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Abstract

The Institute for Data Processing at the Technical University of Munich develops an online
teleconference system. At the moment the system consists of separate devices and algo-
rithms, which were implemented in previous works. This includes the recording hardware
such as the microphone array and the software for the speaker localisation, separation and
recognition. In this thesis I connected the algorithms at the recording side to make channel
assignment possible. Channel assignment means to put every speaker at an own audio
channel to support the human hearing system at the playback side via 3D-sound.

The other task of this thesis is to evaluate the teleconference system, in special the
speaker identification approach. This is done in two ways. The first compares the devel-
oped recognition system to an offline speaker diarization algorithm from the ICSI, to have
a minimal reachable threshold for the Diarization Error Rate. This is also used to find the
best parameters for the recognition task. In the second evaluation simulated and real con-
ferences are tested to achieve a quality statement about the whole teleconference system
in view of the channel assignment.

Der Lehrstuhl für Datenverarbeitung der Technischen Universität München entwirft ein on-
line Telekonferenzsystem, das momentan aus den einzelnen Einheiten und Algorithmen
besteht, welche in vorherigen Arbeiten entwickelt wurden. Dies beinhaltet die Aufnah-
megeräte wie das Mikrophone Array sowie die Software für die Sprecherlokalisierung,
Separierung und Erkennung. In dieser Arbeit werden die einzelnen Komponenten der
Aufnahmeseite eines Telekonferenzsystems verknüpft um Channel Assignment möglich
zu machen. Die Definition von Channel Assignment ist, jeden Sprecher auf einem eige-
nen Audiokanal zu übertragen, um auf der Abspielseite das menschliche Gehör durch
3D-Sound zu unterstützen.

Die andere Aufgabe dieser Arbeit ist das Telekonferenzsystem, im besonderen die
Sprechererkennung, zu evaluieren. Dies wird auf zwei unterschiedlichen Wegen umge-
setzt. Der Erste vergleicht die umgesetzte Erkennung mit einem, von der ICSI erhaltenen,
offline speaker diarization Algorithmus um eine minimale Schwelle für die Diarization Error
Rate zu erhalten. Diese Evaluation wird umgesetzt um die besten Parameter für Sprecher-
erkennung zu finden. Die zweite Testreihe evaluiert das ganze Telekonferenzsystem durch
eigene Aufnahmen in Bezug auf das Channel Assignment evaluiert.
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1. Introduction

Teleconference Systems will play a more important role in meetings than they did in the
past. This is due to increasing travel expenses. Higher prices for fuel and, of course,
the unusable travel time are two points in this calculation. On the other hand there is an
environmental aspect. CO2 is a big problem nowadays and teleconference systems can
take a part in reducing the CO2 emission.

This is accompanied by the lack of innovations in teleconference systems in the past.
The last few years show that there is an interest in a bigger innovation width, but most of
the new technologies and algorithm have not been fully developed yet. I will show some
examples of these approaches in a later chapter of this thesis. Another point is the defi-
nition of an evaluation standard, which helps to compare different approaches and shows
what an important role teleconference meetings will have in the future. An example for
such a standard is [19]. The main problem at the moment is to simulate a real conversa-
tion between humans in meetings where the participants are not sitting in the same room.
Problems like helpful support in case of multiple people speaking simultaneously has to
be solved. At this point I would like to refer to the Cocktail party effect [12]. In this work
the author shows, that people can concentrate on one speaker even with noise and other
conversations around them. Now the idea is to give participants of meetings the same or
similar ways to define the actual speaking person. To make this happen you need algo-
rithms which locate, separate and recognise the actual speaker in order to transport each
participant on a separate channel and make 3D-sound possible. The recognition algorithm
is needed, too, to give a visual help about the actual speaker. If these three technologies
are perfected a conversation similar to real meetings is possible.

In the next chapter I will motivate this thesis and in the following I will define how we will
try to solve the problems mentioned above. In the last part of this chapter I will give an
outline on the rest of this work.

1.1. Motivation

"Over 80% of knowledge workers communicate on a regular basis with co-workers in other
offices and nearly 90% interact with people outside the company in other offices." is said
in the article of Debra Chin [13]. In her article it is also said, that a big part of these
conversations are made by using the "old ways", like telephone, email and face to face
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1. Introduction

meetings. In my opinion not only the last point can be replaced by a modern, cheap and
effective teleconference approach.

Telephone calls are a pretty good way to exchange information between two humans.
But very often the information has to be shared with a couple of people and there the classi-
cal telephone only has the possibility to call everybody separately or to make a conference
call in which it is hard to tell "who is speaking".

If information is exchanged with emails and the mailing list contains many entries dis-
cussions can end in an email chaos and the chronology is often no longer reproducible. In
a teleconference you do not have this problem, because speech recognition approaches
are already showing very good results today [19].

Face to face meetings are only possible if the participants work at the same place. If this
is not the case, the above mentioned points of costs, time effort and environmental causes
has to be count to the negative effects of face to face meetings.

Nowadays meetings often use headsets, which seems to be difficult, because of the
cable there are always limitations in mobility and on the other hand the wireless headset
needs a loaded battery which is a growing problem as the number of participants become
bigger. The more participants, the bigger the chance of someone having to change the
batteries. Without additional technology it is in this case not possible to make 3D-sound.
Again, this makes it hard to differ between the speakers. Of course there would be the
possibility to show a visual speaker name, but a 3D-sound is faster and easier to interpret
for the human hearing apparatus.

A possible solution for the named problems is a video conference. Here all the points
are solved, but new issues occur because of the expensive equipment and time effort to
make the hardware ready for a meeting. So I think a better solution should be found.

In my opinion new approaches in teleconference systems can be used to find answers
for the named issues. The audio signal must be recorded by a microphone array. Now
every speaker can be separated, located and recognized. Through this it is possible to
transmit every speaker in its own audio channel and generate 3D-sound. So participants
on the remote side can distinguish between the speakers because of the sound source
location. A speaker recognition system is here helpful, too. Another point is that a speaker
recognition system can label the spoken words with a name through which a diarization
is possible. In my opinion such a teleconference system can help much in the future of
meetings.

1.2. Definition of this thesis

The first point of this thesis is to combine the separate devices of the teleconference sys-
tem. This should happen in a manner, that a stable audio output with high quality is
generated. The delay has to be kept as short as possible without a loss of performance.

The second part is to evaluate the speaker recognition and the whole teleconference
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system from the Institute for Data Processing at the Technical University of Munich. For
the first evaluation a speaker diarization approach should be found and implemented if it is
necessary, what of course needs a big time investment in reading about related works. Af-
ter this an evaluation criterion has to be found, so that the speaker recognition and diariza-
tion approach can be significantly compared. For that matching audio files are needed.
We decided to compare our speaker recognition approach with an offline one, because
we think that a state of the art speaker diarization is the line we nowadays can maximally
reach with an online implementation. I will point here out again, that this test procedure
does not include the whole teleconference system. It only evaluates the speaker recogni-
tion system.

The second evaluation should bring results about the whole system. We have three
different speaker localisation and separation approaches implemented. Now we want to
test how good the evaluation winner of [21] works with the speaker recognition system. For
that conference recordings have to be simulated to evaluate the combined teleconference
system in sight to the channel assignment. A point of this thesis is to define an evaluation
criterion, too. The evaluation should contain the possibility to interpret our results in the
competition to other state of the art approaches.

So the last task of this work is to find the state of the art in speaker recognition systems
and compare our work with them.

1.3. Outline of this thesis

In chapter 2 an overview of other speaker recognition systems, and approaches to im-
prove such systems will be given. Also complete state of the art teleconference systems
and channel assignment approaches will be explained. In chapter 3 of this thesis I will
introduce the teleconference system from the Institute for Data Processing. The micro-
phone array, the preprocessing steps, the speaker localisation, separation and recognition
approaches will be introduced here. The channel assignment algorithms developed in this
thesis are discussed, too. The next section 3.7 will introduce the speaker diarization im-
plementation we chose and the evaluation ideas we had, too. In chapter 4 the results of
the evaluation will be shown. The last part will give a conclusion and a look into the future
of this teleconference systems.
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2. Related Works

Speaker recognition, separation and the localisation will play an important role in a lot of
future technologies. For example a Smart Home without a good speaker recognition and
localisation is impossible. A Smart Home has to know who gave the command to react
in a learned manner. The other point is the localisation, which is needed to define where
something, like opening a door, should happen. The robotic field is another example where
through recognition and localisation a good simulated human to human conversation is
possible, because the head of the robot adjusts to the speaker and reacts again individually
specific. The last example which is mentioned here is the psychology. In the future much
more evaluation of speaker behaviour can be made if the whole process works completely
automatic. Simple things like "who spoke how often" and "which words were said" till more
difficult statements, like "what emotions does the person feel", can be made. But again, a
reliable speaker recognition is needed.

In this chapter an overview about different speaker recognition systems and some in-
teresting parts of them is given. Here the relevant steps of speaker recognition will
be defined and in every step some similar algorithms will be shown. Additionally a
brief introduction in speaker localisation and separation algorithms will be given. Then
whole systems, that are related to the one introduced in chapter 3, should be ex-
plained. After that some relevant algorithms or systems to channel assignment and
speaker localisation in acquisition to speaker recognition will be presented. The last
point in this chapter will introduce important evaluation standards and their adaptation to
our case.

2.1. Overview

Speaker identification systems can be divided into different approaches. The most mean-
ingful is the distinction between an online and an offline approach. In the first case the
whole computation of the meeting should happen in nearly real time conditions. That is
called speaker recognition. In the second case the audio file from a meeting is used to
identify "‘who spoke when"’ in an offline scenario. So no real time conditions have to be
considered. The name of this is speaker diarization. In this chapter the main attention lies
in the online approaches.

A second differentiator are the text-dependent and the text-independent speaker iden-
tification [5]. For example a text-dependent recognition is often used in an authentication
process with a keyword, also a known word or text. In the thesis of Homayoon Beigi [4]
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a third model is named, the text prompted speaker identification. This means that the
text is known beforehand by the system, but not by the speaker. In this thesis only the
text-independent case is important. This means that it is beforehand not known what the
speaker will say and therefore it is necessary to use speaker dependent features to identify
the person who speakes. The text-independent approaches will only be observed in this
chapter.

Another difference are techniques which are used for meetings. It is possible to identify
the speaker with the help of video streams or with a combination of video and audio, or like
in this work, identification is only computed through audio. Because of that this chapter will
concentrate on audio only approaches.

At this point the more general components, then in section 3.5.3, of a speaker recog-
nition system will be introduced. The principle of a speaker recognition system can be
divided into two steps:

1. Training step

2. Recognition step

The training phase is required to get features that are typical for a speaker. This is
done beforehand the meeting in an, for example, introduction round. After transforming
that training features into a speaker model the recognition of a speaker is possible through
comparing the speaker attributes of a meeting against the model created in the training
phase. By using an Universal Background Model (UBM) the speaker models get more
robust. An UBM is a collection of a lot of speaker data from a big amount of meetings.

In the next section the localisation and separation approaches, developed by the Institute
for Data Processing are introduced. Afterwards an overview about the different speaker
dependent features will be given. In the next part some different speaker models will be
introduced and in the following Voice Activity Detection approaches and compensation as
normalization methods will be shown. Channel assignment is the topic of the next section
and the last one is about other teleconference approaches.

2.2. Speaker localisation and separation

After the recording the first processing steps include the localisation and separation of
the actual speaker. To have a choice between different algorithms and their quality more
implementations are made [16], [55] and [15]. A good conclusion about the quality of these
approaches is given in [21]. For the localisation of the speaker, two ways are possible.
The first is called Steered Response Power - Phase Transformation (SRP-PHAT) in the
combination with a particle filter and the second one uses a binaural algorithm. Both
algorithms deliver a position for the actual speaker. After that it is tried to separate the
actual speaker from noise and other simultaneously speaking meeting members. The
eight channels, one from every microphone, are reduced to the same amount of channels
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as the number of active speakers. If there are more than one speakers active, every
channel contains speech but in every channel only one speaker is the dominant. At the
Institute for Data Processing following algorithms were implemented:

• Blind Source Separation (BSS) [16]

• Geometric Source Separation (GSS) [55]

• Binary Masking [15]

In this section a introduction of ever localisation and separation algorithm will be given.

Speaker RecognitionLocalisation Separation

Micro-
phone array Audiodata

Blind 
Source 

Separation

SRP – PHAT 
+ Particle 

Filter

Binaural 

Geometric 
Source 

Separation

Binary 
Masking

Voice 
Activity 

Detection

Feature 
Extraction

Pattern 
Matching

Models
GMM

Training 
Material

LocalisationUBM

Adaption

Figure 2.1.: The teleconference system from the Institute for Data Processing of the Technical
University at Munich. In the localisation and separation column only the best algorithm is used.

2.2.1. Localisation

In figure 2.1 it can be seen that at our institute two localisation approaches are imple-
mented. The first is the so called binaural localisation [15] which has been adapted in
[44] from the robot field to the teleconference scenario with eight microphones. The idea
behind this algorithm is to compare a speech utterance with the in advance measured im-
pulse responses to locate the source. The second localisation algorithm is the so called
Steered Response Power - Phase Transform (SRP-PHAT) [16]. This approach uses the
geometric information from a beamformer and the phase difference from the microphone
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pairs to locate a source. A particle filter makes the algorithm more time stable trough
source tracking.

2.2.2. Separation

In this section the separation algorithms are explained. The separation is first of all needed
to separate the speakers out of a mixture of noise and other talking persons. For humans
this is not a problem but the mathematical definition of this issue is a challenge.

In this section a short introduction to every algorithm will be given.
Blind Source Separation (BSS) is the task to calculate out of mixture the separated com-

ponents and that without the knowledge about the source or the mixing process [36]. The
developed algorithm is gathered from the work [55]. The idea is to use the statistical in-
dependence between different sources and try to maximize it, because it can be assumed
that

• The components of different sources within one frequency bin are independent

• The components of one source over all frequency bins are dependent.

This problem is defined in equation 3.2 and has to be solved. One approach is the
Independent Component Analysis. This algorithm tries to calculate

ŝ(t) = W ·x(t) = A−1 ·x(t). (2.1)

A flow diagram of the approach shows figure 2.2. For more details I want to refer to [55].

STFT
Subspacef
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Spectralf
Compen-

sation
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xN
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PCA

x1
ff

PCA s1
ff

PCA

sN
ff

PCA sN
ff

s1
ff

s1(t)

sN(t)

Figure 2.2.: All algorithms used in the Blind Source Separation [55]
.

The second approach is the Geometric Source separation which was implemented in
[16]. This algorithm uses a combination of beamforming and BSS to solve the separation
issue. A more detailed definition can be found in chapter 3, because it can be anticipated
that this approach was the evaluation winner in [21].

The last implemented algorithm is the so called binary masking [15]. This separation
segments the signal in the frequency domain into small bins. Every sound source is domi-
nant in some certain frequency bins and so every segment can be labelled with a source.
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2.3. Speaker dependent features

2.3. Speaker dependent features

The biggest effort in speaker recognition is to calculate speaker dependent features that
are as robust as possible against session variability, which means that a speaker never
has the same emotional state or health constellation in two meetings [30]. Channel dif-
ferences have to be considered, under the point of session variability, too. So the elected
speaker features are very meaningful for the system quality and they should have following
characteristics [31]:

• A large between-speaker variability and a small within-speaker variability

• A robust noise and distortion behaviour

• A frequent and natural occurrence in speech

• Easy to measure from a speech signal

• Difficult to impersonate

• Not be affected by the speaker’s health or long-term variations in his voice.

