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Abstract— The aim of this paper is to develop a networked
resource-aware control scheme by assigning dynamic priorities
to acquire a scarce resource. The networked control system
is assumed to consist of a finite number of heterogeneous
stochastic control systems whose feedback loops are closed over
a shared constrained communication channel. The scheduler
decides which subsystem utilizes the channel, and subsequently
which controller is updated with real state values. We introduce
a prioritized error-based (PEB) scheduling protocol which
allocates the resource according to a network-induced error
function, such that the likelihood to allocate the resource to
a subsystem increases with the growing error norm. By using
drift criteria, we prove the described system is stochastically
stable under very mild conditions. Numerical simulations show
that the stability of the overall NCS along with a significant
control performance improvement in comparison to the other
protocols.

I. INTRODUCTION

The consideration of networked control systems (NCS)

with communication constraints has received a lot of at-

tention in recent years. An NCS is the integration of a

multitude of small-scale entities coupled through a resource-

constrained communication network. Therein, the design

of the scheduling protocol for NCS has undergone several

paradigm shifts in order to meet the real-time requirements

of the control tasks. One of the basic paradigm changes

is introduced in [1] by the try-once-discard (TOD) pro-

tocol. The TOD protocol uses only current measurement

data for transmission and discards the blocked data. The

protocol dynamically prioritizes transmissions by choosing

the measurement with the largest discrepancy between its

actual value and its estimate at the controller. A central

role in the stability analysis of systems with deterministic

communication plays the maximal allowable transfer interval

(MATI) denoting the upper bound on the interval of two

successive transmissions to guarantee stability of the NCS

[1]–[3]. In wireless communication systems, contention-

based protocols, like CSMA, are intrinsically stochastic.

These protocols that are the subject of this work however

do not allow to use the notion of MATI in general, as the

intervals between transmissions usually can not be bounded

uniformly with probability one. An extension to stochastic

protocols and communication systems with random packet
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dropouts is given in [4]–[6]. Stability conditions for mean

square stability and Lp stability-in-expectation are derived

via Lyapunov theory.

With regard to the existing literature, the novelty of this

work is given by considering a stochastic protocol over a

resource-constrained communication channel whose prior-

ities are error-dependent. As the errors are driven by the

stochastic noise process, transmissions occur randomly in an

event-based fashion. The approach uses the scarce resource

of communicating more efficiently to stabilize the system

and decreases the mean variance of the error in comparison

with static protocols, such as round robin and CSMA. More-

over, the probabilistic nature of the protocol facilitates an

approximative decentralized implementation through error-

dependent back-off exponents. The system under considera-

tion requires novel methods to analyze the asymptotic behav-

ior of the NCS. Our contribution is to analyze the stability

properties of a networked system consisting of multiple loops

closed over a shared communication network by employing

a stochastic scheduler with dynamically assigned priorities.

We assume that we are given stabilizing state-feedback

controllers in case of ideal communication. If no state update

is received, a model-based state observer implemented at

the controller predicts the state evolution. Inspired by the

idea of error-dependent intensity for transmission, [7], we

introduce a stochastic protocol denoted as prioritized error-

based (PEB) protocol. The PEB protocol assigns to each

subsystem a probability of utilizing the resource according

to the individual networked-induced error. As stochastic

disturbances are considered opposed to [4], [5], we relax the

notion of stochastic stability to ergodicity with finite second

moment of the Markov chain. Using drift criteria [8], we

show that the overall system is ergodic. The key idea in

stability analysis is to consider multiple time steps in order

to show that the drift of the Lyapunov function is negative.

Straight-forward arguments indicate that the stability results

can accommodate event-triggered scheduling schemes within

the prioritizing protocol to further reduce communication

traffic [9]–[13]. An extension of this work so called p-

powered PEB, which uses more conservative bounds on the

drift, is also discussed in [14]. Numerical results illustrate the

stability properties of the proposed scheme. They indicate

an increased performance in terms of the mean squared

networked-induced estimation error compared to the round

robin and CSMA schemes.

The remainder of this paper is structured as follows.

Problem statement is described in Section II. Section III

starts with some preliminaries of stochastic stability and
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ergodicity, and then proceeds with the stability analyses. The

efficiency of the proposed approach is illustrated in Section

IV by numerical simulations.

Notation. In this paper, the Euclidean norm is denoted by

‖ · ‖2. The expectation and conditional expectation operators

are denoted by E[·] and E[·|·]. The relation N (0, X) de-

notes a zero-mean Gaussian random variable with covariance

matrix X . If not otherwise stated, a state variable with

superscript i indicates that it belongs to subsystem i. For con-

stant matrices though, subscript i indicates the corresponding

subsystem and superscript n denotes the matrix power.

