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Abstract: We present a new nonlinear state estimation approach based on Kalman filter theory
and Takagi-Sugeno (TS) modeling for an active vehicle suspension application in this paper.
The nonlinear state equations of a so-called hybrid suspension configuration, which result from
nonlinear spring and damping characteristics, are exactly represented by means of a continuous-
time TS system, i. e. a convex combination of local linear state space models. We derive observer
gain matrices for each linear subsystem on the basis of standard Kalman filter theory, before
we construct the global observer for the overall nonlinear system. Convergence of the global
observer is ensured in terms of linear matrix inequality conditions. We then study the estimation
performance of the TS Kalman filter in simulations and experiments on a hybrid quarter-car test
rig using a measured road profile as disturbance input. The approach achieves a high estimation
accuracy of well above 90% in the simulation and 70 − 90% in the experiments.
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1. INTRODUCTION

Vehicle suspensions have been and still are subject to
research and development in the automotive field. By
integrating active and semi-active components into the
suspension of production vehicles the primary conflict
between ride comfort and ride safety due to an uneven
road surface as well as the objective to meet constructional
constraints can be eased, Hrovat (1997). In order to bene-
ficially modify the vertical suspension dynamics by means
of mechatronic elements, relevant information about the
current driving state must be at least partially known. The
information needed may range from solely the absolute
body and the damper relative velocity, see e. g. Karnopp
et al. (1974), up to the full vertical dynamic state vector
if state feedback control is applied, see e. g. Hrovat (1997),
Venhovens (1994). Since for practical and economical rea-
sons measuring all of these quantities is not an option,
estimation techniques have to be applied to calculate the
system states from the available measurement signals.

Classical Kalman filter theory qualifies for application
in linear suspension state estimation due to its optimal-
ity properties and its convenience in implementation, see
Zarchan and Musoff (2005). Furthermore, as discussed in
Venhovens (1994) the road height velocity of characteristic
road disturbances may approximately be described by
means of Gaussian white noise processes. Kalman filter
design for active suspension control based on a linear plant
model is discussed e. g. in Sharma et al. (1994) and Yu
and Crolla (1998). However, when passive or semi-active
dampers are part of the suspension configuration, their sig-
nificant nonlinear force characteristics cannot be neglected
without substantial deterioration in estimation quality.

⋆ This project at the Institute of Automatic Control, TU München
has been funded by the German Research Foundation (DFG).

Thus, a frequently employed strategy is to extend a linear
suspension representation by a nonlinear damper model
that generates a fictitious force input based on the esti-
mated damper relative velocity, see e. g. Lindgärde (2002),
Koch et al. (2010). General extensions of Kalman filter
theory to nonlinear systems are the Extended (EKF) or the
Unscented Kalman filter (UKF) variants, see e. g. Zarchan
and Musoff (2005) and Simon (2006). Suspension control
applications of these concepts may be found in Koch et al.
(2010) and Fleps-Dezasse and Brembeck (2013). However,
these approaches are computationally intensive.

In contrast,Takagi-Sugeno (TS)models (Takagi and Sugeno
(1985)) aim at representing nonlinear dynamics by a
smooth interpolation of linear models. Thereby, for a quite
general class of nonlinear systems an exact description
of the nonlinear dynamics can be obtained at least on
a compact region of interest incorporating the origin by
using the sector nonlinearity approach (Tanaka and Wang
(2001)). Thus, we may apply linear control and observer
theory upon the given linear models, to construct a global
controller or observer for the overall nonlinear system.
Stability analysis as well as control and observer design for
TS systems may then be defined as linear matrix inequality
(LMI) problems, see e. g. Tanaka and Wang (2001).

