
TECHNISCHE UNIVERSITÄT MÜNCHEN
INSTITUT FÜR INFORMATIK

Energy-aware Computing in Embedded Systems and
its Operating System Support

Andreas Barthels

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Johann Schlichter

Prüfer der Dissertation:
1. Univ.-Prof. Dr. Uwe Baumgarten
2. Univ.-Prof. Dr. Andreas Herkersdorf

Die Dissertation wurde am 08.04.2014 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 20.08.2014 angenommen.

Abstract

The thesis presents a novel approach to establish energy-aware computing in embedded
systems in an early design phase. The approach supports both explicit and implicit
mechanisms. Embedded systems underlie strict criteria for functional safety, thus the
design and software integration process are very intensive. The approach and techniques
are formally defined and evaluated in a test bench.

The model case for the evaluation stems from the automotive domain. Modern ve-
hicles serve as a model class of complex distributed systems with special requirements.
Because of the limited capacity and dynamics of energy storage and conversion sys-
tems, the elaborated mechanisms are designed with scheduling of combined software
and power in mind.

In order to be able to meet safety requirements, the modeling and the design of
the mechanisms is conducted in an offline manner. This allows to formally verify the
scheduling schemes in respect to voltage stability effects in the automotive power net.

The meta-model of the underlying concept is crafted with focus on implementation
within current embedded systems in mind. As a reference, a corresponding scheduling
paradigm was integrated into the Linux operating system kernel and tested on a modern
embedded system platform.

Kurzfassung

Die Arbeit präsentiert einen neuartigen Ansatz um energiebewusste Datenverarbeitung
im Betriebssystem von eingebetteten Systemen zu ermöglichen. Der Ansatz unterstützt
sowohl implizite, als auch explizite Mechanismen. Eingebettete Systeme unterliegen
strikten Kriterien für funktionale Sicherheit, weswegen der Entwurfs- und Integrations-
prozess der verwendeten Software sehr intensiv ist. Das Konzept wird formal definiert
und in einem Prüfstand evaluiert.

Der Ansatz wurde speziell für Automobilsysteme entwickelt, die als Beispiel für kom-
plexe verteilte Systeme mit besonderen Anforderungen dienen. Da im Automobilbereich
die Kapazität und Dynamik der Energiespeicher und -wandlungssysteme begrenzt sind,
wurde ein Ansatz gewählt, der bewusst Software sowie Leistungsmodi und Zeitscheiben
im System koordiniert. Kerngedanke ist die Abstraktion und Ausführung gegebener
Leistungspläne im Betriebssystem.

Um die Sicherheitsanforderungen erfüllen zu können, wird davon ausgegangen, dass
die Modellierung und der Systementwurf offline durchgeführt werden. Hierdurch lässt
sich die zeitliche Ablaufplanung im Hinblick auf Spannungsstabilität im Energiebordnetz
auslegen.

Das Metamodell der zugrundeliegenden Konzepte berücksichtigt insbesondere die Im-
plementierbarkeit in eingebetteten Systemen. Zu Demonstrationszwecken wurde das
vorgestellte Planungsparadigma in den Linux Betriebssystemkern integriert und auf
einer aktuellen Plattform getestet.

iii

Acknowledgements

First and foremost I want to thank my adviser Prof. Dr. Uwe Baumgarten for sup-
porting me throughout my time as a researcher at the Technische Universität München
(TUM). He has given me the chance to write this thesis while working on a collaboration
project together with the BMW Group and the institutes for integrated systems and
energy conversion technology.

I want to thank my colleagues at the mobile distributed systems group, as well as the
colleagues at the collaborating institutes. Special thanks go out to the heads of these
institutes, Prof. Dr. sc.techn. Andreas Herkersdorf and Prof. Dr.-Ing. Hans-Georg
Herzog, for providing me the opportunity to work with them on tools for modeling and
simulation, as well as for providing the test bench as part of which the evaluation of
this thesis was conducted.

During my time at the TUM, I advised several theses and interdisciplinary projects.
The fruitful discussions with colleagues and students, as well as with my research assis-
tants Michael Alberter and Alexandra Buzila, have brought me forward both personally
as within our disciplines.

v

Contents

Abstract iii

Acknowledgements v

I. Foundations & Theory 1

1. Introduction 3
1.1. Foundations . 4

1.1.1. Power Management in Hardware 4
1.1.2. Embedded Systems Scheduling 4
1.1.3. Power Management and Interaction Paradigms 5
1.1.4. Task Graphs . 7
1.1.5. Modeling . 8

1.2. Problem Statement . 11
1.3. Related Work . 11

1.3.1. Power Management in Operating Systems 11
1.3.2. AUTomotive Open System ARchitecture (AUTOSAR) 12
1.3.3. Energy Flow Management . 13
1.3.4. Voltage Stability . 14
1.3.5. Precision Time Synchronization 14
1.3.6. Resource–Constraint Project–Scheduling Problem 16

1.4. Contribution . 17
1.5. Structure . 17

2. Operating System Concepts 19
2.1. Operating System Structure . 19

2.1.1. Hardware Access . 19
2.1.2. Memory Access . 20
2.1.3. Resource Management . 20
2.1.4. Quality of Service . 22
2.1.5. Adaptivity Layer . 23
2.1.6. Application Program Interface 25

2.2. Real-Time Operating Systems . 25
2.2.1. Hard Real-Time Tasks . 25
2.2.2. Soft Real-Time Tasks . 26
2.2.3. Implementation Concepts . 26

2.3. Process Scheduling . 27
2.3.1. Preemption . 27

vii

Contents

2.3.2. Queuing . 28

2.3.3. Time Slices . 28

2.4. Timing Abstractions . 29

2.4.1. Clock Synchronization . 29

2.5. Summary . 32

3. Logical/Technical Modeling 33

3.1. Cyber-Physical Systems . 33

3.1.1. Technical Abstraction . 33

3.1.2. Software Abstraction . 34

3.1.3. Power Management Planning . 37

3.1.4. Transducing Mechanism . 40

3.1.5. Response Flexibility . 41

3.2. Cybernetic Control Approach . 43

3.2.1. Logical Levels . 43

3.2.2. Technical Levels . 43

3.2.3. Energy Distribution . 44

3.2.4. Power Distribution . 44

3.3. Summary . 45

4. System Integration Methods 47

4.1. Satisfiability Meta Model . 47

4.1.1. Discretization of Time . 50

4.2. Design Space Exploration . 51

4.2.1. Single Subsystem Scheduling . 51

4.2.2. Multiple Subsystems . 53

4.3. Framework . 55

4.3.1. Modeling . 55

4.3.2. Sample Case . 56

4.3.3. Results . 56

4.3.4. Simulation . 58

4.4. Summary . 58

II. Implementation and Evaluation 59

5. Linux Implementation 61

5.1. Configuration and Virtual Filesystem . 61

5.2. Plan Scheduler . 62

5.2.1. Idle Process . 63

5.2.2. Task Interface . 63

5.2.3. PMP Data Structure Association 63

5.2.4. Sequential Logic Operators . 63

5.3. Tick Scheduler . 64

5.3.1. Dummy RT Tasks . 65

viii

Contents

5.4. Multicasting Middleware . 66
5.4.1. Socket Interface . 66
5.4.2. Transducing Machines . 67

5.5. Logging Subsystem . 67
5.6. Precision Time Protocol daemon . 68

5.6.1. Implemented Control Loop . 68
5.6.2. Precision Time Experiment Setup 69

5.7. Summary . 74

6. Evaluation in a Test Bench 75
6.1. Test Bench . 75

6.1.1. Hardware and Network Architecture 75
6.1.2. ECU Hardware Platform . 77
6.1.3. Small Scale Experimentation . 80

6.2. Plan Timing Experiment . 81
6.2.1. Experiment Script . 81
6.2.2. Experiment Control Network Sequence 81
6.2.3. Results . 83

6.3. Logic Operator Performance Experiment 84
6.4. PTPd Experiment . 86

6.4.1. PTPd on Idle Subsystem and Network 87
6.4.2. PTPd with Presence of Real-Time Tasks 88
6.4.3. PlannedPTPd with Presence of Real-Time Tasks 89

6.5. Summary . 90

7. Conclusion 93

Appendix 95

List of Figures 97

List of Tables 99

Glossary 101

List of Abbreviations 101

List of Symbols 103

Advised Theses, Technical Reports 103

Own Publications 105

Bibliography 107

ix

Part I.

Foundations & Theory

1

1
.

In
tr

o
d

u
ct

io
n

1. Introduction

One of the major topics of the century is environment and resource awareness. This is
resembled in a strive for increasing efficiency in economy. Computing has become an
integral part of economy and society. Using computers to improve efficiency of complex
systems (computing for green), as well as making the computing processes themselves
more efficient (green computing) are major goals.
Due to the miniaturization of computing systems, there is a trend to embed them into
numerous devices. Embedded systems are found in a multitude of smart devices affecting
all sectors of economy, individuals’ lifes and scientific experiments. Embedded systems
are widely used such as in industrial control systems, household appliances, gadgets,
and as personal assistance in the services sector. Last but not least, scientific studies
rely on embedded computing systems for gathering data.

In the past decades, embedded systems were integrated into all sorts of transportation
systems. Of special complexity are both avionic as well as automotive systems. The
automotive domain serves as a model case within this thesis. This domain is rich in
interconnected embedded systems.
An important issue in this domain is safe and stable operation. Automotive systems
can become unstable and subsystems can be reset by so-called undervoltage lockouts.
The voltage levels inherently depend on the sources and sinks for electrical energy as
well as their dynamic behavior.
The sources and sinks of electrical energy can be subsumed as energy conversion com-
ponents connected by a wiring harness, as depicted in BMW Technology Guide (2014).
In the past, stability issues were largely tackled by adding larger lead-acid batteries, or
by increasing the cross sections of the wires. Because batteries and wires have reached
large sizes, the power consumption dynamics of the sinks have increasingly to be taken
into focus for stable operation.

Hybrid and electric vehicles additionally have multiple voltage levels for different types
of subsystems. Legacy systems work using 14 V power nets. High power electrified
systems such as propulsion, steering and stability control are supplied using a higher
voltage level. Together with these heterogeneous supply voltage systems, the IT network
of the embedded systems is heterogeneous too.

Typically, embedded systems are low-cost and highly specialized to the task at hand.
Thus, the operating systems running on these devices have to be lean in order to min-
imize overhead. From a standpoint of system development, system functions are pro-
vided by applications. These applications commonly also take care of power manage-
ment nowadays. The applications form distributed systems which are assumed to be
described using formal models. The models resemble the interaction patterns as well as
the inter-dependencies of software units.
The embedded hardware platforms are becoming increasingly powerful and at the same
time more versatile. Thus, new and flexible concepts are needed in order to integrate

3

1. Introduction

and (re-)combine different pieces of software on a platform.

1.1. Foundations

There is a wide range of previous and related work for energy aware computing. In this
thesis, energy awareness is seeked by working on instantaneous power consumption over
time. The consumption stems from hardware converting in between forms of energy.
Energy aware computing started with defining different modes of operation for electronic
components. These modes in general can be activated by special electronic circuitry
which enables electronic systems to power manage themselves.

1.1.1. Power Management in Hardware

Common operating modes of computing systems include shutting down and halting the
system, or running at a certain processing speed.

Before Advanced Power Management (APM) (Microsoft Corp., 1996) and Advanced
Configuration and Power Interface (ACPI) (ACPI, 2013) were introduced, the changing
of operating modes or power states had to be triggered manually by the user. In the
x86 architecture, until 80486, computers featured a Turbo-button and had to be turned
off manually once the system was halted.
Both APM and ACPI define a set of operating modes in between full on and off, allowing
different stand-by operations in between. In general it can be said that the more is
turned off, the more costful in time and energy it is to turn the machine to full on
again.

Because efficiency of computers have long been researched, hardware manufacturers
have incorporated an increasing number of modes like different power and frequency
domains for different parts of the hardware. There are a multitude of on- and offline
methods for utilizing these already (Benini et al., 2000; Irani et al., 2003; Jejurikar and
Gupta, 2004).

As a recent contribution, Moreno and de Niz (2012) have focused on voltage and fre-
quency scaling for uniform multiprocessors. They present an algorithm called Growing
Minimum Frequency and focus on maximizing energy efficiency. Next to being able to
dynamically switch modes of computing hardware, these modes need typically to be
triggered by software over time.

1.1.2. Embedded Systems Scheduling

Planning resource assignment over time is called scheduling. Scheduling is done by op-
erating systems and has seen many different variants.
Since embedded systems are often used for controlling physical processes, tasks mostly
have requirements on real-time execution. On the one hand, tasks may have require-
ments on soft real-time, meaning they need a specific amount of bandwidth over time.
They must not necessarily be run at a very specific time point, and may well be in-
terrupted as long as the bandwidth is reached in the end. Hard real-time tasks need a
resource at a given time and need to finish by some deadline.

4

1
.

In
tr

o
d

u
ct

io
n

1.1. Foundations

Task A

Task B

Task C

Task D

Time Unit 1 Time Unit 2 Time Unit 3 Time Unit 4 Time Unit 5

Figure 1.1.: Periodic Scheduling with Aligned Periods

Periodic Scheduling

Periodic scheduling is used to support so-called hard real-time tasks. It is a purely time
triggered scheme which has long been under investigation. Every task has a time period
and a time offset which define the activation. Using this scheme, and combining it
with worst-case execution times of tasks, schedules can be well created and understood
offline. Using worst-case times, one can effectively preallocate execution windows for
each task. Under normal operation of the software units, the schedule is well predictable
despite of the actual execution time within each window.

This periodic form of resource assignment over time is important when system prop-
erties need to be guaranteed. Since the time windows meet the worst case system
behavior, the resource utilization is typically significantly lower than 100 %. Thus, this
paradigm typically allows for energy savings during idle phases, but it must be ensured
that the system predictability is maintained.

Aperiodic Scheduling

Aperiodic scheduling is less predictable in general. Both hard as well as soft real-time
tasks can be aperiodic. Tasks are generally triggered by events, which can be timer
expirations, or system inputs.

The nature of aperiodic systems is in general hardly predictable. Typically, tasks are
assumed to be triggered according to stochastic processes. The superposition of task
activations can lead to many different schedules over time. To resolve conflicts of tasks
requesting the same resource at the same time, prioritization and preemption can be
used.

Figure 1.2 shows an example in which a higher prioritized task arrives during the
runtime of a lower prioritized task. In a system without preemption, the next task is
selected based upon priority once the current task finishes. Additionally, a system may
support preemption, interrupting the lower prioritized task and resuming its operation
after the higher prioritized task has finished.

1.1.3. Power Management and Interaction Paradigms

Operating systems as well as middlewares incorporate interfaces in between distributed
applications, allowing a multitude of interaction schemes. The interfaces may well be

5

1. Introduction

Priority 1

Priority 2

Task Arrival

{

Latency

Priority 1

Priority 2

Task Arrival

Figure 1.2.: Scheduling Both Without and With Preemption

used to coordinate power management mechanisms as part of the application, as well
as incorporating a management mechanism in themselves.

Eugster et al. (2003) characterize and compare common software design patterns.
They distinguish the following patterns:

Message Passing The simplest form of interaction scheme is passing of messages as
plain datagrams. Distributed systems relying on message passing can best be
described as synchronous data flow graphs. As such senders and receivers are
coupled in time, space, and synchronization.

In the scope of software running on top of an operating system, different services
can be utilized, such as name resolution, routing, ordered delivery and queuing.

Message Queuing Queuing is a common mechanism within operating systems, pro-
vided on multiple levels, e.g., by the device drivers, as well as sockets or the
Transmission Control Protocol (TCP). Using queuing, senders and receivers can
be decoupled in synchronization, allowing receivers to read asynchronously.

Remote Procedure Calls Remote Procedure Calls (RPCs) use message passing to se-
mantically interact among software components. A software component may pro-
vide interfaces for interaction with other components. For RPC, a mediating layer
between components is needed. This layer can provide RPC synchronously as well
as asynchronously, which leads to the notion of notifications.

Notifications Notifications asynchronously propagate events in the system. Using RPC,
notifications may be delivered by invoking specified callback procedures. Notifi-
cations are widely used to implement the observer design pattern. Using asyn-
chronous notifications, communicating endpoints are still coupled in time and
space, meaning they have to be online at the same time and need a way of com-
municating with each other without an intermediary component. The coupling
in time and space can be lifted by adding an intermediate component such as a
shared space.

Shared Spaces Shared spaces form an intermediate entity between endpoints. End-
points are decoupled in time and space; they do not address each other directly
and do not need to be up and running at the same time. The shared space is filled

6

1
.

In
tr

o
d

u
ct

io
n

1.1. Foundations

Producer1

Producer2

. . .

Event Service

Consumer1

Consumer2

. . .

Figure 1.3.: Complex Interaction Pattern for Decoupling of Endpoints

asynchronously and read synchronously. Providing additional decoupling from
synchronization results in the implementation of a publish/subscribe scheme,

Publish/Subscribe Publish/subscribe is a means to decouple entities from time, space,
and additionally from synchronization. This pattern is similar to the shared space,
but subscribers are asynchronously notified of data being published by publishers.
This scheme provides the most sophisticated means of decoupling interacting com-
ponents and thus allowing for great flexibility in system integration and operation.

These interaction paradigms are subsumed in middlewares. As part of the software
engineering process, the description of participating components enable system-wide
adoption and adjustments of Quality of Service (QoS) as described by Schantz et al.
(2003).

1.1.4. Task Graphs

Since there is no standardized set of tasks and interaction patterns, tools for generating
sets of tasks were developed. One such tool is Task-Graphs-for-Free (TGFF, Dick et al.
(1998)). It randomly generates sets of independent graphs as well as dependent directed
acyclic graphs of tasks. These graphs define an ordering, within which the data flow
and thus execution must occur. Execution properties, like worst-case execution time as
well as end-to-end deadlines and communication resources can be included.

The task graphs were initially used for synchronous aperiodic scheduling. If some
deadlines are omitted or if multiple graphs are executed on the same system, it may
well serve for generating asynchronous patterns.

Synchronous Data Flow Graphs (SDF)

Synchronous Data Flow Graphs feature cyclic input dependencies and thus are only
applicable to synchronous periodic scheduling (Stuijk et al., 2006). Due to the strong
coupling in time, space and synchronization, they are mostly used in integrated circuit
design, e.g. for accelerating multimedia stream processing.
Thus, they allow for analysis of multicore, highly parallel multiprocessing applications.
They are widely used for deadlock and consistency analysis. Consistency means all
outputs of a node are being processed and the memory needed for execution is bounded.

7

1. Introduction

Different types of task graphs may serve as a model for the logical interaction pattern
of software components, which is one aspect of modeling a distributed system such as a
vehicle.

1.1.5. Modeling

In order to tackle the increasing complexity, model-driven software development became
the basis for interconnected embedded systems (Karsai et al., 2003).

The modeling distinguishes the following layers:

Requirements Level when a function is defined, the requirements are specified first
and foremost. These requirements comprise the behavior and functionality of the
system. An implementation of these requirements will then touch the following,
more specific levels.

Logical Level describes the software from a logical point of view. Within this level, no
implementation specific knowledge is modeled. Software is split up into logical
units along with their communication dependencies. The logic has to fulfill the
respective requirements. Using multi purpose hardware, these logical units can be
deployed and implemented in various ways on the technical level.

Technical Level contains the technical architecture of the system; the kinds of and
numbers of embedded systems. Which is, more specifically, a description of the
computing hardware and peripherals, as well as communication links. Each hard-
ware component of such an embedded system has a set of features, and different
operating modes.

Implementation Level handles the implementation of the abstract logical functions to
specific hardware. In here, the software is again divided into units (i.e. compo-
nents), which do not have to be the same as in the logical level. Each component
can be tested to meet the requirements and is often monitored during runtime to
ensure correct behavior on the concrete hardware platform, which comes into play
within the integration level.

Integration Level ships implemented software units onto hardware units and provides
scheduling and resource assignments. On the integration level, all abstract mod-
els are subsumed. This level is needed to deduce physical properties of the sys-
tem, such as timing and dynamic behavior. Integrating software components onto
specific hardware is done by configuring the operating system so as to meet all
requirements. These requirements are typically according to static or dynamic
resource allocation. Static allocation is the fixed reservation of a resource during
runtime. Dynamic allocation is referring to scheduling resource usage over time.

Figure 1.4 depicts an example for combining a logical and technical model with an
integration view. The jobs and communication patterns stem from the logical layer, the
hardware subsystems build the technical layer. Both are combined in the integration
view by statically partitioning jobs to hardware components.

8

1
.

In
tr

o
d

u
ct

io
n

1.1. Foundations

Power Supply Power Storage

Subsystem1 Subsystem2

Sense1
Compute1

Compute2

Compute3

Compute4
Act1

Wiring Harness

IT Network

Figure 1.4.: Illustration of jobs interconnected by communication patterns and dis-
tributed onto embedded subsystems. Illustration taken from Barthels et al.
(2011).

Unified Modeling Language (UML)

In the past decades, the UML was elaborated by a multitude of contributors. The
language copes with all levels of modeling by, e.g., specifying requirements, such as
actor, sequence, and state diagrams, as well as logical models such as class diagrams.
For specific modeling domains, such as automotive systems with their special hardware
equipment, special tools aiding in system development have been developed (Haberl,
2011). The UML was extended to the Systems Modeling Language (SysML), which
leads to computer-aided system design.

Computer-Aided System Engineering (CASE)

Modeling is central to CASE-tools. The tools handle different aspects of the levels
mentioned before. PREEvision by Vector Informatik GmbH (2013), e.g., copes with the
requirements, logical, and technical levels. In recent versions, additional support for the
implementation and integration levels was added. Depending on the target platform,
specialized tools are used for the implementation and integration of components. In the
early phase, disregarding actual implementation, the system can already be formally
analyzed. For system analysis, so-called model checking methods are being researched.
These methods require the transformation of the models into descriptions which are
amenable to analysis. These models as well as their algorithmic simulation and analysis
are implemented in widely adopted tool-chains, like UPPAAL (Behrmann et al., 2006).
These tools can be used to model the processes in distributed embedded systems and
to analyze them in terms of model checking.

Model Checking

Common models are Timed Petri Nets (Ramchandani, 1974), and timed automata (Alur
and Dill, 1994). These models can be converted into one another, as analyzed by Bal-
aguer et al. (2012). The abstractions and tools for model checking are used for testing

9

1. Introduction

the feasibility of a system design, like a control or resource allocation strategy. They
are not designed for being run in the embedded systems as they are.
For modeling control systems and running them as they are, a theory of hybrid au-
tomata and abstractions for hybrid systems were developed (Tiwari, 2008). Hybrid
systems grasp a mixture of continuous (physical) and discrete (IT) event-based dis-
tributed systems. Hybrid automata can be rolled out and integrated into embedded
systems to actually perform the functions. They can be checked, or validated before-
hand, but they are not as amenable to automated exploration of the design space, due
to their expressiveness.

Design Space Exploration

Using tools for model checking, engineers naturally perform the task of design space
exploration; a sensitivity analysis regarding performance of different design aspects.
This can be achieved by repetitively tweaking the models and perform checks and sim-
ulation on them. The simulation can yield artificial performance measures, which again
can be used to rank the solution candidates. Automating this task of exploration, and
combining it with optimization was done for the task of mapping software to hardware,
by Katoen et al. (2013).
The automation regards two important steps.

1. It is important, that solutions which are analyzed are correct. Thus an enumera-
tion mechanism is needed which inherently produces consistent models. This can
be tackled by utilizing solvers for constraint satisfaction problems, such as the one
used by Katoen et al. in Microsoft FORMULA (2012).

2. The model has to be simulatable, be it through modeling as a stochastic process
(Katoen et al., 2013), or as an accurate simulation as explained by Šimunić et al.
(1999), and Walla et al. (2012c).

Once a valid configuration and integration of all components is found, the system
can be shipped and runs on an operating system. This operating system abstracts and
manages the resources employed by the distributed applications.

Testing-in-the-Loop

The development of distributed systems is often split up using a divide and conquer
approach. Each subsystem model or implementation can be tested against its speci-
fication. In an early stage of the design process, only models of the subsystem exist.
These are tested using the Model-in-the-Loop (MiL) approach. Using this approach,
the models are deployed into a test bench and the subsystem dynamics can be analyzed.

If the models successfully pass the tests, they are being implemented and the final
subsystem candidate can be tested using Hardware-in-the-Loop (HiL). The concepts
presented in this thesis are designed with support for these testing processes in mind.

10

1
.

In
tr

o
d

u
ct

io
n

1.2. Problem Statement

1.2. Problem Statement

The key challenge is to enable energy efficiency while maintaining safety and enabling
further computing-based innovations.

Nowadays, operating systems for real-time systems hardly support dynamic power
saving mechanisms. A novel power management paradigm is needed allowing to achieve
energy savings as well as supporting transient reactions to system hazards. For increased
flexibility and power savings, it is desirable that software units can be redeployed onto
different hardware units.

For this to be feasible, suiting abstractions have to be found and services in the operat-
ing systems have to be implemented, which support a variety of hardware architectures.

1.3. Related Work

The field of energy aware computing has seen a long history of related work. The
summary given in this chapter focuses on aspects of power management in operating
systems and energy management in complex distributed systems.

Researching voltage stability effects in power nets together with operating system
level scheduling is largely an open issue. In the following, important related work is
presented, touching aspects relevant to the problem statement of this thesis.

1.3.1. Power Management in Operating Systems

The aforementioned models abstract the underlying operating system and concentrate
on the functionality of the application components. There exists a long history of related
work in the field of power management in operating systems. As a modern and widely
used operating system, the Linux kernel functionalities are briefly sketched.

For assigning resource budgets to trees of processes Linux, e.g., annotates its process
tree with control information. Processes can be assigned bandwidth values or other
fixed resources, which must be respected by the scheduler.
For the Linux operating system, different real-time application patterns are supported
by different extensions such as those developed by Kim et al. (2002, 2005). These
extensions target adjustable QoS settings.

For very low power wireless sensor networks, an assessment of efficiency of scheduling
mechanisms is given by Mazumder et al. (2012). The assessment is special in regards to
applications with large sleeping times in the order of seconds, and does not account for
real time properties. The implemented algorithms are inspired by the Linux scheduling
subsystem. More details on these operating system concepts are given in Chapter 2.

Quality of Service (QoS)

Related to power management is the topic of QoS. Waking up a hardware component
from power saving mode, typically induces latencies. The same can apply to switching
component frequencies, which may interrupt active tasks and deteriorate timer accuracy.
During the switching of power states, requests can not be processed and thus deteriorate
the QoS of the operating system platform to the applications.

11

1. Introduction

IT
N

et
w

o
rk

Gateway

ECU1

ECU2

ECU3

IT
N

et
w

o
rk

Gateway

ECU1

ECU3

ECU2

IT
N

et
w

o
rk

Gateway

ECU1

ECU2

ECU3

(a) (b) (c)

Figure 1.5.: AUTOSAR Mechanisms for Energy Efficiency in Electronic Control Units

Linux allows to adjust QoS requirements in different hard- and soft real-time cate-
gories. Hard real-time refers to latencies induced by hardware wake-up, while soft real-
time measures resource usage in bandwidth, i.e., resource amount per time unit. These
bandwidth measures can refer to CPU time per second, or communication throughput.
Using Linux, one may additionally assign resource budgets using resource kernels, or
starting from version 2.6, by using the integrated control groups data structures.

1.3.2. AUTomotive Open System ARchitecture (AUTOSAR)

The AUTOSAR includes mechanisms for turning on and off single Electronic Control
Units (ECUs), virtual function clusters, and bus systems (AUTOSAR, 2013). Figure 1.5
shows different modes of operation enabled by AUTOSAR. In 1.5.a, all embedded sys-
tems are active and running to support different automotive functions. In 1.5.b, a
selected system was at least partially shut down by a notification mechanism. If the op-
erating system and computing units are still running, this is called degradation. When
in pretended networking mode, all system components are shut down and the network-
ing capabilities are loaded off to a dedicated piece of hardware, sustaining the operation
of the communication network (Schmutzler et al., 2010). In this mode, periodic signals
can still be sent from the system and specific input patterns may trigger a restart of the
system.

Figure 1.5.c shows the feature of partial networking. In this mode, the complete bus
system can be shut down. Thus, the instantaneous power consumption can be reduced
to a minimum (Fuchs et al., 2010).
The feature of partial networking is standardized in a decoupling mechanism similar
to publish/subscribe. The event service serves as the master component, with which
publishers explicitly request the presence of a virtual function cluster. The requests are
mediated in a way, that the subscribers delivering the functionality of the cluster receive
explicit notifications to turn themselves on and off.

This decoupling is very helpful in coping with the complexity of the functions and
to determine the necessity of components being online. During system runtime, the
standard neglects the power consumption dynamics and supply voltage stability of the
vehicle as an electric system.
These effects can be taken into account not only online, but also offline, by carefully

12

1
.

In
tr

o
d

u
ct

io
n

1.3. Related Work

Management

Source/Sink Storage

SinkSink SinkSink

Figure 1.6.: Schematic Energy and Power Management

modeling the vehicle dynamics.

1.3.3. Energy Flow Management

Despite the view on electronic functions from a software perspective, there is a lot of
related work regarding the electrical or energy flow in an electric system.
A vehicle can be seen as a network of sources, storage units, and sinks for electrical
energy (Gehring et al., 2009). Figure 1.6 depicts such a network.
The network consists of at least one source of electrical energy, one storage component
and different classes of sinks.

For managing this system of energy conversion components, cybernetic power dis-
tribution was proposed by Kohler et al. (2010, 2011) and subsumed in the PhD thesis
(Kohler, 2013). The approach incorporates theory of cybernetic control, recombining
logical and technical levels of the architecture.
There may be technical hierarchies due to the employed energy conversion processes. A
group of energy sinks may be powered by a dedicated power supply line. This power
supply line may be converting in between different voltage levels and may in its own
depend on an extra source, like an alternator. Using the notion of technical hierarchy,
arbitrary hybridization and energy distribution concepts can be described.
The logical hierarchy envisions a dedicated distribution master component in the archi-
tecture, which performs strategic decisions based upon predictions.

Electric Energy Sinks

In combustion vehicles, energy sinks are formed by assistance systems like chassis con-
trol, electric power steering or stability control, but also by all comfort and entertain-
ment functions present nowadays.

In hybrid and electric vehicles, the drive-train poses an important component, which
mostly serves as a sink, but also as a source of electrical energy upon recuperation.

The energy consumption dynamics of many such sinks may not be altered. This is
due to safety requirements. Still, non-critical comfort devices may be altered, as well as
the general process of controlling peripherals.

Electric Energy Sources

Depending on the type of vehicle, be it combustion, hybrid, or electric, different battery
technologies are used (Ceraolo, 2000).

13

1. Introduction

Battery technology has seen some progress in recent years. Combustion cars still use
legacy lead-acid batteries together with an alternator for converting mechanical into
electrical energy. While the lead-acid batteries feature highly dynamic capabilities due
to a low inner resistance, the alternator is quite limited, because it has to be synchronized
to the combustion engine.

Newer battery technology features larger capacities but worse dynamic capabilities.
This can be compensated by including a mixture of battery technology or also by using
capacitors to cope with transient peak power demand (Polenov et al., 2007).

Managing energy flows between vehicle components helps optimizing energy efficiency
during operation.
For vehicle safety, transient processes have to be considered which leads to the topic of
voltage stability.

1.3.4. Voltage Stability

There are established practices to design the topology of an automotive wiring harness.
One typically has a battery and an alternator close to the engine. These components
power a set of consumers over relatively long distances. The consumers can electrically
be considered as loads imposed on the system.

In order to research into voltage stability, it is important to understand the dynamics
of the involved components. Gehring and Herzog (2009) have researched into simulation
models for stability in automotive 12 V power nets. Kohler et al. (2011) have built on
these results and have conducted additional experiments in a test bench.

For safe operation, different types of electrical energy sinks may be supplied on dif-
ferent voltage levels. Operating on higher voltage levels enable loads to draw higher
amount of power with less resistance. The power net may be supported by using stabi-
lization units operating and converting in between different voltage levels.

Stabilization Units

Transient loads in the electric system of the vehicle can lead to critical voltage drops.
Figure 1.7a depicts a schematic of an automotive power net featuring an optional stabi-
lization unit. Without the stabilization unit, significant voltage drops can occur in the
wiring harness, due to the electrical properties of the wires. This is illustrated in Fig-
ure 1.7b. Due to the geometric nature and electric properties of the wires, the voltage
drops in the system vary in significance.

In order to prevent the voltage from dropping, stabilization units may be deployed
along major loads. Figure 1.7c depicts the results of such a stabilization. The voltage
levels for all three loads is significantly increased by supplying Load 3 out of a short
term storage and energy conversion unit.

1.3.5. Precision Time Synchronization

In the past decade, an IEEE standard for synchronizing clocks in distributed systems
was crafted (IEEE1588). The standard was first implemented for the Linux operating
system by Correll et al. (2005). They show that the level of synchronization reached by

14

1
.

In
tr

o
d

u
ct

io
n

1.3. Related Work

12 V Vehicle Power Net

Control
Unit

DC/DC ConverterEDLC

Active Voltage Stabilization Unit

Bat. L 1 L 2 L 3 L nL n-1

D

BD

D

(a)

65.4 65.6 65.8 66 66.2

10

11

12

13

14

Time in [s]

V
ol

ta
ge

 in
 [

V
]

Voltage at Load 1

Voltage at Load 2
Voltage at Load 3

(b)

65.4 65.6 65.8 66 66.2

10

11

12

13

14

Time in [s]

V
ol

ta
ge

 in
 [

V
]

Voltage at Load 1
Voltage at Load 2
Voltage at Load 3

(c)

Figure 1.7.: Automotive power net and voltage stabilization example. Figures taken
from Ruf et al. (2013b)

15

1. Introduction

this software-only implementation is quite good, provided the system is idle and may
prioritize the protocol above all other tasks.

Since achieving good synchronization does not work well in software-only scenarios
with high load, a lot of research was put into hardware assisted implementation of
the IEEE1588 (Ohly et al., 2008). For supporting PTP hardware clocks, a new Linux
Subsystem was designed by Cochran and Marinescu (2010). They are using the Sub-
system together with hardware support, to later-on synchronize the Linux system time
(Cochran et al., 2011). Kovácsházy and Ferencz (2012) compare the use of different
hardware components to assist the synchronization process. Their results also indicate
that the system load significantly deteriorates the quality and speed of the synchroniza-
tion in software-only implementations.

Zhu (2013) compares Phase Locked Loop (PLL) and Frequency Locked Loop (FLL)
implementations for the case of Base Stations as part of a telecommunication network.
The experiment was conducted on a IEEE1588 capable processor. Improvements on
software-only methods which rely on operating system mechanisms are largely an open
issue, especially with presence of critical tasks and high system load.

1.3.6. Resource–Constraint Project–Scheduling Problem (RCPSP)

Besides scheduling for energy efficiency, as discussed by most previous work, one may
want to ask for schedules which satisfy voltage stability criteria. The problem char-
acteristic may be found similar to resource constraint project scheduling. The field of
project scheduling stems from operations research (Colak et al., 2013). It is used to
optimize the project in respect to different objective functions. These may be the total
completion time, the number of resources used etc.

Multi-Mode

An extension to the simple RCPSP is to introduce multi-mode execution of jobs. This
means an activity or job may be run in different modes which require different amounts
of resources.

The traditional partitioning problem of software to subsystems may be tackled by
introducing modes not only for operation modes of the underlying hardware, but also
for the selection of a partition variant.

Voltage stable scheduling would mean to introduce additional constraints to the classic
scheduling problems which may be described using the generalized notion of resources
in project scheduling.

Resources

Resources in project scheduling may either be

� renewable, meaning at each time step, a set of resources becomes available. This
kind of resources is typically labor, machines, and can be

� non-renewable, e.g. total budget for a project.

16

1
.

In
tr

o
d

u
ct

io
n

1.4. Contribution

Scheduling in regards to voltage stability could be tackled using this framework by
assigning a maximum amount of current draw for each time unit. The model lacks
features of hard real-time scheduling problems such as end-to-end deadlines and cyclical
execution within a set of jobs. These additional constraints are essential in regards to
providing functional correctness of an embedded system.

1.4. Contribution

An execution model of tasks to be run in the operating system was crafted, which
incorporates the active scheduling of hardware power states. This extended notion
of scheduling is culminated in the definition of generalized Power Management Plans
(PMPs). The formalism allows the flexible assignment of plans to arbitrary functional
system states, thus transducing from system inputs to sequences of schedules.

The solution is described in a mathematical manner and implemented in prototypical
embedded systems. To support the engineers in the early design-phase, assistance in
model checking and exploration is given based on solving generalized constraint satisfac-
tion problems. The problem formulation also regards constraints on voltage stabiliza-
tion. Since voltage stability is a local phenomenon which in turn results from a global
system behavior, time synchronization is important to enable scheduling for stability.

As a proof of concept, the methodology of PMPs is applied to a software-only imple-
mentation of the IEEE1588 Precision Time Protocol (PTP). Results show that PMPs
enable the combination of critical system tasks with a lower prioritized synchronization
process. The platform guarantees high QoS levels and additionally enables significant
energy savings.

1.5. Structure

The structure of the work at hand is divided into two parts. The first part covers the
concept and modeling of operating systems and distributed functions in Chapters 2–4.

Chapter 2 describes important operating system concepts which serve as the foundation
of the concept and implementation presented in this document.

Chapter 3 mathematically defines the concept of an operating system mechanism which
proactively transduces system inputs to sequences of Power Management Plans
(PMPs).

Chapter 4 details an approach to construct and check power management model in-
stances for correctness based on formal methods.

The second part copes with the implementation and the evaluation of the concepts
in a prototypical testbench.

Chapter 5 describes the protoypical implementation of the concept in Linux version
3.0.

Chapter 6 gives experiment setups and evaluation results.

17

1. Introduction

Chapter 7 concludes the thesis.

18

2
.

O
p

er
a

ti
n

g
S

ys
te

m
C

o
n

ce
p

ts

2. Operating System Concepts

Key operating system concepts include hardware abstraction, resource management,
in- and output, security and scheduling. For the operating system to support power
management, all these aspects are affected.

2.1. Operating System Structure

Operating systems are designed to intermediate between hardware, software and the
user. To achieve this task, different concepts were developed in the past and are under
investigation nowadays. To structure and compare different approaches, Figure 2.1
retypes the aspects relevant to this thesis. Similar and more general diagrams can be
found, e.g., in Silberschatz et al. (2005).