II. PROBLEM STATEMENT

We consider a networked system composed of N indepen-

dent heterogeneous subsystems which are coupled through a

shared communication channel. Each individual control sub-

system consists of a linear time invariant stochastic plant Pi,

a stabilizing state-feedback controller Ci, and a sensor Si. An

event-based global scheduler situated at the communication

channel receives the data, in form of error norms, from all

sensors and decides if the state is an event to be scheduled for

channel utilization. This is illustrated graphically in Fig. 1.

The process Pi is modeled by a stochastic process evolving

by the following difference equation

xik+1 = Aix
i
k +Biu

i
k + wi

k, (1)

where Ai ∈ R
ni×ni , Bi ∈ R

ni×mi . The state vector xik and

control input uik are taking values in R
ni and R

mi , respec-

tively. The system noise wi
k ∈ R

ni is i.i.d. with wi
k ∼

N (0,Wi) at each time-step k. For notational convenience,

we assume that the system noise is unity variance Gaus-

sian distribution, but the results hold for arbitrary positive

definite Wi. Since, the stability analysis is independent of

initial states, xi0, i ∈ {1, . . . , N}, might have any arbitrary

distribution with bounded second moment. The scheduler

output at time-step k is described by δik ∈ {0, 1} as follows

δik =

{

1 subsystem i is updated

0 subsystem i is blocked

and implies the received signal zk at the controller as

zik =

{

xik δik = 1

∅ δik = 0

It is assumed that sensor and controller of the ith subsystem

merely have knowledge of Ai, Bi, Wi, the distribution of

x0. Then control law γi is described by causal mappings of

the past observations for each time step k, i.e.

uik = γik(Z
i
k) = −Li E

[

xik|Z
i
k

]

(2)

where Zi
k = {zi0, . . . , z

i
k} is the ith subsystem observation

history, and the Li is the stabilizing feedback gain. We

assume that each loop is stabilized with the state feedback

controller in (2) in case of ideal communication. The con-

trollers are updated by an estimator, in case of a blocked

data transmission request, only if the closed-loop matrix

(Ai −BiLi) is Hurwitz, i.e. if δik = 0, then

E
[

xik|Z
i
k

]

= (Ai −BiLi)E
[

xik−1|Z
i
k−1

]

(3)

with the initial condition E
[

xi0|Z
i
0

]

= 0. For each subsystem

i, the network-induced error state eik ∈ R
ni is defined as

eik=x
i
k−E

[

xik|Z
i
k−1

]

which evolves as follows

eik+1 =
(

1− δik
)

Aie
i
k + wi

k (4)

The augmented state
[

xik, e
i
k

]

has a triangular dynamics

within each subsystem, according to (1)-(4)
[

xik+1

eik+1

]

=

[

Ai −BiLi

(

1− δik
)

BiLi

0
(

1− δik
)

Ai

][

xik
eik

]

+

[

wi
k

wi
k

]

which underlines the system state xik does not affect evolu-

tion of eik. Thus, showing the sequence ek is stable implies

the overall system’s stability. The prioritized error-based

(PEB) scheduling policy defines the probability of channel

access for each subsystem at time k as

P[δik = 1|ejk, j ∈ {1, . . . , N}] =
‖eik‖

2
2

∑N
j=1

‖ejk‖
2
2

(5)

According to (5), the highest error has the channel access

priority, and other requests accompanied with lower priorities

are likely dropped. As the scheduling policy is memoryless,

the process is repeated in every time step k. As the network

allows only one transmission per time step, we have the

following hard constraint with probability 1 for every k ≥ 0

N
∑

i=1

δik = 1 (6)

It is straightforward to extend the approach to a different

number than one of allowed transmission per time step.

Remark 1: Stochastic nature of the algorithm, enables

us to implement the PEB policy approximately in a de-

centralized fashion. It is envisioned that every subsystem

randomly determines its priority according to a probability

distribution depending on its own error. In a wireless CSMA

communication systems, the priority could be reflected in

the error-dependent distribution of the backoff-time of each

subsystem during one time step. This implies that the mean

back-off time of a subsystem decreases with an increase of

the error norm.

The aggregate error state ek ∈ R
n defined as

ek = [e1k, . . . , e
N
k ]T, (7)

where n = n1 + · · ·+ nN , is a time-homogeneous Markov

chain, because the scheduling policy defined in (5) is a

randomized Markov policy depending on the values of ek.

III. STABILITY ANALYSIS UNDER PEB

SCHEDULING POLICY

In this section, the stability of networked control systems

with multiple control loops sharing a constrained communi-

cation channel, which is scheduled by the PEB scheduling
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Fig. 1. A NCS with a shared communication channel

policy, is presented. We start with a networked system com-

posed of two heterogeneous subsystems, and then extend the

results for arbitrary number of subsystems. Beforehand, some

preliminaries are introduced to facilitate the discussions.