In this paper we combine exact TS modeling with the
amenities of linear Kalman filter theory to allow for state
feedback in suspension control. Therefore, we represent
the given nonlinear model of a hybrid suspension system
in a quarter-car framework as a family of local linear
state space models. Then, we design local Kalman filters
to estimate the states for each of these linear subsys-
tems, before the global state estimator for the nonlinear
vehicle suspension is derived. Simon (2003) describes a
similar approach for fuzzy discrete time systems, where



optimality properties and simulation results are discussed.
However, in this work we study the continuous-time case
of state estimation, since an exact transformation of the
given nonlinear plant model into the discrete-time TS
representation via the sector nonlinearity approach is not
possible without inducing discretization errors. Moreover,
the nonlinear functions involved in the modeling of the
vehicle suspension studied here are rather given in terms
of identified nonlinear force characteristics than by using
analytic relationships, cf. Georg et al. (2012).

We organized the paper as follows: Section 2 gives a gen-
eral introduction to TS modeling and observer design. In
Section 3 the TS representation of the hybrid suspension
system is derived, before the TS Kalman filter for suspen-
sion state estimation is designed in Section 4. In Section 5
we present simulation and experimental results to study
the estimation performance of the proposed concept.

2. TAKAGI-SUGENO OBSERVER DESIGN

2.1 TS System Representation

Consider an input-affine nonlinear system of the form

ẋ(t) =A(x)x(t) +B(x)u(t)
y(t) =C(x)x(t) +D(x)u(t). (1)

In order to design a TS observer, system (1) is transformed
into the Takagi-Sugeno model representation

ẋ(t) =
l

∑
i=1

hi(θ(t))[Aix(t) +Biu(t)]

y(t) =
l

∑
i=1

hi(θ(t))[Cix(t) +Diu(t)],
(2)

where hi(θ(t)) denotes the weighting function determining
the share by which the ith linear subsystem contributes to
the overall system dynamics.

Therefore, each nonlinear relationship in (1) is handled
separately. If the nl nonlinearities fk(θ(t)) with k ∈
{1, . . . , nl} lie within sectors resulting from linear subsys-
tems, the sector nonlinearity approach allows for an exact
representation of the original system. Therein, θ(t) de-
notes the vector of premise variables, i. e. the quantities the
nonlinear functions depend on. With the transformation

fk(θ(t)) = f
k

fk−fk(θ(t))
fk−fk´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
µk,1(θ)

+fk

fk(θ(t))−f
k

fk−fk´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
µk,2(θ)

(3)

of the kth nonlinearity fk(θ(t)), the TS system can be
formulated as a weighted convex sum of the linear subsys-
tems given by the sector bounds. Therein, µk, 1(θ(t)) and
µk, 2(θ(t)) denote the sector membership functions and

f
k
=min (fk(θ(t))) and fk =max (fk(θ(t))) indicate the

minimum and maximum sector bounds of the kth nonlin-
earity, respectively. Hence, µk, 1(θ(t)) and µk, 2(θ(t)) give
the fulfillment grade of fk(θ(t)) with respect to f

k
and fk,

respectively. Since the sector bounds fully enclose the non-
linearity on the universe of discourse, ∑2

jk=1 µk, jk(θ(t))=1
and 0≤µk, jk(θ(t))≤1 hold for the sector functions.

The ith linear subsystem (Ai,Bi,Ci,Di) in (2) is con-
structed by employing the corresponding combinations of
minimum and maximum sector bounds instead of using the
nonlinearities themselves and thus represents the nonlinear

system at one ‘extreme’ configuration. Since a set of two
sector membership functions is needed to describe each of
the nl nonlinearities, for the number of linear subsystems
l = 2nl holds. The degree of activation of each subsystem
is then given by the aggregated weighting functions, e. g.

hi(θ(t)) = µ1, j1(θ(t)) ⋅ . . . ⋅ µnl, jnl
(θ(t)) (4)

determined from one possible combination i of the nl

sector functions µk, jk(θ(t)) with jk ∈ {1, 2}. Thus, also
the weighting functions satisfy the convex sum property

l

∑
i=1

hi(θ(t)) = 1 and 0 ≤ hi(θ(t)) ≤ 1, ∀i, (5)

a fact that facilitates stability analysis later on. In general,
the premise variable θ(t) may be composed of system
states, inputs, and measurements. However, here we as-
sume that θ(t) consists of measured quantities and known
inputs only and does not depend on estimated states.