Chapter 2 is organized around Figure 2.1, starting with generic operating system
components and later-on details specific real-time concepts.

2.1.1. Hardware Access

One key task of the operating system is to allow for heterogeneous applications to run
on and share computing resources. On the lowest layer of the operating system, the
access of the underlying hardware is managed.

Modern processing hardware has different levels of privilege, of which only the highest
levels allow direct hardware access. The actual hardware access is always mediated
by the operating system. In the so-called Hardware Abstraction Layer (HAL), device
drivers provide abstract descriptions of and interfaces towards the underlying hardware.

Hardware

Operating System

Applications

CPU Memory I/O

Process Scheduling Hardware Abstraction

Quality of Service, Resource Management

Adaptivity Layer

Application Program Interface

Task 1 Task 2 . . .

Figure 2.1.: Operating System Modularization

19

2. Operating System Concepts

Computing resources such as memory and computation time are typically shared in
a time and object division multiplexing manner.

2.1.2. Memory Access

For processes and memory access, different paradigms can be employed. In the following,
the techniques of addressing memory in real and protected mode are presented

Real Mode Addressing

When programming hard real-time applications on low end hardware, resources often
need to be accessed immediately and directly. For memory, this is called real mode
addressing. In real mode, every process can access the whole physical memory directly.
Since the access is very pure, switching processes has few overhead.

While the approach allows to fulfill very strict requirements, all knowledge has to
be encoded into the application. This makes the solutions highly customized to the
platform at hand. With increasing computing power and versatility of the employed
hardware, the demand for flexibility of deployment and abstraction of hardware has
also affected the real-time domain.

Protected Mode Addressing

Multipurpose operating systems running on stronger hardware introduce virtualization
mechanisms. Application processes thus are typically isolated using hardware support
for memory virtualization. Each process has its own virtual address space so another
process’ working set can not be accessed directly. Real-time tasks can be implemented
using protected mode processes. Since processes may compete for access to resources,
the management and locking of threads has to be kept in mind when running real-time
tasks.

2.1.3. Resource Management

Not all resources can be shared. When a resource is exclusive, synchronization and lock-
ing mechanisms have to be used. Since these mechanisms in combination with unknown
applications can lead to deadlocks, hard real-time systems rely on offline analysis of the
involved system parts.

Locking

Depending on the type of computing hardware and resource to lock, different locking
mechanisms have proven useful.

For short interval locking in uniprocessor systems, the code can temporarily disable
interrupts. In this way, the code is uninterruptible and thus guarantueed to have exclu-
sive resource access. Due to interrupt processing latencies, in- and output operations
involving peripheral hardware can be disturbed.

This can be tackled by using spinlocking in multi core or multi processor environments.
Spinlocks perform active polling and testing of resource availability. Like disabling

20

2
.

O
p

er
a

ti
n

g
S

ys
te

m
C

o
n

ce
p

ts

2.1. Operating System Structure

Figure 2.2.: Resource Processing in Tasks, Prone to Deadlocking

interrupts, it should also be used only in short time frames, because polling introduces
unnecessary CPU load.

If a lock has to be held for a long time frame, complex mechanisms like Mutexes or
Semaphores can help improve overall system performance. If a Mutex is held by a task
and requested by another one, the requesting task is put into waiting state, marked as
not runnable. Thus, it does not use CPU cycles to wait for a resource. When the Mutex
is released by the first task, the second task gets into the runnable state again. The
latency for dispatching the tasks and assigning the resource is higher than using spin
locks.

The concept of Semaphores extends the Mutex paradigm by introducing a counter.
The counter specifies the number of tasks to wake up. Typically, a producer pushes
items into a queue, raises the semaphore to the queue depth, and thus releases up to as
many tasks as there are work items.

Resource Allocation Analysis

The interplay of resource allocation and their timing can be formally analyzed. A
resource allocation graph is a directed graph over resources and tasks, associating locked
resources with tasks and tasks with requested resources. If the allocation graph contains
a cycle, deadlocks are possible and would need to be worked around by using additional
locking mechanisms. Figure 2.2 depicts an example of a petri net of two tasks competing
for two resources which is prone to deadlocking.

The resource allocation and processing behavior can be analyzed using (timed) petri
nets, or (timed) automata. These formal models provide timing information as well
as the static information present in the allocation graph. Both timed models can be
checked and proven for correctness. Correctness in this case is reachability of end states

21

2. Operating System Concepts

without deadlocks, or exclusion of race conditions.

Measuring and affecting dynamic properties of computing systems is subsumed by
the term of Quality of Service (QoS).

2.1.4. Quality of Service (QoS)

QoS manages adaptive performance guarantees to applications. This is done by mon-
itoring and observing performance figures during run time. Because applications are
encapsulated by operating system processes, establishing QoS is tightly related to pro-
cess scheduling and the interaction in between hardware components.

The performance guarantees comprise the measures defined according to the following
topics.

Latency

QoS requirements on latencies for processing events are a common measure in hard
real-time systems. This latency can, e.g., relate to handling an interrupt request of a
device, establishing a Direct Memory Access (DMA) process, or starting a real-time
task at a given time.

For guaranteeing tight latencies, it might be necessary to restrict the deepness of sleep
states of hardware, due to wake-up delays. An additional measure for time division
multiplex resources is making tasks and resource locking preemptible where possible.
Minimizing non-preemptible code paths can be done by deferring processing of large
workloads.

Jitter is another QoS measure important for tasks to control physical processes. Jitter
specifies the deviation of scheduling times of periodic tasks.

Resource Constraints

Additionally to latency, resources might be constrained by total budgets. This can be
a total amount of a resource for the lifetime of an object, or a bandwidth, meaning
constrained resource usage per time unit.

Figure 2.3 depicts two examples for hierarchical grouping and controlling of resources
in the Linux operating system. The control groups can be annotated with constraints
for resource allocation subsystems, like CPU accounting, or memory (Menage, 2006).
Each control group can contain Linux tasks or yet more control groups.

In Subfigure 2.3a, three tasks are partitioned into control groups for CPU accounting.
The root group features unrestricted resource usage for Task 1. Control group 2 restricts
Task 2 and Control Group 3 to a combined maximum CPU limit of 40 %, of which Task 3
can amount at most for 10 %.

In Subfigure 2.3b, the same tasks are structured into different control groups an-
notated with memory allocation constraints. The root group again is unconstrained,
containing Task 2 and Control Group 5. Group 5 is limited to memory allocation at a
specific node of memory, i.e. a specific piece of hardware. This applies both to Task 3
as well as Gontrol Group 6, which additionally limits the total memory usage of Task 1
to 10 MiB.

22

2
.

O
p

er
a

ti
n

g
S

ys
te

m
C

o
n

ce
p

ts

2.1. Operating System Structure

(a) (b)

Figure 2.3.: Linux Control Group Hierarchies

Shaping

The implementation of QoS is typically done by a combination of mechanisms (Aur-
recoechea et al., 1998). Resource usage can be affected by scheduling both computing
tasks as well as in- and output. Using QoS aware scheduling leads to shaping of resource
usage. This can be done by adjusting the schedule in a way which affects throughput.
Scheduling of in- and output is necessary to synchronize applications in a distributed
system.

Despite scheduling, the QoS can be affected by manipulating queuing mechanisms.
This can be done by filtering of in- and output. Queues can also be influenced by
adjusting maximum depths such as the window size in TCP.

Adapting resource usage and specifying QoS levels is done in the adaptivity layer of
the operating system.

2.1.5. Adaptivity Layer

One important abstraction for safety and security is the separation of applications. This
is established by using hardware privileges and virtual memory.

The ARM Cortex platform features several operating modes, which can be classified
as privileged and user (ARM Ltd., 2010). Most notably, the operating system and
device I/O happens in privileged mode and the processes running on the operating
systems are running in user mode. The OS has to provide arbitration for requests from
applications. This is typically the task of checking for (security) rights, or mediating
QoS requests.

In this thesis, the adaptivity layer allows implicit as well as explicit statements. These
types of statements are explained in the following.

23

2. Operating System Concepts

Explicit Adaptivity

Explicit adaptivity can be an explicit state request for a resource. Including, but not
limited to:

� Locking and sharing of resources, as well as scheduling of in- and output. Applica-
tions can exclusively access locked resources. This access can be used to explicitly
control resources from within an application context.

� Control of resources may be used to explicitly switch power states of hardware.
An example would be to have an application execute a user request to shut down
a device.
To do this kind of explicit configuration, the virtual device node representing a
specific piece of hardware in the operating system, has to be opened and config-
ured. The application doing this has to be equipped with appropriate rights and
typically claims exclusive access to the resource. Thus, the management of the
hardware shifts from the operating system to the application.

� Despite configuring peripherals, the applications may explicitly change operating
system policies such as scheduling. This way, applications can configure mech-
anisms which exhibit implicit adaptivity. An example would be to tune QoS
parameters which later-on get applied implicitly by the operating system.

Resorting to explicit adaptivity makes the configuration part of the application. If
this configuration is spread over all applications, emergent system properties may be
difficult to maintain and to verify. This is especially true if the partitioning of software
components are being changed.
During the task of partitioning, the configuration of such applications would need to be
adapted. This may be costly or even impossible.

Mixing different software units brings up emergent behavior as a combination of
requests.
For the verification of correctness, either the exact behavior has to be specified, or,
implicit approaches can be chosen.

Implicit Adaptivity

Implicit adaptivity is based on a rule set, translating in- and output of applications into
actions, meaning for every state the adaptivity layer is in, an exact and explicit new
state is known for each observed signal. That way, no arbitration time is needed and
the superposition of requests can be analyzed offline.

Examples for implicit adaptivity may be:

� Enforcement of system correctness, like closing an application implicitly closes all
its open files. This is related to the topics of safety and security.

� The routing of network packets in the operating system. An application typi-
cally just specifies an end-point and utilizes operating system services to handle
the communication. Depending on the routing table, the operating system then
implicitly handles address resolution and execution of the request.

24

2
.

O
p

er
a

ti
n

g
S

ys
te

m
C

o
n

ce
p

ts

2.2. Real-Time Operating Systems

� The execution of requests may be influenced by filtering rules and actions, such
as used by the netfilter and iptables subsystems in Linux.

Resorting to implicit adaptivity implies equipping the operating system with the
knowledge necessary to adapt to and execute the applications. This way, applications
can be recombined, without changing or adjusting explicit requests.

2.1.6. Application Program Interface

The application program interface provides all means to make software interoperable
among different hardware platforms. Due to the abstraction and translation of requests,
the applications typically do not work directly on I/O hardware but use handles or
tokens which represent a request.
Using the interface, applications can communicate with one another and the outside
world. All these actions are governed by the implicit adaptivity features. Because of
this governance, the interfaces provide a feedback mechanism, indicating the state of
requests.

2.2. Real-Time Operating Systems

Real-time operating systems are typically lean and specialized to the task at hand,
especially when running hard real-time tasks.

2.2.1. Hard Real-Time Tasks

Hard real-time tasks have strict scheduling requirements, typically specifying periodic
execution relative to fixed time offsets. Figure 2.4 depicts an exemplary schedule with
offset o(j) and period p(j).

0 o(j) o(j) + 1 · p(j) o(j) + 2 · p(j) o(j) + 3 · p(j)

Figure 2.4.: Fixed Cycle Scheduling of Hard Real-Time Tasks (Barthels et al., 2011)

If the worst-case execution times and the time allocation for different tasks overlap,
tasks can be preempted by other tasks with higher priority. If more than one task with
the same priority is runnable at the same time, e.g. the Earliest Deadline First (EDF)
policy comes into place.

Hard real-time tasks typically are used to control physical processes. Since these
processes have certain time evolution, the processing has to take place at exact time
points.
These time points may be specified relatively to one another. An example of this is
the specification of end-to-end deadlines. Additionally to specifying the exact time for
running a task, one can specify bandwidths of time usable by a system task in soft
real-time.

25

2. Operating System Concepts

CPU Memory I/O

QoS, Resource Management, Netfilter

Task Scheduling

Tick Scheduling

Idle Process I/O Driver

Clock Driver IRQ Handling

R
T

-P
re

em
p

t

LITMUSRT

T
hi

s
w

or
k

Figure 2.5.: Differentiation in LITMUS, RT-Preempt, and the Contribution of the The-
sis at Hand

2.2.2. Soft Real-Time Tasks

Soft real-time tasks typically do not have to be executed by time of their deadline. They
only need to have a guaranteed total resource time per time unit, i.e., bandwidth. These
tasks do not need to rely on latencies or accurate sleep calls. Examples for soft real-
time tasks include computationally intensive processing of bulk data such as in image
processing.

2.2.3. Implementation Concepts

For establishing hard real-time timing properties, the I/O handling, locking, and inter-
process communication is handled by small kernels which can e.g. be loaded as resource
kernels into Linux. This approach is used by Xenomai (2013) and Bucher et al. (2013).
Early work on resource kernels can be found, e.g. in Oikawa and Rajkumar (1998).

In recent years, the Linux kernel itself has seen strong development. More recent con-
tributions, enrich the Linux kernel itself with features targeted at real-time processing.
The kernel was, e.g., extended with an EDF–scheduling class by Faggioli et al. (2009)
and by Calandrino et al. (2006) as part of the LITMUSRT environment. The approaches
work on top of the task scheduling mechanism and provide a new scheduling discipline.
Both approaches do not take energy awareness into account. Another train of work is to
improve scheduling latencies using the RT-Preempt patch developed by Molnar (2013).
The patch introduced nested and threaded interrupt handling, as well as preemptability
of the kernel itself. These features were by now integrated into the kernel. The patch
nowadays is a collection of changesets which mostly apply to device driver subsystems,
making these preemptible were possible.

Figure 2.5 depicts the different points of application of recent related work in the
Linux kernel. RT-Preempt is located on the right side, affecting interrupt handling and
I/O drivers for minimizing system latencies. LITMUSRT is a framework for researching
into task scheduling policies. For a comparison of LITMUSRT and RT-Preempt, please
refer to Cerqueira and Brandenburg (2013).

The thesis at hand also touches task scheduling, but focuses more on energy awareness
by adjusting system time slices and the system idle process.

Very small embedded systems typically do not run Linux as an operating system,
since it is quite complex and may be expensive to run.

26

2
.

O
p

er
a

ti
n

g
S

ys
te

m
C

o
n

ce
p

ts

2.3. Process Scheduling

Realtime Class

Disciplines:
Ø SCHED_FIFO

Ø SCHED_RR

Runqueues (Priority):
Ø Priority 1-100

Completely Fair Class

Disciplines:
Ø SCHED_OTHER

Ø SCHED_BATCH

Runqueues (Priority):
Ø Priority 101-140

Idle Class

Disciplines:
Ø SCHED_IDLE

Runqueues (Priority):
Ø Special

Figure 2.6.: Scheduling Classes as Being Implemented in Linux 3.0

Especially for embedded systems with limited resources, lean operating systems were
developed, such as TinyOS (Levis et al., 2005). These lean operating systems handle
only the smallest part of the system with leveraged privileges (kernel mode). This
approach is most often referred to as Microkernel.

Despite scheduling and I/O, all other aspects of operating systems is handled in user
mode. This processing mode is tightly coupled to threading and processing abstractions.
These operating systems improve on timing guarantees in event handling on very small
devices. Tasks are being higher prioritized as the operating system itself. Due to the
constant increase in computing performance of the hardware, this thesis concentrates
on Linux as a platform, which has seen increasing adoption in the field.

2.3. Process Scheduling

The system scheduling in modern operating systems has a profound number of aspects.
Figure 2.6 depicts the scheduling classes used in the Linux kernel, as they supersede
each other in priority.

Operating systems provide means of synchronization. One can synchronize to external
events (interrupts), or tasks can synchronize themselves using local mechanisms and
using the system scheduler.

Processes can be in waiting state. When in this state, they are not being scheduled
to use the CPU. A process can be woken up by any event at any point in time. The
overall system behavior then strongly depends on the current scheduling paradigm.

2.3.1. Preemption

There are different forms of preemption. Preemption may be disabled, which in its
strict sense also includes disabling interrupts. Preemption may be induced by timer
interrupts, or also in general by locking mechanisms, which can change a task’s state.

In Linux, e.g., tasks are in general not preemptible while executing code in kernel
space. The kernel can be explicitly configured to allow this. Still, preemption cannot
occur, when the task holds specific locks or has interrupts disabled. There are patches

27

2. Operating System Concepts

to Linux, like RT-Preempt (Molnar, 2013), which ensures preemptability of tasks in
almost all cases.

2.3.2. Queuing

In Linux, each priority of each scheduling class has its own queue of tasks. Runnable
tasks are removed from the queues in the order of their priority and are reinserted upon
yielding the processor depending on the queuing discipline.

First-In First-Out (FIFO)

The FIFO discipline is the simplest discipline, which would typically be applied to hard
real-time tasks. FIFO tasks are executed in the order in which they arrive. They are
not being preempted by tasks of identical priority. Instead, they can run until yielding
the CPU to the next task in the queue.

Round-Robin (RR)

Using the RR discipline, all tasks in each queue are multiplexed in a time division
manner. In this way, even when all tasks are runnable all the time and there are fewer
CPUs than tasks, all tasks with the same priority still get a share of CPU time.

Completely Fair Queuing (CFQ)

The average number of runnable tasks over time per CPU is defined as the CPU load.
This load equals the depth of the queue of runnable tasks.

CFQ extends the notion of load to a task wise tracking. CFQ uses the exact measure
of nano seconds each task has run since its creation. It aims to exactly even out the
amount of runtime per task.

As in RR, this is established by using a time division manner.

2.3.3. Time Slices

The time allocated to a runnable task is sliced, meaning tasks are interrupted regularly.
Upon this interruption, the computing times of the processes get accounted and the
tasks are scheduled. This scheduling is done according to the aforementioned policies.
In Linux, the interrupt is called the system tick, marking the end of the current time
slice and the start of the next. Fedorova et al. (2007) have investigated into the effect of
choosing time slices in order to do load balancing among threads with equal priority on
heterogeneous multi-core systems. In contrast, this thesis focuses on power management
and scheduling of tasks with different priorities on lightly loaded distributed systems.

When a task of higher priority is runnable, all tasks of lower priority have to wait.
Upon equal tasks with equal priority, sophisticated schemes were developed to allow for
a fair distribution of computing time. Finally, in the idle class, system dependent idle
code is executed, establishing partial system degradation and managing system wake
up.

28

2
.

O
p

er
a

ti
n

g
S

ys
te

m
C

o
n

ce
p

ts

2.4. Timing Abstractions

(a) Traditional Periodic Tick Scheduling

(b) Disabled Tick During Idle (NO HZ Mode)

(c) Disabled Tick During Task and Idle (NO HZ Task)

Figure 2.7.: Comparison of current Linux tick scheduling. Gray intervals indicate busy
times on the computing hardware. In NO HZ mode, the regular ticks are
disabled by the idle task.

Unfortunately, due to this degradation and wake up, time is lost. This can be com-
pensated by a novel approach to tick scheduling which is being elaborated in Chapters 3
and 5.

2.4. Timing Abstractions

The system tick denotes the event upon indicating the end and start time of a system
time slice. Traditional system tick or time slicing was provided by periodic clock sources.
They were programmed to provide an interrupt signal at strictly cyclical intervals. Fig-
ure 2.7a depicts such a traditional tick period. In this case, ticks occur both when tasks
are running (gray intervals), and when they are not running.

Over the traditional approach, two improvements were developed and implemented
for the Linux kernel.
The first is called NO HZ and is illustrated in Figure 2.7b. It allows the system to
reprogram the clock-device if possible to skip the periodic wake-up caused by ticks
which are not needed for task slicing.
The second improvement is still in draft status and additionally allows to stop the
tick during special tasks which are known to not be preemptible by other tasks (cf.
Figure 2.7c).

2.4.1. Clock Synchronization

As a means for synchronizing clocks in embedded systems, the IEEE 1588 Precision
Time Protocol (PTP) is used in this thesis. It defines a way to synchronize clocks in
a distributed system to a selected master clock. In Linux, the synchronization works
by providing a kernel time abstraction layer to the actual clock component. The kernel
time can be sped up, slowed down or be reset to some arbitrary value. Because of
this, the scheduling subsystem does not use this time base but directly operates on the
system’s hardware clock source.

For experimentation, the open source Precision Time Protocol daemon (PTPd) is
used. The underlying concept of the protocol and daemon were published by Correll
et al. (2005). The essential timing definitions are re-elaborated here. The algorithm
to select a master clock is not described, it is assumed that all roles in the system are
clearly assigned, having a single distinguished master component.

29

2. Operating System Concepts

A clock hardware component is assumed to be counting intervals of elapsed time as
large as the clock precision value p̂c of clock c. Thus, a clock exhibits a natural number
of intervals, i.e. clock cycles, measured in TSC(t) at any given time t. For simplicity,
and for describing the PTP, real valued clocks are assumed. The real time is denoted
t, a clock value c(t) at a given time t incorporates an error term:

c(t) := TSC(t)p̂c = t+ err(t),

where

err(t) := skew(t)t+ offset(t) + θ(t)

with a nonlinear error term θ(t) respecting

θ(t) = 0, θ′(t) = 0.

The PTPd uses a proportional integral controller to discipline the clock so as to
minimize the error. The frequency of c(t) is adjusted using an estimate of the errorÓerr(t).

adjust(t) := aP ·Óerr(t) + aI ·
∫ t

0
Óerr(t)dt.

with dampening factors aP and aI .

Since in a PTP system, there is no perfect clock, the error of clocks is estimated
relatively to each other. Each clock, including the master clock, is assumed to have a
linearized error at each time t. Thus, each clock is approximated as a linear distortion
of the master clock cm(t).

c(t) := skew(t) · cm(t) + offset(t)

Both skew(t) and offset(t) may vary over time due to physical processes such as
thermo- and electrodynamics within the circuitry. Thus, the estimation of offset and
skew has to be repeated and adjusted appropriately over time.

This synchronization is two-fold, in the first step, the offset is minimized and in the
second step, the rates of the clocks get aligned. Figure 2.8 depicts the two step inter-
leaving processes for determining skew and offset.
Subfigure 2.8a shows the interaction from master to slave. On predefined intervals, PTP
SYNC packets are sent from the master to the slave. If the hardware supports accurate
time stamping upon sending, the packet may contain the time point of sending t1 in its
own. With lack of hardware support, t1 is delivered as accurately as possible within a
FOLLOW UP message. Repetitively sending these packets may help to keep the skew
of the clocks in line, while the clients still need a measure of the one way communication
delay in order to estimate the clock offset.
Subfigure 2.8b depicts the sporadic process of measuring the end to end communica-
tion delay by the slaves. Denote t2 the time at which SYNC is received at the slave
(multicast). The communication delay is assumed to be symmetric. The slave sends a

30

2
.

O
p

er
a

ti
n

g
S

ys
te

m
C

o
n

ce
p

ts

2.4. Timing Abstractions

PTP Master PTP Slave

PTP SYNC
t1

t2

PTP Follow Up : t1

+SYNC Interval
PTP SYNC

PTP Follow Up

(a)

PTP Master PTP Slave

t4
t3

PTP Delay Request

PTP Delay Response : t4

+DR Interval
PTP Delay Request

PTP Delay Response

(b)

Figure 2.8.: PTP Protocol Flow as Depicted in Weibel (2009)

DELAY REQUEST and notes its own send time t3. The master answers with a most
accurate receive time t4 which is transmitted as part of a DELAY RESPONSE message.

The relative communication time in between master and slaves, measured by their
respective clocks is defined as:

delaym2s :=(c(t2)− cm(t1)) = skew(t2) · cm(t2) + offset(t2)− cm(t1),

delays2m :=(cm(t4)− c(t3)) = cm(t4)− skew(t3) · cm(t3)− offset(t3).

The one way communication delay is then estimated as:

delaycomm :=
delaym2s + delays2m

2

After several sync messages the skew is assumed to be eliminated, skew ≡ 1:

≈cm(t2)− cm(t1) + offset(t2) + cm(t4)− cm(t3)− offset(t3)

2

Assuming the offset to be constant within the interval between t1 and t4:

≈cm(t2)− cm(t1) + cm(t4)− cm(t3)

2
=

RTT

2
.

This approximates half the round-trip time (RTT) in the slave as it would be measured
using the master clock cm.

Using the communication delay, the offset from the master is estimated by

delaym2s − delaycomm =
delaym2s − delays2m

2

31

2. Operating System Concepts

using skew ≡ 1 and constant offset:

=

�
cm(t2)− cm(t1) + offset

�
−
�
cm(t4)− cm(t3)− offset

�
2

=

�
cm(t2)− cm(t1)

�
−
�
cm(t4)− cm(t3)

�
2

+ offset

Assuming perfectly symmetric communication times, the nominator of the fractional
term cancels and yields:

delaym2s − delaycomm ≈ offset.

The software implementation uses filtering and control theory to estimate and adapt
the offset and skew over time. The better the predictability of the involved components,
the faster the convergence. This thesis investigates how a power management planning
scheduler can help to support convergence of the PTP in a distributed system.

2.5. Summary

This chapter presents operating system principles fundamental to embedded and real-
time systems. It is promising to combine classical operating system tick scheduling with
real-time operating system features to form a power management mechanism operating
on the tasks at hand. The next chapter mathematically defines such a mechanism over
tasks.

32

3
.

L
o

g
ic

a
l/

T
ec

h
n

ic
a

l
M

o
d

el
in

g

3. Logical/Technical Modeling

The abstractions presented in this thesis are based upon previous work. This chapter
elaborates a model for sequence based power management. As a contribution of the
thesis, this model is implemented in the Linux operating system. The implementation
is detailed in the second part of this thesis.

In this chapter, the model description is guided along the layered operating system
architecture presented in Chapter 2.

3.1. Cyber-Physical Systems

The class of cyber-physical systems was crafted recently. Figure 3.1 depicts the logical
interaction scheme as presented in Barthels et al. (2011).

Cyber Physical System

Power Supply Power Storage

Sensors Computation Actors

Environment

Figure 3.1.: Logical interaction scheme of cyber physical systems. Solid lines represent
data communication links, while dashed lines represent physical processes.

The interaction scheme is assumed to involve Sensors, Computation, Actuators, and
the respective Power Supply and Power Storage. These components all communicate in
the directions shown with solid arcs in Figure 3.1. Additionally, physical processes are
affected by the actuators and measured by the sensors.

3.1.1. Technical Abstraction

Next to the logical interaction, Barthels et al. (2011) give the following formal definition
for the technical architecture of cyber physical systems:

Definition 1 (Cyber Physical System)
A cyber physical system S consists of sub-systems E which are interconnected by

different network segments N , a wiring harness W, power supply and energy storage
units C, S = (E ,N ,W, C).

33

3. Logical/Technical Modeling

The definition specifies the sets of technical architecture elements, on top of which
the interaction scheme from Figure 3.1 is run. Specifically, communication network
segments and a wiring harness are added.

The overall technical architecture is formed by interconnected subsystems, which
again can be refined as:

Definition 2 (Cyber Physical Subsystem)

A subsystem E ∈ E is a quintuple E = (A, S, C, I, P) of actuators A, sensors S, com-
putational units C, network interfaces I, and power supplies P. There must be at least
one computational unit, one network interface and one power supply on a subsystem,
and there can be arbitrary many actuators and sensors. Each subsystem E also comes
equipped with a specification of the minimum supply voltage level Umin(E) it can op-
erate at.

These subsystems form a distributed system which supports the logical interaction
scheme as depicted in Figure 1.4.

3.1.2. Software Abstraction

The subsystems interact with each other and the environment using in- and output
features. The interaction is run by the applications, and managed by the operating
system. Figure 3.2 shows the components relevant to this thesis and highlights the
application layer which is explained in the following subsection on software abstraction.

The power management concept is tightly interconnected with the application layer.
The application layer is comprised of schedulable units, called Jobs, providing in- and
outputs. Jobs correspond to the Linux task entities as depicted in Figure 3.2.

Hardware

Operating System

Applications

CPU Memory I/O

Process Scheduling Hardware Abstraction

Quality of Service, Resource Management

Adaptivity Layer

Application Program Interface

Task 1 Task 2 . . .

Feature Extraction, Interaction

Figure 3.2.: System features are delivered by the application layer. Complex know-how
and algorithms are involved and need abstractions.

The jobs provide the system functions and features, by utilizing possibly complex
interactions across subsystems in the application layer.

Definition 3 (Job)
A job j ∈ J is a template for an action within the cyber physical system S. The

following types of jobs are valid:

34

3
.

L
o

g
ic

a
l/

T
ec

h
n

ic
a

l
M

o
d

el
in

g

3.1. Cyber-Physical Systems

� Sampling sensor input:
This job yields outputs interfacing processing jobs or actuator driving jobs.

� Processing:
A processing job has at least one and possibly multiple inputs and outputs each.
Processing typically means aggregation and state estimation as an input for the
next processing or acting job.

� Acting:
Acting jobs only have inputs and can incorporate two types:

1. Acting as a self-parameterization of the system (Power Supply, Sensors, ...)

2. Acting as driving an actuator to perform manipulation of the environment.

Each job is considered having requirements on cyclic scheduling, meaning they feature
a cycle period p, a cycle offset o, and a deadline d

p, o, d : J → R>0

Since each job must be runnable, it must include computations, network communi-
cation and control properties of sensors and actuators.

From the operating system or system integration standpoint, jobs can be treated as
black boxes. In the automotive industry, e.g., jobs contain know-how of suppliers, and
often only the interaction and features are specified.

Complex interaction patterns can be realized by communicating jobs, which form
functional chains.

Definition 4 (Functional Chain)

A functional chain F is a weakly connected directed Graph F = (JF , EF) linking jobs
JF with edges EF .

One may additionally restrict these graphs to be acyclic, and to adhere to the inter-
action paradigms as in Subsection 1.1.3.

Since a functional chain itself needs an implementation, it has to be equipped with
mapping information, making it possible to assign job instances to hardware elements.

Definition 5 (Mapped Functional Chain)
A mapped functional chain over a cyber physical system S is a functional chain F

together with a functionMF mapping jobs to components of cyber physical subsystems
MF : JF → A∪S∪C. Sensor input jobs are mapped to specific sensors, processing jobs
to computational units, and actuator driving jobs to specific actuators.

Being supplied with a mapping, power and performance values can be determined or
at least bounded. Performance values relate to busy times of the underlying hardware
until the completion of the jobs. Related to this timing, is the specification of deadlines.

Definition 6 (End-to-End-Deadline Specification)
End-to-End-Deadlines are specified by a relation D ⊂ J ×J and by assigning a unique

deadline time value D : D 7→ tdeadline. Since each job j is already assigned its own

35

3. Logical/Technical Modeling

deadline value d(j), the End-to-End-Deadline is defined as the time between the end
of the earlier and the beginning of the later job.

Having specified deadlines, mappings can become infeasible to schedule. This way,
scheduling and mapping of jobs is tightly related. How both valid configurations for
mapping as well as scheduling can be determined is explained later.

Functional Hierarchy

To be able to turn on and off different functions, additional relationships, such as general
feature interaction have to be defined.

Definition 7 (Function)

A function F consists of a set of mapped functional chains F = {(F,MF)}. A
functional chain may be contained in multiple functions. A function F is called active,
if and only if all its chains are active, meaning all contained jobs are being running and
scheduled according to their requirements.

Relating functions with one another in tree-structures yields hierarchic functions.

Definition 8 (Hierarchic Functions)

A set of hierarchic functions H is a forest of functions H = (
⋃Fi, G).

Using hierarchic functions, one can define meta-functions and use cases, like driving
or parking. These functions then include sub-functions, which in turn may have more
complex relationships with one another.

Arbitrary relationships can be introduced to form related functions.

Definition 9 (Related Functions)

A set of related functions R = (
⋃Fi, G+R) is a set of hierarchic functions (

⋃Fi, G)
together with additional directed edges R indicating relationships in between functions.

Figure 3.3.: Exemplary Functional Hierarchy Together with Mutual Exclusion

36

3
.

L
o

g
ic

a
l/

T
ec

h
n

ic
a

l
M

o
d

el
in

g

3.1. Cyber-Physical Systems

For an extensive discussion of function, service or feature relationships the reader is
referred to Rittmann (2008). An example for related functions is depicted in Figure 3.3.
It shows functions which are hierarchically dependent on one-another and functions
which additionally exclude each other.

The functional hierarchy can be used for distinguishing sets of jobs necessary to each
system situation. If the car is parking, e.g., the features exclusive to driving need not
be supported and thus neither scheduled nor powered.

3.1.3. Power Management Planning

The power management planning is based upon Barthels et al. (2011) and was extended
in the direction of a sequential logic approach as part of an implementation in a simula-
tor (Gabriel, 2012). Figure 3.4 depicts the operating system layer relevant for executing
PMPs.

Hardware

Operating System

Applications

CPU Memory I/O

Process Scheduling Hardware Abstraction

Quality of Service, Resource Management

Adaptivity Layer

Application Program Interface

Task 1 Task 2 . . .

Power Management Plans

Figure 3.4.: Low Level Scheduling of Software Threads and Power (→ Hardware Ab-
straction) by Means of Power Management Plans

The definition of power management plans is built around sequential signal logic,
which include the notion of signal timing explained in the following definition.

Definition 10 (Signal Timing)

Let tsignal := tset×tclear := R2
≥0 be the space of signal behavior timings. tset delays the

setting of an output signal after the setting of the respective input signal. tclear delays
the unsetting of an output signal after the unsetting of the respective input signal.

Output
0

1

Input
0

1

{

tset

{

tclear

Figure 3.5.: Signal Timing, Set and Clear Properties

37

3. Logical/Technical Modeling

Figure 3.5 illustrates the signal level induced by the timing parameters tset ∈ tset and
tclear ∈ tclear.

Combining timed signals with jobs and hardware power states into a graph model
yields the notion of PMPs given in the next definition. PMPs extend the traditional
notion of scheduling in the operating system towards adaptive time slices and hardware
power states in the operating system.

Definition 11 (Power Management Plan)
Denote a power management plan for subsystem E by γE ∈ ΓE . γE is a graph linking

jobs M−1F (E), power states AE and control flow nodes together with their temporal
sequence in signal timing behavior.

γE = (C,H),

type : C →M−1F (E) ∪AE ∪
¦

, , , , ,
©

H → {Concurrent, Sequential} × tsignal × 1reset × 1periodic.

Each edge h ∈ H implements signal logic behavior, implementing signal levels lh over
time.

lh : R≥0 → {0, 1}, for all h ∈ H. (3.1)

Control Flow Nodes

The control flow nodes have special syntax and semantics.

: START has in-degree of zero and out-degree greater zero. The outgoing edges get
signaled exactly at the point in time of plan start.

: STOP has in-degree of one and out-degree zero. If the ingoing edge is signaled, is
is possible to stop the plan, once requested from the system.

: NOT has in-degree one and out-degree greater zero. The outgoing edges are sig-
naled exactly when the ingoing edge is not.

/ : AND/OR have in-degree and out-degree both greater zero. The semantics is an
and, or or operator over all ingoing signal levels respectively.

: RESET has in-degree two and out-degree one. Reacts on parameter 1reset. Choos-
ing parameter 1, sets and holds the output edge, even if the input is pulled down
again. Choosing parameter 0 resets the output and it stays pulled down.

These control flow nodes allow to incorporate timed signal logic with scheduling of
jobs J and transitions in between power states AE .

Useful Plan Patterns

The formalism of PMPs enables a variety of scheduling options as depicted in Figure 3.6.
One noteworthy example is the introduction of critical sections in order to gracefully

38

3
.

L
o

g
ic

a
l/

T
ec

h
n

ic
a

l
M

o
d

el
in

g

3.1. Cyber-Physical Systems

α1

j1

jn

. . .

. . .

(a)

j1

. . .

〈c,p(j1), ·, ·,1〉

(b)

j1

jn

. . .

. . .

〈c, ·, ·,1, ·〉

〈s, ·, ·,0, ·〉

(c)

Figure 3.6.: Useful plan patterns for modeling common scheduling tasks. Figure a shows
the ability to chain together job instances and choose the necessary power
state for the series of jobs j1, . . . , jn beforehand. Figure b models the notion
of a cyclically scheduled job j1. Figure c builds a critical section j1, . . . , jn,
within which switching in between power management plans is prevented.

terminate and switch in between plans. Figure 3.6c shows the construction of such a
section.

For different types of tasks and requirements, different types of patterns can be nec-
essary.

Unrolling

Strictly cyclical schedules can be crafted using PMPs as depicted in Figure 3.7. Such
PMPs can be uniquely unrolled onto a timeline including the dependencies of jobs and
time of the PMP edges.

Sense1 Compute1 Compute2

α

〈c, 100 ms, ·, ·, ·〉

〈s, 0 ms, ·, ·, ·〉 〈s, 20 ms, ·, ·, ·〉

〈c, 100 ms, ·, ·, ·〉

〈s, 90 ms, ·, ·, ·〉

〈c, 100 ms, ·, ·, ·〉

Sensor

CPU

0ms

α

100ms

Figure 3.7.: Strictly Cyclical Jobs in Power Management Plan and Timeline View

For PMPs employing a mixture of time and event driven evolution, the graph structure
can be plotted as a family of timelines. The evolution depends on the conditions in the

39

3. Logical/Technical Modeling

plan, which can relate to the behavior of the jobs.
The jobs are fragmented with idle times. For energy efficiency, prolonged idle times,
allowing deeper idle states are desirable in semi utilized systems, as they are common
in hard real-time systems.

3.1.4. Transducing Mechanism

Figure 3.8 shows the operating system architecture with highlight on the adaptivity
layer. The adaptivity layer provides a transducing mechanism. This mechanism is
defined in the following definition as the power management module. The module maps
sequences of system inputs to sequences of power management plans. It was crafted
in Barthels et al. (2011).

Hardware

Operating System

Applications

CPU Memory I/O

Process Scheduling Hardware Abstraction

Quality of Service, Resource Management

Adaptivity Layer

Application Program Interface

Task 1 Task 2 . . .

Transducing Notifications, Routing

Figure 3.8.: Adaptivity is Modeled as Transducing Inputs to Plans

Definition 12 (Power Management Module)
Consider each power management module PME in each subsystem E ∈ E a transducing
finite state (i.e. Moore’s) machine (Moore, 1956):

PME = (ΣE ,ΓE , SE , (s0)E , δE , ωE),

where ΣE is the set of receivable input characters, ΓE is the set of power management
plans, and, SE is the set of functional states. Let (s0)E be the initial state, δE be the
transition function

δE : SE × ΣE → SE ,

and ωE be the output function
ωE : SE → ΓE .

