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Summary

Plant and animal breeding programs are currently being revolutionized by technological

developments in genomic research. With dense genome-wide marker data the genotypic

value of an individual can be predicted based on its DNA profile. Statistical methods are

required to derive marker effects from a training population comprising genotyped and

phenotyped individuals. The proper choice of predictor variables and tuning of prediction

methods is challenging in the face of high-dimensional marker data. Regularized regres-

sion and Bayesian methods are powerful techniques that cope with overfitting problems

in high-dimensional marker data. Here, the performance of different statistical methods

was compared with both simulated and experimental data sets taken from plant breeding

populations. In this treatise, important determinants of prediction performance, such as

choice of statistical method, trait heritability, marker density, and genetic trait architec-

ture, were identified and then their effects were quantified.

First, the relative efficiency of genome-based prediction compared to pedigree-based pre-

diction was investigated in an advanced cycle breeding population of maize (Zea mays

L.). Marker data were incorporated into the genomic best linear unbiased prediction

(GBLUP) method through a genome-based similarity matrix, and then predictive ability

was estimated using cross-validation schemes. Next, alternative methods were explored

by fitting marker effects within models allowing for variable selection and marker-specific

prior distributions. A sensitivity analysis was performed to assess the influence of the prior

specification on posterior inference and prediction performance. Furthermore, computer

simulations were designed to investigate the accuracy of marker effects under different

scenarios varying for the complexity of the true genetic model and the determinedness

level of the data set. Real marker data from rice (Oryza sativa L.), wheat (Triticum

aestivum L.), and Arabidopsis thaliana (L.) populations were incorporated into the sim-

ulation schemes to obtain a realistic assessment of the effect of different levels of linkage

disequilibrium on the accuracy of marker effects.

Results revealed a gain in predictive ability when using genome-based prediction methods

compared to pedigree-based prediction. However, the performance of different methods

can be severely derogated if inappropriate hyperparameters in the prior distribution were

chosen. Given that hyperparameters were tuned properly, most methods performed sim-
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ilarly well. For complex traits, all methods captured primarily information on genetic

relatedness, which emerge as major source of prediction accuracy. Variable selection en-

hanced predictive ability compared to methods retaining all markers in the model, but

only if the sample size was much larger than the number of causal mutations underlying

trait expression, and if only weak linkage disequilibrium among markers was present. Oth-

erwise, all methods delivered genome-wide marker effects of low accuracy and were useful

in predicting genotypic values but not in describing the genetic architecture of complex

traits.

Applying genome-based predictions in plant breeding is still in its infancy and user-friendly

software was lacking even though it is required to move genome-based prediction from

theory into practice. To fill this gap, an open-source R package was developed providing a

comprehensive analysis pipeline based on a unified data object, covering several statistical

methods presented in this thesis.

In the near future, whole-genome sequence data will be available for genome-based predic-

tion, and new computational as well as methodological challenges will arise when analyzing

these data. The potential of pre-screening approaches to reduce data dimensionality was

shown, though existing methods do not achieve a benefit in practice yet compared to

using all available data. Further methodological developments are required to maximize

performance when predicting complex traits based on whole-genome sequence data.
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Zusammenfassung

Tier- und Pflanzenzüchtungsprogramme werden derzeit durch den technologischen Fort-

schritt in der Genomanalyse revolutioniert. Genomweite Markerdaten ermöglichen es den

genotypischen Wert eines Individuums basierend auf seiner DNA vorherzusagen. Mit Re-

gressionsmodellen werden die Markereffekte anhand eines Trainingsdatensatzes mit geno-

typisierten und phänotypisierten Individuen geschätzt. Aufgrund der hochdimensionalen

Daten stellt die richtige Wahl der Einflussgrößen, der Methode und ihre Kalibrierung

eine besondere Herausforderung dar. Regularisierte Regressionsverfahren und Bayesian-

ische Methoden bieten die Möglichkeit, eine Überanpassung der Daten zu vermeiden. In

dieser Arbeit wurde die Effizienz verschiedener Methoden anhand von experimentellen

und simulierten Datensätzen verglichen. In diesem Zusammenhang wurden wichtige Ein-

flussgrößen auf die Vorhersagefähigkeit von quantitativen Merkmalen wie die Wahl der

Methode, die Heritabilität, die Markerdichte, sowie die genetische Merkmalsarchitektur

untersucht und deren Effekt quantifiziert.

Zunächst wurde die relative Effizienz der genomweiten Vorhersage gegenüber verwandt-

schaftsbasierter Vorhersage in einem Mais (Zea mays L.) Züchtungsprogramm unter-

sucht. Die Markerdaten wurden über eine genomische Ähnlichkeitsmatrix mittels der

Methode der genomischen besten linearen unverzerrten Prädiktion (GBLUP) eingebun-

den und deren Vorhersagefähigkeit mit Kreuzvalidierung geschätzt. Anschließend wurden

alternative Methoden, die die Verwendung marker-spezifischer Priori-Verteilungen und

Variablenselektion ermöglichen, untersucht. Eine Sensitivitätsanalyse wurde durchgeführt,

um den Einfluss der Parameter der Priori-Verteilung auf die Posteriori-Inferenz und die

Vorhersagen zu erforschen. Mit Hilfe von Computersimulationen wurde die Genauigkeit

der geschätzten Markereffekte untersucht. Dabei wurden verschiedene Szenarien simuliert,

welche sich in der Komplexität des simulierten genetischen Modells und in dem Verhält-

nis zwischen der Anzahl der Beobachtungen und der Anzahl der Marker unterscheiden.

Experimentelle genetische Markerdaten von Reis (Oryza sativa L.), Weizen (Triticum

aestivum L.) und Arabidopsis thaliana (L.) wurden in die Simulationsroutinen integriert,

um eine realistische Bewertung des Einflusses von verschiedenen Strukturen des Gameten-

phasenungleichgewichts auf die Genauigkeit der geschätzten Markereffekte zu erhalten.

Die Ergebnisse verdeutlichen, dass ein Anstieg an Vorhersagegenauigkeit mit genom-
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basierten Methoden gegenüber verwandtschaftsbasierten Methoden erwartet werden kann.

Allerdings kann die Vorhersagefähigkeit der Modelle deutlich beeinträchtigt werden, wenn

ungeeignete Parameter in der Priori-Verteilung gewählt werden. Andernfalls liefern ver-

schiedene Methoden ähnliche Vorhersagen, da alle Methoden die genetische Verwandtschaft

zur Vorhersage nutzen und diese sich als primäre Quelle der Vorhersagefähigkeit her-

ausstellte. Wenn die Anzahl der kausalen Mutationen, welche einem Merkmal zugrunde

liegen, deutlich kleiner als die Stichprobengröße war, und kein starkes Gametenphasenun-

gleichgewicht zwischen den Markern vorlag, konnte Variablenselektion die Vorhersage-

fähigkeit gegenüber Modellen, welche auf allen Markern basieren, erhöhen. In allen

anderen Szenarien waren die genomweiten Markereffekte von geringer Genauigkeit und

konnten zwar zur Vorhersage, nicht aber zur Beschreibung der genetischen Architektur

komplexer Merkmale genutzt werden.

Die Anwendung genomweiter Vorhersage von genotypischen Werten in der Pflanzen-

züchtung hat gerade erst begonnen und obwohl nutzerfreundliche Anwendersoftware der

Schlüssel ist, um diesen Ansatz aus der Theorie in die Praxis zu bringen, war bis-

lang noch keine solche Software vorhanden. Aus diesem Grund wurde ein umfassendes

Erweiterungspaket für die Statistiksoftware R entwickelt, welches eine Analysepipeline

basierend auf einem einheitlichen Datenobjekt beinhaltet. Dies ermöglicht die einfache

Anwendung verschiedener statistischer Methoden aus dieser Arbeit.

In naher Zukunft werden genomweite Sequenzdaten zur Vorhersage von genotypischen

Werten zur Verfügung stehen. Die Analyse dieser Datensätze erfordert sowohl neue

rechentechnische als auch methodische Lösungen. Mit Computersimulationen wurde das

Potential von Ansätzen, die eine Vorauswahl von Markern für die Vorhersage vornehmen,

gezeigt. Allerdings liefert derzeit keine der untersuchten Methoden in der praktischen

Anwendung eine Verbesserung der Vorhersagegenauigkeit gegenüber Modellen basierend

auf allen Daten. Weitere methodische Entwicklungen werden benötigt, um die Vorher-

sagegenauigkeit von komplexen Merkmalen mit Hilfe von genomweiten Sequenzdaten zu

maximieren.
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1 INTRODUCTION

1 Introduction

1.1 Background

Genetic progress in crop and livestock breeding is required, in order to comply with the

increasing demands for food and agricultural products. A key contribution is ongoing

selection by plant breeders conducting field trials to score populations of selection candi-

dates for agriculturally important traits. Individuals with the best genetic constitution

are selected to become the founders of the next breeding cycle. With homozygous inbred

lines at hand, the phenotype of a given genotype can be measured in multiple environ-

ments. With repeated measurements, the genotypic and environmental components of

phenotypic variation can be separated (Falconer and Mackay 1996; Lynch and Walsh

1998). Thus, an important question in quantitative genetics is the relative contribution

of the genotype to trait variation. For a given population, the heritable proportion of

trait variation is quantified by the trait heritability, defined as the ratio of genotypic to

phenotypic variance (Falconer and Mackay 1996). Another important factor is the ge-

netic trait architecture, i.e., the number of quantitative trait loci (QTL) controlling trait

expression and their effect sizes. Most traits of agronomic importance follow a continuous

distribution and are complex, i.e., they are controlled by a large number of QTL (Fisher

1918; Schön et al. 2004; Hayes et al. 2010).

Plant and animal breeding programs are currently being revolutionized by technological

developments in genomic research. For many species, marker arrays have been developed

which determine the genotype of an individual at tens or hundreds of thousands of loci

across the whole genome. Most markers are not causal, in that they do not affect phe-

notypic expression directly. Instead, it is assumed that the trait of interest is influenced

by QTL which are not necessarily included in the marker panel. However, given that

marker density is sufficiently high, QTL are likely to be in close proximity with at least

one genetic marker. Neighboring loci on the genome tend to be inherited together and

thus linkage disequilibrium (LD) can occur. LD is defined as non-random association of

allele combinations of two or multiple loci, which arises from a shared history of mutation

and recombination in a population (Hill and Robertson 1968). Consequently, the effects

of most QTL are expected to be tagged by markers, and the marker effects are used as

proxies for the QTL effects.
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1 INTRODUCTION

The availability of dense marker data for many species has led to a paradigm change

in the breeding process. Selection based on the phenotypic value can be replaced by

selection based on the genotypic value, which is determined by the sum of QTL effects

carried by an individual. This approach, which is known as genomic selection after the

seminal paper by Meuwissen et al. (2001), is based on a two-stage approach. First, a

training set of individuals is both genotyped with markers and phenotyped for a specific

trait. A statistical method is then used to estimate genome-wide marker effects, which

are exploited in a second stage to predict the genotypic value of unphenotyped individuals

based on their DNA marker profile. This approach is attractive from a practical point of

view because it can accelerate breeding cycles (because the genotypic value is available as

soon as a DNA sample is available) and can help to avoid cost-intensive phenotyping of a

large number of selection candidates through performance trials (Schaeffer 2006; Jannink

et al. 2010). Thus, the phenotype will no longer be the exclusive selection criterion but

will be used to estimate marker or QTL effects in the training set (Lorenz et al. 2011).

Genomic selection has been successfully implemented in dairy cattle breeding and has

replaced traditional pedigree-based selection (Hayes et al. 2009). Until recently, predicting

genotypic values has not been routinely implemented in plant breeding, although the

integration of genomic selection in crop breeding programs shows good potential (Heffner

et al. 2009; Lorenz et al. 2011; Wallace et al. 2014). However, it is unknown whether

approaches applied to dairy cattle breeding can be integrated directly into crop breeding

programs (Jonas and de Koning 2013).

