze a recording of a meeting offline, where the
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1. Introduction

computation time is not an issue. It would be very interesting to see, how the performance
of a speaker recognition can be influenced by increased separation results.

Furthermore, in most cases of the source separation, there are only as much micro-
phones used as there are speakers. This is called the determined case. However, in
this work a microphone array is utilized, that consists of eight microphones, which are ar-
ranged circularly. So in this case we have more microphones than speakers, because it is
very unlikely that eight persons at a conference are talking at the same time. This case is
called the overdetermined case. By using more microphones for the source separation as
needed, we get some redundancy. With this redundancy we might be able to improve the
separation results, if we find a suitable way to use this redundancy.

1.2. Objectives

The objective of this thesis is to perform a blind source separation and apply a speaker
recognition to the separated signals. In the following, an overview of the objectives of this
thesis is given.

Since here, the scenario of a conference is assumed, a circular microphone array, con-
taining eight microphones is used to record the participants of the conference.

For the case that multiple speakers are talking at the same time, blind source separation
(BSS) is applied to separate the utterances of the different speakers. For blind source
separation, the method of independent vector analysis (IVA) [17] is utilized.

To the separated signals, a speaker recognition is applied, in order to identify the current
speakers and to assign each separated channel to a speaker.

Figure 1.1 shows an overview of the system, that is intended for this thesis. The system
can be divided into three components. These three components are the microphone array,
the BSS and the speaker recognition.

The aim of this thesis is, to find out, how these components can be connected, to obtain
good source separation results as well as good speaker recognition results.

Figure 1.1.: System overview

Here, eight microphones are used, for recording conferences, which is much more than
needed. We spend some redundancy, in order to yield a good source separation. For this

8



1.3. Previous Work

overdetermined case, a solution has to be found, how the best separation results can be
achieved.

It also has to be determined, how to connect the blind source separation with the speaker
recognition, in order to get a good recognition rate.

Recordings in different acoustical environments have to be made for the evaluation of
the source separation and for the evaluation of the speaker recognition. Here, recordings
in an anechoic room and an echoic office room have to be made.

All components of this system are implemented in Matlab. There are already implemen-
tations available for performing IVA [8] and speaker recognition [14], that are used as basis
for this thesis.

1.3. Previous Work

At the Institute for Data Processing, there has already been done a lot of work on top-
ics, that are relevant for this thesis. Matlab implementations exist for source separation
and speaker recognition. Also a microphone array, containing eight microphones, already
exists. Therefore, a lot of these things can be used in this thesis and do not have to be
developed completely. This makes it possible to cover both blind source separation and
speaker recognition in one thesis.

The following theses are relevant for this thesis:

• Christian Denk, Robotic sound source separation using independent vector
analysis [8]: In this work a BSS algorithm, called independent vector analysis (IVA)
has been implemented, which will be used in this thesis for performing source sep-
aration.

• Christoph Kozielski, Online speaker recognition for teleconferencing systems
[14]: In this thesis a speaker recognition system has been implemented. This imple-
mentation will be our basis for performing speaker recognition in this thesis.

• Johannes Feldmaier, Sound localization and separation for teleconferencing
systems [9]: In this thesis a source localization and separation system, using beam-
forming and geometric source separation (GSS) has been developed. A microphone
array, containing eight microphones, has also been used. In this thesis, the same
microphone array will be used for recording speech.

1.4. Related Work

Only very little work on speaker recognition or diarization systems for overlapping speech
can be found in the literature, especially for the case of a combined blind source separation
and speaker recognition. Most state-of-the-art speaker recognition systems assign only
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1. Introduction

one speaker to each speech segment. But for conferences, where two speakers may talk
at the same time, these overlaps also have to be detected by the recognition system.

In [1], several possibilities are shown to perform speaker recognition in conference sce-
narios. The simplest case is to place a table-top microphone in front of each speaker or use
close talking microphones. So, each speaker has one individual channel and single chan-
nel speaker recognition can be applied to each microphone channel. The advantage of
close talking microphones is that the recorded speech signals have a high signal-to-noise
ratio. For table-top microphones, the performance can be increased by noise reduction or
echo cancellation techniques. One drawback of these two methods is, that cross-talk from
one speaker to another speaker’s microphone can occur and decrease the performance of
the recognition system. The third method is the use of a microphone array and the applica-
tion of beamforming techniques. This makes it possible to focus on the sources of interest
and enhance its signals by filtering and combining the different microphone signals.

A beamforming approach for the detection of multiple speakers during a conference is
also proposed in [19]. In this approach, a steered response power - phase transform (SRP-
PHAT) localization is combined with a particle filter and a geometric source separation
(GSS). The particle filter increases the stability of the localization. The signals, separated
by the geometric source separation, are then fed to a speaker recognition.

One approach for detecting overlapping speech, without applying a source separation,
is shown in [5]. For the detection of overlapping speech, an overlap detection system
is used, that utilized a HMM-based segmenter. The segmenter distinguishes the three
classes nonspeech, speech and overlapping speech. When a speech segment has been
detected as overlapping speech, the segment is associated with the two most probable
speakers. This system can detect maximal two speakers at one time.

In [10], an approach that combines standard acoustic features with compressed-domain
video features is proposed to improve the performance of the speaker recognition.

An approach, combining blind source separation with a speaker recognition, like the
one in this thesis, was not found during my research. The main difference to the ap-
proaches that utilize beamforming is, that by applying blind source separation to the mix-
tures, recorded by a microphone array, no source localization is needed. Also no knowl-
edge about the microphone positions is needed for the separation.

1.5. Outlook

This thesis consists of five chapters. In Chapter 2 the theoretical background, that is
necessary to understand BSS and speaker recognition, is presented. Chapter 3 deals
with the application and optimization of independent vector analysis for the overdetermined
case. In Chapter 4 the source separation is connected with the speaker recognition. And
finally, chapter 5 will summarize all important facts, that have been obtained in this thesis
and give some suggestions for future work.
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2. Background

In this chapter the theoretical background which is essential for source separation and
speaker recognition is introduced. This should give a short overview of the problems and
show how to solve them.

2.1. Source Separation

2.1.1. Overview

Source separation deals with the problem of separating sources out of a mixture of
sources. In our case the sources are audio signals recorded by microphones. These
audio signals in general are utterances of speakers. When more people are speaking
simultaneously in an acoustic environment, a mixture of all speakers’ signals and noise
from other sources arrive at the microphone. For humans, it is no problem to distinguish
between different speakers if they listen to a person who is standing next to them, although
the environment is very loud and many people are talking at the same time. We are able to
focus on the person, we want to listen to, and mask out other speakers. This phenomenon
is called the cocktail party effect [4]. If we listen to a mono signal, recorded in such a
situation, it is not as easy as before for humans to understand the speaker of interest.
So we can call the problem of separating sound sources also a cocktail party problem in
this case. For solving this problem, microphone arrays in combination with source separa-
tion methods can be used. There are different approaches to recover the original source
signals:

• Beamforming: Beamforming can be seen as a multidimensional filter in space and
time that uses multiple microphones. The microphone signals are delayed and fil-
tered in order to enhance the signals arriving from the source position. This can be
seen as a virtual microphone or a beam that is focused on the source. Thus it is
called beamforming. More details about beamforming can be found in [9].

• Blind source separation: Blind source separation (BSS) exploits only the statistical
characteristics of the signals which have to be separated. In the case of speech
signals we can also use the expression Blind Speech Separation.

• Geometric source separation: Geometric source separation (GSS) combines
beamforming with blind source separation (BSS) in order to exploit the advantages
of both methods. This method is also explained in detail in [9].
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2. Background

Of course there are much more approaches to perform source separation. But these
three methods are the most common methods when using microphone arrays for source
separation and these methods have also been investigated at the Institute for Data Pro-
cessing in previous theses (see [9, 8]). Since in this thesis only blind source separation is
treated, only BSS methods are explained in more detail in the following sections.

2.1.2. Blind Source Separation

The task of blind source separation (BSS) is the recovering of source signals out of a mix-
ture of different sources without having any prior information about the source signals and
the mixing process [17, 4]. For the separation only the mixtures recorded by microphones
are available. The sources and the mixing process are assumed to be unknown. Thus the
separation is called "blind".

It is assumed that speech signals originating from different talkers at different spatial
locations are statistically independent. Thus BSS algorithms try to maximize the statistical
independence of the output signals [17].

First of all, let’s make some definitions about the source signals, the microphone signals
and the noise signals. We assume that there are N different source signals si(t) with
source index i = 1, . . . ,N and time index t. We can write this source signals as a vector

s(t) = (s1(t),s2(t), . . . ,sN(t))
T . (2.1)

The observed microphone signals x j(t) with microphone index j = 1, . . . ,M, where M is
the number of microphones, can be written in vector notation as

x(t) = (x1(t),x2(t), . . . ,xM(t))T . (2.2)

The noise signals n j(t) can be formulated as vector

n(t) = (n1(t),n2(t), . . . ,nM(t))T . (2.3)

When different sources in a room are active simultaneously, the signals arriving at each
microphone are a mixture of the sources. There are different ways how the signals can
be mixed together. In general we can distinguish between two main mixture models, the
instantaneous mixture model and the convolutive mixture model.

Instantaneous Mixture Model: This is the simplest case of a mixing process. In this
case we have a linear time-invariant mixing system where all signals arrive at the micro-
phones at the same time, weighted by a factor a ji plus some additive noise n(t) [17]. Thus
each observed microphone signal x j(t) is generated by

x j(t) =
N

∑
i=1

a ji · si(t)+n j(t). (2.4)
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2.1. Source Separation

In matrix notation we can express equation (2.4) in the following way:
x1(t)
x2(t)

...
xM(t)

=


a11 a12 . . . a1N

a21 a22 . . . a2N
...

...
. . .

...
aM1 aM2 . . . aMN

 ·


s1(t)
s2(t)

...
sN(t)

+


n1(t)
n2(t)

...
nM(t)

 . (2.5)

The factors a ji can be summarized to a mixing matrix A with dimension M×N:

x(t) = A · s(t)+n(t). (2.6)

Due to reflections and differences in the propagation time of the sound waves, the in-
stantaneous mixture model cannot be used for real acoustic environments [17]. Thus, for
describing the mixing process, we need to use a model which also takes time delays into
account. For this purpose we can use the convolutive mixture model.

Convolutive Mixture Model: Due to propagation time and reflections, many delayed and
differently weighted versions of the original source signal s(t) arrive at the microphones.
Thus an instantaneous mixture model does not hold for acoustic mixtures.

For acoustic mixtures, the mixing can be described by [17, 7]

x j(t) =
∞

∑
l=−∞

N

∑
i=1

a ji(l) · si(t− l)+n(t) = (2.7)

=
N

∑
i=1

a ji(t)∗ si(t)+n j(t), (2.8)

where l is the delay. This mixture model is called convolutive mixture model [18]. In matrix
notation we can write equation (2.8) as

x1(t)
x2(t)

...
xM(t)

=


a11(t) a12(t) . . . a1N(t)
a21(t) a22(t) . . . a2N(t)

...
...

. . .
...

aM1(t) aM2(t) . . . aMN(t)

∗


s1(t)
s2(t)

...
sN(t)

+


n1(t)
n2(t)

...
nM(t)

 . (2.9)

So we get the equation
x(t) = A(t)∗ s(t)+n(t). (2.10)

It should be noted, that the noise signal n(t) is omitted in many separation algorithms,
but for the sake of completeness, it is mentioned here.
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2. Background

Independent Component Analysis (ICA): An often used method to perform blind
source separation is independent component analysis (ICA). As the name suggests, ICA
tries to separate the sources by finding independent output signals. It is assumed that the
different sources si are statistically independent so that [13]

p(s1,s2, . . . ,sN) = p1(s1) · p2(s2) · . . . · pN(sN), (2.11)

where p(·) is the probability density function (PDF).
Therefore ICA tries to estimate a separation matrix W that makes the output signals

as independent as possible [16]. In the ideal case the separation matrix W is the inverse
of the mixing matrix A, which has been used to describe the instantaneous mixing pro-
cess in Equation (2.6). For the case, that the number of sources equals the number of
microphones1, this can be written as

W = A−1. (2.12)

So the estimated source signals ŝ(t) = (ŝ1(t), . . . , ŝN(t))T can be calculated by

ŝ(t) = W ·x(t) = A−1 ·x(t). (2.13)

Since ICA was designed for instantaneous mixtures, ICA cannot be deployed directly to
separate audio mixtures, which are described by the convolutive mixture model. But there
is a good solution to circumvent this problem. If we transform the recorded signals from
time to frequency domain, the mixture becomes instantaneous, because a convolution in
the time domain becomes a multiplication in the frequency domain [4]. If we apply a Fourier
transform to the convolutive mixture model, as defined in Equation (2.10), we get

X(ω) = A(ω) ·S(ω)+N(ω). (2.14)

Now the convolutive mixture has become an instantaneous mixture in frequency domain
and we can apply ICA. This can be seen by comparing it to Equation (2.6). We can now
estimate the source signals by finding a separation matrix W(ω), for every frequency
ω = 2π f , that is the inverse of the mixing matrix A(ω) in the frequency domain:

W(ω) = A−1(ω). (2.15)

Under the assumption that there is no noise, we obtain the estimated source signals
Ŝ(ω) = (Ŝ1(ω), . . . , ŜN(ω))T by the following equation:

Ŝ(ω) = W(ω) ·X(ω) = A−1(ω) ·X(ω). (2.16)

As speech is non-stationary, a short-time Fourier transform (STFT) should be applied
under the assumption that the signals are stationary in short blocks [8]. In [8], it is sug-
gested to weight a signal x(n), where n is the number of the current sample, by a cosine
window

w(n) =
{

0 |n|> L
cos(n) |n| ≤ L

(2.17)

1Otherwise, instead of the inverse, the pseudo inverse has to be caluculated
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2.1. Source Separation

with a window length of L samples. The windowed signals xw,i(n), with window index i,
can then be calculated by

xw,i(n) = x(n) ·w(n− i ·S), (2.18)

where S < L is the overlap of two neighboring windows.
The windowed blocks can now be transformed into the frequency domain by applying

a discrete Fourier transform (DFT). So we get a time-frequency representation X( f , i),
where f is the index of the frequency bin and i is a time index denoting the i-th block.