A. Preliminaries

As the Markov chain defined in (7) evolves in R
n, we have

a Markov chain in an uncountable state space, which compre-

hensively discussed in [8], Chapter 14. The notions used are

similar of that for countable Markov chain, however, several

generalizations must be made, for example ψ-irreducibility,

where ψ is a non-trivial measure of the uncountable state

space. Another important generalization is that of so-called

small sets, which can be identified by compact sets in our

problem. These sets take the role of finite sets in countable

Markov chains. The stability concept used in this paper is

given by f -ergodicity defined in the following.

Definition 1: Let f ≥ 1 be a real-valued function in R
n.

A Markov chain ek is said to be f -ergodic, if

1) ek is positive Harris recurrent with invariant probability

measure π
2) E [π(f)] is finite, where π(f) =

∫

f(e)π(de)
3) for every initial value e0, limk→∞ ‖P k(e0, ·)−π‖f =

0, where P is the probability transition matrix

The f -norm ‖ · ‖f for any signed measure ν is defined as

‖ν‖f = sup
|g|≤f

|ν(g)|

Remark 2: A Markov chain is said to be positive Harris

recurrent, if it is Harris recurrent and there exists an invariant

probability measure, see section 10.1 in [8].

Remark 3: From now on, f is assumed to be quadratic.

Therefore, f -ergodicity implies that the stationary distribu-

tion of the Markov chain has a finite second moment.

The next definition gives us a notion for the gradient of the

Markov chain with respect to a real-valued function of states.

Definition 2 (Drift for Markov chains, [8]): Let V be a

real-valued function in R
n. The drift operator ∆ is defined

for any non-negative measurable function V as

∆V (ek) = E[V (ek+1)|ek]− V (ek), ek ∈ R
n. (8)

The main theorem is summarized in the following theorem

which can be found on p.334 in [8].

Theorem 1 (Aperiodic Ergodic Theorem): Suppose that

the Markov chain ek is ψ-irreducible and aperiodic and let

f (e) ≥ 1 be a real-valued function in R
n. If a small set D

and a non-negative real-valued function V exist such that

∆V (e) ≤ −f(e), e ∈ R
n\D (9)

and ∆V < ∞ for e ∈ D, then the Markov chain ek is

f -ergodic.

Remark 4: Since we assume Gaussian additive noise with

Wi > 0, the transition kernel P (e, ·) at any state e of the

Markov chain ek has a positive density function. Then, the

Markov chain is ψ-irreducible and aperiodic. Analogously as

in the section 5.3.5 of [8], it can be concluded that all the

compact sets are small.

B. Two-Subsystem Network

Consider two LTI control systems coupled through the

communication network, with the plants and controllers

given as (1) and (2). At each time k, the scheduler is provided

with the error norms, and likely selects the subsystem with

the highest error to access the channel. In case of dismissed

transmission request, an observer predicts the state evolu-

tion. The stability analysis is performed based on the drift

conditions. We first state the following crucial lemma.

Lemma 1 (Expected value of the ratio a
b

): Suppose a
and b 6= 0 are two dependent random variables, then

E

[a

b
|b 6=0

]

=E [a]E

[

1

b

]

+

∞
∑

i=1

(−1)i
E

[

(a−E [a]) (b−E [b])
i
]

E [b]
i+1

Proof: See [15].

The following theorem incurs the stability of the two-

subsystem NCS employing PEB allocating strategy.

Theorem 2: Consider a NCS consists of two stochastic

LTI control loops coupled through a communication channel

constrained by (6), and with the stabilizing controllers γi as

defined in (2). Then, if the channel access is scheduled as

introduced in (5), then the Markov chain in (7) is f -ergodic

and has finite second moment.

Proof: According to Remark 4, the Markov chain ek is

ψ-irreducible and aperiodic. Then, as in Def. 2, we introduce

the non-negative measurable function V as

V (ek) =
∑

i=1,2

‖eik‖
2
2 (10)

In the following, as is also discussed in [16], we evaluate the

stochastic stability over two consecutive time-steps, in terms

of f -ergodicity and finite second moment. The Markov chain

ek is then f -ergodic if

∆2V (ek) = E [V (ek+2) |ek]− V (ek) ≤ −f(ek) (11)

Adjusting (4) for two consecutive time steps gives

eik+2=
(

1−δik+1

)(

1−δik
)

A2
i e

i
k+
(

1−δik+1

)

Aiw
i
k+w

i
k+1

According to (10), V (ek+2) =
∑

i=1,2 ‖e
i
k+2

‖22, therefore

the statistical independence of ek, and zero-mean variables
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wk, and wk+1, the second-order implies

∆2V (ek)

=
∑

i=1,2

E
[

‖
(

1− δik+1

) (

1− δik
)

A2
i e

i
k‖

2
2|ek

]

+
∑

i=1,2

E
[

‖
(

1− δik+1

)

Aiw
i
k‖

2
2|ek

]

+
∑

i=1,2

E
[

‖wi
k+1‖

2
2

]

−
∑

i=1,2

‖eik‖
2
2

At time k, one subsystem transmits, suppose the 1st, i.e.