An integral part of genomic selection is the statistical method used to estimate marker

effects in the training set and because this approach does not yet involve a selection

decision, this research field is called genome-based or genomic prediction rather than

genomic selection. The major objective in genome-based prediction—and of this thesis—

is to identify methods which predict genotypic values as accurately as possible. In addition

to the choice of method, other factors that determine the prediction performance are not

well understood. In this thesis, different statistical methods were evaluated for different

experimental and simulated data sets to assess and quantify the influence of the choice of

method and to measure the influence of factors such as trait heritability, marker density,

and genetic trait architecture. In the following, the problem of genome-based prediction

is presented from a statistical point of view and major challenges in the face of high-

dimensional marker data are discussed.
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1 INTRODUCTION

1.2 Statistical models in genomic analyses

Today, the most frequently used genetic markers are single nucleotide polymorphisms

(SNPs), which are positions in the DNA sequence where individuals differ with respect

to the nucleotide (A, C, G, or T) they carry. Diploid individuals carry two alleles and

so exhibit one out of three possible genotypes at each locus (e.g., AA, AT, or TT). The

coding of the SNP marker data depends on the design of the study and the model of

inheritance. Here, additive effects are modeled and, thus, the genotype of an individual

at each SNP is coded by the number of copies of a reference allele it carries, i.e., 0, 1, or

2 for genotypes AA, AT, and TT if T is the reference allele. Genome-based prediction

exploits a statistical model linking phenotypic variation to genetic variation at the DNA

level. In this thesis, the phenotypic value yi of an individual i = 1, . . . , n is supposed to

follow a Gaussian distribution, where the expectation is its genotypic value gi. Thus,

yi|gi, σ2 ∼ N(gi, σ
2), (1)

where the residual variance component σ2 is due to non-genetic factors. Each individual

is genotyped with p SNP markers and xij encodes the marker genotype of individual i

at marker locus j = 1, . . . , p. All SNP markers can be used simultaneously as potential

predictor variables in a regression model. In matrix notation, all phenotypic records are

stacked in the n-dimensional vector y = (y1, . . . , yn)′ and all genotypic data in the n× p
dimensional matrix X of predictor variables, leading to the regression model

yi =

p∑
j=1

xijβj + ei for i = 1, . . . , n or, in matrix notation, y = Xβ + e, (2)

where β = (β1, . . . , βj, . . . , βp)
′ is the p-dimensional vector of marker effects to be esti-

mated and e = (e1, . . . , ei, . . . , en)′ is the n-dimensional vector of residual terms, with

e|σ2 ∼ N(0, Inσ
2), (3)

where In is the n-dimensional identity matrix. In model (2), the response variable y is

mean centered, in order to omit an intercept term without loss of generality. Suppose that

the true model comprises a subset p0 ≤ p of important predictor variables for the trait

under study (e.g., because they are causal mutations or tag QTL). Thus, the vector of

true regression effects denoted as β0 = (β01, . . . , β0p)
′ is expected to be sparse; i.e., only a
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1 INTRODUCTION

subset of predictor variables has a true nonzero regression coefficient. All other elements

in β0 are true zero coefficients that can generate noise when predicting trait expression.

Sparsity of the true model is a central concept when studying the behavior of different

statistical methods, as illustrated in Wimmer et al. (2013) and Section 2.2.

Two major goals can be distinguished when searching for an appropriate model for the

regression problem described previously: variable screening and prediction. For variable

screening, variable selection can be used to pinpoint the positions of the true nonzero

coefficients in β0. With genomic data, only those markers should be retained in the

model that are considered to be causal mutations themselves or tag QTL for the trait

under study. Thus, variable selection methods have the potential to describe the genetic

architecture of complex traits, i.e., the number of QTL and their effects. In Wimmer et al.

(2013), as well as in Section 2.2, empirical results on the accuracy of estimated marker

effects were presented and prospects and limitations of statistical methods for variable

screening with high-dimensional marker data were discussed. For practical applications

in breeding programs, prediction is of the utmost importance. In this treatise, it is

crucial to obtain estimated regression coefficients β̂ that deliver accurate predictions of

the genotypic value for a future observation using ĝf = E(yf |xf ) = x′f β̂, where xf is the

p-dimensional vector of marker genotypes of the selection candidate.

1.3 Challenges in statistical modeling

With marker data at hand, the phenotypic value of an individual can be regressed on the

marker loci. The standard technique employed to obtain regression coefficients in linear

models is least-squares estimation. However, this method is limited to the case where

more individuals than markers are available and extensions are required when analyzing

high-dimensional marker data, as discussed in the following.

The theoretical properties of regression models are well-described in the framework of

problems with a small, fixed number p of well-chosen predictor variables and large numbers

of observations n. Nowadays, the number of markers is continuing to increase while the

number of individuals with phenotypic observations remains limited because phenotyping

is the bottleneck especially in plant breeding programs. Thus, high-dimensional data sets

emerge whereby n � p, i.e., the number of predictor variables exceeds the number of
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1 INTRODUCTION

observations by far, known as large p, small n problem. From a statistical point of view,

the regression problem in (2) is underdetermined and a simultaneous fit of all markers

using least-squares estimation is not possible.

The concept of genome-based prediction relies on LD among markers and QTL (Meuwis-

sen et al. 2001). A sufficient coverage of the genome with markers is required to maximize

the probability that at least one marker is in close proximity with a QTL. On the other

hand, in dense marker maps, LD among markers leads to multicollinearity in the ma-

trix of the predictor variables. Multicollinearity describes a situation whereby multiple

linear dependencies are present among predictor variables (Myers 1994). Under this sce-

nario, spurious correlations of unimportant predictor variables and the response variable

can emerge, leading to a severe bias for estimated regression coefficients, wrong standard

errors, and even misleading scientific conclusions (Miller 2002; Hastie et al. 2009).

1.4 Addressing dimensionality through regularization

Methods to cope with the large p, small n problem in high-dimensional data sets are

of paramount interest for genome-based prediction. Promising approaches are based on

statistical methods applying regularization through constraints in the objective function,

by variable selection, or by introducing a prior distribution for the unknown parameters

in a Bayesian framework. First, it is described how regularization influences bias and

variance of the estimated marker effects and why regularization in regression models can

enhance prediction performance.

1.4.1 The bias-variance tradeoff in regression analyses

By using regularization, an unbiased estimator for a marker effect such as the least-

squares estimator is turned into a biased estimator with smaller variance. Suppose θ̂n

is an unbiased estimator of the true parameter θ obtained from n observations. If this

estimator is multiplied by a regularization parameter a ∈ [0, 1), the estimator θ̂∗n for θ is

biased because it is shrunken such that E(θ̂∗n) = aθ < θ. However, Var(θ̂∗n) = a2 Var(θ̂n) <

Var(θ̂n) and, thus, the variance is reduced at the expense of the estimation bias (de los

Campos et al. 2013a). To measure the precision and accuracy of an estimator, the mean-

squared error (MSE) is suitable as it comprises both the squared bias and the variance of
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the estimator (Hastie et al. 2009):

MSE(θ̂n) = E

{[
θ̂n − θ

]2}
= E

{[
θ̂n − E(θ̂n)

]2}
+
[
E(θ̂n)− θ

]2
= Var(θ̂n) +

[
Bias(θ̂n)

]2
. (4)

The MSE can be minimized by an appropriate choice of a, leading to a bias-variance

tradeoff. This concept is fundamental to illustrate how regularization can enhance the

performance of genome-based prediction methods. The extent of regularization in a re-

gression model will be measured by the number of effective parameters defined by the

trace of the hat matrix that projects the vector of observed values to the vector of fitted

values following Tibshirani (1996) and Gianola (2013). A method that fits the training

data extremely accurately has a hat matrix that is close to the diagonal matrix, and,

thus, a large number of effective parameters. Such a method will exhibit a small bias

but has potentially a large prediction variance. Hence, the ability to predict independent

test data is reduced because the method exaggerates minor fluctuations in the data and

suffers from overfitting. On the other hand, with too much regularization, the method

experiences a lack of fit, leading to increased errors in both training and test data (i.e.,

the method suffers from underfitting).

For genomic prediction based on dense marker data the crucial task is to optimize this

bias-variance tradeoff. The “best” estimate with respect to the MSE typically trades

a small bias for a large reduction in prediction variance (Figure 1). In many cases,

the variance term will decrease with sample size n, while the bias is independent of n.

Thus, larger samples tend to support a higher number of effective parameters because the

relative disadvantage of a large variance is reduced (Miller 2002). Furthermore, a different

extent of regularization can be advantageous if the major goal is variable screening instead

of prediction. This question will be investigated in Section 2.3.1. When considering

the question of an appropriate method for genome-based prediction, the concept shows

why different methods exhibit different properties and can deliver different prediction

performances. Thus, different statistical methods were investigated in this thesis and

their efficiency was assessed through computer simulations and experimental data sets.

In particular the choice of regularization parameters is crucial when optimizing the bias-

variance tradeoff, as illustrated in Section 2.3. Next, the specific statistical methods
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employed in this thesis will be described.

Number of effective parameters
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Figure 1: Typical behavior of the mean-squared error in a training sample and a test sample

(dashed) as a function of the number of effective parameters (figure adopted from Hastie et al.

(2009, p.38)).

1.4.2 Penalized least-squares estimates

In penalized regression models, a penalty function augments the objective function of

least-squares estimation in order to constrain the size of the regression coefficients and to

induce regularization. In this thesis, three approaches based on penalized least-squares

estimators were employed where the estimated marker effects for (2) are obtained as

β̂(λ) = argminβ

{
||y −Xβ||22 + λ · Pen(β)

}
(5)

where y denotes the n-dimensional vector of phenotypic observations, X the n×p matrix

of marker genotypes, and β the p-dimensional vector of marker effects. In (5) ||x||22 denotes

the squared L2 norm of a vector x = (x1, ..., xp)
′, defined as ||x||22 =

∑p
j=1 x

2
j . The choice

of penalty function Pen(β) is crucial for the properties of the resulting estimator and it

was demonstrated empirically that different penalty functions were preferable for different

scenarios (Wimmer et al. 2013). The regularization parameter λ ≥ 0 is the multiplier of

the penalty function that controls the extent of regularization while notation β̂(λ) is used

to stress the dependency of the solution on the choice of λ. The larger the value of λ, the

7
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smaller the number of effective parameters. In Section 2.3.1 the influence of the choice of

λ on the properties of the resulting estimator β̂(λ) will be investigated with marker data.

One statistical method used for genomic prediction in this thesis is Ridge regression (Hoerl

and Kennard 1970) where the penalty function is defined by the L2 norm of the regression

coefficients, i.e., Pen(β) = ||β||22. The estimated marker effects are obtained as

β̂(λ)Ridge = (X′X + λIp)
−1X′y, (6)

where Ip is the p-dimensional identity matrix. Thus, the value λ is added to the diagonal

values of X′X, which assures a unique inverse and stabilizes the solution when X′X is ill-

conditioned due to multicollinearity (Hoerl and Kennard 1970). The bias of the estimator

in (6) increases but the variance decreases monotonically with λ and the MSE can be

improved compared to the least-squares estimator (Hoerl and Kennard 1970). In this

thesis, Ridge regression was implemented according to the best linear unbiased prediction

(BLUP) approach, where the value for λ was derived from the noise-to-signal ratio in

the data, i.e., the ratio of environmental to marker variance components, as estimated

through restricted maximum likelihood estimation (REML) (see Wimmer et al. (2013)

for more details). This method is known as “Ridge regression BLUP” (RR-BLUP) in the

context of genome-based prediction. It is worth mentioning that RR-BLUP performs no

variable selection and retains all markers in the model.

From a computational perspective in the n � p case, it is more convenient to replace

the RR-BLUP method with the genomic BLUP (GBLUP) method where marker data

are used to construct a genome-based similarity matrix among individuals (Habier et al.

2007). Consequently, the GBLUP method requires the inverse of a n×n instead of a p×p
matrix as in RR-BLUP (see Equation 6), but both methods deliver the same predicted

genotypic values (Goddard et al. 2009; Hayes et al. 2009) and the estimated variance

components are transferable between models (Albrecht et al. 2011). The GBLUP method

is closely related to the pedigree-based BLUP (PBLUP) method that has been used for

livestock improvement for decades. In PBLUP, the expected relationship between relatives

based on pedigree is exploited to predict genotypic values. A pedigree-based relationship

matrix is constructed to account for the expected covariance among the genotypic values

of the individuals being random effects in a linear mixed model (Henderson 1984).

A special case of regularization is variable selection, where predictor variables are effec-

tively removed from the model by setting their regression coefficients to zero. Variable
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selection is of great interest in genetic analyses when it is likely that only a fraction

of markers will be important as predictor variables, e.g., because they tag QTL effects

(Meuwissen et al. 2001). With the L1 norm penalty function Pen(β) = ||β||1 =
∑p

j=1 |βj|
the estimator in (5) is called the least absolute shrinkage and selection operator (LASSO,

Tibshirani 1996). This penalty function is continuous, but the first derivative (i.e., the

signum function) is not continuous in zero. As a consequence, the LASSO features vari-

able selection such that β̂j(λ) = 0 for many predictor variables and LASSO can select at

most n nonzero coefficients for all values of λ (Hastie et al. 2009). In this thesis, suitable

values for λ were determined using cross-validation (CV) as described in Section 1.5 and

Wimmer et al. (2013). The resulting sparse model can be used to pinpoint QTL. How-

ever, it is challenging to distinguish these from noise in the face of multicollinearity caused

by LD among markers. In Wimmer et al. (2013), scenarios where variable selection was

successful were identified when analyzing genome-based prediction data.

Several LASSO and Ridge regression extensions have been proposed in the literature.

Zou and Hastie (2005) introduced the elastic net for the analysis of high-dimensional

data sets with correlated predictor variables. The penalty function for the elastic net is

defined as a compromise between the L1 and L2 norm penalty functions, i.e., Pen(β) =

α||β||1 + (1− α)||β||22 (Friedman et al. 2010). Both LASSO and Ridge regression can be

considered as special cases of the elastic net with α = 1 and α = 0, respectively. However,

it is not straightforward to see theoretically when the elastic net outperforms LASSO

(Bühlmann and Mandozzi 2013). Thus, the performance of both methods was compared

empirically in Wimmer et al. (2013).