Since in this thesis we mainly use vector notations, the mixtures X( f , i) after the STFT
for each frequency bin f are described by

x f = (x f
1 ,x

f
2 , . . . ,x

f
M)T . (2.19)

So the separation process of one STFT block for each frequency bin f can be written as

ŝ f = W f ·x f = (A f )−1 ·x f . (2.20)

The Permutation Problem: Applying a STFT to the mixtures to perform ICA in the fre-
quency domain, as described in Equation (2.20), can be a solution to separate a convolu-
tive mixture. But there is one problem. Since in BSS problems we do not know the true
sources s f and the mixing matrices A f , ICA cannot recover the source signals exactly due
to some ambiguities. There are two main kinds of ambiguities, the permutation ambiguity
and the scaling indeterminacy [4].

Permutation ambiguity means, that when applying BSS to a mixture, we do not know,
to which channels the components of the different sources are assigned. In time domain,
this permutation would be no problem, because just the channels are permuted. But in
frequency domain BSS, for each frequency bin one separation problem is solved and the
assignment to the channels can be different for every frequency bin. This means, when
transforming the separated signals back to time domain, at each channel the components
of different sources can be mixed. Most frequency domain BSS methods try to correct this
permutations by a postprocessing step. In Chapter 2.1.3 a frequency domain BSS method
is shown, that can prevent the occurrence of permutations and thus needs no additional
postprocessing.

The second significant ambiguity of frequency domain BSS is the scaling indeterminacy.
This indeterminacy occurs because the true scaling of the original sources cannot be esti-
mated by ICA. When the separation is executed for every frequency bin independently, the
separated signals may have a different spectrum than the original source signals, even if
the separation works perfectly [4]. So, after the separation, a spectral compensation has
to be performed in order to recover the true scaling of the frequency components as well
as possible.
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2. Background

2.1.3. Independent Vector Analysis

One approach for solving convolutive mixture problems in the frequency domain is called
Independent Vector Analysis (IVA), which is promising and seems to be very robust [22].
Here, an overview about the most important features of IVA is given. For more details I
refer to [17, 15, 8].

IVA prevents permutation ambiguities from occurring, so that no additional postprocess-
ing for correcting permutations is needed [11]. IVA also solves one ICA problem for each
frequency bin, but there is one difference to other methods, that perform a frequency
domain ICA. It assumes that the frequency components of each source are dependent
among all frequency bins [17]. So the following assumptions are exploit, when performing
IVA:

• The components of different sources within one frequency bin are mutually indepen-
dent.

• The components of one source over all frequency bins are dependent.

Thus the sources can be summarized as a multivariate vector source si = (s1
i ,s

2
i , . . . ,s

F
i )

T

for all sources i, where the components s f
i within each vector source are dependent and

the vector sources si of different sources are mutually independent. This multivariate mix-
ture model of IVA [17] is depicted in Figure 2.1 for the case of a 2×2 mixture, containing
2 microphones and 2 sources.

Before the separation is done, whitening can be performed after the STFT to simplify
the separation problem [8]. By the whitening process the mixtures become uncorrelated
and their variance is equal to 1. In [13] it was shown that for whitened signals the mixing
matrix is orthogonal, which reduces the complexity of ICA because we only have to look
for orthogonal demixing matrices.

As shown above, the mixing process for a frequency bin f is defined as

x f = A f s f . (2.21)

For the whitening, as shown in [13], a whitening matrix

Q f = (E{x f x f H})−
1
2 (2.22)

can be applied to the mixtures x f [13, 8], where E{·} is the expectation and E{x f x f H} is
the correlation matrix of x f . The whitened mixtures can then be calculated by

x f
0 = Q f x f . (2.23)

In order to assign the frequency components to the right source, the speech sources
have to be modeled by a probability density function (PDF) p, which is also called source
prior. Since speech can be modeled as supergaussian, in [8] spherically symmetric Lapla-
cian distribution (SSL) and spherically symmetric exponential norm distribution (SEND)
were used to model the speech sources for IVA.

16



2.1. Source Separation
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Figure 2.1.: The IVA mixture model [17]. For each frequency bin f (= 1,2, . . . ,F) one instanta-
neous mixture is defined. The components over all frequency bins belonging to one source are
assumed to be dependent and are summarized to a vector source, indicated by the vertical pillars.
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2. Background

The SEND distribution for a source s(t) is defined as [8, 15]

pSEND(s(t)) = c
e−
√

(2/F)‖s‖2

‖s‖2F−1
2

∀t, (2.24)

where F is the number of discrete frequencies, c is a normalization factor and ‖s‖2 is the
L2-norm of s.

The SSL distribution is defined as [8, 15]

pSSL(s(t)) = c · e−2·‖s‖2 ∀t. (2.25)

The goal of IVA is to find a set of demixing matrices W1, . . . ,WF which separate the
mixtures according to the distribution of the source prior. If we formulate the demixing
process as

ŷ f = W f x f
0 , (2.26)

where x f
0 are the whitened mixtures, a likelihood approach to measure the likelihood of the

estimates ŷi to the source distributions can be utilized. The likelihood Ci of a separated
source ŷi can be calculated by

Ci(W1, . . . ,WF) =
T

∏
n=1

p(ŷn). (2.27)

The likelihood of all sources is then

C(W1, . . . ,WF) =
N

∏
i=1

Ci(. . .) =
N

∏
i=1

T

∏
n=1

pi(ŷn). (2.28)

Because the SSL and SEND distributions are both exponential, it is easier to use the
log-likelihood instead of the likelihood, which is defined as

L(W1, . . . ,WF) = ln(C) =
N

∑
i=1

T

∑
n=1

ln(pi(ŷn)). (2.29)

This log-likelihood function gives us a measure for the "quality" of the used separation
matrices [8]. Thus the goal is to maximize this log-likelihood in order to get the optimal
separation matrices. This is called the optimization problem and can be formulated as

argmax
W1,...,WF

L(W1, . . . ,WF) s. t. W f W f H = I ∀ f . (2.30)

How exactly the separation matrices W f are estimated is shown in [15]. Because this
calculation is very complex and is also not part of this theses, let us assume, that an
algorithm is given that gives us an estimation of the separation matrices. This algorithm it-
eratively updates and refines the separation matrices W f until the log-likelihood no longer
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2.1. Source Separation

increases [8]. When the log-likelihood no longer increases, the maximum is found and
the algorithm stops. Then the actual matrices W f , estimated in the last estimation step,
are used as separation matrices. Now the signals can be separated by applying Equa-
tion (2.26).

Before the separation the input mixtures were whitened to yield uncorrelated mixtures
with variance 1, now the effect of the whitening has to be reverted. Otherwise the sepa-
rated signals would not sound like human voice. This step is also called spectral compen-
sation. For more details I refer to [8].

As last step by applying an inverse STFT the separated signals can be transformed
back to time domain and we yield separated sources.

2.1.4. Overdetermined Blind Source Separation

Most BSS algorithms assume, that the number of sources N is equal to the number of
mixtures M. This case is called determined case [17]. But in a realistic scenario it is
not reasonable to assume, that there is a fixed number of sources that does not change.
Thus we assume that there are more microphones than sources (M > N). We call this
overdetermined case, which is illustrated in Figure 2.2. There are N sources s1, . . . ,sN ,
which are in our scenario different speakers, talking anywhere in a room. The N speakers
are recorded by M microphones m1, . . . ,mM. The arrows indicate that at every microphone
a mixture of all sources is recorded. For simplicity, influences from noise sources or due to
reflections, are omitted here.

s1

s2

sN

Sources

Microphones

m1

m2

mM

N < M

Figure 2.2.: Overdetermined mixture

By using more microphones than sources we obtain some redundancy which might be
used to improve the performance of the source separation. For this purpose we have to
find a way how to use this redundancy efficiently for the separation. There is also a third
case, the underdetermined case, where M is less than N. Due to the fact that this thesis
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2. Background

only covers determined and overdetermined mixtures, the underdetermined case is not
further discussed.

There are the following possibilities to solve the overdetermined separation problem:

1. Separation with all available microphone signals: This is the easiest way to per-
form overdetermined BSS. But it is also computationally expensive, because the
separation algorithm tries to find M independent components, although there are
only N real sources. Since we do not care about execution time in this thesis, this
method could be a possible solution.

2. Change of the separation model: Standard BSS algorithms based on ICA as-
sume, that the mixing matrix A and the unmixing matrix W are square [13]. This
means that the number of mixtures is equal to the number of sources and the num-
ber of output signals, calculated by the BSS algorithm, is equal to the number of
input signals. This assumption makes the computation of the independent compo-
nents more easy, because the unmixing matrix W is the inverse of the mixing matrix
A [13]. Thus, changing the mixture model from square matrices with dimension
M×M to non square matrices with dimension M×N would make the separation
more difficult. For the mixture model of IVA this would mean, that the mixing matrix
A f of each frequency bin f changes from a M×M to a M×N matrix.

3. Selection of a subset of microphones: Another possibility is to use only as much
microphone signals as needed for the separation. Theoretically we only need N
microphones to separate N speakers, so it would be sufficient to choose only N
or N + 1 microphones out of M > N available microphones. One problem of this
approach is to find the microphone combinations which yield the best separation
results, because we don’t know them a priori. Depending on the number of speakers
and the positions of the speakers in a room, different microphone combinations could
achieve varying results. Therefore, if we want to apply this method, we have to know
the number and the positions of the speakers and also determine, which microphone
combinations are suitable for every particular situation.

4. Dimension Reduction: As overdetermined mixtures contain redundancy, it is pos-
sible to find a smaller set of variables which describe the recorded mixtures with
less redundancy and less dimensions than with the complete recording [13]. In
[2, 24, 12, 3] a method, called subspace method, based on a principal components
analysis (PCA) is proposed to reduce the dimension of the input mixtures without los-
ing much information. This method can be used as preprocessing step for the sep-
aration with IVA. This approach utilizes an eigenvalue decomposition of the mixed
signals under the assumption, that the energy of the N directional source signals is
concentrated on the N dominant eigenvalues [2]. So the signal can be divided into
a signal subspace, spanned by the eigenvectors belonging to the N largest eigen-
values, and a noise subspace spanned by the eigenvectors belonging to the M−N
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2.1. Source Separation

smallest eigenvalues. Therefore, the dimension of the mixtures can be reduced by
removing the noise subspace. This method looks promising since through dimen-
sion reduction the complexity of IVA is reduced and the influence of noise can also
be reduced. More details to the subspace method are explained in Chapter 2.1.5.

2.1.5. Subspace Method

As mentioned above, the subspace method is a promising preprocessing step for IVA, as
it can reduce the dimension of the separation problem from an overdetermined problem
to a determined problem without losing much information. So it seems to be a good and
efficient solution for the overdetermined BSS problem. Also its ability to suppress the
influence of noise, if the number of microphones M is larger than the number of sources
N, is beneficial [12]. Another advantage of the subspace method, that utilizes a principal
components analysis (PCA), is that in the whitening step of IVA also PCA is used. So the
subspace method can easily be integrated into the whitening process of IVA.

The first step of the subspace method is to perform a PCA, which uses the spatial cor-
relation matrix R f of the mixtures x f for each frequency bin f . Since we have convolutive
mixtures, a PCA is performed in the time-frequency domain after applying a STFT for each
frequency bin f . In [12], the spatial correlation matrix is calculated by

R f = E{x f x f H}. (2.31)

After applying an eigenvalue decomposition, there are M eigenvalues λ
f

1 ,λ
f

2 , . . . ,λ
f

M
that are sorted by decreasing energy, which can be written as

λ
f

1 ≥ λ
f

2 ≥ ·· · ≥ λ
f

M (2.32)

with the corresponding eigenvalues e f
1 ,e

f
2 , . . . ,e

f
M.

When there are N active sources, it is assumed that there are also N dominant eigen-
values [2, 12], which can be described by

λ
f

1 , . . . ,λ
f

N � λ
f

N+1, . . . ,λ
f

M. (2.33)

The N eigenvectors e f
1 , . . . ,e

f
N are the basis vectors that span the signal subspace [12].

The remaining eigenvectors e f
N+1, . . . ,e

f
M span the noise subspace. So, when removing

the noise subspace, the dimension of the signal can be reduced without losing information
about the signal of interest. With an eigenvector matrix E f = [e f

1 , . . . ,e
f
N ], containing only

the first N eigenvectors and an eigenvalue matrix Λ
f = diag(λ f

1 , . . . ,λ
f

N), a PCA matrix

W f
PCA = (Λ f )−1/2E f H (2.34)

can be calculated, that filters the mixtures x f in every frequency bin f by

x f
PCA = W f

PCAx f . (2.35)
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2. Background

The dimension of x f
PCA has been reduced from M to N and the influence of noise has also

been reduced by this step. Now IVA can be applied to the mixtures x f
PCA, which were also

whitened by the PCA.
After the separation it is important to remove the influence of the PCA, because whitened

mixtures do not sound like natural speech. This can be included into the spectral compen-
sation stage.

In Figure 2.3 it is shown, how the subspace method can be integrated into IVA.

STFT
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Figure 2.3.: Integration of the subspace method into IVA

2.2. Speaker Recognition

In this chapter, the fundamentals of speaker recognition are explained. Most of the theory,
explained in this chapter, originates from [14].

2.2.1. Fundamentals of Speaker Recognition

The field of speaker recognition can be divided into three general groups [14]:

• Speaker verification: Here it is only checked, if a speech sample corresponds to a
speaker’s identity, which has to be verified. This can be used i.e. for access control.

• Speaker identification: We can distinguish between to types of speaker identifica-
tion: open-set and closed-set identification. In closed-set identification, one speech
sample is compared to all available speaker models in a set of models and the
model, that is most likely, is chosen as the speakers identity. In open-set identifica-
tion, also unknown speakers, that are not included in the set of speaker models, can
be detected. Therefore a closed-set speaker identification is extended by a speaker
verification to an open-set identification. When no speaker identity can be verified,
a new model will be created.

• Speaker detection: Speaker detection determines, which speakers are active in an
audio stream, that can contain multiple speakers. If we additionally want to know,
at what time which speaker was active, speaker detection can be extended by a
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2.2. Speaker Recognition

segmentation, that identifies the parts in an audio stream, belonging to one speaker.
This is also called speaker diarization.