The rationale above can easily be extended to a broad class
of nonlinear functions. In particular, as shown in Bergsten
(2001) this is true for nonlinear systems of the form

ẋ(t) =A(x,u)x(t) +B(x,u)u(t)
y(t) =C(x,u)x(t) +D(x,u)u(t). (6)

2.2 Deterministic TS Observer Design

Consider a time-invariant full-order observer for (2) of the
form, see e.g. Bergsten (2001),

˙̂x(t) =
l

∑
i=1

hi(θ(t))[Aix̂(t) +Biu(t) +Li (y(t) − ŷ(t)) ]

ŷ(t) =
l

∑
i=1

hi(θ(t))[Cix̂(t) +Diu(t)].
(7)

Therein, Li denotes the observer gain matrix of the ith
linear subsystem and hi(θ(t)) coincides with the ith
aggregated membership function of the system model (2).
The objective of the observer (7) is to estimate the states
of the system (2). This is the case, if the error dynamics

ė = ẋ− ˙̂x are asymptotically stable. Following Tanaka and
Wang (2001), the error dynamics yield

ė =
l

∑
i=1

l

∑
j=1

hi(θ(t))hj(θ(t))[Ai −LiCj]e. (8)

Lyapunov theory then shows that the error dynamics are
asymptotically stable, if there exists a common positive
definite matrix P̃ = P̃T ≻ 0, such that

HT
iiP̃ + P̃Hii ≺ 0,

(Hij +Hji)T P̃ + P̃ (Hij +Hji) ≺ 0, i < j, (9)

where Hij = (Ai −LiCj) and i, j ∈ {1, . . . , l}. The con-
straints given by the LMIs in (9) thus imply that Li not

only stabilizes (AT
i , C

T
i ), but also (AT

i , C
T
j ).

The observer gains Li can be either determined separately
for each linear subsystem by applying linear estimation
theory or may be designed globally, see e. g. Tanaka
and Wang (2001). While the LMI constraints in (9) in
the former case subsequently check whether the error
dynamics (8) are stable or not, in the latter case the Li are
part of the LMI solution designed such that convergence is
ensured and for example a desired decay rate is obtained.



2.3 Stochastic TS Observer Design

However, physical dynamic systems are not only influenced
by means of known control inputs u(t), but may also be
subject to stochastic disturbances. Thus, the extension of
the TS state space model (2) according to the linear state
equation representation as given in Maybeck (1979) by
adding noise processes yields

ẋ(t) =
l

∑
i=1

hi(θ(t))[Aix(t) +Biu(t) +Giw(t)]

y(t) =
l

∑
i=1

hi(θ(t))[Cix(t) +Diu(t) + v(t)].
(10)

Therein, w(t) and v(t) denote the zero-mean Gaussian
white process and measurement noise, respectively, char-
acterized by their covariance kernels

E {w(t)wT (τ)} =Qδ (t − τ) , Q =QT ≻ 0, (11)

E {v(t)vT (τ)} =Rδ (t − τ) , R =RT ≻ 0, (12)

where E {⋅} and δ (t − τ) represent the expectation value
operator and the Dirac delta, respectively. Furthermore,
w(t) and v(t) are assumed to be uncorrelated.

Since the Kalman filter is of the same structure as (7) and
due to its optimality properties in case of stochastically
disturbed linear systems, we aim at determining Li based
on Kalman filter theory. Originally, the Kalman-Bucy fil-
ter, see Kalman and Bucy (1961), continuously calculates
the expected value x̂(t) of the true system state x(t) and
its error covariance P(t). This results in a time-variant
gain matrix L(t), which converges to a constant steady-
state gain matrix L = const. if the linear system model
is time-invariant. For the ease of implementation and in
order to keep a time-invariant observer gain approach,
the observer gain Li in (7) for each linear subsystem i is
determined by the steady-state solution of the time-variant
Kalman filter, see e. g. Simon (2006). Assuming the pairs
(Ai, Ci) to be detectable and (Ai, Gi) to be stabilizable
with i ∈ {1, . . . , l}, for each linear subsystem i one may find
the steady-state Kalman observer gain matrix

Li = PiC
T
i R

−1, (13)

where Pi is the symmetric and positive definite solution
of the algebraic matrix Riccati equation

0 =AiPi +PiA
T
i +GiQGT

i −PiC
T
i R

−1CiPi. (14)

In the following, a TS Kalman filter is utilized for state es-
timation in an actively controlled suspension application.