1.4.3 Bayesian methods for genome-based prediction

Besides the choice of penalty function, the choice of appropriate regularization parameters

affects the performance of penalized regression methods. The regularization parameter λ

in (5) can be defined by CV or the BLUP approach. An alternative view on regulariza-

tion is the Bayesian framework, where the regularization parameter is considered to be an

additional random variable in the model. This offers the possibility to estimate the regu-

larization parameter along with the regression coefficients from the data. Here, regression

coefficients are assumed to be unknown while a predefined prior distribution conveys reg-

ularization. Inferences are based on the posterior distribution which is obtained from the
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prior distribution that is updated with the likelihood function of the data. Thus, the

prior distribution will affect posterior inference, but the influence is expected to vanish

for large sample sizes (Bernardo and Smith 1994).

The prior distribution conveys information about the unknown parameters as the penalty

function introduces constraints into the optimization problem described in (5). In the

regression framework of (2), the prior distributions may differ between the regression

coefficients and typically involve a second level in the model hierarchy with hyperprior

distributions based on hyperparameters that must be specified in advance. These hy-

perparameters control the shape of the prior distribution, and, hence, the bias-variance

tradeoff. An important question is the extent to which the prior distribution influences

posterior inference (Gianola 2013). In this context, sensitivity analysis refers to the pro-

cess of modifying the prior specification in order to investigate its impact on posterior

inference (Gelman et al. 2004). In Lehermeier et al. (2013), a sensitivity analysis was

performed to assess the influence of hyperparameters in the prior distribution for differ-

ent Bayesian genome-based prediction methods. The specific Bayesian methods applied

for genome-based prediction in this thesis will be described briefly in the following while

additional information can be found in de los Campos et al. (2013a).

In Bayesian Ridge regression, the same prior distribution is employed for all marker effects

such that

βj|σ2
β ∼ N(0, σ2

β) for j = 1, . . . , p, (7)

where the variance parameter σ2
β is considered as a random variable, and a scaled inverse-

χ2 distribution is assigned as the hyperprior distribution, i.e.,

σ2
β|ν, S ∼ χ−2(ν, S). (8)

The scaled inverse-χ2 distribution has two hyperparameters, the scale parameter S > 0

and ν > 0 degrees of freedom. A large value for S in (8) will lead to a large value

for E(σ2
β) = νS2/(ν − 2) (for ν > 2) and thus a diffuse prior distribution for βj in (7),

indicating a small extent of regularization. The common variance component in Bayesian

Ridge regression reflects that marker effects along the genome originate from the same

distribution (de los Campos et al. 2013a), which does not imply that the same amount of

regularization is applied to all markers, because shrinkage is allele frequency-dependent

(Gianola 2013). When the value for σ2
β is derived by BLUP using estimated variance
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components instead of modeling the prior distribution as in (8), the prior distribution in

(7) describes the prior distribution pertaining to RR-BLUP.

The next method employed for genomic prediction was Bayesian Lasso where the prior

distribution for the marker effects is described by a conditional mixture of Gaussian

distributions (Park and Casella 2008; de los Campos et al. 2009). Consequently, the

assumption of the same variance parameter across all markers is relaxed and marker-

specific prior distributions are modeled within the following model hierarchy

βj|σ2, τ 2j ∼ N(0, σ2τ 2j ), (9)

τ 2j |λ ∼ Exp(λ2), (10)

λ2|r, δ ∼ Ga(r, δ), (11)

where (11) specifies a Gamma distribution for the regularization parameter λ with shape

parameter δ and scale parameter r. The hyperprior distribution in (11) can be omitted

when a fixed value for λ is supplied in (10). In Lehermeier et al. (2013) as well as

Section 2.3.2, the advantage of using a Gamma distribution compared to a fixed value

was investigated. In general, a large λ value will lead to a sharp prior distribution for

βj, i.e., more shrinkage toward zero. It is expected that shrinkage of the Bayesian Lasso

is stronger compared to the Gaussian prior distribution in Bayesian Ridge regression or

RR-BLUP (Gianola 2013), a question that will be approached empirically in Section 2.3.2.

Finally, the Bayesian methods BayesA and BayesB were investigated which were pro-

posed by Meuwissen et al. (2001) in the context of genome-based prediction. The prior

distribution for the marker effects j = 1, . . . , p in BayesA and BayesB can be expressed

through the following model hierarchy:

βj|σ2
βj
∼ N(0, σ2

βj
), (12)

σ2
βj
|π, ν, S ∼ πδ0(·) + (1− π)χ−2(ν, S), (13)

where δ0(·) denotes a point mass at zero and π ∈ [0, 1] controls the fraction of marker

effects included in the model. Note that zero variance for a regression coefficient indicates

complete certainty about its effect size in the Bayesian framework (Gianola et al. 2009).

The BayesB method was implemented such that zero variance leads to a zero effect to

induce variable selection while BayesB reduces to BayesA if π = 0. Again, both methods

relax the assumption of an equal variance component for all marker effects and assign
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a variance that is specific for each marker. Thus, Bayesian Lasso, BayesA, and BayesB

apply differential shrinkage to each marker, which is expected to be advantageous com-

pared to Bayesian Ridge regression for traits with QTL of sizeable effect. BayesB does

additional variable selection compared to BayesA and Bayesian Lasso which is considered

to be advantageous if the true model has a sparse representation. However, with an in-

appropriate choice of π, either too many or too few markers will be selected and both

scenarios can affect prediction performance adversely. The efficiency of variable selection

compared to methods retaining all predictor variables in the model was investigated in

Wimmer et al. (2013).

In general, the solution to these Bayesian methods cannot be computed analytically. In-

stead, Markov chain Monte Carlo (MCMC) techniques are used to sequentially generate

samples from the full conditional posterior distributions of the unknown parameters. To-

gether, the samples approximate the joint posterior distribution. Monitoring convergence,

i.e., checking whether the distribution converges toward a unique stationary posterior dis-

tribution, is crucial for valid statistical inference (Gelman et al. 2004). The algorithms

involve a burn-in phase, where early samples are not used for posterior inference. In this

thesis, the Markov chains were inspected visually to assess their convergence status and

the required burn-in phase.

To summarize, regularized regression and Bayesian methods are powerful techniques for

coping with overfitting problems in high-dimensional marker data to achieve an optimal

bias-variance tradeoff. In Table 1, an overview of the models applied in this thesis is

presented. Those methods with a variable selection feature are highlighted and a list of

the unknown parameters for each method and the technique to tune them (CV, BLUP, or

MCMC) is presented. Those methods that are available through the synbreed R package

(Wimmer et al. 2012) are indicated.

1.5 Model assessment

When comparing statistical methods for genome-based prediction, it is important to assess

their prediction performance in an independent validation set, because performance in the

training data can be a poor description of the performance in test data (Figure 1). In

this thesis, K-fold CV was used as an assumption-free method to assess the prediction
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Table 1: Overview of statistical methods based on marker data used and compared in this

thesis.

Method Variable

selection

Unknown

parame-

ters for

marker

effects

Tuning

technique

Used in publication Available

through

the

synbreed

package

RR-BLUP no λ BLUP Wimmer et al. (2013) yes

GBLUP no λ BLUP Albrecht et al. (2011) yes

LASSO yes λ CV Wimmer et al. (2013) no

Elastic net yes λ, α CV Wimmer et al. (2013) no

BRR1 no σ2
β MCMC Lehermeier et al. (2013) yes

BL2 no λ or r and

δ

MCMC Lehermeier et al. (2013) yes

BayesA no ν, S MCMC Lehermeier et al. (2013) no

BayesB yes π, ν, S MCMC Lehermeier et al. (2013)

Wimmer et al. (2013)

no

1: BRR = Bayesian Ridge regression; 2: BL = Bayesian Lasso

performance of different statistical methods in experimental and simulated data sets. In

brief, the procedure utilized to compare different methods using K-fold CV is as follows:

1. Divide the training data set into K mutually exclusive sets D1, . . . , DK of (almost)

equal size. A typical choice is K = 5.

2. Define for each k = 1, . . . , K the estimation set (ES) as DES = {Di : i 6= k, i =

1, . . . , K} and the test set (TS) as DTS = Dk. By nES and nTS the number of

individuals in the ES and TS are denoted. A genome-based prediction method

is fitted based on observations in the ES. If the method involves the tuning of a

regularization parameter λ, an additional CV layer is used to select λ based on a

grid search by repeating steps 1 to 4 in the ES (i.e., for LASSO).

3. Compute the predicted genotypic values ĝTS for observations in the TS.
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4. Evaluate prediction performance with a criteria C(ĝTS,yTS) for the discrepancy of

predicted genotypic values (ĝTS) and observed phenotypic values (yTS) in the TS.

In most cases, different methods were compared based on their predictive ability, defined

as Pearson’s correlation coefficient rĝy = r(ĝTS,yTS) between predicted genotypic values

and observed phenotypic values in the TS. Ideally, the methods should be compared based

on their prediction accuracy defined as rĝg = r(ĝTS,gTS), i.e., the correlation between

predicted and true genotypic values, as the aim of genome-based prediction is to predict

genotypic and not phenotypic values. However, prediction accuracy can be assessed only in

computer simulations where true genotypic values are known; otherwise, predictive ability

is influenced by trait heritability. To compare different traits with different heritabilities

in experimental data sets, prediction accuracy was approximated by rĝg ≈ rĝy/h where h

is the square root of trait heritability (Legarra et al. 2008). In addition, the prediction

performance was measured by the prediction mean-squared error (PMSE), defined as

PMSE(ĝTS,yTS) =
1

n
||ĝTS − yTS||22.

Besides prediction performance, an interesting question is the accuracy of genome-wide

marker effects. An evaluation of the accuracy of estimated marker effects is not possible

with experimental data sets where true marker effects are unknown; instead, computer

simulations were employed in Wimmer et al. (2013) to compare the accuracy of estimated

marker effects between different methods in silico (see Section 1.6.2). In Wimmer et al.

(2013), the main measure for the accuracy of estimated marker effects was the normalized

L2 error between the vector of estimated (β̂) and true marker effects (β0) known from

the simulation routine, which is defined as

L2(β̂,β0) =
||β̂ − β0||2
||β0||2

. (14)

This criterion describes the accuracy of both true zero and nonzero coefficients across

scenarios and methods. The ability of the different variable selection methods to pinpoint

causal mutations was investigated based on the number of true positive nonzero coeffi-

cients (TP), false positive true zero coefficients (FP), true negative true zero coefficients
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(TN), and false negative true nonzero coefficients (FN), defined as

TP(β̂,β0) =

p∑
j=1

1(β̂j 6= 0|β0j 6= 0),

FP(β̂,β0) =

p∑
j=1

1(β̂j 6= 0|β0j = 0),

TN(β̂,β0) =

p∑
j=1

1(β̂j = 0|β0j = 0),

FN(β̂,β0) =

p∑
j=1

1(β̂j = 0|β0j 6= 0),

where 1(·) denotes the indicator function. From these measures one computes the sensi-

tivity and specificity of the vector of estimated regression coefficients, defined as

Sens(β̂,β0) =
TP(β̂,β0)

FN(β̂,β0) + TP(β̂,β0)
,

Spec(β̂,β0) =
TN(β̂,β0)

FP(β̂,β0) + TN(β̂,β0)
,

respectively. Both measures range between 0 and 1, and high values indicate good perfor-

mance. In Wimmer et al. (2013), variable selection was considered to be successful when

the sensitivity was above a predefined threshold of 0.8.

1.6 Data sets

Besides method validation in an independent data set, it is crucial to compare different

methods using different data sets in order to make reliable inferences about the gen-

eral performance of different genome-based prediction methods. In this section, a brief

summary of the experimental and simulated data sets analyzed in this study will be pre-

sented. Further information can be found in the original publications (Albrecht et al.

2011; Lehermeier et al. 2013; Wimmer et al. 2013).

1.6.1 Experimental data sets

In Albrecht et al. (2011), an experimental data set of 1377 doubled haploid (DH) lines of

maize (Zea mays L.) derived from 36 crosses was analyzed. Each family contributed 14
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to 60 DH lines to the final data set. All lines were phenotyped as testcrosses with a single

tester for two quantitative traits (grain dry matter yield and content) and genotyped

using 732 polymorphic SNP markers.

The experimental data set in Lehermeier et al. (2013) consisted of 698 DH lines of maize

derived from 122 crosses. On average, six DH lines were derived from each family with

a minimum of 1 and a maximum of 63. All DH lines were phenotyped as testcrosses

with a single tester for two quantitative traits (grain dry matter yield and content) and

genotyped for 11646 polymorphic SNPs.

In Wimmer et al. (2013), three publicly available data sets of rice (Oryza sativa L.),

wheat (Triticum aestivum L.), and Arabidopsis thaliana (L.) were analyzed. For the rice

data, phenotypic and genoptypic data for 413 rice varieties and 36901 SNPs were used

from the original publication (Zhao et al. 2011). Out of 34 available traits, four traits

with contrasting genetic architecture were selected based on the genome-wide association

study (GWAS) results. The wheat data set (Poland et al. 2012) consisted of 254 breeding

lines phenotyped for yield, thousand-kernel weight, and days to heading. Genotypic data

on 2056 polymorphic SNPs were available. The Arabidopsis data set (Atwell et al. 2010)

consisted of 199 accessions genotyped with 215908 SNP markers. Four out of the 107

available traits with contrasting genetic architecture were selected based on the GWAS

results in Atwell et al. (2010).