• The number of features should be small [46]

The last point in the list above is because of the exponentially increasing effort of training
material with growing feature number. In chapter 4 some experiments, showing this, can
be found.

In the following sections the different speaker features will be introduced. First I will
write about short-term spectral features that are 10-30 ms long and were extracted out of
the vocal tract informations. The second section will introduce the voice source features
which are typical for the glottal flow [31]. The next section will show an overview about the
spectro-temporal characteristics and the following about prosodic features which contains
information about the speech rhythm and intonation. So it is easy to imagine that these
features need a longer time period of speech to be extracted and out of that fact their
qualification for an online speaker recognition system is limited. The last section shows
only a short overview about the high-level features.

2.3.1. Short-term spectral features

Short-term means that the signal is long enough to contain speaker dependent information
and on the other hand short enough to be assumed as stationary. In practice the frames
are in the most cases 20 to 30 milliseconds long and following out of that these features
can be used under real-time conditions.

For all short-term spectral features a pre-emphasis and a windowing has to be done.
Pre-emphasis filter is necessary to give high frequencies a bigger intensity and balance
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out the human vocal characteristics. The windowing is normally made by a Hamming
window and is needed because of the necessary finite length of the signal for the next
processing step, the discrete Fourier Transformation (DFT). In practice of course the faster
Fast Fourier Transformation is used to transform a signal into its frequency components.

Some additional pre-processing improvements can be applied, too. A pitch detector is
one possibility to get a higher time-frequency resolution after the DFT and this can achieve
better speaker features [41], but only with some extra algorithms.

The next common step is to divide the frame in frequency bands due to the psycho
acoustic Bark scale [64]. This means that the bandpass filters become closer and in
smaller gaps to each other in the lower frequency area. Usually the filters are overlapping.
The last step is to collect the features and this is summarized in the following sections.

Mel Frequency Cepstrum Coefficients

Mel Frequency Cepstrum Coefficients are the most common features which were used
in this thesis. An exact description can be found in chapter 3 and because of that only
a short one is given here. To receive MFCCs first a psychoacoustic filter bank (in this
thesis a Mel filter bank) is applied. Then the logarithm of the bandpass filtered signals,
followed by a cosine transformation is computed. Additionally it should be mentioned, that
Mel Frequency Cepstrum Coefficients were difficult to beat in practice [31].

Mel Frequency Discrete Wavelet Coefficients

In [4] the Mel Frequency Discrete Wavelet Coefficients are described as MFCCs with one
difference, which takes part in the last processing step. Instead of discrete cosine transfor-
mation of the logarithm, a discrete wavelet transform is used which includes the so called
basis wavelet. In [4] it is claimed, that these features are more stable in a noisy environ-
ment.

Spectral Subband Centroids

The principle of this technique is to use the centroid frequency of each subband. Every
frequency band is divided into parts that are as long as half the sample frequency. So the
results are M subbands [54]. Now the mth centroid feature Cm is calculated through

Cm =

∫ hm
lm f ·wm( f ) ·P f ( f )d f∫ hm

lm wm( f ) ·P f ( f )d f
. (2.2)

where lm and hm are the lower and higher constraint of the mth centroid, wm( f ) stands
for the filter shape and P f ( f ) is the power spectrum at the location f . Out of the single
features Cm a speaker model can be calculated. In [54] it is said that Spectral Subband
Centroid features work better than MFCCs if the conditions are very noisy.
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Line Spectral Frequencies

Linear Spectral Frequencies are gained out of the linear prediction which will be introduced
here first. Linear prediction tries to predict the next signal value x[n] out of the past p signal
values x[n− p]. The filter

H(z) =
1

1−∑
p
k=1 ak · z−k (2.3)

determines the equation for the signal which can be calculated by

x[n] =
p

∑
k=1

ak · x[n− k]+ e[n]. (2.4)

The error e[n] is a value which results out of the prediction. The prediction coefficients
ak can be used as speaker features because every speaker has an own prediction. This
coefficients will usually be calculated out of the Levinson−Durbin algorithm [28]. But they
are not often used as features because of their stronger correlation and instability [31]
compared to the following two algorithms.

The Line Spectral Frequencies are calculated through the roots of

P(z) = A(z)+ z−(p+1) ·A(z−1), (2.5)

Q(z) = A(z)− z−(p+1) ·A(z−1) (2.6)

where A(z) is dependent from the considered p signal values. For example

A(z) = 1−a1 · z−1−a2 · z−2 = 1−2 ·ρ0 · cos(2) · z−1 +ρ
2
0 · z−2 (2.7)

with 0 < ρ0 < 1 and 0 < f0 < 0.5.

is the equation for a second order prediction. To stay at this example it can be shown
[28] that P(z) and Q(z) can be depicted as

P(z) = 1− (a1 +a2) · z−1− (a1 +a2) · z−2 + z−3, (2.8)

Q(z) = 1− (a1 +a2) · z−1 +(a1 +a2) · z−2− z−3 (2.9)

and with some transformations we get our Linear Spectral Frequency coefficients for the
second order case

cos(2π f1) = ρ0 cos(2π f0)+
1−ρ2

0
2

(2.10)

cos(2π f2) = ρ0 cos(2π f0)−
1−ρ2

0
2

(2.11)

with f1 < f0 < f2 and f1→ f0 and f2→ f0
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In [28] it is proven that this theory is effective for higher order coefficients. The so
obtained features are very sensitive, because the quantization of one coefficient results
in changes only around that frequency. These features are rarely used, because of their
correlation and their lack in robustness [31].

Linear Predictive Cepstral Coefficients

The Linear Predictive Cepstral Coefficients (LPCCs) are derived from the Linear Prediction
Coefficients and the introduction of section 2.3.1 is here available too. The next step is to
calculate with the Linear Prediction Cepstrum Filter

H(z) =
G

1−∑
p
k=1 an · z−k (2.12)

the LPCCs. G is the gain parameter given by the minimum mean squared error. The
theory here will not go into further detail. It only should be mentioned that from equation
2.12 the logarithm is taken and then the derivatives are calculated. To the so received
cerpstral equation some more calculations and transformations are conducted. The result

ĥ[n] =


0 n > 0
ln(G) n = 0
an +∑

n−1
k=1

( k
n

(
ĥ(k)an−k 0 < n < p

∑
n−1
k=n−p

( k
n

(
ĥ(k)an−k n > p

(2.13)

contains now the LPCCs which can be used to produce a speaker model. This calcu-
lation is not as complex as the computation of the Linear Spectral Frequency coefficients
[28]. In contrast to the Linear Prediction Coefficients there is only a finite number of coeffi-
cients. In [57] it is written, that LPCCs has a lower computational price than MFCCs.

Perceptual Linear Prediction

These features are introduced in [26] for speech analysis and can easily be used for
speaker recognition. After applying the pre-processing steps, mentioned in section 2.3.1
we got

Θ(Ωi) =
2.5

∑
Ω=−1.3

X(Ω−Ωi) ·Ψ(Ω) (2.14)

where Ω is the bark-frequency, Ψ is the critical band curve for the dividing filter and X
is the recorded speech spectrum. This result is the pre-emphasised signal by an equal
loudness algorithm, which is done to create a sensitivity to human hearing. As last step,
before receiving the features, an intensity loudness power algorithm is applied to give a
consideration to the nonlinearity between loudness and sound. After an inverse discrete
Fourier Transformation the M+1 autocorrelation values were taken to solve the equation
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2.3. Speaker dependent features

for the Mth order autoregressive coefficients. In [26] the authors describe these features
as computationally efficient. For more details I want to refer to the mentioned work.

Modified Group Delay Feature

Usually the features will be computed through the magnitude spectrum but the possibility
to calculate them out of the phase spectrum [25] is given too. Of course a new feature type
is needed for this case. The first step is to calculate the group delay function

τ(ω) =−dθ(ω)

dω
(2.15)

out of the unwrapped phase function θ(ω). A more signal based equation is

τ(ω) =

(
XR(ω)YR(ω)+XI(ω)YI(ω)

S(ω)2γ

)
with 0 < γ < 1 (2.16)

where X(ω) and Y (ω) are the Fourier transformed from x(n) and n ·x(n). The indices R
and I suits to the real and imaginary part of X(ω) respectively Y (ω). S(ω) is a smoothed
version of |X(ω)|. To reduce spikes in the formant location a modified group delay function

τm(ω) =

(
τ(ω)

|τ(ω)|

)
· (|τ(ω)|)α with 0 < α < 1 (2.17)

is calculated. After that the features were computed through

c(n) =
N f

∑
k=0

τ(k) · cos
(

n(2k+1)π
N f

)
. (2.18)

The use of the second form of a discrete cosine transformation decorrelates the features.
The authors of [25] are claiming that these features achieve similar or even better results
than the common MFCCs.

2.3.2. Voice Source Features

Voice Source Features are speaker dependent and include glottal excitations. Given the
assumption that the vocal tract and the glottal source are independent the Voice Source
Features can be measured through calculating out of the received signal and the inverse
vocal tract filter the source signal. The obtained features are no strong speaker recognition
attributes but they can be used to improve the Short-term spectral features [31]. In the
following some of these features will be introduced.
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Autoassociative Neural Network Model

This approach calculates out of 19 LPCCs features a new and additional feature model.
This works through putting the features into this Autoassociative Neural Network Model
and compare the output to the input [61]. So an error Ei for frame i can be calculated. Now
the confidence value

ci = exp−Ei (2.19)

can be computed. This value can be used as additional speaker feature. In [61] it is
mentioned that the there developed features may provide robustness against channel and
handset effects.

Glottal Flow Derivative Waveform

The method described in [43] uses features which can be divided in coarse and fine fea-
tures. Coarse features try to modulate the glottal flow mathematically and divides itself
again in an open, a close and a return phase. The duration of one phase to the next is
used as characteristics. The fine features have the same durations as the coarse ones
additionally it concludes the closed and opened phase for formant modulation. The other
difference of these features is that the fine ones calculate the energy of a phase.

The problem with the fine features is that they are hard to estimate. To calculate them the
glottal flow derivative is used. This method estimates the inverse vocal tract filtering of the
waveform through which the glottal pulse can be located. Formants are the lowest stage
with which sounds can be depicted. The location makes it possible to define the region
where the formant modulation takes place. This can be calculated through the covariance
method and the linear prediction. The result F(i) is used to minimize

D(n0) =
n0+4

∑
i=n0

|F(i)−F(i−1)| with 1≤ n0 < N−Nω −5 (2.20)

over the region n0 to n0 +4 in one frame [43]. In this case F(n) stands for the formant
values and Nω = N/4 is the length of the covariance analysis window. Now the mean and
deviation in the stationary region for the first formant is estimated.

To get the fine features from the glottal flow derivative waveform the estimated course
features have to be subtracted. The resulting features can then be used for speaker identi-
fication. For more information I refer to [43], where additionally it is said that this extension
can provide a system improvement of around 5% against their original speaker identifica-
tion approach.
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Wavelet Octave Coefficients of Residues

In the work [63] another algorithm for voice source feature extraction is introduced. After
some preprocessing steps linear predictive inverse filtering is applied for a frame length of
30 milliseconds. In the equation

e(n) = x(n) ·
12

∑
k=1

ak · x(n− k) (2.21)

the filter coefficients ak are calculated through an autocorrelation algorithm. The neigh-
bouring frames e(n) are joined to receive the vocal tract signal. After locating the pitches
in the residual signal a Hamming windowing with a length of three pitches is executed
and as result the windowed residual signal eh(n) is received. The next step is the wavelet
transformation

w(a,b) =
1√
|a|∑n

eh(n) ·Ψ∗
(

n−a
b

)
(2.22)

with a = {2k|1,2 · · · ,K} and 1≤ b < N

which includes the scaling parameter a, b and the wavelet basis function Ψ?. For more
information on that I want to refer to [63]. The signal now has to be divided in frequency
sub-bands of K octave levels. Each sub-band is divided again in M equal parts. The
coefficients

W M
k (m) =

[
w(2k,b)|b ∈

(
(m−1)N

M
,
mN
M

)]
(2.23)

are calculated with 1≤m < M and 1≤ k < K. The last step, before getting the features,
is to take the two-norm from W M

k . In [63] it is said, that these features give an improvement
of two percent in relation to MFCCs used alone.

Voice source cepstrum coefficients

The method in [23] describes other features, which are calculated out of the Linear Pre-
dictive Cepstrum (LPC). To receive these features the signal x(n) is split into a voiced
and an unvoiced part with a frame length of 32 milliseconds and the next frame starts 10
milliseconds after the beginning of the first frame. The Prediction order K is 16. For the
voiced part the closed phases of the glottal in the frame are detected, so the closed phase
LPC coefficients for a frame can be estimated. Out of the unvoiced part the autoregres-
sive spectral envelope covariance LPC coefficients for each frame are calculated. To the
spectral envelope

X(n) =
σu

∑
K
k=0 ak · exp− j2πnk/Ns

(2.24)
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a mel-filter bank, with r = 26 filters, is applied. In equation 2.24 σu is the magnitude of
the closed-phase LPC and Ns is the frequency resolution. Out of the resulting signal Y (n)
the voice tract cepstrum coefficients, a pre step to the source features, can be calculated
through implementing a cosine transformation to Y (n) which looks like

cvt =
Nr−1

∑
r=1

log(Y (r)) · cos
(
(2r+1)mπ

2Nr

)
. (2.25)

For the whole original signal x(t) normal MFCCs c(n) are calculated too. The subtraction
cvt(n)− c(n) yield the final voice source feature cvs. For more information I want to refer
to [23]. Here it is claimed too, that these features yields a 3% better misclassification rate
then MFCCs features.

2.3.3. Spectro-Temporal Features

Spectro-Temporal features are additionally used and in the most cases they are computed
out of short-spectral features. They usually show the transition between the features itself
and thus can improve the original ones. Here an overview about the most established al-
gorithms will be given. The first is the derivative from short-spectral features, for example
in the case of MFCCs these new features are called delta and double-delta coefficients
and represent the 1st and 2nd order time derivatives. An advantage of this method is that
this coefficients can be appended to the original features and so the system can easily be
improved [31]. Another way for LPC coefficients is described in [17]. Here is suggested to
use orthogonal polynomial coefficients as feature expansion. These coefficients represent
the mean value, the slope and the curvature of the time function. Some similar feature ex-
tensions will only be named and you can obtain more information on that in [31]. There are
regression line-, simple differentiation-, time-frequency principal- and data-driven temporal
filter-components. The modulation frequency is a speaker dependent feature, too.

2.3.4. Prosodic Features

Prosodic features are non-segmental which means that they need a certain amount of
time to be calculated. That of course is a problem in a real-time scenario, how it occurs
in a teleconference meeting. So they can not be used as recognition feature but as an
offline verifying feature that improves, for example, the speaker model adaptation. Typically
intonation patterns, speaking rate and rhythm can be measured and used as prosodic
features. How the features exactly can be computed goes beyond the scope of this thesis
but can be read in [31] or in [4].