System Inputs

The set of receivable input characters ΣE is chosen to be the union of all in- and outputs
of jobs mapped to the subsystem E ∈ E ,M−1F (E). Thus, the system can react based on

40

3
.

L
o

g
ic

a
l/

T
ec

h
n

ic
a

l
M

o
d

el
in

g

3.1. Cyber-Physical Systems

the behavior observable in the operating system. This allows to support both explicit
and implicit adaptivity.

Power Management Plan Set

ΓE is the set of power management plans for the subsystem E ∈ E . Each power
management plan structurally relates jobs with power states and their timing conditions.
How to construct valid plans, fulfilling functional requirements by the activated functions
is discussed in Chapter 4.

Functional Status

A set of required functions is associated with each functional state s ∈ SE . The functions
are assumed to be hierarchically structured as in Definition 8. In that sense, the activity
condition of a function is a generalized regular expression.

State Machine Decomposition

Transducers can be hierarchically decomposed using the notion of related functions
explained in Definition 9.

The decomposition is a way to cope with model complexity. It is, e.g., present in the
UML state machine superstructure model as defined by the Object Management Group
(2011).

3.1.5. Response Flexibility

Activating the associated plan with a functional state is a reflex for providing system
functionality. Typically, there can be many plans fulfilling a function requirement.

Complexity Reduction

One may reduce the complexity, i.e. the number of functional states tracked in the
operating system, by limiting the variety of responses. Figure 3.9 depicts such a process
of minimizing the size of a transducer by reducing it to its smallest equivalent. Step 3.9a
depicts the original situation, reacting with three different plans to three intervals of ve-
hicle speeds v. Finding a new plan γ4 in Step 3.9b which both respects the requirements
for state s2 and s3, may lead to the reduction into two states in Step 3.9c.

Energy Distribution

Altering the way how things are done, may influence energy distribution along with the
scheduling of power consumption.

This is affected by implementing it as part of a cybernetic control approach, which is
briefly described next.

41

3. Logical/Technical Modeling

s1 ⇒ γ1 s2 ⇒ γ2 s3 ⇒ γ3

v = [5, 30) v = [30,∞)

v = [30,∞)

v = [0, 5) v = [5, 30)

v = [0, 5)

v
=

[0
,5

)
v

=
[30,∞

)

(a)

s1 ⇒ γ1 s2 ⇒ γ4 s3 ⇒ γ4

v = [5, 30) v = [30,∞)

v = [30,∞)

v = [0, 5) v = [5, 30)

v = [0, 5)

v
=

[0
,5

)
v

=
[30,∞

)

(b)

s1 ⇒ γ1 s4 ⇒ γ4v = [5, 30)

v = [30,∞)

v = [0, 5)

v
=

[0
,5

)

v
=

[5,30),
v

=
[30,∞

)

s3s2s1

s1

s2

s3

×

× ◦

=⇒

(c)

Figure 3.9.: Management complexity reduction through unifying plan generation. Illus-
tration taken from Barthels et al. (2011)

42

3
.

L
o

g
ic

a
l/

T
ec

h
n

ic
a

l
M

o
d

el
in

g

3.2. Cybernetic Control Approach

E
n
v
ir

on
m

en
t

Operating Strategy

Predictive Model

State Derivation

Operating Figures

1

2

3

...

L-Level 5

L-Level 4

L-Level 3

L-Level 2

L-Level 1

Figure 3.10.: Illustration of cybernetic control systems. Dashed lines are physical pro-
cesses, solid lines are internal communication. Depicted are black arcs
showing forward links, which are involved in deriving states, predictions,
and strategies. Taken from Barthels et al. (2012a).

3.2. Cybernetic Control Approach

For energy distribution management, as well as voltage stability in automotive power
nets, cybernetic approaches were investigated by Kohler (2013). Figure 3.10 shows
the interactions of physical processes with internal communication and the top-down
propagation of behavioral strategies.

3.2.1. Logical Levels

The internal interaction patterns are implemented within a logical cybernetic control
hierarchy. On the lowest level, L-Level 1, sensor data is gathered. This data is processed
to form Operating Figures in L-Level 2. Based on the Operating Figures, L-Level 3 adds
derivation of semantic system status, which reflects the overall condition of different
technical subsystems. The combination of subsystem states may be used for predictions
and strategic decisions in L-Levels 4 and 5.

3.2.2. Technical Levels

Additional to the methodology of related functions, a hierarchy of cybernetic control
structure is established. Figure 3.11 shows a domain controller based automotive system
architecture as described by Reinhardt and Kucera (2013). The task is now to deploy
and integrate the logical implementation onto the depicted subsystems E ∈ E .

The elements of the technical hierarchy may be parametrized to achieve a goal of
energy distribution.

43

3. Logical/Technical Modeling

B
u
s1

Gateway1

ECU1

ECU2

ECU3

B
u
s2

Gateway2

ECU4

ECU5

ECU6

B
u
s4

Gateway3

ECU7

ECU8

Bus3

ECU9

Power Distribution Master Functional State Master

Backbone

Functional Domain 1 Functional Domain 2 Functional Domain 3

Power Domain 1 Power Domain 2

Figure 3.11.: Illustration of technical hierarchy from Barthels et al. (2012a). The vehicle
is subdivided into different functional domains which are interconnected
by a backbone. Different sets of subsystems form different power domains
(high voltage, low voltage, ...).

3.2.3. Energy Distribution

For energy distribution, it typically suffices to change the power states of the underlying
hardware in their respective plans.

The underlying hardware can be categorized as:

� Sources of electric energy, such as an alternator or a DC to DC converter. Acti-
vating a higher power state may provide additional energy flow from the source.

� Sinks for electric energy, such as heating systems. These sinks which may be
throttled in order to divert the energy flow.

Figure 3.12 depicts an exemplary plan change within different power management
modules. This coordinated change may effectively adjust energy flow according to the
current target and strategy. Plans 1 and 4, 2 and 5, and, 3 and 6 are assumed to fulfill
the requirements of States 1, 2, and 3 respectively. The different plan sets {γ1, γ2, γ3}
and {γ4, γ5, γ6} may be chosen so as to support a strategic goal as part of the cybernetic
control hierarchy.

Energy distribution typically refers to mid- to long-term measures. The scope of
power distribution in contrast is about short-term actions.

3.2.4. Power Distribution

For ensuring safe operation in terms of voltage stability, relations in between Jobs and
subsystems can be defined to impose constraints on system-wide schedules. This way,

44

3
.

L
o

g
ic

a
l/

T
ec

h
n

ic
a

l
M

o
d

el
in

g

3.3. Summary

s1 ⇒ γ1 s2 ⇒ γ2 s3 ⇒ γ3

v = [5, 30) v = [30,∞)

v = [30,∞)

v = [0, 5) v = [5, 30)

v = [0, 5)
v

=
[0
,5

)

v
=

[30,∞
)

s1 ⇒ γ4 s2 ⇒ γ5 s3 ⇒ γ6

v = [5, 30) v = [30,∞)

v = [30,∞)

v = [0, 5) v = [5, 30)

v = [0, 5)

v
=

[0
,5

)

v
=

[30,∞
)

Goal1 ⇒
(Coordinated Plan Activation)1

Goal2 ⇒
(Coordinated Plan Activation)2

Figure 3.12.: Master Switch of State Response (Barthels et al., 2012a)

scheduling can both reflect application timing requirements as well as scheduling of
instantaneous power draw and ensuring safe operation.

Definition 13 (Stability–Criticality Relation)

J → Critlabel with a discrete label set Critlabel = {critical, noncritical} .

Constraints may be imposed on concurrent occurrences of criticality labels. Thus, in
a system wide schedule the superposition of critical jobs may be avoided. The following
chapter deals with the formal methods for finding schedules regarding these constraints.

3.3. Summary

This chapter introduces the core mathematical definitions for power management in the
operating system within this thesis. The concept is built around PMPs, which may be
changed due to transducing system inputs. These power management modules may be
affected by higher order strategy and cybernetic control schemes.

The next chapter deals with the process of modeling correctness of plans, with the
target of tool support for system integration.

45

4
.

S
ys

te
m

In
te

g
ra

ti
o

n
M

et
h

o
d

s

4. System Integration Methods

Since the logical and technical architecture of a distributed embedded system are often
fixed, the question arises in what sense the integration process can be done in an energy
aware way.

In order to work with the formal models defined in Chapter 3, tool support is desirable.
During engineering a system based on these models, the following questions are being
posed early:

� Is the current model instance correct? Such as, is the system integrable in that
way? (→ model checking)

� Is the incomplete model correctly completable? Is there a valid integration re-
specting the partial specifications? (→ design space exploration)

� If so, what are possible completions? Enumerate possible ways of system integra-
tion. (→ design space exploration)

In incomplete models, typically just the logical functionality, and the hardware are
described. Possible questions are where to place which part of software (partitioning),
and once placed, how to schedule the software.

In order to do model checking and design space exploration, suitable meta model
definitions had to be crafted.

4.1. Satisfiability Meta Model

In order to reason about model and integration validity in early design phases, the
mathematical models described previously have to be transformed into a description
accessible to solving constraint satisfaction problems.

Figure 4.1 shows the classes involved in the process. These classes are described next
along with their invariant relationships, noted as facts.

Abstract Classes

Figure 4.1 depicts several abstract base classes. These classes comprise timing, struc-
tured planning, and execution properties. Abstract TimeableObjects feature basic
scheduling properties, like time at start, a required period for periodic jobs, and a
duration.

Abstract StructuredObjects additionally relate TimeableObjects with hardware
elements and a scheduling structure relative to TimeableObjects. Thus, the notion
of scheduling is extended from purely time-triggered to a mixture of time and event

47

4. System Integration Methods

Figure 4.1.: UML Meta Model for Checking and Design Space Exploration of System
Integration Variants

48

4
.

S
ys

te
m

In
te

g
ra

ti
o

n
M

et
h

o
d

s

4.1. Satisfiability Meta Model

triggered. Events are subsumed by the start or the completion of TimeableObjects.
This is indicated by the concurrent and sequential relationship.
ExecutableObjects additionally comprise execution properties. These properties

are, e.g., the criticality in regard to system-wide stability, or the worst case execution
time dependent on each hardware component and its power state. The class labels
denote the criticality during phases of concurrency within the distributed system. They
allow to define critical sections in time, where the amount of power draw is exclusive to
some ExecutableObject among all critical ones. In that way, the problem of voltage
stability in automotive power nets can be tackled.

Executable Objects

Executable objects can either be BlockedTimes, Jobs, or their JobInstances. These
objects feature execution times depending on the actual hardware mapping. This is
encoded in the ExecutionTimes class.
Jobs and their JobInstances utilize the subsystem hardware components to deliver

distributed applications. If Jobs j with period p(j) are mapped to a subsystem with a
larger hyperPeriod, p(j) < hyperPeriod(MF (j)), there exists a JobInstance shifted
by a multiple of the period m · p(j) for every period within the hyper period.

There is one fact which restricts the search space in a way that all g ∈ JobInstances

match their template(g):

fact JobInstanceRelation

∀g ∈ JobInstance : template(g) ∈ Job ∪ BusTime,
¬∃j ∈ Job : {template(g) 6= j, g ∈ instances(o)},

duration(g) = duration(j),

period(g) = period(j),

timeAtStart(g) = timeAtStart(j) + multiplicity · period(j),

MF (g) =MF (j),

cLabel(g) = cLabel(j).

Communication between subsystems is done using Buses. They are characterized
by scheduling Bus usage as BusTime objects. The following fact declares that Bus
usage is always related to actual and direct communication in between Jobs and their
JobInstances.

fact BusTimeIntermediary

∀b ∈ BusTime : to(b) ⊆ communicates(from(b))

As a preparatory step to check correct scheduling of end-to-end deadlines and prece-
dence constraints, the set of affected Jobs and their BusTimes have to be tracked. The
operator ̂ denotes transitive closure on relations.

49

4. System Integration Methods

fact deadlineAffectedExecutables

∀d ∈ D : affectedJobs(d) = communicateŝ (from(d)) ∩
�
communicates−1

�
(̂to(d)),

affected(d) = affectedJobs(d) ∪
{b ∈ BusTime : from(b) ∈ affectedJobs(d), to(b) ∈ affectedJobs(d)} ∪

{from(d)}

Hardware

In order to integrate all components into a runnable system, all StructuredObjects
have to be mapped to their respective hardware. The hardware components are grouped
into subsystems which are interconnected by buses.

Typically, all hardware setup is given, and the question to answer is, whether the
present hardware can support a distributed application. A common approach is to
incrementally integrate functions in order of their priority.

4.1.1. Discretization of Time

The standard scheduling problem is extended to generalized constraint satisfaction. To
be solvable, time values need to be discretized and limited. Time is divided into a finite
set of discrete slots using an affine linear transformation on the bounded limits. Also,

1. time values are required to be positive:

fact timePositive

∀o ∈ TimeableObjects : timeAtStart(o) ≥ 0, period(o) > 0, duration(o) ≥ 0

2. the devolution of time for the sequential and concurrent relationship has to hold:

fact timeDevolution

∀s ∈ StructuredObject :

∀s′ ∈ concurrent(s) :MF (s) 6=MF (s′),

∃e ∈ E :MF (s) ∈ components(e),MF (s′) ∈ components(e)

timeAtStart(s) = timeAtStart(s′)
∀s′ ∈ sequential(s) :

∃e ∈ E :MF (s) ∈ components(e),MF (s′) ∈ components(e)

timeAtStart(s′) = timeAtStart(s) + duration(s)

Having specified the classes and universal facts which bound the search space for the
partitioning and scheduling, valid solutions can be specified by defining predicates which
may change their value during design space exploration.

50

4
.

S
ys

te
m

In
te

g
ra

ti
o

n
M

et
h

o
d

s

4.2. Design Space Exploration

4.2. Design Space Exploration

The aforementioned meta model can be specified in modeling languages such as Al-
loy (Jackson et al., 2013), or Microsoft FORMULA. These languages and tools help to
explore the solution space bounded by the amount of objects and the facts restricting
their relations.

Integers are present in the model as a discrete object each. Thus the scope of integers
is chosen in a limited way.

The solution space is bounded by the facts. A valid solution is characterized by
fulfilling additional relational constraints described as predicates.

4.2.1. Single Subsystem Scheduling

As part of the single subsystem scheduling, the following two predicates constraining
the period windows have to hold:

1. The first predicate describes that for a solution to be valid, no TimeableObjects

T except JobInstances G, o ∈ T\G may last longer than their period:

predicate PeriodWindow

¬∃o ∈ T\G : timeAtStart(o) + duration(o) ≥ period(o)

2. The second predicate states that for ExecutableObjects except JobInstances,
these must exist a unique JobInstance for each valid multiplicity:

predicate periodMultiplicity

∀j ∈: period(j) < hyperperiod(MF (j))⇒
∃g1 ∈ JobInstances,¬∃g2 ∈ JobInstances :

g1 6= g2, busyObject(g1) = j, busyObject(g2) = j,

multiplicity(g1) = m = multiplicity(g2), 0 < m <
hyperperiod(MF (j))

period(j)

For completing a single subsystem schedule, the following predicates have to hold
additionally:

1. Resources need to be allocated unambiguously, meaning a hardware resource is
occupied by at most one job at a time.

predicate unambiguousResourceAllocation

∀o1 ∈ T : ¬∃o2 ∈ T : o1 6= o2,MF (o1) =MF (o2),

timeAtStart(o1) ≥ timeAtStart(o2),

timeAtStart(o1) < timeAtStart(o2) + duration(o2)

51

4. System Integration Methods

2. All jobs are sequential or concurrent and at least transitively reachable, using
operator ,̂ from an initial root job:

predicate oneRoot

∀e ∈ E : ∃j,MF (j) = e⇒ planroot(e) ∈M−1F (e), ∀j ∈M−1F (j) :

j /∈ {concurrent̂ (j) ∪ sequential̂ (j)}
j 6= planroot(e)⇒ j ∈ {concurrent̂ (planroot(e)) ∪

sequential̂ (planroot(e))}
timeAtStart(planroot(e)) = 0

∀j1 ∈MF (e) : ¬∃j2, j3 ∈MF (e) : j1 ∈ concurrent(j2), j1 ∈ sequential(j3)

3. All deadlines between pairs of tasks hold (as defined in Definition 6 on page 35).
At first, a helper function is defined, which is used later on in the actual predicate:

fun deadlineTimeDistance(from,to):Int

timeAtStart(from) + duration(from) ≤ timeAtStart(to)⇒ {
timeAtStart(to)− timeAtStart(from)− duration(from)

}else{
timeAtStart(to)− timeAtStart(from)− duration(from) + period(to)

}

predicate deadlinesHold

∀d ∈ D,∀a ∈ affected(d) :

deadlineTimeDistance(from(d), a) ≤ time(d),

let pre =

¨�
communicates−1

�
(̂a) ∩ affected(d) ∪

{b ∈ BusTime : b ∈ affected(d), to(b) = a}
«
,

∀p ∈ pre : deadlineTimeDistance(from(d), p) + duration(p) ≤
deadlineTimeDistance(from(d), a)

For symmetry breaking, additional facts may be used to prevent introduction of
TimeableObjects (especially IdleTimes I) which are not necessary:

fact noUnnecessaryIdleTimes

∀i ∈ I : concurrent(i) = ∅,¬∃i2 ∈ I : i2 ∈ sequential(i)

52

4
.

S
ys

te
m

In
te

g
ra

ti
o

n
M

et
h

o
d

s

4.2. Design Space Exploration

Sense

Compute

Act

Sense

Compute

Act

(1)

Sense

Compute

Act

(2)

Sense

Compute

Act

(3)

Sense

Compute

Act

(4)

Sense

Compute

Act

(5)

Sense

Compute

Act

(6)

Sense

Compute

Act

(7)

Sense

Compute

Act

(8)

Sense

Compute

Act

(9)

Sensor1

Actuator1

CPU1

NIC1

PSU1

W
ir

in
g

H
ar

n
es

s

IT
N

et
w

o
rk

Subsystem1

Figure 4.2.: Example of walking the solution space for scheduling within 1 subsystem
E ∈ E . (→ Integration Level); not depicted is the special case, where all
software units are scheduled concurrently.

Sequential Subsets

For prolonging idle times, subsets of jobs can be aggregated to form a sequence of tasks.
Within this sequence, every job yields the hardware immediately to the following job.

The problem domain of scheduling in the structured approach introduced in the pre-
vious chapter provides many combinatorial solution candidates. Possible schedules for
a small example are given in Figure 4.2. The upper left quadrant characterizes the
example to be of one subsystem, and three jobs. The communication pattern is fixed
being Sense → Compute → Act. The other three quadrants show the possible ways of
ordering the jobs in the offline scheduling phase. Only option (2) delivers a schedule
where the deadline from Sense to Act is within one period cycle interval. All other
options need at least 2 periods. Depending on the deadline requirements, they still
may be valid and considerable. Especially, for the case of voltage stability in the wiring
harness.

4.2.2. Multiple Subsystems

When adding multiple subsystems and jobs lacking a unique mapping into the integra-
tion process, the scheduling gets more complicated. The question is also to integrate
different functional chains as in the first quadrant of Figure 4.2 into one integrated
schedule per subsystem.

Every job needs to be mapped to exactly one subsystem, and thus, the sets of objects
mapped to each subsystem are disjunctive.

53

4. System Integration Methods

Sense1

Comp1

Act1

Sense2

Comp2

Act2

Comp3

Sensor1

Actuator1

CPU1

NIC1

PSU1

Sensor2

Actuator2

CPU2

NIC2

PSU2

W
ir

in
g

H
a
rn

es
s

W
ir

in
g

H
a
rn

es
s

IT
N

et
w

or
k

IT
N

et
w

or
k

Subsystem1 Subsystem2

Partitioning Variant (a)

Sense1

Comp1

Act1

Sense2

Comp2

Act2

Comp3

Sensor1

Actuator1

CPU1

NIC1

PSU1

Sensor2

Actuator2

CPU2

NIC2

PSU2

W
ir

in
g

H
a
rn

es
s

W
ir

in
g

H
a
rn

es
s

IT
N

et
w

or
k

IT
N

et
w

or
k

Subsystem1 Subsystem2

Partitioning Variant (b)

Figure 4.3.: Example Finding a Mapping and Afterwards Scheduling (→ Integration
Level).

fact allMapped

∀e1 ∈ E, e2 ∈ E : e1 6= e2 ⇒M−1F (e1) ∩M−1F (e2) = ∅

Which jobs there are to integrate, is a matter of exploring partition variants, which
are highly intertwined with the problem of scheduling.
Partitioning variants mark the non-dynamic assignment of resources to deployable units.
On the one hand, a partition is valid only if it is schedulable and thus integratable.
On the other hand, a schedule is only valid if it respects the current partitioning and
additional requirements.

In order to tackle the problem, this thesis proposes to solve both problems at the
same time.

Input Dependencies

If a partitioning leads to a job needing an input with tight end-to-end deadlines being
mapped to a different subsystem than the dependencies, jobs cannot be sequenced in
all cases. Such a case occurs if jobs have shorter best than worst case run times.
In this case, one can resort to traditional time triggered cyclic scheduling of executable
objects, or apply a mixture of time and event-triggered scheduling.

Another reason for exact time triggered scheduling is the execution of critical jobs in
regard to voltage stability in the wiring harness.

54

4
.

S
ys

te
m

In
te

g
ra

ti
o

n
M

et
h

o
d

s

4.3. Framework

Subsystem A

Subsystem B

Subsystem C

Subsystem D

Slot 1 Slot 2 Slot 3 Slot 4 Slot 5

Deadline

Subsystem A

Subsystem B

Subsystem C

Subsystem D

Slot 1 Slot 2 Slot 3 Slot 4 Slot 5

Conflict

Figure 4.4.: Combinatorial Problem of Critical Power Draw

Allocating Slots for Transient Power Draw

Figure 4.4 depicts the combinatorial scheduling problem of power draw. In general, at
any discrete interval in time, the instantaneous power draw must be limited to a given
maximum value.

For simplicity, jobs are annotated with a label of criticality, and at most one job
labeled critical can be scheduled into a column at a time. This mutual exclusion is put
into effect by the following predicate:

predicate NonConcurrentCriticalBNS

∀j1 ∈ J : label(j1) = critical⇒
{¬∃j2 : j1 6= j2, label(j2) = critical, Tj1 ∩ Tj2 6= ∅}

4.3. Framework

The approach was implemented within a framework as described in Walla et al. (2013).

4.3.1. Modeling

The framework distinguishes modeling the software, hardware, integration, and simula-
tion parts of distributed embedded systems. It was used to create the following sample
case.

55

4. System Integration Methods

Job j period(j) communicates(j) label(j) mappingCandidates(j)

Sense1 15 {Comp1} noncritical {Sensor1}
Comp1 15 {Act1} noncritical {CPU1}
Act1 15 ∅ critical {Actuator1}
Sense2 30 {Comp2,Comp3} noncritical {Sensor1}
Comp2 30 {Act2} noncritical {CPU1,CPU2}
Comp3 30 {Act2} noncritical {CPU1,CPU2}
Act2 30 ∅ critical {Actuator2}

Table 4.1.: Software Features

Sensor1 CPU1 Actuator1 NIC1 Sensor2 CPU2 Actuator2 NIC2

Sense1 3 – – – – – – –
Comp1 – 3 – – – – – –
Act1 – – 5 – – – – –
Sense2 – – – 4 3 – – 4
Comp2 – 4 – 2 – 3 – 2
Comp3 – 3 – 2 – 4 – 2
Act2 – – – – – – 4 –

Table 4.2.: Software Worst Case Execution Times Dependent on Hardware

4.3.2. Sample Case

The sample case depicted in Figure 4.3 was translated into an Alloy specification with
the properties given in Tables 4.1, 4.2, 4.3, and 4.4.

For demonstrating the capability to mix different jobs with different periods, the left
chain in Figure 4.3, is assigned a period of 15, while the right chain features a period
of 30. In addition, Jobs Comp2 and Comp3 may well be mapped to Subsystem1. To
demonstrate the feature of constraining the concurrent power draw within the system,
both Act tasks are assigned the critical label.

Table 4.2 depicts the worst case execution times, masked out by the mapping candi-
dates of the jobs. Mapping communicating jobs onto different subsystems will introduce
a communication reservation timespan that amounts to the worst case execution time
of the job assigned to the NIC.

4.3.3. Results

The aforementioned model was run once using the Minisat Prover (JNI) engine. Finding
the first solution to the predicate schedule yields the result given in Figure 4.5. Due

deadline from to time affected

Deadline1 Sense1 Act1 9 {Comp1,Act1}
Deadline2 Sense2 Act2 16 {Comp2,Comp3,Act2}

Table 4.3.: Deadlines as used within the sample case. One deadline per functional chain.

56

4
.

S
ys

te
m

In
te

g
ra

ti
o

n
M

et
h

o
d

s

4.3. Framework

Integer TimeableObject Deadline Subcomponent

6 15 2 8

Bus BNSClass BlockedTime BusTime

1 2 0 2

Table 4.4.: Scope of Objects in Alloy Sample Case

Sensor1

Actuator1

CPU1

NIC1

Sensor2

Actuator2

CPU2

NIC2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Sense1 Sense1

Sense2

Comp1

Act1

Comp1

Act1

Comp2 Comp3

Act2

Figure 4.5.: First Result Achieved when Using the Minisat (JNI) Engine on the Sample
Case

to the criticality of both Act1 and Act2, the first cycle schedule for both chains may not
be done straight forwardly. The jobs contained in the functional chain on Subsystem1

are scheduled in direct sequence of one another, while the solver shifted the execution
of Comp3 and Act2 in the other chain to a later point in time.

In order to guide the search process for solutions, one may introduce additional con-
straints. Figure 4.6 depicts the first result, when having Comp3 constrained to be
mapped to Subsystem1. It can be seen that the chain from Sense1 to Act1 is sched-
uled directly in sequence of each other. The other jobs start their execution chain with
Sense2 at time 22. The time for sending the sensor value over the bus is then overlapping
the subsystem’s hyperperiod boundary. Comp3 operates on Subsystem1 and sends its
results back to Act2 on Subsystem2.

Sensor1

Actuator1

CPU1

NIC1

Sensor2

Actuator2

CPU2

NIC2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Sense1 Sense1

Sense2

Comp1

Act1

Comp1

Act1

Comp2

Comp3

Act2

Sense2Sense2

Comp3

Figure 4.6.: First Result Constraining Comp3 to CPU1.

57

4. System Integration Methods

4.3.4. Simulation

Complete system specifications, as may be found by both manual or automated explo-
ration of the design space, can later on be evaluated in regard to power and performance
aspects using the simulator built into the framework. This helps to find the best out
of a number of valid solutions. For this task, different visualization interfaces were in-
tegrated into the framework as part of interdisciplinary projects (Duvnjak et al., 2013;
Brachert, 2013).

4.4. Summary

This chapter copes with the formal methods used for preparing partial models for sys-
tem integration. For this process an existing modeling framework was extended. The
framework utilizes the Alloy language and analyzer for model checking and design space
exploration.

Building upon the theoretical methods and tools, a sample case with two subsystems is
presented. The sample case features incomplete partitioning and scheduling specification
and presence of tasks critical to voltage stability.

Building and testing a platform to actually run arbitrary Power Management Plans
(PMPs) and to provide time synchronization for system-wide mutual exclusion of critical
tasks is handled in the following part of the thesis.

58

Part II.

Implementation and Evaluation

59

5
.

L
in

u
x

Im
p

le
m

en
ta

ti
o

n

5. Linux Implementation

This chapter explains the implementation of the platform capabilities defined in Chap-
ter 3. It allows to distribute software over the hardware units and runs the corresponding
Power Management Plans (PMPs). In order to provide the capabilities on the Linux
platform, multiple OS components were modified and new ones integrated in a layered
architecture. Figure 5.1 depicts the major components and their interaction to provide
all functionality. The adaptivity layer just below the API is comprised of dynamically
loadable kernel modules, while the capabilities at the scheduling and hardware abstrac-
tion layer are indivisibly compiled into the kernel, as it is common in Linux.

The chapter is structured along Figure 5.1. The following section first explains the
configuration module and the corresponding interface using a virtual file system. The
configuration is translated into data structures and loaded into the plan scheduling com-
ponent. The plan scheduling component traverses the data structure, schedules tasks,
and instructs the idle process as well as the tick scheduling component according to plan.
For the plan to execute timely and not on arbitrary time slices, the tick scheduling is
adjusted to match planned event expirations where appropriate.
The tasks which are being scheduled according to plan, communicate with each other
using the communication middleware inside the operating system. The middleware me-
diates typed datastreams in between any combination of local or remote tasks. It also
handles flushing the ringbuffer of the logging module to a central logging database. The
logging is done by the logging component, which uses deferred processing to handle
inputs from any context, be it hard interrupt, or user space tasks. Afterwards, the
skeleton of the user space tasks is presented, as it is used during the experiment. Ulti-
mately, the Precision Time Protocol daemon (PTPd) along with the modifications and
extensions for plan scheduling are described.

5.1. Configuration and Virtual Filesystem

The virtual file system provided by the configuration module allows to create, manipu-
late, and destroy data structures used in the implementation.

It reads and translates configuration files and manages kernel internal data structures.
The data structures are allocated and initialized, as well as destroyed depending on the
configuration file.

The initialized data structures are being fed into the respective components, like plan
scheduler and middleware. The plan scheduler basically needs a set of annotated graphs
which can be traversed, and the communication middleware needs a set of routes which
allows to flexibly interconnect software endpoints.

Besides loading data structures, the configuration can be queried by reading files
within the virtual file system. This way, the status can be checked using a terminal on
the subsystem as well.

61

5. Linux Implementation

Hardware

Operating System

Applications

CPU Memory I/O

HAL

QoS, Resource Management, Netfilter

API

Configuration

File
PTP daemon Task 1 Task 2

Configuration Module

Virtual Filesystem

Logging Module

Ringbuffer

Middleware

Routing/Dispatching

Plan Scheduling

Tick Scheduling

Idle Process I/O Driver

Clock Driver

Figure 5.1.: Major Subsystem Component Interaction Overview

5.2. Plan Scheduler

The scheduling discipline for PMPs, SCHED PM, is integrated as part of the Linux
real-time scheduling class, as depicted in Figure 5.2. In this way, the plan is evaluated
and traversed upon each call to the schedule function, which tests the runqueues and
task states and performs dispatching of tasks to the cpu.

The plan scheduler interfaces to the logging module and traces all events related to
scheduling. The scheduling can be of hardware power states, which are dispatched using
the Idle Process component, and of tasks, which have to associate themselves with PMP
jobs.

Realtime Class

Disciplines:
Ø SCHED_FIFO

Ø SCHED_RR

Ø New: SCHED_PM

Runqueues (Priority):
Ø Priority 1-100

Completely Fair Class

Disciplines:
Ø SCHED_OTHER

Ø SCHED_BATCH

Runqueues (Priority):
Ø Priority 101-140

Idle Class

Disciplines:
Ø SCHED_IDLE

Runqueues (Priority):
Ø Special

Figure 5.2.: Linux Scheduling Classes, Along with SCHED PM Policy

62

5
.

L
in

u
x

Im
p

le
m

en
ta

ti
o

n

5.2. Plan Scheduler

5.2.1. Idle Process

The Linux idle process makes use of so-called governors for selecting and dispatching
power states. The governor for NO HZ systems (cf. Section 2.4) is called menu. The
menu governor is used in the implementation. It features its own heuristic for selecting
power states based on a sliding average on interrupt rates and the Quality of Service
(QoS) requirements for latency.

The governor is adjusted in order to incorporate PMP power states. This is done by
restricting the heuristic selection. If a high power state is required in the PMP, the
system is held awake, even though the heuristic chooses a deep sleep state based on
average interrupt rates and system task requests.

5.2.2. Task Interface

For a task to associate with the SCHED PM discipline, a call to the POSIX API
sched setscheduler is needed. Along with the desired discipline, a unique job id
has to be assigned which is used as an identifier in the PMPs.

Additionally to setting the discipline, a task can signal its completion to the plan
scheduler using the same API. In this way, tasks can yield for synchronization to an
event and be distinguished from tasks yielding because of the completion of their job.
This allows both purely actor-oriented tasks to be scheduled as part of a PMP, as well
as any other Linux task.

5.2.3. PMP Data Structure Association

In Linux, every CPU has a separate runqueue structure to reduce locking. The master
runqueue (struct rq) references separate runqueues for completely fair, and real-time
class processes. It was extended to include a reference to a PMP associated with the
corresponding CPU in Gleixner (2011). Figure 5.3 depicts the major attributes of power
management plans within the Linux kernel.

The PMP is stored using nested composition. Each PMP stores a list of nodes, which
in turn store a list of edges referencing adjacent nodes.
For runnability, the plan stores a queue of events which each associate exactly one edge.
An event can be any action described by the edge, i.e., the rise or fall of the edge’s signal.
Upon traversal of the plan, the status of nodes, edges, and the event list is constantly
updated.

During run-time, the timing definitions are followed as well as the logical combination
of events using logic operators.

5.2.4. Sequential Logic Operators

The implementation of processing sequential logic in the kernel does not do optimization
of the logical formula at hand. This way, the performance of the implementation can
be tested using randomly generated, tautological plans of different sizes. All delays are
being put to zero, so just the computation and propagation of signal levels is assessed.
The plans are generated by recursively and randomly applying the following substitution

63

5. Linux Implementation

Figure 5.3.: Power Management Plan Data Structure as Held Within the Scheduler

rules:

id = id ◦ id, ¬ = id ◦ ¬, id = id ∧ id, ¬ = ¬ ∨ ¬.

The first step in the recursion starts with the identity function id. Since some of the rules
rewrite id and ¬ by a function over two signal inputs, the plan size rises exponentially.
Thus, the repetitive application of these substitution rules yield large plans, of which
the execution time can be rated.

5.3. Tick Scheduler

For a CPU resource to be shared fairly and evenly among tasks, a time division multiplex
scheme is used. Typically, the time is sliced into uniform slices using system tick events.
The Linux system tick triggers a call to the schedule routine, which operates on the
runqueue data structures, schedules, dispatches, and potentially preempts processes.

The Linux tick scheduling subsystem is adjusted to match the event sequence dic-
tated by the current PMP. The tick scheduling component actively forwards, stops, and
restarts the timer associated with the system tick. This is done by parameterizing the
clock hardware using an associated clock driver.

The plan setup is to determine the accuracy of scheduling cyclic tasks together with
power states, so as to provide adaptive quality of service over time. Figure 5.4 shows a
cyclic plan, scheduling jobs with bringing the CPU up to a high power state featuring
lesser latency before the actual start of the job.

The goal is to verify the suitability of the plan scheduling mechanism to periodic tasks
with strong timing requirements. Again, all events occurring within the tick scheduling

64

5
.

L
in

u
x

Im
p

le
m

en
ta

ti
o

n

5.3. Tick Scheduler

Node 1:
Job 1

Node 2:
Job 2

Node 102:
Deep Sleep

Node 202:
Deep Sleep

Node 101:
Awake

Node 201:
Awake

〈Seq,+0 ms, 0 s,1,0〉 〈Conc,+23 ms, 0 s,1,0〉

〈Conc,+25.0 ms, 0 s,1,0〉

〈Seq,+0 ms, 0 s,1,0〉〈Conc,+53 ms, 0 s,1,0〉

〈Conc,+55.0 ms, 0 s,1,0〉

CPU

PState
0.0 ms 10.0 ms 15.0 ms 23 ms

25.0 ms

Figure 5.4.: Functional Chain Set for Validation of Deep Power States

framework are traced using the logging module. Two dummy tasks were utilized for the
evaluation.

5.3.1. Dummy RT Tasks

There are two identical real-time tasks in the experiment, denoted Job 1 and Job 2 in
Fig. 5.4. Both are started upon the experiment start and terminate after the predefined
duration of the experiment. Algorithm 1 outlines the program code. Upon start-up,
they register themselves with the scheduler, specifying the novel SCHED PM discipline.
The priority during the test run was chosen for both tasks to be 20. Meaning they will
be inserted into queue with priority 20 upon the adaptive tick which is aligned to their
starting time.

Algorithm 1: Real-Time Task Program
input: ExperimentDuration, TaskID, Priority

/* At first, register with the scheduler: */

sched setscheduler(ProcessID, SCHED PM, TaskID, Priority);

/* Track experiment start: */

StartTime ← gettimeofday;

while gettimeofday() < StartTime + ExperimentDuration do
LoopStart ← gettimeofday();

/* Randomly choose Task duration in interval [1, 20] ms: */

LoopDuration ←(rand() mod 19) + 1;
while gettimeofday() < LoopStart + LoopDuration do

/* nothing */

end
yield();

end

After each time the tasks are being scheduled, they spend most of their time calling

65

5. Linux Implementation

gettimeofday(). When scheduled, they take a random time within [1, 20] ms to com-
plete. Since this is a Linux system function, this amounts to a large portion of time in
kernel space.

The task signals the completion of its job to the scheduler using a special call in the
end. This call is different from the default sched yield(), which may still be used and
allows default non actor-oriented Linux tasks to be part of a PMP as well.

5.4. Multicasting Middleware

The middleware for multicasting typed streams of information between one to many
communication partners was implemented as part of different theses and interdisci-
plinary projects (Fuchs, 2012, 2013; Totakura, 2012).

The distributed system has multiple stream endpoints within the application layer.
These applications interact with the operating system using network sockets. The sock-
ets are both used for sending and receiving network data as well as for configuring the
broadcast manager present in the Linux kernel.

The network performance is largely limited by the underlying hardware. An analysis
of this is out of the scope of this thesis.

5.4.1. Socket Interface

The Linux kernel features a low-level framework for Controller Area Network (CAN)
bus systems together with a set of high-level socket family extensions since Linux version
2.6.25 (Hartkopp et al., 2013). Usage of these socket family extensions is patented for
the case of vehicular functions (Hartkopp and Thürmann, 2005).

Every task can open a socket and instruct the middleware to filter and dispatch in-
coming messages as well as to enqueue outgoing messages for sending. When handling
a packet originating from an arbitrary interface or local socket, a routing table is con-
sidered, specifying zero to many target rules for a data stream.
In this way, different local tasks can communicate with one another, as well as commu-
nication can be replicated (multi-casted), onto external networking interfaces.

Quality of Service

Enqueuing messages for external interfaces passes the QoS framework of the Linux ker-
nel. This framework allows different streams of data to be prioritized and accounted
for. This works especially well for Ethernet and Internet links.
For embedded system buses used in automation or the automotive domain, the priori-
tization is often handled in hardware. One example for this is the CAN bus. For this
type of bus, kernel work queue based multiplexing of data streams is applied (Fuchs,
2012).

