

Adaptive Entwicklungspunktwahl und globale Fehlerschranken bei der Modellreduktion mittels Krylow-Unterraum-Verfahren

Heiko Panzer, Thomas Wolf, Boris Lohmann

48. Regelungstechnisches KolloquiumBoppard21. Februar 2014

Modellordnungsreduktion (MOR)

$$\mathbf{E} \, \dot{\mathbf{x}}(t) = \mathbf{A} \, \mathbf{x}(t) + \mathbf{B} \, \mathbf{u}(t)$$

$$\mathbf{y}(t) = \mathbf{C} \, \mathbf{x}(t)$$

$$\dim \mathbf{x} = N, \ \det \mathbf{E} \neq 0$$

Gesucht: Reduziertes Modell G_r(s)

- Getreue Nachbildung des Übertragungsverhaltens (mit Informationen über die Approximationsgüte)
- Erhaltung von Systemeigenschaften, insbesondere der Stabilität
- Numerisch effizientes Vorgehen

$$\begin{aligned} \mathbf{E}_r \ \dot{\mathbf{x}}_r(t) &= \mathbf{A}_r \ \mathbf{x}_r(t) + \mathbf{B}_r \ \mathbf{u}(t), \\ \mathbf{y}(t) &\approx \mathbf{y}_r(t) &= \mathbf{C}_r \ \mathbf{x}_r(t) \end{aligned}$$

$$\dim \mathbf{x}_r = n \ll N$$

Zur Bewertung der Reduktionsgüte betrachte das Fehlersystem (Ordnung: N+n)

$$\mathbf{G}_e(s) := \mathbf{G}(s) - \mathbf{G}_r(s)$$

Wir interessieren uns für die Systemnormen

$$\begin{split} \|\mathbf{G}\|_{\mathcal{H}_{\infty}} &:= \sup_{\omega \in \mathbb{R}} \|\mathbf{G}(i\omega)\|_{2} \\ \|\mathbf{G}\|_{\mathcal{H}_{2}} &:= \sqrt{\frac{1}{2\pi} \int_{-\infty}^{\infty} \operatorname{tr} \left[\mathbf{G}^{H}(i\omega)\mathbf{G}(i\omega)\right] d\omega} = \sqrt{\operatorname{tr} \left[\mathbf{B}^{T}\mathbf{Q}\mathbf{B}\right]} = \sqrt{\operatorname{tr} \left[\mathbf{CP}\mathbf{C}^{T}\right]} \\ \mathbf{A}^{T}\mathbf{Q}\mathbf{E} + \mathbf{E}^{T}\mathbf{Q}\mathbf{A} + \mathbf{C}^{T}\mathbf{C} = \mathbf{0} \qquad (\text{Beobachtbarkeits-Gramsche}) \\ \mathbf{AP}\mathbf{E}^{T} + \mathbf{EP}\mathbf{A}^{T} + \mathbf{BB}^{T} = \mathbf{0} \qquad (\text{Steuerbarkeits-Gramsche}) \end{split}$$

Projektive MOR I

$$\begin{aligned} \mathbf{E} \dot{\mathbf{x}}(t) &= \mathbf{A} \mathbf{x}(t) + \mathbf{B} \mathbf{u}(t) \\ \mathbf{y}(t) &= \mathbf{C} \mathbf{x}(t) \end{aligned}$$
 dim $\mathbf{x} = N$

Galerkin-Approximation: $\mathbf{x}(t) \approx \hat{\mathbf{x}}(t) = \mathbf{V}\mathbf{x}_r(t)$

| = || |

 $\dim \mathbf{x}_r = n \ll N$

Aber:

$$\mathbf{EV}\dot{\mathbf{x}}_{r}(t) \in \operatorname{span}(\mathbf{EV})$$
$$\mathbf{AV}\mathbf{x}_{r}(t) + \mathbf{Bu}(t) \notin \operatorname{span}(\mathbf{EV})$$

Idee: Gleichung auf span(\mathbf{EV}) projizieren! (Petrov-Galerkin) Projektormatrix $\mathcal{P} = \mathbf{EV}(\mathbf{W}^T \mathbf{EV})^{-1} \mathbf{W}^T$