2.3.5. High-Level Features

In [14] these kind of features were initiated. High-level means that these features are put
in the speaker lexicon. For example special speaker dependent words or utterances like
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"hmm" or "uhh" are used as features. Another idea is to use the sequence of words or the
position of a word in a sentence like "yeah <end>". Of course this features can not be used
as features for an online speaker recognition system, because of their time requirement
being to big and so they will not be discussed any further here. For more informations I
want to refer again to [31].

2.4. Speaker Models

Now for every speaker features are extracted out of the own speech signals. The next step
in a speaker recognition system is to create with the features, gained from an introduction
round, a model for every speaker. This makes it possible to compare a speech utterance
gathered from a meeting to every speaker model and then calculate the speaker prob-
ability for every conference participant. After that further processing steps, like channel
assignment and a graphical identification help, are possible.

In this section first the simple Vector Quantisation will be introduced followed by the com-
mon Gaussian Mixture Models. Then the newer Support Vector Machine will be defined.
The last part of this section is reserved for other, not common speaker models.

2.4.1. Vector Quantisation

Vector Quantisation is a model that promises a fast and easy computation of the proba-
bilities. Under the assumption that X = {x1, · · · ,xT} is the vector of the test features and
R = {r1, · · · ,rK} are the reference feature vectors received out of the training material.
Then the average quantisation distortion DQ(X ,R) is calculated through

DQ(X ,R) =
1
T

T

∑
t=1

min
1≤k<K

||xt − rk|| (2.26)

where ||xt − rk|| is the euclidean distance. The smaller DQ(X ,R) becomes, the bigger
the probability that the speaker was the source of the speech utterance. Often k-means or
another clustering method is used to reduce the vector set. In spite of the convenience of
this model in [24] it achieves, in an adapted version, comparable results in speaker recog-
nition as the more complex Gaussian Mixture Model. But in the most common literature the
Gaussian Mixture Models are preferred and much additional developments were published
here.

2.4.2. Gaussian Mixture Models

The Gaussian Mixture Model (GMM) is used in the teleconference system from the Institute
for Data Processing at the Technical University of Munich. Because of that I want to refer to
section 3.5.3 for the technical details. Here it should be said that GMMs are the state of the
art model and it is an extension to the Vector Quantisation through overlapping clusters.
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Further I want to mention some possible differences to the system introduced in this
thesis. In [31] it is said that a female and a male Universal Background Model can be an
advantage but in [52] this can not be proven for our system.

Another approach is to use a Monogaussian Model, for example in [7], which only uses a
single gaussian component with a full covariance matrix. This technique seems to achieve
not as good results in speaker recognition as normal GMMs but they are faster because of
the reduction.

The maximum a posteriori adaptation is not the only way to train GMMs out of an Uni-
versal Background Model. The maximum likelihood linear regression (MLLR) [34] is an
alternative. The idea is to calculate an adapted mean vector which is multiplied with a ma-
trix that maximizes the likelihood of the adaptation. Originally it is developed for a speech
recognition, but in the meantime it is used in speaker recognition systems, too.

Some approaches exist for speeding up the slow GMMs. Two of them will be substitu-
tional introduced here. The first is hash GMM that reduces the components of the original
GMM [3]. The idea in this approach is to train two GMMs. The first includes all needed
components. The second one is reduced and contains only a fraction of the complete one.
After that a shortlist is trained which contains index vectors from the small GMM to every,
best matching entry in the big GMM.

The second speeding up technology is described in [39]. In this work it is proposed to
reduce the input vectors with fixed-rate decimation, variable-rate decimation and adaptive-
rate decimation algorithms.

2.4.3. Support Vector Machines

Support Vector Machines are a newer approach to classify the speaker features. A two-
class classifier is used to calculate [9]

f (x) =
N

∑
i=1

aitiK(x,xi)+d (2.27)

where K(·, ·) is the so called kernel function. ti is either 1 or -1 and is named as the ideal
output. d is a bias constant. ai is a weighting value that has to fulfil the constraint that the
sum over aiti results in zero. Through the kernel function a transformation from the feature
space to the kernel space is calculated. For that there are some different kernel functions
which can not all be named here, but as an overview four will be mentioned:

• Generalized linear discriminant sequence Kernel

• Gaussian Supervector linear Kernel

• GMM L2 Inner Product Kernel

• High-Level Supervector Kernel
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In the thesis [9] it is claimed that the Support Vector Machine achieves similar results in
the NIST evaluation from 2003 as GMMs. The system gets better if a combination of them
both is used. For more information I want to refer to [31] and [10].

2.4.4. Other Models

The above mentioned feature models are the most common and auspicious models in
literature. But there are of course much more. Some of them will be named and shortly
described here. The first are Aural neural network models which consist of interconnected
processing units where every unit stands for a feature and there is a weighted connection
between the units [60].

In [40] the so called speaker mapping is introduced. The idea is to calculate information
about the speaker out of the linguistics. This is done with a linear prediction method. The
next step is to map the linguistic informations to the speaker informations via, in this case,
a neural network.

The last here presented model shapes every speaker in dependency to the other speak-
ers. Every speaker is modelled by an anchor model that contains features from reference
speakers [53, 31]. If the speaker of a new speech utterance has to be calculated, the ut-
terance is modelled by the anchor model and then the vector distance has to be compared
to get the best suited speaker.

2.5. Voice Activity Detection, compensation and normalization
methods

In this section I want to introduce first another Voice Activity Detection and name some
similar approaches. In the next part compensation and normalization methods will be
discussed.

The Voice Activity Detection (VAD) which is used in this thesis is usually an offline ap-
proach but through some adaptations, like a hard energy threshold or the dynamic thresh-
old which is adapted from frame to frame, it is valuable in online scenarios too. For more
informations I refer to 3.5.6.

There are some more approaches for an online VAD, which is introduced here. The
Long-term spectral divergence seems to be a reliable algorithm. The idea behind it is
to measure first the long-term spectrum envelope (LTSE) [45] of the noisy speech signal
spectrum X(k, l) where l is the frame number and k is the band issue. In the equation

LT SEN(k, l) = max{X(k, l + j)} j=+N
j=−N (2.28)

N defines the order. The next step is to calculate the deviation between the LTSE and the
average noise spectrum magnitude N(k). This results in the long-term spectral deviation
(LTSD) which is defined as
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LT SDN(l) = 10log10

(
1

NFFT

NFFT−1

∑
k=0

LT SE2(k, l)
N2(k)

)
. (2.29)

k ∈ 1,2 · · · ,NFFT − 1 is a condition in this equation. NFFT is a threshold which is set
to 256. The LTSD can be used as feature for the decision of voice or silence. For more
information it is obtained to [45].

Of course there are some more approaches, but the main aspect in this thesis is not the
voice activity detection and so I want to advise to [31] for more implementations.

Usually it is tried to compensate or normalize a signal to reduce the influence of noise
to the speech and following consequently out of that the influence to the speaker features
and models. To achieve this the features can be normalized, a speaker model can be
compensated and a score normalization of the speaker model is applicable too [31]. For
example in the feature normalisation domain the idea is to subtract the noise from the
received signal, for instance a mean value of each feature.

Compensating the speaker model means to use an universal channel model to compen-
sate the influence of the channel to the speaker model.

The score normalization tries to normalize a new speaker model in matters of a cohort
model that consists an amount of other speaker models. Usually a normalization looks like

s′ =
s−µI

σI
. (2.30)

where s is the score. µI and σI is the mean and standard deviation of the cohort models.

2.6. Channel assignment

Channel assignment is a main part of this thesis and therefore some other relevant ap-
proaches to this topic will be introduced. Channel assignment means that every speakers
speech is put on his own channel and this makes it possible to produce, for example, 3D-
sound. The implementation chosen in this thesis can be read in section 3.6. The problem
in this topic is to have a robust algorithm for every frame, because an error can produce a
3D-sound for one speaker that jumps between different localisations in the output.

2.6.1. Channel assignment using audio data

In [27] the problem is solved with only using an array of eight microphones and because of
that it is possible to locate the speakers with a direction of arrival algorithm (here general
cross correlation with a phase transformation is used). To make sure that only speech
data is processed, a VAD preprocessing is necessary. At last a separation is used to
reduce the influence of an overlapping speaker to the original speaker’s channel. This is
a relatively easy, but very robust implementation with the disadvantage that speakers can
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not move or change seats between a meeting. The speaker diarization approach labels
the appropriate speaker channel.

Another way to assign multi-modal data streams for every speaker is described in [2].
Here only the audio-streams, received from the close-talking microphones, are taken to
get a speaker independent channel assignment. There are as much cameras as partici-
pants in the room and so every participant has his own video stream. The assignment of
video and audio is quite easy, because every speaker has his own audio and video stream
that only has to be synchronized. This approach is mentioned under audio only channel
assignment, because the close-talking microphones fulfil the requirements through a
activity detection.

In the book [50] the word channel assignment is not used but the algorithm introduced
here can be adapted for this topic. The idea is to locate a speaker with a Steered Re-
sponse Power - Phase Transform (SRP-PHAT) algorithm and then track him with a Kalman
Filter. This way a moving participant can always be allocated with his produced speech
and so channel assignment is possible. A further advantage of this algorithm is that a
speaker is not active all the time and so the tracking works with clustering of the last
known position of all participants. The clustering approach is adapted in a way that a
new speaker can be recognised. Additionally a participant who left the meeting is not any
longer tracked through computing a time threshold during which a participant has to be
active.

Another Teleconference system is introduced in [29]. Here a Direction of Arrival (DoA)
algorithm is implemented, which assumes for every frame the location of the speaking
meeting participants through energy measures. This can be seen as a Bag of Words
problem as it is used in the comparison, for example, of pictures or an internet search.
In the audio case the words can be interpreted as locations and a document is here a
histogram of locations over some frames. After that the result has to be modelled in order
to be clustered. For this a dynamic Latent Dirichlet Allocation is used, which improves
the normal Latent Dirichlet Allocation with a distribution of two following frames. For more
information I want to refer to [29]. Now only a variational Bayes algorithm has to be
applied, that assumes the variational posterior of the models. Clustering can be used for
channel assignment too. The whole system has an advantage that I want to mention in
special. This system does not need to know in advance how many speakers are going to
attend the meeting.

A further approach to assign speakers to their channel is defined in [59]. Here rein-
forcement learning is used to identify the actual speaking person. The speaker localisation
decides if the algorithm gets a reward. This means if the recognized speaker has the same
position as it is saved in the model a reward is received and the speaker model is adapted.
At the original work this approach was not used for channel assignment but it is proven
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that an easy adaptation is possible. This procedure was developed at the Institute for Data
Processing at the Technical University of Munich and therefore is used for more evalua-
tions in this thesis to confirm the channel assignment suitability. So an exact definition can
be seen in chapter 3 and the results in chapter 4.

2.6.2. Channel assignment using video and audio data

In the work [38] channel assignment is achieved through person tracking with cameras.
The so received speaker can now be located in the video stream. A second audio local-
isation combines the two streams and assigns them to one channel. The channel can
afterwards be labelled with a name through a speaker recognition system and a face
identification in the video stream. The combined likelihood of these two identification
systems labels the stream with a speaker name, if the likelihood is bigger than a threshold.
For a closer system introduction I want to refer to section [38].

In the work of Himanshu Vajaria [56] an offline approach is introduced. Here first the
video and audio stream is split into homogeneous segments. For every audio segment
MFCCs are extracted and modelled with a GMM. In the video segment a motion between
three frames is calculated, because a speaker has a bigger movement than a listener and
so the camera with the biggest motion percentage belongs to the speech frame. Now a
face detector is used in the video stream. The result is an audio segment that is labelled
with the speakers face. Now a back segmentation is applied to assign all speech samples
belonging to one speaker/face.

Often meeting analysis needs a good channel assignment because a separated stream
for every speaker is necessary for a better evaluation. In [42] the speakers were tracked
through their faces and in the audio stream the active speaker is located. Supposed that
the participants have constant positions in the room the channel can be assigned for one
speaker through the located speech source. So it is possible to make an analysis about
the attention of the participants, which is measured through the direction where the person
is looking.

2.7. Speaker localisation and recognition systems

In a speaker identification and localisation scenario different devices can be used. In
the system introduced in this thesis only audio information is handled. But often video
information is used too. Here face detection for speaker identification and for localisation,
for example through lip motion, are the main approaches invented in such systems.

Another important differentiation attribute is the field of application and with that the
involved limitations in the used hardware. The first ambit is the robot domain. Here the
robot has to react user specific or look to the speaker to simulate a real human-human
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conversation. Another field are Smart Homes or rooms which have to know who is in the
room and where is the person to react in a desired manner to human orders. The last
aspect is the same as introduced in this work, the teleconference scenario. Here persons
sit or move around a microphone array and in another room a speech output should be
generated that opens the listener possibilities to use his psycho-acoustical abilities. The
requirements are again a stable speaker recognition, separation and localisation.

In the further chapter a summarisation about related approaches to our one will be
introduced. It is divided into procedures that use only audio and others that combine
audio- and visual information.

2.7.1. Audio only processing

The system described in [22] divides the speaker recognition approach into a training-
and an identification phase and is implemented for a robot. The training phase is used to
create the speaker models out of a single close microphone where MFCCs are extracted
and converted into a Vector Quantisation Model. In the identification phase the ManyEars
implementation of a Beamformer and a Geometric Source Separation is applied to get
an audio stream for every speaker. After that a mask is used to calculate the noiseless
features (again MFCCs) of the audio stream. The calculation of an euclidean distance
from the trained and extracted models result in a „who speaks when “. The mask is always
updated to get the time variance of noise and room conditions. A big difference to the
system introduced in this thesis is, that a robot doesn’t need to calculate the speech origin
in real-time, because the further processing has to be done after the complete order and
so the results can be hardly compared.

In the work [49] were four probabilities calculated. The first is the speaker position
p(xpos|c) received from a filter and sum beamformer. The binary value c stands for an
existing or not existing speech signal. The second probability is p(xbic|c), which is calcu-
lated out of MFCCs which were modelled by a GMM and that stands for a speaker change
probability. The third is the probability that a speaker was the source of a speech utter-
ance p(xsid |c). This is calculated out of the GMM too. The last likelihood p(speech|xvad)
is computed through a Voice Activity Detection and declares if a frame contains speech or
not. This information is summed in a Hidden Markov Model. The probability that the state
j is the current state is calculated through:

b j(x(k)) = p(xsid |c) · p(speech|xvad). (2.31)

The state transition probability between i to j is calculated out of the position and
speaker change probability. A Viterbi decoder computes the advantageous state se-
quence.

An approach that uses the speaker recognition for an improvement of the localisation
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is described in [35]. The identification works again with MFCCs and GMMs and the
localisation algorithm uses a beamformer. In an introduction round the speaker models
are created and saved. An initial position estimation is calculated too. During the meeting
every second a source location is computed. If the localisation gives a position back
that does not match to one model location, the speaker recognition is used to cancel this
cleavage. A disadvantage of this algorithm is the big amount of time and that no further
speaker movement calculation is done.

2.7.2. Audio-visual processing

An audio-visual computing for speaker recognition and localisation has the advantage
that more sensor data can be used and so the accuracy of the system can be improved.
But such systems have one important disadvantage, they are much more complex in the
needed hard- and software that has to be coded and so it is an expense, installation and
configuration factor to build and work with that.