3. VEHICLE SUSPENSION MODEL

In this work, we address the so-called hybrid suspension
configuration that has been studied e. g. in Koch et al.
(2011) and Pletschen et al. (2013). This set-up consists of a
slow-active spring mount adjustment, i. e. an actuator with
a bandwidth of up to 5Hz in series to the primary spring,
in combination with a continuously variable damper, see
Fig. 1 (right). The hybrid suspension strut is able to unite
the respective advantages of active (high performance
potential) and semi-active (low power demand) suspension
components. For the analysis of the vertical motion of
vehicle body and wheel mass quarter-car models can be
used to study the major dynamic effects in the frequency
range below 25Hz, Mitschke and Wallentowitz (2004).

mc

mw

Fc(x)
Fd(x, ucvd)

cw dw

zc

zw

zg

F (t)zact

Fig. 1. Test rig (le.) and model of hybrid quarter-car (ri.)

Due to several nonlinear force elements, the quarter-car
equations of motion can be written as a nonlinear state
space model of the form (6). In the following, the nonlinear
model of the quarter-car test rig is represented in TS model
description, where the predominant nonlinear effects are
taken into account. Then, we calculate the TS Kalman
gain matrices for each linear subsystem from (13), before
we determine the global observer and verify its stability.

3.1 Quarter-Car Test Rig with Hybrid Suspension Strut

On the basis of the suspension components, the kinemat-
ics, the actuators and the sensor architecture of a current
upperclass sedan, a quarter-car test rig has been designed
for experimental analysis of suspension control concepts,
see Fig. 1 (left). For accurate simulation and control input
calculation, the parameters and major nonlinear effects
have been identified at the test rig and are taken into
account, see Koch et al. (2011). Nonlinearities within the
force transfer between chassis and wheel mass result from

● a progressive spring characteristic due to the included
compression and tension stops,
● a semi-active damper with degressive force-velocity
characteristics as well as an asymmetric behavior in
the compression and the tension direction,
● Coulomb friction, and
● an inclined position of the suspension strut, and thus
a kinematic transmission factor (Matschinsky (1998))

idyn = (żc − żw)
(strut)

(żc − żw) = i0 − i1 (zc − zw) (15)

between the suspension strut plane and wheel plane
that changes linearly with the suspension deflection.

The nonlinear behavior of the tire may be described by
a linear-quadratic stiffness including possible wheel lift-off
and a frequency-dependent tire damping characteristic.

The passive suspension configuration is realized by keeping
the spring mount adjustment at a constant level and
applying a constant current Id, p to the damper valves such
that a medium damper characteristic results. Hence,

fc,p= 1
2π

√
cc
mc
≈1.1Hz and Dc,p= dc

2
√
ccmc
≈0.21

are attained as undamped natural frequency and damping
ratio of the body mass, respectively.

3.2 Suspension Model in TS System Representation

Based on the quarter-car model of the hybrid suspension
configuration in Fig. 1 (right), the equations of motion for
the chassis mass mc and the wheel mass mw are derived
by applying Newton’s law. Together with the state vector



x(t) = [zc − zw, żc, zw − zg, żw]T and the input vector

u(t) = [uhy, ucvd, ud]T these can be transformed into a
fourth-order nonlinear state space model. While the deflec-
tion of the hydraulic actuator uhy(t), which manipulates
the spring mount according to zact(t)=zc(t)−uhy(t)/idyn(t),
and the valve current of the semi-active damper ucvd(t)=
Id(t) serve as control inputs, ud(t)= żg(t) symbolizes the
road-induced disturbance.