1.6.2 Simulated data sets

In Lehermeier et al. (2013) and Wimmer et al. (2013), different simulation procedures

were employed to investigate the influence of sample size, heritability, LD structure, and

genetic trait architecture on the efficiency of different statistical methods in silico. In all

cases, a predefined number p0 of true nonzero coefficients (or QTL) were simulated and

the genotypic values of n individuals were obtained as

gi =

p0∑
j=1

qij, i = 1, ..., n

where qij is the effect of the j-th QTL allele for individual i. Phenotypic values were

simulated by adding random environmental residuals

yi = gi + ei, i = 1, ..., n
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where ei ∼ N(0, σ2) and σ2 was calibrated to achieve a predefined heritability. In

Lehermeier et al. (2013), data was simulated following standard procedures, as in Meuwis-

sen et al. (2001), but considering the specifics of a typical commercial maize breeding

program. The objective of this simulation scheme was to generate data sets with an LD

and a family structure such as observed in the experimental data set in Albrecht et al.

(2011). The loci that were assigned to be QTL were not included in the marker panel,

resembling the latent QTL assumption. These simulated data sets were used to compare

the prediction performance of different Bayesian methods in Lehermeier et al. (2013).

In Wimmer et al. (2013), a different approach was used to control various parameters

that are expected to influence the efficiency of statistical methods for genome-based pre-

diction. A simulation scheme with varying numbers of markers, individuals, and trait

heritabilities was employed. The set of true nonzero coefficients was included in the set

of predictor variables to validate the accuracy of estimated marker effects based on both

true zero and nonzero coefficients directly. In the first simulation procedure, the influence

of determinedness level, defined as the ratio n/p, true model complexity level, defined

as the ratio p0/n, and the trait heritability was investigated in order to investigate their

marginal influence on the efficiency of different statistical methods. In a second simula-

tion procedure, real marker data was incorporated from the rice, wheat, and Arabidopsis

data sets to obtain a more realistic picture of what can be expected in real data. This

approach encapsulates the real LD structure (but not the genetic relatedness structure

between individuals) but is limited to the actual observed sample sizes. Thus, a third sim-

ulation procedure was employed where the LD structure of the real data set was conveyed

to simulated data sets of varying sample size.

It is worth mentioning that even though no LD structure was specified in procedure 1,

the finite sample size will generate spurious correlations (Fan and Lv 2008). Moreover, it

is important to be aware of similarities and differences in the simulated and experimental

data sets. An important difference between all procedures in Wimmer et al. (2013) and the

experimental data sets is that no genetic relatedness between individuals was simulated

(see discussion in Sections 2.1 and 2.6).
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1.7 Outline of the thesis

Using the statistical methods as well as experimental and simulated data sets described

previously, the following research questions were investigated in the publications being

part of this thesis (Albrecht et al. 2011; Wimmer et al. 2012; Lehermeier et al. 2013;

Wimmer et al. 2013). First of all, the general usefulness of genome-based prediction in

plant breeding was investigated in Albrecht et al. (2011). With marker data at hand,

pedigree-based relationship coefficients were replaced by genome-based similarity coeffi-

cients measuring the realized proportion of shared alleles between pairs of individuals.

The latter approach should provide more accurate predictions of the genotypic values be-

cause genome-based similarity coefficients account for Mendelian sampling (Hayes et al.

2009; Goddard 2009). This hypothesis was investigated with an experimental data set

of maize testcross values and two complex traits. With Albrecht et al. (2011), empirical

results at the population level including multiple families of maize have become available,

describing the target data structure of advanced cycle breeding programs. Marker data

were incorporated through the GBLUP method and different CV schemes were conducted

to assess predictive abilities within and across families. The specific objectives in Albrecht

et al. (2011) were to

• compare the accuracy of genome-based predictions with pedigree-based predictions

in an advanced cycle breeding population of maize,

• assess the influence of the sample size on predictive ability, and,

• evaluate prediction performance within and across families through CV.

Results presented by Albrecht et al. (2011) are complemented by investigating the influ-

ence of increased marker density in Section 2.1.2. With increasing marker density, the

probability of tagging QTL through markers is increased. Thus, an interesting question

is the number of markers required for genome-based prediction, the answer to which is

presented in Section 2.1.2 and Wimmer et al. (2013) for different plant populations. Large

differences in magnitude of prediction performance were observed for different data sets

and traits. Thus, in Section 2.1.3, important determinants of prediction accuracy such

as sample size and trait heritability as well as theoretical formulas to predict prediction

accuracy from these factors will be discussed.
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In Section 1.4 it was shown that different statistical methods employ different approaches

to optimize the bias-variance tradeoff. Thus, an important question is the choice of an

appropriate genome-based prediction method. The GBLUP method is well-established

as a standard method and is the most prevalent method used in plant and animal breed-

ing (de los Campos et al. 2013b). The underlying assumption of this method is that

all markers contribute according to the same Gaussian distribution for all marker effects

(Hayes et al. 2009). It was envisaged from computer simulations that Bayesian meth-

ods allowing for marker-specific variances in the prior distribution are superior for traits

controlled by a small number of QTL (Meuwissen et al. 2001; Daetwyler et al. 2010).

Consequently, choice of prediction method can affect prediction performance and, thus,

different Bayesian methods (Bayesian Ridge Regression, Bayesian Lasso, BayesA, and

BayesB) were compared in Lehermeier et al. (2013) using experimental and simulated

data sets. These methods require the specification of hyperparameters (see Table 1) but

their impact on posterior inferences and prediction performance was largely unknown be-

cause most studies considered only a single set of hyperparameters. Thus, the objectives

in Lehermeier et al. (2013) were to perform a sensitivity analysis in order to investigate

• the influence of hyperparameters in the prior distribution on the posterior distribu-

tion of marker effects and predictive ability of different Bayesian methods, and,

• whether models allowing for marker-specific prior variances instead of modeling the

same prior distributions across all markers enhance prediction performance.

The influence of the hyperparameters and marker-specific prior variances was demon-

strated in Lehermeier et al. (2013) while different approaches to select hyperparameters

will be discussed in Section 2.3.

Variable selection constitutes a special case of regularization with marker effects being

effectively removed from the model. Theoretically, methods with a built-in variable se-

lection feature can outperform methods using all available markers when the vector of

true nonzero coefficients is sufficiently sparse (Bühlmann and van de Geer 2011). The

influence of the true model complexity was demonstrated with computer simulations in

Donoho and Stodden (2006) for different variable selection methods where recovery of

true nonzero coefficients with a high probability was only possible if p0 � n. In addition,

the authors highlighted the role of the determinedness level for statistical inference in high

dimensions. With a constant true model complexity level, the performance of LASSO was
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derogated with respect to the recovery of true nonzero coefficients if the determinedness

level was reduced. However, the simulations in Donoho and Stodden (2006) did not ac-

count for the properties of marker data, such as the discrete nature of predictor variables

and LD among SNPs. Thus, the objective in Wimmer et al. (2013) was to identify sce-

narios where LASSO can recover causal mutations in high-dimensional marker data using

different simulation procedures (Section 1.6.2). Besides sparsity, collinearity in the matrix

of predictor variables confines prospects of variable selection (Bühlmann and van de Geer

2011). Thus, experimental data from three different plant species where incorporated into

the study to assess the influence of different degrees of collinearity caused by LD. A total

of 11 quantitative traits with presumably different genetic architecture were analyzed and

the following questions were addressed in Wimmer et al. (2013):

• Under which conditions can it be expected that variable selection in addition to

shrinkage enhances prediction performance for quantitative traits, and what are the

factors that impact the ability of a method to recover true nonzero coefficients?

• What are upper bounds for the number of true nonzero coefficients which can be

identified under different scenarios of sample size, trait heritability, and extent of

LD?

• How accurate are marker effects estimated by different statistical methods and can

genome-wide marker effects describe the genetic architecture of complex traits?

Computer simulations have revealed that methods performing variable selection or allow-

ing for a non-Gaussian distribution of marker effects work well for traits influenced by

a small number of QTL (Zhong et al. 2009; Daetwyler et al. 2010). However, different

results have been obtained with experimental data sets. Here, a common finding among

many empirical studies is that most methods perform similarly and no single best method

across all traits and data sets emerged. This leads to the following additional question:

• Why are some genome-based prediction methods advantageous in computer simu-

lations but not in studies based on experimental data?

Results in Wimmer et al. (2013) confirmed that variable selection can only enhance pre-

diction performance when the number of true nonzero coefficients was small compared

to the sample size, when strong LD was absent, and trait heritability was large. This is

typically not the case in plant breeding populations showing strong LD, as discussed in
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Wimmer et al. (2013) and sparsity might not be a reasonable assumption for the true

model when analyzing high-dimensional marker data (see discussion in Section 2.5.2).

With whole-genome sequence data, the causal mutations are expected to be included

among the predictor variables (Meuwissen and Goddard 2010). Thus, sparsity of the

true model might become a reasonable assumption. However, analyzing whole-genome

sequence data is challenging given the large number of potential predictor variables, lead-

ing to both statistical and computational challenges. Thus, methods performing a pre-

selection of predictor variables to reduce dimensionality are of great interest and their

prospects and limitations are discussed in Section 2.6 based on computer simulation re-

sults. Important topics related to the use of computer simulations for model assessment

are discussed in Section 2.7.

Integration of genome-based prediction in breeding for crop improvement is still in its

infancy. At the initiation of this thesis in 2010, no comprehensive software package was

available to derive predictions from large-scale genomic data. However, both research

and practical applications will be advanced by the availability of open-source software

integrating analysis procedures for genotypic, phenotypic, and pedigree data (Heffner

et al. 2009). Thus, Wimmer et al. (2012) provides

• an open-source software package within the R environment (R Development Core

Team 2012) which implements genome-based prediction and covers special cases that

occur in plant breeding populations with DH lines and repeated measurements, and,

• a unified data object to integrate phenotypic, genotypic, and pedigree data in various

formats and from different species.

The publicly available R package synbreed described in Wimmer et al. (2012) provides a

versatile analysis pipeline for genomic prediction and was released on the comprehensive

R archive network (CRAN, http://cran.r-project.org/web/packages/synbreed/).

In Section 2.8 it is shown how the package implements a unified analysis pipeline for

genome-based prediction including several statistical methods described in this thesis.

The general discussion in Section 2 concatenates the topics of all publications and presents

possible directions of future research, including additional investigations and results on

several topics.
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2 General discussion

The central research questions of this thesis were to investigate the relative efficiency

of genome-based prediction in maize, to explore the performance of statistical methods

which might improve the prediction performance compared to the GBLUP method, and

to provide user-friendly software for the application of genome-based prediction. In this

section, essential conclusions for genome-based prediction are discussed which emerge

from findings in Albrecht et al. (2011), Wimmer et al. (2012), Lehermeier et al. (2013),

and Wimmer et al. (2013) as well as from further unpublished results. Finally, possible

directions of future research when analyzing whole-genome sequence data are discussed

and the most important take-home messages of this work are summarized.

2.1 Genome-based prediction in maize and factors affecting

prediction performance

2.1.1 Prediction with marker data instead of pedigree data

In Albrecht et al. (2011), testcross values were predicted with different models, and pre-

dictive ability was assessed using different CV schemes. In the first linear mixed model,

the expected variance-covariance structure of the random effects for the genotypic values

pertaining to the DH lines was inferred from three generations of pedigree data (PBLUP

method). For the second linear mixed model, marker data were incorporated using differ-

ent genome-based similarity coefficients including the GBLUP method. Finally, a linear

mixed model including both pedigree and marker data was fitted. Predictive ability and

accuracy were estimated using CV with a random allocation of individuals as well as CV

within and across families. To investigate the influence of the sample size on predictive

ability, the size of the training data set was reduced by retaining only fractions (1/2, 1/4,

and 1/8) of DH lines chosen at random from the complete data set. The main result

was that in all scenarios prediction accuracies were maximized with models incorporating

marker data. For grain yield, an average gain of 29% within and 300% across families

with respect to prediction accuracy was observed relative to a model using pedigree data

alone. The increase of predictive ability in CV with GBLUP was confirmed with the data

used in Lehermeier et al. (2013) where a gain of 76% in predictive ability compared to
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the PBLUP method was observed for grain yield (Figure 2).

The results in Albrecht et al. (2011) and Lehermeier et al. (2013) are promising for the

implementation of genome-based prediction in maize breeding, because an increase in ac-

curacy can be expected if predictions are based on marker data instead of pedigree data.

In some scenarios, a further small, but significant increase in predictive ability was ob-

served for models using marker data and pedigree data simultaneously. This was expected

where marker coverage was low (Carré et al. 2013) and it was confirmed in experimental

studies for wheat (de los Campos et al. 2009; Crossa et al. 2014). However, the additional

advantage of pedigree data is expected to vanish if marker density is sufficiently high

(de los Campos et al. 2010; Lorenz et al. 2011).

2.1.2 Benefit of increasing marker density

The studies in Albrecht et al. (2011) and Lehermeier et al. (2013) vary with respect

to the number of markers used (732 and 11646 polymorphic SNPs, respectively). As

more markers increase the probability of tagging QTL, an important question that needs

to be addressed is the minimum number of markers required to obtain sufficient genome

coverage for prediction. To investigate the influence of the number of markers on predictive

ability, low density marker panels were generated in silico through a random masking of

subsets of the available SNPs. These subsets were used to fit the GBLUP method and

the predictive ability was evaluated using CV without accounting for family structure.