In the work of Jörg Schmalenstroer [48] such a system is introduced. An audio signal
is captured by a microphone array with a frequency of 16 kHz and a frame size of 128
samples. The further processing includes a 13 MFCCs feature capture and a calculation
of their first and second derivatives. The audio features xsid are on the one hand modelled
in a Gaussian Mixture Model, which is trained in an introduction round, and on the other
hand they are used for speaker change detection through a ∆BIC (Bayesian Information
Criterion) xBIC, which is a common way to calculate the difference of following feature
vectors. Some speaker localisation techniques are discussed in this work and one of the
best suited seems to be the Filter and Sum Beamformer. The result of the localisation is
a new feature xpos. At last a face detection and identification algorithm is applied which
results in a fourth feature vector xvid . Now a Hidden Markov Model is implemented where
every participant is a state and silence is an additional one. There is a transition between
every speaker and a transition between speaker and silence. The probability that the
model is in a speaker state is calculated out of the identification system xvid and xsid

and the probability for the silence state is calculated through a Voice Activity Detection.
The transition probabilities are given through the speaker change detection xBIC and the
position xpos. The last step is a Viterbi decoder which calculates the best state sequence.

In the article [37] a second way to recognize the speaker is described. Here a mobile
robot has to track and identify persons in the room. It does this through video and audio
information. A face is localised followed by a skin color histogram. That way an initialisation
of the approach is possible through creating a new track with the information of localization,
skin color histogram and depth of the person. If a person is speaking additionally MFCCs
in a GMM are separated and an audio localisation is executed for this track. An interesting
idea is introduced here for the speaker recognition. There is not only a GMM modelled
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for every speaker but rather for an impostor speaker, consisting training data from all other
speakers. So the online recognition task includes the measurement if a frame belongs to
the speaker or the impostor.

The tracks are further created if a face is found and deleted if there is no new information
of the participants track for longer than five seconds. The identity information is saved in
case that the person appears again.

Another approach can be found in [11]. Here not a complete conference system is
introduced but an interesting way to combine two speaker identification streams. After ex-
tracting MFCCs as audio features and discrete cosine transformed features for the visual
identification a Gaussian Mixture Model (GMM) is calculated for each feature stream. The
speaker models are trained out of an Universal Background Model and an initialisation
utterance. Now a model for the identification is computed through transforming the GMM
into a feature optimized space. Here Maximum Likelihood Linear Transformation is used.
A second model is computed for the verification of the identification. This is done via
Maximum A posteriori Probability adaptation of the background model. For collected
frames the distance from participant model to speech and visual features are calculated
and the closest model is taken as causer. A verification is applied afterwards through the
distance of the speech and visual features from the background model, which has to be
bigger than a threshold. For a more detailed statement I want to refer to [11].

In [8] is the position of the speaker calculated through a Time Difference of Arrival al-
gorithm and a 360 degree camera localise the participants too. The speaker identification
uses MFCCs modelled by a GMM. This audio information are combined by a Monte Carlo
Fusion algorithm, which uses a Particle Filter to track the persons in a room. This results
in a correlation measure ri j which contains the probability that speaker j is speaking and
if this person stays in area i. Every tracked participant gets an ID.

A further approach can be found in [6]. Here the speaker position is estimated again
by a Time Difference of Arrival algorithm followed by a speaker identification with MFCCs
modelled with a GMM. The initial speaker model is calculated out of an offline introduction
round. The visual recognition contains a face detection and identification as a visual lo-
calisation. The whole system works temporarily with the audio technical localisation which
sends a speaker position to the tracking algorithm where the speaker is identified by his
face. The speaker recognition is only used as verification, because of the lag generated
by the amount of audio data that is needed.

In [47] the recognition of a speaker uses GMMs for the audio part and a face identifica-
tion for the visual one. Additionally is every speaker localised by a SRP-PHAT algorithm
combined with Time Difference of Arrival. The visual localisation of participants is calcu-
lated by a tracking algorithm which uses a Particle filter. The track starts in the moment an
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user enters the Smart Room. For the Particle filter every point i in the room gets a weight
over the equation

wi
t = w1 · (POM ·FBI)+w2 · (AcLoc ·SpkId). (2.32)

The visual probability for localisation POM and identification FBI as the audio probability
for localisation AcLoc and identification SpkId are weighted with w1 and w2. These two
values are received out of experience. Through continuously adapting the weights for the
room points a permanent tracking of every participant is possible.

Additionally a state transition with Hidden Markow Models is calculated offline. A three
second speech sample is clustered, in as many clusters as there are speakers plus one
Universal Background state, through a Baum-Welch algorithm.

2.8. Concluding remarks

The algorithms which are used and combined in our system are SRP-PHAT and GSS for
speaker localisation or rather separation and MFCCs as speaker features as well as GMM
as model. SRP-PHAT and GSS were the evaluation winner in the thesis [21]. We decided
to take MFCCs because they are the state of the art and they are still hard to beat in
practice [31]. GMMs are used, because they are fast to compute, efficient and effective
[33]. The speaker recognition approach of [59] was further utilised, because the algorithm
has achieved good results and was easy to implement in the existing system. The whole
system is described in chapter 3.

There are many approaches that combine speaker recognition and localisation, but in
the most cases there are no audio only approaches. The visual identification part is often
needed to get the system more stable. The systems which use only audio data for the
processing have often a big frame length, no speaker position adaptation or do not update
the speaker models for a better recognition. Additionally can be said, that the speaker
recognition has often not such an important role at all. The teleconference system of the
Institute for Data Processing at the Technical University of Munich has not been existing
yet in its entirety, but many of the single approaches and algorithms are used elsewhere.

Channel assignment is not a big research part at the moment because there are only
a few developed algorithms. The localisation stand alone or linked to visual information
is used in the most channel assignment systems. The approach, described in this thesis,
uses the speaker recognition as help or to assign the channels itself. This is, under the
knowledge of the author, in no other work the case.
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2.9. Evaluation

First of all there was a decision to be made, which evaluation standardisation should be
chosen. We decided that the NIST Spring 2007 (RT-07) Rich Transcription Meeting Recog-
nition Evaluation Plan [19] is suited best for our case. This gives a structure how to evaluate

• Speech to Text algorithms

• Speaker diarization systems

• Speaker Attributed Speech-To-Text approaches

The speaker diarization analysis is used in this thesis. There is a newer standard but
we decided against it, because in this version video streams must be considered too and
our system works with audio only. This version is called NIST Spring 2009 (RT-09) Rich
Transcription Meeting Recognition Evaluation Plan [18].

Some customizations have to be done, because the used evaluation is designed for a
speaker diarization approach, which works offline on a whole meeting file and our system
works online. So some specifications are not necessary and others are not feasible. The
first adaptation is the handling of speaker pauses. In the RT-07 evaluation plan silence
counts as speaker pause if it is longer than 0,3 seconds. This is not usable in our case,
because we take a constant frame length and if somebody is talking in a frame it has to be
considered as speech and has to be put to the channel assigned to the speaker. Pause
in our system only is the case if no speech is included in the frame. The second point
we adapted to our case is the forgiveness collar of 0,25 seconds, which is necessary in a
speaker diarization approach. The forgiveness collar means, that the diarization approach
is allowed to find a speech utterance 0,25 seconds earlier or respectively later than it
was the case in reality. In the developed system it is not needed, because the diarization
algorithms classify the audio file not in hard time steps, but this is done in our work. The last
point we can not consider are the original audio files used in the RT-07 evaluation standard,
because there was no possibility to receive them. So we decided to use the international
accredited and commonly used AMI meeting corpus [1]. This corpus is employed to have a
comparison to other approaches. A second corpus recorded by ourself is used to evaluate
the whole system.

The evaluation score in the NIST plan is the so called diarization error score. This error
is calculated through

ErrorSpkrSeg =
∑allseg{dur(seg) · (max(NRe f (seg),Nsys(seg))−Ncorrect(seg))}

∑allseg{dur(seg) · (NRe f (seg)}
, (2.33)

where NRe f is the number of reference speakers in a segment and against that Nsys is the
number of system speakers in this segment. The difference between the two speaker types
is that the reference speaker is similar to the real speaker and the system speakers are
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the speakers that are found by the algorithm. In a perfect case the number of both should
be identical. But the system can find more speakers and then two or more correspond to
one reference speaker. Ncorrect are the number of correct found speakers in this segment.
A easier expression for equation 2.33 is the following Diarization Error Rate (DER)

DER = δmiss−error +δ f alse−alarm +δ f alse−detection +δspeaker−error. (2.34)

The δmiss−error includes the calculated weighted sum over all speech segments that are
not detected. The δ f alse−alarm stands for all segments that contain no speech but were
labelled to a speaker. The last weighted sum δspeaker−error contains every frame where
one or more speakers are not found, assessed with the number of not found speakers in
this segment.

A further adaptation was necessary to evaluate the localisation approach for channel
assignment. The speaker position has to be labelled by a name and therefore the location
is saved in the speaker model, too. This way speech utterances can be classified by a
name, if the utterance position deviates not more than a threshold from the location of the
model. So a DER calculation as mentioned for the speaker recognition is available too.

There is a second NIST evaluation which is called The NIST Year 2012 Speaker Recog-
nition Evaluation Plan [20]. This plan sounds better suited to our case, but the evaluation
expects here only to differ if a model speaker is talking or not. But we need an evaluation
which allows us to differ between some speakers like it appears in conference scenarios,
so we decided to use the approach from the speaker diarization, which gives us evaluation
standards for our case.
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This chapter will introduce the whole teleconference system from the Institute for Data
Processing at the Technical University of Munich. After this chapter it will be clear how this
teleconference system is working and a comparison to the in chapter 2 introduced related
works should be possible.

In the next part I will give an overview about the components used in the system. In
the following section the microphone array will be illustrated. The speaker localisation
is introduced in the successive part of this diploma thesis. Here it is pointed out what
the idea behind the algorithm is and why it is needed. The next section shows how the
speaker separation algorithm is working and why it is needed. The main part of this
chapter is the speaker recognition. Here it will be shown how the algorithm is operating,
why it is necessary and finally an improvement to the last versions will be declared. The
implemented channel assignment algorithms are defined here too. A second speaker
identification, based on Reinforcement learning, will be briefly analysed. The ICSI speaker
diarization system is introduced at last.

3.1. System overview

In figure 2.1 the whole system can be seen. First of all in the middle of the conference
table a microphone array with eight microphones is put. The participants sit around this
technical apparatus and start with an introduction round. This information is needed for
the training material. So for every meeting member a speaker model out of the Universal
Background Model can be created. In this model a speaker position is saved, too. Now
the participants can start with the meeting and after a defined frame length the audio files
for further processing will be created.

After the recording of a speech utterance in the meeting, the SRP-PHAT algorithm is
used to locate the source position to afterwards separate the source from other simul-
taneously speaking persons and noise through the Geometric Source Separation. The
decision felt to their benefit, because they were the evaluation winner in [21].

A further processing step is to recognise the active speakers for every frame [33] [52].
Some separation algorithms, like the GSS, can label a channel as active or inactive by
themselves. For the other separation approaches the Voice Activity Detection has to do be
adapted to do that. The VAD is needed anyway, because it reduces the amount of data,
due to cutting the silence away, up to 25 percent. So the following algorithms will be faster.
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The remaining audio data is used to calculate the features of the speakers in the active
channels. In this work Mel Frequency Cepstrum Coefficients are used as speaker specific
features. Through the existing speaker model and the computed features it is possible to
say who the active speaker is. As a second feature the speaker position is used. At last the
speaker models will be updated during the meeting and so they will become more accurate
over time.

In the following sections an exact definition of every named algorithm will be given. To
have a standardisation I want to define some general valid formulations. First of all one
microphone input j is defined as

x j(t) =
N

∑
i=1

a ji · si(t)+n j(t). (3.1)

and contains the sum over the number of sources si which are weighted with a micro-
phone and source dependent factor a ji. At least a noise coefficient n j is added. The result
is the received microphone signal x j. As a further definition the number of sources is
given with N and the number of microphones is M. This can be merged to a Matrix Vector
notation which shows

x(t) = A · s(t)+n(t) (3.2)

and contains a matrix A where every entry is given trough a ji with j ∈M and i ∈ N. So
A is a M×N matrix. The vectors x(t) and n(t) contain M entries.

3.2. Microphone Array

In a teleconference scenario it can be mentioned that the participants sit around a table
and in the mid of the table a microphone array with eight microphones is positioned. The
principle structure is always the same and is shown in picture 3.1. In the work of [21] three
different microphone arrays were built through a 3D - Plotter. There are eight microphones,
which are arranged circular with 45◦ degree to have the possibility for a signal direction
estimation and to separate the speakers. The radius is 12 cm. In the diploma thesis of
Thomas Grasser [21] the winning microphone array for the Geometric Source Separation
in combination with Steered Response Power - Phase Transform is the simple microphone
array without any attachments. Figure 3.2 shows the microphone array used for further
processing.
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3.3. Steered Response Power - Phase Transform (SRP-PHAT)

The speaker localisation is needed for the later declared speaker separation algorithm
and for the improvement of the speaker recognition implementation, as it is introduced in
section 3.5.3. In the following section the SRP-PHAT approach will be discussed as it is
implemented in the teleconference system, because it was the evaluation winner in [21].

The SRP-PHAT algorithm works with the data received from a beamformer. Beamform-
ers try to separate a signal through geometric information. In the case of a Delay and Sum
Beamformer, like in figure 3.3, it is tried that the phase is in accordance through overlaying
the signals received from every microphone. After weighting every channel, not only a
separated signal is received, but also geometric information which can be used further. In
the work of [16] the similar Filter and Sum Beamformer is applied. The obtained geometric
information is used to calculate the origin of the maximum signal energy, which should
accord to the sound source. This is the SRP part. To include the PHAT part the phase
difference between the single microphone pairs has be considered too.

The received localisations are pretty unstable, because no time information is used and
spontaneous energy peaks attributed to noise can not be ignored. To solve the problem a
particle filter is used, which tracks a sound source over time through a probability density
function. The idea is to define particles for a sphere in the room. Every particle is assigned
to a cluster which again is assigned to a sound source, if the energy for the particle is high
enough. More information can be found in [16].

3.4. Geometric Source Separation

As mentioned above is the separation needed to separate simultaneously speaking per-
sons and to reduce the influence of noise. In [21] the evaluation winner was the Geometric
Source Separation and thus this one was implemented in the teleconference system from
the Institute for Data Processing at the Technical University of Munich. In this section this
approach is defined more exactly.

Geometric Source Separation (GSS) is a mixture of beamforming and Blind Source
Separation. The idea is to assume a separation matrix which cancels the influence of the
channel, noise and the other simultaneous talking persons. However, the equation

y(ω) = W(ω) ·A(ω) · s(ω) (3.3)

is no longer solved through independent vector analysis but rather with the assumption
of a beamformer. The transfer matrix A is calculated through

ai j(k) = exp−2πkδi j , (3.4)

where δi j is the delay between a microphone pair i and j. k stands for a frequency group.
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Now only the separation Matrix W(ω) has to be estimated, which is done by calculating
iteratively cost functions and their derivatives. One iterative step n is done through

Wn+1(ω) = Wn(ω)−µ

(
[||x(t,τ)||2]−2 · δJ1(W(ω))

δW∗(ω)
+

δJ2(W(ω))

δW∗(ω)

)
(3.5)

where J1(W(ω)) = ||Ryy(t,τ)− diag[Ryy(t,τ)]||2 is the minimization equation with the
signal correlation Ryy = y(t,τ) · y(t,τ)H and the geometrical influence is given through
J2(W(ω)) = ||W(ω) ·A(ω)− I||2. µ is an adaptation rate which is set to 0,01. W(ω) is
initialised by the filter coefficients of the beamformer. That is the way the source signal
s(ω) can be assumed. More information can be found in [16].