Furthermore, the output vector y(t)=[z̈c, z̈w, zcw]T con-
tains the chassis and the wheel acceleration z̈c and z̈w as
well as the suspension travel zcw=zc−zw, and hence all of
the measurement signals that are frequently available in
production vehicles equipped with mechatronic suspension
systems. However, the damper relative velocity żcw = żc−
żw is usually needed for the control of the semi-active
damper. Thus, it is generated from the available measure-
ment signals by applying a filter-based velocity estimation
approach described in detail in Koch et al. (2010). The re-
sulting velocity estimate has no phase delay and is of high
estimation accuracy, such that the extended measurement

vector ỹ(t)=[z̈c, z̈w, zcw, żcw]T is obtained.

The nonlinear spring and damping force characteristics
are represented by Fc(x) and Fd(x, ucvd), respectively,
where the nonlinear effect of the kinematic transmission
ratio idyn is already taken into account. It is important to
note that Fc(x) and Fd(x, ucvd) are rather given in terms
of measured spring and damper characteristic maps than
in terms of analytical relationships. Also, to incorporate
Coulomb friction effects existent within the damper strut
in Fd(x, ucvd), we employ a friction model of the form

Ff(x) = F̃f ⋅ tanh (kf ⋅ vf) (16)

to realize smooth zero crossings. Thereby, F̃f is the size of
the friction force, kf is a scaling factor and vf = żcw holds.

While the progressive spring force Fc(x) does only depend
on the state vector, in the semi-active case the degressive
damper force Fd(x, ucvd) is also influenced by the damper
valve current input. Fig. 2 shows the nonlinear force
characteristics. The effect of the kinematic transmission
ratio idyn(t) is already incorporated for the spring force,
while for the normalized damping force 1 only the constant
ratio i0 is applied. The black solid lines represent the
nonlinear force characteristics of the spring and the passive
damper, while the black dashed lines in the damper
force map show the semi-active characteristics for several
constant settings of the damper valve current. The sectors

f1(θ(t))∈[f1
, f1] and f2(θ(t))∈[f2

, f2], which are to be

1 For confidentiality reasons the damper force characteristics are
given in terms of the normalized damper force map Fd,norm(x, ucvd).
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Fig. 2. Nonlinear spring force (left) and normalized damp-
ing force map (right) with their respective sectors

determined in the following, are already illustrated here in
Fig. 2 with respect to the force level by the gray lines.

To obtain the TS model representation of the hybrid
suspension system, the nonlinear spring and damping
forces are equally represented by

Fc(x) = c̃c(x) ⋅ (zc − zw) , (17)

Fd(x, ucvd) = d̃c(x, ucvd) ⋅ (żc − żw) , (18)

where c̃c(x) and d̃c(x, ucvd) are state- and input-dependent
overall stiffness and damping coefficients, respectively.
Hence, the nonlinear state space model can be reformu-
lated, which together with the output equation results in
(19) on the following page. Since tire damping usually is
very small, i. e. dw=0, solely a linear stiffness cw is assumed
to describe the tire characteristics in the TS model.

We choose the nonlinearity f1(θ(t)) to be the nonlin-
ear stiffness coefficient c̃c(x), which is only a function
of the suspension deflection zcw. The second nonlinearity
f2(θ(t)) then corresponds to the nonlinear damping coef-

ficient d̃c(x, ucvd), which depends on the damper relative
velocity żcw, the damper valve current ucvd, and on the
suspension deflection zcw due to the dynamic transmis-

sion ratio in (15). Thus, θ(t) = [zcw, żcw, ucvd]T holds.
f1(θ(t)) and f2(θ(t)) are then determined by rearranging
(17) and (18), where we treat the singularities occuring in
zcw, żcw=0 by averaging the both-sided limit value

c̃c(zcw=0) = 1
2
( lim
zcw→0−

Fc(x)
zc−zw + lim

zcw→0+

Fc(x)
zc−zw ) ,

d̃c(żcw=0) = 1
2
( lim
żcw→0−

Fd(x,ucvd)
żc−żw + lim

żcw→0+

Fd(x,ucvd)
żc−żw ) .