Netfilter Hooks

Linux provides different filtering methods for incoming traffic. These methods are used
to retrieve data for the communication middleware. For CAN buses, the low-level

66

5
.

L
in

u
x

Im
p

le
m

en
ta

ti
o

n

5.5. Logging Subsystem

CAN framework features so-called receive lists with CAN ids and socket endpoints for
userspace tasks.
For Ethernet, e.g., the so-called netfilter framework can be used for a similar task. Upon
receiving of an Ethernet frame, the middleware can use its routing table for dispatching
and replicating of the message content. In this way, content can be routed from Ethernet
to CAN and vice versa.

5.4.2. Transducing Machines

Additionally to mediating between endpoints, the middleware features a rule set for
transducing notifications to actions regarding changes of PMPs. This implementation
was part of an interdisciplinary project (Fuchs, 2012).

δ ω
Rule Active From State Input To State Plan Response

1 1 0 2 1
0 2 1 1 0

. . .

Table 5.1.: Encoding of Transducing Machines as Lookup Tables in the Communication
Middleware

Table 5.1 depicts the tabular specification of a transducing machine (cf. Chapter 3),
as implemented in the middleware. Each state has a set of rules which get activated
and deactivated respectively. The plan scheduling module is notified asynchronously of
the requested plan change. The plans get changed upon reaching an end node.

Changing plans triggers the start node of the next plan upon entering the end node
of the current plan. Each plan has it’s own clock value. This clock value is inherited
by the new plan. Thus the correctness in switching plans and inheriting timings can be
tested by utilizing two plans as in Figure 5.4. The first plan does not allow as deep sleep
states as the second plan. One may change in between these plans while maintaining
seamlessly the schedule of the jobs.

The tick scheduling experiment incorporates such a plan change and is explained in
more detail in the following chapter.

5.5. Logging Subsystem

The logging subsystem features a preallocated ring buffer. Figure 5.5 depicts the data
structure and data fields used within the logging entries. Since the logging module is
part of a layered architecture, it can handle arbitrary payloads. A call to log an entry
first needs an 8-bit logging source identifier. The logging subsystem then attaches the
source identifier and a timestamp value to the payload.

The ring buffer has to be flushed explicitly as part of a PMP node. This way, logging
data may be flushed explicitly after an experiment run, or at well defined points within.
For the tick scheduling and logic operator tests, this flushing happens after the exper-
iment run. For tests which take a long time, it might be necessary to flush this buffer

67

5. Linux Implementation

· · · e1 e2 e3 • · · ·

SRC Timestamp (ns) SRC-Defined Payload . . .

0 8 72

Write Pointer

Read Pointer

Preallocated Buffer

Figure 5.5.: Ring Buffer and Data Format Used in Logging Module

during runtime. This was e.g. the case with the test described in the next section.

5.6. Precision Time Protocol daemon

In order to be able to provide implicit and explicit support for voltage stability mecha-
nisms, a means of time synchronization was evaluated in regards to the model presented
in Chapter 3. The basis for the analysis is the PTPd as developed by Correll et al.
(2005). It is a software only implementation of the IEEE1588 protocol as defined in
Chapter 2. Due to the software only nature, it features a control loop which is designed
to cope with significant levels of input noise.

5.6.1. Implemented Control Loop

The PTPd makes use of filtering and of a PI controller for adjusting the Frequency
Locked Loop (FLL) in the NTP subsystem of the Linux kernel (Mills et al., 2010). This
original control system is depicted in the upper part of Figure 5.6. Due to the interface
to the FLL subsystem, the clock is slewed not only for adjusting clock speeds, but also
to compensate for clock offsets in general.

Assume to be given a periodic job with cycle time 500 ms. If the offset is 500 ms, a
whole cycle in kernel time will be left out or be added in the process of eliminating the
clock offset.
In order to reduce this systematic error, one might want to resort to hard setting of
the clock. This approach has the disadvantage that time may virtually get lost and
applications malfunction. The gradual compensation for offsets is more robust in terms
of application compatibility.

As a contribution of this thesis, an additional plan control loop is implemented in the
PTPd. The corresponding system diagram can be found in the lower part of Figure 5.6.
Denote |SW| the width of a synchronization window as planned in the PTPd slave
system. Control the plan execution, so as to align the time of SYNC message reception to
the middle of the window. This is done by introducing another PI controller mechanism
which signals the true synchronization period to the plan scheduler. This is necessary,

68

5
.

L
in

u
x

Im
p

le
m

en
ta

ti
o

n

5.6. Precision Time Protocol daemon

PTPd

delaym2s

delays2m + 1/2

–

LP IIR

delaycomm

offset
LP FIR

regular PI
controller

interval

Kernel
NTP FLL

tick rate
adjustment

planError plan PI
controller

sync window shift Kernel Plan
Scheduler

Kernel tick
subsystem

Regular PTPd Control Loop

time of SYNC

1/2|SW|

–

time as planned –

PlannedPTPd Plan Control Loop

Disciplined
KTIME

HW Clock
Register

(drift)

Figure 5.6.: Regular PTPd control loop as illustrated in Correll et al. (2005) together
with extensions for PlannedPTPd version. To the right is the layered archi-
tecture of the scheduling, tick, and timing subsystem of the Linux kernel.

because the plan execution is not directly affected by the timing subsystem. The plan
scheduler uses the monotonic runqueue clock which is directly read from the clock
register and thus agnostic to adjustments.
For this scheme to work, the synchronization window size has to be chosen large enough
and the communication delay within this window is assumed to observe low jitter. If
jitter is introduced, another LP filter module would have to be introduced into the loop.

5.6.2. Precision Time Experiment Setup

In order to achieve great precision using Precision Time Protocol (PTP), predictability
and hardware support is vital. In software-only implementations, such as in Linux
PTPd, filtering and control theory is applied to yield convergence.

As an exemplary use case for power management planning, PTP convergence is bench-
marked across planned and unplanned implementations in Linux under presence of high
priority real-time tasks introducing jitter in protocol handling.

Implementation Extension

For the experiment setup, PTPd version 2.2.2 is extended to incorporate planning ca-
pabilities. Algorithm 2 sketches the adjustments made to the PTPd main thread.

69

5. Linux Implementation

Algorithm 2: PTP Daemon Planning Extensions to Main Thread

void protocol() ; /* PTP HANDLE */

sched setscheduler(); /* register PTPd main thread as PTP HANDLE job */

LoopStart ← gettimeofday()

while true do
/* Receive network packets and handle the PTP protocol in the default PTPd

call dostate(). The following extensions and modifications apply;

- the call does not block longer than the following condition to yield to

the plan scheduler;

- planError is calculated using the time of reception of SYNC. */

dostate();
if gettimeofday() >= LoopStart + Deadline then

yield();
LoopStart ← gettimeofday();

end

end

The following modifications are made to support the planning scheduler:

� The PTPd main thread is registered as the PTP HANDLE job in the plan sched-
uler.

� The PTPd internal dostate() call is modified to respect the deadline of PTP
HANDLE, and to record the steerError upon reception of a SYNC packet.

Additionally to the main thread, another thread used for signaling the SYNC window
to the plan scheduler is introduced and sketched in Algorithm 3.

The following steps are executed:

� The new thread is registered as the PTP PI EVENT job.

� It computes and signals the tcompletion time in a PI manner using planError as
input.

Algorithm 3: PTPd Planning Extensions to PI Event Thread

void steerThread() ; /* PTP PI EVENT */

sched setscheduler(); /* register current thread as PTP PI EVENT job */

while true do
/* Calculate tcompletion in a PI manner using planError as input. */

tcompletion ← PI(planError);

usleep(tcompletion);

/* Yield to the plan scheduler. */

yield();

end

The same implementation is used for both the slave as well as the master operation
modes.

70

5
.

L
in

u
x

Im
p

le
m

en
ta

ti
o

n

5.6. Precision Time Protocol daemon

PI
EVENT

α1 j1 jn

α1

α2

α2

PTP
HANDLE

Plan Boundary

Synchronizing Window (SW)

Cyclic Workload Window (CW)

· · ·

〈s, p(SW)− |SW|
2 − 2 ms, ·, ·, ·,1〉

〈c, 2 ms, ·, ·, ·, ·〉

〈s, 50 ms, ·, ·, ·, ·〉

〈c, ·, ·, ·, ·, ·〉

SYNC SYNC+p(SW)

SW CW SW

Figure 5.7.: PlannedPTPd—Plan for Slave Nodes with Synchronizing and Cyclic Win-
dows

Slave Operation

The corresponding plan for associated slave operation is depicted in Figure 5.7. The
plan allows the PTP HANDLE task to discipline the local clock, but also to adjust and
shift the synchronization and cyclic workload phases of the local power management
plan. This is done by shifting the end-time appropriately. A maximum of half a syn-
chronization window length may be shifted in either direction of past and future.
This is done so as to adjust the window to the SYNC and FOLLOW UP messages, of
which the receive time accuracy is of utmost importance. The lower part of Figure 5.7
depicts the structural dependencies of this mixture of time and event-triggered window-
ing in an unrolled version. The power state α1 is assumed to adhere highest quality of
service, while α2 maximizes energy savings.

Master Operation

The master operation allows the installation of different cyclic windows. The period
of the synchronization window has to match the periods of the slaves. Figure 5.8 de-

71

5. Linux Implementation

PTP
HANDLE

α1 j1 jn

α1 α2

α2

Synchronizing Window (SW)

Cyclic Workload Window (CW)

· · ·

〈s, p(SW), ·, ·, ·,1〉

〈s, 50 ms, ·, ·, ·, ·〉

Figure 5.8.: PlannedPTPd—Plan for Master Node with Synchronizing and Cyclic Win-
dows

picts the PMP used for the master role in the PTPd experiment. The synchronization
window is characterized by running the PTP HANDLE job. It is activated at the be-
ginning, sending out protocol data and waiting for requests during the whole window
time. Besides the PTP and synchronization window, the window for cyclic workload is
constructed similarly to the slave operation mode.

For master operation, there is no need to introduce special cycle signaling, because
the clock is not modified.

Maximum Slewing

If the clock offset of the slave is more than 512 µs, the clock is slewed at its maximum
rate, which is 512 ppm per default.

Consider the slave clock to be a lot behind the master clock. The slave’s clock
frequency will be sped up by the maximum rate of 512 ppm. The plan scheduling
will not be affected, because it works directly with the hardware clock register. In
order to align the plan to the SYNC packets, the slave HANDLE needs to be triggered
sequentially of a synchronization event. The event is steering the plan in a PI way.
Defining t2 in accordance with Section 2.4.1, as the time of reception of the SYNC
packet measured in the time base of the slave, the plan needs to be disciplined so as

(planError)i := (t2)i − timeAtStart(HANDLE)i −
|SW|

2

converges to 0:

(planError)i −→ 0, as i −→∞

In this way, subsequent steering of the plan execution has the maximum degree of
freedom. If the plan is to be sped up, the PI EVENT needs to be signaled earlier. This

72

5
.

L
in

u
x

Im
p

le
m

en
ta

ti
o

n

5.6. Precision Time Protocol daemon

can be, e.g. because of slewing of the slave clock, but also in order to take a proportional
step towards the right activation time.

The width of the synchronization window |SW| and thus the deadline of the PTPd
has to be chosen large enough, so as the probability of

Pr

¨
abs(planError) <

|SW|
2

«
(5.1)

is sufficiently high. This is because, without hardware support, t2 may only be correctly
determined, if the packet comes in while the PTP HANDLE job is active. The HANDLE
job is active exactly within the synchronization window time span.

Reasoning for Introducing a PI EVENT

It is necessary to decouple a cycle event from the PTP HANDLE job into the plan
scheduler because of the following reasons:

� Assume the absolute planError is within the bounds

abs(planError) <
|SW|

2
.

Choose the completion time tcompletion of PI EVENT in a proportional integral
manner:

(tcompletion)i = aP · (planError)i + aI ·
i∑

k=0

(planError)k +
|SW|

2

Assume a single optimistic correction step aI = 0, aP = 1:

timeAtStart(HANDLE)i+1 ≈ timeAtStart(HANDLE)i + planError +
|SW|

2
+

p(SW)− |SW|
2
− 2 ms + 2 ms

≈ (t2)i −
|SW|

2
+ p(SW)

Assume (t2)i+1 = (t2)i + p(SW):

≈ (t2)i+1 −
|SW|

2

It follows

(planError)i+1 = (t2)i+1 − timeAtStart(HANDLE)i+1 −
|SW|

2

= (t2)i+1 − (t2)i+1 +
|SW|

2
− |SW|

2
= 0

73

5. Linux Implementation

– Let − |SW|2 < (planError)i < 0. If (tcompletion)i > (planError)i + |SW |
2 , HAN-

DLE may finish later and thus steer the plan without an extra EVENT node.

– Conversely, let (tcompletion)i < (planError)i + |SW |
2 It is not possible to finish

earlier, because the packet reception time can not be anticipated. The cycle
offset shift has to be decoupled from PTP HANDLE, introducing PI EVENT.
Finishing earlier may also harm s2m measurements and other PTP duties.

� Conversely, assume the planError is out of bounds. This is either a singular
event, or the predictability of the system and the synchronizing window size are
mismatching. The implementation drops packets if offsets and time values are too
large.

Depending on the cyclical window tasks at hand, it is better to step the clock for
large offsets. In general it should be stepped, if convergence is wanted within a given
time frame. Assume no drift/skew term, convergence and offset being measured in the
same unit:

tconvergence ≈
|offset|

|PTPSlewFactor|

5.7. Summary

This chapter presents the implementation of the model defined in the first part of the
thesis. Additionally, test cases for individual subcomponents are presented. These test
cases involve the computation of logic operators within PMPs, the timing and tick
scheduling of PMPs, and a planned variant of the PTPd.

The following chapter first presents the hardware platform used for testing the im-
plementation and then gives the results for each test case.

74

6
.

E
va

lu
a

ti
o

n
in

a
T

es
t

B
en

ch

6. Evaluation in a Test Bench

The scheduling concept of Power Management Plans (PMPs) presented in this thesis
was implemented and evaluated in a test bench located at the institute for energy
conversion technology at the Technische Universität München (TUM). The test bench
features an original BMW 7 series chassis and wiring harness for investigating voltage
stability dynamics. Twenty embedded systems are integrated and networked within
the test bench. Figure 6.1 depicts the complete system setup along with control and
measurement computers.

The evaluation of the integration of a scheduling mechanism for PMPs starts with a
small scale, single subsystem setup, and continues with a distributed experiment.

6.1. Test Bench

In order to test and evaluate the implementation of the models defined in Chapter 3, a
test bench resembling a typical modern automotive system was used.

Figure 6.1 shows the actual setup. The chassis along with the embedded systems in
the middle as well as the computers, measurement and instrumentation hardware in the
foreground. To the right is the Linux PC used for booting, providing an NFS root for
the subsystems, and for gathering the logging data. To the left is additional equipment
for controlling and visualizing the experiments at the same time.

6.1.1. Hardware and Network Architecture

Figure 6.2 depicts the logical architecture as setup in the test bench. The Ethernet is
configured using three virtual LANs for distinguishing and shaping traffic with different
purposes.

Depicted in Subfigure 6.2a is a domain controlled architecture as described by Rein-
hardt and Kucera (2013). The test bench consists of three domains entitled vehicle
dynamics, entertainment, and car body. Each domain consists of subsystems intercon-
nected by a Controller Area Network (CAN) bus. The domains are connected using
an Ethernet backbone. VLAN 810 is used for the experiment data in a fully switched
network. This experiment data can be exchanged point to point from labview with any
Electronic Control Unit (ECU), or be multicasted among ECUs, where only the domain
controllers can directly communicate over Ethernet with each other.

Subfigure 6.2b shows VLANs 0 and 820. VLAN 0 is used for booting the ECUs over
the network, for providing a Network File System (NFS), and for logging. VLAN 820
was not used during the following experimentation. It may be used for an optional live
view on the LabVIEW workstation.

The subsystems within the test bench are all of the same prototypical type.

75

6. Evaluation in a Test Bench

Figure 6.1.: Test Bench Setup, Picture Taken from Ruf et al. (2013a)

VLAN 810

C
A

N
 1

DC 1

Switch

DC 2 DC 3

C
A

N
 2

C
A

N
 3

ECU

ECU

ECU

ECU

ECU

ECU

LabVIEW

(a)

VLAN 820

DC 1

Switch

ECU

ECU

ECU

ECU

ECU

ECU

DC 2 DC 3

Switch

LabVIEW

VLAN 0

Linux

(b)

Figure 6.2.: Distributed system topology setup (Ruf et al., 2013a). Virtual LAN 0 is
used for the experimentation in this thesis. Virtual LANs 810 and 820
feature live subsystem statistics in conjunction with LabVIEW.

76

6
.

E
va

lu
a

ti
o

n
in

a
T

es
t

B
en

ch

6.1. Test Bench

CAN-
Controller

C
A

N

E
T

H
E

R
N

E
T

LAN-
Controller

ADC

DAC

UEXT

DAC
Output

Peripheral
Power-Supply

Switchable
Power-Supply

Ext. Load

UECU

RS232 2x RS232

Shunt Current
Sense

OP-AMP

CAN-
Transceiver

Figure 6.3.: Schematic of the Custom Platform Including the GUMSTIX Computer-On-
Module (COM). The Figure is taken from Barthels et al. (2012c).

6.1.2. ECU Hardware Platform

In collaboration with the institute for integrated systems and the institute for energy
conversion technology, a custom hardware platform was developed by Schlenk (2012).
The design and features were published in Barthels et al. (2012c). The platform is
targeted at evaluating the interaction of partitioning, efficiency, and voltage stability in
automotive systems.

Custom Circuit Board

The prototypical ECU platform is based on a custom circuit board, as depicted in
Fig. 6.3. The board hosts a power supply, peripheral connectivity, and the COM.

As peripherals, the boards can power dynamic loads, used to emulate sensors and
actuators. For connectivity, both CAN and 100BaseTx Ethernet interfaces are provided.
The CAN is being driven by an MCP2515 chip, while the Ethernet is driven by a
SMSC9291.

The COM used during the experiments is an OMAP3503 based GUMSTIX Overo
model, which is described next.

77

6. Evaluation in a Test Bench

Power State ARM MPU ARM Core

C1 WFI ON

C2 WFI inactive

C3 CSWR inactive

C4 OFF inactive

C5 OSWR OSWR

C6 OFF OSWR

C7 OFF OFF

Table 6.1.: Power States of the OMAP3503 MPU, which is based on the ARM Cortex
A8. Taken from Linaro (2012) and Barthels et al. (2012c).

GUMSTIX Overo

The Overo series manufactured by GUMSTIX, Inc. (2012) features an ARM Cortex A8
MPU offering a multitude of operation points and idle states. The idle states used in
the Linux kernel description of the hardware can be found in Table 6.1.

The following explanation of the power states was taken from a White Paper by Texas
Instruments (2012) and a previous publication (Barthels et al., 2012c).

� ON: All circuits are fully operational.

� WFI (Wait for Interrupt): Equals a halt command. The logic is fully powered,
but not actively working.

� CSWR (Closed Switch Retention): The logic is in retention mode, but still pow-
ered

� OSWR (Open Switch Retention): The logic is switched off, but the state is pre-
served in dedicated static RAM.

� OFF: The component is completely powered off

The typical power consumption of the OMAP MPU was measured using a multimeter
and an oscilloscope. For the typical consumption, the system was put under load using
the GNU basic calculator (Nelson, 2012) and measured in C1 (halt) under different
frequencies and supply voltage levels.

Figure 6.4 depicts the measured average consumption. The higher plane is spanned
by the load figures, while the lower plane shows the C1 figures. It can be seen that
a significant base consumption is present regardless of the frequency or supply voltage
scaling. Because of this, switching off different hardware components yields much greater
savings than scaling on this platform. Thus, scaling frequencies and voltages is not used
in the experiments.

FPGA

The FPGA is incorporated for running functional chains with the highest timing re-
quirements. It is able to process inputs autonomously, like monitoring supply voltage
levels and adjusting the power supply of attached actuators.

78

6
.

E
va

lu
a

ti
o

n
in

a
T

es
t

B
en

ch

6.1. Test Bench

M
PU S

up
ply

 in
 m

V

1000

1100

1200

1300

MPU Frequency in MHz
200

300

400

500

600
P

ow
er C

onsum
ption in m

W
0

200

400

600

800

1000

Figure 6.4.: Typical OMAP3503 MPU Power Consumption as Measured in Barthels
et al. (2012c)

79

6. Evaluation in a Test Bench

Subsystem 1 Subsystem 2 Subsystem 3

Switch

NFS Server,

Logging Daemon

Figure 6.5.: Experiment Setup, Subsystems Connected via Ethernet

Experiment Subsystem 1 Subsystem 2 Subsystem 3

Plan Timing — In Use —

Logic Operator — In Use —

PTPd PTP Slave PTP Slave PTP Master

Table 6.2.: Experiment Deployment

The FPGA is not used during the following experimentation but can be used in the
future for off loading additional tasks.

6.1.3. Small Scale Experimentation

A small scale setup was used in order to evaluate the implementation presented in
Chapter 5. Figure 6.5 depicts the hardware topology used during the experiments. The
subsystems mount their root filesystem and boot via an NFS share. The NFS share is
served by a Linux PC which was also used for collecting data and analyzing the system.

Table 6.2 details the deployment of experiments to subsystems. In the first experiment
used for analyzing the plan scheduler and transducing mechanism, only Subsystem 2
was used. The software setup is explained in detail in Sections 5.3 and 5.4. An impor-
tant goal of this experiment is to show significant power savings without significantly
deteriorating Quality of Service.

The second experiment works on the same subsystem and is used for evaluating the
plan scheduler in regards to sequential logic operator performance. The corresponding
implementation is described in Section 5.2. The logic operator performance builds
around the rare case of using the scheduler for solving logical formulas as fast as possible.
The experiment serves as a worst-case scenario since normally only very few operators
are evaluated at the same time.

The final experiment is about performing time synchronization in a distributed sys-
tem. The description of the PTP daemon and the extensions for power management
planning are described in Section 5.6. The core of the experiment is to provide a proof
of concept for the platform built around PMPs in regards to mutually excluding critical
tasks in a time-division multiple access manner.

80

6
.

E
va

lu
a

ti
o

n
in

a
T

es
t

B
en

ch

6.2. Plan Timing Experiment

6.2. Plan Timing Experiment

For validating the implementation, firstly a single subsystem setup was chosen and
different aspects of the scheduler assessed.

The implementation of the plan scheduling is purely done in software, as described
in Chapter 5.

On the embedded device, an experiment script is run via the serial console, which
synchronizes with the experiment control and starts the experiment and data collection.
This experiment script divides the experiment interval of 60 s into three subintervals.

6.2.1. Experiment Script

In the first interval in between 0 and 20 s, the GNU basic calculator (Nelson, 2012)
is used to compute thousands of digits of π

4 in the background. The second and third
intervals from 20 to 40 and from 40 to 60 s feature no background tasks but strongly
fragmented phases of busy and idle times. In the second interval, no sleep states deeper
than C1 are allowed, while the third interval adds C2 and C3 (cf. Table 6.1), since the
additional energy savings of deeper idle states on this platform are insignificant using
the official device drivers (Barthels et al., 2012c). The transition from the second to the
third interval involves the switching of PMPs.

Within all three subintervals, the system is put under the same irq load by repetitively
sending Ethernet frames.

The timing of the experiment script is shown in Figure 6.6. It can be seen that
immediately after the start of the script, TCPDump (2012) and the real-time processes
are started. There are two TCPDump instances, one of which is instructed to receive
as many packets as are generated during the experiment, while the other just filters for
the experiment start packet and returns. After TCPDump returns, the PMP scheduler
is activated. The real-time processes thus start to run and the system load monitoring
using sysstat begins. Sysstat is collecting values on a per second basis (Godard, 2012).
To induce CPU load on the system, the GNU basic calculator is used to compute 1750
digits of

tan−1(1) =
π

4
.

The calculation is started 1 second after receiving the start packet. The calculation gets
timed and the result stored. After bc finishes, the system is mostly busy executing the
real-time tasks. Because of the random task completion times as shown in Algorithm 1
on page 65, the lengths of the idle intervals and thus also the heuristic sleep state
selections within Linux are expected to vary over time.

6.2.2. Experiment Control Network Sequence

During the experiment, the controlling PC generates network packets for testing the
scheduler’s accuracy during heavy interrupt load. The network communication sequence
is depicted in Figure 6.7. The network packets are generated using an open-source tool
called ANETTEST (2012), which allows to generate packets according to script files.
The packets have length 107 bytes on wire. The protocol is UDP/IP with a small textual
payload of 65 bytes.

81

6. Evaluation in a Test Bench

Experiment-Script:
* Start TCPdump

* Start Real-Time-Tasks
(waiting to be scheduled)

End of Experiment:

Real-Time-Tasks finish,
Flushing of Logging Buffer

60 s later

Activate Scheduler.
* real-time tasks start to run

according to plan
* system load monitoring is

started

experiment start
(network packet)

Linux basic calculator is invoked
It calculates 1750 digits of a

quarter of Pi in the background.

Ensures CPU is at 100% load,
takes about 20 s to finish

1 s later

Mathematical calculation
finishes.

System is partially idle, partially
under load.

≈20 s later

Change of
Power Management Plans:

entering of deeper idle states

≈40 s later

Figure 6.6.: Script as Used in the Plan Timing Experiment

82

6
.

E
va

lu
a

ti
o

n
in

a
T

es
t

B
en

ch

6.2. Plan Timing Experiment

Experiment Control Embedded System

t = 0 s
UDP, experiment start!

+3 s, cycle each 20 s
UDP, 5000 packets at max rate

+3 s
UDP, 3000 packets at 1 kHz

+3 s
UDP, 300 packets at 100 Hz

Figure 6.7.: Generated Network Packet Flow During Load Testing

Each experiment is generating one trace for kernel and scheduler events. Traced
events include timed tick-scheduling, clock hardware programming, power management
plan traversal and idle power state selections as computed by the Linux menu heuristic.
Beside the scheduler, all network traffic belonging to the experiment is dumped to a
RAM disk by TCPDump. Finally, the system load figures are being put out by sysstat.
All data files are collected after the experiment via SCP.

6.2.3. Results

The power consumption results are gathered along with the system utilization in Fig-
ure 6.8. The topmost graph depicts the idle state selection computed by the Linux menu
heuristic. This selection was dynamically overridden if the Awake node specified in the
PMPs is active. Thus, a low latency for the actual activation of a time critical job is
ensured.
The second graph shows the packet rate as it was dumped by TCPDump. A total num-
ber of 24,900 packets were sent to the embedded system. During the experiment, 619
packets were dropped by the kernel (2.5 %) and none were dropped by the interface.
The packet loss occurred mostly during the phase of partial idle after second 40. It
is highly likely, that the packet loss is due to a lot of packets coming in although a
deeper idle state was entered. Due to the repetitive C-state selections and wake-ups,
a lot of time and processing power gets lost. On network systems inherently having
real-time characteristics, one might as well introduce time spans preventing deep sleep
states during burst intervals into the local power management plans before hand.
The third graph shows a stacked bar chart of the CPU load over time. It can be seen,
that the tasks do not produce a lot of time in user space. Most time is spent in kernel-
space, because of the API gettimeofday. Within the first 20 seconds, the calculation
of π

4 is done in the nice portion. Upon every burst of network packets, high soft-irq
loads can be observed.

83

6. Evaluation in a Test Bench

The fourth graph shows the power consumption along the previously explained exper-
iment procedure. It is clearly visible, that all three intervals of the experiment reveal
a different picture of power consumption. In the second interval, the deepest allowed
sleep state is C1. The overall consumption is reduced, while two peaks are visible during
phases of high network load. The third interval then adds C1-C3 states and a higher
dynamic range of power consumption over time. This section continues with discussing
the system latencies during the execution of the PMP depicted in Figure 5.4 on page 65.

The three graphs on the bottom of the page show cycle intervals. It can be seen
that while the system is allowed to go into idle, the crucial transitions in between nodes
1 → 2, 2 → 1, and thus 1 → 2 → 1 are remarkably better compared to the transition
1→ 101. This is due to disabling idle states well before crucial transitions.
The transition 1 → 101 at the end of an idle interval has higher variations in timing,
because of additional wake up delay imposed by the idle states which may have been
entered before and because the clock device is programmed from the interruptible idle
task context.

At around second 40, the PMPs are switched to enable deeper hardware idle states.
It can be seen that the switch is seamless and the timebase of each plan is transferred
correctly.

The gray horizontal lines mark the mean value of the respective graph. These mean
values for the crucial transitions are quite exactly according to plan. The maximum
and minimum latencies are not visualized here since latency and its improvements are
handled mostly by the incorporation of the RT-Preempt patch into the Linux kernel.

6.3. Logic Operator Performance Experiment

The logic operator performance was measured by stopping the time needed to execute
a given number of operators, as described in Section 5.2.4. The plot in Figure 6.9 shows
the results in a log-log scale. It is important to note that the scaling is highly dependent
on the system architecture.

For small signal count, the plans and tracing data still fit into the cache of the
processor, thus the scaling is almost linearly.
As soon as the power management plan exceeds the cache size, the implementation
scales worse. For the evaluation, all the signals are computed as fast as possible, without
propagation delays or preemption. Finishing a plan may only happen if there is no active
signal anymore. At first, all nodes are activated and later-on deactivated. Since many
different signals and operators have to be considered and reconsidered, they effectively
produce an increasing number of cache misses.

Having such strongly connected combinations of logic operators with all timing con-
stants being 0 is a rare circumstance. Typically, the signals to start a job are few and
timed. If such a high operator count is needed for a type of application, a realization
using a dedicated cache, or even directly in hardware has to be considered. Since PMPs
resemble electronic circuitry, the transition to hardware can easily be made.

84

6
.

E
va

lu
a

ti
o

n
in

a
T

es
t

B
en

ch

6.3. Logic Operator Performance Experiment

●

●

●●
●

●
●●●●●

●

●
●
●●●●●

●

●●●●●●●●

●

●●●●●
●
●●

●

●●
●
●●●●

●

●●●●●●
●●
●

●

●●●●●

●

●
●
●
●
●●●●
●
●●●●●●

●

●●●
●
●●

●

●●●●●

●

●●●●●●●

●

●●
●
●●●●

●

●●●
●
●
●
●
●

●
●

●

●●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●●●●●●●
●
●●●
●
●
●
●●
●
●

●

●●
●
●
●
●

●

●●●●●●●
●
●●●●
●
●●●

●

●●
●
●●●

●

●●●●●●●●

●

●●●●●●

●

●●●
●
●
●
●●

●

●●●●●●●
●●

●
●

●●●●●●●
●
●●●●●●●●●●●●●

●

●●●●●●

●

●●●●●●●

●

●
●
●●●●●

●

●●
●
●●

●

●●●●●●
●●●●●●
●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●
●●●●
●
●
●●●●●●●●
●●●●●

●

●●●●●●●●●●●●●●●●●
●
●●●
●●
●●●●●●●●●●●●●●●
●
●●●●●●
●●●●●●●●●●●●
●●

●●●●●●●
●●●●●●●●●
●
●
●

●●●●●●
●●●●●●●●●●
●
●
●

●●●●●
●●●●●●●●●●●
●

●

●●●
●●●●●●●●●
●
●
●

●●●
●●
●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●
●
●●●
●●
●●
●
●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●

●

●●●●
●●●●●●●●●●●

●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●
●●●●
●
●●●●●
●
●●●●●
●
●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●
●

●
●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●
●

●●●
●●●●●●●●●●●●●●●●●●●●●

●

●●●
●
●●

●

●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●

●

●●●●●

●

●●
●
●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●
●●●●●●

●

●●●●●●●●●●●●●●●●●●●
●
●●●●
●●●●●●●
●●●●●●●●●●
●●●●●
●
●

●

●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●
●●●●
●
●
●

●●●●●●●●●●
●●●●●●
●●●●●●●●●
●●●●●●●
●

●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●
●●●●
●
●

●

●●●●●●●●●●
●●●●
●
●
●

●●●●●●●●●●
●●●●●●●
●●●●●●●●●●
●●●●●●
●

●●●●●●●●●●●●
●●●●●●●
●
●●●●●
●
●●
●●●●
●
●●
●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●
●
●
●
●●●●
●
●●●●●●●
●
●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●

●
●

●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●
●
●●●
●
●●●●●●
●●●●●●●
●●●●
●●●●
●●●●●●●●●●●●●●●●
●
●●●

●

●●●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●

●●●●
●

●

●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●
●●●●
●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●

●●●●

●

●●
●
●●●●●●●●●●
●

●

●●●●●●●●●●
●●●●●●●

●

●●●●●●●●●
●●●●●●●
●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●
●●●●●
●

●●
●
●●●●
●
●●●●●●
●●●●●●●

●

●●●
●

●

●
●
●
●

●●●●●●●●●●
●●●●●●
●●●●●●●●●●
●●●●
●
●
●●●●●●●●●●
●●●●
●
●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●
●●●●
●
●
●

●●●
●●●●●
●
●

●

●
●
●
●●●●●●●●●●
●●●●
●
●●
●●●●●●●●●●●
●●●●●
●
●
●●●●●●●●●●
●●●●●●●●
●●●
●●●●●
●
●
●

●●●●

●

●
●●●●
●
●
●

●●●●
●●●●●●
●
●

●

●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●
●
●●●
●
●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●
●●●●●●●
●●●●●●●●●●
●●●●●●
●●●●●●●●●●
●●●●●
●

●●●●●●●●●
●●●●●
●
●
●●●●●●●●●
●●●●●
●
●
●●●●●●
●●●●
●
●●
●●●●●●●●●
●●●●
●
●
●●
●●●●●●●
●●●

●

●●●
●
●

●

●●●●
●
●
●●●●●●●●●●●
●●●●●
●
●●
●●●●●●●●●●●
●●●●●
●
●
●●●●●●●●●●●●
●●●●●
●
●●
●●●●●●●●●●
●●●●●
●
●●●●●●●
●

●●●
●
●
●

●

●●●●●●●●●●●●●●●●●●●●
●●●●●
●
●

●

●●●●

●

●
●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●

●

●●●●●●●
●●●●
●●●●●
●●●●●●●
●●●●●●●●●●
●
●●●●

●

●●●●
●
●●●●
●
●

●

●●●●●●●●●●●●●●●●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●
●●●●●●
●
●●
●
●
●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●●●●
●
●
●●●●●●●●●●●●●●●
●●●●
●
●
●●●●
●●●●
●
●●
●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●
●
●●●

●

●●●●●●
●
●●●●●●●
●●●●●●●●●
●
●
●
●
●
●

●

●●

●

●●●●
●●●●
●
●
●●●●●●●●●●●●
●●●●
●
●●●
●
●●●●●●●
●
●
●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●
●
●

●

●●●●

●

●●●●●●●
●
●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●
●

●

●●●●

●

●●●●●●●●●●●●
●●●●●
●
●
●●●●●●●●●●●
●●●●●
●
●
●●●●●●●●●●●●
●●●●●
●
●
●

●●●●●●●●●●●●
●●●●●
●
●
●●●●●●●●●●●●
●●●●●
●
●
●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●
●
●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●
●
●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●
●●
●●●●●●●●
●●●●●
●
●●●●
●
●●●●
●●
●●
●
●
●

●●●●
●●●●●●
●
●
●●●●●●●●●●●●
●●●●●
●
●●
●●●●●●●●●●●
●●●●●
●
●●
●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●
●●●●●
●
●●
●
●
●●●●●●●●
●●●●●●
●
●
●●●●●●●●●●●

●

●●●
●
●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●

●

●●
●
●●●●●●
●
●●●●

●

●●●●●●

●

●●●●●●

●

●●●●●●●

●

●●●
●
●●●

●

●●●●●●●

●

●●●
●
●●●●

●

●●
●
●●●●●
●
●
●
●●●●●

●

●●●

●

●●●●●●

●

●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●
●
●●●●●●●

●

●●
●
●●●●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●

●

●●●●
●
●●●●

●

●●●●●●●

●

●●●●●
●
●

●

●●●●●●●●

●

●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●

●

●●●
●
●●
●
●●●
●
●●●●

●

●●●
●
●●●●

●

●●●●●●

●

●●●
●
●●●

●

●●●●●
●
●●

●

●●●●●

●

●
●
●●●●●

●

●●●●●●
●●
●●●●●●●●●●●
●●●
●●
●●●
●

●●●●●●●●●●●●
●●
●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●
●
●●●●●●●●●●
●

●
●●●●●●●

●

●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●
●●
●
●
●●●●●●●●●●●●●
●●●
●●●●●
●●
●●●●●●
●●
●●●●●●
●●●●●
●
●●
●●

●

●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●
●●
●
●●
●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●
●
●

●

●●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●
●●●
●●●
●
●●●●●
●●
●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●
●
●
●●●
●
●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●
●●●
●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●

●

●●●●●●●●
●
●●●●●●●
●
●●●●●●●●

●

●●
●●●●●●●●●●●●
●●●
●●●
●●●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●
●●●
●●●
●
●●●●●●
●●
●●●●●●
●●●
●●●●●●
●●●
●●●●●
●●●●
●●●●●
●●
●
●●
●●●●●●
●●
●●●●●●●
●
●●
●●
●●●
●●●
●●●
●
●

●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●
●●
●●●●●●●
●●●
●●●
●●
●●●●●●●
●●
●

●

●●●●●
●●
●●●●●●
●●●
●●●●●
●●●
●●●●●
●●●
●●●●●●●
●●●
●

●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●

●

●●●●●●●●

●

●●●●●●●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●
●●
●●●●●●●●●●●●●●●●●
●
●●●●●●●
●
●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●
●●
●●●●●●
●●
●●●●●●
●●●
●●●●●●
●●●
●●●●
●●●
●●●●●●●
●●
●●●●●●●
●
●●●
●●
●●
●
●●●●●
●
●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●
●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●
●●●●●●●●●●●●●
●
●●●●●
●●●
●●●●●
●●●
●●●●●●
●●●
●●●●●
●●
●

●

●●●●●
●●
●●●●
●●●
●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●

●

●●●●●●●
●

●
●●●●●●●●●●●●●●●●●
●●●●
●●●●●●
●
●●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●
●●
●●●●●

●

●

●●●●
●●
●●●●●●●●●●●●●●●●●●
●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●