The procedure was repeated 10 times for each number of markers, in order to account for

randomness when sampling these marker subsets. This procedure was conducted for the

data sets of Albrecht et al. (2011) and Lehermeier et al. (2013) and trait grain yield.

A plateau for the predictive ability was reached with approximately 2000 SNPs from the

data in Lehermeier et al. (2013) (Figure 2). Conversely, predictive ability for the data

set in Albrecht et al. (2011) did not yet plateau with the maximum number of available

markers (732 SNPs). Thus, the full potential of accuracy with this data could not be

exploited with the given number of markers. Indeed, an increase in predictive ability was

observed when a subset of the DH lines used in Albrecht et al. (2011) was evaluated with

CV using the same high-density marker panel as in Lehermeier et al. (2013) compared

to the original 732 markers (results not shown). For the data in Albrecht et al. (2011),

100 SNPs were sufficient on average to predict testcross values for yield as accurately as
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using pedigree data, while for the data in Lehermeier et al. (2013), predictions based on

30 SNPs already outperformed PBLUP on average (Figure 2). The different performance

of the PBLUP method in the two studies can be explained by their family structure. The

data in Albrecht et al. (2011) comprised several large biparental families while the data

in Lehermeier et al. (2013) consisted of many families with a small number of progenies.

PBLUP was not very efficient for the latter design and the relative advantage of models

using marker data increased.
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Figure 2: Predictive ability for marker subsets of the data in Albrecht et al. (2011) and

Lehermeier et al. (2013). Predictive ability for grain yield was estimated with GBLUP and

fivefold cross-validation with random sampling of individuals for different numbers of randomly

selected SNP markers. Shaded areas indicate the range of 10 replications for each number of

SNPs. Horizontal lines indicate the predictive ability of the PBLUP method.

The number of SNPs required to reach a plateau as in Figure 2 is expected to increase

with increasing genome size and decreasing extent of LD (Jannink et al. 2010). With

LD, neighboring markers tend to be ambiguous and subsets of SNPs can deliver similar

predictive abilities. Interestingly, with roughly 2000 SNPs a plateau in predictive ability

when using the RR-BLUP method was observed for the rice, wheat, and Arabidopsis

data sets in Wimmer et al. (2013) even though they show very different marker densities
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and genome sizes. In de los Campos et al. (2010), more SNPs were required to reach

the plateau when predicting the US-Holstein net merit index with dairy cattle data, and

to outperform predictions based on the parent average (i.e., based on their pedigree).

This can be explained by the lower extent of LD in dairy cattle compared to the plant

breeding populations. However, the sample size in de los Campos et al. (2010) was also

larger than in the plant populations considered in Wimmer et al. (2013). One hypothesis

is that statistical methods cope better with larger numbers of markers as sample size

increases (Section 1.4.1). The influence of sample size on the number of markers required

to reach the plateau has not been investigated but warrants further research using large

experimental data sets and resampling with subsets of both individuals and markers.

2.1.3 Expected prediction accuracies

An important question for the practical application of genome-based prediction in breed-

ing programs is the expected prediction accuracy for different traits and experimental

settings. In Albrecht et al. (2011) and Wimmer et al. (2013), it was observed empirically

that predictive ability was influenced by both the sample size nES and trait heritability

h2, respectively. Thus, an interesting question is the prediction accuracy that can be

expected theoretically for these scenarios. Daetwyler et al. (2010) proposed a formula

for the expected prediction accuracy based on these two factors as well as the number of

independent chromosome segments Me:

rĝg =

√
nESh2

nESh2 +Me

. (15)

The value for Me increases with increasing genome size or increasing effective population

size Ne (Goddard et al. 2011). For fixed h2 and Me, a diminishing return of prediction

accuracy is expected when the sample size is increased (Figure 3). In Albrecht et al.

(2011), this hypothesis was corroborated and a nonlinear relationship between rĝg and n

with a diminishing return for large n was observed. An interesting question is whether

the observed prediction accuracies match the expectation from Equation (15). However,

this requires profound knowledge of the value of Me, which was not available here, and is

difficult to determine in experimental populations (Erbe et al. 2013).

For practical applications, knowledge about the sample size required to reach a plateau

for the prediction accuracy will be valuable to determine optimal sample sizes when allo-
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cating resources in a breeding program. However, nominal sample size nES can be a poor

description of the amount of information conveyed by the training data set, as demon-

strated in the following. In Wimmer et al. (2013), the prediction performance evaluated

with CV and the RR-BLUP method did not reach a plateau for the predictive ability with

the largest size of the training set (nES = 1600) in computer simulations (Figure 3). It

produced a similar shape compared to the expected curve with Me = 1000. Differences to

the study in Albrecht et al. (2011) can be explained by the different relatedness structures

within these data sets. In Wimmer et al. (2013), the training data set consisted of un-

related individuals, while in Albrecht et al. (2011) individuals were related through their

family structure. Thus, the data sets were likely to differ with respect to their effective

populations size and in turn their Me. It is expected that adding an individual from one

family does not add much information to the training data set if already other members

of the same family were included. Indeed, this diminishing return of the sample size

was much more pronounced in Albrecht et al. (2011) compared to Wimmer et al. (2013)

where no family structure was present. Hence, increasing sample size of the training data

set does not necessarily increase prediction performance, because the genetic structure

of the population must also be considered. When considering training data sets of a

given size, those consisting of genetically independent individuals are expected to deliver

marker effects maximizing predictive ability achieved in an independent test data set (de

los Campos et al. 2013b).

In addition to the composition of the training data set, genetic relatedness between indi-

viduals in the training and test data set contributes to prediction performance. There is

increasing evidence that relatedness among individuals captured by markers is the major

source of accuracy in genome-based prediction (Habier et al. 2010; Pérez-Cabal et al.

2012; Clark et al. 2012; de los Campos et al. 2013b). Partly for this reason, low-density

marker panels provide already good predictive abilities as observed in Figure 2 (Weigel

et al. 2009; Vazquez et al. 2010), because marker effects mainly reflect the resemblance of

relatives. Under this hypothesis, it is not necessary to have markers in close proximity to

all QTL in order to achieve high prediction accuracy for selection candidates related to

the individuals in the training data set. Thus, to compare the prospects of genome-based

prediction across scenarios, it is important to compare the efficiency of genome-based

methods with pedigree-based methods, in order to assess the additional benefit when

exploiting marker data for prediction.
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Figure 3: Expected prediction accuracy rĝg for different sample sizes evaluated based on the

deterministic formula in Daetwyler et al. (2010) using h2 = 0.75 and different values for the

number of independent chromosome segments (Me = 10, 100, and 1000). Superimposed are

estimated average prediction accuracies for different sample sizes derived in Albrecht et al.

(2011, Table 3) with the G-BLUP method and approximated accuracies using rĝg = rĝy/h from

Wimmer et al. (2013, Table 2) with the RR-BLUP method in simulations using p0/n = 0.25,

p = 2000, and h2 = 0.75.

In Albrecht et al. (2011), predictive abilities achieved with genome-based prediction were

significantly reduced when prediction was conducted across families compared to within

families due to the lower extent of relatedness between training and testing data sets.

Thus, observed predictive abilities in experimental studies strongly depend on the specific

population structure and the training-testing design, i.e., the relatedness of individuals in

the training and testing data set. Using deterministic formulas to predict genome-based

prediction accuracies remains challenging and warrants further research to obtain formulas

which will account for both the structure in the training set and the training-testing re-

lationships. Currently, deterministic formulas cannot replace empirical evaluations based

on model assessment techniques such as CV to estimate prediction accuracies. As a conse-

quence, estimated marker effects must be updated constantly because otherwise prediction

performance will decrease over generations as selection candidates become less related to
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those in the training data set (Meuwissen et al. 2001; Habier et al. 2010).

2.2 Accuracy of estimated marker effects and the prospects of

variable selection methods

In the context of genome-based prediction, it is expected that variable selection methods

can lead to more persistent predictions across generations compared to GBLUP, because

these methods do not rely on relatedness only, but instead tag QTL effects (Zhong et al.

2009; Habier et al. 2010; Lorenz et al. 2011). Moreover, the promise of variable selection

methods is that they enhance prediction performance for traits controlled by a few major

QTL and can reveal the underlying mechanisms of genetic trait architecture. Thus, a

crucial question is do variable selection methods applied in plant breeding populations

have the potential to provide more accurate marker effects by retaining only true nonzero

coefficients and, if so, under what scenarios? Different methods can deliver very different

marker effects as illustrated for LASSO and RR-BLUP with flowering time in the rice

data analyzed in Wimmer et al. (2013). For this trait, biological prior knowledge about

the Hd1 gene with a large effect on chromosome 6 was available (Zhao et al. 2011). With

LASSO a small number of markers with large effects were selected in this region while

these effects were distributed across many SNPs in RR-BLUP (Figure 4).

In Wimmer et al. (2013), both the accuracy of estimated marker effects and predictive

ability were investigated with the variable selection methods LASSO, the elastic net, and

BayesB in comparison to RR-BLUP with different experimental data sets and a vast

simulation study including more than 1000 scenarios from three simulation procedures

with true models of varying complexity (see Section 1.6.2). The following major factors

determining the efficiency of variable selection and the accuracy of estimated marker

effects were identified and quantified:

1. Trait heritability: The accuracy of estimated marker effects increased with increas-

ing trait heritability.

2. Extent of LD among markers: Accurate marker effects were only observed in sce-

narios without a large extent of LD among the markers. Otherwise, LD can create

ambiguity, because true nonzero coefficients act as proxies for true zero coefficients

(Gianola 2013), thus leading to non-accurate estimates of individual marker effects.
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Figure 4: Marker effects of LASSO and RR-BLUP for trait flowering time in the rice data.

Genome-wide marker effects were estimated and those near the Hd1 gene on chromosome 6

are visualized. Top panel: Filled circles represent absolute values of marker effects obtained by

LASSO, while gray open circles indicate the − log10(p-value) for each marker as obtained from

the genome-wide association study in Zhao et al. (2011). Bottom panel: Filled circles represent

the absolute values of marker effects obtained by RR-BLUP.

3. Complexity of the true model: Similar to the study in Donoho and Stodden (2006),

variable selection was only successful if the number of true nonzero coefficients was

much smaller than the sample size.

The major finding in Wimmer et al. (2013) was that variable selection methods outper-

formed RR-BLUP with respect to both the accuracy of marker effects and predictive

ability only if assumptions 1 to 3 were fulfilled simultaneously. Otherwise, prediction per-

formance was similar across different methods because all methods cannot reveal the set

of true nonzero coefficients. This explains why many experimental studies reported only

small differences for the predictive ability of methods with and without variable selection

feature (Heslot et al. 2012; Riedelsheimer et al. 2012; Wimmer et al. 2013) although con-

siderable advantages of variable selection methods were observed in computer simulations

(Meuwissen et al. 2001; Daetwyler et al. 2010). The reason is, that the assumptions for
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successful variable selection can be fulfilled in silico but are unlikely to be fulfilled for

many experimental settings given small sample sizes and long-range LD among markers.

These results shed light on the ongoing discussion about the choice of method to predict

complex traits and the role of variable selection. Not only the genetic trait architecture

but also the sample size of the training data set limits the efficiency of variable selection

for genome-based prediction. The well-known requirement that more observations than

predictor variables are required to estimate regression coefficients accurately in linear

models is violated with data structures commonly employed for genome-based prediction

or GWAS. For example, Huber (1981, p.197) proposed n/p ≥ 5 as a rule of thumb for

meaningful coefficients in regression analyses, and this cannot be circumvented by means

of regularization or prior distributions, unless the vector of true regression coefficients

is sufficiently sparse (Gianola 2013; Wimmer et al. 2013). Theory and empirical results

such as in Donoho and Stodden (2006) and Wimmer et al. (2013) point to the conclusion

that the n/p ≥ 5 rule can be replaced by n/p0 ≥ 5 to obtain meaningful estimates for

regression coefficients when n < p. Thus, variable selection can circumvent the curse

of dimensionality, but only when the true model is sufficiently sparse. In addition, ab-

sence of multicollinearity caused by correlations among true zero and nonzero coefficient

is expected to be crucial (Bühlmann and van de Geer 2011). This was confirmed in

Wimmer et al. (2013) where the necessary sample size for successful recovery increased

tremendously with increasing extent of LD.

It is important to keep in mind that statistical methods can be useful for genome-based

prediction, even though they deliver marker effects of low accuracy (Gianola 2013). The

reason is that a high-dimensional data set does not contain enough information for esti-

mating the effects of p markers when n < p, but the n genotypic values are likelihood-

identifiable (Gianola 2013). An example is RR-BLUP which is expected to provide marker

effects of low accuracy in many scenarios but still can predict accurately genetic values

because it can exploit genetic relatedness for prediction.

The accuracy of individual marker effects was measured by the normalized L2 error in

Wimmer et al. (2013). This measure does not account for cases where a true nonzero

coefficient was not recovered, but the effect was assigned to a flanking true zero coefficient

in high LD. Gianola et al. (2009) measured accuracy at the level of genomic regions by

considering a window of four flanking markers around each true nonzero coefficient. Then
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accuracy was evaluated as the fraction of retrieved genomic regions. Using this kind of

measure might be more appropriate if the goal is to describe accuracy at the level of

genomic regions instead of individual marker effects. Based on simulations in Gianola

et al. (2009), it is expected that the drop in accuracy from scenarios with low LD to

scenarios with high LD will not be as severe as observed in Wimmer et al. (2013) based

on the normalized L2 error.