(20)

The resulting nonlinear stiffness and damping coefficient
maps are depicted in Fig. 3. Thereby, the passive damping
coefficient is given in terms of the black solid line and the
damping coefficients of the softest and the hardest damper
characteristic are illustrated by black dashed lines. Apply-
ing the suspension model parameters given in Table 1 to
(2), the TS representation of the suspension model can
be constructed. Due to nl = 2 nonlinear terms the TS
model consists of l = 22 = 4 linear subsystems. Thereby,
each local linear submodel i results from one combination
of the sector bounds as specified in Table 2.

4. DESIGN OF SUSPENSION OBSERVER

The aim of the observer is to estimate the states of
the full-scale suspension model which includes all the
nonlinearities identified at the quarter-car test rig, see
Section 3.1. This is done by means of a full-order TS
observer based on the TS representation of the suspension
model derived in Section 3.2 using Kalman filter theory.
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żg(t)

²
ud

y(t)

±
y

=

®=

⎡⎢⎢⎢⎢⎢⎢⎣

− c̃c(x)
mc
− d̃c(x,ucvd)

mc
0 d̃c(x,ucvd)

mc

c̃c(x)
mw

d̃c(x,ucvd)
mw

− cw
mw
− d̃c(x,ucvd)

mw

1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
C(x,u)

⎡⎢⎢⎢⎢⎢⎢⎣

zc − zw
żc
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Table 1. TS suspension model parameters

Parameter Symbol Value Unit

Sprung mass mc ≈ 500 kg

Unsprung mass mw ≈ 70 kg

Sector bounds (stiffness) c̃c ∈ [f
1
, f1] ≈ [23,45] kN/m

Sector bounds (damping) d̃c ∈ [f
2
, f2] ≈ [0.4,12] kNs/m

Stiffness effective for uhy cc ≈ 32 kN/m
Tire stiffness cw ≈ 380 kN/m
Tire damping dw = 0 Ns/m

4.1 Takagi-Sugeno Steady-State Kalman Filter

For the design of the TS Kalman filter the representation

ẋ(t) = l=4
∑
i=1

hi(θ(t))[Aix(t) +Buhy(t) +Gw(t)]

y(t) = l=4
∑
i=1

hi(θ(t))[Cix(t) +Duhy(t) + v(t)]
(21)

of (19) is considered, where Ai ∈ R4×4 and Ci ∈ R3×4 are
different for each linear subsystem i ∈ {1, . . . , 4}, while
B∈R4×1 andD∈R3×1 are the same for each of them. Model
uncertainties and the unknown road disturbance ud(t) =
żg(t) are treated as process noise w(t). Furthermore,
G = I is chosen, where I indicates the identity matrix
of appropriate dimension, corresponding to an identical
intensity of the process noise in each linear subsystem. As
all the pairs (Ai, Ci) have been identified observable and
(Ai, G) is controllable, the requirements of detectability
and stabilizability posed in Section 2.3 are met.

Thus, for each linear subsystem a steady-state Kalman
gain Li can be calculated from (13). The solution of the
algebraic Riccati equation and the Kalman gains are both
controlled by means of the covariance kernels Q and R
of the process and the measurement noise, respectively.
These design parameters are tuned within the optimiza-
tion procedure described subsequently in Section 4.2.

As θ(t)=[zcw, żcw, ucvd]T , all premise variables are avail-
able from ỹ(t) or the controller and thus the scheduling
vector is independent of signals estimated by the observer.

Table 2. TS system configuration

Subsystem i 1 2 3 4

c̃c(x) f1 f1 f
1

f
1

d̃c(x, ucvd) f2 f
2

f2 f
2

4.2 Observer Tuning

The tuning of the observer structure is carried out by
varying the covariance matrices Q and R, where all off-
diagonal elements are chosen to be zero. The covariance
entries on the diagonal are determined by means of a multi-
objective optimization algorithm. Hence, for a given signal
ξ(tn) on an equally spaced time set T ={t0, t1, . . . , tN} the
normalized root mean square error (NRMSE)

∆ξ =
√

1
N ∑N

n=1
(ξ(tn)−ξ̂(tn))2√

1
N ∑N

n=1
ξ2(tn) (22)

is used to quantify the signal’s estimation accuracy.