●

●●●●●●●●
●
●●●●●●●
●
●●●●●●●●●●
●●●
●●●
●●
●●

●

●●●●●●●●●●
●●●●●●
●●
●●●●●●●●●●
●

●●●●●●
●
●●●
●●●●
●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●

●

●●●●●●●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●
●

●
●●●●●●●●●●●●●●●
●
●●●●●
●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●●●●●●●●

●

●●●●●●●
●

●
●●●●●●●

●

●●
●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●

●
●

●●

●

●●
●
●●●

●

●●●
●●
●●●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●●
●
●●●

●

●●●●●
●●
●●●●●●●
●
●●●●●●●

●

●●●●●●●

●

●●●●●●●●

●

●

●

●●●●●

●

●●●●●
●
●●

●

●●●●●●●●●

●

●
●
●●●●●

●

●●●●●●●●●●

●

●●
●
●●●

●

●●●●●
●
●●
●

●
●●●●●●●

●

●●●●●●●●

●

●●●●●●

●

●●
●
●●●●

●

●●
●
●●●

●

●●●
●
●●●

●

●●●●●
●
●●

●

●●
●
●●●●

●

●●●●
●
●●●●●●●●●●

●

●
●
●

●

●●●●●
●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●●
●
●●●●

●

●●●●●

●

●●●●

●

●●●

●

●●●●●●●●

●

●●
●
●●

●

●●●●
●
●●●

●

●
●
●●●●●●

●

●●●●●●●

●

●●●●
●
●
●
●●●●●●
●
●●
●
●●
●
●
●
●●

●

●●●●●●●
●
●

●

●
●
●●●●
●
●
●
●●

●

●
●
●●●
●●●
●●●
●
●●●
●
●●●●
●
●
●
●●●
●
●●●●●●
●
●●●●●●●●●●●●

●

●
●
●●●●●
●
●
●
●●

●

●

●

●
●
●●●●●
●
●●
●
●●●●

●

●

●

●
●
●●●●●●●●
●
●●
●
●●●●

●

●

●

●

●

●
●
●●●●
●●

●

●●●●●

●

●

●

●
●
●●●●●●●

●

●
●
●●

●

●

●

●
●
●●●●●●●

●

●
●
●●●●●●
●
●●

●

●
●●
●●●●●●

●

●
●
●●●●●
●
●●●●●●

●

●

●

●

●

●
●
●●●
●●●●●●●●●
●●
●
●

●

●

●

●
●
●●●●●
●
●●●●●●

●

●

●

●

●

●●●●
●
●●●
●●
●

●

●●●●●●●
●●
●

●

●
●
●●●●●
●
●●
●●
●●

●

●

●
●●●●
●
●●●●
●
●●

●

●

●

●

●

●
●
●●
●
●●
●●
●●●●
●

●
●●●●●●●●●●●●●●●●●●

●

●●●●
●

●
●●●●●

●

●
●
●●●
●
●●●
●

●
●●●●
●
●●
●
●●●●
●

●
●●●●●
●
●●●●●●●

●

●

●

●

●

●
●

●

●●
●
●●
●
●●●●●●●

●

●

●

●
●
●●●●●●●
●
●●●
●
●●

●

●

●

●●●●●●●●●●●●

●

●
●
●●●●●●●●

●

●●●●
●
●●
●●
●●

●

●

●
●●●
●
●●●●

●

●

●
●●
●
●●●
●
●●●●●
●
●●●
●
●●●●●●●●

●

●●●●
●
●●
●●
●●

●

●

●
●●●●●●●●●●●

●

●

●

●
●
●●
●
●●●
●
●●●●●
●
●●●
●
●●●●
●
●●

●

●

●

●

●

●
●
●●●●
●
●●●●●●●

●

●

●

●
●
●●●●●●●●●●●●●
●
●●●●●●●●●

●

●●
●●●●●●●●●●●●●
●●●●
●
●
●
●●●
●
●
●
●●●

●

●●●●●●●●●●●●●●
●
●●
●
●

●

●●●●●

●

●●●●●

●

●●●
●
●
●
●

●

●●●●●

●

●●●●●●●●●

●

●●
●
●●●

●

●●●●●●●●
●
●
●
●●●●●●●●

●

●●
●
●●●

●

●●●
●

●

●●●●

●

●●●●●●●●●
●
●●●●
●
●

●

●●●

●
●●
●●●

●

●●●
●
●●●

●

●●●●●●●●●

●

●●●●●●●

●

●●●●●●●●

●

●●●
●
●●●

●

●●●
●
●●●

●

●
●
●●●

●

●●
●
●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●

●

●●●●
●
●●●

●

●
●●●●●
●●●●
●●●●●●●●
●
●●●●●●●●

●

●●●
●
●●●●

●

●●
●●
●●●
●

●

●●●
●●
●●
●

●

●●
●
●●●●
●

●

●●
●
●●
●

●

●

●

●
●
●●
●

●

●●●●●
●

●

●●●
●
●●
●●

●

●●●●
●
●●●●●●●●

●

●

●

●●●●●●●

●

●●
●
●●●●

●

●●●

●

●
●●
●●●
●●●
●
●●●
●
●
●

●

●●●●●
●
●
●●
●●
●
●●
●
●
●
●

●●
●
●
●
●
●

●

●●●
●
●●●
●

●

●●●●
●
●

●●●●●

●

●

●

●●
●
●
●

●●

●

●●
●●
●●
●

●

●●●●●●●●●●●●
●
●●
●

●

●●●
●
●●
●●

●

●●

●

●
●●
●
●●●●
●
●●
●

●

●●
●
●●
●●

●

●●●●
●
●

●●
●
●●●
●

●

●●
●
●●●
●●

●

●●
●
●●
●

●

●●
●
●●
●●

●

●●
●
●●
●

●

●●●
●
●●
●●

●

●●
●●
●●
●

●

●

●●●●●●●●●●
●

●●
●
●●
●●

●

●●
●
●●
●

●

●●
●●●
●●
●
●●
●

●

●●
●
●●●
●

●

●●
●
●●
●

●

●
●
●●●●
●
●●●●●●●●
●
●●●●●●●●●●●●●
●
●●●●●
●
●●●●●●●●

●

●●●●●●●●●
●

●

●●●●●●
●●●
●●●●●●
●
●●●●●●●●●●●●●●●
●●

●

●
●●●●●●●
●
●●●●●●●●●

●

●●●●●●●
●
●
●
●●●●●
●
●
●
●●●
●
●
●

●
●
●●●●●
●●●●

●

●●●
●
●

●●●●●●●●
●
●

●

●●●●●
●●●●●
●
●
●

●
●●●●●
●
●
●

●●●
●●●
●●
●●
●
●
●

●
●●●●●
●
●●●
●●●●
●●●
●
●●
●
●
●
●●●●●●
●
●●●
●●
●●●●●●●●●●●●●●
●●●
●●●●

●

●●●●●●●●●●●●●
●

●
●

●●●●
●
●
●●●●●●●●●●●●●●
●●
●●●●

●

●●●●●●●●●
●
●●●
●

●●●
●●●●

●

●●●●
●●●●●●
●●●●
●
●●
●

●●
●●●
●
●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●
●
●
●

●

●●●

●

●
●
●●●●●●●●
●
●
●●

●●
●●
●●

●

●
●
●
●●●●●●●●●
●
●
●
●
●
●
●
●●●●●●
●

●
●●●●●●●
●
●●●
●

●

●●●●●●
●
●

●●●●
●●

●

●
●●●
●●●●●●●●●●
●

●
●
●
●
●●●●
●●●●●●●●●●●
●●●●●●
●
●
●●●●
●
●
●

●
●

●

●●●●
●
●
●

●●●●●●●
●●●
●
●●●●●
●
●●●●●
●
●●●●●●●●●●
●●●●●
●

●

●●●●●●●●●
●
●●●●
●
●
●
●●●●●●●●●●
●
●●
●●
●
●
●
●●●
●●●●●●●●●
●

●
●

●

●●●●●●●●●●●●●●
●

●●●●●●●
●●●●
●

●
●●●●●●●●●●●●●●●●●
●
●●●
●

●

●

●

●●●●
●●
●●●●●

●

●●●●

●

●●●●●●●●
●
●●●
●
●●
●
●
●●

●●●●
●●
●
●●
●
●●●●●●●●
●

●

●
●●

●

●
●●●●●●●●
●

●●●●●●
●
●●
●

●●●●
●
●●●●
●
●●●●●
●

●

●
●
●
●●●●●●●
●
●●●●●●●●●
●●●
●●●●
●
●●●●
●

●

●●●●●●●
●
●
●
●●●●●●
●●
●●●

●

●●●●●●
●
●

●●●●
●●●●
●
●
●

●

●●●
●●●●●●●●●●●●●
●●
●

●

●●
●
●●
●

●

●●●●
●
●●●
●
●●●
●

●

●
●
●●
●
●

●

●●●
●
●●
●●

●

●●
●●
●
●
●
●

●

●●●
●
●●
●

●

●●●●
●
●

●●●●●●
●
●

●●
●
●●
●●
●

●●
●
●●●
●

●

●
●
●●
●

●

●●●●●●●●

●

●

●

●●●
●
●●●

●

●

●

●●●●●●
●●
●●●
●●
●●●●●
●●
●●
●●
●●
●
●
●

●

●●
●
●●
●●

●

●
●
●●●
●

●

●●
●
●●●
●

●

●●●●
●
●

●●
●●
●●●
●

●

●
●●
●
●●●
●
●
●●
●●●●
●
●
●●
●●●●●●●●●●●●●
●
●●●
●●●
●●●●●
●
●

●
●
●●
●●
●●●●●●
●
●

●●
●
●●
●●

●

●●
●●
●
●

●

●
●●●
●●
●●
●

●

●
●●●●●●
●●●
●
●
●●●●
●●●●
●●
●●
●
●

●

●●
●
●●●
●

●

●●
●●
●●●
●
●
●●●●●
●●●●●●●
●●
●●●●●●
●●●●●
●●●●●●
●
●●●●●●●●●●●●●
●
●
●●
●●
●
●●●●●●●●●●●●●●●
●●●
●●●●●●●●●

●

●●
●●●
●●●●●●●●
●
●●●●●●

●

●●●
●
●
●●●●●●●●
●
●●●

●

●●●●
●●●●●●
●●●
●●●●●●
●●●●●●●
●●●●●●●
●
●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●
●
●●●●●

●

●●●

●

●

●
●
●
●●●●●●●●●●●●●
●
●●●●●●●

●
●

●●●●
●
●●●●●
●
●
●

●●●●
●●●●●●●
●●
●●●●●●
●

●
●●●●●
●●●●●●●●
●●
●
●●●●
●●
●●●●●●●
●●
●●●●●●
●●●●
●●

●

●
●
●●●●●●
●●
●●●
●

●

●●●●●●
●

●
●

●●●●●●●●●●●●●●●●●
●
●●
●●
●●●●●●
●

●●●●
●●●●
●

●
●
●
●●
●
●●●●●
●●●●●●
●●●●●●
●
●
●
●●
●
●●●
●●●●●●●
●●
●
●●●●●
●
●●●●●●●●●●●●
●
●●●
●

●

●●●●●
●●●●●●●
●●
●●●
●
●●●●
●●●●●●●
●●●●●●
●

●
●●●●●●
●

●●●●
●●●●●
●
●●●●●●
●
●●●●●●●●●●●●
●
●●●●●●●
●●
●●●
●

●

●
●●●
●
●●
●
●●●

●

●●●
●
●●●●●

●

●●●
●●●●●●
●●
●
●●
●●●
●
●
●●
●
●
●
●●
●
●●
●●●●●●●
●●
●
●●●
●●
●●
●
●●●●●●●●●
●●
●●●●●●
●●●●●●
●●
●
●●●●●●
●
●●●
●

●●●●●
●●●●●●
●●
●●●
●
●●●●
●●●●●●
●
●
●●●●●
●
●●
●
●●
●

●●●●●
●
●
●
●●
●●●●●●
●
●●●●●●●
●●
●●●●●●●●●●
●
●●
●
●●

●

●●●●●
●
●●●
●

●

●
●●●●●●
●●●●●●●●
●

●

●●
●
●●●●
●

●

●
●
●●
●●
●●●

●

●●
●

●

●

●●
●
●●
●

●

●●●●●
●

●

●
●
●●
●

●

●●
●●
●●
●

●

●●●●●
●

●

●
●●
●●●
●

●

●●
●
●●
●

●

●●
●
●●
●●
●
●
●

●
●
●●●
●
●●●●●●●●
●

●

●●
●●
●
●

●

●

●●●●
●

●

●●
●●
●
●

●

●●●
●
●●●
●

●

●●●
●
●●●
●

●

●●
●●
●
●

●

●

●●●●●●
●

●

●●●
●
●
●

●

●●
●
●
●

●

●●
●
●●●
●

●

●●
●
●●
●

●

●
●
●●
●

●

●
●●●●●●
●●●●●●●
●

●

●
●

●
●●
●

●

●●●
●
●●●
●
●

●●
●
●●●
●

●

●●●●●
●

●

●●
●●
●●
●

●

●
●●
●●
●●●
●

●

●●●
●●
●●
●

●

●
●●
●●
●

●

●
●
●●
●

●

●●
●●
●
●

●

●
●
●●●
●●

●

●●
●●●●
●
●●
●●●●●●●●●
●●●
●●
●●●●
●

●

●
●●●
●●●●●
●
●
●●●●●●
●
●
●

●

●
●

●●
●

●

●
●
●
●
●●●●
●●●●●●
●
●
●

●

●
●

●●
●

●

●●●
●

●●●●●●
●●
●
●●
●

●
●
●●●●●
●●
●
●●
●

●
●
●●
●
●
●●●●●●
●
●
●●●●
●●●●●
●

●●●●
●●●●●●●●●●●●
●●
●●●●
●●●●
●

●●●●
●
●●●●●●
●●●●●
●●●●●●●●●
●

●

●
●

●●●●●
●

●●●
●●
●
●●●●
●●
●
●
●
●
●●●
●
●●●●
●●●
●
●●
●●●●●●
●
●
●●●
●●●●●●
●●●
●●
●

●

●
●●●
●●●●●●
●●●●
●
●●●●●●●●●●●
●●●
●●●
●
●●●●
●●●●
●●●●●●
●
●
●●●
●●
●

●
●●●
●

●●●
●
●●●
●●●●●●●
●
●●●●●●
●●

●

●

●
●

●
●●●
●●

●

●
●●●
●
●●●●●
●●
●

●●●
●
●●●
●●●
●●
●

●
●●●
●●●●
●●●●●
●●●
●●●●●●●●●●●●●●●●●●●
●

●
●●●
●●●●●●
●●●●

●

●●●●●●●

●

●
●●●
●●●●
●●●●●●
●●●
●●
●
●●
●●

●

●
●

●
●●●●●●●●

●

●●●●●

●

●●●●●
●●
●

●●
●●
●
●
●
●

●

●

●
●●
●
●

●●●
●
●
●

●

●●
●

●
●●●
●

●

●●●●●●
●
●

●●●
●
●

●

●
●

●

●
●

●
●●●
●

●

●●
●
●●●
●

●

●●
●
●●
●

●

●●
●
●●●
●
●
●●
●●
●●
●●●
●

●

●●●●●●●●●

●

●●
●
●●●●
●
●
●
●●
●
●●●

●

●●●●
●●
●●●●●●
●●●
●●
●
●●●
●
●

●●●
●●
●
●

●

●

●
●●
●●
●●
●

●

●●●
●
●
●

●

●

●●●
●
●●●
●

●

●●●●
●
●

●●●●●●
●●●●
●●
●
●
●
●●●●
●●●●
●●
●●●

●

●●●●●●●
●●●
●●●●

1
4

7

(dIdleSelection[dIdleSelection[, 1] < 6e+10 + dSchedSetPlan[1,
 1], 1] − dSchedSetPlan[1, 1])/1e+09

C
−

S
ta

te

0
10

00
20

00

packet_density[, 1]

N
et

. D
um

p
[P

ac
ke

ts
/s

]
C

P
U

 L
oa

d
[P

er
ce

nt
]

0
20

40
60

80
10

0

X.usr
X.nice

X.sys
X.irq

X.soft
X.idle

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.
4

0.
6

0.
8

1.
0

1.
2

reduced_consumption$s − 2

P
ow

er
 C

on
su

m
pt

io
n

[W
]

22
.8

23
.1

23
.4

xv[xv < 60]

Tr
an

si
tio

n
1−

>
10

1
[m

s]

24
.8

25
.0

25
.2

xv[xv < 60]

Tr
an

si
tio

n
1−

>
2

[m
s]

0 10 20 30 40 50 60

79
.8

80
.1

Experiment−Time [Seconds]

C
yc

le
 1

−
>

2−
>

1
[m

s]

Figure 6.8.: Embedded system power consumption with varying process and interrupt
load over time. The solid power consumption line is resulted after filtering
using a Butterworth low-pass with cut-off frequency of 66.7 Hz.

85

6. Evaluation in a Test Bench

4 5 6 7 8 9

3
4

5
6

7

log(Logic Operator Count)

lo
g(

E
xe

cu
tio

n
T

im
e

pe
r

O
pe

ra
to

r)

16kB / 100B 256kB / 100B

Figure 6.9.: Results from synthetic randomized sequential logic operator test as con-
ducted as part of Gleixner (2013). Logarithmic execution time in µs over
logarithmic signal and operator count. Vertical lines depict theoretical op-
timistic L1 data cache and L2 cache boundaries of the underlying platform.

6.4. PTPd Experiment

The experiment for time synchronization using the IEEE1588 PTP is conducted on
three subsystems. Subsystem 1 and 2 are preconfigured to be slaves of the PTP master
clock on Subsystem 3. All subsystems run ntpdate to step the clock at boot time. This
helps to start out with offsets of less than a second. Because of running ntpdate, the
subsystems are expected to start the experiment with varying offsets in their time base.

Table 6.3 presents the relevant configuration settings, as explained in Section 5.6 on
page 68. The settings are applied to the following test cases:

1. The first test runs a default PTPd on a subsystem which is idle except for flushing

Long Name Short Name Value

All PTPd Variants

SYNC interval — 500 ms

Discard Offset Values — >500 ms

Background RT Task Priority — 20

Planned PTPd Only

Cycle Time p(SW) 500 ms

Synchronization Window Width |SW| 40 ms

Proportional Control Factor aP 1/2

Integral Control Factor aI 1/9

PlannedPTPd RT Priority — 1

Table 6.3.: PTPd Experiment Configuration Settings

86

6
.

E
va

lu
a

ti
o

n
in

a
T

es
t

B
en

ch

6.4. PTPd Experiment

●●●

●●●●

●●

●

●●

●

●●●

●●

●●

●●

●●

●●
●●
●

●●

●●

●

●●●

●●●●●

●

●●●

●

●●

●

●●

●●

●●

●●
●●

●

●●
●●

●●
●●●●●

●

●●

●●●

●●●

●

●●●

●●●
●●

●

●●●

●●

●●

●●

●●

●

●●

●●

●●

●

●●

●●

●

●

●●●

●●●
●●
●●●

●

●●

●●●●
●●
●●
●

●

●●●
●

●●●●●

●

●●
●

●●

●●

●●●●●●

●●●

●●
●●

●●
●●

●●
●●

●
●●●

●
●
●●●

●●
●●
●●

●●●
●●

●●●

●●●

●●

●●

●

●

●●
●●
●●
●

●
●●●●●●

●●●
●●
●

●●●

●●

●●

●●

●●●

●

●●●

●

●●●
●

●●●
●●

●

●●

●●

●●●

●●

●●

●●

●●●●

●

●●●●

●●●
●●
●

●●●

●●
●●●
●●

●●●
●●

●●●

●

●

●●●

●

●●●
●●

●●

●

●●●
●●●●●

●

●●●

●

●●●●●●●

●

●●●
●●●●

●●

●●

●

●

●●

●●●

●●●

●●●

●

●●

●●

●

●●●

●

●●

●●

●●●

●●

●●●

●

●●

●●●

●

●

●●●

●●●●●●●●

●

●●●

●●●

●●●

●●
●●●●●●

●●

●●●

●

●●

●●●

●

●

●●

●●

●●●●●●●●●●●●●●●●
●●●

●●

●

●●

●●

●●

●

●●●
●

●●●
●●

●●
●●

●●●

●

●

●●●

●●

●●●●●
●●
●●●

●
●●

●●●●

●●

●●

●

●●●

●

●●●

●

●●

●●

●●

●●●●●

●●
●●●

●●

●●
●
●

●●●

●●

●●●

●

●●●●
●

●●

●●

●●

●

●●

●

●●

●●

●●

●●

●●●

●●●

●

●●

●●●

●●

●●
●●

●

●●

●●●

●

●●●

●●

●

●

●●

●●●

●

●●

●●
●●

●●
●●

●

●●

●●●
●●●
●

●●●

●●

●●●

●

●●
●●●

●●●

●●

●●

●

●●

●

●●●●●

●●●●●●

●

●●●●●●●●

●

●

●●

●●
●●

●
●●

●

●●

●●●●●

●

●●

●

●●●

●

●

●●

●●●●●●

●●

●●

●●

●●

●●

●●

●●●●●●●

●●

●●●●●●

●●●●●
●●●
●●

●

●

●●●

●

●●

●●

●

●●

●

●●●●●

●●

●●

●●●●●●

●●
●

●●●

●●
●●●
●
●●

●●

●
●
●●
●●●●

●●●

●

●●●●●●
●●

●●●

●●
●

●●

●●●

●●●●●●

●●●

●●●
●●

●●

●●

●●

●●●●

●

●●●

●

●●●●●●●

●●

●●

●●

●

●●

●●

●●

●●●

●●

●●

●

●●●

●●

●●●

●●

●

●●

●●

●

●

●●●

●

●●●●●

●●●
●

●●

●●●

●●

●●

●●●●●●●

●●

●●●●
●●●●●

●●

●

●●

●●

●●●

●

●●

●●●

●●

●●

●●
●
●●●●●
●

●●

●●

●●

●●

●●●
●●●●
●

●●
●

●●●

●●

●

●●

●

●

●●●●
●●

●●
●
●●
●●●

●●

●●

●●●

●●

●

●●●

●●●

●●
●

●

●●
●●
●

●●●

●●●

●●●●

●●

●●

●●

●●●
●

●

●●

●●

●●

●●
●●
●●●●●●

●

●●●

●

●●●

●●

●
●
●
●●
●●

●●

●●

●●●

●●

●

●●●

●

●●

●●

●●

●●
●●
●●

●●●

●●●

●

●●●

●

●●●

●

●●

●●●

●●

●●

●●●

●●●

●●

●●●●
●●
●●

●●●

●
●

●
●●

●●●

●●
●●
●●

●●●

●

●●
●●●
●●●●

●●

●●
●●
●

●●●●

●●●●

●●●●●

●●●●●●●

●●

●

●●●●

●●●

●●

●●

●●

●●

●●●●●

●●●●
●

●●
●●

●●
●●

●●●●●●

●●

●●

●

●●●

●●●

●●●●●

●●●
●●●
●
●●

●●●

●●

●●●●
●●●●●●
●

●●●

●●
●●
●●

●

●●

●●

●●●
●●●

●●●●
●●●
●●●
●●●

●●●●

●

●●

●●●

●●
●●

●●

●●

●

●●
●

●●
●●

●●
●●●

●●●●●●●
●●

●●
●●

●●●

●●

●●●

●●

●●

●●●
●

●●●

●

●●

●●●

●●●

●●

●●●●●

●●●

●

●●

●●

●●

●

●●

●●

●●●
●●●

●●

●●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●●

●

●●

●●

●●●

●●

●●

●
●●

●●

●●●

●

●●

●●

●●

●●

●

●●

●

●

●

●●●

●

●●●

●

●●

●●

●●

●●

●

●

●●
●

●●●

●●

●

●●

●●

●

●●●

●●

●

●●

●

●●

●●●●

●●●
●●

●

●●●

●●

●●

●

●●

●

●●●

●

●●●

●

●

●

●●
●

●●

●●

●●●

●●

●●●

●●

●●

●●

●●●
●●●●

●●●●●●

●

●●

●

●●

●●●

●

●●

●●●

●

●●

●●

●

●●●●●

●●

●●

●●

●●●

●●

●

●●●●●
●

●●●

●●

●●

●●

●●

●

●●

●●

●

●●

●●
●●
●●

●

●●

●

●●●

●●●

●●

●●

●●

●

●●

●●

●

●

●●

●●●

●

●●

●

●●●

●

●●

●●

●●

●●

●●●

●●●

●

●

●●●

●●

●

●●

●●

●●

●●

●

●●

●●●

●●

●●

●

●●

●●

●

●

●●

●

●●

●●

●

●●

●

●●

●●●

●●

●

●

●

●●●

●●

●●

●

●●

●●

●

●●

●●●

●●
●●
●
●●
●●

●●

●●
●●●
●●

●●●

●●

●●●

●

●●

●

●●●

●●

●●

●

●

●

●●

●●

●●

●●

●

●●

●●
●●●

●

●●●

●

●●

●●

●●
●●
●
●●
●●●

●●

●●
●●
●●●
●●
●●

●●

●●

●

●●

●●

●
●
●●
●●
●●
●●●
●●●
●
●
●●●
●●
●●●
●●
●●●●●●●●●●●●●

●

●●

●
●●●
●●●
●●
●●●●●●●

●●

●

●●
●●●
●
●
●●
●
●
●●
●●
●●
●●●●●●●●
●

●●
●●●
●
●●●
●
●●
●●
●●
●●
●●●●●●●●●●

●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●

●●●
●
●
●●
●●●
●●
●●●●●●●●●●●●

●●●●●●●●
●●●●
●●●●●●●

●●●●●●●●●
●●●●●●●●
●●
●●●
●
●●
●
●●
●●
●
●
●●●●●●●
●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●●●●●
●●●
●●
●●●●●●
●●●●
●
●
●
●●●●●●●●●●●●●●●●

●●

●●●●
●
●●
●
●●●
●●●●
●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●

●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●
●●●●●●●●●●●●●●●●●●

●●●●●●
●●●
●●
●●
●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●
●
●
●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●

●

●●●

●●●●●●●●
●●●
●●●
●
●
●●
●
●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●

●●●●
●●●●●●●●●●●

●●●●●●●●●
●
●●
●●●
●●
●●
●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●

●●
●
●●●●●●
●●●●
●●●●●●●
●●●
●
●●●●●●
●●●●●
●●●
●●●●●
●●●●
●●●●

●

●●

●●●●●●●●
●●
●●●●●●●●

●●●●
●●
●●●
●●●●●●●●●●●

●
●●●●●●●●●●●●●

●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●

●●●
●●●●
●●●●●●●

●●
●●●●●●
●●●●●
●●●●
●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●●●

●●

●●

●●●

●●

●●

●●

●●●●●●●●●●

●●

●●●●

●

●●

●●

●●●

●

●

●●

●●●

●

●●●

●
●●

●

●●

●●●

●●

●●

●●

●●●

●

●

●●●
●

●●●

●●●

●

●●

●

●●

●

●

●●●

●●

●●

●

●●●

●●

●●●

●●●

●●

●

●●●

●●

●●

●

●●●●●
●●
●●

●

●●

●●

●●

●●●

●

●●

●●

●

●●●

●●

●●

●●●

●

●●●

●

●●●

●●

●

●●●
●

●

●●

●

●●

●●●

●●●

●●

●●

●●

●●

●●

●●●

●

●●

●

●

●●●

●●

●●

●●

●

●●●

●●

●●

●●

●●

●●

●●

●

●●●
●●

●●
●●

●●●

●

●●

●●

●●

●●●

●●

●

●●●

●●●●●●●●

●●●

●●

●●●

●

●●●

●●
●●●

●

●●

●

●●

●●
●●
●

●●

●●

●

●●

●●●

●●●

●●

●●
●
●●●●

●●

●●

●●●

●●

●●●
●

●●

●●

●●

●

●●

●●

●

●●●

●

●●●
●●
●●●

●●

●

●

●●●

●

●●●

●●

●●
●●

●

●

●●

●

●●●

●●●
●●

●●●

●●

●

●●

●●

●

●●
●●●
●●

●●●

●●

●

●●

●●

●

●●●

●●

●●

●●

●●

●●

●

●

●●●●●●●●

●●
●●
●●●

●●

●●

●

●

●●

●●

●●

●

●●

●●

●●●

●

●●●

●●

●●

●●
●●●
●●

●●
●●

●●●

●●

●●●

●●●●●●

●●●●●●
●●

●●

●

●●

●●

●

●●●

●

●

●●

●●●●●●
●●●

●●

●●

●●

●●
●

●●●●

●

●

●●

●●

●●●
●●●
●●

●●●●●●●●
●
●●●
●●

●●

●●
●●●●●●

●●

●
●●●
●●
●●
●

●

●●●

●●●
●

●●
●●
●●

●
●●●

●

●●●
●●●

●

●●

●●●●

●●●●●

●●●

●
●●●

●

●●

●●

●●

●●●

●●●

●●
●
●●
●●

●●
●
●●

●
●●
●●

●
●●
●●●

●●●
●●
●●

●●
●

●●●
●●●
●●

●●

●●●

●●

●

●●

●

●●

●●

●

●●

●●●

●

●

●●

●●

●

●●●

●●

●●●

●

●●●●●●
●●●●●●
●●

●●●

●●

●●

●●

●●

●

●

●●

●●●
●
●●●

●

●●
●●

●
●●

●●

●●

●●●
●
●●
●●

●●

●●●

●
●

●

●●

●●●

●●

●●

●●
●●
●●
●

●●●

●●

●

●●●

●●

●

●

●●

●●●

●
●●

●●

●●●
●●●●

●
●●●
●●

●●

●●●

●

●●

●●

●

●●●
●●

●●

●●

●
●●

●●

●●●

●●

●●●

●●●

●●

●●

●

●●

●●●●●

●●

●●●●●●●

●●

●●

●●

●●

●

●●

●

●●

●●

●

●●

●●

●●

●●●

●●●●●

●●

●●
●●

●●

●●

●

●●●

●●

●●
●●●
●●●●●
●●

●●●●

●●

●
●●●
●●

●●

●●

●

●●

●●●
●●●

●●●

●●
●●

●●●

●●
●●●●●●

●●●

●●

●●

●

●●
●●●●●

●●

●

●●●
●●
●●

●

●●

●●

●

●●

●●●

●●
●
●●●●

●

●●
●●●
●●●

●●●●
●●

●

●●

●●

●●

●●
●●●

●●●
●●

●●●●●●

●●

●●●

●●

●●●●●●
●
●●

●

●●●●●●

●

●●

●●●●

●●

●●

●●

●●●●●

●●

●●

●●
●●
●

●●

●●●

●●●

●●●

●
●●
●●

●

●●●●●●

●

●●

●●

●●●
●●●

●

●●●
●●
●●●

●●

●●

●●

●●●●●●

●●

●●
●●
●●

●●
●●

●

●●●

●

●●●

●●●●
●●

●●

●●

●●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●●●●●●
●
●●●●
●●

●●●

●●●●

●

●●

●●

●

●●
●
●●

●●

●●

●●●
●●

●●

●●

●●

●

●●●

●●

●●

●●

●●
●●●
●●●●●

●

●●●

●

●●●●●

●●

●●●

●●●●

●●●

●

●●●

●●

●●●

●

●●

●

●

●●

●●●

●

●●●

●●●●

●●●

●●●

●●●

●
●●

●●

●

●
●●●●●●●

●●
●●
●●

●●●
●●

●●●

●●

●●
●●●

●
●●

●

●●
●●
●●●●

●●
●●
●●
●●
●

●●●

●

●●

●●

●

●●
●
●

●●●

●●●●●●

●●●●●●●●
●●●

●●

●●●
●●

●

●●

●●●●●
●
●●

●●
●●
●●

●●●

●●●●●●

●

●●

●

●●●

●●●

●●

●●

●●
●●●
●●●

●●

●
●●●
●●

●●
●
●●●●

●●●
●●●
●●●

●●●●●

●●

●

●●
●

●●

●●
●●

●●
●●●
●●

●●●●●

●●●

●
●●
●●●

●●

●

●●
●

●●●
●●●

●

●●●●

●●

●●

●●●
●●

●●●●●
●●
●●
●●
●●●

●●

●●●
●
●●

●●

●●●

●●

●●

●

●
●●

●●

●
●●
●●

●●
●●●

●

●

●●

●●

●●

●●
●●

●●

●
●●●
●●
●
●●

●●
●●

●●●

●

●●

●●●●●●●

●●
●●
●●

●●

●

●
●●
●●●
●
●●
●●
●●
●●●●●●

●●

●

●
●●●
●

0 200 400 600 800 1000 1200

0
5

10
15

20
25

ONE_WAY_DELAY

Experiment Time [s]

[m
s]