3.5. Speaker recognition

In this part the speaker identification approach of the Technical University of Munich at the
Institute for Data Processing will be introduced. In the first step the pre-processing will
be discussed to show the exact calculation of the speaker specific features and how to
model them in a comparable manner afterwards. In the last part of this section it will be
shown how a new speech utterance can be assigned to a trained speaker model. In this
thesis the speaker recognition system out of [33, 52] is used and extended, but for further
informations I can refer to these two works.

3.5.1. Pre-processing for speaker recognition

The sampling of the speech data has to be done first to receive a digital signal out of the
analogue one. The so called sampling theorem has to be considered through proving the
guilt of

fsample ≥ 2 · fspeech. (3.6)

In the developed system fsample is set to 16 kHz and so the 48 kHz recorded speech has
to be down sampled. The human vocal tract has a low-pass characteristic on the human
produced sounds which have to be compensated through using a pre-emphasis filter with
the shape of

Hpre(z) = 1−αz−1 with α = 0.95. (3.7)

Now a hamming window has to be applied as bandpass filter to make the signal static.
The window

w(τ) = 0.54+0.46cos(2π
τ

T
) with τ =−T

2
· · ·+ T

2
(3.8)

38



3.5. Speaker recognition

has different overlaps and lengths which can be looked up in chapter 4. These two
durations have to be chosen in a way, that the signal consists of enough speaker spe-
cific information and on the other hand to fulfil a time static signal. Now a Fast Fourier
Transformation (FFT) can be used to receive the spectrum.

The last pre-processing step is the Voice Activity Detection (VAD), which reduces the
speech signal by subtracting the speechless, thus silence, frames. This is done by cal-
culating an energy threshold over the whole file which distinguishes between silence and
speech. In that way this is an offline approach which has to be adapted to our requirement.
We decided to test two different VADs. In the first approach a hard threshold is given by
hand to the system, gained through experience. The second approach uses a dynamic
threshold, which is updated from frame to frame. The results can be seen in chapter 4.

3.5.2. Mel Frequency Cepstrum Coefficients

Every human has his own specific body form and his voice is differentiable by his vo-
cal tract, the shape of his oral cavity and his physique. In this thesis features, through
that given knowledge, are calculated with so called Mel Frequency Cepstrum Coefficients
(MFCCs). The decision felt to these features, because they are the most common and
therefore seems to be the best [31]. In the first step a frame received from the pre-
processing has to be divided by using a Mel-filter bank like in figure 3.4. This filter bank
consists of triangular bandpass filters which become bigger the higher the frequency is.
They overlap exactly at the half of neighbouring filters. For every filtered part the signal
energy is calculated by

E(w)
mel =

K/2−1

∑
n=0

F(w)
mel |S(k)|

2 with 1≤ w≤W (3.9)

and then the logarithm is applied, followed by a discrete cosine transformation to decor-
relate the signal. This results in

c(i)MFCC =
W

∑
w=1

log(E(w)
mel cos

(
i(w−0.5)

π

W

)
with 1≤ i≤M. (3.10)

The extracted features are very static and to receive a bigger dynamic the first and
second derivation of equation 3.10 is calculated. There is the possibility to use the energy
and the zero coefficient (offset) as features too. In this work a variable number of features
is compared which can be seen in chapter 4.

3.5.3. Gaussian Mixture Model

The extracted features are hard to compare against characteristics of a speech utterance.
This can be solved by transforming the MFCCs into models. In the preparatory work
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[33] the decision fell to a Gaussian Mixture Model which is a weighted probability density
function with the form

p(x|λ ) =
K

∑
k=1

wkP(x|λk). (3.11)

w is the weighting factor that fulfils ∑
K
k=1 wk = 1; 0 ≤ wk ≤ 1. The density P is given

through the Gaussian Distribution

P(x|λk) =
1

(2π)d/2|Σ|1/2 exp
(
−1

2
(x−µk)

T
Σ
−1
k (x−µk)

)
. (3.12)

λ is a distribution of wk,Σk,µk and is optimized in the further processing in a way that
p(~x|λ ) is maximum. The initial value for the weighting wk, the mean µk and the covariance
matrix Σk is computed out of the MFCCs with a k-means clustering algorithm. This first
values are further optimized with a Expectation Maximization (EM) algorithm that switches
between two cases (Compute and Update). This is done till p(~x|λ ) exceeds a threshold,
which is normally reached after five durations.

3.5.4. Speaker identification

The speaker GMMs make it possible to calculate how similar a new speech utterance is to
one speaker. This is done by a Maximum Likelihood (ML) computation, which maximizes
a probability function. A new speech utterance has to be separated and MFCCs must be
extracted. Now the ML classification can be applied which classifies the speech samples
with a speaker name.

3.5.5. Speaker model adaptation

In a normal teleconference scenario it is typical that every participant is introducing himself
and in the system discussed here, this data is used to train initial models. The problem is
that this short introduction round, which consists of roundabout 30 seconds to one minute
of every speaker, has not all relevant voice information for every person. To solve this issue
the speaker model is updated during the meeting and a Universal Background Model,
consisting of a big collection of speech data, is taken in the beginning.

Maximum a posteriori (MAP) adaptation

The missing information about every meeting participant can cause an imprecise speaker
recognition system and has therefore be solved. One way is to adapt the speaker models
continuously with the model appropriate speech utterances. The longer a meeting, the
better the models should be. The algorithm that is needed is called Maximum a posteriori.
The first step is the calculation of a new GMM out of the received speech, which is used to
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adapt and improve the existing model. The idea is to determine, out of the probability of a
GMM k, the static values followed by updating the means µk. The probability looks like:

P(k |~xn, λ ) =
wk pk(~xn |λk)

p(~xn |λ )
(3.13)

nk =
N

∑
n=1

P(k |~xn, λ ) (3.14)

Ek(~X) =
1
nk

N

∑
n=1

P(k |~xn, λ )~xn (3.15)

~µk,new = αkEk(~X)+(1−αk)~µk (3.16)

with
αk =

nk

nk + r
. (3.17)

r is a relevance factor which says how strong the existing model should be adapted. For
more information see [33].

One issue with the developed idea is, that in the beginning the recognition often com-
bines the false speaker model with a speech utterance which therefore conducts in a false
model update. This makes the whole system worse. In the work [52] an answer has be
found in using the localisation of each speech sample to verify the origin. In each speaker
model an azimuth position, calculated out of the training material, is saved. So the likeli-
hood of a false model adaptation is extremely reduced.

Universal Background Model

The lack of speech in the beginning of the meeting results in incomplete speaker models.
In the early stage of a meeting it is very important to have a robust speaker model, that
makes a reliable speaker identification possible. In [33] an Universal Background Model
(UBM) is used to solve this issue. An UBM is a single GMM which is computed out of a
big amount of speech data, received from many different people. The participant models,
collected out of the trainings material, is adapted from the UBM via the MAP algorithm. So
a much more robust speaker model is calculated.

3.5.6. Voice Activity Detection

The problem with the VAD is, that it is written for an offline approach. This means, that
the VAD is used on complete meetings and thus the dynamic speech/silence threshold is
set nearly perfect. At the Institute for Data Processing we want to use an online speaker
recognition algorithm and this means, that the file parts have a defined short length, for ex-
ample 0,1 seconds. The dynamic threshold is now set with only the knowledge of an audio
file with a short length and if this file contains only silence the silence will not be reduced,
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because of the wrong set threshold. So the existing approach has to be adapted in a way,
that the dynamic threshold is saved and adapted for every meeting. This means that at
the beginning of a meeting the threshold is to low and silence will not be removed, but in
the theory at the end of the meeting the threshold should be very good. A second VAD
is implemented too, which has a hard coded threshold, that is gained out of experience.
Some experiments to this issue can be seen in chapter 4

3.6. Channel Assignment

One important work of this thesis was to find a stable combination of the single components
to have a complete teleconference system at the recording side. The output should result
in a separate channel for every speaker.

The winner of the work [21] is used. This means that for localisation the SRP-PHAT
algorithm is used and for the speaker separation the Geometric Source Separation is ap-
plied. The speaker recognition is used as defined in section 3.5.3 with the winning values
out of the tests as shown in chapter 4. This combination is implemented for a stable and
certain channel assignment. This is necessary to fulfil the requirement of a 3D-sound at
the playback side.

The localisation and separation algorithm needs at least a frame length of 1024 samples.
The speaker recognition of course (see chapter 4) is better as longer the frame length is
chosen. The compromise between real-time requirements and a long frame length was to
take a length of 4 times 1024 samples.

The channel assignment is implemented with three different algorithms. The first simple
one uses the speaker recognition and puts every 4 ·1024 an audio frame at the channel of
the calculated speaker. The speaker models were adapted if the computed position accord
with the location of the speaker model.

The second idea was found out during the testing of the first implementation, because
the localisation algorithm shows pretty good and stable results and thus can be taken as
approach for channel assignment. The position of the speaker model is compared to the
calculated location of the speech utterance and then the channel assignment is done to
the nearest speaker.

In the third approach the localisation is used too and the channel assignment is done if
the two azimuth angles do not deviate more then 15 degree. If no speaker model is found
which fulfils this demand the speaker recognition is used to assign the speech frame to
a channel. Figure 3.6 shows the circumstance. This developed algorithms do not sup-
port a free movement of the participants why an adaptation has to be done. The received
speech is collected for one second. The source of the speech frame is computed through
the recognition. Afterwards the mean azimuth angle of the collected speech is calcu-
lated to compare it against the azimuth of the received speaker model. If they accord a
positionChange counter is set to zero and if they do not the counter will be increased. If a
threshold is exceeded the speaker model is set to a new position. This way the participants
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can move free in the conference room. The localisation algorithm can be seen in figure
3.5.

After the decision who was the origin of this speech frame the single frames have to
be put together again. To have no artefacts the speech is divided by overlapping ham-
ming filters. The overlap accounts 50% and the frame length is 4 · 1024 milliseconds as
mentioned above. The overlapping part is additively merged for every frame. This way
the output sounds similar to the source and single mismatches in the channel assignment
make no odds because of the overlap. A single false classified speech produces of course
noisy sounding artefacts in the other channels. More following false assigned speech
frames can corrupt the hear impression in a stronger way. The channels where nobody is
assigned during one time step are set to zero. At the playback side 2 · 1024 samples can
be put out with a delay of 4 · 1024 samples. That correlates, under the assumption of a
sample frequency of 48 kHz, to a delay of around about 80 milliseconds. The results can
be seen in chapter 4 including a plot of a conference sample after the channel assignment.

3.6.1. Reinforcement Learning for speaker recognition

A second, completely new speaker recognition system has been developed at the Institute
for Data Processing. It works with Reinforcement Learning and is described in [59]. The
pre-processing and the feature extraction is the same as mentioned above. But then the
extracted MFCCs were made binary through calculating ten binary places and give each
position a defined MFCC-range. The mean and the standard deviation from the MFCCs
has to be calculated to set the range thresholds and the binary position which contains the
range of a MFCC is set to one. Now it is possible to compute out of a new speech sam-
ple the speaker origin by multiplying the binary MFCCs with a speaker specific weighting
function and take the maximum value. This value leads to a speaker name who should be
the origin of the speech utterance. The weighting function is received from the introduction
round and is updated if the localisation, saved for every speaker, and the extracted posi-
tions from the speech utterances, are identically. This is done by a reinforcement learning
approach that tries to maximize the reward, which the algorithm gets if the identified per-
son has the same position as the speech frames. Now the problem occurs that, if one time
a speaker is found that gives a good reward, the algorithm will never change the identified
speaker. This is solved by a probability that another speaker is tried for a sample and if the
reward is better the adaptation of the weights will lead to a better speaker recognition. To
achieve a more reliable speaker recognition the average over some samples is taken. For
a more exact definition of this algorithm I refer to [59] and in chapter 4 the results will be
discussed.
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3. Developed teleconference system

3.7. The ICSI speaker diarization system

We choose the speaker diarization system from ICSI [58] to have a maximal reachable
threshold for our system, because their approach is an offline one and should work better
than our speaker recognition system. At this part this approach will be introduced.

Offline means in a teleconference scenario, that the whole meeting is recorded and it
is handled as a complete file afterwards. The first pre-processing steps include wiener
filtering to remove corrupting sounds. The next step is a delay and sum beamformer,
that reduces the recorded audio channels to one summarized channel. After that the two
speaker specific features are extracted. The first are MFCCs and the second are delay
features received from the beamformer. The features get different weightings, 0,65 for the
MFCCs and 0,35 for the delay characteristics. This is followed by a pre-segmentation of
the meeting which results in a speech, silence or non-speech label for every frame. The
labelling is done by a GMM, which was calculated from broadcast news data beforehand,
through which the meeting can be divided into silence and speech. The silence region is
divided again in regions with high energy and one with low energy. This leads to the three
different blocks that are now build with a GMM, because this makes a re-segmentation
possible through which the segments are optimized. The last step is to look if the non-
speech and speech GMMs are similar with a Bayesian Information Criterion, which can
be seen as a distance measure but only for Gaussian Mixture Models. If the similarity is
given, these two models are connected. All silence and non-speech frames are deleted.
The remaining file is divided into K clusters and a model is created for everyone. Now the
clusters are segmented with the ∆BIC algorithms, which is an adaptation to the normal
BIC algorithm, as mentioned above, through which a decision can be made if two clusters
contain the same or different speakers. Clusters that contain the same speaker were
merged as long as no further junction is possible, because the ∆BIC value is to big. The
result is a clustered meeting file where every cluster is labelled by a speaker number. At
the end every speaker number has to be consolidated with a real speaker name.
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3.7. The ICSI speaker diarization system

Figure 3.1.: The principle structure of the microphone array
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3. Developed teleconference system

Figure 3.2.: The microphone array out of [21]

Figure 3.3.: A Delay and Sum Beamformer
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Figure 3.4.: A Mel-filter bank with triangular bandpass filters out of [33]
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4. Evaluation

The evaluation is divided in three parts. In the first part the speaker recognition has to be
tested to find an optimum for the parameters. A comparison to the reinforcement approach
and the ICSI speaker diarization system will be discussed, too. In the second part the
quality of the two main channel assignment algorithms will be evaluated with simulated
meetings. In the third evaluation a real meeting is tested and here the differences between
some channel assigning parameters based on the DER will be given. Additionally the
diverse channel assignment approaches are evaluated on the third conference, too. In
this chapter first all approaches will be repeated and will be newly labelled with a better
appreciable name. The next section will show all parameters that are used for the first
evaluation followed by a definition of the different audio files and recordings. Then every
evaluation gets a separate section.

