
Timing Challenges in Automotive Software Architectures
Licong Zhang1, Reinhard Schneider1, Alejandro Masrur2, Martin Becker1, Martin Geier1 and Samarjit Chakraborty1

1 TU Munich, Germany, 2 TU Chemnitz, Germany

ABSTRACT
Most of the innovation in the automotive domain is now in
electronics and software, which has led to several million
lines of code in today’s high-end cars. However, in con-
trast to software in the general purpose computing domain –
where mostly functional correctness is of concern – timing
predictability of automotive software is an important prob-
lem which is still largely unsolved. More importantly, this
problem is solely addressed within the embedded systems
domain with little or no participation from the mainstream
software engineering community. The goal of this poster is
to highlight some of the aspects of timing analysis of automo-
tive software, as an attempt to involve the broader software
engineering research community in this problem.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design—methodologies

General Terms
Design, Performance

Keywords
Timing Analysis, Automotive, Software Architecture

1. INTRODUCTION
Software applications today control some of the most im-
portant functionalities in an automobile, ranging from basic
safety functions like brake and airbag control, to driver as-
sistance systems like adaptive cruise control and automatic
parking and finally to infotainment systems. These applica-
tions currently contain around 100 million lines of software
code and this number is expected to grow to 200 – 300 mil-
lion in the near future according Frost & Sullivan, a business
research firm. It has been reported that an S-class Mercedes-
Benz requires 20 million lines of code for its radio and navi-
gation system and that there are as many electronic control
units (ECUs) in this car as in the Airbus A380 (excluding
the in-flight entertainment system) [3].

While current validation, testing and debugging methods
developed within the software engineering community pri-
marily focus on functional verification, timing predictability
and hence timing analysis is an important and still largely
unsolved problem for automotive software, in part, because
of its high complexity. In addition to the increasing amount
of software, automotive electrical/electronic (E/E) systems
are highly elaborate. There are currently 80 to 100 ECUs
in high-end cars, which often feature different – increasingly
multi-core – processor architectures. These ECUs are con-
nected by several communication buses such as CAN, LIN,
FlexRay and MOST in a hierarchical setting.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31 – June 7, 2014, Hyderabad, India
Copyright 14 ACM 978-1-4503-2768-8/14/05 ...$15.00.

ECU Hardware

Runtime Environment (RTE)

Operating
System

(OS)

Complex
Device
Drivers
(CCD)

Application
SWC

Sensor
SWC

Actuator
SWC

Application
SWC

….

Basic Software

Application Software

Services Com-
munication

ECU
Abstraction

C
Abstraction

Figure 1: AUTOSAR software layers

Timing analysis in such a setting involves several stages –
from worst-case execution time (WCET) analysis to system-
level timing analysis, percolating through several layers of
software and the underlying platform (ECUs, communication
buses and gateways) architecture. Often separate timing
estimates for the different modules and/or software layers
lead to overly pessimistic estimates that are not acceptable
in the cost-sensitive automotive domain (in contrast to, e.g.,
avionics). On the other hand, there has been lately a number
of advances towards standardizing automotive software and
systems (e.g., AUTOSAR and JasPar) and model-based
software development and code synthesis are also on the rise,
resulting in new opportunities for timing analysis.
In what follows, we outline some of the major issues in

this domain, as an attempt to initiate a discussion and in-
volve the mainstream software engineering community to join
the embedded systems community towards addressing this
problem. Our aim is also to influence software architectures
and development processes in order to improve its timing
predictability, since currently the software development and
timing analysis processes are largely disjoint.

2. CHALLENGES AND OPPORTUNITIES
In the last few years, there has been a considerable effort
in the industry towards standardizing automotive software
and systems. The main goal is to allow for model-based
software design and hardware-independent application soft-
ware development, thus increasing the re-usability and porta-
bility of software components. AUTOSAR1 (AUTomotive
Open System ARchitecture) and JasPar (Japan Automo-
tive Software Platform and Architecture) are part of that
effort. They provide specifications for standardized inter-
faces, middleware and basic software components. Basically,
AUTOSAR-compliant automotive software can be divided
into three layers: (i) the application software, (ii) the runtime
environment (RTE) and (iii) the basic software layer – see
Fig. 1. The software developers focus on the implementa-
tion of application software components (SWCs), whereas
the RTE and necessary basic software components such as
the operating system, etc. are generated and configured
according to the services required by the applications. The
introduction of a standardized software architecture brings
new opportunities and challenges. On the one hand, since
automotive software is now organized into well-defined layers
and modules, it is possible to perform a timing analysis at
the layer or module level, which allows for a compositional

1www.autosar.org

approach. On the other hand, it also increases the complexity
of the problem. There are a number of open problems that
still need to be solved, which we will discuss in the following
paragraphs.

Task Level Analysis: Estimating the WCET of individual
functions or code blocks constitutes the most basic timing
analysis problem [9]. Since the WCET of a piece of code de-
pends on both the code and the processor, one main challenge
is in the joint modeling of the code and the processor’s mi-
croarchitectural state (e.g., caches, pipelining and speculative
execution). While this problem in general is computationally
intractable and needs manual intervention (e.g., infeasible
path information), it was recently shown for a number of
cases that WCET analysis of code generated from high-level
models can be significantly easier and can lead to much
tighter estimates [5, 8]. The basic technique here is to exploit
the model-level information along with the model-to-code
association to statically uncover information on loop bounds
and infeasible paths which might be difficult to estimate
statically directly from the executable or even from program
code. Such techniques should be further developed – by
especially incorporating standard modeling frameworks typi-
cally used in AUTOSAR-based software development such as
Simulink/Stateflow – to be useful in the automotive domain.
Moreover, it is possible from AUTOSAR R4.0 onwards to
describe timing constraints of software modules [1], i.e., data
structures are specified for describing timing properties at
different levels of abstraction. This can then be used for
analysis either based on simulation or formal techniques.
However, AUTOSAR does not specify how to fill those data
structures. What methods and techniques should be used for
this purpose is still unclear. Although there have been first
efforts towards how to integrate formal timing analysis to
AUTOSAR [6, 7], this is still a matter of ongoing research.