A typical speaker recognition system can consist of the following processing steps, as
shown in [14]:

• Preprocessing

• Feature Extraction

• Classification

This is also called pattern recognition. These three steps are now explained in more detail.

2.2.2. Preprocessing

Due to the fact, that human voice does not exceed frequencies above fmax = 8kHz [14],
a sampling frequency of fA ≥ 2 · fmax = 16kHz is sufficient for speaker recognition. So, if
the input signal has a higher sampling frequency, it can be downsampled to 16kHz.

Because speech signals have a low-pass characteristic, applying a preemphasis filter
in order to amplify the higher frequencies is very useful, since many speaker dependent
information is contained in the high-frequent formants [14]. For this we can use a filter with
the transfer function

Hpre(z) = 1−α · z−1, (2.36)

where different values for α yield different frequency responses of the filter.
In order to analyze the spectral characteristics of a digital speech signal s(k), the signal

has to be transformed into the frequency domain. Since speech signals are in general
non-stationary, a short-time Fourier transform (STFT) has to be performed. The STFT of
a signal s(k) is defined as [14]

STFT{s(k)} ≡ Sk(m,ω) =
+∞

∑
k=−∞

s(k)w(k−m)e− jωk, (2.37)

where w(k) is a window function that weights and cuts out a short time interval of the
signal. By keeping the window size very small, stationarity can be assumed for this signal
part. As window function, a hamming window [7, 14]

w(τ) = 0.54+0.46 · cos(2π
τ

T
) (2.38)

with τ =−T
2 , ...,+

T
2 can be used. In [14] a window length of 20−30ms with a progress in

5−25ms steps is suggested to obtain well extracted features.
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2. Background

2.2.3. Feature Extraction

For describing the characteristics of a speech sample, features have to be found that de-
scribe the voice spectrum accurately with a very small number of features, to reduce the
dimension. For this task mel frequency cepstral coefficients (MFCCs) are a good choice
[14]. For calculating the MFCCs, first the signal energy has to be filtered by triangular-band
filters that are adjusted to the human auditory system. These triangular filters are called
mel filters. The mel-energy can be calculated by [14]

E(w)
mel =

K/2−1

∑
n=0

F(w)
mel (n)|S(k)|

2 1≤ w≤W, (2.39)

where F(w)
mel (n) is the frequency response of the w-th filter and K is the number of samples

of a frequency segment.
Now, the MFCCs can be calculated by applying a discrete cosine transform (DCT) to

the logarithm of the mel-energy:

c(i)MFCC =
W

∑
w=1

log(E(w)
mel )cos[i(w−0.5)

π

W
] 1≤ i≤M (2.40)

Finally, we obtain M MFCCs c(i)MFCC, which can now be used as features.
The features can be represented by a feature vector

~xi =

 xi,1
...

xi,N ,

 (2.41)

where for each frame i one vector is calculated. As vector elements xi, j the previously

calculated MFCCs c(i)MFCC can be used.
The feature vectors~xi of all frames can be summarized to a feature matrix

~X = [~x1,~x2, . . . ]. (2.42)

Using such a feature matrix has the advantage, that a speech sample can be represented
by much less data.

2.2.4. Classification

In the classification step the feature matrix is compared to precalculated speaker models
and it is decided to which model the speech sample fits best. In [14], Gaussian mixture
models (GMM) are suggested for modeling speakers in a conference, since the recognition
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has to be text-independent. With a GMM a speaker identity can be represented statistically
as a weighted sum of unimodal Gaussian densities

N (~x|~µk,Σk) =
1

(2π)d/2|Σk|1/2 exp{−1
2
(~x−~µk)

T
Σ
−1
k (~x−~µk)}, (2.43)

where ~µk is a mean vector and Σk is a covariance matrix, that can be summarized to

~µ = {~µ1, . . . ,~µK}, (2.44)

Σ = {Σ1, . . . ,ΣK}, (2.45)

where K is the number of mixture components. A feature vector ~x with dimension N can
be modeled by a probability density function

p(~x|λ ) =
K

∑
k=1

wkN (~x|~µk,Σk). (2.46)

The weighting factors wk have to satisfy the constraint

K

∑
k=1

wk = 1 0≤ wk ≤ 1 (2.47)

and can be summarized to a vector

~w = {w1, . . . ,wK}. (2.48)

The parameters of the density model can by expressed as

λ = {wk,~µk,Σk} k = 1, . . . ,K. (2.49)

2.3. Evaluation

2.3.1. Evaluation Criteria for Source Separation

In order to evaluate the separated source signals, obtained by the source separation algo-
rithms, we need a measure that shows us how good the separation performs.

In this work we use three different measures for the performance measurement, the
Source to Distortion Ratio (SDR), the Source to Interferences Ratio (SIR) and the Sources
to Artifacts Ratio (SAR) [21].

If ŝ j is the estimated source with source index j, we can decompose it into

ŝ j = starget + einter f + enoise + earti f . (2.50)

The term starget = f (s j) is a version of the original signal s j modified by an allowed dis-
tortion f ∈ F , where F is a family of allowed distortions which can be chosen by the
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user. The terms einter f , enoise and earti f are the errors arising from interferences, noise
and algorithmic artifacts. To calculate all these terms, we need to know the original source
signals.

The decomposition can be obtained by means of orthogonal projections. Let us define
the three orthogonal projectors [21]

Ps j := ∏{s j}, (2.51)

Ps := ∏{(s j′)1≤ j′≤n}, (2.52)

Ps,n := ∏{(s j′)1≤ j′≤n,(ni)1≤i≤m}, (2.53)

where ∏{y1, . . . ,yk} is the orthogonal projector onto the subspace spanned by the vectors
y1, . . . ,yk.

With these three projectors we can calculate the terms of Equation (2.50) as follows
[21]:

starget := Ps j ŝ j, (2.54)

einter f := Psŝ j−Ps j ŝ j, (2.55)

enoise := Ps,nŝ j−Psŝ j, (2.56)

earti f := ŝ j−Ps,nŝ j. (2.57)

Further details can be found in [21].
After the decomposition of the estimated signal ŝ j we can now calculate our performance

measures.
The Source to Distortion Ratio is defined as the energy ratio of the target signal starget

to the sum of all three noise terms einter f , enoise and earti f [21]:

SDR := 10log
‖starget‖2

‖einter f + enoise + earti f ‖2 . (2.58)

The Source to Interferences Ratio is defined as the energy ratio of the target signal
starget to the noise error signal enoise:

SIR := 10log
‖starget‖2

‖einter f ‖2 . (2.59)

The Sources to Artifacts Ratio is defined as the energy ratio of the sum of the target
signal starget and the interference and noise error signals einter f and enoise to the artifacts
error term earti f :

SAR := 10log
‖starget + einter f + enoise‖2

‖earti f ‖2 . (2.60)

Here, mostly the SDR will be used as measure for the quality of the separation, because
it takes into acount all three error types einter f , enoise and earti f .
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2.3.2. Evaluation Criteria for Speaker Recognition

In [14, 20] the diarization error rate DER is suggested as measure for speaker diarization
tasks. The DER is defined as

DER = δmiss−error +δ f alse−alarm +δspeaker−error. (2.61)

The components of Equation (2.61) are error rates, that indicate how often different types
of errors occur over time. The different error rates are defined as follows:

• Miss error δmiss−error: Rate of speech segments that are not assigned as speech.
This error occurs, if the voice activity detection (VAD) detects no speech.

• False alarm δ f alse−alarm: Rate of segments that are incorrectly declared as speech.
This error occurs, if the voice activity detection declares a segment as speech al-
though there are no active speakers.

• Speaker error δspeaker−error: Rate of falsely detected speakers. This error occurs, if
the name of a wrong speaker is assigned to a speech segment.

As the DER is mainly designed for detecting single speakers, some modifications have
to be done in combination with source separation. For example, if we want to know how
the speaker recognition performs after the separation of multiple speakers, it is mostly
interesting for us, how often all speakers, talking at the same time, are detected correctly.
The question is, how to treat the case, when only one of two active speakers has been
detected correctly. Should we calculate the DER for each speaker independently or should
we calculate the DER for the detected speaker combination as a whole? Since here the
effect of the separation on the speaker recognition is investigated, I decided that it is more
useful to treat only the case that all speakers are detected correctly as a right detection.
All other cases are treated as errors. But we can divide the speaker error into different
cases depending on the number of falsely detected speakers.

For the case of two simultaneously active speakers I define the following:

• Right detection: Both speakers are detected correctly.

• Only one speaker correct: Only one of the two speakers is detected correctly.

• False detection: Both speakers detected wrong.

• Missed detection: Both speakers are not detected as active.

• False alarm: A segment, containing no speech, is detected as speech.

So the DER for two active sources can be calculated as

DER = δmiss−error +δ f alse−alarm +δ f alse−detection +δonly−one, (2.62)
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where δonly−one is the is the error rate of the case when only one speaker has been de-
tected correctly.

If we only want to know, how successful the speaker recognition was, we can also
calculate the accuracy, which is the rate of correctly detected segments.

The advantage of the DER as measure for speaker recognition is, that we can see the
different error types that lead to a bad performance. So it is more useful to find the error
causes.
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3. Overdetermined Independent Vector
Analysis

This chapter deals with the application of blind source separation in teleconferences, using
a microphone array. In a typical conference situation, only one person is talking for most of
the time. But people do not always wait until the current speaker has stopped talking before
they say something. So there can occur some overlaps between two or more speakers.
Also interjections from other people, while someone else is speaking, can happen. When
more than one speakers are active at the same time, the most likely situation is that there
are only two persons talking. Only when different groups of people in the conference room
are talking with each other at the same time, or maybe in very emotional discussion ev-
erybody wants to say something simultaneously, more than two speakers could be active.
But in most of these situations, if more than two people are talking, a separation of their
utterances would not make much sense. Thus, a microphone array with two or three mi-
crophones would be enough to perform source separation. But here we want to use eight
microphones, which is much more than needed. We want to spend some redundancy and
see what is possible. The goal is to obtain better separation results in this overdetermined
case than in an determined case. We have to find a way, how we can obtain the best
separation results by using all eight microphones. It also has to be studied, which micro-
phone combinations with less than eight microphones yield the best results, so that we
can compare our results in order to see which method really works best.

3.1. Microphone Array

Here, a circular, planar microphone array, consisting of eight microphones, is used. This
microphone array has also been used in the diploma thesis by Johannes Feldmaier [9],
who performed geometric source separation. The microphones are uniformly distributed
on a circle with radius r = 0.12m and with an angular distance of 45 ◦ between the micro-
phones. Figure 3.1 shows the plan view of the microphone array. The microphones are
numbered from 1 to 8, increasing counterclockwise. The center of microphone 1 is defined
as 0 ◦. This array configuration and the here defined coordinate system are used for all
experiments in this thesis. In [9], also some volumetric array configurations were use. This
means, that not all microphones are located in one plane, but in all three dimensions. For
the case of blind source separation I prefer a circular array, because it is symmetric. Also
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3. Overdetermined Independent Vector Analysis

no localization is done, contrary to [9], where one microphone of the array is centered and
raised to achieve better localization results.
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Figure 3.1.: The circular microphone array, consisting of eight microphones, numbered from 1 to 8
at the angular positions 0◦ to 315◦ and an angular distance of 45◦.

3.2. Basic IVA Implementation

For IVA, a Matlab implementation has already been developed at the Institute for Data Pro-
cessing by Christian Denk [8]. So this implementation can be used as basis for performing
blind source separation in this thesis.

The IVA algorithm consists of the following steps, as described in [8]:

1. STFT: A short-time fourier transform is applied to the input mixtures, in order to
obtain short blocks that are stationary. At a sampling rate of 48kHz and with a
window size of 1024 samples, these blocks are 21.3ms long. Applying a STFT to
convolutive mixtures yields multiple instantaneous ICA problems in the frequency
domain. Hence, in each frequency bin exists one instantaneous ICA problem.

2. Whitening: Before the signals are separated, whitening is performed to yield uncor-
related mixtures with variance (power) 1.

3. Separation: Using a standard instantaneous ICA algorithm in each frequency bin
leads to permutation ambiguities among the frequency bins, so permutation align-
ment would have to be performed after the separation. IVA tries to overcome this
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problem by assuming that between the frequency bins there are dependencies, so
the separation process prevents permutations and no postprocessing for permuta-
tion alignment is needed.

4. Spectral compensation: Prior to the separation process, whitening was performed
and the signals have the same power over all frequencies. Due to this fact and the
scaling ambiguity, a spectral compensation has to be performed, to obtain signals
that sound natural.

5. Inverse STFT: After the separation and the spectral compensation, the signals can
be transformed back into the time domain by applying an inverse STFT. Now we can
listen to the separated signals.

This IVA implementation has been designed for determined mixtures. This means, that it
tries to find as many independent components as there are input mixtures. So, if there are
eight input mixtures, we obtain eight output signals. The question is, what happens, if there
are only one or two sources, but eight input mixtures, recorded by the microphones. Does
the separation work correctly, or does it influence it in a negative way? Because IVA tries
to yield as many independent components as there are input mixtures (in our case eight).
But what is, if there are only two independent components? So it has to be determined,
how the performance of the separation is affected, when the number of mixtures is higher
than the number of sources.

The first thing, we have to investigate is how the separation quality changes with the
number of microphones, used as input for the basic IVA algorithm, if there are two active
speakers.

3.3. PCA Subspace Method Implementation

As described in Chapter 2.1.5, the subspace method can be used to solve the overdeter-
mined separation problem. Additionally, it promises to remove some noise.

The integration of the subspace method into the basic IVA implementation was simple,
since in the whitening stage of IVA, a PCA is already performed to obtain uncorrelated
mixtures. But in IVA, all eight principal components are used for the separation, if there
are eight microphones available. For the implementation of the subspace method, only as
much principal components as needed are used for separation. When N is the number
of principal components, only the N eigenvectors, belonging to the N biggest eigenval-
ues are selected after the eigenvalue decomposition to create the whitening matrix. So
after the whitening there are only N remaining signals instead of the original M signals.
This reduces the dimension of the input mixtures and also reduces the complexity of the
separation problem.
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3. Overdetermined Independent Vector Analysis

To perform the subspace method, a function (iva_pca.m, see Appendix A.3) was cre-
ated, where the number of desired principal components for the subspace selection can
be entered as an input parameter.