4.1. Evaluation & channel assignment names

In table 4.1 all algorithms are named. Algorithm1 consists of the speaker recognition with
MFCCs and GMM. This is defined in section 3.5.3. Algorithm2 uses only the localisation
for channel assignment. In contrast Algorithm3 uses additionally the speaker recognition
as mentioned in Algorithmus1 for position change detection. If the collected utterance
position deviates more then a threshold from the location of the speaker model and if
this happens oftener then a threshold, the position is adapted as shown in figure 3.5.
Algorithm4 expands Algorithm3 with a second application of the speaker recognition. If
the position of the speech utterance deviates more then a threshold from the location of
the speaker model, the speaker recognition is used to assign the utterance to a channel.
Figure 3.6 show this circumstance. Algorithm5 uses the speaker recognition approach
through reinforcement learning as developed in [59]. Algorithm6 is the implementation of
the speaker diarization approach from the ICSI.

4.2. Parameters to evaluate

In a speaker recognition system different parameters can be tested. In our case we exam-
ined for the in table 4.2 defined parameters.
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4. Evaluation

Table 4.1.: Channel assignment algorithms

Algorithm1 Speaker recognition only
Algorithm2 Localisation only
Algorithm3 Localisation combined with position verification
Algorithm4 Localisation combined with recognition and position verification
Algorithm5 Recognition through Reinforcement Learning
Algorithm6 ICSI speaker diarization approach

Table 4.2.: Parameters of speaker recognition

Frame length 0,1 s; 0,2 s; 0,25 s; 0,5 s; 1 s
Gaussian Mixture Components 16, 32, 64, 128, 256
Mel-Frequency Cepstrum Coefficients 8, 12, 16, 20
Zero-coefficient with or without
Silence Model trained out of UBM or without UBM
VAD dynamical VAD or hard threshold for VAD
Length of Hamming window 10 ms, 20 ms, 30 ms
Overlap of Hamming window 30%, 40%, 50%

The Frame length was tested to see „How much real-time is possible?“. This means
looking for the best compromise between a good DER and keeping the frame length as
short as possible. For the GMMs Christoph Kotzielski [33] proved in his thesis that the DER
pays off if the Mixtures get bigger than 64 [46]. Opposing to this the literature [31] writes
that more mixtures achieve better results. So we decided to make a second evaluation.
To the MFCCs in literature [31] is said, that a big amount of training data is needed to use
a bigger number of coefficients. The Zero-coefficient, which can be seen as an energy
offset, was not used in the original speaker recognition system and it is often mentioned
that this coefficient is unreliable, but in [62] it is said that it has its rights to be compared.
That is why it will be evaluated here too. The last two points have to be tested because they
were newly programmed in this thesis. The window length and the overlapping duration
of each hamming window can be evaluated. The Hamming window has a range from 10
milliseconds to 30 millisecond with a overlap of 30% to 50% to be short enough to contain
the spectral information and on the other hand long enough to contain a good frequent
resolution [32]. Another value which is not compared in this thesis is the roll off value of
the pre-emphasis because it is often demonstrated that the optimum is α = 0.95 [62, 32].
The evaluation results can be seen in section 4.4.
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4.3. Selected audio files

4.3. Selected audio files

For our evaluation we used three different corpora. The first is the AMI meeting corpus [1]
which is a very often used database for evaluations in speaker diarization and recognition
topics. The second is a simulated meeting which we recorded ourselves. The last is a real
meeting where participants talk freely about an given topic. All together will be introduced
in the next two sections.

4.3.1. AMI Meeting Corpus

The AMI meeting corpus is divided into different corpora. In this thesis the Edinburgh
meeting compilation has been taken. The meeting names ES2009 to ES2016 were chosen
for evaluation. Every meeting is divided into four parts. The "c" part of the ES2010 to
ES2016 corpora is taken to train the UBM. "a", "b" and "d" are used for evaluation. Only a
small part is separated from every meeting to train the speaker models.

In the AMI Meeting Corpus the main problem is that the audio files contain only one
mono stream and with only one channel it is impossible for our algorithm to detect, in
a part with overlapping speakers, more than one. For the Diarization Error Rate this is
postulated. Another point was the not existing need of a correct non speech classification,
as it is named in the Diarization Error Rate, because if silence is labelled as a speaker
and the silence is then given out at the speakers channel it is not an issue. Of course for
the later processing steps, like automatic speech detection, it is a problem, but this is not
a part of this thesis. This are the causes why we decided to differ in our evaluation four
cases:

• DER evaluation.

• Evaluation like DER but overlapping speech samples are omitted

• Evaluation like DER but silence samples are omitted

• Evaluation like DER but silence and overlapping speech samples are left out

The first point of the itemization is used to make our algorithms comparable and to use
an international recommended standardisation. The other three are checked for our anal-
ysis, because these are the issues which are important for the evaluation of our complete
system. To get the maximum achievable limitations we used an offline speaker diarization
from ICSI [58] which was the best evaluated participant of NIST evaluation from 2007 [19].
We implemented this evaluation and speaker diarization algorithm because of the in sec-
tion 2.9 mentioned reasons. Through the evaluation an adaptation of the system relevant
parameters is possible and thus the optimal one can be found.

To use some important features of our system we decided to compute our localisation
algorithm, too. The AMI meeting corpus does not locate there participants during the
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meeting, so we had to simulate an entrant position. For that we simulate the localisation
accuracy from the thesis of Johannes Feldmaier [16], which shows a localisation accuracy
of 96,9%, with a deviance of five degrees, which is a compromise of the participants be-
haviour in real meetings and a good theoretical value for the localisation accuracy. We
gave every participant a fixed position for the whole meeting, so we could use the pos-
sibility of our algorithm to employ the speaker position for a saver update of the speaker
models as mentioned in section 3.5.3.

4.3.2. Audio recordings

The second audio files we evaluated were recorded by ourself. We recorded twelve speak-
ers, eight men and four women, with a single microphone in our anechoic room and a
sampling frequency of 48 kHz. Every speaker reads five minutes a text for the meeting
simulation and one minute as training material. The meeting audio files are cut and put
together again to simulate a real meeting with four speakers. The audio files were only
cut in silence parts. The meeting has eleven percent overlap of two simultaneously speak-
ing participants and one percent overlap of three speaking persons at once. This is a
measurement which was calculated out of diverse meeting corpora [51]. The length of
each speech frame is varied from 2 seconds to 12 seconds. Every speaker is put on an
own channel which makes it possible to write scripts that play every speaker on an own
loudspeaker.

We put the loudspeakers in two combinations around the microphone array, which is
shown in picture 4.2. In configuration one every loudspeaker has a distance to the center
of the microphone array of 1,30 m and they were put in 90◦ degree from each other (from
now on called session1). In the second combination two participants sit parallel to each
other and adverse to the other two. The distance is again 1,30 m and the angle between
the parallel sitting users is 40◦, this meeting is further called session2. In all conferences
the elevation angle from loudspeaker to the array is 20◦ degree. Figure 4.2 displays the
circumstances. The recordings are made in an anechoic room and an echoic office room.
The room characteristics can be seen in table 4.3 and 4.4 and a picture of the recording in
figure 4.1.

Audiolab dimensions 4.7m x 3.7m x 2.84m
frequency in Hz 250 500 1000 1995 3981

Audiolab reverberation time t60 in s 0.1008 0.0554 0.0465 0.0415 0.0416

Table 4.3.: Room characteristics of the audiolab

So we got 24 simulated conference combinations out of the three arranged meetings,
each with four different speakers. The sample frequency was again 48 kHz. Addition-
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Videolab dimensions 6.3m x 4m x 2.8m
frequency in Hz 250 500 1000 1995 3981

Videolab reverberation time t60 in s 0.2545 0.2169 0.2230 0.2466 0.2149

Table 4.4.: Room characteristics of the videolab

ally the temperature has to be measured during every part, because it is needed for the
localisation algorithm.

The last recorded conference is a real one, which is used to evaluate the influence
of the speaker recognition to the channel assignment via localisation. This means it is
measured how much better the DER gets if the speaker identification fills the gaps of
the localisation assignment and proves if a speaker has moved. In the recordings four
participants stands around a microphone array like in session2. During the meeting a
person changes their position to an fictive white board. At this new position the participant
is talking round about 20 seconds and moves then back. This happens twice. The real
meeting consists of round about 10 seconds introduction of every speaker and the meeting
takes 5 minutes and is divided into two parts. The first one consists hard speaker positions
and the second part is the one where the speakers are moving. I decided to part the
conference this way, because I want to show the differences of Algorithm2, 3 and 4. In
the theory Algorithm4 should treat best with the moving speakers and a bit better then
Algorithm3 with the standing participants, because the fourth uses the speaker recognition
to fill gaps between model position and utterance location. Algorithm2 should work worse
as the other two. Algorithm1 is also applied to prove its quality in a real scenario.

The last table 4.5 gives an overview which algorithm is used in which evaluation. The
tests with the AMI meeting corpus were made to find a parameter optimum and to decide
between Algorithm1 and Algorithm5 for the later channel assignment. Algorithm6 was
also evaluated to get an idea about a minimal reachable DER threshold. The simulated
meetings should only show how good the developed channel assignment algorithms work
and in contrast should the evaluation of the real conference point out how important a
parameter optimization is. Therefore the four different channel assignment algorithms are
here compared.

Table 4.5.: Relationship between evaluation and algorithms

AMI meeting evaluation Algorithm1, 5, 6
Simulated meeting evaluation Algorithm1, 3, 6
Real conference Algorithm1, 2, 3, 4

55



4. Evaluation

Figure 4.1.: Recordings in the audiolab

4.3.3. Ground truth of recorded meetings

The ground truth for every simulated meeting is needed to calculate the DER. So the
ground truth can be made manually, which is very time consuming, or automatically, like
it is done in this case. A program was written, that looks into the files, created for the
recording, for ten samples in a row which are bigger than a threshold. If this happens the
part is labelled as speech till ten samples that are lower than the threshold. There silence
begins again. This is done for every speaker channel and so a ground truth is calculated
and saved in an Excel file. The ground truth for the real meeting has to be done via hand.

4.4. Results of the AMI meeting corpus evaluation

In the evaluation of the AMI meeting corpus the above mentioned parameters has to be
compared. The following statistics show a separate bar for every meeting. In table 4.6 are
standard values for Algorithm1 mentioned. They are valid for every following evaluation, if
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Figure 4.2.: The two meeting combinations for the different participant positions.

no other values are given. This choice is picked, because it is the standard in the literature
or is necessary for our system.

First of all it is shown how good the developed Algorithm1 is. Differences in frame
lengths are compared in figure 4.3 to show what the possibilities are if there is no real-time
condition. With a frame length of one second DER up to 28% are feasible but a smaller one
produces a much higher DER, for example 0,1 seconds increase the error to a maximum of
68%. This test is also needed to get a good frame length for the, in the channel assignment
of Algorithm3 and 4 used, position verification.

Figure 4.4 pointed the distinction between the number of GMM components out. Addi-
tionally a comparison to the Algorithm6 from ICSI is possible which shows good DERs up
to 20%. The developed speaker recognition displays with 256 GMM components a DER
of 47%, which is its best result. The larger the number of the GMMs as smaller becomes
the DER, but this is bought with a bigger computing effort.

The MFCC number seems to achieve similar results as the GMM evaluation. As higher
the number as better gets the DER. 46% is the top mark with 20 MFCCs. So 0,1 seconds
consists of enough speaker information for this many MFCCs. Again is the gain won by a
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Table 4.6.: Parameters of speaker recognition

Frame length 0,1 s
Gaussian Mixture Components 128
Mel-Frequency Cepstrum Coefficients 12
Zero-coefficient without
Silence Model trained out of UBM
VAD hard threshold for VAD
Length of Hamming window 30 ms
Overlap of Hamming window 50%

bigger calculation effort. The Zero coefficient has no big influence to the DER, but it seems
to make it worse. This can be seen in figure 4.5.

In the next diagram 4.6 the different silence treatments are compared. The best result
achieves the static VAD, which uses a hard coded threshold in the combination with a
silence model that is trained without using an UBM. This is caused by the big speech parts
in the UBM and maybe an UBM, consisting of silence only, can put the things right.

Figure 4.7 shows how the influence of the window sizes and overlaps referred to the
DER is. In the average a window length of 10 ms and 30% overlap seems to be advanta-
geous, but it makes no significant difference.

The last evaluation shows how much overlapping speech and silence the AMI meeting
corpus is consisting of. This is important for the rating of the developed algorithm, because
in overlapping speech only one speaker is detectable and silence is not countable for the
DER if it is put at a channel. Figure 4.8 shows that the influence lies in a round about 10%
better DER.

At last the speaker recognition based on reinforcement learning is evaluated, what is
depicted in figure 4.9. First of all reinforcement learning seems to accomplish really good
results if the speaker model is adapted the whole time. But if there is no adaptation the
results become worse. This is because of the reward that is necessary to achieve a robust
speaker recognition and make the algorithm time memorial. To get a reward the speaker
position was simulated beforehand. So the question is now, why to use the speaker po-
sition as reward and not for speaker recognition as itself? In the thesis [21] it is shown
that the localisation accuracy achieves much better results as the speaker identification
via reinforcement learning. An exactly description of this approach can be found in section
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Figure 4.3.: DER for Algorithm1 evaluated with the AMI meeting corpus referred to different frame
lengths

3.6. Furthermore there is no right localisation if the reinforcement learning should carry
the task of Algorithm1 in Algorthm4.

The best parameters are recapitulated in table 5.1 and used for the further evaluation of
the two recorded conferences.

4.5. Evaluation of the simulated conferences

In this section the results of the recorded conference evaluation will be discussed. The
main attention lies at a statement about the goodness of the whole developed system.
Furthermore a comparison between Algorithm1 and Algorithm4 is made. The first figure
4.10 pointed out that the assignment with Algorithm4 is twice as good as the assignment
through Algorithm1. This result can be traced over all simulated conference scenarios
and the different room characteristics. In the best case a DER of 17% is possible. If the
silence is left out of the DER a better value of 9% is achievable. The DER of the videolab is
basically worse than in the audiolab and reach 21% in the best case. If silence is omitted
8% can be won to a DER of 13%. The two varying conference setups seems to have no
big influence. At the audiolab the session2 achieves a bit better results. In the videolab it
is inverted. In the audiolab the DER is in the mean 4% better than in the other room and
if the silence is omitted in the DER a value of 8% is possible. Furthermore Algorithm6
from the ICSI was applied to the simulated recordings. It achieves the best results with a
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Figure 4.4.: DER for Algorithm1 and 2 evaluated with the AMI meeting corpus referred to a different
number of GMM components.

DER of 4% in the optimum. Only in conference 2 it achieves a worse DER, because one
speaker is not detected by the algorithm.

In figure 4.11 two things are pictured. The first is a difference in the frame length and its
effect to the DER of Algorithm1. The second shows what happens if the tolerance of the
angle difference between the speech utterance and the speaker model is set to 10◦ or 15◦

in Algorithm4. The frame length was tested to get a knowledge about the quality that is
achievable to verify the speaker position. A length of 1 second reaches the best DER with
19% in the videolab. Of course this result must be verified in a real meeting. The change
of the localisation tolerance shows that there is only a difference of 0,5% in the DER of
Algorithm4.

The last figure in this section shows the outputs after the channel assignment. In the
left figure Algorithm4 is used and the wrong assigned speech utterances are pointed out
with a black circle to highlight them. The right one shows the same utterance after an
assignment by Algorithm1. Here it can be seen that in every channel false assignments
occur. Accordingly is the hear impression very bad.

So a clear decision to Algorithm4 is fallen in this thesis, because it has the best DER and
the channel assignments shows nearly zero false assigned speech utterances. Normally
errors occur if a new speaker starts and if more participants talk simultaneously.
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Figure 4.5.: DER for Algorithm1 evaluated with the AMI meeting corpus referred to a different
number of MFCCs and with or without the Zero coefficient.