δ1k=1, and inevitably, δ2k=0. Thus, the drift is simplified as

∆2V (ek)

= E
[

‖
(

1− δ2k+1

)

A2e
2
k+1‖

2
2|ek

]

+ ξ+ −
∑

i=1,2

‖eik‖
2
2

where, ξ+ = E
[

‖
(

1− δ1k+1

)

A1w
1
k‖

2
2|ek

]

+
∑

i=1,2ni. Here

we investigate two complementary cases by introducing a

binary random variable d ∈ {1, 2} as follows

d =

{

1 ‖e2k+1
‖22 ≤ ε2 < M2

2 ‖e2k+1
‖22 > ε2

(12)

where, ε2 > 0, and d occurs with probabilities

P [d = 1|ek] = α2 and P [d = 2|ek] = 1−α2, and α2 ∈ [0, 1].
M2 is the maximum allowable error threshold for individual

subsystem i=2. Employing the law of iterated expectation

E
[

‖
(

1− δ2k+1

)

A2e
2
k+1‖

2
2|ek

]

= E
[

E
[

‖
(

1− δ2k+1

)

A2e
2
k+1‖

2
2|ek, d

]

|ek
]

= P (d = 1|ek) .E
[

‖
(

1− δ2k+1

)

A2e
2
k+1‖

2
2|ek, d = 1

]

+ P (d = 2|ek) .E
[

‖
(

1− δ2k+1

)

A2e
2
k+1‖

2
2|ek, d = 2

]

≤ α2ε2‖A2‖
2
2 + (1− α2)E2

[(

1− δ2k+1

)

‖A2e
2
k+1‖

2
2|ek

]

where we denote E [·|ek, d = 2] = E2 [·|ek] for abbreviation.

Based on the definition of the PEB scheduling in (5),

E2

[

1− δ2k+1|ek
]

= E2

[

‖w1
k‖

2
2

‖w1
k‖

2
2 +‖w2

k +A2e2k‖
2
2

|ek

]

≤ E2

[

1

‖w2
k +A2e2k‖

2
2

|ek

]

= E2

[

1

‖e2k+1
‖22

|ek

]

Since, P
[

‖e2k+1
‖22 > ε2|d = 2

]

= 1, we derive the upper

bound for the latter based on the results in [17] as

E2

[

1

‖w2
k +A2e2k‖

2
2

|ek

]

≤ ε−1

2

(

1− γ−1 (µ− ε2)
2
)

(13)

where, γ = σ2 + µ (µ− ε2), µ = E2

[

‖w2
k +A2e

2
k‖

2
2|ek

]

=
n2 + ‖A2e

2
k‖

2
2 and σ2 = var

[

‖w2
k +A2e

2
k‖

2
2|ek, d = 2

]

. In

fact, µ and σ2 are taken to be approximations of the real

mean and variance as they neglect that ‖e2k+1
‖22 > ε2. But

as ε2 can be chosen arbitrarily small, such that it excludes

close-to-zero error values and enables us to exploit (13), the

deviation can be made arbitrarily small due to the absolute

continuity of the distribution. In other words, ε2 is defined

just to avoid the bound in (13) becomes meaningless by

close-to-zero error values. Moreover, we will be majorly

concerned with the limit ‖A2e
2
k‖

2
2 → ∞, where both mean

and variance also tend to infinity and approximation errors

become negligible. Since, A2e
2
k is given, and w2

k ∼ N (0, 1),
the random variable w2

k +A2e
2
k is also normally distributed

according to N (A2e
2
k, 1), and therefore, ‖w2

k + A2e
2
k‖

2
2 is

distributed as noncentral chi-squared, with n2 degrees of

freedom and noncentrality parameter λ = n2‖A2e
2
k‖

2
2. Thus,

σ2 = 2 (n2 + 2λ) = 2
(

n2 + 2n2‖A2e
2
k‖

2
2

)

. Simplifying

(13), and employing Lemma 1 yield the upper bound as

E2

[

1− δ2k+1|ek
]

≤
n1
ε2

(

1−
(µ− ε2)

2

2 (n2 + 2n2‖A2e2k‖
2
2) + µ2 − µε2

)

−
∞
∑

i(Odd)=1

(i+ 1)!n
( i+1

2 )
1

(

i+1

2

)

! (n1 + n2 + ‖A2e2k‖
2
2)

i+1
= c2

It is easy to show that the value in the above parenthesis

is always positive, since µ > ε2, and it tends to zero as µ
tends to infinity. Superposing both obtained upper bounds,

provides the aggregate bound on E [V (ek+2) |ek]

E [V (ek+2) |ek]