●

●

●●

●

●

●●●●●

●●●

●
●●

●●
●●

●●●●●●●●●●●
●●●

●●●

●●●●●●

●

●●●

●●●

●●

●●

●●

●●

●●●●●

●●●●

●●●

●●●●●

●●●●●●●●

●●●●●●●●

●

●●

●●

●●

●●

●●●

●●

●●

●●●●●●●●●
●
●●●●●●●●●●●●●

●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●
●●●

●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●●
●●

●●●●

●●

●●●●●●●●●

●●●

●●●●●●

●●●

●●●●●●●●●●●●●●

●

●●●

●
●●

●●●

●●●●●●●

●●●●

●●●

●●●●●●

●●

●●●●●●

●●●

●●●

●●

●●

●

●●

●●
●

●●●●

●●●●

●

●●●●

●●●●

●●●●

●

●●●●

●●●●

●●●●

●●●

●

●●●●

●●

●●

●●●●

●●●

●●●

●●

●

●●●
●●

●●●

●
●●●

●●

●●●
●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●
●●

●
●●

●

●●●●●●●

●●●●●

●

●●●●

●●

●●●●

●●●●●●●●●●●●●●●

●●

●●

●
●●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●

●●●●

●●●●

●●●

●●

●
●●●

●●

●●●

●●

●●

●●●●●●●●●●●●●●

●●●

●●●●

●●

●

●●

●●

●●

●●●

●●

●

●●●
●

●●

●●●●●●

●
●●●

●●

●●

●●

●●

●●●●●
●

●●●

●●●

●●●●●
●●●●

●●

●●●●●

●●●●●

●●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●

●●

●●

●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●

●●●

●●●

●●

●

●●●

●●

●●●●

●●

●

●●●

●●●●

●●●●

●●

●●●

●●●●●

●●

●●●

●●●

●●●

●●●

●

●●

●●
●●
●●

●●

●●

●●●

●●●●

●●●●

●

●●

●●

●●

●●●

●●

●●

●●
●

●●

●●

●●●

●

●●●●●
●●●●●
●●
●●●●
●
●●●●
●●●●●●●●●●●●●●●

●●●●

●●●●●●●●●●●

●●●●●

●●●

●●

●●

●●●●●●●

●●●●

●●●●●●

●●●●●

●●●●●●●●●●●

●●

●●●

●●●
●●●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●

●●●

●●●
●●●
●●

●●

●●●●●●●●●●●

●●●●

●●

●●●●

●●●●

●●●

●●●●

●●●

●●●●●

●●

●●

●●

●●

●

●●●●●

●●●●

●●●●●●

●●●●

●●

●

●●

●●●●

●

●●●

●●●●●●
●●●
●●●●

●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●

●●●●●●
●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●

●●

●●●

●●●●●●●●●●●●●●●●

●

●●●

●●
●●●●

●●●●●●

●●●●

●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●

●●

●●

●●

●●

●●●

●●●●●●●●●●●●●●●●●●

●●●●

●●●●●

●●●

●

●●

●●

●●●

●●●

●●

●●

●●●●●●●

●●●●●

●●

●●●

●●●●

●

●●●●

●●●●

●●

●●●

●●

●

●●

●●

●●

●

●●●●●●●●●

●●●

●●●●●

●●●●●

●●●●●●

●●●●●

●●●●

●

●●

●

●●●●

●

●●●●●●●●●●●

●●●●

●●●●●●

●●●●

●●

●●

●●●●●

●●●

●●

●●

●

●●●

●●

●●

●●

●●●●●●●●

●●●●

●

●●●●●

●●

●●

●●●●

●●●●

●●

●●●●●
●●●

●

●●

●●●
●●●

●●

●

●●●

●

●●

●●●●
●●●●
●●●

●●●

●●●●●●●●●●

●●●

●●●●●
●●

●●

●●●

●●

●●

●●

●

●●

●●

●●

●●
●

●●●●●●●

●●

●●●●

●●

●●●●

●●
●●●

●

●●●●
●●

●●
●●

●

●●●●●

●●

●

●●●

●

●●●●

●●

●●
●●●●●
●●●●●

●●
●●

●●●●●●●●●●

●●

●●●●●●●
●●

●●●●

●●●

●●●

●●●●
●●●●●
●●

●●●●

●

●●

●

●●●●

●●●●●●

●●

●●●●

●●●

●●●

●●

●●

●●●
●●●●●●●●●

●●

●●●●●●

●●

●

●●

●●●●●

●●●
●●
●●●●●●●●●●●

●●

●●●●●

●●

●●

●●

●●

●
●●

●●

●●●

●●

●●●●

●●●

●

●●
●●

●●●●●●●

●●

●●●●●

●●

●●●

●●●

●

●●●●●
●●

●●

●●●
●●

●

●●

●●

●●
●●

●●●

●●

●●●●●●●

●●

●●●●

●●

●●●●

●

●●

●
●●●●●

●●
●●

●●●

●●●

●●
●●●●●●●●

●●●

●●●

●

●●
●●●

●●

●●●●

●

●●

●●●

●●

●

●●●●
●●●●

●●●●

●●●

●●
●●●

●●●●●

●

●●●

●●●●

●●●●●●

●●●

●●●

●●

●

●●●●●●●
●●

●●●
●●●
●●●●●●
●
●●

●●

●●●

●

●●●●
●●
●●●

●●●●

●●

●●●

●●

●●●
●●

●●

●●●●

●●

●●

●●
●

●●
●●

●●

●●
●●
●●●●●●●

●●

●●●●●●●●●●●●●●●●●
●

●●

●●●●

●●

●●●

●
●●●
●
●●

●●

●●
●●●●

●●
●●
●

●●●●

●●●
●●

●●●●

●●●

●●●●

●●●●

●

●●

●●●●

●●

●●
●●●
●●●●
●●
●●
●●
●●●●●●●

●●

●●●

●●

●●

●●●●●●●●

●●

●●●●

●●

●●●●●

●●●

●●
●●●●

●

●●
●●

●●
●●

●●

●●●

●●●

●

●●●●
●●

●

●●
●

●●

●●●●

●

●●●

●●
●●

●●●

●●

●

●●

●●

●
●●

●

●●

●
●●●●
●●●●●●●●●

●●

●

●●

●●●●

●●●

●●
●●

●●

●

●●●●

●

●●
●●

●●●●

●

●●

●●

●●●
●

●●●
●●
●●●
●

●●●●

●

●●

●●●●●

●●
●●
●●

●●●

●

●●●
●●

●
●●
●●

●●

●●●●●●●●●●●●

●●●●●●

●●

●●

●

●●●

●●

●●●●●
●●
●●

●

●●
●●
●●

●●●●

●●●●●

●●

●●●●

●

●●●●

●●

●●●

●●●●

●●●●●

●●

●
●●●●●

●

●●
●●

●●●

●

●●

●

●●

●●

●●●

●●●

●
●●●●

●●●

●●

●●●●●
●
●●
●●●

●●

●●●●

●●

●
●●●
●●●
●●●●

●

●●●

●●
●
●●●●

●●●

●●●

●●●●

●●

●●●
●●●●

●●
●●

●●●●

●●

●
●●
●●●●

●●

●●

●

●●

●●

●●●●

●●

●●

●●

●●

●●

●●●

●●●●

●●
●●
●●●

●

●●
●●

●●●●
●●
●

●●●

●●

●●●

●
●●

●●
●●
●●●●●●

●

●●●●

●

●●●●

●●
●●

●●●●●

●●
●●●
●●

●●●
●●

●●
●●●

●●

●●

●●●●●●●●●●

●●

●●●●

●●●

●●

●●●
●●

●●●●●

●●

●●
●●
●●
●●
●●●

●

●●●●●●●

●●

●●
●●
●●●

●●

●●●
●●
●●●●
●●●

●●

●●●

●●●

●●

●●

●●●
●●●

●●
●●

●

●●

●●
●●●●●●●

●●
●●●●●
●●

●●●

●●

●
●●
●●●

●●

●●●

●●

●●●●●●●

●●●

●●

●●

●●

●●●●●

●●●

●●●●

●
●●

●●

●●

●●●
●●●

●●
●●

●
●●
●●●
●●
●●
●●●●●

●

●●

●●

●●

●●●

●●●●

●●●

●●●●

●

●●●●

●●●●

●
●●

●●●●●●
●●●

●●

●●●●●

●●

●●●●●●

●

●●
●●

●●●

●●●●

●●●●●●●

●●

●●

●
●●

●●●

●●

●●●

●●
●●●

●●●●

●●●

●●

●

●●●●

●●

●●●●●●●

●●

●●●

●●
●●

●●
●●

●

●●

●●
●●
●●

●●●●

●●

●

●●

●●●●●●●

●●

●●●●

●
●●

●●●●●●●●●●●

●●

●●●

●●

●

●●

●●

●●●

●●●●

●●

●●●●

●

●●

●●●

●●

●●●

●

●●●
●●
●●
●●●●●
●●
●●●●

●

●●●

●●●
●●●

●●

●●●●

●●
●

●●●●

●

●●●

●

●●

●

●●●●●●

●●●●

●

●●●●●●●

●●●

●●

●●●

●●●

●●●

●●●

●●

●●●

●

●●

●●

●●

●●●

●●
●●●●

●●●●

●●
●●●
●

●●●●

●●●●●●

●●●●

●●●●●●

●

●●●●

●●●

●●

●

●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●

●●

●●

●●

●●

●●

●●●

●

●●

●●●●●●

●●●●●●

●●●●

●●●

●●●

●●●

●●●●

●

●●●●●●

●●

●

●●●

●

●●

●●

●

●●●

●●●●●

●●●●●

●●●●●●●

●●●

●●●●●

●●●●

●●●●●

●●

●

●●

●●

●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●

●●●

●

●●

●

●●●●

●●●

●●●●●●●●

●●●

●●●●●●●●●●

●●●●●

●

●●

●●

●●

●●

●●

●●●●

●●

●●●●

●●

●●●●

●●●●●

●●●●

●●●●

●●●●●●●●●●●

●●●

●●

●●

●●

●

●●

●●

●●

●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●
●●

●●●

●●

●●

●●●●●●●●●●●●●●●●●●

●●●

●●●●●

●●●●

●●●●●

●●

●●

●●

●●

●

●●

●●●●●●●●●●●●●●●

●●●

●

●●●●●

●●●●●

●

●●●●●●

●●●●●●

●●

●●

●●

●●●●

●●●●●●●●●●●●●●

●●●

●●●●●●●

●●●●●

●●●●●●●●●●●

●●

●

●●

●●●●

●●

●●

●●

●

●●●●
●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●

●●

●●●●

●●●●

●●

●●●●

●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●
●●●●●●

●●●

●●●●●

●●●

●●

●●●

●●●

●●●●●●●●●
●●●

●●●●

●●●●●

●●●●

●●●●●●●●●●●●●●●●●

●●●●

●●●

●●●●●●●

●●●●

●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●

●●●●●●●●●

●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●

●●

●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●

●●●●

●●

●●●

●●

●●●●

●●●●●●●●●●●●●●
●●●●●●●●●

●●●

●

●●●●●●

●●●

●

●●●

●●

●●

●●

●●●●

●●●●●●●●●●●

●●●●●

●●●●●

●●●

●●●●●●●●●●●●●

●●●

●●

●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●

●●●

●●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●

●●●●

●●

●●●●

●●●●

●

●●●

●●

●

●●

●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●

●●●●●

●●●

●●●

●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●

●●

●

●●●

●●●●●●●●●●

●●●●

●●●●●●

●●●

●●●●●●●●●●●●

●●●

●●●

●●●●

●●

●●

●●●●

●●●●●

●

●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●

●●

●●●

●●

●

●●●●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●●

●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●

●●●●●

●●

●●

●●

●●●

●●●

●●●●●●●●●●●●●●●●●●●

●●●

●

●●●●

●●●●●

●●

●●●

●●

●●

●

●●●●

●●●●●●●●●

●●●●

●●●●●

●●●●

●●●●●●●●●
●●●●●●●

●●●●

●●

●●

●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●

●●●

●●●●●●

●●●●●●

●●●●●

●●

0 200 400 600 800 1000 1200

0
10

0
20

0
30

0

OFFSET_FROM_MASTER

Experiment Time [s]

[m
s]

●

●

●●

●●

●●●
●●●●●●

●●●●●●
●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●

●●

●●●

●

●●

●●

●●

●●●

●●

●●

●

●●●

●●

●●

●●

●

●●

●

●●

●

●●

●●

●●●

●●●

●●

●●

●●

●●

●●●

●●●

●●

●●

●●

●

●●

●●

●

●●

●●

●●

●●

●●

●

●●
●●

●

●●

●●

●●

●

●●●

●

●●●

●●

●

●●

●

●●

●●

●●

●●●

●

●●●

●●●●●●●

●●

●●

●

●●

●

●●

●●

●

●●

●●

●

●●

●●

●●

●●

●●

●●

●●

●●

●

●●●

●●

●●

●

●●

●●

●●●

●●

●●

●

●●●

●●

●●

●●

●●●

●●●●●

●

●●●

●

●●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●

●●

●●●●●●●●●●●●●●●●●●●●

●●

●●●●

●●

●●●

●

●●●●●●●●●●●●●●●●●●

●

●●

●

●●

●●

●

●●●

●●●

●●●

●●

●●●

●●●

●

●●

●●●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●●●●

●●

●

●●

●●

●●
●●●●

●

●●●●●●●●●●●

●●●

●●

●●

●

●●●●

●●

●

●●●

●

●●●

●●●

●●

●

●●

●●

●●

●●

●

●●●●

●

●●●

●

●●

●

●●●

●●●

●●●●

●

●●

●●

●●●●
●●

●●
●
●●

●

●●

●●●

●

●●

●●

●●●

●

●●●●●●●●●

●●

●●

●●

●

●●●

●●

●●●

●
●●
●●

●●

●

●●●

●

●●●

●

●●

●●●●

●●●●

●●●

●●

●

●●

●

●●

●●

●●

●●

●●

●●

●

●●●

●●●●

●

●●

●●

●●

●●●

●

●●

●●

●●

●●

●●

●●
●●●●●●●●●●●●

●

●●●

●●

●●

●●

●

●●

●●●

●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●

●●●

●●

●●

●●●

●●

●●●

●●

●

●●

●

●●

●●

●●●

●

●●●

●●
●●

●●●●●●●●●

●●

●●

●●●

●●

●●●

●

●●●

●

●●

●●

●

●●

●●●●

●

●●●

●

●●

●●

●●

●●●●

●●●

●●●●

●●

●●

●●●

●●●

●●

●●●
●●
●

●●

●●

●

●●

●●●

●●

●●●

●

●●●●●●●●●●●●●●●●●●●●

●●

●●●●

●●●

●●

●●●●

●●

●●

●●●

●●

●●

●

●●●

●

●●

●●●●

●●●●●●●●●

●●
●●●

●●

●

●●

●●

●●

●●

●●●

●

●●

●●

●●●

●●
●●●
●
●●●●
●●

●●

●●

●●●

●●

●●
●●
●●
●●●
●●
●●●●
●●
●●
●

●●

●
●●
●●
●

●●●●
●
●●●
●●●

●●●●●●●●●
●●●
●●●
●
●●
●●
●●●●

●●●
●
●●●●●●●●●●

●
●●●●●●
●
●●●
●●

●●

●●●●●●●●
●●●
●
●●●
●●
●●
●●
●

●●

●

●●

●●●

●●
●●
●●●

●●●

●●

●●●

●●

●●●

●

●●

●●

●●

●●●

●

●●

●

●●

●●

●●

●

●●

●●●

●●●

●●
●●●
●●
●
●●●●
●●
●●●
●●●

●●

●

●●●

●

●●●

●●

●●
●●

●●

●●

●
●●

●●

●●

●●

●●●●

●●

●

●●●

●

●●●

●●

●●●

●●

●●

●●●●●●

●●
●●
●●

●

●●●●●

●●

●

●●

●●

●●

●●

●●

●●●

●

●●●●●

●

●●

●●●●
●●
●●●●●●
●●
●

●●

●●

●●●

●

●●

●●

●●

●

●●●

●●

●●●

●

●●

●●

●●

●●●

●●

●●

●

●●●●●●●
●

●●

●●

●●●

●●

●

●●●●●●

●●

●●

●

●●

●●

●●

●●

●●●

●●●

●●

●●●

●●●●●●
●
●●

●●

●

●●

●●●●●●

●●●●●●

●●

●●

●●

●

●●

●●●

●●

●●●

●

●●

●●●●●●
●●
●●

●●●

●●

●

●●

●

●●

●

●●

●●

●●

●

●●

●●

●●

●

●●●

●

●●

●●

●●●

●●
●
●●●●

●●●

●

●●

●●

●●●

●●

●●●

●●

●

●●

●●●

●●

●●●

●●

●

●●

●●●●●
●●

●●●

●●
●●
●●

●●

●

●●●

●●

●●●●●

●

●●

●●

●●●

●●

●

●●

●

●●●

●●●

●

●●

●

●●●●●

●●

●●

●●

●●

●●

●

●●

●●

●●

●●

●●

●●●

●●

●

●●●●●

●

●●●

●●

●●●●

●●

●
●●●

●●

●●

●

●●

●

●●●

●

●●

●●

●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●

●●●

●●●

●●

●●●●

●●

●●

●

●●

●●

●●

●

●●

●●

●●

●●

●●

●●

●●

●●

●

●●●

●

●●●

●●

●

●●

●●

●●●

●●

●●●

●●●

●●

●●

●●

●●●

●●

●●

●●

●●●

●

●●

●●

●●

●●

●●●

●●

●●●

●●●

●

●●●

●●

●

●●

●●

●

●●●

●●●
●
●●●
●
●●
●●
●
●●●
●●●●
●●
●
●●●
●
●●

●●

●●

●

●●

●

●●

●
●●●
●●
●●●●●

●●

●●
●●
●●
●●●●●
●●
●●
●
●●
●●
●●
●

●●●

●●●

●●

●●

●●
●●

●●

●●

●●

●●●
●

●●●●●

●●●
●●●●
●
●●
●●
●●
●●
●●
●●
●●
●●

●●●

●●

●

●●

●●●

●●

●

●●

●●●

●●
●●
●●

●●

●

●●

●●●

●

●●●

●●●

●

●●

●

●●
●●
●●

●●

●

●●

●

●●
●●●
●
●●
●●
●●●
●●
●●
●
●●
●
●●

●●●

●●
●
●●
●●●

●●●

●●

●●

●●

●●

●●●

●●

●

●●

●●

●

●●●

●●

●

●●

●●●

●●●

●

●●

●

●●●

●
●●●
●●

●●
●
●●
●●

●●

●

●●

●●

●●

●●

●

●●

●●

●

●●●

●●

●●

●
●●
●●

●●●●

●●

●●●

●●

●●

●●

●●●●●

●●

●●

●●

●●

●●

●●●

●

●●

●●●

●●

●●

●●

●

●●●

●●●

●

●●●

●●

●●

●●

●●

●●●●

●●●

●●●

●●

●●

●●

●●

●●

●●

●●●●

●

●●

0 200 400 600 800 1000 1200

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

DRIFT

Experiment Time [s]

[m
s]

Figure 6.10.: Test Case 1; regular PTPd control system values for Subsystem 1. Sub-
system is idle except for cyclically flushing these values to the Linux PC.

logging values. In this test, only SYNC interval 500 ms and the instruction to
discard offset values >500 ms is used.

2. The second test adds real-time tasks with priority 20. These tasks may preempt
the PTPd occasionally.

3. The third test then evaluates a PTPd version built around the PMPs defined in
Chapter 5 in this thesis. The window width |SW| is chosen as 40 ms. For the PTP
thread to be usable in a PMP, it is scheduled with RT priority 1. This priority
level is lower than the priority level of the other real-time tasks.

The additional control loop needs a proportional and integral factor chosen as 1
2

and 1
9 respectively.

6.4.1. PTPd on Idle Subsystem and Network

Subsystem 1 was idle after boot. The deepness of sleep states was unrestricted and
selected according to the Linux menu heuristic. The present plan only checks and flushes
the ring buffer used for logging every 100 ms. Despite this process, different Linux tasks
and device drivers may preempt PTPd at any point in time. Since the system is booted
using an NFS mounted root file system, network traffic is non-negligible and present as
a source of indeterminism.

Since the original PTP daemon control loop features low-pass filtering and PI control,
it is expected to achieve synchronization on this type of setup pretty well.
Figure 6.10 depicts the estimated and the resulting drift values as computed by the
PTPd control loop detailed in Figure 5.6 on page 69. The experiment starts with an
estimated offset of 300 ms, resulting in a positive drift value as the input to the kernel
Frequency Locked Loop (FLL). The FLL then reduces the clock speed by 512 ppm,

87

6. Evaluation in a Test Bench

●●●●●●●●

●●

●●

●●

●●

●●●

●●

●●●

●●●

●●●

●●●

●●

●●

●●●

●●

●●●

●●●

●●

●●

●●●●●●

●●

●●

●●

●●

●●

●●●

●●

●●●

●●●

●●●

●●●

●●●

●●

●●

●●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●●●

●●

●●●

●

●●

●●

●●

●●

●●●

●●

●

●●●

●

●●

●●●

●●

●●●●

●●

●●●

●●

●

●●●

●

●●●●

●●●

●●●●

●●●●●

●●●

●●●●●

●●●●●●●●●

●●

●●●

●●●

●●●

●●●●●

●●●●●
●●●●●

●●●

●●●●●

●●●

●●

●●

●●●●

●●●●●

●●●●

●●●

●●

●●●

●●●

●●●●●●●●

●●●

●●●

●●●●●●●●●●●

●●

●●●●●
●●●●●●●●●●●●

●●

●●●

●●●●●●●●●●

●●●

●●
●●●●●●●●

●●●●●●●●●

●●●●●
●●
●●●

●●●●●●

●●●

●●●●●●
●●●●●

●●●●●●●●●

●●

●●●●

●●●●●●●●●●
●●●●●

●●●

●●●●●●●●
●●●●●●
●●●

●●●●●●●●●●●
●●●●
●

●●
●●●●●●
●●●
●●●●●●●●

●

●●●

●●●

●●

●●
●●●

●●●

●●●●
●●●

●●●●●●●●●

●●●

●●

●●

●●●

●●●●

●●●●●

●●

●●

●●

●●●

●●●●

●●
●●●

●●

●●
●●●
●●●●

●●

●●

●●

●●●
●

●●●

●●

●●

●●

●●
●●●

●●

●●●

●●

●●

●●
●●

●●●

●●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●●

●●

●●●

●●

●●

●●●

●●

●●
●●

●●●●

●●●●

●●

●●

●●●

●

●●

●●

●●●

●●

●●

●●

●●●

●●

●●●

●●

●

●●●

●●●●●●

●●●●●

●●●

●●●

●●●●●

●●●●●

●●

●●

●●●

●●●●●

●●●

●●●●●

●●●

●●●

●●●

●●●●●

●●●●

●●

●●●●●●

●●

●●●

●●●

●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●

●●●

●●●●●

●●

●●

●●

●●●

●●

●●●●

●●●●●

●

●●

●●

●●●●●●●●●
●●●●●

●●●

●●●●

●●●●

●●●●●
●●

●●●●●●●
●●●●

●●●

●●

●●
●●●●●

●●●

●●●

●●●

●●●

●●●●●
●●●●

●●●
●●●

●●●

●●●
●●●●●●●
●●●
●●●

●●●
●●●●●●●●●●

●●●

●●●

●●●●●●
●●●●

●●●

●●●●●●●●

●●●●●

●●●

●●●●●●●●

●●●

●●●

●●●●

●●●

●●●●

●●●●●

●●●

●●●

●●●●●●●●

●●●●

●●●●

●

●●

●●

●●●●

●●●

●●
●●●

●●

●●

●●●

●●●●

●●

●●

●●●●

●●

●●●●

●●●

●●

●●●

●●●●

●●●●●

●●

●●

●●●●

●●

●●

●●●●●

●●

●●●●

●●

●●

●
●●

●●●

●●●

●●●

●

●●●

●●

●●

●●●

●●

●●

●●

●●●

●●

●●

●●

●●●

●●

●

●●

●●●

●●●●

●●

●●

●●●●●

●●

●●●

●

●●●

●●

●●●

●●●

●●

●●

●●

●●●●●

●●●●●●●

●●●●●

●●●

●●●●●

●●●●

●●

●●●●●●●●

●●●

●●●●●

●●●

●●●

●●●
●●●●●●

●●●

●●●

●●●●

●

●●●

●●●

●●●●

●●

●●●●

●●●

●●●

●●

●●●

●●

●●●

●●●

●●●●●

●●●

●●●

●●●

●●

●●●

●●

●●

●●●

●●

●●●●
●●

●●

●●●●

●●
●●

●●●

●●●

●●●●

●●●

●●●

●●●●

●●

●●

●●

●●

●●

●●

●●●●●
●●

●●●

●●●

●●

●●

●●

●●●
●●●●●

●●

●●●●●

●●●

●●

●●

●●●●●

●●

●●●

●●

●●

●●●

●●●

●●●

●●●●●

●●●●●

●●

●●●●

●●●●●

●●●

●●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●●

●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●●●

●●

●●●

●●●●●

●●●●

●●●●●

●●●●

●●●

●●

●●●

●●●

●●

●●●
●●
●●●

●●●●●

●●●

●●

●●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●●

●●●

●●●

●●

●●

●●

●●

●●●

●●●

●●

●●●

●●●

●●●
●●

●●

●●●

●●●

●●

●●

●●●

●●

●●

●●

●●●
●●

●●

●●●

●●●

●●

●●●

●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●●

●●

●●●●●

●●●

●●●

●●●●

●●●●

●●●

●●

●●●

●●●

●●●

●●●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●

●●●
●●●

●●

●●

●●●●

●●●

●●

●●●

●●●●●

●●●

●●●

●●●

●●●

●●●●●

●●●

●●●

●●●

●●

●●

●●●
●●

●●

●●●

●●●●

●●●

●●

●●●

●●

●●●●

●●●

●●

●●●

●●●

●●●

●●●●

●●●●●●●●●●

●●

●●●

●●
●●●●●

●●

●●

●●●

●●
●●●●●●●

●●●

●●●

●●●●●

●●●

●●●
●●●

●

●●●

●●●●●●
●●●
●●●●●●●●

●●

●●●

●●●●

●●●●●

●●●●●●●

●●●●●

●●

●●
●●●●
●●●●

●●●

●●

●●

●●●

●●

●●●

●●
●●●
●●
●●
●●
●●●●●

●●●

●●●

●●●

●●

●●●

●●●

●

●●
●●

●●

●●●

●

●●

●●

●●

●●●

●●●

●●

●●

●●●

●●●●

●●

●●

●●

●●

●●●

●●●

●●

●●

●●

●●●

●●●

●●

●●●

●●●

●●

●

●●●

●●●

●●

●
●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●●●●

●●●●●

●●
●●●

●●●

●●●●●

●●●

●●●

●●●●●●

●●

●●●●●

●●●

●●●

●●●

●●●●

●●●●

●●

●●

●●●

●●●●●

●●●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●●●●

●●●●●●●●

●●●

●●●●

●●

●●
●●

●●●

●●●

●●●

●●●

●●●

●●

●●●●●

●●

●●●●●●●

●●

●●

●●

●●●●

●●●

●●

●●●
●●●

●●●●

●●

●●●●●●

●●●●●●
●●

●●

●●

●●●●

●●●

●●

●●

●●●

●●●

●●

●●●

●●●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●

●●

●●
●●
●●●

●●●●●●

●●●●

●●●●

●●●●

●●

●●●

●●●

●

●●

●●●

●●

●●

●●●

●●●

●●

●●●

●●

●●●

●●

●●●

●●

●●●

●●

●●

●●

●●

●●

●●●

●●

●●●

●●

●●

●●

●●

●●●

●

●●

●●

●●●

●●
●●

●●

●●

●●●

●●

●●●

●●

●●

●●●●●●●

●●●

●●●

●●

●●●

●●●

●●

●●

●●●

●●●

●

●●

●●

●●

●●●

●●●

●

●●

●●●

●●

●

●●

●●

●●●

●●

●●●

●●

●●●

●●●

●●●

●●

●●●

●●

●

●●●

●●●

●●

●

●●

●●

●●

●●●

●●●●

●●
●●●●
●●●

●●●●

●●●

●●●●●

●●●

●●●●●●

●●●●●
●●●
●●●

●●●●●

●●●

●●●●●

●●●

●●●

●●●●

●●●●

●●●
●●●

●●●

●●●●●

●●●●●

●●●

●●●

●●●

●●●

●●●

●●●●●●●●
●●●

●●●●●●●●●●
●●●

●●●

●●●

●●●●

●●●●

●●●

●●●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●●●●●●●●

●●●

●●●

●●●
●●
●●●
●●●

●●●●

●●
●●●
●●●●●
●●●●●●
●●●

●●

●●●
●●
●●●●

●●

●●●

●●●

●●●
●●●●●●●●●

●●●●●●●
●●
●●●

●●

●●●●●
●●●●

●●●●●●●●●●●●●

●●
●●●●

●●●●●●●
●●●

●●●

●●●

●●

●●

●●

●●●
●●

●●

●●

●●●
●●
●●●

●●●●●

●●
●●●
●●
●●
●●

●●●●

●●

●●●

●
●●

●●
●●

●●

●●●

●●

●
●●

●●●●

●●●
●●

●●

●●●
●

●●

●●
●●●
●●

●●●●

●●●

●●●●●

●●

●●

●●

●●●

●

●●●

●●

●●

●●

●●●

●●

●●●

●●●

●

●●

●●●

●●●●

●●

●●●

●●

●●

●●

●●

●●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●●

●●●●●

●●

●●

●●●

●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●●●●●●●

●●●

●●●
●●●●

●●

●●●●

●●●

●●

●●●●●●

●●●

●●●

●●●●●
●●●

●●●

●●●

●●●●●●●●●●

●●●●●

●●●

●●●

●●●●●●

●●●●●●
●●●●

●●●●

●●●

●●●●●

●●●

●●●●

●●●●●

●●●●●

●●●

●●●

●●●●

●●

●●

●●●●

●●●

●●●●●●●●
●●●
●●●

●●●●●

●●●

●●●●●●●

●●
●●●

●●●●●
●●●●●

●●●
●●●

●●●●

●●

●●●●●●
●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●

●●●
●●●●●
●●●
●●●

●●●●●

●●●

●●●●●

●●●●

●●●

●●●

●●●●●

●●

●●●●●●●

●●

●●

●●

●●●

●●●
●●●

●●

●●●

●●

●●●●

●●●

●●

●●●

●●●

●●●●

●●

●●●●●●●●●●●●
●●

●●●●●

●●

●●●

●●

●●

●●●●

●●

●●●

●●●

●●●●
●●

●●

●●

●●

●●
●●

●●

●●

●●●

●●

●●

●●
●●
●●

●●
●●●
●●

●●

●●

●●

●●●

●●●●●

●●●

●●

●●●●

●●●

●●

●●

●

●●

●●

●●●

●●●

●●

●●●●

●●●

●●●

●●

●●

●●

●●
●●

●●●

●

●●●

●●

●●●

●●

●●●

●●●

●●●

●●

●●

●●

●●

●●●

●●●●●

●●●●●

●●●

●●●●●

●●●

●●●

●●●

●●●●

●●●●
●●●

●●●●●

●●●

●●●

●●●●
●●●●

●●●

●●●●●●

●●

●●●

●●●

●●●●●

●●●

●●●●

●●

●●●
●●●

●●●

●●●●●

●●●●
●●●●

●●●

●●●●●
●●●

●●●●●

●●●

●●●●●

●●●●●
●●●●●●●●

●●●●

●●

●●●●●

●●●

●●●●●

●●●●●●●●

●●●

●●●

●●●
●●●●

●●●●

●●●
●●●

●●●●
●●●●

●●●

●●●

●●●

●●●●

●●●

●●●●

●●●●●

●●●

●●●●●●●●●●●●●●
●●●●

●●●

●●●●

●●●●

●●●●●●
●●●

●●●

●●●●●●

●●●

●●●●●●

●●●●●

●●●
●●●●●●

●●●

●●●
●●●

●●●●●●●●●●●

●●

●

●●●

●●●●●●●●
●●●●●

●●●

●●●
●●●●

●●

●●●

●●●●●●●

●●●●

●●●

●●●●●●

●●●

●●
●●●●●

●●●●

●●●●
●●

●●

●●●●●●
●●

●●●
●●●

●●●●

●●

●●●●

●●●●●

●●●

●●●

●●●●

●●

●●

●●

●●●●
●●
●●

●●
●●●
●●

●●●

●●

●●
●●

●●●●

●●●

●●

●●●

●●●

●●●

●●●●●●●●●●●●●
●●

●●●●●
●●
●●●●●●●

●●

●●●●●●●●

●●
●●

●●●

●●●●

●●

●●●

●●

●●●
●●
●●●

●●●●
●●

●●●
●●●

●●●

●●
●●●●
●●●●●

●●●●●

●●●●●●●●●

●●●

●●●

●●●

●●

●●●

●●●

●●●●

●●●

●●●●●
●●
●●
●●●

●●
●●●
●●

●●

●●

●●
●●●
●●
●●●●●
●●

●

●●

●●

●●●

●●●

●●

●●

●●●

●

●●

●●●

●●●
●●●●

●●●●
●●●●

●●

●●●

●●

●●●
●●●
●●

●●

●●

●●●●●

●●●

●●●●●

●●●
●●●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●●●●●

●

●●

●●●

●

0 200 400 600 800 1000

0
10

20
30

40
50

60
70

ONE_WAY_DELAY

Experiment Time [s]

[m
s]

●●●●●●

●

●●

●●●●

●●●●

●
●●●●

●

●●●●●
●●●
●●●
●●●●
●

●●●●●

●●●
●●●●

●●●●

●●●●
●●

●●

●●

●●

●●

●
●●

●●

●●

●●

●●●

●●

●

●●●

●●

●●

●●

●

●●●●

●●

●●

●

●●
●●

●●

●●

●●●●
●

●

●

●●●

●●

●
●●●

●●

●●

●●

●●

●

●●

●●●

●

●●●

●●

●●●

●●●●●●●

●

●

●●

●●●

●

●●●

●

●●●

●

●●●●●●

●

●●

●●

●

●●
●

●

●

●●

●

●

●●

●●

●●●

●●●

●●
●

●●●●●

●

●

●

●●

●

●

●●●

●●●

●●

●

●●

●
●●
●●●●●

●●

●●●

●●●●
●●
●●●

●

●●●
●●●●

●●●●

●●●●

●
●●

●

●●

●

●●

●●●

●●●

●●●

●●

●●●
●●

●●

●●●●●

●●●

●●

●●

●

●●

●●●●●

●

●●
●●●

●

●
●●

●

●●
●●

●
●

●●●●●●

●

●●●●●●

●●

●●
●●●

●●

●●●

●

●●

●

●●
●

●●
●

●●
●●●

●●●●●●

●●●

●●

●●●

●●●

●●●

●

●●●●

●●

●

●●●●●

●●●●●●

●●

●●●

●●●

●●●

●●●

●●

●

●●●

●●

●
●●

●●●

●●●●

●●

●●
●●

●●
●●●
●

●●

●●●●●●●

●●

●●●●●

●●

●
●●●

●●

●●

●●●●●●●●

●●

●

●

●●●
●●

●●●●

●

●●

●

●

●●

●●●

●●
●●

●●

●●

●●●●●●●

●●

●

●●

●●

●●

●●●●●●●

●●

●●

●●

●

●●●●

●●

●●●●
●●

●●

●

●●

●●

●
●●
●●
●●

●●

●●

●

●

●

●

●●

●●

●●

●●

●●

●

●●

●●

●●

●●

●

●●

●●

●

●●

●●

●●

●
●●

●●

●●

●

●

●

●
●●

●

●●●

●●

●●

●

●●●
●●●●
●●●●●
●●
●●

●●●●●

●

●●

●●

●

●

●●

●

●

●●

●●

●

●●

●●
●

●●

●

●●
●

●

●

●●

●

●

●●●

●●●●●

●●

●

●●●●

●

●●

●

●

●

●●
●

●●
●

●●

●

●●

●

●●

●●

●

●●●
●●
●

●●
●●●

●●
●

●●

●

●●

●●

●

●

●●

●
●●

●●●

●

●●●

●●●●●
●●

●●●

●●

●●●●●●●
●●●●●●●●

●●●

●●

●●●●

●●
●●

●
●

●●

●●

●

●●

●●

●
●●●

●●

●

●

●●●●●●●●●

●●

●●●
●●

●

●

●●●●●●●●●●●

●●

●

●

●
●●
●
●●
●

●●

●●●●

●●●

●●

●●

●●

●●

●

●●●●●
●

●●

●

●●

●●

●●●●●●●●●●●

●

●●●

●●●●●

●●

●●●

●●●

●●●

●●

●

●●●●●●●
●●
●

●●●

●●

●●
●

●●●●
●
●●
●
●●

●●●

●●●

●●●

●●●
●●●●●●●●●●●●●

●●●

●●

●

●●●

●●
●●●

●●●●●●●
●
●●●●●
●●●●

●●
●

●●●●
●●●●●
●●
●
●●●

●●●

●●
●●

●

●

●●

●●

●
●●●

●●●●●

●●●●●●●●●●●●●●

●●●●

●●
●●

●●●

●●

●●

●●

●●●●

●●

●●●●

●

●

●●

●

●●

●

●●●

●

●●

●●

●●

●

●●
●●

●●

●●
●
●●

●●

●●●●

●

●●
●●●

●

●

●

●●

●

●

●●
●●

●●
●

●●

●●

●●

●

●●●

●

●●●●●●●●

●●

●●

●●

●

●

●

●●
●●

●

●

●●●

●●

●

●●

●●

●

●●

●

●●

●●

●

●●●

●●

●

●●●

●●●●

●

●●

●

●

●●●

●

●●

●
●●

●
●●

●●●

●

●●●
●●

●
●●
●

●●●●

●●●

●●●

●●

●●●●
●●●●

●●●

●
●●

●●

●

●●

●●

●

●●

●
●●

●

●

●●●

●
●●
●

●●●

●●

●●

●

●●
●●
●●
●●●●●

●●

●●

●●

●●

●

●

●●●●●●●

●●

●

●●

●

●●●

●●●
●●●●

●

●●●●●●
●●●●

●●

●●
●●

●

●●

●●●●●●●●
●●

●●

●●

●●●
●

●

●

●●

●●

●

●

●●●●●●

●●

●●

●

●●

●●

●●

●●●

●●

●●

●
●●●●●
●

●●
●

●

●
●●

●

●

●

●●

●●

●

●

●●

●

●

●

●●
●

●●●●●

●●

●●●

●

●●●●●

●

●●

●

●●
●●●●●●●

●●●

●●●

●●

●●●

●●●

●●

●●●
●●
●

●●

●●
●

●●
●
●●

●●
●

●●

●●
●●●●●●

●●

●●●

●●●

●●
●●●
●
●

●●

●

●●
●●

●●●●●●

●●

●

●●

●●

●●●

●●
●
●●●

●●
●●
●

●●

●●

●
●●
●●
●●

●●

●●●●

●

●

●

●●

●

●●

●

●●

●●

●●

●●

●●

●

●●

●

●●

●●

●●●

●

●●
●

●●

●●

●

●

●

●●

●

●●

●●

●●

●

●●

●●

●●

●●

●

●●

●●

●●
●

●●

●

●●

●●

●

●●

●

●

●

●

●●

●

●●

●
●●●

●●●

●●
●

●●
●

●●

●

●●

●

●●

●

●●

●●

●●

●
●●

●●●
●●

●●●

●●

●●

●

●

●●

●●●

●●

●●●

●●●

●●●

●●

●

●●

●●●

●

●●

●

●●

●●●

●●●●

●

●●

●●

●●

●●

●

●●

●

●●

●●●●
●●●●●●●

●●
●

●●

●

●

●●●

●

●●

●

●●

●

●●

●

●●

●
●

●●●●●●●

●●●●●

●●
●●

●●●●●●●

●

●●

●

●

●●
●

●●●●

●●●●●

●

●

●●

●

●●

●●

●

●●
●●●
●

●●●
●

●●

●●●

●●●

●●

●●

●●

●

●●

●●

●●●●●●●●●●

●●

●●

●
●

●

●●

●●

●

●●
●●●●
●●●●

●

●●

●

●●

●
●●●

●

●●●●●●●●●

●●

●●

●

●●

●●●●●●

●●

●

●

●●

●●

●●●●●●
●

●

●●

●●●●●●●
●●

●●

●●●●

●●●

●●●●
●●
●

●●

●●
●

●●

●●
●

●●
●●

●●

●●●●●●●●

●●

●

●●●

●●●●●●●●●●●

●●

●●

●●

●

●●●

●●

●●

●●
●●●

●

●●

●●●

●

●

●●

●

●

●●

●●

●●

●●

●●

●

●●

●

●●

●●●●

●●

●
●●●
●●

●●●

●

●
●

●●

●●●

●

●●●●●

●●●

●●

●
●●●●●●●●●●

●●

●●

●●

●●

●●

●●

●

●

●

●

●

●

●

●●●

●●

●

●●

●

●●
●
●●●●●●●

●

●●

●

●●●●●

●●

●

●●●●●

●●●●●
●
●●
●

●●●

●●

●●
●●

●●

●

●●●●
●●●
●●
●

●●●

●●●●●●●●
●
●●
●
●●●

●●●

●●●●

●●●●

●●
●

●●

●●●

●●●
●●●
●●●

●

●●
●●●

●

●●

●

●

●

●●

●●●
●●●●

●●

●●●●

●

●●

●

●●
●●●

●

●●
●

●●

●●

●●●

●●●●●●

●●

●●●

●●

●●

●●

●

●

●●

●

●●●●

●
●●
●●●●●

●●

●●

●

●

●●

●●●●●●●●

●●

●●

●●

●

●

●●●●●●●

●●

●

●●

●

●●
●●

●

●●

●●●

●●●●●
●

●●

●●●●

●●

●

●●●●

●●

●●
●●

●●●●●●●

●

●

●●

●●

●

●

●●

●

●

●●

●●●●

●●
●●●

●●●●

●●

●

●●

●●●●
●●●

●●●

●●

●

●●

●●

●

●●

●●

●
●●

●●●

●●
●●
●●
●●

●●

●●

●●●●●
●●●●●

●●

●●

●●

●

●●●●●●●●●●

●●

●●

●●
●●

●
●●

●●

●●●●●
●●

●●

●

●●

●●●●●●●●●●

●

●●

●

●●

●●

●

●

●

●●

●

●●●

●●

●●

●●

●●●

●●●●

●●
●

●●
●●●

●●

●●

●

●●
●●

●

●●

●

●

●

●●

●

●●

●

●●

●●

●

●●

●●●

●

●●

●

●●●●●

●●

●●

●●

●

●●
●

●●●

●●●●●●●●●
●●●●

●
●●

●

●●

●●●

●●
●
●●
●

●●
●

●●

●●

●●●
●●●●

●

●

●●
●

●●

●●●

●●●

●●●

●●●●●●●●●●●●●●

●●
●

●●
●

●

●●●

●

●●

●●●

●●
●

●●
●

●●●

●●●

●●

●●
●●●●

●●

●

●●●

●●●●●●●●●●●●●

●●●

●●●

●●●

●●

●●●

●●●●●●●●●●●●●●

●●●

●●●

●●

●

●●
●

●

●●●
●●●

●●●

●●

●●●●●●

●●

●

●●●

●●

●

●

●●●●

●●●●●●●●
●●●●

●●●

●●
●●

●

●●

●●

●

●

●●

●●

●

●●
●●●●

●●
●

●

●

●●

●●

●●●

●●●●●●●●

●

●●

●●
●

●

●●●●●●●

●

●

●●

●●

●●

●●
●●●●●●●

●●

●●●●●

●●

●

●●●

●●

●

●●●●

●●●●●●●

●●●●

●●

●

●●

●●

●

●●
●●●

●●

●●

●●●

●●

●●

●●

●

●●●●●●●●●●●

●●

●●

●●

●

●●

●●●

●●

●●

●●

●
●●

●●

●●

●

●●●●●●●●●●

●●

●●

●

●

●

●●

●

●●

●●

●●

●●
●●●

●●●
●

●●

●●●●
●●

●

●●

●●

●

●●●

●●●●

●

●

●●

●

●

●●

●●

●

●●

●●

●●

●●

●●

●
●●
●●
●●
●

●●

●●

●●
●●

●●

●

●

●

●●

●●

●

●●

●●

●●
●

●●

●●

●
●

●●
●

●●

●

●●●

●●

●

●●

●●●

●

●●●

●●

●●●●

●●●●●●

●●●

●

●●●

●●
●

●

●●
●
●●

●●

●

●●●●●●●●
●
●●
●
●●

●●●

●●●

●●

●

●●

●

●

●

●●●

●

●●●
●●●

●●

●
●●

●

●●

●

●●

●

●●●

●●●

●●●●●●●●●●●●●●●

●●●
●

●●

●

●●●

●●●

●●●

●●

●●●

●●●

●●
●

●

●●●●
●●
●●●●

●

●●

●

●●●●●●●●●●●●●

●●

●

●●●

●●●

●●●

●●●

●●●●●●●●●●●●●

●●●

●●●●●●●●●

●●●●●
●●●●●●
●

●●●●●●●

●●●

●●

●●
●

●●

●●●

●●

●●●
●●

●●●

●●●

●

●●●
●●

●●

●

●●

●

●

●

●●

●

●

●●

●

●●●●●
●

●

●

●●

●●

●

●

●●

●

●●●●●●●●

●●●

●

●●

●

●●

●●

●

●●

●●

●●

●●

●

●●

●●

●

●●●●●●
●●●

●●

●●●●●●●

●●

●

●●

●●

●●

●●●●●
●
●●

●●

●●

●

●

●●

●●

●

●●●●●●

●

●●

●●

●●

●●

●●

●●●●

●●●●
●
●●

●●●●

●●

●●

●●

●●

●

●●

●●

●●

●●●

●

●

●●

●

●●●●

●

●●

●●

●

●

●●
●
●●

●●

●●●

●●

●●

●

●●
●

●●

●

●●

●

●●

●

●●

●

●●

●●

●●

●●

●●

●●

●●●●

●

●●●●

●●●

●●●

●●
●
●

●

●

●●

●●

●●

●●

●●

●

●●

●●●

●●

●

●●

●●
●

●●
●

●●

●●

●

●●

●

●●

●

●●

●

●●●

●
●

●●●

●●●

●●

●●

●

●●

●

●●●

●

●●●●●●
●
●●

●
●

●

●

●●

●●
●

●●

●

●●

●

●

●●●●

●●●
●●●

●●●

●●●

●●●

●●●

●

●

●●

●

●●●

●●

●●

●

●●

●

●●

●●

●●●●●●

●●●

●●

●

●●

●●●
●

●

●●

●

●●●

●●

●●●

●●●

●●●

●●

●●●●●

●

●

●

●●

●

●●

●●●

●●

●

●●

●

●●●

●●

●●●●

●●

●●●

●●

●

●●●

●●●

●●

●●●

●●●

●●●●●

●

●

●●

●●●

●●

●●●

●●

●●●

●●●

●●

●●

●

●

●

●●●

●●●

●

●

●●●●●●
●

●●

●●

●●●

●●

●

●●

●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●
●

●●●●●●●
●●●
●
●●●
●●

●●●

●●

●●●

●●●

●●●

●●●
●●
●●●
●

●

●●
●

●●

●

●
●●

●
●●●
●●●●●
●

●●

●●●
●●●●●

●●●

●

●

●●

●●●●
●

●

●●

●●

●●

●

●●

●

●●

●●●●●●
●●

●●●

●●●●

●

●●●
●●●●●●
●●

●●

●●●●

●●

●●

●●

●●●●●●●●●●●●

●●

●●

●●

●●

●●●

●●

●

●●●●●
●●●

●

●●●●

●●●●●●●●●●●●●

●●●●

●●●●●●●

●●●●

●●●

●●●●●
●●

●●●

●
●

●●

●●●

●●

●●

●

●●

●●
●●●

●

●●●

●●

●

●●

●

●●

●

●●

●●●●

●●
●

●●●●●
●

●●●
●●

●●●

●●●●

●●●

●

●●

●

●●

●●

●

●●●●●●●

●●

●

●●

●

●●

●●

●●

●●

●

●●●●●
●●

●●

●●

●●

●●

●●●●●●●●●●

●●●

●●

●●

●●●

●

●●●●●●

●●●●●●

●

●●●●●●
●

●●●

●

●●●●●●

●●

●

●●

●●●●●
●●●

●●●●
●●●

●●

●●●

●●

●

●●●●●

●●
●
●

●●

●●●●

●●●●

●●●●●●●●●●●
●●●

●●●●

●●
●●●

0 200 400 600 800 1000

0
10

0
20

0
30

0
40

0
50

0

OFFSET_FROM_MASTER

Experiment Time [s]