It has to be noted that the number of needed principal components, which is depending
on the number of sources, has to be known before applying separation with the subspace
method. So we also have to estimate, how much sources are active. The theory tells us,
that in a mixture of N source signals there are also N dominant eigenvalues (see Equation
(2.33)). So the number of sources could be determined by analyzing the eigenvalues.
In Figure 3.2, on the left part of each subfigure, the eigenvalues for different numbers of
sources in an anechoic room are shown, sorted by their magnitude. The values in each
plot are normalized to the first column.
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Figure 3.2.: Eigenvalues for different numbers of active sources in the anechoic room, sorted by
their magnitude, on the left of each subfigure. On the right of each subfigure, the ratio between
neighboring eigenvalues of the left part of each subfigure can be seen.

As you can see, the first eigenvalue has always the biggest magnitude and depending on
the number of sources N, the next N− 1 eigenvalues are also dominant. The remaining
M−N eigenvalues are very small. In order to see the ratio between the eigenvalues,
on each subplot’s right side, the ratio between two neighboring eigenvalues has been
calculated, so that we can see, how big the change from one eigenvalue to the next is.
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3.3. PCA Subspace Method Implementation

The position with the greatest ratio corresponds to the number of sources. So we can use
this ratio to determine the number of active sources. In the anechoic room, this method
works pretty good for the detection of the number of sources. The best results could be
achieved, when only frequencies between 700Hz and 8kHz had been analyzed. This
value has been determined by extensive experiments.

When trying to determine the number of sources by this method in an office room, some
problems arise. In Figure 3.3 the same arrangement as in Figure 3.2 is shown for an
echoic office room.
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Figure 3.3.: Eigenvalues for different numbers of active sources in the office room, sorted by their
magnitude, on the left of each subfigure. On the right of each subfigure, the ratio between neigh-
boring eigenvalues of the left part of each subfigure can be seen.

As you can see, now there are more dominant eigenvalues than sources. The number
of active sources cannot be determined by just looking at the eigenvalues. Also the ratio
between neighboring eigenvalues does not show how many active sources there are. For
determining the number of sources, a threshold could be set, calculated for each eigen-
value distribution. But finding a threshold is not easy and for other recordings the threshold
can be completely different.
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3. Overdetermined Independent Vector Analysis

3.4. Evaluation Data Set for IVA

When determining, which number of microphones yields the best results with the basic IVA
implementation, we can also investigate, if we find any rules or regularities according to the
position of the microphones. When using only two microphones, we can choose

(8
2

)
= 28

different microphone pairs as input signal for the separation. So it would be interesting
to see, which microphone combinations yield good results, and which combinations yield
poor results, when the positions of the microphones and the speakers are known.

Number of microphones Number of combinations

m = 2
(8

2
)
= 28

m = 3
(8

3
)
= 56

m = 4
(8

4
)
= 70

m = 5
(8

5
)
= 56

m = 6
(8

6
)
= 28

m = 7
(8

7
)
= 8

m = 8
(8

8
)
= 1

Sum 247

Table 3.1.: Number of all possible microphone combinations (order not taken into account), when
there are 8 microphones available

In Table 3.1 it is shown, how many different combinations are possible for performing
the separations with m microphones for m = 2, . . . ,8. Altogether, there are 247 different
possibilities to perform BSS with the basic IVA implementation, when there are eight mi-
crophones available (in the case of one or two active sources).

In order to evaluate IVA for different microphone combinations, recordings in an ane-
choic room and in an echoic office room were made. With the recordings in the anechoic
room it shall be examined, how the source separation behaves with minimal room reflec-
tions and if some regularities can be found relating to the microphone combinations and
their geometry. Then, with the recordings in the echoic office room, the influence of room
reflections will be investigated and it will be reviewed, if the regularities, which have been
found in the anechoic room, are also true in an echoic room.

For the recordings, speech signals of different speakers were played back through loud-
speakers, which have been recorded with the microphone array, as introduced in Section
3.1. In a conference, people can sit or stand anywhere around the table. Hence, different
recordings for different angular distances between the loudspeakers were made. Always,
a pair of speakers, talking simultaneously, was recorded, because this is the most com-
mon case, when speaker overlaps occur. So two loudspeakers were positioned around
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3.4. Evaluation Data Set for IVA

the array. The first loudspeaker LS1 was always at the same position at a azimuth of 0◦,
related to the coordinate system introduced in Figure 3.1, such that the next microphone
to LS1 is microphone 1. The second loudspeaker LS2 was positioned at different angular
distances to LS1. Because the microphone array is symmetric, only distances not greater
than 180◦ are considered. Here, the angular distances 25◦, 45◦, 90◦,135◦ and 180◦ were
treated.

In Figure 3.4 the recording configurations in the anechoic room are shown. The dis-
tance between the loudspeakers and the middle of the microphone array was r = 1.5m.
For each of these configurations, the recordings have been performed from two different
elevation angles. First, the elevation angle was set to 0◦, as the microphone array and the
loudspeakers were at the same height. And second, an elevation of 20◦ was set, where
the loudspeakers were at a higher position than the array.

x

y

LS2 (180◦)

LS2 (135◦)

LS2 (90◦)

LS2 (45◦)

LS2 (25◦)

LS1 (0◦)

r = 1.5m

Figure 3.4.: The recording configurations in the anechoic room. Loudspeaker 1 (LS1) is located at
0◦ and loudspeaker 2 (LS2) was positioned at different angles. Here an angular distance of 180◦

between the loudspeakers is indicated in black. All other configurations for LS2 with the angular
positions 135◦, 90◦, 45◦ and 25◦ are indicated in gray.

As source signals four different 10s long mono files were used, containing only one
speaker. The source files are named with the speaker’s name and are called diana.wav,
gernot.wav, martin.wav and ricarda.wav. As can be seen from the file names, there are
two male speakers and two female speakers. These files were chosen, because they were
also used in [9], so the results can be compared better. Four different combinations of
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3. Overdetermined Independent Vector Analysis

these sources were played back for each angular distance and elevation. In Table 3.2
these combinations are listed.

Speaker combination Source LS1 Source LS2

diana-gernot diana gernot

martin-gernot martin gernot

martin-ricarda martin ricarda

ricarda-diana ricarda diana

Table 3.2.: Speaker combinations, used for the recordings for the BSS evaluation. Shows which
sources have been played back through loudspeaker 1 (LS1) and loudspeaker 2 (LS2).

The same recordings as in the anechoic room were also made in an echoic office
room. The only difference is, that the distance between the loudspeakers and the ar-
ray was r = 1.0m, because the room was very small and a distance of 1.0m is in this
case more realistic for a conference. The dimensions of the office room were about
4.6m×3.4m×3.10m. In Figure 3.5 the recording configurations in the echoic office room
are shown. The array had been placed on a round table. The position of the table was on
a randomly chosen position in the room, not in the middle. The exact position can be seen
in Figure 3.5. The top of the array was at a height of 1,33m. For the recording with 0◦

elevation the loudspeakers were also positioned at a height of 1.33m. For 20◦ elevation
the height of the loudspeakers was 1.67m.

It has to be mentioned, that the hardware, that was used for the recordings, caused
some latency between playing back the signals and capturing the microphone signals.
Of course, due to the signal propagation time there is also some delay, which is normal
for acoustic signals and also between the microphones there are some delays, but this
propagation delay is no problem, because the evaluation algorithm can handle about 400
samples of propagation delay. But the delay caused by the recording hardware is much
more than 400 samples. In order to determine this delay, a sound file was played back
and recorded through a loopback from the output to the input of the recording device.
By calculating the maximum cross-correlation between the played and recorded file, the
delay due to the recording hardware could be determined. Also by graphically comparing
the two time signals, the same delays as calculated by the cross-correlation could be
observed. For the recordings in the anechoic room, the delay was 8353 samples. In the
echoic office room, the delay was 6305 samples, since a different buffer size was used for
recording. So, when evaluating the separated signals, this delay has to be compensated.
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w
=

3.
4

m

l = 4.6m

2.5m

1.
3

m

x
y

45◦LS1 (0◦)

LS2 (25◦)LS2 (45◦)

LS2 (90◦)

LS2 (135◦)

LS2 (180◦)

r = 1m

0◦90◦

Array
Table

Figure 3.5.: The recording configurations in the echoic office room. The configurations are the
same as in the anechoic room. The array has been rotated by 45◦, so the coordinate system is
also rotated by 45◦.
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3. Overdetermined Independent Vector Analysis

3.5. Graphical User Interface

It is very inconvenient, always having to type in long commands with all necessary param-
eters into the command window, if you want to perform source separation and then listen
to the different channels of the separated signals, I have built a graphical user interface in
Matlab. This simplifies the usage of the separation algorithms vastly. This is also advanta-
geous to people who do not know all the different functions but also want to listen how the
separated signals sound.

This graphical user interface is very important, because we have to verify if the sepa-
ration performance measures, such as SDR, SIR and SAR, really tell us the truth about
the quality of the separation. Obtaining good evaluation results does not automatically
mean that humans perceive the separation quality in the same way. So this graphical user
interface is a useful tool to check for oneself, if the separation went well.

All sound files that were used for the evaluation of the source separation can be selected
in a list just by one mouse click and all important parameters for the source separation can
be selected by drop-down menus.

It is even possible to select the microphones, which are used for the source separation,
by check boxes that are arranged in a circle. So it is easier for the user to select the desired
microphones.

Depending on the number of selected microphones, play buttons appear that allow us to
listen to the separated signals. When a play button is pressed, first the source separation
for the selected configuration is performed and afterwards the separated signal is played.
The separation of the signals can take some time, so the separated signals can’t be heard
immediately. Because a precalculation of all possible configurations would take too much
time and also require a lot of storage, only the separated signals for configurations that
have already been calculated are stored. So if a configuration is selected that has already
been separated, the user can immediately listen to the separated sources.
Of course it is also possible to listen to the unseparated signals.

Figure 3.6 shows a screenshot of the graphical user interface.

3.6. Evaluation Results for the Anechoic Room Recordings

For the evaluation, the function bss_eval_sources.m of the BSS Eval toolbox Version 3.0
[22] is applied to the separated signals, which have been obtained by the basic IVA im-
plementation (iva_general.m). This function calculates the SDR, SIR and SAR values, as
described in Chapter 2.3.1. As reference signals for the calculations the original sound
files were used. For each recorded file the SDR, SIR and SAR values for all 247 possible
microphone combinations, as listed in Table A.1, were calculated. If there are at each
recording two active speakers, we get two SDR, SIR and SAR values per microphone
combination, one value for speaker 1 and one value for speaker 2. The source separation
has been performed with the parameters, shown in Table 3.3.
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3.6. Evaluation Results for the Anechoic Room Recordings

Figure 3.6.: The graphical user interface for performing IVA

STFT window size 1024 samples

STFT function SiSec2008

Cost function SSL

Iterations 300

Auto stop enabled

Sampling frequency 48kHz

Table 3.3.: Separation parameters, used for IVA
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3.6.1. Evaluation Results for IVA with Two Microphones

First, let us take a look at the case that there are two active speakers. The theory tells us,
that for this case 2 microphones are sufficient to separate the two source signals by IVA.
But is this also true in reality or does the separation with more than two microphones yield
better results? So we will look first, what results we can achieve with two microphones.

In Figure 3.7 the separation results for the case that the angular distance between the
speakers is 180◦ are shown. This means that the speakers sit opposite to each other. For
each microphone combination, the mean of eight SDR, SIR and SAR values has been
calculated, since we have four speaker combinations at an elevation of 0◦ and four combi-
nations at an evaluation of 20◦.

(1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8) (2,3) (2,4) (2,5) (2,6) (2,7) (2,8) (3,4) (3,5) (3,6) (3,7) (3,8) (4,5) (4,6) (4,7) (4,8) (5,6) (5,7) (5,8) (6,7) (6,8) (7,8)

SDR Speaker 1 2,27 3,243 2,772 3,304 3,33 3,081 3,728 2,901 2,789 3,434 3,598 3,017 -0,73 4,807 3,849 4,366 -1,41 3,374 3,436 -1,69 4,083 3,283 3,344 4,201 3,731 2,734 3,354 3,606

SDR Speaker 2 2,005 3,129 3,314 4,02 3,586 2,533 2,21 3,377 3,964 4,176 3,976 2,223 -1,16 6,548 5,983 5,592 -0,71 3,501 5,462 -0,29 5,948 4,506 6,169 6,225 5,058 4,362 4,413 3,86
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Mean	SDR	values	for	all	combinations	(x,y)	of	2	microphones

Figure 3.7.: The mean SDR values for all combinations (x,y) of two microphones for two active
speakers with 180◦ speaker distance. (Anechoic Room)

The figure shows, that the SDR values strongly vary depending on the selected mi-
crophones. With some combinations we can reach good results, for example with the
combination (3,4) or (3,6). But with the combinations (2,8), (3,7) and (4,6) the separa-
tion results are poor. This observation is very interesting, because it shows how important
the positions of the microphones in relation to the speakers are when using only two mi-
crophones for the separation. In Figure 3.8 the best and the worst combinations for 180◦

speaker distance are visualized. On the left, the combinations that are not good for separa-
tion are indicated by red lines. Combinations that yield good results are indicated by green
lines on the right. The black arrows indicate, from which direction the speech signals are
arriving. So for the case of 180◦ speaker distance we can see, that combinations where
both microphones have the same distance to the sources yield bad separation results.

The separation results of the remaining speaker distances 135◦, 90◦, 45◦ and 25◦ have
also been visualized in the Figures 3.9, 3.10, 3.11 and 3.12. Comparing all these results,
we can see also here, that there are always some combinations that yield very poor results
and some combinations that yield very good results.

The complete evaluation results for the anechoic room, containing all SDR, SIR and
SAR values for all evaluated speaker angles can be found in A.4.
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3.6. Evaluation Results for the Anechoic Room Recordings

Speaker 2 Speaker 1

(a) poor separation

Speaker 2 Speaker 1

(b) good separation

Figure 3.8.: Visualization of the separation results for two microphones and two active speakers
with distance 180◦. On the left, the combinations yielding the worst results are indicated by red
lines. On the right, the combinations yielding the best separation results are indicated by green
lines.