= E
[

‖
(

1− δ2k+1

)

A2e
2
k+1‖

2
2|ek

]

+ ξ+

≤ (1−α2)E2

[

‖
(

1− δ2k+1

)

A2e
2
k+1‖

2
2|ek

]

+ ξ+2
≤ (1−α2)E2

[(

1− δ2k+1

)

|ek
]

.E2

[

‖A2e
2
k+1‖

2
2|ek

]

+ ξ+2
≤ (1−α2) c2 E2

[

‖A2e
2
k+1‖

2
2|ek

]

+ ξ+2
≤ (1−α2) c2‖A2‖

2
2 E2

[

‖e2k+1‖
2
2|ek

]

+ ξ+2

≤ (1−α2) c2
(

‖A2‖
2
2

)2
‖e2k‖

2
2 +(1−α2) c2n2‖A2‖

2
2 + ξ+2

≤ (1−α2) c2
(

‖A2‖
2
2

)2
∑

i=1,2

‖eik‖
2
2 + ξ+3

where, the second inequality insured through independence

of δ2k+1
and e2k+1

. Moreover, ξ+2 = ξ+ + α2ε2‖A2‖
2
2, and

ξ+3 = ξ+2 +(1−α2) c2n2‖A2‖
2
2. The drift in (11) then yields

∆2V (ek) = E [V (ek+2) |ek]− V (ek)

≤ (1−α2) c2
(

‖A2‖
2
2

)2
∑

i=1,2

‖eik‖
2
2 + ξ+3 −

∑

i=1,2

‖eik‖
2
2

=
[

(1−α2) c2
(

‖A2‖
2
2

)2
− 1
]

∑

i=1,2

‖eik‖
2
2 + ξ+3 ≤ −f (e)

(14)

We define f(e) = ε̄f
∑

i=1,2 ‖e
i
k‖

2
2 − ξ+3 , ε̄f > 0,

knowing ξ+3 is bounded. Then, choosing ε̄f such that
[

(1−α2) c2
(

‖A2‖
2
2

)2
− 1
]

≤ −ε̄f implies ∆2V (ek) ≤

−f(e). We can find an appropriate ε̄f and a compact set

D such that f ≥ 1, and

(1−α2) c2 <
1

(‖A2‖22)
2

for all e /∈ D (15)

to satisfy (14). It guarantees by (15) that

E
[(

1− δ2k+1

)

|ek
]

≤
1

(1− α2) (‖A2‖22)
2

and f -ergodicity of ek is then followed. Second moment

boundedness of the process ek is accordingly followed by
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finiteness of the stationary distribution π (f), as in Def. 1.

Moreover, it is clear from (14) that if e ∈ D, then ∆2V <∞
and the stochastic stability of ek is evident.

C. N -Subsystem Network

In this section the stability of a NCS with arbitrary finite

number of heterogeneous subsystems will be presented. We

first state the following essential lemma.

Lemma 2: Suppose that δik = 1 for some k and i. If there

exists a subsystem j 6= i such that ‖ejk+N‖22 > Mj , then the

probability that δik+N = 1 is upper bounded by

P[δik+N = 1|‖ejk+N‖22 > Mj , δ
i
k = 1] ≤

∑N−1

k=0
nj‖A

k
j ‖

2
2

Mj

Proof: Taking the definition of the PEB policy in (5)

and employing iterated expectation law

P[δik+N = 1|‖ejk+N‖22 > Mj , δ
i
k = 1]

= E[P[δik+N = 1|ek]|‖e
j
k+N‖22 > Mj , δ

i
k = 1]

= E[
‖eik+N‖22

∑N
j=1

‖ejk+N‖22
|‖ejk+N‖22 > Mj , δ

i
k = 1]

≤ E[
‖eik+N‖22
Mj

|ek, δ
i
k = 1] ≤

∑N−1

k=0
nj‖Ak

j ‖
2
2

Mj

Above lemma implies that the probability of two subsequent

transmissions of the same subsystem within a fixed interval

can be made arbitrarily small by choosing Mj accordingly.

Theorem 3: Let a NCS consists of N arbitrary stochastic

LTI control loops sharing a communication channel subject

to the constraint in (6). Suppose that the stabilizing controller

γi is given as (2). Then, the Markov chain ek in (7), is f -

ergodic and has finite second moment, if the channel access

is scheduled according to the PEB scheme introduced in (5).

Proof: We evaluate the stability over N time steps.