4.6. Evaluation of the recorded real meeting

According to the evaluations of the simulated meeting we also want to test a real meet-
ing. Additionally we want to know how big the influence of the speaker recognition is, in
its two tasks, to the channel assignment with Algorithm4. Figure 4.13 pointed again out
that Algorithm1 achieves very bad DER results. The other two beams show how big the
influence of moving speakers is. If there is no movement Algorithm4, with its best pa-
rameters, is a bit better than Algorithm2. Thus it can be said that the speaker recognition
improves the channel assignment. In the case that there is a position change during the
meeting, the results are inverted. In my opinion the cause can be found in the not optimal
set parameters and in the short position change time. The parameters for position change
detection via speaker recognition could not be optimized during this thesis, because of the
lack of experience and the enormous time effort for testing. In the introduced case this
means that the position change is detected late and then the speaker moves back soon.
Thus a bit higher DER is achieved. I think in a real meeting a position change will last
longer as in the tested case, because the person will usually change his position to explain
something at, for example, the white board. However with optimal parameters Algorithm4
should maybe beat Algorithm2. Anyhow I have to pointed out that a DER of 23% for the
position change section and 21% for the hard positions is possible if the silence is omitted.
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Figure 4.6.: DER for Algorithm1 evaluated with the AMI meeting corpus referred to a difference in
silence treatment.

These values also show, that the meeting with the position changing participants has a
much bigger silence part.

The next diagram 4.14 shows why it was so hard to find the optimal parameters.
Algorithm4 is compared with Algorithm3 and the parameters for position change detec-
tion were the same. Table 4.7 displays the exact values. In the figure can be seen that
Algorithm4 is always better if no movement in a conference occurs. Again here can be
said that the speaker recognition improves the channel assignment via Algorithm4. But
if there a participant changes his position bad chosen parameters made Algorithm4 fall
into an abyss. On the other side good chosen parameters improve the system against
Algorithm3 even in the case of a moving person. But again I have to mention here, that
the recorded real meeting was only a first test with a short duration, to get fast as many
evaluation results as possible. But because of that the speakers are not long enough at the
new position. I think to get the most suitable results a longer meeting has to be recorded
and more parameter evaluations have to be done. However for the first short evaluation of
the developed Algorithm4 the results are auspicious.

As a comparison of all tested algorithms in the real conference, I want to refer to table
4.8.
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Figure 4.7.: DER for Algorithm1 evaluated with the AMI meeting corpus referred to a difference in
the window length and the overlap of the Hamming filters.

Table 4.7.: Good and bad parameters for Algorithm4

good parameters bad parameters

Position Change detection 7 7
Frame length 1s 0,3s
Angle tolerance 10◦ 5◦

Table 4.8.: Best DER of the different algorithms in the real meeting

no movement with position change

Algorithm1 51% 65%
Algorithm2 24% 33%
Algorithm3 24% 38%
Algorithm4 23% 34%
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Figure 4.8.: Differnet DER for Algorithmus1 referred to silence and overlapping speech in the AMI
meeting corpus.

Figure 4.9.: DER for a comparison between Algorithmus1 (with and without zero coefficient) and
Algorithmus5 (with adaptation and without).
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Figure 4.10.: DER for the conference simulations at the audio- and videolab for the two meeting
variations. Algorithm1 and Algorithm4 are tested.

Figure 4.11.: DER for the conference simulations in the videolab with session2 under different
parameter values for Algorithm1 and Algorithm4.
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Figure 4.12.: The single speaker channels after the processing. The black line displays the active
speaker. The black circle pictures a wrong assigned speech utterance with Algorithm4.

Figure 4.13.: DER for the real conference in the videolab referred to Algorithm1, Algorithm2 and
Algorithm4.
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Figure 4.14.: DER for the real conference in the videolab under different parameter values for
Algorithm3 and Algorithm4.
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5. Conclusion & Outlook

In this chapter I will give a short conclusion to the received results and developed algo-
rithms. Furthermore I will write about some additionally ideas to improve the introduced
system and at this point some additionally evaluations will be discussed, too.

5.1. Conclusion

The main point of this thesis was to combine the existing single algorithms and devices in
an adequate manner and evaluate then the whole system. Additionally a channel assign-
ment algorithm is developed, which has the task to put the speech of every speaker at his
own channel to make 3D-sound possible. This is strongly dependent from speaker recog-
nition and thus the parameters of this algorithm are evaluated to find the best. Afterwards
the whole system is evaluated with simulated meetings that are recorded and handled by
the developed system. At least a small real conference is recorded and processed through
the algorithms.

The recordings were done by a microphone array with eight microphones. The SRP-
PHAT algorithm locates for every speech utterance the source position. The so achieved
results are used to separate overlapping speakers and noise with the Geometric Source
Separation. Now the speaker recognition, which consists of MFCCs modelled in a GMM, is
applied. The speaker recognition is improved through adapting every speaker model from
an UBM and verifying the computed speaker with the saved localisation. Another approach
to identify the speaker is the introduced reinforcement algorithm, which uses the localisa-
tion as reward. The channel assignment is implemented in four algorithms. The first uses
the speaker recognition and the second the sound source localisation stand alone. The
third is implemented with the localisation combined with the speaker identification as posi-
tion change detection and adaptation. The fourth uses the same as the third but extended
with a localisation misclassification correction through speaker recognition.

The parameter evaluation for Algorithm1 achieves the in table 5.1 mentioned results as
its best for a frame size of 0,1 seconds. Of course the recognition scores a better DER if
the frame length becomes larger. How expected the speaker diarization algorithm from the
ICSI has a better DER than the developed online speaker recognition. The reinforcement
learning approach for speaker identification achieves pretty good results (a minimal DER of
27% is achievable), but fails on the absence of a time memory from speaker characteristics.
This can be seen if the adaptation of the speaker model through the reward is turned off,
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then a minimal DER of 59 % can be received. Anyhow this algorithm does not reach the
DER of a localisation approach as it is used in this thesis.

Table 5.1.: The best parameters for Algorithm1

Gaussian Mixture Components 256
Mel-Frequency Cepstrum Coefficients 20
Zero-coefficient without
Silence Model trained without UBM
VAD hard threshold for VAD
Length of Hamming window not significant
Overlap of Hamming window not significant

In the simulated meetings it can be seen how strong the whole system works. If the
silence is left out of the DER the speech utterances which are assigned to the false channel
can be located at 13% with a frame size of 0,1 seconds. This small value combined with
the frame size lead to an output where, in opinion of the author, no error is audible if only
one speaker is active. If there are more active speakers there occurs the problem, that
the localisation not only assigns the, through the separation dominant speaker to the right
channel but rather the not dominant. So here is an error audible.

At the end the Institute for Data Processing has developed a good teleconference sys-
tem at the recording side which achieves a well DER and the audio stream after the com-
puting sounds in the most cases as good as the input. The system altogether is not
implemented elsewhere and can easily keep up with the state of the art.

5.2. Outlook and improvement ideas

The developed channel assignment algorithm Algorithm4 has very much parameters
which has to be adapted to optimize the whole system in a real conference scenario. That
is not realizable with such a short evaluation time as it was the case in this work. Longer
and more conferences has to be recorded and tested. It is proven that the discussed sys-
tem works for simulated meetings and it shows first good results in a real meeting. But
to demonstrate this and to optimize the parameters more evaluations must be done. To
mention some parameters the location tolerance, the position change counter threshold
and the frame size for position checking will be named here.

The reinforcement learning approach is promising a good DER but can not be used in
the actual state, because of the lack of time memory. Some additions can be done like a
speaker model for every letter or as mentioned in [59] a lip movement camera can be used

70



5.2. Outlook and improvement ideas

as reward. Of course this is no desirable approach for this thesis, because it needs visual
information.

A further idea, to improve the system is to save the received audio stream as long as
the position does not change. This way a larger frame can be used if the localisation fails
and the speaker recognition has to do the channel assignment. I think this concept has a
great potential. Furthermore can the idea be used to find faster a new position for moving
speakers.

A compensation or normalisation method is not implemented yet, too. So an algorithm
of section 2.5 can be programmed in the future.

71





A. Appendix

A.1. Audio Processing Parameters

Table A.1.: Parameters of audio processing

General Audio Processing Parameters

Recording frequency 48 kHz
Sampling frequency 16 kHz
Quantization 16 bit
FFT length 10 ms, 20 ms, 30 ms
Window overlap 30%, 40% 50%
Window type Hamming

Feature Extraction Parameters

Number of features 8, 12, 16, 20 with 1st , 2nd order derivatives
Preemphasis roll-off α 0.95
Number of triangular mel filters 20

Voice Activity Detection Parameters

Energy threshold 30 dB
Minimum number of speech frames to count it as speech 3
Maximum number of silence frames to end speech 8

Gaussian Mixture Models Parameters

Number of mixture components 16, 32, 64, 128, 256
EM convergence threshold 10−5

MAP relevance factor r 16
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A.2. List of acronyms

Table A.2.: Used acronyms

Acronym Advertised

BIC Bayesian Information Criterion
BSS Blind Source Separation
EM Expectation Maximization
FFT Fast Fourier Transformation
GMM Gaussian Mixture Model
GSS Geometric Source Separation
HMM Hidden Markov Model
MAP Maximum a Posteriori
MFCCs Mel Frequency Cepstral Coefficients
ML Maximum Likelihood
MLLR Maximum likelihood linear regression
LPCCs Linear Prediction Cepstrum Coefficients
PCA Principle Component Analysis
SEND Spherically symmetric exponential norm distribution
SRP-PHAT Steered Response Power - Phase Transform
SSL Spherically symmetric Laplacian distribution
STFT Short Time Fourier Transformation
TDoA Time Difference of Arrival
UBM Universal Background Model
VAD Voice Activity Detection
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A.3. AMI Corpus

A.3. AMI Corpus

Meeting s001 s002 s003 s004

ES2009 m0034 ev m0033 ev m0035 ev f0036 ev
ES2010 f0037 ev f0038 ev f0039 UBM f0040 ev
ES2011 f0043 ev f0041 ev f0044 UBM f0042 ev
ES2012 m0045 ev f0047 ev f0046 UBM m0048 ev
ES2013 f0049 ev f0050 ev f0051 UBM f0052 ev
ES2014 m0053 ev m0054 ev f0055 UBM m0056 ev
ES2015 f0057 ev f0060 ev f0058 UBM f0059 ev
ES2016 m0061 ev f0064 ev m3062 UBM m0063 ev

Table A.3.: Overview of meeting participants per meeting with annotated gender and the useage
in the evaluation
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A.4. MATLAB Implementation

A digital copy of the Matlab source code is provided alongside the thesis. The attached
DVD contains the following MATLAB scripts and functions:

Table A.4.: In this work developed algorithms

File name Function

AMICorpusTestenWithMore.m AMI evaluation no silence
AMICorpusTestenWithOut.m AMI evaluation no silence and overlaps
AMICorpusTestenWithSil.m AMI evaluation no overlaps
AMICorpusTestenWithSilMore.m AMI evaluation after DER
conferenceAngle.m Assigns the speaker channels with localisation
conferenceRec.m Assigns the speaker channels with recognition
direction.m Extracts the speaker position out of a file name
evaluationICSI.m Calculated the DER out of the ICSI diarization results
groundTruth.m Calculated the ground truth out of a recording file
improveModel.m adapts a speaker model with the help of the position
konferenz.m Channel assignment via localisation
konferenzAngle.m DER conference evaluation + chan. assign. via loc
konferenzRec.m DER conference evaluation + chan. assign. via rec
positionChange.m Proves if the speaker position has changed
PROPERTIES.m Defines all important parameters centrally
SkriptAMI.m Calls the single AMI evaluations
SkriptKonferenz.m Calls the single conference evaluations
trainUBM.m Train an UBM
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Table A.5.: Matlab functions and tools out of [33] and [21]

Functions

adaptModel.m Adapt a model
EM.m Implementation of the EM algorithm
enframe.m window a signal
extractFeatures.m extract features out of a signal
initEM.m initialize EM algorithm by k-means
logLikelihood.m Calculate log-likelihood
map.m MAP adaptation
melcepst.m Calculate the MFCCs
trainGMM.m Train a GMM
vad.m Voice activity detection
folder gss Consists of all matlab algorithms to localize and separate a speaker

Tools

activlev.m estimates the active speech level
estnoisem.m estimates the ground noise level
frq2mel.m Transforms linear frequency into mel scale
gaussmix.m Another adaptation algorithm
gaussPDF.m Computes PDF of a Gaussian
lmultigauss.m Computes multigaussian log-likelihood
logsum.m log(sum(exp()))
lsum.m Sum up logarithmically
m2htmlpwd.m Creates a HTML documentation of the current folder
maxfilt.m Find max of a filter
mel2frq.m Transforms mel scale to linear frequency
melbankm.m Mel bank filter function
nearnonz.m Create a value close to zero
rdct.m Calculate DCT of real data
rfft.m Calculate DFT of real data
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A.5. DVD content

• The Edinburgh recordings of the AMI meeting corpus together with the ground truth
for every meeting

• The recorded conferences and there ground truth

• The results of the evaluation

• The ICSI speaker diarization system with the evaluation results

• The above mentioned matlab files

• The diploma thesis as pdf and latex file

78



List of Figures

2.1. The teleconference system from the Institute for Data Processing of the
Technical University at Munich. In the localisation and separation column
only the best algorithm is used. . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2. All algorithms used in the Blind Source Separation [55] . . . . . . . . . . . 14

3.1. The principle structure of the microphone array . . . . . . . . . . . . . . . . 45
3.2. The microphone array out of [21] . . . . . . . . . . . . . . . . . . . . . . . 46
3.3. A Delay and Sum Beamformer . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4. A Mel-filter bank with triangular bandpass filters out of [33] . . . . . . . . . . 47
3.5. Speaker position change algorithm . . . . . . . . . . . . . . . . . . . . . . 48
3.6. Channel assignment algorithm . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1. Recordings in the audiolab . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2. The two meeting combinations for the different participant positions. . . . . 57
4.3. DER for Algorithm1 evaluated with the AMI meeting corpus referred to dif-

ferent frame lengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4. DER for Algorithm1 and 2 evaluated with the AMI meeting corpus referred

to a different number of GMM components. . . . . . . . . . . . . . . . . . . 60
4.5. DER for Algorithm1 evaluated with the AMI meeting corpus referred to a

different number of MFCCs and with or without the Zero coefficient. . . . . . 61
4.6. DER for Algorithm1 evaluated with the AMI meeting corpus referred to a

difference in silence treatment. . . . . . . . . . . . . . . . . . . . . . . . . 62
4.7. DER for Algorithm1 evaluated with the AMI meeting corpus referred to a

difference in the window length and the overlap of the Hamming filters. . . . 63
4.8. Differnet DER for Algorithmus1 referred to silence and overlapping speech

in the AMI meeting corpus. . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.9. DER for a comparison between Algorithmus1 (with and without zero coeffi-

cient) and Algorithmus5 (with adaptation and without). . . . . . . . . . . . . 64
4.10.DER for the conference simulations at the audio- and videolab for the two

meeting variations. Algorithm1 and Algorithm4 are tested. . . . . . . . . . 65
4.11.DER for the conference simulations in the videolab with session2 under

different parameter values for Algorithm1 and Algorithm4. . . . . . . . . . 65
4.12.The single speaker channels after the processing. The black line displays

the active speaker. The black circle pictures a wrong assigned speech ut-
terance with Algorithm4. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

79



List of Figures

4.13.DER for the real conference in the videolab referred to Algorithm1,
Algorithm2 and Algorithm4. . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.14.DER for the real conference in the videolab under different parameter values
for Algorithm3 and Algorithm4. . . . . . . . . . . . . . . . . . . . . . . . . 67

80



Bibliography

[1] AMI Consortium. The AMI Meeting Corpus. URL http://corpus.amiproject.

org. Accessed at 10.03.2013.