 $\mathcal{P} \operatorname{EV} \dot{\mathbf{x}}_r(t) = \mathcal{P} \operatorname{AV} \mathbf{x}_r(t) + \mathcal{P} \operatorname{B} \mathbf{u}(t) + \mathcal{P} \epsilon(t)$

 $\mathbf{EV}\dot{\mathbf{x}}_r(t) = \mathbf{AV}\mathbf{x}_r(t) + \mathbf{B}\mathbf{u}(t) + \boldsymbol{\epsilon}(t)$

Institute of Automatic Control

Projektive MOR II

Reduziertes Modell, Reduced Order Model (ROM)

$$\iff \mathbf{G}_{r}(s): \begin{cases} \mathbf{\widetilde{W}}^{T} \mathbf{\widetilde{E}V} \dot{\mathbf{x}}_{r}(t) = \mathbf{\widetilde{W}}^{T} \mathbf{\widetilde{A}V} \mathbf{x}_{r}(t) + \mathbf{\widetilde{W}}^{T} \mathbf{\widetilde{B}} \mathbf{u}(t) \\ \mathbf{y}_{r}(t) = \mathbf{\widetilde{C}V}_{\mathbf{C}_{r}} \mathbf{x}_{r}(t) \end{cases}$$

Aber wie wählen wir V und W?!

Heiko K.F. Panzer

	Modales Abschneiden	("exaktes") Balanciertes Abschneiden	Krylow- Unterraum- Methoden
Güte und Fehlerschranken			
Stabilitätserhaltung			
Numerischer Aufwand und Machbarkeit			

Rationale Krylow-Unterraum-Methoden (RK)

Def.: Eingangs-und Ausgangs-Krylow-Unterraum zu Entwicklungspunkten σ_i :

$$\mathbf{V} = \begin{bmatrix} (\mathbf{A} - \sigma_1 \mathbf{E})^{-1} \mathbf{b}, & (\mathbf{A} - \sigma_2 \mathbf{E})^{-1} \mathbf{b}, \dots, & (\mathbf{A} - \sigma_n \mathbf{E})^{-1} \mathbf{b} \end{bmatrix}.$$
$$\mathbf{W} = \begin{bmatrix} (\mathbf{A} - \sigma_1 \mathbf{E})^{-T} \mathbf{c}^T, & (\mathbf{A} - \sigma_2 \mathbf{E})^{-T} \mathbf{c}^T, \dots, & (\mathbf{A} - \sigma_n \mathbf{E})^{-T} \mathbf{c}^T \end{bmatrix}$$

Wir können insgesamt 2n Shifts wählen. Dies bewirkt sog. **Moment Matching:**

$$G_r(s) = G(s) \quad \forall s \in \{\sigma_1, \dots, \sigma_{2n}\}$$

Das Verfahren heißt daher auch ¹⁰ Rational Interpolation oder Rational Krylov.

Aber welche (und wie viele) Shifts führen auf ein "gutes" reduziertes Modell?! Wie garantiert man Erhaltung der Stabilität? Wie groß ist der resultierende Fehler?

Iterative Rational Krylov Algorithm (IRKA)

Vereinfachte MATLAB Implementierung von IRKA [Gugercin et al. 2008]

```
function [V, W, s0] = IRKA(A, B, C, E, n)
% compute initial shifts
s0 = -eigs(A, E, n, 0);
while (1)
    % compute Krylov subspaces
    [V, W] = RationalKrylov(A,B,C,E,s0);
    % compute new shifts from eigendecomposition of ROM
    s0_{new} = -eig(W.'*A*V, W.'*E*V);
    % test for convergence
    if norm((s0-s0 new)./s0) < 1e-4, break, end
    % mirror shifts with negative real part
    s0 = s0_new.*sign(real(s0_new));
end
```

Liefert bei Konvergenz ein H₂-optimales ROM.

Aber: Wahl der reduzierten Ordnung unklar. Konvergenz nicht gesichert. (Stabilitätsverlust möglich.) Resultierender Fehler unbekannt.