As in Def. 2, introduce the quadratic function V (ek) =
∑N

i=1
‖eik‖

2
2, and the N th-order drift operator ∆NV (ek)=

E [V (ek+N ) |ek]−V (ek). The error evolves then according

to the following finite memory Markov chain

eik+N =
N−1
∏

j=0

(

1− δik+j

)

AN
i e

i
k+

N−1
∏

j=1

(

1− δik+j

)

AN−1

i wi
k

+ . . .+
(

1− δik+N−1

)

Aiw
i
k+N−2 + wi

k+N−1

Then, we have for N time steps later, E [V (ek+N ) |ek] as

E [V (ek+N ) |ek] =
N
∑

i=1

E

∥

∥

∥

∥

∥

∥

N−1
∏

j=0

(

1− δik+j

)

AN
i e

i
k

∥

∥

∥

∥

∥

∥

2

2

+

N
∑

i=1

E

∥

∥

∥

∥

∥

∥

N−1
∏

j=1

(

1− δik+j

)

AN−1

i wi
k

∥

∥

∥

∥

∥

∥

2

2

+ . . .

+

N
∑

i=1

E
∥

∥

(

1− δik+N−1

)

Aiw
i
k+N−2

∥

∥

2

2
+

N
∑

i=1

E
∥

∥wi
k+N−1

∥

∥

2

2

(16)

To continue the proof, we divide all the possible situations

into three complementary cases in terms of transmission

ordering and size of error, with each of the cases occurring

with a probability Pc̄l ∈ [0, 1], and
∑3

l=1
Pc̄l = 1, during

the N time-step period. The cases are as follows:

l= 1 Every subsystem i ∈ [1, . . . , N ] transmits merely once

during the N time-step period.

l=2 There exists at least one i ∈ [1, . . . , N ] s.t. δik′ = 0 for

all k′ ∈ [k, k +N − 1], and ‖eik′‖22 ≤Mi.

l=3 There exists a non-empty set of subsystems m s.t.

for all i ∈ m, δik′ = 0 for all k′ ∈ [k, k +N − 1],
and ‖eik′‖22 > Mi for at least one time-step k′ ∈
[k, k +N − 1].

Since, only one of the cases l ∈ [1, 3] occurs in N time-step

period, the drift can be rewritten for each of the cases as

∆NV (ek, l) = E [V (ek+N ) |ek, l]− V (ek, l) (17)

Therefore, showing that the drift is negative outside a com-

pact set D for each of the aforementioned cases, guarantees

the drift is always negative. For further derivations, we divide

the set of subsystems into two complementary subsets. The

set s1 consists of the m̄ subsystems which are granted

the resource access at least once during the N time-step

network operation, and the set s2 contains the m = N − m̄
subsystems which have not transmitted at all. In the other

words, the scheduler variable δi∈s1
k+j = 1 at least for one

j, and δi∈s2
k+j = 0 for all j where j ∈ {0, 1, . . . , N−1}. In

terms of channel access, unlike the first case at which all

the subsystems eventually transmit during the N time-step

period, in the second and third cases, not all the subsystems

transmit, i.e. there is at least one subsystem i s.t. δik′ = 0
for all k′ ∈ [k, k +N − 1]. In terms of allowable error size

though, the first case places no boundary on the size of the

error norm, unlike the second and third cases.

The first case, l = 1, ensures that every subsystem i, is

assigned with a time-step k + j with j ∈ [0, . . . , N − 1],
s.t. δik+j = 1. It implies that the first summation in

(16), which is the only error-dependent term, is zero. The

other noise-dependent terms in (16) are bounded for finite

N . Therefore, the first component of the drift in (17),

E [V (ek+N ) |ek, l = 1] is trivially bounded. Showing the

drift is negative follows the same approach as in Theorem 2.

For the second case, we divide the drift as follows

E [V (ek+N ) |ek, l = 2]

= E [V (ek+N ) |ek, i ∈ s1] + E [V (ek+N ) |ek, i ∈ s2]

≤
∑

i∈s2

[

E ‖
(

1− δik+N−1

)

Aie
i
k+N−1‖

2
2|ek

]

+ ξ+

where, ξ+ stands for the sum of the bounded noise-dependent

terms in (16). The first summation in (16) is zero for i ∈ s1.

Introduce the binary variable di ∈ {1, 2}

di =

{

1 ‖eik+N−1
‖22 ≤ εi < Mi

2 ‖eik+N−1
‖22 > εi

(18)
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with P (di = 1|ek) = αi and P (di = 2|ek) = 1− αi. Thus,

the law of iterated expectation incurs

E
[

‖
(

1− δik+N−1

)

Aie
i
k+N−1‖

2
2|ek

]

= E
[

E
[

‖
(

1− δik+N−1

)

Aie
i
k+N−1‖

2
2|ek, d

]

|ek
]

= P (di = 1|ek) .E1

[

‖
[

1− δik+N−1

]

Aie
i
k+N−1‖

2
2|ek

]

+ P (di = 2|ek) .E2

[

‖
[

1− δik+N−1

]

Aie
i
k+N−1‖

2
2|ek

]

≤ εiαi‖Ai‖
2
2+(1−αi)E2

[

‖
[

1−δik+N−1

]