On the other hand, multi-core architectures are gaining
ground in the automotive domain. Multi-cores have a num-
ber of advantages, such as more computational capacity,
low-energy consumption, etc.. However it is more difficult to
analyze their timing behavior. The operating system within
AUTOSAR was extended to support multi-cores (starting
from R4.0 onwards). Although task migration is not allowed
at runtime, the analysis of synchronization between tasks
running on different cores is a challenging problem, in par-
ticular, considering the high inter-dependency of automotive
software. In addition, cache effects further complicate the
overall timing analysis, which, if not considered, might lead
to pessimistic or even unsafe timing estimations. As a result,
cache allocation techniques need to be included to take appli-
cation’s properties into account and, hence, allow improving
the predictability of the overall timing behavior on the ECU.

System-level Timing Analysis: The problem of analyz-
ing the timing properties in complex embedded real-time
systems has gained a lot of attention in the embedded sys-
tem’s community. Towards this, analysis techniques like
Real-Time Calculus (RTC) [2] and Symbolic Timing Analy-
sis (SymTA) [4] have been developed. Both approaches rely
on very general event stream representations and resource
models and allow for efficient computation of timing guar-
antees in complex and heterogeneous embedded systems. A
wide range of scheduling, arbitration policies and bus pro-
tocols can be modeled by these techniques. Further, they
are fully compositional, enabling end-to-end timing analy-
sis across several event chains, and have been integrated
in commercially available tools. Since system-level timing
analysis is intended to support design considerations in early

design stages, the corresponding models often provide too
abstract representations of the system architecture hiding
implementation details that significantly affect the timing
analysis. For instance, the RTC modeling framework relies
on infinite buffers, and hence, does not capture buffer over-
write schemes as specified in the AUTOSAR communication
stack. Such a loss of implementation details often results in
overly conservative timing estimates leading to unnecessary
resource over-provisioning. Hence, such details need to be
an integral part of the timing analysis framework to achieve
tighter estimates. Since enhancements in the analysis frame-
work are quite challenging, the analyzability of the software
layers with respect to timing properties gives rise to an im-
portant requirement in the design and specification of future
automotive software architectures.

Another problem rising from compositional timing analysis
is the potentially increased pessimism of estimates. If an
application comprises a set of interconnected modules, com-
puting and summing up the WCETs of separated modules
might lead to an exaggeratedly large estimation of the overall
WCET. In contrast, it might be beneficial to consider the
interactions between the different modules towards a tighter
WCET estimation. However, it is still unclear how to per-
form this analysis in the context of automotive/AUTOSAR
software, especially since the AUTOSAR architecture was
conceived to abstract application software from implemen-
tation details (such as ECU hardware, mapping onto ECUs,
communication on buses, etc.). In reality, the application’s
timing behavior strongly depends on the implementation
details (e.g., communication between two SWCs takes longer
if mapped onto different ECUs). As a result, to allow for
timing analysis at the system level, there is a need for meth-
ods and techniques that allow back-annotating AUTOSAR
SWCs with details and analysis results of the implementa-
tion, which is still an open problem.

Specification Models, Languages and Tools: There is
a large diversity of development processes and methods in the
automotive domain, which has led to a vast number of soft-
ware development tools over the last years with proprietary
interfaces and models precluding seamless tool integration.
As a seamless tool chain, including timing as an integral
part, has become essential to master the growing complexity
in timing analysis, there is an increasing need for standard
specification models and tools that facilitate tool integration
in the automotive domain.

3. REFERENCES
[1] Requirements on timing extensions. available at http://www.

autosar.org/download/R4.0/AUTOSAR_RS_TimingExtensions.pdf.
[2] S. Chakraborty, S. Kunzli, and L. Thiele. A general framework

for analysing system properties in platform-based embedded
system designs. In DATE, 2003.

[3] R. N. Charette. This Car Runs on Code. IEEE Spectrum, Feb.
2009.

[4] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and
R. Ernst. System level performance analysis - the SymTA/S
approach. Computers and Digital Techniques, 152(2):148–166,
2005.

[5] L. Ju, B. K. Huynh, A. Roychoudhury, and S. Chakraborty.
Timing analysis of Esterel programs on general-purpose
multiprocessors. In DAC, 2010.

[6] K. Klobedanz, C. Kuznik, A. Thuy, and W. Mueller. Timing
modeling and analysis for AUTOSAR-based software
development - a case study. In DATE, 2010.

[7] M.-A. Peraldi-Frati, A. Goknil, M. Adedjouma, and P. Y.
Gueguen. Modeling a BSG-E automotive system with the timing
augmented description language. In ISoLA, 2012.

[8] R. Wilhelm, D. Grund, J. Reineke, M. Schlickling, M. Pister,
and C. Ferdinand. Memory hierarchies, pipelines, and buses for
future architectures in time-critical embedded systems. IEEE
Trans. on CAD, 28(7):966–978, 2009.

[9] R. Wilhelm et al. The worst-case execution-time problem -
overview of methods and survey of tools. TECS, 7(3), 2008.