Gliederung

Fehler-Faktorisierung Krylow-Unterraum-Methoden Kumulative Reduktion und Wahl der red. Ordnung Trust Region basierte H₂-optimale MOR Globale H₂- und H_∞-Fehlerschranken Wichtige Beobachtung: Eingangs-Krylow-Räume erfüllen die Sylvester-Gleichung

$$\begin{aligned} \mathbf{AV} &- \mathbf{EVS}_V - \mathbf{B}\widetilde{\mathbf{C}}_r = \mathbf{0} \\ \Rightarrow & (\mathbf{I} - \mathcal{P})\mathbf{AV} - (\mathbf{I} - \mathcal{P})\mathbf{EVS}_V - (\mathbf{I} - \mathcal{P})\mathbf{B}\widetilde{\mathbf{C}}_r = \mathbf{0} \\ \Rightarrow & \mathbf{AV} - \mathbf{EVE}_r^{-1}\mathbf{A}_r - \mathbf{B}_{\perp}\widetilde{\mathbf{C}}_r = \mathbf{0} \end{aligned}$$

Wolf/P. 2011

Ist die Projektionsmatrix **V** die Basis eines Eingangs-Krylow-Unterraums, so erfüllt das resultierende Fehlersystem:

$$\mathbf{G}_{e}(s) = \mathbf{G}(s) - \mathbf{G}_{r}(s) = \begin{bmatrix} \mathbf{E}, \mathbf{A} & \mathbf{B}_{\perp} \\ \hline \mathbf{C} & \mathbf{0} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{E}_{r}, \mathbf{A}_{r} & \mathbf{B}_{r} \\ \hline \widetilde{\mathbf{C}}_{r} & \mathbf{I}_{n} \end{bmatrix}$$

$$\mathbf{G}_{\perp}(s) \qquad \mathbf{G}_{\perp}(s) \qquad \mathbf{G}_{r}^{R}(s)$$
Systemmatrizen von G(s)
$$\mathbf{B}_{\perp} = \mathbf{B} - \mathbf{EVE}_{r}^{-1}\mathbf{B}_{r} \qquad \mathbf{e} \text{ geringe Ordnung}$$

$$\mathbf{Entwicklungspunkte}$$

$$\mathbf{b} \text{ bestimmen Nullstellen}$$

$$\mathbf{Allpass?!}$$

CURE: Kumulative Reduktion I

Also: Wir müssen nicht in einem Schritt reduzieren, sondern können mehrmals auf sehr kleine Ordnung (z.B. n=2) reduzieren. Innerhalb der "Salamischeiben" können wir z.B. IRKA nutzen.

```
Bbot = B;
for i=1:15
   [V,W,Crt] = IRKA(A,Bbot,C,E,2);
   Ar = W' * A * V;
   Er = W' * E * V;
   Br = W' * Bbot;
   Cr = C*V;
   Bbot = Bbot - E*V*(Er \setminus Br);
   Ar_{=}[Ar_{,} Br_{*}[0\ 0]; ...
           Br*Crt , Ar];
   Er = blkdiag(Er , Er);
   Br = [Br ; Br];
   Cr_{-} = [Cr_{-}, Cr];
   Crt_ = [Crt_, Crt];
end
      = dss(Ar ,Br ,Cr , 0,Er );
svsr
sysrt = dss(Ar_,Br_,Crt_,1,Er_);
```


Die Wahl der reduzierten Systemordnung ist damit adaptiv möglich! Weiterhin offen: Konvergenzprobleme in IRKA. Resultierender Fehler?

Heiko K.F. Panzer

P. et al. 2013

Gliederung

Fehler-Faktorisierung Krylow-Unterraum-Methoden Kumulative Reduktion und Wahl der red. Ordnung Trust Region basierte H₂-optimale MOR

Globale H₂- und H_∞-Fehlerschranken

H₂-Modellreduktion als Optimierungsproblem

Idee: Grenze Suche nach H₂-Optimum auf H₂-Pseudo-Optima ein!

Dies ermöglicht die Verwendung des sehr einfachen Gütefunktionals

$$\mathcal{J} := - \left\| G_r \right\|_{\mathcal{H}_2}^2$$

und damit analytische Ausdrücke für J, den Gradienten und die Hessematrix.

G_r G

Die Parametrierung erfolgt über zwei positive reelle Zahlen a, b (Koeffizienten des charakteristischen Polynoms).