Therein, the estimated value of ξ(tn) is denoted by ξ̂(tn).
As all quantities which are relevant for control purposes
can be computed from the system states, the optimization
problem stated in terms of the vector-valued objective
function J(η) can be written as

min
η

J(η) =min
η
[∆zc−zw ∆żc ∆zw−zg ∆żw]T . (23)

Thereby, η = [q1 q2 q3 q4 r1 r2 r3]T denotes the vector
of optimization variables and consists of the diagonal
elements of Q and R, such that ∆ξ = ∆ξ(η) as defined
in (22). For the observer application we choose

ηcom = argmin
η
∥J(η)∥, (24)

i. e. the parameter set that minimizes the 2-norm of
the objective function J(η) and thus represents the best
compromise of all Pareto-optimal parameter sets.

To avoid overestimation of the observer performance we
use a generic road profile zg(t) for the parameter opti-
mization. As the road height velocity żg is the disturbance
input to the model, white noise is used as excitation. To
induce sufficiently large excitation the road parameters
are chosen such that a highway road of medium quality
results being traveled at a vehicle speed of vveh=180 km/h.
Simultaneously, this corresponds to a bad country road
traveled at a lower velocity.

The observer tuning is conducted by means of the nonlin-
ear full-scale model of the passive suspension, where the
measured signals in the simulation are artificially exposed
to measurement noise, whose intensity has been derived
from sensor signals recorded at the test rig. Moreover,
to only quantify estimation errors resulting from dynamic
deviations, the initial observer state x̂0 is chosen according
to the initial state of the plant model x0 starting from its
rest position, i. e. x̂0 = x̂(t0) = 0 holds.

The optimization problem stated above is then solved
by using the multi-objective genetic algorithm NSGA-II



proposed in Deb et al. (2000). As shown in Table 3, the
decline of the estimation accuracy Γξ, com = 1 −∆ξ, com

resulting from the best compromise of all parameter sets
ηcom compared to the maximum achievable estimation
quality Γξ,max=1−∆ξ,max for each individual signal ξ(t) is
marginal. Not surprisingly the third state zwg is estimated
with lowest accuracy, since the unknown road disturbance
żg has an immediate impact and measurement information
is neither available with regard to the road height nor to
one of its derivatives.

Using Matlab’s Robust Control Toolbox a matrix P̃ has
been found for the parameter set ηcom satisfying the LMI
constraints given in (9) based on the Li according to (13),
such that convergence of the global TS observer is ensured.

Table 3. Estimation performance on generic
road profile: Maximum vs. best compromise

Quantity ξ zc − zw żc zw − zg żw

Γξ,max 0.980 0.905 0.783 0.961

Γξ, com 0.973 0.901 0.778 0.936

5. SIMULATION AND EXPERIMENTAL RESULTS

For the estimation performance analysis of the TS Kalman
filter in simulation and experiments, the nonlinear full-
scale model of the hybrid quarter-car suspension and the
quarter-car test rig as presented in Section 3 are used.
A measurement of a real rough country road profile at a
vehicle speed of vveh=50 km/h serves as the road excitation.
The evaluation is either done for the passive suspension
configuration, i. e. ucvd(t) = Id,p = const. and uhy(t) =
0m = const., or for an actively controlled setting. In the
controlled case, the reference-model based control concept
presented in Koch et al. (2011) is employed. The approach
solely relies on measurable quantities and directly provides
separate control inputs ucvd(t) and uhy(t).
In the simulation, the reference signals of the suspension
states are immediately available from the full-scale model.
As for the optimization, artificial measurement noise is
added to the measurement signals fed to the TS observer.
However, in the experiments reference signals for all state
variables are not readily at hand. Thus, for reasons of
analysis only, additional signals are recorded at the test rig.
For instance, the absolute chassis position zc is measured
by means of a wire rope actuated position transducer
mounted between the chassis mass and the inertial ground.
Also, force sensors log the dynamic tire load Fdyn between
the tire and the ground and the vertical displacement zg is
recorded for actuator control purposes. The sampling time
of the digital signal processing system is Ts = 2msec. To
reduce measurement noise in the recorded signals, lowpass
forward backward filtering with a cutoff frequency of 30Hz
is applied offline for the reference signals. While a reference
for the first state, i. e. the suspension deflection, is directly
available as a measurement signal, the reference signals of
the chassis and wheel velocity are calculated by applying
the filter-based velocity estimation approach already used
for the damper relative velocity, see Section 3.2 , to the
measurement signals of zc/z̈c and (zc − zcw)/z̈w. The tire
deflection reference zwg is constructed from zc, zg and zcw.