2.3 Choice of regularization and hyperparameters

Besides the choice of an appropriate prediction method, the proper choice of regularization

parameters or hyperparameters is crucial to optimize the bias-variance tradeoff for a

specific setting and to maximize prediction performance. Regularization parameters can

be specified based on prior knowledge or derived from the training data using resampling

strategies such as CV to tune them by a grid search. The advantage of CV is that this

approach is assumption-free, but this comes at the expense of high computational costs.

Strategies such as BLUP evaluate a single fit to derive the regularization parameter.

Different aspects associated with the choice of regularization parameters in LASSO, RR-

BLUP, and the Bayesian Lasso are discussed in the next section.

2.3.1 Variable screening and prediction

The key parameter to control the behavior of LASSO is the regularization parameter λ.

If λ increases, the extent of regularization increases and fewer variables will be selected.

In Wimmer et al. (2013), LASSO was tuned for prediction using CV; however, tuning for

variable screening may require more severe regularization to obtain sparser solutions and

fewer false positives (Bühlmann and van de Geer 2011).

For LASSO, it can be illustrated how different values of the regularization parameter affect

the prediction performance and accuracy of estimated marker effects. A sequence of 100

λ values as obtained by the glmnet R package (Friedman et al. 2010) was generated and

the corresponding set of estimated nonzero coefficients was computed. In order to identify

the best choice of λ, the PMSE (evaluated with fivefold CV), sensitivity, specificity, and

normalized L2 error of the estimated marker effects were displayed for the grid of λ

values. Different scenarios for true model complexity level were generated with simulation
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procedure 1, according to Wimmer et al. (2013), using n = 500 and n = 1000 as well as

p0 = 250 and p0 = 125, respectively. The number of markers and trait heritability were

constant with p = 2000 and h2 = 0.75.
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Figure 5: Performance of LASSO for different values of λ, n, and p0, with data simulated

according to procedure 1 in Wimmer et al. (2013) using p = 2000 and h2 = 0.75. Displayed are

the results for the four performances measures averaged across 10 replications for each scenario.

As expected, the choice of regularization parameter λ had a significant influence on the

different performance measures (Figure 5). The results revealed that prediction perfor-

mance measured by the PMSE was maximized at an intermediate value of λ, while optimal

sensitivity and specificity were observed as expected for small and large values of λ, re-

spectively. Interestingly, although the normalized L2 error measured the accuracy at the

level of marker effects, the curve in Figure 5 followed closely the curve for the PMSE. The

PMSE measures the squared bias and variance of the predicted genotypic values, while

the normalized L2 error measures the squared bias and variance of the estimated marker

effects. Presumably, for both measures, the tradeoff between bias and variance was op-
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timized by similar λ values. Thus, tuning LASSO for the PMSE delivered an (almost)

optimal normalized L2 error, but not the optimal sensitivity or specificity.

The absolute values of the sensitivity and the normalized L2 error depended on the com-

bination of n and p0, while best performance was observed as expected for n = 1000 and

p0 = 125. When n was halved to n = 500 (p0 = 125), the normalized L2 error increased

more than when the number of true nonzero coefficients was doubled to p0 = 250 (both

scenarios had the same true model complexity level of p0/n = 0.25). The reason is the

lower determinedness level n/p in the first scenario. Specificity was influenced mainly by

sample size, which determines the upper bound for the number of selected predictor vari-

ables in LASSO and thus the upper bound for the number of false positives. The curve

around the optimum value for λ with respect to the PMSE was sharp when n = 1000 and

p0 = 125 but flat for n = 500 and p0 = 250. Thus, it appears that the choice of regu-

larization parameter for LASSO was of particular importance in scenarios where variable

selection is expected to work well (i.e., when the ratio p0/n is small) in order to select

the optimum number of markers into the model. It is important to make sure that the

grid of λ values that is investigated within CV is sufficiently dense and covers the global

minimum. In general, the default values generated by the glmnet R package, following

Friedman et al. (2010), worked well for the data structures presented in this thesis.

2.3.2 Sensitivity analysis of Bayesian genome-based prediction methods

With Bayesian methods, the choice of regularization parameters using CV, as in LASSO, is

computationally prohibitive when using MCMC algorithms. Alternatively, the Bayesian

framework allows to incorporate prior distributions for the regularization parameters.

Through Bayesian learning, suitable regularization parameters are derived from the data.

However, an additional layer of hyperprior distributions must be specified, which requires

additional hyperparameters. These hyperparameters can affect posterior inference, but

most studies comparing different Bayesian prediction methods report results only for a

single set of hyperparameters, and limited effort has been made to assess their influence on

prediction performance. A notable exception is Gianola et al. (2009), where the influence

of hyperparameters on posterior inference was investigated for the BayesA method with

computer simulations. Here, the practical consequences of the choice of hyperparameters

on the bias-variance tradeoff will be demonstrated with the example of the Bayesian Lasso
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and it will be discussed how methods should be tuned for prediction in practice.

In Lehermeier et al. (2013), a sensitivity analysis was conducted with four frequently used

genome-based prediction methods (Bayesian Lasso, Bayesian Ridge, BayesA, and BayesB)

using simulated and experimental maize data. The influence of the prior specification on

posterior inference was investigated with different scenarios where one hyperparameter

controlling the extent of regularization was altered while the other hyperparameters were

kept constant across scenarios. For each method, one scenario was defined using “op-

timal” hyperparameters according to Pérez et al. (2010). These ad-hoc formulas relate

the hyperparameters to trait heritability, and thus the prior belief about signal-to-noise

ratio in the data. For Bayesian Lasso, three scenarios named BL1-3 were defined with

a fixed parameter λ in Equation (10), while in scenarios BL4-6 three different Gamma

distributions in Equation (11) were assigned to λ. In the latter case, the prior for the

regularization parameter λ should be updated through Bayesian learning. The scenarios

were defined such that for both fixed and random λ one scenario was close to the optimal

signal-to-noise ratio (BL1 and BL4), while two other scenarios were expected to generate

underfitting (BL3 and BL6) or overfitting (BL2 and BL5), respectively. Scale parameter r

of the Gamma distribution in the random scenario was selected such that the mode of the

prior distribution for λ in one random scenario matches the value of one fixed scenario.

To detect overfitting or underfitting, the model fit was evaluated by the correlation of

observed and predicted testcross values in the ES as well as predictive ability in the TS

using CV for each scenario.

Results in Table 2 demonstrate the huge influence of the choice of hyperparameters on

the number of effective parameters and the correlation of predicted genotypic values and

observed phenotypic values in the ES and TS. Bayesian Lasso scenario BL2 with small

fixed regularization parameter λ generated a high number of effective parameters lead-

ing to overfitting, i.e., a good fit in the ES but poor prediction performance in the TS.

Vice versa, scenario BL3 produced as expected a low number of effective parameters and

underfitting. Both overfitting and underfitting were avoided when a Gamma prior dis-

tribution was modeled for λ. A similar predictive ability was obtained in scenario BL1

where λ was selected according to the heritability. For comparison, predictions were con-

trasted with the RR-BLUP method, where the regularization parameter was tuned by the

noise-to-signal ratio in the ES (using REML estimates of the marker and residual variance
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Table 2: Number of effective parameters (’No. eff. par.’) calculated by the trace of the hat

matrix following Gianola (2013) as well as the average correlation of predicted genotypic values

and observed phenotypic values in the TS (’Corr TS’) and ES (’Corr ES’) across the five cross-

validation folds and methods Bayesian Lasso with six scenarios following Lehermeier et al. (2013)

as well as method RR-BLUP.

Scenario No. eff. par. Corr TS Corr ES

BL1 224.5 0.53 0.76

BL2 632.8 0.42 0.92

BL3 13.77 0.35 0.44

BL4 189.3 0.52 0.73

BL5 194.7 0.52 0.74

BL6 189.4 0.52 0.73

RR-BLUP 172.2 0.52 0.73

components). Interestingly, RR-BLUP had a similar number of effective parameters and

predictive ability as compared with the BL4-6 and BL1 models even though it employs

the same prior variance parameter for all markers instead of variances specific for each

marker as in Bayesian Lasso. Due to the shape of the Laplace distribution employed

by Bayesian Lasso (Park and Casella 2008), a smaller number of effective parameters

was expected for the Bayesian Lasso compared to RR-BLUP which employs a Gaussian

distribution (Gianola 2013). However, the results will be considerably influenced by the

specific choice of hyperparameters (D. Gianola, personal communication).

It was observed that different methods can deliver a similar number of effective parame-

ters, even though they employ different prior distributions for the marker effects. These

results have a strong impact on the ongoing discussion about the best choice of method

for genome-based prediction. One can conjecture that it is less important which specific

method is used for prediction; rather, the choice of regularization parameters influences

prediction performance. Results from Lehermeier et al. (2013) as well as Table 2 indicate

that it was better to assign a Gamma distribution to λ instead of using a fixed value

because the regularization parameter can be updated by Bayesian learning then. Recall

that in BL4-6 the regularization parameter was estimated through the hierarchical model

described in Equations 9 to 11, while in model BL1 and RR-BLUP the regularization
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parameter was tuned by the signal-to-noise ratio in the ES. All models delivered a similar

predictive ability and a similar number of effective parameters. Thus, it can be suggested

that it is sufficient to tune the regularization parameters based on this value, given that

a reasonable estimate of the signal-to-noise ratio is available. Otherwise, the regulariza-

tion parameter should be treated as a random variable in the Bayesian framework (as in

BL4-6), or CV should be used to tune the regularization parameter (as in LASSO). The

number of effective parameters defined by the trace of the hat matrix was a valuable tool

to compare different methods or scenarios. An interesting question is whether one can

identify the optimal extent of regularization in advance by using data properties such as

sample size, marker density, genetic trait architecture, or trait heritability which warrants

further research.

2.4 Efficiency of Bayesian methods

2.4.1 Modeling marker-specific prior variances

Computer simulations and studies from animal breeding suggest that in some cases

Bayesian methods can be more efficient for genome-based prediction compared to GBLUP.

Recall that the underlying assumption behind GBLUP (or RR-BLUP) is that all marker

effects originate from the same prior distribution (this does not imply that all marker ef-

fects are equal). Bayesian methods such as BayesA are expected to outperform RR-BLUP

by allowing for prior distributions specific to each marker. This approach should overcome

shortcomings of methods using a common variance component for traits influenced by a

few QTL of sizeable effects (Meuwissen et al. 2013). However, Gianola (2013) pointed out

that all marker effects possess the same marginal distribution in BayesA and any differ-

ences to Bayesian Ridge regression or RR-BLUP occur because shrinkage is marker-effect

specific in BayesA such that small effects receive more regularization. This additional

flexibility comes at the expense of additional hyperparameters in the prior distribution

confining Bayesian learning abilities (Gianola et al. 2009; Gianola 2013). Empirical re-

sults in Lehermeier et al. (2013) suggest that marker-effect specific shrinkage in BayesA,

BayesB, or Bayesian Lasso did not enhance prediction performance compared to Bayesian

Ridge regression.
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2.4.2 Influence of the prior distribution on posterior inference

Different Bayesian methods are expected to vary with respect to their Bayesian learning

abilities. Theoretical results in Gianola et al. (2009) illustrated that Bayesian learning

was limited for BayesA and BayesB, and the scale parameter S in (13) was influential,

as it controls the extent of regularization. Empirical results in Lehermeier et al. (2013)

corroborated this hypothesis, and the distance between prior and posterior distribution

was quantified with their Hellinger distance (Le Cam 1986). Bayesian Lasso and Bayesian

Ridge regression were less influenced by the prior distribution compared to BayesA and

BayesB. Unexpectedly, the influence of the prior distribution was more pronounced in

BayesA than in BayesB, although BayesB has the drawback of a fixed hyperparameter

value for π (Habier et al. 2011; Gianola 2013). Meuwissen et al. (2001) selected the

value for π based on knowledge taken from the simulation procedure. Nonetheless, this

approach was not feasible with experimental data, and approaches to estimate π from

data are of interest.

2.4.3 Estimating the variable selection intensity from data

In BayesB, the fraction of markers π assigned zero variance in (13) is not subject to

Bayesian learning. The method BayesCπ is expected to overcome the shortcoming of a

fixed value for π in BayesB, because π is treated as an additional random variable which

is inferred from the data (Habier et al. 2011). However, convergence problems in the

Markov chains were observed for the parameter π when applying this method to the data

sets in Wimmer et al. (2013) (data not shown). A similar observation was made by Wolc

et al. (2011) and Colombani et al. (2012), and this might be explained by the large extent

of LD in these data sets leading to ambiguity with respect to the information conveyed

by the SNP markers. This was confirmed by the posterior inclusion probabilities for

BayesB within the experimental data sets of Wimmer et al. (2013). Most markers had

an equal probability of being included in the model, confirming that a large number of

marker subsets with equal predictive power exists (results not shown). In all scenarios

with BayesB, the value π = 0.8 was used in Lehermeier et al. (2013), but through a

grid search with different values for π it was observed that other values delivered similar

predictive abilities in the maizeA data set (data not shown). Thus, BayesB was partly
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indifferent to whether the effects were assigned to a smaller number of loci obtained by

variable selection or if the QTL effects were distributed across many markers. In scenarios

showing ambiguity among many markers, there will be no advantage of BayesCπ compared

to BayesB.