Numerisches Beispiel

Benchmark-Modell eines Kragbalkens (SLICOT) Startwerte für die Entwicklungspunkte: $1 \pm j$ Trust Region Algorithmus (fmincon in MATLAB)

P. et al. 2013

Gliederung

Fehler-Faktorisierung Krylow-Unterraum-Methoden

Kumulative Reduktion und Wahl der red. Ordnung Trust Region basierte H₂-optimale MOR Globale H₂- und H_∞-Fehlerschranken

Ist V die Basis eines Eingangs-Krylow-Unterraums, gilt die Zerlegung

$$\mathbf{G}_{e}(s) = \underbrace{\begin{bmatrix} \mathbf{E}, \mathbf{A} & \mathbf{B}_{\perp} \\ \hline \mathbf{C} & \mathbf{0} \end{bmatrix}}_{\mathbf{G}_{\perp}(s)} \cdot \underbrace{\begin{bmatrix} \mathbf{E}_{r}, \mathbf{A}_{r} & \mathbf{B}_{r} \\ \hline \widetilde{\mathbf{C}}_{r} & \mathbf{I}_{n} \end{bmatrix}}_{\widetilde{\mathbf{G}}_{r}^{R}(s)}$$

Diese ermöglicht die Angabe oberer Schranken für die Fehlernormen

$$\begin{aligned} \left\| \mathbf{G}_{e} \right\|_{\mathcal{H}_{2}} &\leq \left\| \mathbf{G}_{\perp} \right\|_{\mathcal{H}_{2}} \cdot \left\| \widetilde{\mathbf{G}}_{r}^{R} \right\|_{\mathcal{H}_{\infty}} \\ \left\| \mathbf{G}_{e} \right\|_{\mathcal{H}_{\infty}} &\leq \left\| \mathbf{G}_{\perp} \right\|_{\mathcal{H}_{\infty}} \cdot \left\| \widetilde{\mathbf{G}}_{r}^{R} \right\|_{\mathcal{H}_{\infty}} \end{aligned}$$

Wir brauchen obere Schranken für die Normen von $G_{\perp}(s)$. Im Folgenden nehmen wir hierzu an:

$$\mathbf{E} = \mathbf{E}^T > \mathbf{0}$$

$$\mathbf{A} + \mathbf{A}^T < \mathbf{0}$$

$$\Rightarrow \ \mu_{\mathbf{E}}(\mathbf{A}) = \max_i \lambda_i \left(\frac{\mathbf{A} + \mathbf{A}^T}{2}, \mathbf{E} \right) < 0$$

Typische Systeme zweiter Ordnung (z.B. aus der Strukturmechanik) lassen sich leicht entsprechend modellieren. [P. et al. 2012/2013]

P. et al. 2013 Liegt das Originalmodell in strikt dissipativer Realisierung vor, dann ist $\mathbf{S} := -\mathbf{A} - \mathbf{A}^T > \mathbf{0}$ symmetrisch positiv definit und es gilt: $\left\|\mathbf{G}_{e}\right\|_{\mathcal{H}_{\infty}} \leq \left[\left\|\mathbf{C}\mathbf{S}^{-1}\mathbf{B}_{\perp}\right\|_{2} + \sqrt{\left\|\mathbf{B}_{\perp}^{T}\mathbf{S}^{-1}\mathbf{B}_{\perp}\right\|_{2}\left\|\mathbf{C}\mathbf{S}^{-1}\mathbf{C}^{T}\right\|_{2}}\right] \cdot \left\|\widetilde{\mathbf{G}}_{r}\right\|_{\mathcal{H}_{\infty}}$ function bnd = bndHinf(A,B,C) $L_S = chol(-A-A');$ Geringe Ordnung. Oft Allpass! B_S = L_S' \ B; C_S = C / L_S; bnd = norm(full(C_S*B_S)) + ... norm(full(B_S))*norm(full(C_S));

Es sei $\widehat{\mathbf{Q}} = \mathbf{Z}\mathbf{Z}^T$ eine beliebige positiv semidefinite Matrix und \mathbf{R}_O das zugehörige Residuum, so dass

$$\mathbf{R}_O := \mathbf{A}^T \widehat{\mathbf{Q}} \mathbf{E} + \mathbf{E}^T \widehat{\mathbf{Q}} \mathbf{A} + \mathbf{C}^T \mathbf{C}.$$