The simulation and measurement results for the passive
suspension configuration are summarized in Table 4 and

Table 4. Estimation performance of passive
configuration on rough country road profile at

vveh = 50 km/h: Simulation vs. Experiment

Γzc−zw Γżc Γzw−zg Γżw ΓFdyn
Γżc−żw

Simulation 0.995 0.948 0.909 0.949 0.966 0.977

Experiment 0.932 0.801 0.660 0.804 0.701 0.874

are illustrated by means of a spider chart in Fig. 4. In
the simulation all relevant quantities are estimated with a
NRMSE less than 10%. Again, zwg is the state with lowest
estimation accuracy, since the unknown road disturbance
has direct impact. Still, the performance is remarkable.

In case of the experimental results a slight degradation in
estimation accuracy of about 5 to 15% for the quantities
zcw, żc, żw and żcw is noticeable. However, for the tire-
related quantities zwg and Fdyn the performance decreases
by about 25%. This overall performance decline is due to
the fact, that the actuator dynamics of the semi-active
damper have not fully been included in the modeling
for observer design. While the damper’s valve current is
available as a measurement and thus the dynamics of the
electrical domain are inherently included, the force rise
dynamics of the damper are not. If approximated by a
first order lag element a mechanical time constant Tmech≈
10msec results to account for the hydraulic properties of
the damper, see Koch et al. (2011).

Finally, the actively controlled suspension configuration is
studied. A selected time interval of a measurement at the
test rig is shown in the plots of Fig. 5. The upper five
graphs depict the reference (black solid line), the estimate
of the steady-state TS Kalman filter (blue dashed) and
the respective estimation error (red solid) for the states
and the dynamic tire load, respectively. In the lower plots
of Fig. 5 the sector membership functions µ1, j1(θ(t)) for
the stiffness coefficient (solid lines) and µ2, j2(θ(t)) for the
damping coefficient (dashed lines), as well as the input
signals uhy(t) and ucvd(t) (individually in compression
and tension direction) are given. Note that half of the time
period is depicted for the tire-related quantities to account
for the high frequency dynamics included. The estimation
performance for each individual signal lies within 5% of
the Γ-values given in Table 4.

6. CONCLUSION

The concept of Takagi-Sugeno observer design has been
adopted for nonlinear state estimation in an actively con-
trolled vehicle suspension application. Despite several sig-
nificant nonlinear effects in stiffness and damping charac-
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Fig. 4. Estimation performance in simulation and experi-
ment on rough country road profile at vveh = 50 km/h
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Fig. 5. Measurement results: actively controlled suspension
excited by a country road profile (vveh = 50 km/h)

teristics, a number of four linear subsystems is adequate
to accurately represent the nonlinear state space model of
the hybrid suspension configuration. The observer gains of
the linear submodels have been derived based on Kalman
filter theory to account for the stochastic nature of the
road unevenness and measurement noise. The performance
evaluation of the global state observer has been conducted
by means of simulations and experiments in a quarter-car
framework. Although conventional linear Kalman filtering
is used, and thus computational complexity is kept small
in comparison to concepts such as EKF and UKF, the TS
Kalman filter is able to achieve a high estimation accuracy
of 70 − 99% for the nonlinear system at hand.
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