Speaker 2

Speaker 1

(a) poor separation

Speaker 2

Speaker 1

(b) good separation

Figure 3.9.: Visualization of the separation results for two microphones and two active speakers
with distance 135◦

Speaker 2

Speaker 1

(a) poor separation

Speaker 2

Speaker 1

(b) good separation

Figure 3.10.: Visualization of the separation results for two microphones and two active speakers
with distance 90◦
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Speaker 2

Speaker 1

(a) poor separation

Speaker 2

Speaker 1

(b) good separation

Figure 3.11.: Visualization of the separation results for two microphones and two active speakers
with distance 45◦

Speaker 2

Speaker 1

(a) poor separation

Speaker 2

Speaker 1

(b) good separation

Figure 3.12.: Visualization of the separation results for two microphones and two active speakers
with distance 25◦
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3.6. Evaluation Results for the Anechoic Room Recordings

Having seen all the results above, the question arises, why there are always some com-
binations that achieve very poor separation results in comparison to all other results. In
Figure 3.13 the geometry of a configuration that yields poor separation results is depicted.
The observation of the evaluation results from above was, that the separation yields bad
results, when both microphones are located on the black solid line, which is the perpendic-
ular bisector of the locations of source 1 (s1) and source 2 (s2). In this case the distance to
both sources at each microphone is the same. Also when the microphones are located on
lines parallel to the perpendicular bisector with a small distance, the separation results are
also not good. If we assume that there are perfect conditions for sound propagation and

s1

s2

m1

m2

a
1,1	;	τ1,1

a2,1	;
	τ2,1

a
1
,2 	;	τ

1
,2

a
2
,2
	;
	τ
2
,2

Figure 3.13.: Geometrical interpretation of the configurations that yield poor separation results.
There are shown two sources, s1 and s2, and two microphones, m1 and m2. When m1 and m2 are
located at the black solid line or at a line parallel to it, the separation yields bad results.

there are no reflections, which means that the signals arriving at the microphones are only
influenced by an attenuation factor a and a time delay τ , the microphone signals m1(t) and
m2(t) can be calculated as

m1(t) = a1,1 · s1(t− τ1,1)+a1,2 · s2(t− τ1,2)
m2(t) = a2,1 · s1(t− τ2,1)+a2,2 · s2(t− τ2,2),

(3.1)

where s1(t) and s2(t) are the source signals. If we assume that a and τ are only influenced
by the distance, the attenuation factors and the time delays at each microphone from both
sources become the same:

τ1,1 = τ1,2 & τ2,1 = τ2,2
a1,1 = a1,2 & a2,1 = a2,2.

(3.2)
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3. Overdetermined Independent Vector Analysis

So after some transformations we see, that the signal

m1(t) = a ·m2(t− τ), (3.3)

arriving at microphone 1 is the same as the signal, arriving at microphone 2, attenuated by
a factor a and delayed by a value of τ .

Such a mixture is the worst case for the source separation algorithm, because the sec-
ond microphone signal does not contain any further information about the source signals.

Even though under real conditions the signals, arriving at both microphones are not
exactly the same, this constellation is not advantageous, because the signals are still very
similar to each other.

Since the separation performance, using two microphones, strongly depends on the
geometry of the sources and the microphones, the positions of the sources have to be
known in order to achieve a good source separation. But, because here we have a BSS
scenario, we cannot make any assumptions about the positions of the sources. So, for this
scenario, two microphones are not enough to yield good separation results for all possible
positions.

3.6.2. Evaluation Results for IVA with More Than Two Microphones

For all microphone combinations with more than two microphones the SDR, SIR and SAR
values have also been calculated for all speaker angles. Diagrams like in Figure 3.7 and
A.4 have also been created for all cases. But showing all these diagrams would be to
spacious and some of them are also too big to show them on one page. For example in
the case of four microphones there are 70 values. For those, who are interested in these
diagrams, I refer to the attached DVD. This DVD contains all separation results, stored and
visualized in Excel files.

In the following, only the best combinations are shown. In order to find the best micro-
phone combinations for more than two microphones, the mean of the SDR values over
all evaluated source position has been calculated in order to find combinations, that yield
good separation results for all possible positions.

In Figure 3.14 the best microphone combinations for three microphones are shown. The
separation results for combinations with three microphones were in general very good and
did not vary as much as in the case of two microphones. Nevertheless combinations, that
are shown in this figure, achieved the best separation results. So, when there are two
speakers active and we select one of the combinations, shown in Figure 3.14, there can
be achieved good separation results for all possible positions of the speakers.

The microphone combination that achieve the best SDR values for two active sources,
when four microphones are used, are shown in Figure 3.15.

For every number of microphones, one combination that yields good separation results
over all position, has been selected and the results have been compared. Figure 3.16
shows the SDR values for these combinations in the anechoic room, depending on the
speaker angles.
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3.6. Evaluation Results for the Anechoic Room Recordings

(a) (b) (c) (d)

Figure 3.14.: Microphone combinations with three microphones, that achieve the best separation
results, averaged over all possible source positions. (2 active speakers)

(a) (b) (c)

Figure 3.15.: Microphone combinations with four microphones, that achieve the best separation
results, averaged over all possible source positions. (2 active speakers)

As we can see, the best and most stable separation results over all positions can be
achieved by using three microphones, if there are two active speakers. With increas-
ing number of microphones, the SDR values are decreasing. The worst SDR values are
achieved, when all eight microphones are used for the separation. Also by listening to the
separated signals, we can confirm these results. So, just taking all eight microphones for
the separation is no good idea. The reason for that could be, that IVA tries to obtain as
many independent signals as there are input signals. When there are only two sources and
eight microphone signals are used for the separation, IVA tries to obtain eight independent
signals, although there are only two sources.

Hence, when using IVA for the separation of two sources, selecting three microphones
is the best choice for anechoic recordings, in order to obtain a good separation. Also
two microphones can be used, but when using two microphones, the positions of the
sources should be known, because, as shown above, the separation performance can
vary extremely, depending on the selected microphone pair.
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Figure 3.16.: The mean SDR values for different numbers of microphones, depending on the
speaker angle, for the anechoic recordings. For each number of microphones the combination
yielding the best mean SDR values, was chosen.
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3.6. Evaluation Results for the Anechoic Room Recordings

3.6.3. Evaluation Results for IVA with PCA Subspace Method

The subspace method promises to solve the overdetermined BSS problem. The advantage
of this method is, that we can use all eight microphones. We only have to choose, with
how many principal components we want to perform the separation. Another advantage
of the subspace method is, that some noise is removed as well, since we only keep the
signal subspace.

The SDR, SIR and SAR values have been calculated for the subspace method. In Figure
3.17 the mean SDR values in the anechoic room are shown, depending on the speaker
angle. To find out, how many principal components we really need for the separation of
two sources, the evaluation has been done for two, three and four principal components.

As one can see, the separation with two or three principal components achieves the
best results for anechoic room recordings. The separation results for three principal com-
ponents are more stable, also for small angles. But for large speaker angles, the separation
with two principal components show better results.
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Figure 3.17.: The mean SDR values for different numbers of principal components, using the PCA
subspace method depending on the speaker angle, for the anechoic recordings.
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3. Overdetermined Independent Vector Analysis

3.7. Evaluation Results for the Echoic Office Room Recordings

After having evaluated the different separation methods for the anechoic room set-up, the
same has to be done for the office room recordings, in order to see, how the separation
performs in an echoic environment. Do the separation methods, that show a good perfor-
mance in anechoic rooms also perform well in echoic rooms, or do they behave completely
different?

In the following, there will be first evaluated the basic IVA implementation and then IVA
with the subspace method.

3.7.1. Evaluation Results for the Basic IVA Implementation

For the anechoic recordings, the basic IVA implementation showed the best results, if three
microphones are used. Using all eight microphones produce worse separation results.

Now, the question is, how IVA behaves for different numbers of microphones in the office
room, when there are reflections. For this reason, the separation performance of the basic
IVA implementation has been evaluated in the office room.

In Figure 3.18, the mean SDR values, obtained in the office room, for different numbers
of microphones with the basic IVA implementation are shown. Here, the same microphone
combinations as used in the anechoic room are shown, to be able to make a better com-
parison between the two environments. The complete evaluation results for all possible
microphone combinations and speaker angles are available on the attached DVD.

As one can see, the results in the office room are completely different from the results
in the anechoic room. The SDR values are much worse and with increasing number of
microphones the SDR values become better. The best results could be achieved with
seven or eight microphones. In the anechoic room it was the other way around and the
SDR values became worse with increasing number of microphones.

So, using more microphones yields better separation results for the office room set-up.
It seems, that due to reflections, more independent components than source signals are
present. Otherwise, IVA would not yield better separation results with more microphones,
as we could see from the separation results in the anechoic room.

Another interesting observation is, that for an speaker angle of 90◦ the separation results
are better than for all other angles. For the angles 180◦ and 25◦ the separation results are
worst.

3.7.2. Evaluation Results for IVA with PCA Subspace Method

For the recordings, made in the anechoic room, the subspace method has achieved very
good separation results, when using two or three principal components. Now, the question
is, if the subspace method also yields good separation results in the office room. For that
reason, the subspace method has also been evaluated in the office room for two, three
and four principal components.
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Figure 3.18.: The mean SDR values for different numbers of microphones, depending on the
speaker angle for the office room recordings. For each number of microphones, the combination,
yielding the best mean SDR values, was chosen.
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3. Overdetermined Independent Vector Analysis

In Figure 3.19 the mean SDR values for the office room recordings, depending on the
speaker angles, are shown. It becomes obvious, that the subspace method in this case
does not yield better separation results. The worst results have been achieved by using
two principal components.

So, also here, using more principal components leads to better separation results.
It can again be recognized, that for a speaker angle of 90◦, the separation results are

much better than for 180◦ and 25◦.
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Figure 3.19.: The mean SDR values for different numbers of principal components, using the PCA
subspace method, depending on the speaker angle for the office room recordings.

Now, the question arises, why with the subspace method no better separation could
be achieved on the office room recordings. In [3], this problem is discussed. Due to
room reflections it is very difficult to estimate a separation matrix, especially for rooms
with a high reverberation time. As a solution it is supposed to choose a short window
length for the STFT, so that the time interval between the direct sound and the reflection
exceeds the window length. It is assumed, that then the reflections behave like "incoherent
additive noise", since speech is nonstationary. So, the subspace method can reduce some
reflections, if the window length is short.

To see, if this method really works, different window lengths for the STFT have been
tested; also longer window lengths, in order to see, how the window length affects the
separation results. The standard window length, used for all other evaluation was 1024
samples, which corresponds to 21ms at a sampling frequency of 48kHz. To see the influ-
ence of the window length to the separation results, window length from 128 samples to
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3.8. Summary of the Evaluation Results

8192 samples have been evaluated. Figure 3.20 shows, how the subspace method per-
forms for different STFT windows lengths. The mean of the SDR values over all positions
has been calculated, to see the overall performance. Here, the subspace method with four
principal components is shown, because the best results have been yielded with it. As we
can see, the SDR values become better, the shorter the window length is. For a window
length of 128 samples, which corresponds to 2.7ms, the SDR value is highest. Also by
listening to the separated signals, this results could be confirmed. Even for the subspace
method with two and three principal components, similar results have been observed.

But to make reliable statements, how the window length affects the separation results in
general, more evaluation and further work would be needed, extending this point of view.
Since, this is not in the main scope of this thesis, for now let us just notice, that the window
length can also influence the separation performance, but here, mostly a window length of
1024 samples will be used, so that all results are consistent.
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Figure 3.20.: Comparison of different STFT window lengths, using the subspace method with 4
principal components and office room recordings.

3.8. Summary of the Evaluation Results

After a lot of evaluation, all results for both environments are summarized here. In Figure
3.21, the mean of the SDR values over all positions has been calculated, in order to be able
to compare the overall performance of the different methods. On the left, the results for the
anechoic recordings are shown, and on the right, the results for the office recordings. So,
we can also directly compare the evaluation results of both environments.

There can be made the following statements:

• For the anechoic recordings, the separation of two sound sources performs best
with a small number of microphones or principal components. Using all eight mi-
crophones1, yields the worst results. The best results could be achieved with the
subspace method, using two principal components.

1IVA with 8 microphones = IVA subspace method with 8 principal components
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Figure 3.21.: Overview of all evaluated separation methods for the different environments with two
sources.

• For recordings, made in the office room, the separation performs best with more
microphones or principal components. The best results can be achieved, using
seven or all eight microphones.

• Acoustic reflections reduce the separation performance strongly.

In order to achieve good separation results, different separation methods should be
used, depending on the environment. When there are a lot of reflections, it is better to
choose more microphones or principal components. In anechoic rooms, less microphones
or principal components are better. Thus, we have to know, how reverberant the environ-
ment of the conference room is. To yield optimal results, it would be beneficial to find a
connection between reverberation and the best configuration for IVA.

As mentioned above, also the window length of the STFT, when applying the subspace
method, is an important parameter, which can influence the separation performance a lot.

So, there are a lot of possibilities for the selection of the parameters for the source
separation, that should be chosen differently, depending on the environment. To find the
optimal parameters for every possible environment, more research is still needed.
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4. Joint Source Separation and Speaker
Recognition

This chapter deals with the connection of BSS with a speaker recognition system. Most
speaker recognition systems suffer from overlapping speech and can only detect one
speaker at one time. So it would be great, if the performance of speaker recognition
systems could be improved by applying BSS prior to the speaker recognition.

4.1. The Speaker Recognition System

The speaker recognition system, used in this thesis has been developed by Christoph
Kozielski [14] during his diploma thesis at the Institute for Data Processing. This speaker
recognition works as described in Chapter 2.2 by building GMMs on MFCCs. This recog-
nition can be used online, but the signals have to be downsampled to 16kHz. For offline
recognition downsampling is not required, but we will first also sample down the signals
in order to be able to compare the separation results to other work, where this speaker
recognition was used. This speaker recognition is a closed set recognition, which means,
that all possible speakers have to be known to the system. Hence, for every speaker a
model has to be trained, before the speaker recognition can be started.