Liegt das Originalmodell in strikt dissipativer Realisierung vor, dann gilt:

$$\left\|\mathbf{G}_{\perp}\right\|_{\mathcal{H}_{2}}^{2} \leq \operatorname{tr}\left[\mathbf{B}_{\perp}^{T}\widehat{\mathbf{Q}}\mathbf{B}_{\perp}^{T}\right] + \underbrace{\frac{1}{-2\mu_{\mathbf{E}}(\mathbf{A})}}_{k_{1}} \cdot \underbrace{\max_{i}\left|\lambda_{i}\left(\mathbf{R}_{O},\mathbf{E}\right)\right| \cdot \left\|\mathbf{B}_{\perp}^{T}\mathbf{E}^{-1}\mathbf{B}_{\perp}\right\|_{F}}_{k_{3}}$$

Paradigmenwechsel: Fehlerkontrollierte Modellreduktion

Reduzierte Systemoranung

Lege Reduktionsvorgang darauf aus, die Schranke zu verkleinern, ohne Berücksichtigung des tatsächlichen Fehlers!

$$\begin{aligned} \mathbf{M}\ddot{\mathbf{z}}(t) + \mathbf{D}\dot{\mathbf{z}}(t) + \mathbf{K}\mathbf{z}(t) &= \mathbf{F}\mathbf{u}(t), \\ \mathbf{y}(t) &= \mathbf{S}\mathbf{z}(t) \end{aligned}$$

[Moosmann/Greiner 2004]

$$N = 34.722$$

 $nnz(A) = 4.084.636$

Institute of Automatic Control

Heiko K.F. Panzer

- Krylow-Unterraum-Verfahren erlauben die Faktorisierung des Fehlersystems.
- Dies ermöglicht die adaptive Wahl von Entwicklungspunkten sowie die
- Herleitung globaler Fehlerschranken bzgl. H₂- und H_w-Norm für Systeme mit der Eigenschaft $E=E^T>0$ und $A+A^T<0$.

(Viele Systeme zweiter Ordnung lassen sich entsprechend modellieren.)

- Die Auswertung der Schranken erfordert geringen Aufwand.
- Der Reduktionsvorgang muss geeignet gestaltet werden, um akzeptable Uberschätzung des wahren Fehlers zu erzielen. (Hierauf konzentrieren sich unsere derzeitigen Bemühungen.)
- Die reduzierte Systemordnung kann dann automatisch angepasst werden.

Vielen Dank für Ihre Aufmerksamkeit!

Dipl.-Ing. Heiko K. F. Panzer panzer@tum.de http://www.rt.mw.tum.de

nstitute of

utomatic Control

Literatur

A.C. Antoulas: Approximation of Large-Scale Dynamical Systems. SIAM, 2004.

S. Gugercin; A.C. Antoulas; C. Beattie: *H*₂ model reduction for large-scale linear dynamical Systems. SIAM Journal on Matrix Analysis and Applications, Vol. 30, 2008

K. Gallivan; A. Vandendorpe; P. Van Dooren: *Sylvester equations and projection-based model reduction*. Journal of Computational and Applied Mathematics, 2004.

H. Panzer; S. Jaensch; T. Wolf; B. Lohmann: *A Greedy Rational Krylov Method for H2-Pseudooptimal Model Order Reduction with Preservation of Stability*. American Control Conference, 2013.

H. Panzer; T. Wolf; B. Lohmann: H_2 and H_{∞} Error Bounds for Model Order Reduction of Second Order Systems by Krylov Subspace Methods. European Control Conference, 2013.

H. Panzer; T. Wolf; B. Lohmann: A Strictly Dissipative State Space Representation of Second Order Systems. In at-Automatisierungstechnik, 2012.

H. Panzer; B. Kleinherne; B. Lohmann: *Analysis, Interpretation and Generalization of a Strictly Dissipative State Space Formulation of Second Order Systems*. Lohmann/Roppenecker (Hrsg.): Methoden und Anwendungen der Regelungstechnik, 2013.