[m
s]

●●●●●●

●

●●●

●●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●

●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●●

●

●

●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●

●

●●

●●

●
●

●●●●

●●

●

●

●

●●
●
●●
●

●●

●

●●●
●●●

●●

●●●●●●●

●

●●

●●●●●●●●●●●●●

●●

●

●●

●

●

●●●●

●●

●

●

●

●●
●

●

●

●●

●●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●●

●

●●

●●

●

●●

●

●●

●●●
●●

●●

●

●●

●●

●

●●

●

●●

●●

●

●●

●●

●

●●

●●

●●

●●

●●

●●

●

●

●

●●

●

●●

●

●●

●●

●●

●●

●●

●

●●

●

●●

●●

●

●●

●

●●

●

●●

●●
●

●

●

●●

●

●●

●●

●●

●

●●
●●

●●

●●

●

●●

●●

●●

●

●●

●●●

●●

●

●●

●

●

●

●

●●

●

●●

●

●●

●
●●
●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●

●●

●●

●

●●
●●
●●●

●

●●

●

●

●●

●

●●●

●

●●
●●

●

●●
●
●●

●

●●

●●
●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●●

●

●

●●

●●

●●●
●●●
●●

●

●

●●

●

●

●●

●●

●●

●●

●●

●

●●

●

●●

●●

●●

●●

●

●●

●

●●

●●

●

●

●●
●●

●●●

●
●●●
●●

●●●

●●

●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●●

●●

●

●

●

●●

●

●●

●

●●

●

●●

●

●

●●

●

●

●●

●●

●

●

●●

●

●●●

●●

●●

●●

●

●●

●

●●●

●●

●

●●

●●●

●●

●●

●

●●

●●

●

●●

●

●

●

●●

●

●●

●

●●

●●

●

●●

●●●

●

●●

●

●●

●●●

●●

●●

●●

●

●●●

●

●

●●
●

●

●

●●

●●

●●

●●

●

●●●

●

●●

●●

●●

●●

●

●●

●●

●

●●

●

●●●

●

●

●

●●

●

●

●●

●●

●

●●

●●

●●

●●

●●

●

●●

●●●●●●●●●●●●●●●●

●

●

●●

●●

●

●●

●●

●●

●

●●

●●

●

●

●●

●

●●

●●

●

●

●●

●

●

●

●●●

●●

●●

●

●

●●

●

●●

●●

●●●

●●

●●

●

●●

●

●●

●

●●

●

●●
●

●●

●

●●

●●

●●

●●

●●

●●

●

●●●

●

●●

●●

●

●●●●●●●●●

●

●●●

●●

●●

●●

●●

●

●●

●

●

●

●●

●●

0 200 400 600 800 1000

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

DRIFT

Experiment Time [s]

[m
s]

Figure 6.11.: Test Case 2; regular PTPd control system values for Subsystem 1 under
presence of real time tasks. Measured values are discarded if they are off
by more than 500 ms. Thus some values are intermittently clamped to
zero. Due to the added noise, the time for convergence is significant.

in order to compensate for the offset. Once the offset is eliminated, the drift value is
adjusted in the other direction in order to stop slewing the clock. It can be observed
that the estimated values still contain some significant noise term, but the offset starts
to converge to zero.

Additionally to random delays introduced by sporadic system task arrival or hardware
wake-up delays, the question arises how well the daemon handles the presence of hard
real time tasks.

6.4.2. PTPd with Presence of Real-Time Tasks

Additional to the setup from the previous subexperiment, cyclical hard real-time tasks
are introduced. The cycle time is the same as the PTPd synchronization interval. The
hard real-time schedule is dispatched according to the hardware clock register. This may
not seem critical on first glance, but in the process the tasks are gradually shifted along
the time line. Upon start up of the PTPd, the first occurrence of the synchronization
and the real-time interval are uncoordinated. Due to the shift of the schedule versus
the synchronization window, the execution of the PTP daemon will almost surely be
contending the real-time tasks from time to time.
Due to the priority setup in the experiment, the real-time tasks do preempt the PTPd.
This creates significant levels of noise in the control system variables as shown Fig-
ure 6.11.

If the tasks are critical for system stability, the schedule has to be coordinated. For
this reason, the PlannedPTPd variant is analyzed next.

88

6
.

E
va

lu
a

ti
o

n
in

a
T

es
t

B
en

ch

6.4. PTPd Experiment

●●●●●●●●●●●●●●●●●

●●●

●●●●●

●●●●●●●●●●●

●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●●

●●●●●●●●●
●●●●●●●●●●●

●●●●●●●
●●●
●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●

●●
●●

●●
●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●

●●●●

●●●●●●●●●●●●●●
●●

●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●

●●
●●●

●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●
●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●

●●
●●

●●
●●●

●●●●●●●●●
●●●

●●●●●●●●

●●●

●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●
●●●●●●

●●●●●●●●●●●

●●●

●●●

●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●

●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●

●●●

●●●●●●●●●●●●●●●

●●●●●●●●●

●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●

●●●

●●●●●●●●●●●●●

●●●●●●●

●●●●●●●●●●●●●

●●●

●●●●●●●●●●●
●●●●●●●
●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●

●●●
●●●●●●●
●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●
●●●
●●●●●●●
●●●●●●●●●

●●●
●●●
●●●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●

●●●●●●●
●●●
●●●●●●●●●●●●●

●●●
●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●
●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

0 200 400 600 800 1000

0.
0

0.
5

1.
0

1.
5

2.
0

ONE_WAY_DELAY

Experiment Time [s]

[m
s]

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●●

●

●

●
●

●

●
●

●●

●

●

●

●
●
●

●

●
●
●●
●●
●

●
●●●
●
●●
●●●
●●
●●
●
●
●

●●
●
●●●
●●●
●●●●●●●●

●●●●●●●●●●●●●
●●●●●
●●●
●

●●●●

●
●
●●
●

●●
●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●
●●●●●
●●●●●●●●●●●●●●●

●
●●●●
●●●●●
●
●●●
●●●
●●
●
●

●●●●●●●●●●●●●●●
●●
●●●●●●●
●●
●
●●
●●●●
●●●●
●●
●
●●●●●
●●●●●●●●●

●●
●●●●●●●●
●●●●●●
●●
●●●●●●●●●●●●●●●●●●●

●●●
●
●
●●

●
●
●
●●●●●●●●●●

●●●●●
●
●●●●●●●
●●
●●
●●●●●●
●●●●●●●●●●●●●

●●●●●●
●●●●
●
●●
●●●●
●●●●●●●
●
●●
●●●●●
●●●●●●●●●●●●

●
●●
●●
●●●●●●●●
●●●●●●●●●●●●●●●●

●●●
●●
●
●●●●
●●●●
●●●●●●
●●●●●●●●●●

●●●●
●●
●
●●●●●
●
●
●
●●●
●●●●●
●●●●●
●●●
●●●●●●●●

●●
●
●●●●●●●●●●●

●●

●●●
●
●●
●
●
●●●

●●●●●●●●●●
●●●●●●●●●

●●●●●●●●
●●●●●●●●●●

●●
●
●●●

●
●●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●●

●
●

●

●
●

●●

●

●●●

●

●

●●

●

●

●

●

●
●●

●

●●
●

●

●●
●
●
●
●
●
●●●
●
●●
●

●
●●●●

●●●●
●●●●
●

●●
●
●
●●●●
●●●●
●●
●●
●
●
●●●●●●●●●●●●

●●
●●●●●
●●●
●
●
●●●●●●●●●●●

●●
●●●●●●
●
●●
●
●
●●●●●●●
●●

●
●
●●●●

●
●●●●●
●●●●●●
●●●●●●●●●●●●●

●
●

●
●

●●
●●

●●

●
●

●●●●●
●

●
●●
●●●●
●●●●●●
●●●●
●●●●
●●●
●
●●●●
●●●
●
●●●●●●
●
●
●

●●●
●●●
●●
●●●
●●●●●●●
●

●●●●
●●●●●
●
●
●●●
●●●●●●●●

●
●●
●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●

●●●●
●●●●●●●●
●
●
●●
●
●●●●●●
●

●●●
●●●●
●●
●●●●●●●
●●
●●●
●●●
●
●●●●●●
●●
●
●
●●●●●●
●●●●
●●●●●
●●●

●

●

●●●●●
●●●●

●●

●●

●
●

●
●

●
●

●
●

●●

●●●●
●●●
●●

●●

●●
●

●●
●●●
●●●●●●●●●●●●●

●●●●
●●
●●●●
●●●●●●●●●
●
●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●

●●
●
●●●●●●●●●

●●●●

●
●●●●●

●
●●●●●
●●●
●
●
●●
●●
●●●●●●●●●

●●●
●●●●●●
●
●●
●

●●
●
●●
●●●
●●
●●●●●●●●●●●

●●
●●●●●
●●
●●
●●●

●
●●●●
●
●●
●●

●●●●●
●
●●●●●
●●●●●●●●●●●●

●●●●●●●
●●

●
●●
●●
●
●●●
●●
●●
●●●●●●●●●●●●●

●●
●
●
●

●

●

●●●●
●●●●●
●

●●●

●●

●
●

●
●

●
●

●●

●●
●

●●●
●●●
●●●

●●

●
●

●●●●●
●●●●●●●●

●●●●●
●●
●●●●●
●●●
●●●●●●
●●●
●●
●●●●●●●●●●

●
●●●●
●●●●●●●●●●●●●●●●

●●●●●

●●

●

●●●
●●●●●
●●
●●●●●●●●●

●
●●
●

●●●●●●●
●●
●●
●
●
●●
●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●
●
●●●●●●
●●●
●
●●●●●
●●
●●●●●
●●●●
●●
●●●●●
●●●●●●●●

●●●●●●●●●●
●●

●
●●
●●●●●
●●●●●●●
●●

●●
●●●●●●●●●

●●
●●●●●●●●●●●●●●●

●●●

●

●
●
●●●●
●●
●●●●
●●●●●●●●●●●●●●●●●●●●●

●
●●●

●●
●●●●●●●●●●●●●

●●●●●●●●●
●●●
●●●

●
●
●●
●●
●●●
●●
●●●●●
●●●●●
●●●●●●●●

●●●
●●●
●●●
●●●●●●●●●●●●

●●●●
●●●●●
●
●
●●●●●
●
●●●
●
●●●
●●●●●●●●●●

●
●●●
●
●●●
●●●
●●●●●
●●●●
●●
●●●
●

●●
●●●
●

●●●

●●●●●●●●●●●●●●●●
●●●●●
●●●●●
●●●
●●●●
●●
●●●●
●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●
●
●●●●
●
●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●
●
●●
●●●
●
●●●●●●●
●●●
●●●●
●●●
●●●●●●●●●●●●●●●●

●
●
●●●●●

●●●●
●●●
●●●●
●●●●●
●●●
●●●●●●●●
●●●●●●●●●

●●●
●●●●●●
●●●
●
●●●●●●
●●●

●

●●
●●●●
●●
●●●
●●
●●●
●●●●●●●
●●●●●●●●●●●●●●●●●

●
●

●●●
●●●●●●●
●●
●●●●●●●●●

●●●●●●●
●
●

●●
●●
●
●●

●
●●●
●●●●●●●
●●
●●●●●●
●●●
●●●●
●●
●●●●
●●●●
●
●●
●
●
●●
●●
●
●●●●●●●●●●

●
●

●●●●●●
●●
●●●●●●●●●●●●●●

●

●
●

●
●
●
●
●●

●●●●
●●●●●●
●●
●
●●●
●
●●●
●●●●●
●
●●●●●
●●●●
●

●●●
●●●●
●●●●●●
●●●●
●●●●
●
●

●●
●●●●●●

●
●●●●●●●
●
●
●●

●
●●●
●●●
●●
●●●●●●●●●●

●●●●●●●
●●●●●●●●●●●●●●●

●●●●
●●
●●●●●●

●●
●
●●●●
●●
●
●●●

●●
●●●●●●●

●●●●●
●●
●●●
●●●
●●
●●●●●
●●●●
●●
●●●●●●●●●●●●

●●

●●●●●●
●●
●●
●●●●●●

●
●●
●●●
●
●●●●●●
●●
●
●●●●
●●●●●●
●●●●●●●●●●●●

●●
●●●●●
●●●●●
●
●●
●●
●

●●●
●
●
●
●●●●●●

●●
●●●
●●●●●●●
●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●●

●
●●●
●
●
●●●
●●●●●●●
●●●●●●
●
●●●●●●●●

●●
●●●●●●●
●●●

●●
●
●●●
●●●●
●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●
●●●●
●
●●●
●●
●
●●●
●●●
●●●
●●●●
●●
●●
●●●●●●●●●●

●●
●●●●●●●●●●●●

●●
●
●●●●
●
●●●
●●
●●●●

●●
●●●
●●●●●●●●●●●●

●●●●●

●
●●
●
●
●●●
●●●●●●
●●
●
●●●●
●●●
●
●●●●
●●●
●
●●
●●●
●●●●
●●●●
●●●●●●
●●●
●

●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●
●●●
●●
●●●●●●●●
●

●●

●
●

●
●●
●●
●
●●
●●●●●
●
●●●●●●●●●●●

●●●

●●●●●●●
●●●
●
●●●
●
●●●●
●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●

●●●●
●●●
●●●
●●●●●●●●

●●

●
●●
●
●
●
●●●
●
●●●●●●●●●

●
●
●●●●●●●
●●●●●●●
●●
●●●
●
●●●●
●

●
●
●●
●●●●●
●●●●●
●
●●
●●●●●●●
●●●●●●
●●
●●●●●●●●●●●

●
●
●
●●●●
●
●●●
●●
●
●●●●
●●●●●●●●●●●●

●
●
●●●●●●
●●●

●●
●●●
●●●●●●●
●●●●
●●
●●
●●●●
●
●●●●●●●●●●●●●●●●●

●
●
●●●
●
●●
●●●●
●●●
●●●●
●●●●●●●
●●●●●●
●
●●●●●
●●●●
●●●●●
●●●●
●

●
●
●●●
●●
●●
●●●●●●
●●●●●●●

●●
●●
●●

●

●●●
●
●
●●
●
●●
●●
●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●
●●●●●
●●
●
●●●
●
●
●●●●
●
●●
●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●
●●●●●●
●
●●
●
●
●●●●●●●●●●●●●

●●●
●●●●
●
●●●
●●●●●●●
●●●

●●●●●●●●●●●●●
●
●●

●●●
●●●
●●
●●●●●●●●●●

●
●●

●

●●●
●
●●●
●
●
●●●●
●●
●
●
●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●
●●●●●●●●

●
●
●

●
●●●
●●●●
●
●●●
●●●●●●●
●●●●●●
●●
●●●●●●●●●

●●
●●●●●●
●●●●●●●●●●●

●●●●●●●●
●
●●●
●

●●
●●●
●
●●●●●●
●●
●●●●●
●●
●●●●●●
●

●●●●
●

●

●
●
●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●
●●●
●●●
●●●●●
●●●
●●●
●●●●●
●●●
●●●●●●●
●●
●●●●●●
●●●
●●●

●●●

●
●●
●
●●●●●●●●●●●●●●

●●●●
●
●●●●
●●
●●●
●●
●

●●●
●

●●
●

●●●
●●
●●●●●●
●●●●●

●●●
●

●

●

●●●●●●
●
●●●●
●●●
●●

●●●

●●●
●●●●
●

●●

●●●●
●●
●

●●

●
●

●
●

●
●

●

●●

●

●●●
●●
●●●●

●●

●●●●
●●●
●●●●●●
●●●●
●●
●●●●
●
●●●

●●

●

●

●

●

●

●

●

●
●
●●●
●●
●●
●●●
●●●
●●●
●

●●

●●●

●

●

●

●
●
●
●●
●
●●●

●●

●●●
●●
●●●●
●
●●
●●
●●
●●
●●
●●
●●●●●
●●●
●
●●●●●●●●

●
●●●●●
●
●●●●●
●●●●●●●●
●
●●
●●●
●●●
●●●●●
●●●
●
●●●●
●●
●●●

●●
●
●●
●
●●●●
●●●●●●●
●●●●
●●●●●●●●●●●●●●

●●●●
●●
●●●●
●●●●●●●●●●●●●●●

●●
●●

●●
●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●
●●●●●●●●●●●

●●●●●●●●●
●●
●●●●●
●●●
●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●

●●
●●●●
●●
●●●
●●●●●●
●●●
●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●
●●●●●●●●●●●

●●
●●
●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●
●●●●
●
●●●●●●●●●

●●●●
●●

●
●

●
●
●●●●●●●
●●●●●●●

●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●

●●
●●●
●●●●
●●
●●●
●●●
●●●●●
●●●●●●
●●●●●●●●

●
●●●●●
●●●●●●●●

●●●●●
●●
●●●●●
●●
●●●●●●●

●●●●
●●●●●
●●
●●
●●●●
●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●

●●

●
●

●●●●
●●●●●●●
●●
●●●●
●●●●●●●
●●
●●●●
●●
●●●●●●●●
●●
●●●●●●
●●●●●●●●●

●●
●●●●
●●●
●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●
●●
●●●●●
●●●●
●●●●●●
●●●●●●●●●●●●

●●●●●●●●
●●●●●●●
●●●●●●
●●
●●●●●●●
●●●
●●●●●●●

●●
●●
●●
●●
●●●●●●●●●

●●●
●●
●●●●●
●●●●●●●●●●●●

●●●

●●●

●
●●

●●

●●●

●

●

●●●●
●●
●
●●●
●●
●●●
●●●●●●
●●●●●●●●●

●●
●●●●●●●●●●●

●●●●●●●●●●●●
●●
●

0 200 400 600 800 1000

0
10

20
30

OFFSET_FROM_MASTER

Experiment Time [s]

[m
s]

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●
●●
●
●
●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●●

●●●
●●
●●
●
●
●
●
●
●●
●
●●
●
●
●
●
●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●
●
●
●●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●●
●
●
●
●
●
●
●
●●
●
●
●
●
●
●
●
●●
●
●
●
●
●
●●
●●
●●
●
●
●●
●●
●●
●●
●●
●●
●●
●●●
●●
●●
●●
●●
●●
●●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●
●●●
●●●●
●●●●●
●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●

●●
●
●

●

●

●

●
●
●●
●●●●●
●●

●●●●●●●●
●●●●●●●●●●●●●●●

●
●

●

●

●

●
●
●●
●●●

●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●

●●●
●●●

●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●
●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●

●●●
●●●

●●
●●●

●●
●●●●●●●●●●●●●●●

●●●
●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●
●
●
●

●

●●
●
●

●●●

●

●

●

●

●

●

●
●
●
●
●
●●
●
●
●
●●
●
●
●
●
●
●
●
●
●●●
●
●
●●

●

●
●
●
●
●
●●
●
●
●●●●●
●
●
●
●
●
●
●●
●●
●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●

●●

●

●●

●

●●

●

●●●●●●●

●

●●

0 200 400 600 800 1000

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

DRIFT

Experiment Time [s]

[m
s]

Figure 6.12.: Test Case 3; regular PTPd control system values for Subsystem 1. The
initial offset from master is small. Slight disturbances may be observed at
around 300 and 800 s Experiment Time.

6.4.3. PlannedPTPd with Presence of Real-Time Tasks

In the planned case, PTPd features one main thread and an additional thread for
signaling the error of the cycle time to the kernel plan scheduler. Adjusting the behavior
of the plan scheduler is key in order to eliminate the error inherent in the hardware
clock register. The real-time tasks are now coordinated with the PTPd and the SYNC
window, so less noise is expected.

Subsystem 1

The results for Test Case 3 and Subsystem 1 can be found in Figures 6.12 and 6.13.
Reading from Figure 6.12, the initial offset to compensate for is significantly lesser
than in the results presented in Test Cases 1 and 2. This small offset is likely due to
exceptionally good synchronization achieved by running ntpdate at boot time.

It can be observed, that the levels of noise are significantly lower and that the distur-
bances do not affect the drift value significantly.

Figure 6.13 shows the transient plan control values corresponding to the values in
Figure 6.12. The sync shift variable can be seen to start out with a significant impulse
upon the activation of the plan in the Linux kernel which the plan control loop manages
to dampen quickly. It can be seen that the PMP response in the beginning perfectly
matches the sync shift value. It starts to drift away with changing drift input from the
regular control loop to the Network Time Protocol (NTP) FLL. This is because the
PMP response is measured in disciplined kernel time which is affected by the FLL.

89

6. Evaluation in a Test Bench

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

● ●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

● ●
●

● ●

●

● ● ●

●

●

●

●

●

●
●

●
●

● ●

● ●

● ●

●

●
●

●
●

● ●
●

●

● ● ● ●

●
●

●

●

● ● ● ● ●

●

●

● ●
●

●

0 10 20 30 40 50 60

−
3

−
2

−
1

0

PI Sync Shift Variable

Experiment Time [s]

[m
s]

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

0 10 20 30 40 50 60

49
7

49
8

49
9

50
0

50
1

Power Management Plan Response

Experiment Time [s]

[m
s]

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●● ●●● ●● ●●● ●● ●● ●● ●● ●●● ●● ●● ●●● ●● ●● ●● ●● ●●● ●● ●● ●● ●● ●● ●● ●● ●●● ●●● ●● ●● ●● ●● ●● ●
●

●●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

0 10 20 30 40 50 60

−
0.

2
0.

0
0.

2
0.

4

DRIFT

Experiment Time [s]

[m
s]

Figure 6.13.: Test Case 3; transient response of the plan control system for Subsystem 1.
In the beginning, the plan scheduler response is aligned with the plan
behavior, after second 40, the reponse starts to shift to 500 ms due to to
the drift value for compensation of the offsets.

Subsystem 2

Figure 6.14 depicts the regular control system values for Subsystem 2 in this test case.
It is clearly visible that although the offset is large in the beginning, all estimated values
are subject to few noise. At first, the drift value is instructed to compensate the offset
and then converges to a small value around zero indicating few systematic drift.

This is achieved by correcting the plan cycle time using the PMP node to signal the
sync shift variable. In Figure 6.15 it can be seen that the sync shift starts out with
a similar impulse at the beginning. Due to the negative drift value, the actual PMP
response measured in disciplined kernel time is much higher.

6.5. Summary

Within this chapter, a set of experiments was conducted which are designed to:

� Test and benchmark the timing characteristics, especially under presence of dy-
namic Quality of Service (QoS) constraints.

� Evaluate the possible power savings while abiding QoS-constraints in lightly loaded
systems.

� Test the correctness and performance of the implementation of the sequential logic
operators which may be used as part of a PMP.

As a proof of concept, all these functions were benchmarked in an integration test
by extending the Precision Time Protocol daemon (PTPd) and assessing the quality of

90

6
.

E
va

lu
a

ti
o

n
in

a
T

es
t

B
en

ch

6.5. Summary

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●

●●●●●●●●●

●●●

●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●

●●●●●●●●●

●●●

●●●●●●●

●●●

●●●

●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●

●●●

●●●●●

●●●●●

●●●●●●●●●

●●●●●

●●●●●●●

●●●●●●●●●●●●●●●

●●●

●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●

●●●●●●●

●●●●●●●

●●●●●●●●●●●

●●●●●

●●●●●●●●●

●●●●●●●●●●●

●●●●●

●●●

●●●●●●●

●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●

●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●

●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●

●●●

●●●●●●●●●●●●●●●

●●●●●●●

●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●

●●●

●●●●●●●●●

●●●

●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●

●●●●●

●●●

●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●●

●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●
●●●●●●●
●●●

●●●

●●●●●●●●●

●●●

●●●●●●●●●

●●●●●

●●●●●

●●●●●

●●●

●●●

●●●●●●●●●●●
●●●
●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●

●●●

●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●

●●●

●●●●●●●

●●●●●

●●●●●
●●●●●●●●●●●

●●●●●●●

●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●●

●●●●●●●●●
●●●
●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●
●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●

●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●

●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●

●●●
●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●
●●●●●●●
●●●●●●
●●●
●●●●●
●●●●●
●●●●●
●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●

●●●●●

●●●

●●●●●●●●●●●●●●●

●●●

●●●

●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●

●●●●●●●

●●●●●●●●●●●●●

●●●●●●●

●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●●

●●●●●

●●●●●●●●●●●●●

●●●●●●●

●●●●●

●●●

●●●●●●●●●●●

●●●●●●●●●

●●●●●

●●●●●

●●●●●●●●●●●●●

●●●

●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●

●●●●●●●●

●●●●●●

●●●●●

●●●●●●●●●

●●

●●●●●●

●●●●●●●●

●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●

●●

●●●●

●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●

●●●●●

●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●

●●●

●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

0 200 400 600 800 1000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

ONE_WAY_DELAY

Experiment Time [s]

[m
s]

●

●

●●
●●
●●
●
●●
●●
●●
●●●●
●●
●●
●●
●●
●●
●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●
●●
●●●
●●
●●
●●
●●
●●
●●●
●●
●●
●●
●●
●●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●●
●●
●●
●●
●
●
●●
●●
●●
●●
●●●
●●
●●
●●
●●
●●
●●●
●●
●●●●

●●
●●
●●
●●
●●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●
●●
●●
●●●
●●●
●●
●●
●●
●●
●●●
●●
●●
●●
●●
●●
●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●
●●
●●
●●
●●
●●
●●●
●●
●●●
●●
●●
●●
●●
●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●
●●●
●●
●●
●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●
●●
●●
●●
●●●
●●
●●
●●
●●
●●●
●●
●●
●●
●●
●●
●●
●●●
●●
●●
●●
●●
●●
●●●
●●
●●●
●●
●●
●●
●●●
●●●
●●
●●
●●●
●●●
●●●
●●
●●
●●●
●●
●●
●●
●●
●●
●●
●●●
●●
●●
●●
●●
●●
●●
●●●
●
●●●
●
●
●●
●
●●
●●
●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●
●●
●●
●●
●●
●●
●●●
●●
●●
●●
●●
●●
●●●
●●
●●
●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●
●●
●●●
●●
●●
●●
●●
●●
●●
●●●
●●
●●
●●●
●
●●
●●
●●
●●
●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●
●●
●●●
●●
●●
●●
●●
●●
●●
●●●
●●
●●●
●●
●●
●●
●●
●●
●●
●
●●
●●
●●●
●●
●●
●●
●●●
●●
●●
●●
●●
●●
●●
●●●
●●
●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●
●●
●●
●●
●●
●●●
●●●
●●●
●●
●●●
●●
●●●
●●
●●
●●
●●●
●●
●●●
●●
●●
●●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●
●●●
●●●
●●
●●●●

●●
●●
●●
●●
●●
●●
●●
●●●
●●
●●
●●●
●●●
●●
●●
●●●●

●●
●●
●●
●●
●●
●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●
●●
●●
●●●
●●
●●●
●●
●●
●●●
●●
●●
●●●
●●
●●
●●
●●
●●●
●●
●●●
●●
●●
●●
●●●
●●
●●
●●
●●
●●●
●●
●●●
●●●
●●
●●
●●●
●●
●●
●●
●●
●●●
●●●
●●

●●●●
●●
●●
●●●

●●
●●●

●●
●●●●●

●●
●●●●
●●
●●
●●
●●●
●●
●●
●●
●●
●●
●●●
●●
●●
●●
●●
●●●
●●
●●●
●●
●●
●●
●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●
●●
●●
●●
●●
●●●
●●
●●
●●●
●●
●●
●●
●●●
●●
●●
●●
●●●
●●
●●
●●
●●
●●
●●
●●●
●●
●●
●●
●●
●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●
●●

●●●●
●●●
●●
●●●

●●

●●

●●●●
●●

●●●

●●
●●
●●●
●●●
●●
●●●
●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●

●●
●●●

●●
●●●

●●●
●●

●●
●●●

●●
●●

●●
●●

●●●
●●

●●●
●●●

●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●

●●
●●●●
●●
●●

●●●●●●
●●

●
●●●
●●●●
●●
●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●
●
●●●●●●●●●●●●

●●
●●
●●●●●●●●●●

●●
●●●●●●●

●●●

●●
●●●●

●●

●●

●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●

●●

●●

●●

●

●

●●

●●●●●●●●●●●●●●●●●●

●●

●●

●●

●

●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●
●●

●●

●●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●
●●●●●●●●●●●●●●●●●

●●

●●●
●●

●●

●●●

0 200 400 600 800 1000

−
30

0
−

25
0

−
20

0
−

15
0

−
10

0
−

50
0

OFFSET_FROM_MASTER

Experiment Time [s]

[m
s]

●

●

●

●●●
●●●
●
●
●
●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●●
●
●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●
●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●
●
●●
●
●
●
●●
●
●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●●
●
●
●
●
●
●●
●
●
●
●●
●
●●
●
●
●
●
●
●
●
●
●
●●
●
●
●
●
●
●
●
●●
●
●
●
●●
●
●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●●
●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●

●

●
●
●
●●

●●●●
●
●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●●●
●●
●
●●●●●●●●●●●●●●●●●●●●

●
●
●

●●

●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●●
●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●

●●●●

●

●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●

●

●●●
●●

●●●

0 200 400 600 800 1000

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

DRIFT

Experiment Time [s]

[m
s]

Figure 6.14.: Test Case 3; regular PTPd control system values for Subsystem 2. Initial
Offset is comparably large.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

● ● ● ●

●
● ●

●

●

● ●

● ● ●

●

●

●

●

●

●
●

●

● ● ● ● ●

●

●
●

●

●

● ●

● ● ●

●

●

●

● ●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

● ● ●

●

●

●

●

●

●

0 10 20 30 40 50 60

−
2.

5
−

2.
0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5

PI Sync Shift Variable

Experiment Time [s]

[m
s]

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ● ●

●

●

●

● ●

●

●

●

● ●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

0 10 20 30 40 50 60

49
8.

0
49

8.
5

49
9.

0
49

9.
5

50
0.

0
50

0.
5

50
1.

0

Power Management Plan Response

Experiment Time [s]

[m
s]

●

●

●

●● ●● ●● ●● ●● ●● ●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●● ●● ●● ●●● ●● ●● ●● ●● ●● ●●● ●● ●● ●● ●● ●●● ●● ●● ●● ●● ●● ●● ●● ●●● ●●● ●● ●● ●● ●● ●● ●● ●● ●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●● ●● ●● ●● ●● ●● ●●● ●● ●● ●● ●● ●● ●●● ●● ●● ●● ●● ●● ●● ●● ●●● ●● ●● ●● ●● ●● ●● ●●● ●●● ●● ●● ●● ●●● ●●● ●● ●● ●● ●● ●● ●●● ●● ●

0 10 20 30 40 50 60

−
0.

5
−

0.
4

−
0.

3
−

0.
2

−
0.

1
0.

0

DRIFT

Experiment Time [s]

[m
s]

Figure 6.15.: Test Case 3; transient response of the plan control system for Subsystem 2.
Sync shift, drift and response pretty much constant during the phase of
systematic compensation of the offsets.

91

6. Evaluation in a Test Bench

software-only synchronization achievable in a prototypical distributed system.
The extensions towards planning the execution of the PTPd demonstrate the interplay

of the plan scheduler with the different kernel components and tasks on the application
layer.

92

7
.

C
o

n
cl

u
si

o
n

7. Conclusion

Current embedded systems supporting hard real-time capabilities lack a scheduling
mechanism for power states. Having applications control power saving capabilities may
be infeasible in the case of highly integrated systems, as they are typical for, e.g. the
automotive industry. From a system integration stand point, the repartitioning of soft-
ware to hardware units is a typical task. Having the operating system cope with the
scheduling of software and, at least indirectly, power is desirable.

For different applications, different levels of service quality are necessary. These qual-
ities refer to processing latency of input data and thus may affect throughput and safety
critical control systems. Linux features an advanced framework for Quality of Service.
It works like a middleware, which processes quality requests from applications and in
the end mediates resource usage. This thesis builds upon this framework and adjusts it
in a way that Quality of Service, or power states may be explicitly scheduled beforehand
as part of a Power Management Plan (PMP). This allows for increasing predictability
in the dynamic range of service quality and power consumption over time.

Power Management Planning

This thesis presents the concept, implementation and evaluation of a computational
model from system inputs to running PMPs. These PMPs effectively allow to correlate
system tasks with system power states, thus making the scheduling of power states
explicitly available in the kernel scheduler. Additionally to scheduling these power
states, a Boolean constraint satisfaction calculus is presented to target stability in supply
voltage levels of automotive systems.

Evaluation and Synchronization

PMPs are optimized for execution directly as an operating system scheduling paradigm.
As a proof of concept, a PMP scheduling discipline was integrated into the Linux 3.0
kernel. The discipline was tested on a single subsystem setup as well as on a distributed
system including time synchronization. It was shown that the paradigm may enhance
the Linux scheduling to be compatible with the IEEE1588 Precision Time Protocol
synchronization mechanism. This mechanism as well as the traditional Network Time
Protocol work on a disciplined calculative kernel time presented to the application layer.

Combining these modules, the platform may support synchronized scheduling along
a distributed system, provide high levels of Quality of Service and improve power con-
sumption values at the same time. The platform enables a multitude of open research
directions.

93

7. Conclusion

Future Work

Future work is to effectively use and test the platform features to a real world volt-
age stability and energy efficiency benchmark. The flexible notion of PMP arises the
question of which patterns and best practices apply to which type of application. The
logging and evaluation subsystem has proven stable and powerful. It may be used for
future testing and evaluation purposes.

Additionally, research on further improving system latencies or off loading the plat-
form capabilities to dedicated hardware units can be researched. On the side of operating
system implementations, concepts to combine the presented approach with virtualiza-
tion and other shared computing resources need to be researched.

It is possible to apply PMPs also to computing systems of larger scale, since the
presented mechanisms are integrated into the Linux kernel. They allow to work on actor-
oriented embedded system tasks as well as traditional and more complex computing
tasks. Evaluating them using other use cases and applications on different pieces of
hardware opens up a multitude of future research directions.