4.1.1. Model Training

For the model training we need speech signals that only contain the speaker who has to
be trained. In the scenario of a real conference the data for the model training could be
realized by an introduction round at the beginning of the conference, where every speaker
has to say something for a certain time. So we can make sure, that only one speaker is
active. This recordings can then be used to train the speaker models. Figure 4.1 shows the
basic steps of the implementation of the model training, which have already been explained
in Chapter 2.2. Prior to the feature extraction, a voice activity detection (VAD) is applied to
the signals, that discards segments, containing no speech.

The first question was, how long the data for the model training should be. To find out,
which training length is the best, different models were trained with the evaluation data
(the used evaluation data set will be introduced in Chapter 4.2). Then with the calculated
models a speaker recognition was performed on data, containing only one speaker. The
tested training lengths were 30s, 60s, 90s and 120s.
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Figure 4.1.: Model Training
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Figure 4.2.: DER for one active speaker, for different training lengths (30s, 60s, 90s,120s) for a)
an anechoic room, and b) an office room

Figure 4.2 shows the achieved values for the diarization error rate (DER) for the different
models, depending on the training length, for one active speaker, as defined in Equation
(2.61). On the left the DER for anechoic room recordings are shown and on the right the
values for office room recordings are shown. The figure clearly shows that a training length
of 60s is the best choice, since it has the smallest error rate in both environments. So for
the rest of this thesis this length is used for model training.

In Table 4.1 all important parameters, used for the model training are listed.

Number of features 39 (12 MFCCs + Spectral energy; 1st & 2nd order delta re-
gression coefficients)

Number of Gaussian mixture
components

128

STFT window size 1024 samples

Sampling frequency 16kHz

Table 4.1.: Model training and recognition parameters

54



4.1. The Speaker Recognition System

4.1.2. Speaker Recognition

When all models are trained, the speaker recognition can begin. The structure of the
recognition system can be seen in Figure 4.3. The feature extraction works in the same
way as in the model training, which was already shown in Figure 4.1. After the feature
extraction, the log-likelihood to all available speaker models is calculated and the most
likely model is detected as speaker.

For the speaker recognition the same parameters are used as for the model training, as
listed in Table 4.1.

When evaluating the speaker recognition, it is important to use different data for the
model training and the speaker recognition. Applying a speaker recognition on the training
data can falsify the recognition results.

VAD Feature Extraction
Log-Likelihood 

Decision

MFCCsSpeech Segment Detected Speaker

Speaker Models

Figure 4.3.: Speaker Detection

4.1.3. Application of the Speaker Recognition to the Separated Signals

When connecting the speaker recognition with BSS, there are many possibilities in the
selection of the separation method when training the model and when applying speaker
recognition. Since in Chapter 3 several methods to perform overdetermined IVA were uti-
lized, the question arises, which method should be used for the separation, prior to the
speaker recognition. Do the separation methods that showed a good separation perfor-
mance also yield good recognition results?

We also have to know, how the models should be trained to yield the best recognition
results. Should the models be trained on the recordings without separation or should IVA
or a PCA be applied to the training data, before the model training is carried out?

To find out, which methods works best, we will have to evaluate several possibilities and
compare the recognition results. In Table 4.2 all methods that have been evaluated are
listed. Since it is confusing, explaining always how the separation in the different cases
was performed, some abbreviations are defined, which represent the selected separation
method. In the left column you can see the abbreviation and on the right column there are
detailed explanations of the used separation method.
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4. Joint Source Separation and Speaker Recognition

For the separation method IVA 3Mics always the microphone combination (1,3,5) was
used, because this combination showed good separation results for all speaker angles
(see Chapter 3.6.2).

Abbreviation Detailed explanation

No Sep Use the recorded signals without separation, calculate the mean
of all 8 channels

PCA 1PComp Perform PCA, selecting 1 principal component, no separation

IVA 2PComp Perform IVA PCA subspace method, using 8 microphones,
choosing 2 principal components

IVA 3PComp Perform IVA PCA subspace method, using 8 microphones,
choosing 3 principal components

IVA 4PComp Perform IVA PCA subspace method, using 8 microphones,
choosing 4 principal components

IVA 5PComp Perform IVA PCA subspace method, using 8 microphones,
choosing 5 principal components

IVA 6PComp Perform IVA PCA subspace method, using 8 microphones,
choosing 6 principal components

IVA 7PComp Perform IVA PCA subspace method, using 8 microphones,
choosing 7 principal components

IVA 3Mics Perform basic IVA, using 3 microphones (i.e. IVA PCA subspace
method, using 3 microphones, choosing 3 principal components)

IVA 8Mics Perform basic IVA, using 8 microphones (i.e. IVA PCA subspace
method, using 8 microphones, choosing 8 principal components)

Table 4.2.: Separation methods, used prior to the speaker recognition and the model training

4.2. Evaluation Data Set for Speaker Recognition

For the evaluation of the speaker recognition we need a big data set, containing speech of
multiple speakers. For the simulation of a conference we need recordings, containing only
one active speaker as well as recordings, containing simultaneously active speakers. It is
also important not to use the same data for the model training and the speaker recognition.
So the idea was to play back speech by a loudspeaker and record it with the microphone
array, so that we can simulate a conference. The requirements for these playback files
are that they contain only speech of one single speaker with no noise or music in the
background. Another requirement is that there is no influence of the recording room that
affects these files. So recordings that were made in a professional studio are preferred.
Since it is not easy to find recordings, that satisfy all these requirements, audio books
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that are available in the internet [6] were chosen as basis for the playback signals. The
advantage of these audio books is, that they were sorted by the speakers name, so there
are available hours of recordings for several speakers. The audio books have a good
quality and are free from noise or music. So they are ideal for the evaluation of the speaker
recognition system.

From the audio books recordings from eight different speakers were picked. With these
recordings two data sets that should simulate a conference with four participants were built.
The first data set is composed of two female and two male speakers. The second data set
contains four male speakers. The second data set was used as a reference data set to
make sure that the obtained recognition results not only depend on the selected data.

Each data set contains the following parts:

• Training data: 2min of each speaker

• 1 speaker active: 10×5s, 10×10s, 10×20s and 10×30s of each speaker

• 2 speakers active: 30× 10s with different speaker combinations (data set 2 only
6×10s)

• 3 speakers active: 6× 10s with different speaker combinations (only available in
data set 1)

• 4 speakers active: 3× 10s with different speaker combinations (only available in
data set 1)

• overlaps at the end/beginning: 30×13s, each speaker 7s, overlap 1s (data set 2
only 6×13s)

Parts like these typically occur during a conference. Because most of the time there is only
one speaker talking, more data with only one active speaker is contained in the data set.
Later, there can be composed artificial conversations, based on this data set.

The data set has been played and recorded in an anechoic room and in an office room.
In Figure 4.4 the recording configuration in the anechoic room is shown. There are 4 loud-
speakers (LS1 - LS4), arranged around the microphone array with a distance of 1m. The
angular distance between the loudspeakers was set to 90◦. The position of loudspeaker 1
is defined as 0◦, so that microphone 1 is the next to loudspeaker 1.

For each data set, each of the 4 speakers is assigned to one, fixed loudspeaker.
The Figures 4.5 and 4.6 show, how the recordings in the office room were realized. The

configuration was the same as in the anechoic room, but at a randomly chosen position in
the room and the coordinate system was rotated by 45◦. Both, the microphone array and
the loudspeakers were positioned in the same height, so that the elevation was 0◦. The
height of the loudspeakers and the array was about 1.58m.
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Figure 4.4.: The recording configuration for the evaluation data set for the speaker recognition in
the anechoic room
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Figure 4.5.: The recording configuration for the evaluation data set for the speaker recognition in
the office room
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Figure 4.6.: Picture of the recording set-up in the office room
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4.3. Evaluation of the Joint Source Separation and Speaker
Recognition

As already mentioned above, there are a lot of possibilities how to perform joint source
separation and speaker recognition. First, a separation method has to be selected, which
is applied prior to the speaker recognition. And second, a separation method for the model
training has to be selected. In Table 4.3 some possibilities to perform joint separation and
recognition are shown. The methods, marked by an x have been evaluated during this
thesis.

No PCA IVA IVA IVA IVA IVA IVA IVA IVA
Sep 1PComp 2PComp 3PComp 4PComp 5PComp 6PComp 7PComp 3Mics 8Mics

No

Sep

PCA

1PComp

IVA

2PComp

IVA

3PComp

IVA

4PComp

IVA

5PComp

IVA

6PComp

IVA

7PComp

IVA

3Mics

IVA

8Mics

U
se

d
 D

at
a

xx

x x

x x

x

xx

x x

xxx

x

x

xx

x x

xx

x

xx

Used Model

Table 4.3.: Possibilities for joint source separation and speaker recognition. All combinations,
marked by an x have been evaluated. Used Data denotes, which separation method is used for
speaker recognition. Used Model denotes, which separation method is used for the model training.

First, the evaluation has been performed for only one active speaker, and later, the case
of two active speakers has been evaluated.

4.3.1. Evaluation for One Active Speaker

As first step, the speaker recognition has been evaluated for only one active speaker with-
out separation, in order to determine the performance of the speaker recognition system.

Then different separation methods have been tested in order to find out, if applying BSS
can improve the performance, when only one speaker is active. Only separation methods,
that showed good separation results in the evaluation of the source separation have been
selected.

When a source separation is applied prior to the speaker recognition, it is also interest-
ing, which model fits best to the separated signals.
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Figure 4.7 shows the diarization error rate (DER), achieved for the anechoic recordings
and the office recordings, for one active speaker. Both data sets were evaluated and then
the mean of both results was computed. Altogether about 87min of speech have been
evaluated to obtain the DER for one column in the diagram. So for creating these two
diagrams, about 55h of speech have been evaluated.

For the speaker recognition, every part was segmented into segments of a length of 1s
and for each segment a speaker detection was performed. For the case, that a BSS was
applied before the recognition, first each part had been separated as a whole and then the
separated part had been segmented into segments of 1s, on which a speaker detection
was performed.

To be able to reproduce all these results, for every case one separate script has been
written to perform the speaker recognition and all individual separation results have been
stored in Excel files. All scripts and Excel files can be found on the attached DVD.

As we can see in Figure 4.7, the DER of the speaker recognition, when applying no
source separation, is at 3.6% in the anechoic room and 5.2% in the office room case.
This are pretty good results, because an error rate of 3.6% means, that 96.4% of the
speech segments are assigned to the right speaker in the anechoic room and in the office
room 94.8% are assigned correctly. In both cases the missed detection rate is at about
1%. A speech segment is assigned as missed, when the voice activity detection does
not detect it as active speech although a speaker is active. So this means that about
1% of the DER is caused by the VAD. Hence, this 1% cannot be changed by an improved
speaker recognition, because it only depends on the VAD. It also might occur that a speech
segments falls into a breathing pause, but we can’t take this case into account either. The
rest of the DER without missed detections1 is the false detection rate. This is the rate
of speech segments where the false speaker has been detected. Altogether we can say,
that the recognition performance for single speech without separation is very good in both
environments.

Our hope was to improve the recognition performance also for one active speaker by
applying IVA. But when looking at the results, it becomes obvious that this is not the case.
When a source separation is applied prior to the recognition, the DER rises in every case.
The only thing we can learn from these results is, that the models, trained by applying a
PCA, or the same separation method as used for the recognized data, yield better results
than the models, that were trained without applying a separation. It has to be mentioned,
that the recorded speech was very clean and almost no background noise was present.
But altogether we can say, that applying BSS to signals, containing only one source, makes
no sense as preliminary stage to speaker recognition.

The only useful method is to apply a PCA before the recognition is started. For the
anechoic recordings, the recognition performance could be increased in the case of using
a PCA with one principal component. The DER could be lowered to 2.6%, but in the office

1Note, that the rate of false alarms, as defined in Chapter 2.3.2, doesn’t exist in these evaluations, because
we only evaluate segments containing active speech
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room case the DER almost stayed constant. When applying a PCA as preliminary stage
to speaker recognition, it is important to also use a model, where a PCA has been applied
prior to the model training.

4.3.2. Evaluation for Two Active Speakers

Let us now focus on the case, that there are two speakers talking at the same time. Since
we have found out, that for one active speaker, source separation makes no sense, the
case of two active speakers is more interesting. Here, source separation might be really
useful to improve the performance of the speaker recognition system.

Before we can analyze, how the source separation affects the performance of the
speaker recognition, when there are two active speakers, we have to determine, how the
speaker recognition behaves without separation. Figure 4.8 shows the recognition results,
measured for two active speakers. The first column of each diagram shows the DER in the
case that no separation has been performed. Since there were two active speakers, the
two most likely speakers have been chosen within the likelihood decision. It can be seen
that in the anechoic room as well as in the office room the DER is 100%, which means,
that in no case both speakers have been detected correctly, without applying separation to
the speech data. When looking at the rate, describing that only one of both speakers has
been detected correctly, in about 46% of the segments only one of the two speakers have
been detected correctly for the anechoic recordings and for the office recordings about
36%. This means, that the speaker recognition works not completely incorrect, when there
are two active speakers, because one of the two speakers can be detected in some cases.
But altogether the recognition results are poor for two active speakers without separation,
even when trying to detect only one of the two speakers.

The remaining columns in Figure 4.8 show the DER for all cases that were evaluated in
combination with IVA. For the calculation of the DER first IVA was applied and then on the
first two separated channels a speaker recognition was performed. If in both channels the
correct speakers had been detected, the recognition result has been classified as correct.
If only one of the two speakers had been detected correctly, the result has been classified
as only one speaker correct. And for the case, that in both channels the wrong speaker
had been detected, the result has been classified as false detection. So we can see, how
strong the different errors influence the DER. For each column 6min of overlapping speech
have been evaluated, so that altogether 4.4h of speech have been evaluated for creating
these two diagrams.