Aie
i
k+N−1‖

2
2|ek

]

It readily follows from the policy definition in (5) that

E2

[

1− δik+N−1|ek
]

= E2

[

∑N
j 6=i ‖e

j
k+N−1

‖22
∑N

j=1
‖ejk+N−1

‖22
|ek

]

(19)

Lemma 2 ensures that, with probability arbitrarily close to

one, all the subsystems in s1 have bounded errors, so

E2

[

1
∑N

j=1
‖ejk+N−1

‖22
|ek

]

≤E2

[

1
∑

j∈s2
‖ejk+N−1

‖22
|ek

]

≤
1

εi

Existing a time-step k′ s.t. ‖eik′‖22 < Mi and the discussions

in Lemma 2, assure the boundedness of
∑N 6=i

j=1
E ‖ejk+N−1

‖22.

Then, employing Lemma 1 provides an upper bound for (19)

E2

[

1− δik+N−1|ek
]

≤

∑N
j 6=i E ‖ejk+N−1

‖22
εi

−
∞
∑

i(Odd)=1

(i+ 1)!
(

2σ2
)( i+1

2 )

2i+1
(

i+1

2

)

E [b]
i+1

= ci

where, σ2 is Var
∑N

j 6=i

[

‖ejk+N−1
‖22 − E ‖ejk+N−1

‖22

]

, and

b =
∑N

i=1
‖eik+N−1

‖22. Summing up both bounds yields

E [V (ek+N ) |ek, l = 2]

≤ (1−αi)
∑

i∈s2

E2

[

‖
(

1− δik+N−1

)

Aie
i
k+N−1‖

2
2|ek

]

+ ξ+2

≤ (1−αi)
∑

i∈s2

ci‖Ai‖
2
2 E2

[

‖eik+N−1‖
2
2|ek

]

+ ξ+2

≤ (1−αi)
∑

i∈s2

ci
(

‖Ai‖
2
2

)N
V (ek)+ ξ+3

where, ξ+2 = ξ+ +
∑

i∈s2
αiεi‖Ai‖

2
2, and ξ+3 = ξ+2 +

E2

[

‖AN−2

i wi
k + . . .+Aiw

i
k+N−3

+ wi
k+N−2

‖22|ek
]

, which

is bounded for finite N . The N th order drift then becomes

∆NV (ek, l = 2)

≤

[

(1− αi)
∑

i∈s2

ci
(

‖Ai‖
2
2

)N
− 1

]

N
∑

j=1

‖ejk‖
2
2 + ξ+3

Define f(e) = ε̄fV (ek) − ξ+3 , ε̄f > 0. Then, choosing ε̄f

such that
[

(1−αi)
∑

i∈s2
ci
(

‖Ai‖
2
2

)N
− 1
]

≤ −ε̄f implies

∆NV (ek, l = 2) ≤ −f(e). We can find an appropriate ε̄f
and a compact set D such that f ≥ 1, and

(1−αi)
∑

i∈s2

ci
(

‖Ai‖
2
2

)N
≤ 1 for all e /∈ D (20)

and f -ergodicity of ek is then followed according to Theorem

1. Second moment boundedness of the Markov chain ek is

also shown by finite stationary distribution π (f), in Def. 1.

Clearly, if e ∈ D, then ∆NV (ek, l = 2) < ∞, since ξ+3 is

bounded.

The third case considers multiple subsystems with un-

bounded errors ‖eik′‖22 for some time-steps k′. Considering

(19), we may exclude the subsystems who transmit at least

once, i.e. j ∈ s1, because they have bounded errors. Hence,

(19) can be rewritten as

E2

[

1− δik+N−1|ek
]

= E2

[

∑j 6=i
j∈s2

‖ejk+N−1
‖22

∑

j∈s2
‖ejk+N−1

‖22
|ek

]

+ ǫ < 1

where, ǫ ∈ (0, 1) replaces the effect of excluded subsystems

j ∈ s1. Furthermore, eik+N−1
is a linear combination of the

independent zero-mean random variables ei0, w
i
0, . . . , w

i
k−1

,

and it has a standard normal distribution with the bounded

variance Ak+N−1

i σ2

ei0
+
∑k+N−1

l=1
Ak−l

i . Thus, ‖eik+N−1
‖2

has a central chi distribution. Since eik+N−1
, are inde-

pendent for i ∈ {1, . . . , N}, E

[

∑N
i=1

‖eik+N−1
‖22|ek

]

=

∑N
i=1

µi, and E

[

[

∑N
i=1

[

‖eik+N−1
‖22 − µi

]

]i+1

|ek

]

=

(

2
∑N

i=1
µi

)

i+1
2

i!!, with µi the second moment of the chi

distributed random variable ‖eik+N−1
‖2, and ’!!’ represents

the odd factorial. According to Lemma 1, if a ≃ b

E [a] .E

[

1

a

]