[2] A.M. Arthur, R. Lunsford, M. Wesson, and S. Oviatt. Prototyping novel collabora-
tive multimodal systems: simulation, data collection and analysis tools for the next
decade. In Proceedings of the 8th international conference on Multimodal interfaces,
pp. 209–216. 2006.

[3] R. Auckenthaler and J.S. Mason. Gaussian selection applied to text-independent
speaker verification. 2001.

[4] H. Beigi. Fundamentals of speaker recognition. Springer, New York, 2011.

[5] J. Benesty, M. Sondhi, and Y. Huang. Springer Handbook of Speech Processing.
Springer, New York, 2008.

[6] K. Bernardin and R. Stiefelhagen. Audio-visual multi-person tracking and identifica-
tion for smart environments. In Proceedings of the 15th international conference on
Multimedia, pp. 661–670. 2007.

[7] L. Besacier and J.F. Bonastre. Subband architecture for automatic speaker recogni-
tion. In Signal Processing, 80(7), pp. 1245–1259, 2000.

[8] C. Busso, S. Hernanz, C.W. Chu, S.i. Kwon, S. Lee, P.G. Georgiou, I. Cohen, and
S. Narayanan. Smart room: participant and speaker localization and identification. In
International Conference on Acoustics, Speech, and Signal Processing., volume 2,
pp. ii–1117. 2005.

[9] W.M. Campbell, J.P. Campbell, D.A. Reynolds, E. Singer, and P.A. Torres-
Carrasquillo. Support vector machines for speaker and language recognition. In
Computer Speech & Language, 20(2), pp. 210–229, 2006.

[10] W.M. Campbell, D.E. Sturim, and D.A. Reynolds. Support vector machines using
gmm supervectors for speaker verification. In Signal Processing Letters, 13(5), pp.
308–311, 2006.

[11] U.V. Chaudhari, G.N. Ramaswamy, G. Potamianos, and C. Neti. Information fusion
and decision cascading for audio-visual speaker recognition based on time-varying

81

http://corpus.amiproject.org
http://corpus.amiproject.org


Bibliography

stream reliability prediction. In International Conference on Multimedia and Expo.,
volume 3, pp. III–9. 2003.

[12] E. Cherry. Some experiments on the recognition of speech, with one and with two
ears. In Journal of the Acoustical Society of America, 25, pp. 975–979, 1953.

[13] Chin, D. Next Generation Video Conferencing. In Arkadian Global Conferencing, pp.
3–4, 2011.

[14] G. Doddington et al.. Speaker recognition based on idiolectal differences between
speakers. In Proceedings Eurospeech, volume 1, pp. 2521–2524. 2001.

[15] M. Durkovic. Localization, Tracking, and Separation of Sound Sources for Cognitive
Robots. 2012. Dissertation at the Institute for Data Processing, Technical University
of Munich.

[16] J. Feldmaier. Sound Localization and Separation for Teleconferencing Systems. 2011.
Diploma thesis at the Institute for Data Processing, Technical University of Munich.

[17] S. Furui. Cepstral analysis technique for automatic speaker verification. In IEEE
Transactions on Acoustics, Speech and Signal Processing., 29(2), pp. 254–272,
1981.

[18] J. Garofolo. The 2009 (RT-09) Rich Transcription Meeting Recognition Evaluation
Plan. In RT-06S Transcription Evaluation Plan, 2009.

[19] J. Garofolo, J. Fiscus, and J. Ajot. Spring 2007 (RT-07) Rich Transcription Meeting
Recognition Evaluation Plan. In RT-06S Transcription Evaluation Plan, 2007.

[20] J. Garofolo, J. Fiscus, and J. Ajot. The NIST Year 2012 Speaker Recognition Evalua-
tion Plan. In 2012 NIST Speaker Recognition Evaluation, 2012.

[21] T. Grasser. Speaker Localization and Separation in Teleconferences . 2013. Diploma
thesis at the Institute for Data Processing, Technical University of Munich.

[22] F. Grondin and F. Michaud. Wiss, a speaker identification system for mobile robots. In
IEEE International Conference on Robotics and Automation (ICRA)., pp. 1817–1822.
2012.

[23] J. Gudnason and M. Brookes. Voice source cepstrum coefficients for speaker identi-
fication. In IEEE International Conference on Acoustics, Speech and Signal Process-
ing, pp. 4821–4824. 2008.

[24] V. Hautamaki, T. Kinnunen, I. Karkkainen, J. Saastamoinen, M. Tuononen, and
P. Franti. Maximum a posteriori adaptation of the centroid model for speaker veri-
fication. In Signal Processing Letters, 15, pp. 162–165, 2008.

82



Bibliography

[25] R.M. Hegde, H.A. Murthy, and G.V.R. Rao. Application of the modified group delay
function to speaker identification and discrimination. In IEEE International Conference
on Acoustics, Speech, and Signal Processing., volume 1, pp. 1–517. 2004.

[26] H. Hermansky. Perceptual linear predictive (plp) analysis of speech. In The Journal
of the Acoustical Society of America, 87, p. 1738, 1990.

[27] T. Hori, S. Araki, T. Yoshioka, M. Fujimoto, S. Watanabe, T. Oba, A. Ogawa, K. Otsuka,
D. Mikami, K. Kinoshita et al.. Real-time meeting recognition and understanding using
distant microphones and omni-directional camera. In Spoken Language Technology
Workshop, pp. 424–429. 2010.

[28] X. Huang, A. Acero, and H.W. Hon. Spoken language processing, volume 15. Pren-
tice Hall PTR New Jersey, 2001.

[29] K. Ishiguro, T. Yamada, S. Araki, T. Nakatani, and H. Sawada. Probabilistic speaker
diarization with bag-of-words representations of speaker angle information. In IEEE
Transactions on Audio, Speech, and Language Processing, 20(2), pp. 447–460, 2012.

[30] P. Kenny, G. Boulianne, P. Ouellet, and P. Dumouchel. Speaker and session variability
in gmm-based speaker verification. In IEEE Transactions on Audio, Speech, and
Language Processing., 15(4), pp. 1448–1460, 2007.

[31] T. Kinnunen and L. Haizhou. An overview of text-independent speaker recognition:
From features to supervectors. In Speech communication, 52.1, pp. 12–40, 2010.

[32] T. Kinnunen. Spectral features for automatic text-independent speaker recognition. In
Licentiate’s Thesis, 2003.

[33] C. Kozielski. Online Speaker Recognition for Teleconferencing Systems. 2011.
Diploma thesis at the Institute for Data Processing, Technical University of Munich.

[34] C. Leggetter and P. Woodland. Maximum likelihood linear regression for speaker
adaptation of continuous density hidden markov models. In Computer speech and
language, 9(2), p. 171, 1995.

[35] E. Lleida, J. Fernandez, and E. Masgrau. Robust continuous speech recognition
system based on a microphone array. In IEEE International Conference on Acoustics,
Speech and Signal Processing, 1998., volume 1, pp. 241–244. 1998.

[36] S. Makino, T.W. Lee, and H. Sawada. Blind Speech Separation. Signals and Com-
munication Technology. Springer Dordrecht, 2007.

[37] E. Martinson and W. Lawson. Learning speaker recognition models through human-
robot interaction. In IEEE International Conference on Robotics and Automation., pp.
3915–3920. 2011.

83



Bibliography

[38] I. McCowan, D. Gatica-Perez, S. Bengio, D. Moore, and H. Bourlard. Towards com-
puter understanding of human interactions. In Machine Learning for Multimodal Inter-
action, pp. 56–75. Springer, New York, 2005.

[39] J. McLaughlin, D.A. Reynolds, and T. Gleason. A study of computation speed-ups of
the gmm-ubm speaker recognition system. In Proceedings Eurospeech, volume 99,
pp. 1215–1218. 1999.

[40] H. Misra, S. Ikbal, and B. Yegnanarayana. Speaker-specific mapping for text-
independent speaker recognition. In Speech Communication, 39(3), pp. 301–310,
2003.

[41] H. Nakasone, M. Mimikopoulos, S.D. Beck, and S. Mathur. Pitch synchronized speech
processing (pssp) for speaker recognition. In ODYSSEY04-The Speaker and Lan-
guage Recognition Workshop. 2004.

[42] K. Otsuka, S. Araki, K. Ishizuka, M. Fujimoto, M. Heinrich, and J. Yamato. A realtime
multimodal system for analyzing group meetings by combining face pose tracking
and speaker diarization. In Proceedings of the 10th international conference on Mul-
timodal interfaces, pp. 257–264. 2008.

[43] M.D. Plumpe, T.F. Quatieri, and D.A. Reynolds. Modeling of the glottal flow derivative
waveform with application to speaker identification. In IEEE Transactions on Speech
and Audio Processing., 7(5), pp. 569–586, 1999.

[44] T. Plutka. Extension of a binaural localization and tracking algorithm. 2012. Bachelor
thesis at the Institute for Data Processing, Technische Universität München.

[45] J. Ramirez, J.C. Segura, C. Benitez, A. De La Torre, and A. Rubio. Efficient voice
activity detection algorithms using long-term speech information. In Speech commu-
nication, 42(3), pp. 271–287, 2004.

[46] D.A. Reynolds, T.F. Quatieri, and R.B. Dunn. Speaker verification using adapted gaus-
sian mixture models. In Digital signal processing, 10(1), pp. 19–41, 2000.

[47] A.A. Salah, R. Morros, J. Luque, C. Segura, J. Hernando, O. Ambekar, B. Schouten,
and E. Pauwels. Multimodal identification and localization of users in a smart envi-
ronment. In Journal on Multimodal User Interfaces, 2(2), pp. 75–91, 2008.

[48] J. Schmalenstroeer and R. Haeb-Umbach. Online diarization of streaming audio-
visual data for smart environments. In IEEE Journal of Selected Topics in Signal
Processing., 4(5), pp. 845–856, 2010.

[49] J. Schmalenstroeer, M. Kelling, V. Leutnant, and R. Haeb-Umbach. Fusing audio and
video information for online speaker diarization. In Proceedings ASRU, pp. 1163–
1166. 2007.

84



Bibliography

[50] C. Segura, A. Abad, J. Hernando, and C. Nadeu. Multispeaker localization and track-
ing in intelligent environments. In Multimodal Technologies for Perception of Humans,
pp. 82–90. Springer, New York, 2008.

[51] O. Setin and E. Schriberg. Speaker overlaps and ASR errors in meetings: Effects
before, during and after the overlap. In Acoustics, Speech and Signal Processing, 1,
2006.

[52] K. Steierer. Ausnutzen der Richtungsinformationen bei der Sprechererkennung.
2012. Studienarbeit at the Institute for Data Processing, Technical University of Mu-
nich.

[53] D.E. Sturim, D.A. Reynolds, E. Singer, and J.P. Campbell. Speaker indexing in large
audio databases using anchor models. In IEEE International Conference on Acous-
tics, Speech, and Signal Processing, 2001., volume 1, pp. 429–432. 2001.

[54] N.P.H. Thian, C. Sanderson, and S. Bengio. Spectral subband centroids as comple-
mentary features for speaker authentication. In Biometric Authentication, pp. 631–
639. Springer, New York, 2004.

[55] M. Unverdorben. Blind Source Separation for Speaker Recognition Systems. 2012.
Diploma thesis at the Institute for Data Processing, Technical University of Munich.

[56] H. Vajaria. Diarization, localization and indexing of meeting archives. ProQuest, 2008.

[57] J.F. Wang, T.W. Kuan, J.c. Wang, and G.H. Gu. Ubiquitous and robust text-
independent speaker recognition for home automation digital life. In Ubiquitous In-
telligence and Computing, pp. 297–310. Springer, Berlin Heidelberg, 2008.

[58] C. Wooters and M. Huijbregts. The ICSI RT07s speaker diarization system. In Lecture
Notes in Computer Science, 4625, pp. 509–519, 2008.

[59] S. Wulff. Reinforcement for Online Speaker Recognition in Teleconferencing Sys-
tems. 2013. Master thesis at the Institute for Data Processing, Technical University
of Munich.

[60] B. Yegnanarayana and S. Kishore. Aann: an alternative to gmm for pattern recogni-
tion. In Neural Networks, 15(3), pp. 459–469, 2002.

[61] B. Yegnanarayana, K. Sharat Reddy, and S. Kishore. Source and system features
for speaker recognition using aann models. In IEEE International Conference on
Acoustics, Speech, and Signal Processing., volume 1, pp. 409–412. 2001.

[62] F. Zheng, G. Zhang, and Z. Song. Comparison of different implementations of mfcc.
In Journal of Computer Science and Technology, 16(6), pp. 582–589, 2001.

85



Bibliography

[63] N. Zheng, T. Lee, and P. Ching. Integration of complementary acoustic features for
speaker recognition. In Signal Processing Letters, IEEE, 14(3), pp. 181–184, 2007.

[64] E. Zwicker. Subdivision of the audible frequency range into critical bands (frequenz-
gruppen). In The Journal of the Acoustical Society of America, 33, p. 248, 1961.

86


	Introduction
	Motivation
	Definition of this thesis
	Outline of this thesis

	Related Works
	Overview
	Speaker localisation and separation
	Localisation
	Separation

	Speaker dependent features
	Short-term spectral features
	Voice Source Features
	Spectro-Temporal Features
	Prosodic Features
	High-Level Features

	Speaker Models
	Vector Quantisation
	Gaussian Mixture Models
	Support Vector Machines
	Other Models

	Voice Activity Detection, compensation and normalization methods
	Channel assignment
	Channel assignment using audio data
	Channel assignment using video and audio data

	Speaker localisation and recognition systems
	Audio only processing
	Audio-visual processing

	Concluding remarks
	Evaluation

	Developed teleconference system
	System overview
	Microphone Array
	Steered Response Power - Phase Transform (SRP-PHAT)
	Geometric Source Separation
	Speaker recognition
	Pre-processing for speaker recognition
	Mel Frequency Cepstrum Coefficients
	Gaussian Mixture Model
	Speaker identification
	Speaker model adaptation
	Voice Activity Detection

	Channel Assignment
	Reinforcement Learning for speaker recognition

	The ICSI speaker diarization system

	Evaluation
	Evaluation & channel assignment names
	Parameters to evaluate
	Selected audio files
	AMI Meeting Corpus
	Audio recordings
	Ground truth of recorded meetings

	Results of the AMI meeting corpus evaluation
	Evaluation of the simulated conferences
	Evaluation of the recorded real meeting

	Conclusion & Outlook
	Conclusion
	Outlook and improvement ideas

	Appendix
	Audio Processing Parameters
	List of acronyms
	AMI Corpus
	MATLAB Implementation
	DVD content

	Bibliography