When looking at the results in the anechoic room, we can see that the DER is more
than halved, when applying IVA prior to the recognition. The best results can be achieved
with the models, trained with PCA 1PComp. For the data, that has to be recognized, IVA
3Mics, IVA 3PComp and IVA 4PComp showed the lowest DER. A DER of about 34% could
be achieved in the best case. This means, that about 66% of the segments have been
detected correctly. This detection rate also seems to be not good, but its a big improvement
compared to the recognition rate without separation, where 0% of the segments were
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Figure 4.7.: Diarization error rate for one active speaker in different environments for different meth-
ods. The labels of the columns are composed of "<used data> + <used model>".
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Figure 4.8.: Diarization error rate for two active speakers in different environments for different
methods. The labels of the columns are composed of "<used data> + <used model>".
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detected correctly. When taking into account, that the rate of segments, where only one
speaker has been detected correctly, only 5% of the segments, that have been detected
completely false, are remaining. For the case, where no separation has been applied, the
rate of completely false assigned segments was about 50%. Thus, a false detection rate
of 5% is also a big improvement.

For the office room recordings, the performance has decreased. The best results could
be achieved with the method IVA 4PComp + PCA 1PComp with a DER of 53%. Compared
to the anechoic room, this result is not so good. But the false detection rate could also be
improved from about 64% to about 5%. Although the overall DER is high, the performance
is still better than without applying separation.

In Table 4.4, the performance of the speaker recognition without separation is compared
to the methods with the best performance for each environment, for the case of two active
speakers. As we can see, although the DER in the office room is at about 53%, this does
not mean, that the speaker recognition is completely wrong in 53% of the segments. It
only means, that in 53% not both speakers have been detected correctly. When looking at
the rate, that at least one speaker has been detected correctly, the result is much better.
For the office room recordings, in 95% of the segments, there has at least one of the two
speakers been detected correctly. This is much more than without separation. Without
separation, in only 37% of the segments at least one speaker has been detected correctly.

Environment anechoic office

Method
No Sep + IVA 3Mics + No Sep + IVA 4PComp +
No Sep PCA 1PComp No Sep PCA 1PComp

Accuracy/Both speakers
detected correctly

0% 66.3% 0% 47.4%

DER 100% 33.7% 100% 52.6%
Both speakers detected
falsely

52.3% 6.2% 63.2% 4.8%

One speaker detected
falsely

47.7% 27.5% 36.2% 47.9%

Missed detection 0% 0% 0.1% 0%
At least one speaker
detected correctly

47.7% 93.8% 36.8% 95.2%

Table 4.4.: Comparison of the speaker recognition results for two active speakers without and
with separation. For each environment the separation method, yielding the lowest DER has been
selected.

So, we can say, that the source separation improves the recognition performance a lot,
when two speakers are talking simultaneously, although the DER values are high, yet. For
the anechoic recordings, in 66.3% of all segments, both speakers have been detected
correctly, and in 93.8%, at least one speaker has been detected correctly. For the office
recordings, in 47.4% of all segments, both speakers have been detected correctly, and in
95.2%, at least one speaker has been detected correctly. These results clearly show, that
source separation can improve the performance of a speaker recognition.
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After having done all evaluations, some additional tests have been carried out, to see, if
the speaker recognition can be improved with different parameters. In the previous evalua-
tions, always a sampling rate of 16kHz has been used, since we first wanted to investigate
the performance of the online speaker recognition system. But here, we do not have to
recognize the signals online, so one test was made with a sampling rate of 44,1kHz in
the office room case. As we can see above, the best DER, achieved for the office record-
ings, is at about 53%. When performing the speaker recognition and the model training
with 44,1kHz instead of 16kHz, this DER could be decreased to 43%, which is an im-
provement of 10%. This clearly shows, that an increased sampling rate at the speaker
recognition as well as at the model training can improve the performance of the speaker
recognition a lot. But, to see, how the recognition rate improves by an increased sampling
rate, more evaluation has to be done.

In Chapter 3.7.2, it was found out, that the subspace method shows better separation
results for shorter STFT window lengths. So, also some tests with shorter window lengths
have been performed. But these tests preliminary showed no improvements of the recog-
nition performance, meaning that also here, more tests are needed.
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In this chapter, the most important facts, that have been achieved during this theses, are
summarized and some proposals for future work are given.

5.1. Conclusion

In the first part of this thesis, several methods to perform IVA have been evaluated for
two different environments. The first method performed the basic IVA implementation with
different numbers of microphones. The second method performed IVA, using the PCA sub-
space method with different numbers of principal components. The subspace method is
preferable, since all available microphones can be utilized and only the number of principal
components has to be chosen. For performing basic IVA, the number of microphones and
a microphone combination have to be chosen. The performance of both methods depends
on the number of selected microphones or principal components and the environment, in
which the recordings were made.

For the anechoic room scenario, a small number of microphones or principal compo-
nents showed the best results. With the subspace method, the separation results in the
anechoic case were better, than with selecting a small number of microphones.

In the office room scenario, a higher number of microphones or principal components
should be used. Here, the basic IVA implementation, using all eight microphones, which
is the same as the subspace method, using eight principal components, showed the best
results.

It was discovered, that the performance of the subspace method strongly depends on
the STFT window length. For very short window lengths, the performance in the office
room for small numbers of principal components could be improved. But for making reliable
statements, more evaluation would be needed.

Overall, when performing IVA, the separation method and the number of used micro-
phones or principal components should be chosen with respect to the environment. Find-
ing the optimal configuration was done by experiments.

In the second part of this thesis, it was studied, how the source separation can be con-
nected with a speaker recognition system. A lot of different methods have been combined
for the model training and the speaker recognition, in the case of one active speaker and
the case of two active speakers.

In the case of one active speaker, IVA did not improve the recognition performance. Only
by applying a PCA, choosing one principal component without separation, the recognition
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rate can be improved slightly. So, we can say, that applying source separation in the case
of one active speaker makes no sense.

In the case of two active speakers, the recognition performance of the speaker recogni-
tion could be improved. Without separation, the speaker recognition was not able to detect
both speakers correctly in the anechoic scenario, as well as in the office scenario, which
corresponds to a DER of 100%. And also in 48% of the speech segments, at least one
speaker has been detected correctly in the anechoic case. In the office case, this rate was
even worse, with 37% of correctly detected segments.

By applying IVA, the recognition performance could be improved. In the anechoic case,
the DER could be decreased from 100% to 34%, which means, that for 66% of the seg-
ments, both speakers have been detected correctly. For 94%, at least one of the two
speakers has been detected correctly, which is a great improvement, since without sep-
aration this rate was only 48%. In the office scenario, the DER could be decreased from
100% to 52.6%, which means, that in 47.4% of the segments, both speaker have been
detected correctly. The rate of detecting at least one speaker could be increased to 95%
in the office scenario.

Additional tests have shown, that using a higher sampling rate for the speaker recogni-
tion and the model training can improve the recognition rate by 10%.

So, we can say, that BSS can improve the performance of the speaker recognition. But
also here, it is important to chose the separation methods depending on the environment.
The results of the speaker recognition in combination with the source separation are not
completely consistent with the evaluation results of source separation. For example, in the
evaluation of the source separation in the office room case, eight microphones showed
the best separation results. But in the evaluation of the speaker recognition, the subspace
method, using four principal components showed better results.

Overall, when combining BSS with speaker recognition, it is important to treat segments,
that contain only one speaker differently than segments, containing two speakers. When
only one speaker is active, it is better to apply no separation or a PCA with one principal
component, to reduce some noise. When more than two speakers are active, IVA should
be performed. Which method should be used, depends on the environment. Also here, it
is not easy to find the optimal configuration.

A reliable detection of the number of active speakers is needed, which is also not easy,
especially in echoic environments. In an anechoic room, the number of speaker can be
estimated reliable by applying PCA.

Altogether, it can be said, that to build a reliable system for combined BSS and speaker
recognition, a lot of improvements have to be made, since the performance of the complete
system strongly depends on the selected parameters, used for the separation.
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5.2. Future Work

As can be seen from the results above, there are some points, that have to be improved,
in order to build a joint BSS and speaker recognition system for teleconferences.

The first point is to find a connection between the reverberation time of a room and the
ideal parameters for IVA, to yield the best separation results for every environment.

Also the optimal STFT window length has to be found, since the subspace method
achieved better results for shorter window lengths.

Another important point is to find a reliable method for the detection of the number
of active speakers. For the anechoic scenario, the number of speakers can already be
determined by analyzing the distribution of the eigenvalues. But for echoic rooms, it is hard
to determine the number of sources by the eigenvalues, since, due to reflections, there are
more dominant eigenvalues than active sources. In [23], two information theoretic criteria
are proposed to estimate the number of signals, that could be implemented.

Also an automatic segmentation is needed, that divides the signal into segments, de-
pending on the number of active speakers. But for this, also a reliable detection of active
speakers is needed. With an automatic segmentation, the speaker recognition could be
also tested on data, recorded in a real conference scenario.
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A.1. DVD Content

All Matlab functions and scripts, used in this thesis, are contained in the attached DVD.
Also, all evaluation results are stored and visualized in excel files.

The DVD is structured as follows:

• [\Matlab\] : Contains all Matlab functions and scripts

• [\Separation Results\] : Contains all results of the source separation evaluation

• [\Recognition Results\] : Contains all results of the speaker recognition evaluation

• [\Diplomarbeit - Latex Files\] : Contains all LaTeX files of this thesis

• [\Projektplan\] : Contains the project proposal of this thesis

• [\Quellen\] : Contains all papers, listed in the bibliography

• [\Fotos Versuchsaufbau\] : Contains some pictures of the recording set-up in the
office room

A.2. List of the Evaluated Microphone Combinations

On the following page, a table (Table A.1), listing all evaluated microphone combinations
is shown.
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Number of Microphone combinations (a,b, ...)
microphones

m = 2
(1,2); (1,3); (1,4); (1,5); (1,6); (1,7); (1,8); (2,3); (2,4); (2,5); (2,6); (2,7); (2,8); (3,4); (3,5);
(3,6); (3,7); (3,8); (4,5); (4,6); (4,7); (4,8); (5,6); (5,7); (5,8); (6,7);(6,8); (7,8);

m = 3

(1,2,3); (1,2,4); (1,2,5); (1,2,6); (1,2,7); (1,2,8); (1,3,4); (1,3,5); (1,3,6); (1,3,7); (1,3,8); (1,4,5);
(1,4,6); (1,4,7); (1,4,8); (1,5,6); (1,5,7); (1,5,8); (1,6,7); (1,6,8); (1,7,8); (2,3,4); (2,3,5); (2,3,6);
(2,3,7); (2,3,8); (2,4,5); (2,4,6); (2,4,7); (2,4,8); (2,5,6); (2,5,7); (2,5,8); (2,6,7); (2,6,8); (2,7,8);
(3,4,5); (3,4,6); (3,4,7); (3,4,8); (3,5,6); (3,5,7); (3,5,8); (3,6,7); (3,6,8); (3,7,8); (4,5,6); (4,5,7);
(4,5,8); (4,6,7); (4,6,8); (4,7,8); (5,6,7); (5,6,8); (5,7,8); (6,7,8);

m = 4

(1,2,3,4); (1,2,3,5); (1,2,3,6); (1,2,3,7); (1,2,3,8); (1,2,4,5); (1,2,4,6); (1,2,4,7); (1,2,4,8);
(1,2,5,6); (1,2,5,7); (1,2,5,8); (1,2,6,7); (1,2,6,8); (1,2,7,8); (1,3,4,5); (1,3,4,6); (1,3,4,7);
(1,3,4,8); (1,3,5,6); (1,3,5,7); (1,3,5,8); (1,3,6,7); (1,3,6,8); (1,3,7,8); (1,4,5,6); (1,4,5,7);
(1,4,5,8); (1,4,6,7); (1,4,6,8); (1,4,7,8); (1,5,6,7); (1,5,6,8); (1,5,7,8); (1,6,7,8); (2,3,4,5);
(2,3,4,6); (2,3,4,7); (2,3,4,8); (2,3,5,6); (2,3,5,7); (2,3,5,8); (2,3,6,7); (2,3,6,8); (2,3,7,8);
(2,4,5,6); (2,4,5,7); (2,4,5,8); (2,4,6,7); (2,4,6,8); (2,4,7,8); (2,5,6,7); (2,5,6,8); (2,5,7,8);
(2,6,7,8); (3,4,5,6); (3,4,5,7); (3,4,5,8); (3,4,6,7); (3,4,6,8); (3,4,7,8); (3,5,6,7); (3,5,6,8);
(3,5,7,8); (3,6,7,8); (4,5,6,7); (4,5,6,8); (4,5,7,8); (4,6,7,8); (5,6,7,8);

m = 5

(1,2,3,4,5); (1,2,3,4,6); (1,2,3,4,7); (1,2,3,4,8); (1,2,3,5,6); (1,2,3,5,7); (1,2,3,5,8); (1,2,3,6,7);
(1,2,3,6,8); (1,2,3,7,8); (1,2,4,5,6); (1,2,4,5,7); (1,2,4,5,8); (1,2,4,6,7); (1,2,4,6,8); (1,2,4,7,8);
(1,2,5,6,7); (1,2,5,6,8); (1,2,5,7,8); (1,2,6,7,8); (1,3,4,5,6); (1,3,4,5,7); (1,3,4,5,8); (1,3,4,6,7);
(1,3,4,6,8); (1,3,4,7,8); (1,3,5,6,7); (1,3,5,6,8); (1,3,5,7,8); (1,3,6,7,8); (1,4,5,6,7); (1,4,5,6,8);
(1,4,5,7,8); (1,4,6,7,8); (1,5,6,7,8); (2,3,4,5,6); (2,3,4,5,7); (2,3,4,5,8); (2,3,4,6,7); (2,3,4,6,8);
(2,3,4,7,8); (2,3,5,6,7); (2,3,5,6,8); (2,3,5,7,8); (2,3,6,7,8); (2,4,5,6,7); (2,4,5,6,8); (2,4,5,7,8);
(2,4,6,7,8); (2,5,6,7,8); (3,4,5,6,7); (3,4,5,6,8); (3,4,5,7,8); (3,4,6,7,8); (3,5,6,7,8); (4,5,6,7,8);

m = 6

(1,2,3,4,5,6); (1,2,3,4,5,7); (1,2,3,4,5,8); (1,2,3,4,6,7); (1,2,3,4,6,8); (1,2,3,4,7,8);
(1,2,3,5,6,7); (1,2,3,5,6,8); (1,2,3,5,7,8); (1,2,3,6,7,8); (1,2,4,5,6,7); (1,2,4,5,6,8);
(1,2,4,5,7,8); (1,2,4,6,7,8); (1,2,5,6,7,8); (1,3,4,5,6,7); (1,3,4,5,6,8); (1,3,4,5,7,8);
(1,3,4,6,7,8); (1,3,5,6,7,8); (1,4,5,6,7,8); (2,3,4,5,6,7); (2,3,4,5,6,8); (2,3,4,5,7,8);
(2,3,4,6,7,8); (2,3,5,6,7,8); (2,4,5,6,7,8); (3,4,5,6,7,8);

m = 7
(1,2,3,4,5,6,7); (1,2,3,4,5,6,8); (1,2,3,4,5,7,8); (1,2,3,4,6,7,8); (1,2,3,5,6,7,8); (1,2,4,5,6,7,8);
(1,3,4,5,6,7,8); (2,3,4,5,6,7,8);

m = 8 (1,2,3,4,5,6,7,8)

Table A.1.: All different microphone combinations
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A.3. List of all Functions and Scripts

[IVA\] Contains all functions for source separation

detect_num_spk_pca.m Tries to detect the number of active speak-
ers by analyzing the eigenvalues. Can also
plot the eigenvalues. (Works only in anechoic
rooms)

gui.m Graphical user interface for applying IVA all
different parameters and methods

iva_pca.m Perform IVA, using the PCA subspace
method

pca.m Performs a PCA in frequency domain
pca_analyze.m Performs a PCA in frequency domain, but

without inverting the spectral transformation.
Outputs whitened signals in time domain.