2.4.4 The Bayesian elastic net

For many penalized least-squares estimation methods, such as LASSO, Ridge regression,

or the elastic net, Bayesian counterparts are available. For the standard elastic net (Zou

and Hastie 2005), a two-dimensional grid search was required to optimize prediction per-

formance in Waldron et al. (2011). Tuning multiple regularization parameters is compu-

tationally demanding when using a multidimensional grid search in conjunction with CV.

The promise of the Bayesian elastic net (Li and Lin 2010) is that it will assess the opti-

mal allocation of the regularization parameters to the L1 and L2 norm penalty functions

through Bayesian learning. It is expected that for traits with a few major QTL, more

weight should be given to the L1 norm part in order to emphasize the variable selection

feature of LASSO, while for complex traits, the L2 norm part is expected to become more

important. Stuckart (2012) explored the efficiency of the Bayesian elastic net compared to

the standard elastic net as well as LASSO, Ridge regression, and their Bayesian counter-

parts using experimental data for Arabidopsis (n = 426, p = 1260) and four quantitative

traits obtained from Kover et al. (2009). No relevant differences between the methods

with respect to their predictive ability were observed. For the Bayesian elastic net, con-

vergence problems for the regularization parameters were identified within the MCMC

algorithm, and posterior inference was influenced considerably by the hyperparameters in

the prior distribution adopted (Stuckart 2012). Thus, the algorithm was ambiguous re-

garding whether to emphasize variable selection through the L1 norm penalty function or

distributing marker effects across the genome through the L2 norm penalty function. This

confirmed that different marker subsets are likely to have the same predictive power when

there is strong LD among markers, and variable selection does not improve prediction for

complex traits in this case.
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2.4.5 Application of Bayesian methods for genome-based prediction

To summarize, the implementation of Bayesian methods requires specifying hyperparam-

eters that will affect posterior inference to a certain degree. Those methods that allow for

strong Bayesian learning of the regularization parameters are preferable because they can

circumvent overfitting more effectively. As discussed in Section 2.2, Bayesian methods

can be efficient for prediction but not necessarily to estimate marker effects accurately in

high-dimensional marker data. Computation times of Bayesian methods are considerably

higher compared to penalized least-squares techniques. A grid search to select hyper-

parameters with CV is not feasible with the Bayesian methods, indicating the need for

Bayesian methods that are robust with respect to the choice of hyperparameters.

With experimental data, no advantage of Bayesian methods was observed compared to

GBLUP with respect to their predictive ability (Lehermeier et al. 2013). An emerging

approach is Bayesian model averaging (BMA) to utilize an ensemble of prediction models

in order to account for uncertainty associated with the choice of a single model (Raftery

et al. 1997). In the context of genome-based prediction, different models can capture

different aspects of the underlying genetic trait architecture, and it emerges that a uni-

fied model might be superior for predicting genotypic values (Jannink et al. 2010). The

predictive performance of the average model is expected to be superior compared to the

best single model (Sorensen and Gianola 2002) but further research is required to explore

the possibilities of BMA for genome-based prediction.

2.5 Genetic trait architecture and complexity of the true model

2.5.1 Estimating the number of QTL

The proper choice of a statistical method for genome-based prediction will be advanced

by knowledge about the genetic architecture of the trait under study (Zhong et al. 2009;

Daetwyler et al. 2010; Coster et al. 2010). If the number of QTL (NQTL) are known for

a specific trait, the results in Wimmer et al. (2013) could guide the choice of an appro-

priate method. For traits with NQTL � n, methods with a variable selection feature are

expected to enhance prediction performance. Thus, estimates for NQTL will be valuable

in practice and therefore some researchers have tried to estimate NQTL from the data; for
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example, Daetwyler et al. (2010) presented a deterministic formula to obtain N̂QTL from

the observed prediction accuracies of BayesB.

This formula was validated using the BayesB derived predictive abilities for different

scenarios from Table 4 in Wimmer et al. (2013). For these data structures a discrepancy

between the actual simulated number of QTL and the estimated values based on the

formula in Daetwyler et al. (2010) was observed. This might be explained by the fact

that the formula does not account for the LD and relatedness structures when estimating

NQTL, while these factors where major determinants of the prediction performance for

the data sets analyzed in Wimmer et al. (2013). Alternatively, Habier et al. (2011) used

the method BayesCπ to estimate N̂QTL in computer simulations based on the posterior

estimate of π. The idea is that the method will set a large fraction π of marker effects to

zero when the trait has a sparse representation. They found that N̂QTL = p · (1− π̂) was a

poor description of the simulated value ofNQTL in many scenarios, probably because of the

difficulties in finding a proper estimate for π using BayesCπ as described in Section 2.4.3.

Thus, estimating NQTL remains challenging, but there is evidence that many quantitative

traits are influenced by a large number of QTL with small effects (Schön et al. 2004;

Buckler et al. 2009), with few exceptions such as kernel carotenoid content in maize

(Wallace et al. 2014).

2.5.2 Definition of the true model

In the context of genome-based prediction, it was assumed in Wimmer et al. (2013) that

the true model is defined by a subset of the observed loci with additive effects on the

trait under study. This concept was powerful when illustrating the joint influence of the

complexity level of the true model, the determinedness level, and the trait heritability on

the efficiency of different statistical methods. However, is sparsity a reasonable assumption

for the true model underlying complex traits? With marker data, it is generally assumed

that the QTL will be latent and marker effects are expected to tag QTL effects. Thus, the

existence of a single true model involving a single subset of important predictor variables

is implausible, and the definition of true nonzero coefficients is not straightforward when

LD is present and multiple markers tag QTL (Li and Sillanpää 2012) or single markers

tag multiple QTL. Partly for this reason, many alternative models can deliver the same

predictive power (see Section 2.4), but a paradigm change is expected with whole genome-
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sequence data where causal mutations are included in the data (Meuwissen and Goddard

2010). Here, sparsity can become a reasonable assumption and the true model is defined

unambiguously by the set of causal mutations, as discussed in the next section.

2.6 Toward the analysis of whole-genome sequence data

With the progress in whole-genome resequencing technologies, it will soon become feasible

to derive the full genome sequence of a large number of individuals. These data are valu-

able for genome-based prediction, and benefits of whole-genome sequence data compared

to dense marker data are expected for the following reasons:

• Causal polymorphisms are expected to be included in whole-genome sequence data

while they are unlikely to be included in marker panels. In the latter case, markers

are in LD with the mutations, but this association breaks down over generations

due to recombination. It is desirable to have the causal mutations directly in the

data, in order to achieve more persistent predictions over generations based directly

on the estimated effects of the causal mutations. Computer simulations revealed a

substantial increase in predictive ability with sequence data compared to predictions

based on dense marker data, given that a method with a variable selection feature

was used (Meuwissen and Goddard 2010).

• The proportion of genetic variance captured by whole-genome sequence data is ex-

pected to increase compared to current marker panels because accuracy is no longer

bounded by the extent of LD between causal mutations and markers (Druet et al.

2014; Wray et al. 2013).

• Whole-genome sequence data are expected to tag structural genetic variations such

as insertions, deletions, or copy number variants in addition to SNPs (Daetwyler

et al. 2013). These can be included as additional predictor variables in genome-based

prediction models.

Given these advantages, whole genome-sequence data are likely to replace current SNP

arrays for genome-based predictions, once sufficiently large training data sets are available

(Ober et al. 2012; Meuwissen et al. 2013). On the downside, sequencing data will increase

the number of potential predictor variables by a factor of 102 to 103 and new computational

challenges will emerge especially for Bayesian methods given the computation times for
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MCMC algorithms that scale with the number of predictor variables. Furthermore, it

was demonstrated in silico that even for traits with a low true model complexity level a

loss in efficiency of different statistical methods can be expected when the determinedness

level (i.e., the ratio of n to p) is much smaller than one (see Wimmer et al. (2013) as

well as Figure 6 where p0/n = 0.1). Dimension reduction of whole-genome sequence

data by pre-screening predictor variables emerges as a strategy to reduce the number of

predictor variables and circumvent dimensionality, as indicated in Wimmer et al. (2013).

In the following, the potential of methods that perform an educated selection of predictor

variables is discussed.
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Figure 6: Performance of RR-BLUP, LASSO, and BayesB for different values of n/p using

simulation procedure 1 in Wimmer et al. (2013) with p = 2000, p0/n = 0.1, and h2 = 0.75.

Fan and Lv (2008) proposed sure independence screening (SIS) to reduce the number of

predictor variables from a very high to a moderate scale, for example below the sample

size. This method was previously used in the context of genome-based prediction with

SNP marker data (Kärkkäinen and Sillanpää 2013) and is computationally feasible even

with millions of predictor variables. The procedure works as follows. First, the predictor

variables are ordered by their marginal correlation with the response variable, and only

those that rank among the top d predictor variables are retained for further analysis and,
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thus, the subset of predictor variables identified by SIS is given by

ŜSIS(d) =
{
j : |ρj| ≥ |ρ(d)|, j = 1, . . . , p

}
,

where |ρj| denotes the absolute value of the marginal correlation of predictor variable j =

1, . . . , p with the response variable and |ρ(d)| denotes the absolute value of the d-th largest

correlation. Thus, the underlying procedure in SIS is initially similar to the approaches

applied in a GWAS. The main difference is that the subset ŜSIS(d) is not the final result,

but instead an additional variable selection method will be applied within ŜSIS(d) to

further reduce the number of nonzero coefficients. Here, LASSO was applied after SIS

(SIS-LASSO), and the power of LASSO in this subset is expected to be higher compared

to the original data set because the determinedness level n/p increases (Ishwaran and

Rao 2011). The performance was compared in computer simulations for whole-genome

sequence data using p = 250000, n = 200, h2 = 0.75, and varying p0 and d within

simulation procedure 1 of Wimmer et al. (2013). Each scenario was replicated 10 times

by simulating new data, and the results were averaged over replications.

First, the potential of pre-screening predictor variables with respect to prediction per-

formance was explored under the (unrealistic) assumption that one had a pre-screening

procedure at hand which can remove a subset of the true zero coefficients in advance.

In Figure 7, the predictive ability of LASSO is displayed for different numbers of causal

mutations in the simulation scheme when fractions of superfluous true zero coefficients

were removed from the data prior to the analysis. Across all scenarios, predictive ability

was largest when only four causal mutations were underlying trait expression, and the

efficiency of LASSO could not be further improved by reducing the number of superfluous

SNPs in advance. When more mutations were simulated, predictive ability was consider-

ably increased when superfluous markers were removed by pre-screening. With p0 = 40,

almost no predictive ability was observed when all available markers were used for predic-

tion, but when only 250 SNPs were retained (i.e., more than 99% of the superfluous SNPs

were removed), a predictive ability rĝy > 0.60 was observed. These results do not only

demonstrate the potential of pre-screening methods with whole-genome sequence data

but also indicate that LASSO, with its built-in variable selection feature through the L1

norm penalty function, was already very efficient for traits controlled by a small number

of causal mutations and cannot be improved significantly with pre-screening methods.

This confirmed theoretical results on the high efficiency of LASSO in scenarios where the
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number of true nonzero coefficients was small (Eldar and Kutyniok 2012).
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Figure 7: Prospects of pre-screening predictor variables with high-dimensional marker data.

Data were simulated using p = 250000, n = 200, h2 = 0.75, and varying p0 and 10 replications

per scenario using simulation procedure 1 of Wimmer et al. (2013). Boxplots display predictive

ability estimated with fivefold cross-validation for scenarios where all true causal mutations were

retained in the data but the number of non-causal loci was subsequently reduced in four steps

from 50% to 0.10% in advance. Horizontal lines indicate the average predictive ability of LASSO

without pre-screening predictor variables (see data in Table 3).

Next, the performance of SIS-LASSO was investigated under a scenario where it was not

known in advance which subset of predictor variables comprised true zero coefficients.

The sensitivity with respect to recovery of causal mutations was investigated for different

values of p0 and d for LASSO and SIS-LASSO. When p0 ≤ 12, the highest sensitivity was

observed using LASSO without pre-screening (Figure 8). With more causal mutations,

the performance of SIS-LASSO with d = 2500 was slightly increased, but at the expense of

markedly more false positives (data not shown). An interesting measure was the minimum

number of markers which need to be included such that all causal mutations were retained

after pre-screening with SIS. With p0 = 4, on average more than 90000 markers (36.5% of

250000) must be selected according to their marginal correlation on average before all four

causal mutations were included (range: 104 − 238597 SNPs). These numbers increased
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with increasing p0.
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Figure 8: Sensitivity of LASSO and sure independence screening (SIS) followed by LASSO

(using d = 2500 and d = 100). Numbers at the bottom indicate the minimum proportion of

markers with largest marginal correlations which must be included such that all causal mutations

were retained after pre-screening with SIS given the number of causal mutations. Data were

simulated according to procedure 1 in Wimmer et al. (2013) using p = 250000, n = 200, and

h2 = 0.75.