−
∞
∑

iOdd=1

E

[

(a− E [a])
i+1
]

(E [a])
i+1

< 1

Define a =
∑j 6=i

j∈s2
‖ejk+N−1

‖22 and b =
∑

j∈s2
‖ejk+N−1

‖22,

the bound can be rewritten as

E2

[

∑j 6=i
j∈s2

‖ejk+N−1
‖22

∑

j∈s2
‖ejk+N−1

‖22
|ek

]

≤
E

[

∑

j∈s2
‖ejk+N−1

‖22

]

εi

−
∞
∑

iOdd=1

2
i+1
2

[
∑

i∈s2
µi

]

i+1
2 i!!

[
∑

i∈s2
µi

]i+1
< 1

The boundedness of E

[

∑

j∈s2
‖ejk+N−1

‖22|ek
]

is immedi-

ately followed by the boundedness of the last summation.

Finally, we can find the finite upper bound for the drift as

E [V (ek+N ) |ek, l = 3]

≤ (1−αi)
∑

i∈s2

‖Ai‖
2
2 E2

[

‖eik+N−1‖
2
2|ek

]

+ ξ+2

≤ (1−αi) ‖Ai‖
2m
2

∑

i∈s2

E2

[

‖eik+N−1‖
2
2|ek

]

+ ξ+2

≤ (1−αi) ‖Ai‖
2mN
2

∑

i∈s2

V (ek) + ξ+3

where, ξ+2 and ξ+3 are already defined, and m is the number

of subsystems in the set s2. The proof then follows as for the

case l = 2. Thus, the drift is negative for each of the three

cases. Moreover, it is straightforward to see that the drift is

bounded if the Markov chain remains inside a compact set D
if N is finite, according to the last inequality and the proof is

then complete according to the Aperiodic Ergodic Theorem.
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IV. NUMERICAL RESULTS

Suppose the system comprises of two classes of sub-

systems - a stable and an unstable process - with system

parameters A1 = 1.25, B1 = 1 and A2 = 0.75, B2 = 1,

respectively. In both classes, the state starts with x10 = x20 =
0 and the random disturbance is given by wi

k ∼ N (0, 1).
We consider N subsystems with the two subsystem types

occurring at a constant ratio. To stabilize the subsystems, we

assume a deadbeat control law with Li = Ai for i ∈ {1, 2}
and a model-based observer given by (3).

Figure 2 compares the proposed PEB protocol with other

scheduling protocols for different N ∈ {2, 4, 6, 8, 10} in

terms of the mean squared of the estimation error eik induced

by the network. It should be noted that for N > 2, we have

more unstable systems than the available transmission slots,

which is one. The averages are calculated by their empirical

means through Monte Carlo simulations over a horizon of

100 000. The lower bound is determined by relaxing the

initial problem to have no resource constraint, but instead

restrains the total average transmission rate per time step to

be 1. The resulting scheduler can be calculated through a

bilevel approach which is discussed in [12] and results in an

event-triggered scheduling strategy. The round robin protocol

is a time-triggered access scheme, where subsystems update

their controllers periodically with a sampling period of N .

The carrier sense multi access protocol considered operates

in the same fashion as the PEB protocol without prioritizing

subsystems, i.e. the probability of updating the controller

is 1

N
for each subsystem at each time. With increasing

number of subsystems sharing the resource, the performance

efficiency of the PEB scheduler becomes more evident with

the other protocols. As it can be seen from Figure 3, only

for N = 2, the CSMA protocol results in an acceptable

performance. For N ≥ 6, the variance of ek takes values

of magnitude 1015 which suggests an unbounded second

moment. This is in accordance with theorem 2 in [12],

where the stability condition is violated for N ≥ 6 for the

considered system parameters.

2 4 6 8 1 0
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1 0

1 5

2 0

2 5

 

 

round robin

CSM A

P E B

lower bound

number of subsystems N

m
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va
ri
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Fig. 2. Comparison of the mean steady-state variance of ei
k

for various
protocols and number of subsystems N ∈ {2, 4, . . . , 10}.

V. CONCLUSIONS AND OUTLOOK

In this paper, we propose a new stochastic scheduling

scheme, Prioritized Error-Based (PEB), with dynamically

assigned priorities for NCS comprised of a finite number of

linear systems coupled through a common scarce communi-

cation resource, with no physical interconnection. Provided

with stabilizing feedback controllers, we show the stability

of the overall networked system under the employment of the

PEB policy for the allocation of the resource using the drift

criteria. In presence of stochastic disturbances, the stochastic

stability is shown in terms of Markov chain ergodicity and

second-order moment boundedness. Numerical simulations

demonstrate the stability alongside a substantial performance

improvement in comparison with the other randomized pro-

tocols, especially when the number of subsystems increases.
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