94

Appendix

95

List of Figures

1.1. Periodic Scheduling with Aligned Periods 5
1.2. Scheduling Both Without and With Preemption 6
1.3. Complex Interaction Pattern for Decoupling of Endpoints 7
1.4. Illustration of Communication Patterns 9
1.5. AUTomotive Open System ARchitecture (AUTOSAR) Mechanisms for

Energy Efficiency in Electronic Control Units 12
1.6. Schematic Energy and Power Management 13
1.7. Automotive power net and voltage stabilization example 15

2.1. Operating System Modularization . 19
2.2. Resource Processing in Tasks, Prone to Deadlocking 21
2.3. Linux Control Group Hierarchies . 23
2.4. Fixed Cycle Scheduling of Hard Real-Time Tasks 25
2.5. Differentiation in LITMUS, RT-Preempt, and the Contribution of the

Thesis at Hand . 26
2.6. Scheduling Classes as Being Implemented in Linux 3.0 27
2.7. Comparison of Current Linux Tick Scheduling 29
2.8. PTP Protocol Flow as Depicted in Weibel (2009) 31

3.1. Logical Interaction Scheme of Cyber Physical Systems 33
3.2. System features are delivered by the application layer. Complex know-

how and algorithms are involved and need abstractions. 34
3.3. Exemplary Functional Hierarchy Together with Mutual Exclusion 36
3.4. Low Level Scheduling of Software Threads and Power (→ Hardware Ab-

straction) by Means of Power Management Plans 37
3.5. Signal Timing, Set and Clear Properties 37
3.6. Useful Plan Patterns for Modeling Common Scheduling Tasks 39
3.7. Strictly Cyclical Jobs in Power Management Plan and Timeline View . 39
3.8. Adaptivity is Modeled as Transducing Inputs to Plans 40
3.9. Management Complexity Reduction . 42
3.10. Illustration of Cybernetic Control Systems 43
3.11. Illustration of Technical Hierarchy . 44
3.12. Master Switch of State Response . 45

4.1. UML Meta Model for Checking and Design Space Exploration of System
Integration Variants . 48

4.2. Example of Walking the Solution Space for Scheduling 53
4.3. Example Finding a Mapping and Afterwards Scheduling (→ Integration

Level). 54

97

List of Figures

4.4. Combinatorial Problem of Critical Power Draw 55
4.5. First Result Achieved when Using the Minisat (JNI) Engine on the Sam-

ple Case . 57
4.6. First Result Constraining Comp3 to CPU1. 57

5.1. Major Subsystem Component Interaction Overview 62
5.2. Linux Scheduling Classes, Along with SCHED PM Policy 62
5.3. Power Management Plan Data Structure as Held Within the Scheduler . 64
5.4. Functional Chain Set for Validation of Deep Power States 65
5.5. Ring Buffer and Data Format Used in Logging Module 68
5.6. Regular PTPd control loop together with extensions for PlannedPTPd

version . 69
5.7. PlannedPTPd—Plan for Slave Nodes with Synchronizing and Cyclic Win-

dows . 71
5.8. PlannedPTPd—Plan for Master Node with Synchronizing and Cyclic

Windows . 72

6.1. Test Bench Setup . 76
6.2. Distributed System Topology Setup . 76
6.3. Schematic of the Custom Platform . 77
6.4. Typical OMAP3503 MPU Power Consumption 79
6.5. Experiment Setup, Subsystems Connected via Ethernet 80
6.6. Script as Used in the Plan Timing Experiment 82
6.7. Generated Network Packet Flow During Load Testing 83
6.8. Embedded System Power Consumption with Varying Process and Inter-

rupt Load . 85
6.9. Results from synthetic randomized sequential logic operator test 86
6.10. Test Case 1; Regular PTPd Control System Values for Subsystem 1 . . 87
6.11. Test Case 2; Regular PTPd Control System Values for Subsystem 1 . . 88
6.12. Test Case 3; Regular PTPd Control System Values for Subsystem 1 . . 89
6.13. Test Case 3; Transient Response of the Plan Control System for Subsystem 1 90
6.14. Test Case 3; Regular PTPd Control System Values for Subsystem 2 . . 91
6.15. Test Case 3; Transient Response of the Plan Control System for Subsystem 2 91

98

List of Tables

4.1. Software Features . 56
4.2. Software Worst Case Execution Times Dependent on Hardware 56
4.3. Deadlines as Used Within the Sample Case 56
4.4. Scope of Objects in Alloy Sample Case 57

5.1. Encoding of Transducing Machines in the Communication Middleware . 67

6.1. Power States of the OMAP3503 MPU 78
6.2. Experiment Deployment . 80
6.3. PTPd Experiment Configuration Settings 86

99

List of Abbreviations

ACPI Advanced Configuration and Power Interface. 4
APM Advanced Power Management. 4
AUTOSAR AUTomotive Open System ARchitecture. 12, 97

CAN Controller Area Network. 66, 67, 75, 77
CASE Computer-Aided System Engineering. 9
CFQ Completely Fair Queuing. 28
COM Computer-On-Module. 77

DMA Direct Memory Access. 22

ECU Electronic Control Unit. 12, 75, 77
EDF Earliest Deadline First. 25, 26

FIFO First-In First-Out. 28
FLL Frequency Locked Loop. 16, 68, 87, 89

HAL Hardware Abstraction Layer. 19
HiL Hardware-in-the-Loop. 10

MiL Model-in-the-Loop. 10

NFS Network File System. 75
NTP Network Time Protocol. 89

PLL Phase Locked Loop. 16
PMP Power Management Plan. 17, 37–39, 45, 58, 61–64,

66, 67, 72, 74, 75, 80, 81, 83, 84, 87, 89, 90, 93, 94
PTP Precision Time Protocol. 17, 29, 30, 32, 69, 72–74
PTPd Precision Time Protocol daemon. 29, 30, 61, 68–70,

72–74, 90, 92

QoS Quality of Service. 7, 11, 12, 17, 22–24, 63, 66, 90

RCPSP Resource–Constraint Project–Scheduling Problem.
16

RPC Remote Procedure Call. 6
RR Round-Robin. 28

101

List of Abbreviations

SysML Systems Modeling Language. 9

TCP Transmission Control Protocol. 6, 23
TUM Technische Universität München. v, 75

UML Unified Modeling Language. 9, 41

102

Advised Theses, Technical Reports

[Brachert 2013] Brachert, Tobias: 3D Visualization of Technical Automotive Archi-
tectures and Its Process of Running Vehicular Functions. Technical Report: Interdis-
ciplinary Project, Technische Universität München, 2013

[Duvnjak et al. 2013] Duvnjak, Filip ; Molotnikov, Zaur ; Nosovic, Stefan ;
Stoimenov, Aleksandar: EndorA Modeling and Simulation Framework. Technical
Report: Interdisciplinary Project, Technische Universität München, 2013

[Enger 2013] Enger, Andre: Evaluation of Function Partitioning for Distributed Auto-
motive Systems. Technical Report: Interdisciplinary Project, Technische Universität
München, 2013

[Engeser 2013] Engeser, Benedikt: Deployment, Scheduling, and I/O of Physical
Simulation Models in Distributed Systems. Bachelor’s thesis, Technische Universität
München, 2013

[Fuchs 2012] Fuchs, Andreas: Static Multicasting Respecting Quality of Service over
CAN and Ethernet Targeting a LabVIEW-based Test Bench. Bachelor’s thesis, Tech-
nische Universität München, 2012

[Fuchs 2013] Fuchs, Andreas: Measurement and Evaluation of a Communication
Middleware for Distributed Embedded Systems. Technical Report: Interdisciplinary
Project, Technische Universität München, 2013

[Gabriel 2012] Gabriel, Dirk: Power–Management–Plan basierter Scheduler im ITE–
Simulationsframework. Bachelor’s thesis, Technische Universität München, 2012

[Gleixner 2011] Gleixner, Robert: A Linux Scheduler for Power Management in Soft
Real-time Systems. Bachelor’s thesis, Technische Universität München, 2011

[Gleixner 2013] Gleixner, Robert: Power Management Planning in Linux for Real-
Time Software in a Distributed Test Bench Platform. Technical Report: Interdisci-
plinary Project, Technische Universität München, 2013

[Lowinski 2013] Lowinski, Martin: Analysis and Enhancements of Scheduling-
Strategies for Multicore Systems. Master’s thesis, Technische Universität München,
2013

[Schlenk 2012] Schlenk, Alexander: Development and Initial Startup of a Hardware
Platform for Autonomous Shutdown Mechanisms in Automotive Electrical Systems.
Bachelor’s thesis, Technische Universität München, 2012

103

Advised Theses, Technical Reports

[Totakura 2012] Totakura, Sree H.: Development of an Interpreter for the Distributed
Execution of Software Components on an Embedded Platform. Technical Report:
Interdisciplinary Project, Technische Universität München, 2012

104

Own Work

[Barthels et al. 2012a] Barthels, Andreas ; Fröschl, Joachim ; Baumgarten, Uwe:
An Architecture for Power Management in Automotive Systems. In: Proceedings of
the 25th International Conference on Architecture of Computing Systems (ARCS),
2012

[Barthels et al. 2012b] Barthels, Andreas ; Michel, Hans-Ulrich ; Walla, Gregor:
Jedes Watt zählt: Intelligentes Energiemanagement für die Autos von Morgen. In:
Elektronik Automotive. 2012, pp. 24–28

[Barthels et al. 2012c] Barthels, Andreas ; Ruf, Florian ; Schlenk, Alexander ;
Walla, Gregor ; Michel, Hans-Ulrich ; Baumgarten, Uwe: PREcup-1: An Em-
bedded System Platform for Prototyping ECU Power Management. In: Proceedings
of the 8th IEEE Vehicle Power and Propulsion Conference (VPPC), 2012

[Barthels et al. 2011] Barthels, Andreas ; Ruf, Florian ; Walla, Gregor ; Fröschl,
Joachim ; Michel, Hans-Ulrich ; Baumgarten, Uwe: A Model for Sequence Based
Power Management in Cyber Physical Systems. In: 1st International Conference on
ICT as Key Technology for the Fight against Global Warming – ICT-GLOW, 2011,
pp. 87–101

[Caliskan et al. 2007] Caliskan, Murat ; Barthels, Andreas ; Scheuermann, Björn ;
Mauve, Martin: Predicting Parking Lot Occupancy in Vehicular Ad Hoc Networks.
In: Proceedings of the 65th IEEE Vehicular Technology Conference, 2007

[Jain et al. 2010] Jain, Dominik ; Barthels, Andreas ; Beetz, Michael: Adaptive
Markov Logic Networks: Learning Statistical Relational Models with Dynamic Pa-
rameters. In: Proceedings of the 19th European Conference on Artificial Intelligence,
2010

[Lochert et al. 2005] Lochert, Christian ; Caliskan, Murat ; Scheuermann, Björn
; Barthels, Andreas ; Cervantes, Alfonso ; Mauve, Martin: Multiple Simulator
Interlinking Environment for Inter Vehicle Communication. In: Proceedings of the
Second International ACM Workshop on Vehicular Ad Hoc Networks, 2005

[Ruf et al. 2013a] Ruf, Florian ; Barthels, Andreas ; Walla, Gregor ; Winter,
Michael ; Fröschl, Joachim ; Michel, Hans-Ulrich ; Herzog, Hans-Georg: Pro-
totypical Platform and Test Bench for Investigating Automotive Energy and Power
Management Paradigms. In: Elektrik/Elektronik in Hybrid- und Elektrofahrzeugen
und elektrisches Energiemanagement, Haus der Technik, April 2013

[Ruf et al. 2012a] Ruf, Florian ; Barthels, Andreas ; Walla, Gregor ; Winter,
Michael ; Kohler, Tom P. ; Michel, Hans-Ulrich ; Fröschl, Joachim ; Herzog,

105

Own Work

Hans-Georg: Autonomous Load Shutdown Mechanism as a Voltage Stabilization
Method in Automotive Power Nets. In: Proceedings of the 8th IEEE Vehicle Power
and Propulsion Conference (VPPC), 2012

[Ruf et al. 2012b] Ruf, Florian ; Neiss, Alexander ; Barthels, Andreas ; Kohler,
Tom P. ; Michel, Hans-Ulrich ; Fröschl, Joachim ; Herzog, Hans-Georg: Design
Optimization of a 14 V Automotive Power Net Using a Parallelized DIRECT Algo-
rithm in a Physical Simulation. In: Proceedings of the 13th International Conference
on Optimization of Electrical and Electronic Equipment (OPTIM), 2012

[Ruf et al. 2013b] Ruf, Florian ; Schill, Markus ; Barthels, Andreas ; Kohler,
Tom P. ; Michel, Hans-Ulrich ; Fröschl, Joachim ; Herzog, Hans-Georg: Topol-
ogy and Design Optimization of a 14 V Automotive Power Net using a Modified
Discrete PSO in a Physical Simulation. In: Proceedings of the 9th IEEE Vehicle
Power and Propulsion Conference (VPPC), 2013

[Walla et al. 2012a] Walla, Gregor ; Barthels, Andreas ; Ruf, Florian ; Dörfel,
Robert ; Michel, Hans-Ulrich ; Fröschl, Joachim ; Sirch, Ottmar ; Baumgarten,
Uwe ; Herzog, Hans-Georg ; Herkersdorf, Andreas: Framework and Model for
the Evaluation of Energy Efficiency of Partitioning Alternatives. In: Elektrik/Elek-
tronik in Hybrid- und Elektrofahrzeugen und elektrisches Energiemanagement, Haus
der Technik, April 2012, pp. 151–158

[Walla et al. 2012b] Walla, Gregor ; Barthels, Andreas ; Ruf, Florian ; Dörfel,
Robert ; Michel, Hans-Ulrich ; Fröschl, Joachim ; Sirch, Ottmar ; Baumgarten,
Uwe ; Herzog, Hans-Georg ; Stechele, Walter ; Herkersdorf, Andreas: Aspects
of Function Partitioning in Respect to Power Management. In: Proceedings of the
2nd International Energy Efficient Vehicles Conference (EEVC), 2012

[Walla et al. 2012c] Walla, Gregor ; Gabriel, Dirk ; Barthels, Andreas ; Ruf,
Florian ; Michel, Hans-Ulrich ; Herkersdorf, Andreas: ITEsim: A Simulator and
Power Evaluation Framework for Electric/Electronic Architectures. In: Proceedings
of the 8th IEEE Vehicle Power and Propulsion Conference (VPPC), 2012

[Walla et al. 2013] Walla, Gregor ; Molotnikov, Zaur ; Barthels, Andreas ;
Michel, Hans-Ulrich ; Stechele, Walter ; Herkersdorf, Andreas: A Design
Space Exploration Framework or Automotive Embedded Systems and Their Power
Management. In: Proceedings of the 27th European Conference on Modeling and
Simulation (ECMS 2013), 2013

106

Bibliography

[ACPI 2013] Advanced Configuration and Power Interface. http://acpi.info, 2013

[Alur and Dill 1994] Alur, Rajeev ; Dill, David L.: A theory of timed automata. In:
Theoretical Computer Science 126 (1994), Nr. 2, 183 - 235. http://dx.doi.org/http:
//dx.doi.org/10.1016/0304-3975(94)90010-8. – DOI http://dx.doi.org/10.1016/0304–
3975(94)90010–8. – ISSN 0304–3975

[ANETTEST 2012] AnetTest - automated testing of network devices and applications.
2012. – http://anettest.sourceforge.net/

[ARM Ltd. 2010] ARM Ltd.: ARM Cortex Applications Processor A8: Technical Ref-
erence Manual. http://www.arm.com/products/processors/cortex-a/cortex-a8.php?
tab=Resources+, 2010

[Aurrecoechea et al. 1998] Aurrecoechea, Cristina ; Campbell, Andrew T. ; Hauw,
Linda: A survey of QoS architectures. In: Multimedia systems 6 (1998), Nr. 3, pp.
138–151

[AUTOSAR 2013] Automotive Open System Architecture. http://www.autosar.org/,
2013

[Balaguer et al. 2012] Balaguer, Sandie ; Chatain, Thomas ; Haar, Stefan: A
concurrency-preserving translation from time Petri nets to networks of timed au-
tomata. In: Formal Methods in System Design 40 (2012), Nr. 3, 330-355. http:
//dx.doi.org/10.1007/s10703-012-0146-4. – DOI 10.1007/s10703–012–0146–4. – ISSN
0925–9856

[Behrmann et al. 2006] Behrmann, G. ; David, A. ; Larsen, K.G. ; Hakansson,
J. ; Petterson, P. ; Yi, Wang ; Hendriks, M.: UPPAAL 4.0. In: Quantitative
Evaluation of Systems, 2006. QEST 2006. Third International Conference on, 2006,
pp. 125–126

[Benini et al. 2000] Benini, L. ; Bogliolo, A. ; De Micheli, Giovanni: A Sur-
vey of Design Techniques for System-Level Dynamic Power Management. In: IEEE
Transactions on very large scale integration (VLSI) systems 8 (2000), June, Nr. 3

[BMW Technology Guide 2014] BMW Group: BMW Technology Guide: Wiring Har-
ness. http://www.bmw.com/com/en/insights/technology/technology guide/articles/
wiring harness.html. Version: February 2014

[Bucher et al. 2013] Bucher, Roberto ; Dozio, Lorenzo ; Gasperini, Daniele ; Mayer,
Hannes ; Mantegazza, Paolo ; Masarati, Pierangelo ; Neuhauser, Michael ; Rac-
ciu, Giovanni ; Schleef, David ; Soetens, Peter: RTAI - the RealTime Application
Interface for Linux from DIAPM. 2013. – http://www.rtai.org/

107

http://acpi.info
http://dx.doi.org/http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://dx.doi.org/http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://anettest.sourceforge.net/
http://www.arm.com/products/processors/cortex-a/cortex-a8.php?tab=Resources+
http://www.arm.com/products/processors/cortex-a/cortex-a8.php?tab=Resources+
http://www.autosar.org/
http://dx.doi.org/10.1007/s10703-012-0146-4
http://dx.doi.org/10.1007/s10703-012-0146-4
http://www.bmw.com/com/en/insights/technology/technology_guide/articles/wiring_harness.html
http://www.bmw.com/com/en/insights/technology/technology_guide/articles/wiring_harness.html
http://www.rtai.org/

Bibliography

[Calandrino et al. 2006] Calandrino, John M. ; Leontyev, Hennadiy ; Block, Aaron
; Devi, UmaMaheswari C. ; Anderson, James H.: LITMUSRT: A Testbed for
Empirically Comparing Real-Time Multiprocessor Schedulers. In: Real-Time Systems
Symposium, 2006. RTSS’06. 27th IEEE International IEEE, 2006, pp. 111–126

[Ceraolo 2000] Ceraolo, M.: New dynamical models of lead-acid batteries. In: Power
Systems, IEEE Transactions on 15 (2000), November, Nr. 4, pp. 1184–1190

[Cerqueira and Brandenburg 2013] Cerqueira, Felipe ; Brandenburg, Björn B: A
Comparison of Scheduling Latency in Linux, PREEMPT RT, and LITMUSRT. In:
OSPERT 2013 (2013), pp. 20

[Cochran and Marinescu 2010] Cochran, Richard ; Marinescu, Cristian: Design and
implementation of a PTP clock infrastructure for the Linux kernel. In: Precision
Clock Synchronization for Measurement Control and Communication (ISPCS), 2010
International IEEE Symposium on IEEE, 2010, pp. 116–121

[Cochran et al. 2011] Cochran, Richard ; Marinescu, Cristian ; Riesch, Christian:
Synchronizing the Linux system time to a PTP hardware clock. In: Precision Clock
Synchronization for Measurement Control and Communication (ISPCS), 2011 Inter-
national IEEE Symposium on IEEE, 2011, pp. 87–92

[Colak et al. 2013] Colak, Selcuk ; Agarwal, Anurag ; Erenguc, Selcuk: Multi-Mode
Resource-Constrained Project-Scheduling Problem With Renewable Resources: New
Solution Approaches. In: Journal of Business & Economics Research (JBER) 11
(2013), Nr. 11, pp. 455–468

[Correll et al. 2005] Correll, Kendall ; Barendt, Nick ; Branicky, Michael: Design
considerations for software only implementations of the IEEE 1588 precision time
protocol. In: Conference on IEEE Bd. 1588, 2005, pp. 11–15

[Dick et al. 1998] Dick, Robert P. ; Rhodes, David L. ; Wolf, Wayne: TGFF: task
graphs for free. In: Proceedings of the 6th international workshop on Hardware/soft-
ware codesign IEEE Computer Society, 1998, pp. 97–101

[Eugster et al. 2003] Eugster, Patrick T. ; Felber, Pascal A. ; Guerraoui, Rachid
; Kermarrec, Anne-Marie: The many faces of publish/subscribe. In: ACM Com-
puting Surveys (CSUR) 35 (2003), Nr. 2, pp. 114–131

[Faggioli et al. 2009] Faggioli, Dario ; Checconi, Fabio ; Trimarchi, Michael ;
Scordino, Claudio: An EDF scheduling class for the Linux kernel. In: Proc. of the
Real-Time Linux Workshop, 2009

[Fedorova et al. 2007] Fedorova, Alexandra ; Seltzer, Margo ; Smith, Michael D.:
Improving Performance Isolation on Chip Multiprocessors via an Operating System
Scheduler. In: Proceedings of the 16th International Conference on Parallel Architec-
ture and Compilation Techniques. Washington, DC, USA : IEEE Computer Society,
2007 (PACT ’07). – ISBN 0–7695–2944–5, pp. 25–38

108

Bibliography

[Fuchs et al. 2010] Fuchs, Martin ; Scheer, Patrick ; Grzemba, Andreas: Selektiver
Teilnetzbetrieb im Fahrzeug: Eine Realisierung für den CAN-Bus und Adaption auf
andere Bussysteme. In: AmE 2010 - Automotive meets Electronics (GMM-FB 64),
2010

[Gehring et al. 2009] Gehring, R. ; Fröschl, J. ; Kohler, T.P. ; Herzog, H.-G.:
Modeling of the automotive 14 V power net for voltage stability analysis. In: Vehicle
Power and Propulsion Conference, 2009, pp. 71–77

[Gehring and Herzog 2009] Gehring, R. ; Herzog, H.-G.: Simulation der Span-
nungsstabilität im 12 V Energiebordnetz bei komplexen E/E-Architekturen. In: Mod-
erne Elektronik im Kraftfahrzeug, Tagung Elektronik im Kraftfahrzeug. Dresden :
Haus der Technik e.V., June 2009

[Godard 2012] Godard, Sebastien: SYSSTAT Utilities Version 9.0.6. 2012. – http:
//sebastien.godard.pagesperso-orange.fr/

[GUMSTIX, Inc. 2012] GUMSTIX, Inc.: Computers-on-Module: Overo. http://www.
gumstix.com/, 2012

[Haberl 2011] Haberl, Wolfgang: Code Generation and System Integration of Dis-
tributed Automotive Applications, Technische Universität München, Diss., 2011

[Hartkopp and Thürmann 2005] Hartkopp, Oliver ; Thürmann, Urs: Interface for
communications between vehicle applications and vehicle bus systems, implements at
least one vehicle bus protocol within protocol family, between socket-and network lay-
ers. November 17 2005. – DE Patent 102,004,020,880

[Hartkopp et al. 2013] Hartkopp, Oliver ; Thürmann, Urs ; Venzano, Daniele:
Low-level CAN interface–Application Programmers Interface. 2013. – http://www.
brownhat.org/docs/socketcan/llcf-api.html

[Irani et al. 2003] Irani, S. ; Shukla, S. ; Gupta, R.: Online Strategies for Dy-
namic Power Management in Systems with Multiple Power-Saving States. In: ACM
Transactions on Embedded Computing Systems 2 (2003), August, Nr. 3, pp. 325–346

[Jackson et al. 2013] Jackson, Daniel ; Milicevic, Aleksandar ; Torlak, Emina ;
Kang, Eunsuk ; Near, Joe: alloy: a language & tool for relational models. http:
//alloy.mit.edu, 2013

[Jejurikar and Gupta 2004] Jejurikar, R. ; Gupta, R.: Dynamic Voltage Scaling for
Systemwide Energy Minimization in Real-Time Embedded Systems. In: ISLPED,
2004

[Karsai et al. 2003] Karsai, G. ; Sztipanovits, J. ; Ledeczi, A. ; Bapty, T.: Model-
integrated development of embedded software. In: Proceedings of the IEEE 91 (2003),
Januar, Nr. 1, pp. 145 – 164. http://dx.doi.org/10.1109/JPROC.2002.805824. – DOI
10.1109/JPROC.2002.805824. – ISSN 0018–9219

109

http://sebastien.godard.pagesperso-orange.fr/
http://sebastien.godard.pagesperso-orange.fr/
http://www.gumstix.com/
http://www.gumstix.com/
http://www.brownhat.org/docs/socketcan/llcf-api.html
http://www.brownhat.org/docs/socketcan/llcf-api.html
http://alloy.mit.edu
http://alloy.mit.edu
http://dx.doi.org/10.1109/JPROC.2002.805824

Bibliography

[Katoen et al. 2013] Katoen, Joost-Pieter ; Noll, Thomas ; Wu, Hao ; Santen,
Thomas ; Seifert, Dirk: Model-based energy optimization of automotive control
systems. In: Proceedings of the Conference on Design, Automation and Test in Europe
EDA Consortium, 2013, pp. 761–766

[Kim et al. 2002] Kim, Hyun-Jun ; Park, Sang-Hyun ; Kim, Jung-Guk ; Kim, Moon-Hae
; Rim, Kee-Wook: TMO-Linux: a Linux-based real-time operating system supporting
execution of TMOs. In: Object-Oriented Real-Time Distributed Computing, 2002.
(ISORC 2002). Proceedings. Fifth IEEE International Symposium on, 2002, pp. 288–
294

[Kim et al. 2005] Kim, Jung-Guk ; Kim, Moon-Hae ; Kim, Kwang ; Heu, Shin: TMO-
eCos: an eCos-based real-time micro operating system supporting execution of a
TMO structured program. In: Object-Oriented Real-Time Distributed Computing,
2005. ISORC 2005. Eighth IEEE International Symposium on, 2005, pp. 182–189

[Kohler 2013] Kohler, Tom P.: Prädiktives Leistungsmanagement in Fahrzeugbordnet-
zen, Technische Universität München, Diss., 2013

[Kohler et al. 2010] Kohler, Tom P. ; Fröschl, Joachim ; Bertram, Christiane ;
Buecherl, Dominik ; Herzog, Hans-Georg: Approach of a Predictive, Cybernetic
Power Distribution Management. In: The 25th World Electric Vehicle Symposium
and Exposition, World Electric Vehicle Association (WEVA), November 2010

[Kohler et al. 2011] Kohler, Tom P. ; Gehring, Rainer ; Fröschl, Joachim
; Buecherl, Dominik ; Herzog, Hans-Georg: Voltage Stability Analysis
of Automotive Power Nets based on Modeling and Experimental Results. In:
Chiaberge, Marcello (Hrsg.): New Trends and Developments in Automotive
System Engineering. InTech, 2011, Chapter 30, pp. 611–630. – Available
from: http://www.intechopen.com/articles/show/title/voltage-stability-analysis-of-
automotive-power-nets-based-on-modeling-and-experimental-results

[Kovácsházy and Ferencz 2012] Kovácsházy, Tamás ; Ferencz, Bálint: Performance
evaluation of PTPd, a IEEE 1588 implementation, on the x86 Linux platform for
typical application scenarios. In: Instrumentation and Measurement Technology Con-
ference (I2MTC), 2012 IEEE International IEEE, 2012, pp. 2548–2552

[Levis et al. 2005] Levis, P. ; Madden, S. ; Polastre, J. ; Szewczyk, R. ;
Whitehouse, K. ; Woo, A. ; Gay, D. ; Hill, J. ; Welsh, M. ; Brewer, E. ;
Culler, D.: TinyOS: An Operating System for Sensor Networks. Version: 2005.
http://dx.doi.org/10.1007/3-540-27139-2 7. In: Weber, Werner (Hrsg.) ; Rabaey,
JanM. (Hrsg.) ; Aarts, Emile (Hrsg.): Ambient Intelligence. Springer Berlin Heidel-
berg, 2005. – DOI 10.1007/3–540–27139–2 7. – ISBN 978–3–540–23867–6, 115-148

[Linaro 2012] Linaro TI Kernel. 2012. – http://www.linaro.org/

[Mazumder et al. 2012] Mazumder, Biswajit ; Jiang, Hao ; Hallstrom, Jason O.:
Design and Analysis of Almost-Always-Sleeping Schedulers for Embedded Systems.
In: The Sixth International Conference on Sensor Technologies and Applications

110

http://dx.doi.org/10.1007/3-540-27139-2_7
http://www.linaro.org/

Bibliography

(SENSORCOMM), 2012, pp. 284–291. – http://www.thinkmind.org/download.php?
articleid=sensorcomm 2012 12 20 10202

[Menage 2006] Menage, Paul: CGROUPS. 2006. – https://www.kernel.org/doc/
Documentation/cgroups/cgroups.txt

[Microsoft Corp. 1996] Microsoft Corp.: Advanced Power Manage-
ment Specification. http://download.microsoft.com/download/1/6/1/
161ba512-40e2-4cc9-843a-923143f3456c/APMV12.rtf, 1996

[Microsoft FORMULA 2012] FORMULA – Modeling Foundations. http://research.
microsoft.com/en-us/projects/formula/, 2012

[Mills et al. 2010] Mills, D. ; Delaware, U. ; Martin, J.: Network Time Protocol
Version 4: Protocol and Algorithms Specification. http://tools.ietf.org/html/rfc5905.
Version: 2010

[Molnar 2013] Molnar, Ingo: Linux RT-Preempt Patch. 2013. – http://rt.wiki.kernel.
org/index.php/RT PREEMPT HOWTO

[Moore 1956] Moore, E.F.: Gedanken-experiments on sequential machines. In: Au-
tomata studies 34 (1956), pp. 129–153

[Moreno and de Niz 2012] Moreno, G.A. ; Niz, D. de: An Optimal Real-Time Voltage
and Frequency Scaling for Uniform Multiprocessors. In: Embedded and Real-Time
Computing Systems and Applications (RTCSA), 2012 IEEE 18th International Con-
ference on, 2012. – ISSN 1533–2306, pp. 21–30

[Nelson 2012] Nelson, Phil: bc - an arbitrary precision calculator language. 2012. –
http://www.gnu.org/software/bc/

[Object Management Group 2011] Object Management Group: State Machines.
In: Unified Modeling Language Super Structure. 2011, Chapter 15, pp. 535–592. –
http://www.omg.org/spec/UML/2.4.1/

[Ohly et al. 2008] Ohly, Patrick ; Lombard, David N. ; Stanton, Kevin B.: Hardware
assisted precision time protocol. Design and case study. In: Proceedings of LCI Inter-
national Conference on High-Performance Clustered Computing. Urbana, IL, USA:
Linux Cluster Institute Bd. 5, 2008, pp. 121–131

[Oikawa and Rajkumar 1998] Oikawa, Shui ; Rajkumar, Raj: Linux/RK: A portable
resource kernel in Linux. In: IEEE Real-Time Systems Symposium Citeseer, 1998

[Polenov et al. 2007] Polenov, D. ; Probstle, H. ; Brosse, A. ; Domorazek, G.
; Lutz, J.: Integration of supercapacitors as transient energy buffer in automotive
power nets. In: Power Electronics and Applications, European Conference on, 2007,
pp. 1–10

[Ramchandani 1974] Ramchandani, Chander: Analysis of asynchronous concurrent
systems by timed Petri nets, Massachusetts Institute of Technology, Diss., 1974

111

http://www.thinkmind.org/download.php?articleid=sensorcomm_2012_12_20_10202
http://www.thinkmind.org/download.php?articleid=sensorcomm_2012_12_20_10202
https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
http://download.microsoft.com/download/1/6/1/161ba512-40e2-4cc9-843a-923143f3456c/APMV12.rtf
http://download.microsoft.com/download/1/6/1/161ba512-40e2-4cc9-843a-923143f3456c/APMV12.rtf
http://research.microsoft.com/en-us/projects/formula/
http://research.microsoft.com/en-us/projects/formula/
http://tools.ietf.org/html/rfc5905
http://rt.wiki.kernel.org/index.php/RT_PREEMPT_HOWTO
http://rt.wiki.kernel.org/index.php/RT_PREEMPT_HOWTO
http://www.gnu.org/software/bc/
http://www.omg.org/spec/UML/2.4.1/

Bibliography

[Reinhardt and Kucera 2013] Reinhardt, Dominik ; Kucera, Markus: Domain Con-
trolled Architecture - A New Approach for Large Scale Software Integrated Automo-
tive Systems. In: PECCS, 2013, pp. 221–226

[Rittmann 2008] Rittmann, Sabine: A methodology for modeling usage behavior of
multi-functional systems, Technische Universität München, Diss., 2008

[Schantz et al. 2003] Schantz, Richard E. ; Loyall, Joseph P. ; Rodrigues, Craig
; Schmidt, Douglas C. ; Krishnamurthy, Yamuna ; Pyarali, Irfan: Flexible
and Adaptive QoS Control for Distributed Real-Time and Embedded Middleware.
Version: 2003. http://dx.doi.org/10.1007/3-540-44892-6 19. In: Endler, Markus
(Hrsg.) ; Schmidt, Douglas (Hrsg.): Middleware 2003 Bd. 2672. Springer Berlin
Heidelberg, 2003. – DOI 10.1007/3–540–44892–6 19. – ISBN 978–3–540–40317–3,
374-393

[Schmutzler et al. 2010] Schmutzler, Christoph ; Kruger, Andreas ; Schuster, Fred
; Simons, Martin: Energy Efficiency in Automotive Networks: Assessment and Con-
cepts. In: High Performance Computing and Simulation (HPCS), 2010 International
Conference on, 2010, pp. 232–240

[Silberschatz et al. 2005] Silberschatz, Abraham ; Gagne, Greg ; Galvin, Peter B.:
Operating System Concepts. Seventh. John Wiley and Sons, Inc., 2005

[Stuijk et al. 2006] Stuijk, Sander ; Geilen, Marc ; Basten, Twan: SDFˆ 3: SDF
For Free. In: Application of Concurrency to System Design, 2006. ACSD 2006. Sixth
International Conference on IEEE, 2006, pp. 276–278

[TCPDump 2012] TCPDump Version 4.1.1. 2012. – http://www.tcpdump.org/

[Texas Instruments 2012] Texas Instruments: OMAP Power Management Whitepa-
per. 2012. – http://www.ti.com/lit/an/sprt495/sprt495.pdf

[Tiwari 2008] Tiwari, Ashish: Abstractions for hybrid systems. In: Formal Methods in
System Design 32 (2008), Nr. 1, 57-83. http://dx.doi.org/10.1007/s10703-007-0044-3.
– DOI 10.1007/s10703–007–0044–3. – ISSN 0925–9856

[Vector Informatik GmbH 2013] Vector Informatik GmbH: PREEvision. http:
//vector.com/vi preevision en.html, July 2013

[Šimunić et al. 1999] Šimunić, Tajana ; Benini, Luca ; De Micheli, Giovanni: Cycle-
accurate simulation of energy consumption in embedded systems. In: Proceedings of
the 36th annual ACM/IEEE Design Automation Conference. New York, NY, USA :
ACM, 1999 (DAC ’99). – ISBN 1–58113–109–7, 867–872

[Weibel 2009] Weibel, Hans: Technology Update on IEEE 1588: The Second Edition
of the High Precision Clock Synchronization Protocol. In: Embedded World (2009)

[Xenomai 2013] Xenomai: Real-Time Framework for Linux. 2013. – http://www.
xenomai.org/

112

http://dx.doi.org/10.1007/3-540-44892-6_19
http://www.tcpdump.org/
http://www.ti.com/lit/an/sprt495/sprt495.pdf
http://dx.doi.org/10.1007/s10703-007-0044-3
http://vector.com/vi_preevision_en.html
http://vector.com/vi_preevision_en.html
http://www.xenomai.org/
http://www.xenomai.org/

Bibliography

[Zhu 2013] Zhu, Wensi: IEEE 1588 implementation with FLL vs. PLL. In: Precision
Clock Synchronization for Measurement Control and Communication (ISPCS), 2013
International IEEE Symposium on IEEE, 2013, pp. 71–76

113

	Abstract
	Acknowledgements
	Foundations & Theory
	Introduction
	Foundations
	Power Management in Hardware
	Embedded Systems Scheduling
	Power Management and Interaction Paradigms
	Task Graphs
	Modeling

	Problem Statement
	Related Work
	Power Management in Operating Systems
	AUTomotive Open System ARchitecture (AUTOSAR)
	Energy Flow Management
	Voltage Stability
	Precision Time Synchronization
	Resource–Constraint Project–Scheduling Problem

	Contribution
	Structure

	Operating System Concepts
	Operating System Structure
	Hardware Access
	Memory Access
	Resource Management
	Quality of Service
	Adaptivity Layer
	Application Program Interface

	Real-Time Operating Systems
	Hard Real-Time Tasks
	Soft Real-Time Tasks
	Implementation Concepts

	Process Scheduling
	Preemption
	Queuing
	Time Slices

	Timing Abstractions
	Clock Synchronization

	Summary

	Logical/Technical Modeling
	Cyber-Physical Systems
	Technical Abstraction
	Software Abstraction
	Power Management Planning
	Transducing Mechanism
	Response Flexibility

	Cybernetic Control Approach
	Logical Levels
	Technical Levels
	Energy Distribution
	Power Distribution

	Summary

	System Integration Methods
	Satisfiability Meta Model
	Discretization of Time

	Design Space Exploration
	Single Subsystem Scheduling
	Multiple Subsystems

	Framework
	Modeling
	Sample Case
	Results
	Simulation

	Summary

	Implementation and Evaluation
	Linux Implementation
	Configuration and Virtual Filesystem
	Plan Scheduler
	Idle Process
	Task Interface
	PMP Data Structure Association
	Sequential Logic Operators

	Tick Scheduler
	Dummy RT Tasks

	Multicasting Middleware
	Socket Interface
	Transducing Machines

	Logging Subsystem
	Precision Time Protocol daemon
	Implemented Control Loop
	Precision Time Experiment Setup

	Summary

	Evaluation in a Test Bench
	Test Bench
	Hardware and Network Architecture
	ECU Hardware Platform
	Small Scale Experimentation

	Plan Timing Experiment
	Experiment Script
	Experiment Control Network Sequence
	Results

	Logic Operator Performance Experiment
	PTPd Experiment
	PTPd on Idle Subsystem and Network
	PTPd with Presence of Real-Time Tasks
	PlannedPTPd with Presence of Real-Time Tasks

	Summary

	Conclusion
	Appendix
	List of Figures
	List of Tables
	Glossary
	List of Abbreviations
	List of Symbols
	Advised Theses, Technical Reports
	Own Publications
	Bibliography