For prediction, no advantage was observed when the number of predictor variables was

reduced with SIS in the ES and then followed by an application of LASSO (see Table 3).

With p0 = 4 or p0 = 16, a significant advantage of LASSO without pre-screening was

observed. Differences vanished with increasing number of causal mutations but predictive

ability also approached zero. It is worth mentioning that this decrease in predictive ability

with increasing p0 will not be as severe with experimental data compared to Table 3,

because a certain level of predictive ability will be retained due to relatedness structures

between training and testing data sets (see also Section 2.1.3).

The results in Figure 7 clearly illustrate the prospects of pre-screening predictor variables

for prediction when analyzing whole-genome sequence data. Unfortunately, this potential

cannot be retrieved by statistical procedures such as SIS because several pitfalls are asso-

ciated with dimension reduction approaches for high-dimensional marker data. First, the
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Table 3: Average predictive ability ± standard error from 10 replications with fivefold cross-

validation for LASSO and sure independence screening followed by LASSO (SIS-LASSO); p0:

number of causal mutations; data were simulated according to procedure 1 in Wimmer et al.

(2013) using p = 250000, n = 200, and h2 = 0.75.

p0 SIS-LASSO (d = 100) SIS-LASSO (d = 2500) LASSO

4 0.60 ± 0.01 0.77 ± 0.02 0.84 ± 0.01

16 0.26 ± 0.03 0.37 ± 0.02 0.48 ± 0.02

24 0.08 ± 0.02 0.14 ± 0.02 0.19 ± 0.05

40 -0.01 ± 0.04 0.02 ± 0.04 -0.05 ± 0.07

use of marginal correlations can be misleading when conditional correlations are important

(Guyon and Elisseeff 2003). In particular, some predictor variables might be useful for

prediction but only in connection with other predictor variables, for example in epistatic

networks, while SIS considers only marginal correlations. Second, dimension reduction

requires a sparse true model and will not be successful for complex traits because true

nonzero coefficients are likely to be removed through any dimension reduction technique.

This was confirmed by the results on the minimum number of predictor variables that

must be included such that all causal mutations were retained after pre-screening with

SIS.

In the literature, different pre-screening techniques have been employed. Scutari et al.

(2013) used Markov blankets for pre-selecting predictor variables in conjunction with

Ridge regression, LASSO, and the elastic net, but the authors did not observe an ad-

vantage compared to scenarios without pre-screening. For LASSO, there are approaches

available that can pre-screen predictor variables based on their marginal association with

the response variable, ensuring that almost certainly no true nonzero coefficient is removed

(Tibshirani et al. 2012). In a study for human height, de los Campos et al. (2013b) used a

similar approach compared to SIS and ranked markers according to their p-values from a

GWAS. They observed a slight advantage when using only the highest-ranking SNPs for

prediction. Thus, exploring pre-screening techniques to enhance the efficiency of genome-

based prediction using whole-genome sequence data warrants further research.
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2.7 Design of computer simulations

2.7.1 Encapsulating real marker data in computer simulations

Computer simulations are powerful tools for studying the efficiency of different statis-

tical methods for genome-based prediction (Daetwyler et al. 2013). In Wimmer et al.

(2013), a versatile simulation framework to investigate the efficiency of different statisti-

cal methods in silico was presented. Experimental data sets from three different plant

species (rice, wheat, and Arabidopsis) were incorporated into the simulation scheme to

encapsulate their LD structure and obtain realistic scenarios reflecting the LD structure

of these experimental data sets. This provided the unique opportunity to control impor-

tant parameters such as trait heritability or the number of QTL, as well as to explore

scenarios relevant for real-life applications. Method comparisons based on this kind of

simulation scheme will also be valuable in acquiring a more detailed picture of what can

be expected when analyzing whole-genome sequence data. An interesting approach will

be to integrate experimental whole-genome sequencing data into simulation procedure 3 in

Wimmer et al. (2013), for example, in order to perform power calculations for the sample

size required to identify a given number of causal mutations for a given trait heritability

and determinedness level.

Multicollinearity is limiting the ability of statistical methods to recover true nonzero

coefficients within high-dimensional marker data and computer simulations were a viable

tool for assessing the influence of LD on the accuracy of estimated marker effects in silico

(Wimmer et al. 2013). Different approaches were explored compared to the simulation

scheme in Lehermeier et al. (2013) in order to generate LD, and, hence, correlations

among markers. In Lehermeier et al. (2013), new genotypes were simulated, while in

Wimmer et al. (2013) resampling of real genotypes was used to encapsulate the actual

LD structure in the marker data of rice, wheat, and Arabidopsis. The former strategy

was more flexible but it must be validated whether it mimics real data sets (Daetwyler

et al. 2013). Simulations based upon real genotypes are limited to the specific data

structures under study. The shortcoming of using a fixed sample size was circumvented

by simulation procedure 3 in Wimmer et al. (2013) employing a Cholesky decomposition

of the correlation structure of the SNP marker data to convey the LD structure of the

real data to simulated data sets of arbitrary sample size. A similar approach was taken by
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Wientjes et al. (2013) to investigate the influence of LD on the reliability of genome-based

predictions. Hoerl et al. (1986) proposed a technique to arrive at predefined collinearity

levels. Their approach will be useful when investigating the influence of LD in a more

universal framework that is not restricted to specific experimental data sets but this is

left for future studies.

2.7.2 Allele frequencies and effect distributions

Besides LD structure and the number of QTL, the distribution of QTL effects is expected

to influence the efficiency of genome-based prediction methods (Coster et al. 2010). In

Wimmer et al. (2013) and Lehermeier et al. (2013), QTL effects were assigned equal

values across QTL or were sampled from a uniform distribution. Other simulation stud-

ies used Gamma (Meuwissen et al. 2001), Gaussian, or Laplace (Daetwyler et al. 2010)

distributions to simulate QTL effects, and the choice of distribution might affect the re-

sults, although the difference between a Gaussian and a Laplace distribution was small

in Daetwyler et al. (2010). Causal mutations in Wimmer et al. (2013) were sampled from

the given marker loci in simulation procedure 2, but in nature QTL might have a different

allele frequency spectrum than markers. In particular, some marker panels are known to

exhibit an ascertainment bias of SNPs, with a tendency toward a uniform minor allele

frequency distribution (Daetwyler et al. 2013). Simulations in Druet et al. (2014) revealed

high accuracies of genome-based prediction only when the QTL had the same allele fre-

quency spectrum as the SNPs. Modifications of the computer simulations in Wimmer

et al. (2013) with different allele frequencies for the QTL are interesting topics for future

research. Moreover, the independent assignment of QTL to marker loci can be extended

toward assigning true nonzero coefficients within known pathways, in order to simulate

epistatic effects.

2.8 Software implementation

As shown in Section 2.1, there is a great potential for applying genome-based predic-

tions in plant breeding, and in Sections 2.3 and 2.4 the need for model assessment and

exploring alternative methods and hyperparameter settings was demonstrated. Thus, a

user-friendly and well-documented software package is crucial to facilitate the applica-
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tion and validation of different methods, in order to bring genome-based prediction from

theory into practice. Such software was lacking and the synbreed R package (Wimmer

et al. 2012) was the first open-source software offering a comprehensive analysis pipeline

with the whole functionality to implement genome-based prediction in breeding programs

within one software. The synbreed package covers the processing and coding of raw

marker data, the estimation of genome-based similarity and pedigree-based relationship

coefficients, the application and validation of different prediction methods, and the vi-

sualization of results (Figure 9). Such a pipeline is crucial for comparing effectively a

large number of different settings and model specifications to maximize prediction per-

formance. The package provides all the tools required to fit the GBLUP method, which

is the benchmark method for many method comparisons. Moreover, implementations of

Bayesian Lasso and Bayesian Ridge regression in the BLR package (Pérez et al. 2010) were

embedded within the synbreed package. This allows researchers to conduct standard

analyses, for example using linear mixed models or Bayesian methods as described in

this thesis. The prediction performance of different methods can be compared through

CV schemes. Data flow is streamlined by the special class of gpData objects (’genomic

prediction Data’) developed to facilitate genomic prediction analyses. This class resem-

bles a generic data structure which is suitable for a wide range of statistical methods

employing genotypic and phenotypic data such as genome-based prediction, GWAS, or

QTL mapping. Once an object of class gpData is created, it can be efficiently stored and

all further analysis steps rely on its structure in order to gear the different functions. This

approach was innovative within software for genome-based prediction and enhances the

reproducibility of results. Moreover, it is a step toward customized high-throughput anal-

ysis pipelines, which are required in large-scale applications of real breeding programs.

To summarize, the synbreed package provides a valuable tool within the plant and animal

genetics researcher’s software toolbox, and it is now an established tool in the plant breed-

ing community after the release on CRAN in March 2012 (see Figure 10). Where necessary,

the package provides gateways to other software packages to broaden the type of possible

applications. This includes the R/qtl package (Broman et al. 2003) for QTL mapping,

Plink (Purcell et al. 2007) for a GWAS, or Beagle (Browning and Browning 2009) for

imputing missing values in the marker matrix. With the unified data object and several

transformation tools, conversion and transfer effort between software packages is tremen-
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Figure 9: Overview of object classes, methods, and functions within the synbreed package

(Wimmer et al. 2012). Each box indicates a class, together with class name, elements, and

available functions and methods. The arrows indicate data flow while the origin indicates the

input argument and the head is the return value of the function.

dously reduced and it is straightforward to have access to the functions implemented in

these software packages. The design of the synbreed package is very flexible and covers

special cases in plant breeding, such as repeated measurements of DH lines. This flexi-

bility contributed to the fact that the package has been applied successfully in the public

and private sectors with widespread applications and data from different crop, tree, and

livestock species. Based on the download statistics of CRAN (cran.r-project.org),

2290 downloads and users from more than 100 different countries have been identified

(see Figure 10). All code was implemented within the R language, therefore permit-

ting users to customize the methods to their specific needs. The package has already
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been extended by the impute.R package to include genotype imputation and phasing

using a reference panel of haplotypes (Y. Badke, personal communication; see https:

//www.msu.edu/~steibelj/JP_files/vignette_impute1025.pdf). The package was

released together with a package vignette (available from http://cran.r-project.org/

web/packages/synbreed/vignettes/IntroSyn.pdf), providing hands-on tutorials with

example data sets (from the accompanying package synbreedData, http://cran.r-

project.org/web/packages/synbreedData/). Thus, the package was able to fill the

gap in the availability of user-friendly software for next-generation genetics research and

application in plant breeding programs.
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Figure 10: Left-hand side: number of downloads of the synbreed package from CRAN per

month; right-hand side: number of downloads per country (last updated on 2014 - 01 - 31).
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2.9 Conclusions

A series of novel results for genome-based prediction in plant breeding and new insights

into the properties of statistical methods with high-dimensional marker data have been

achieved by this thesis. The findings are valuable from both a practical and theoretical

point of view. Here, the most important inferences from this work are summarized:

• Genome-based prediction can deliver accurate predictions of genotypic values for

different quantitative traits and plant species. In particular, predictive ability was

higher compared to models based on pedigree data only. These results are encouraging

for the implementation of genome-based prediction into breeding programs.

• An important distinction has to be made between the tasks of variable screening and

prediction of genotypic values. The information content in high-dimensional marker

data was sufficient to predict genotypic values but mostly not sufficient to accurately

estimate individual marker effects. These results suggest a paradigm change in

genome-based prediction. It was originally envisaged that predictability stems from

marker effects tagging QTL effects, but given the low accuracy of individual marker

effects, relatedness among individuals emerges as a major source of predictive ability.

• Under restrictive assumptions, variable selection methods can circumvent dimen-

sionality and successfully identify true nonzero coefficients. The most important

assumptions are the existence of a sparse true model, the absence of strong correla-

tions among markers, and a high trait heritability.

• LASSO can be very efficient to pinpoint causal mutations within whole-genome se-

quence data, but only when the number of mutations is considerably smaller than

the sample size.

• Regularized regression and Bayesian methods are powerful prediction techniques

that cope with overfitting problems in high-dimensional marker data through a

bias-variance tradeoff. The amount of regularization is controlled by one or more

tuning parameters. Their influence on the results can be remarkable. Bayesian

Lasso and Bayesian Ridge regression were less influenced by the prior distribution

compared to BayesA and BayesB.

• GBLUP is a viable method with competitive predictive abilities in several experi-

mental data sets. The efficiency of this method was not affected by the genetic
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architecture of the trait under study. For complex traits, Bayesian methods al-

lowing for marker-specific prior variance components do not outperform methods

assuming an equal contribution of all loci a priori.

• The synbreed R package established a versatile analysis pipeline for genome-based

prediction, covering several methods presented in this thesis.

No general recommendation for a specific genome-based prediction method can be given,

because results demonstrate that no method was consistently superior for all purposes.

In general, a method that contributes satisfactory answers to one question might not be

appropriate for answering another question. Consequently, the proper choice of method

becomes an empirical question that must be answered case-by-case using model assess-

ment techniques for experimental data such as CV. Nevertheless, the body of experimental

studies, together with the computer simulations presented in this thesis, provided several

guidelines which can be applied to appraise the efficiency of different statistical methods

under various scenarios. For all methods, the proper choice and constant tuning of regular-

ization parameters is crucial before employing these methods within routine applications

for genome-based prediction.
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