[IVA\denk\] Contains the basic IVA implementation

inv_st_fft.m Inverse short-time Fourier transform
istft_SiSec2008.m Multichannel inverse short-time Fourier

transform (ISTFT) using half-overlapping
sine windows

iva_data.m Class that holds all data of the IVA sound
source separation algorithm

iva_general.m Separates sound mixtures
short_time_fft.m Splits up several input mixtures in Frequency

bins and performs FFT on each bin
stft_SiSec2008.m Multichannel short-time Fourier transform

(STFT) using half-overlapping sine windows

[IVA\evaluation\] Evaluation functions

estimate_delay.m Estimates the delay between two signals
evaluate_all_combinations_1src.m Performs IVA for all possible microphone

combinations and then evaluates the sepa-
ration results (for 1 speaker)

evaluate_all_combinations_2src.m Performs IVA for all possible microphone
combinations and then evaluates the sepa-
ration results (for 2 speakers)
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evaluate_directory_2src.m Evaluation script for evaluating all files in the
current directory for 2 sources by basic IVA

evaluate_directory_iva_pca.m Evaluation script for evaluating all files in the
current directory for 2 sources by IVA PCA
subspace method

evaluate_directory_iva_pca_different_-
window_sizes.m

Evaluates all files in a directory by IVA PCA
subspace method, using different window
lengths for the STFT

evaluate_iva_pca_2src.m Performs IVA with PCA subspace method
and then evaluates the separation results (for
2 speakers)

plot_results.m Plot the SDR, SIR and SAR values for basic
IVA

plot_results_iva_pca.m Plot the SDR, SIR and SAR values for IVA
PCA subspace method

[IVA\evaluation\bss_eval_3.0\] Contains evaluation function of the BSS tool-
box

bss_eval_sources.m Calculate SDR, SIR and SAR values

[Speaker Recognition\] Contains all functions for speaker recognition

detect_speaker.m Detects the speaker of a speech segment.
trainModel_iva.m Trains a GMM, using IVA before the training
trainModel_iva_pca.m Trains a GMM, using PCA subspace method

before the training

[Speaker Recognition\kozielski] Contains the basic speaker recognition func-
tions

EM.m Implementation of the EM algorithm
enframe.m Window a signal
extractFeatures.m Extract features out of a signal
initEM. Initialize EM algorithm by k-means
logLikelihood.m Calculate log-likelihood
map.m MAP adaptation
mel2frq.m Transform mel scale to linear frequency
melcepst.m Calculate the MFCCs
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PROPERTIES.m Defines all important parameters for speaker
recognition centrally

trainGMM.m Train a GMM
vad.m Voice activity detection
vad_old.m Old VAD version with a different approach

[Speaker Recognition\kozielski\tools\] Tools from Voicebox

activlev.m Estimates the active speech level
estnoisem.m Estimates the ground noise level
frq2mel.m Transform linear frequency into mel scale
gaussmix.m Fits a Gaussian mixture pdf to a set of data

observations
gaussPDF.m Computes PDF of a Gaussian distribution
lmultigauss.m Computes multigaussian log-likelihood
logsum.m log(sum(exp()))
lsum.m Sum up logarithmically
m2htmlpwd.m Creates a HTML documentation of the cur-

rent folder
maxfilt.m Find max of a filter
mel2frq.m Transform mel scale to linear scale
melbankm.m Mel bank filter function
nearnonz.m Create a value close to zero
rdct.m Calculate DCT of real data
rfft.m Calculate DFT of real data

[Speaker Recognition\] Folders

[recognition scripts\] Contains all recognition scripts
[speakerModels_dialog1\] Contains all speaker models for dialog 1
[speakerModels_dialog2\] Contains all speaker models for dialog 2
[training scripts\] Contains all model training scripts

A.4. SDR, SIR, SAR Values for 2 Microphones for the Anechoic
Recordings

On the following pages you can find the complete evaluation results for all combinations of
2 microphones for the anechoic recordings, containing the SDR, SIR and SAR values for
all evaluated speaker distances (180◦,135◦,90◦,45◦,25◦).
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Figure A.1.: SDR, SIR, SAR for 2 microphones, 180◦ speaker distance, anechoic
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Figure A.2.: SDR, SIR, SAR for 2 microphones, 135◦ speaker distance, anechoic

77



A. Appendix

(1
,2

)
(1

,3
)

(1
,4

)
(1

,5
)

(1
,6

)
(1

,7
)

(1
,8

)
(2

,3
)

(2
,4

)
(2

,5
)

(2
,6

)
(2

,7
)

(2
,8

)
(3

,4
)

(3
,5

)
(3

,6
)

(3
,7

)
(3

,8
)

(4
,5

)
(4

,6
)

(4
,7

)
(4

,8
)

(5
,6

)
(5

,7
)

(5
,8

)
(6

,7
)

(6
,8

)
(7

,8
)

SI
R

 S
p

ea
ke

r 
1

7
,0

4
2

5
5

,9
4

8
5

6
6

,6
7

7
7

8
,9

7
5

9
8

9
,5

8
1

9
3

,3
8

4
0

7
5

,3
8

3
2

8
6

,3
8

3
3

5
6

,2
2

3
8

2
9

,1
9

5
5

5
1

,7
6

8
4

4
,8

2
0

9
4

5
,8

3
7

6
8

7
,1

2
6

5
8

2
,5

1
9

9
4

,4
9

1
1

9
6

,8
1

3
4

1
6

,9
8

9
4

1
6

,4
0

1
0

1
5

,7
7

3
1

5
7

,4
8

9
3

2
7

,1
8

6
4

8
1

0
,4

0
8

8
,5

2
5

1
5

9
,7

9
7

2
3

7
,8

3
1

0
1

7
,7

2
3

2
5

8
,6

7
3

5
1

SI
R

 S
p

ea
ke

r 
2

5
,8

2
5

0
8

6
,0

1
9

9
3

6
,1

2
8

1
9

8
,5

5
1

7
3

7
,1

8
2

8
2

,7
0

8
7

2
4

,9
2

0
2

3
7

,3
6

4
9

5
6

,1
6

8
2

7
9

,2
4

4
3

2
2

,1
6

2
4

8
5

,3
2

0
7

7
5

,6
3

8
5

9
7

,1
3

4
4

2
3

,2
7

1
9

6
6

,1
5

5
9

7
,6

9
1

3
4

7
,1

8
9

3
3

7
,8

4
0

8
4

7
,3

5
5

1
8

8
,3

9
1

4
2

7
,4

4
7

9
6

1
1

,6
6

0
6

9
,0

2
1

3
9

,4
2

5
0

4
8

,0
5

8
3

4
6

,6
6

5
0

4
7

,3
0

9
7

7

02468

1
0

1
2

1
4

SIR [DB]

M
ea
n	
SI
R
	v
al
ue
s	
fo
r	
al
l	c
om

bi
na
ti
on
s	
(x
,y
)	
of
	2
	m
ic
ro
ph
on
es

(1
,2

)
(1

,3
)

(1
,4

)
(1

,5
)

(1
,6

)
(1

,7
)

(1
,8

)
(2

,3
)

(2
,4

)
(2

,5
)

(2
,6

)
(2

,7
)

(2
,8

)
(3

,4
)

(3
,5

)
(3

,6
)

(3
,7

)
(3

,8
)

(4
,5

)
(4

,6
)

(4
,7

)
(4

,8
)

(5
,6

)
(5

,7
)

(5
,8

)
(6

,7
)

(6
,8

)
(7

,8
)

SA
R

 S
p

ea
ke

r 
1

1
0

,2
8

5
9

1
0

,3
9

5
9

1
0

,3
5

5
6

9
,4

4
9

6
8

8
,2

5
6

7
5

,9
4

0
0

7
7

,0
0

7
9

8
9

,9
9

3
6

9
9

,5
1

4
5

9
8

,2
5

9
0

1
4

,3
6

8
4

9
8

,0
7

8
8

6
9

,3
4

2
7

4
7

,4
4

1
9

4
3

,7
9

9
3

7
7

,5
0

2
9

3
8

,9
4

4
5

8
9

,7
9

8
8

8
5

,8
0

7
4

8
8

,5
8

7
3

8
9

,2
8

6
5

8
9

,8
5

9
9

4
9

,1
2

4
1

9
9

,1
5

9
2

5
9

,6
8

5
3

4
9

,6
9

1
1

4
9

,3
0

4
4

2
8

,2
7

7
7

3

SA
R

 S
p

ea
ke

r 
2

1
0

,6
3

1
8

1
0

,2
6

7
5

9
,8

4
9

5
1

1
0

,3
7

8
8

,6
2

5
4

4
5

,0
7

5
6

2
7

,4
9

4
7

5
1

1
,2

0
8

4
9

,9
8

7
9

3
8

,8
6

8
7

9
4

,8
4

6
1

9
8

,1
0

4
6

7
9

,6
2

8
3

1
8

,4
1

4
3

4
5

,5
9

9
1

6
8

,5
7

2
3

8
9

,8
6

1
4

8
1

0
,1

3
8

1
8

,6
7

3
9

8
1

0
,0

4
1

1
0

,3
8

0
5

1
0

,2
6

3
2

1
1

,9
2

2
7

1
0

,8
1

3
5

1
1

,1
9

7
4

1
0

,7
7

3
5

9
,7

0
7

8
5

7
,3

8
3

5

02468

1
0

1
2

1
4

SAR [DB]

M
ea
n	
SA
R
	v
al
ue
s	
fo
r	
al
l	c
om

bi
na
ti
on
s	
(x
,y
)	
of
	2
	m
ic
ro
ph
on
es

(1
,2

)
(1

,3
)

(1
,4

)
(1

,5
)

(1
,6

)
(1

,7
)

(1
,8

)
(2

,3
)

(2
,4

)
(2

,5
)

(2
,6

)
(2

,7
)

(2
,8

)
(3

,4
)

(3
,5

)
(3

,6
)

(3
,7

)
(3

,8
)

(4
,5

)
(4

,6
)

(4
,7

)
(4

,8
)

(5
,6

)
(5

,7
)

(5
,8

)
(6

,7
)

(6
,8

)
(7

,8
)

SD
R

 S
p

ea
ke

r 
1

4
,3

1
8

1
5

3
,7

0
0

5
1

4
,2

2
8

0
4

5
,4

1
7

1
3

4
,9

0
2

1
0

,7
3

2
8

2
,2

0
4

0
9

3
,7

1
4

0
9

3
,7

1
2

4
8

4
,9

1
3

9
-1

,1
0

2
2

,4
1

7
7

9
3

,4
5

1
3

9
3

,1
3

8
9

8
-0

,9
9

0
6

1
,8

5
5

0
5

3
,6

9
3

5
3

,8
9

7
6

1
2

,1
9

8
0

6
2

,8
9

8
7

6
4

,1
2

5
8

3
4

,0
2

5
7

6
5

,5
6

1
0

3
4

,7
6

7
6

9
5

,6
5

4
6

5
4

,5
8

3
1

4
4

,2
9

6
0

1
4

,5
2

4
9

2

SD
R

 S
p

ea
ke

r 
2

4
,0

7
0

3
2

4
,0

0
3

7
7

4
,0

0
6

9
6

5
,7

5
4

8
8

4
,0

3
1

6
4

-0
,2

2
2

4
2

,3
1

7
0

5
5

,2
1

5
4

3
4

,0
9

3
1

8
5

,5
3

6
9

5
-0

,6
6

3
2

,7
7

0
2

4
3

,5
4

4
2

4
,0

9
8

5
5

0
,4

6
8

1
7

3
,6

1
8

0
9

4
,9

7
9

5
6

4
,7

7
3

8
4

4
,6

9
1

4
5

4
,9

0
0

2
5

,5
0

8
6

4
,9

4
9

8
5

7
,4

2
8

4
5

6
,0

9
7

0
2

6
,4

6
7

9
9

5
,3

1
4

3
9

4
,2

4
9

7
7

3
,4

9
4

2
4

-2-1012345678

SDR [DB]

M
ea
n	
SD
R
	v
al
ue
s	
fo
r	
al
l	c
om

bi
na
ti
on
s	
(x
,y
)	
of
	2
	m
ic
ro
ph
on
es

Figure A.3.: SDR, SIR, SAR for 2 microphones, 90◦ speaker distance, anechoic
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A.4. SDR, SIR, SAR Values for 2 Microphones for the Anechoic Recordings
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Figure A.4.: SDR, SIR, SAR for 2 microphones, 45◦ speaker distance, anechoic
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Figure A.5.: SDR, SIR, SAR for 2 microphones, 25◦ speaker distance, anechoic
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A.4. SDR, SIR, SAR Values for 2 Microphones for the Anechoic Recordings
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