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Abstract

Sufficient and necessary conditions for causal localizations of massive relativistic sys-
tems are developed. It is proven that the Dirac- and the Dirac tensor-system are up
to unitary equivalence the only irreducible causal localizations with finite spinor di-
mension which have a massive relativistic extension. A formula for this extension is
given. The existence of arbitrarily good localized states of positive energy is shown. In
the context of the causality condition a Paley-Wiener theorem for bounded measurable
matrix-valued functions is proven.
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Zusammenfassung

Hinreichende und notwendige Bedingungen fiir kausale Lokalisierungen massiver re-
lativistischer Systeme werden entwickelt. Bewiesen wird, dass das Dirac- und das
Dirac Tensor-System bis auf unitire Aquivalenz die einzigen irreduziblen kausalen
Lokalisierungen mit endlicher Spinor Dimension sind, die eine massive relativistische
Fortsetzung besitzen. Eine Formel fiir diese Fortsetzung wird angegeben. Die Existenz
beliebig gut lokalisierbarer Zustande positiver Energie wird gezeigt. Im Kontext der
Kausalitatsbedingung wird ein Paley-Wiener Satz fiir beschrénkte messbare matrix-
wertige Funktionen bewiesen.
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Notations and Conventions

We use scalar products (-,-) that are linear in the second argument and anti-linear in
the first argument, which is the convention used in quantum mechanics. The scalar
product of a,b € R™ is usually denoted by a - b.

The open ball centered at x € R? with radius r > 0 will be written as B,(x) or simply
as B, if x = 0.

For operators A and B on a Hilbert space % we define the commutator [A, B] :== AB—
BA and the anti-commutator {A, B} :== AB + BA. The domain of the commutators
are given by the standard rules for polynomial expressions of unbounded operators.

We primarily consider complex separable Hilbert spaces. The set of linear bounded
operators acting on a Hilbert space 7 is denoted as L(5¢).

Unless stated otherwise the LP spaces are associated with the Lebesque measure, which
is usually denoted by A or dz. Also, if no confusion is possible we will write L? instead
of LP(R?, C™, \), and sometimes if we define an element of LP by means of a function
it is implicitly understood that we mean its equivalence class.

We are working in units where ¢, the velocity of light, and A, the reduced Planck
constant, are equal to 1.

The spectrum of an operator A will be denoted as o(A). The symbol should not be
confused with the mapping o : R* — C**2, o(x) = Y7, 7,04, where o; are the sigma
Pauli matrices. Also we use o : R* — C**2 g(x) = Zi:o )0, where oy is the identity
matrix.

For a closed operator 1" with a dense domain in a Hilbert space 7 we write |T'| := v T*T.
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A Brief Overview

The position operator for a particle is discussed in almost every book or lecture on
quantum mechanics. The axiomatic way to introduce such an observable has been
established by Wightman. Soon it was discovered that the Wightman localization
violates causality or suffers from negative energies unless one considers a trivial time
evolution. The latter means that the energy operator, i.e. the self-adjoint generator
for the time evolution, is not semi-bounded. The causality that is violated is that a
particle localized in a bounded region at some given time is at any later moment in
time no longer localized in any bounded region.

On the other hand, Dirac’s theory, which is Lorentz covariant and contains states
of negative energy, is considered to be causal, since the Dirac equation is a hyperbolic
system of partial differential equations of first order.

To solve the negative energy problem Dirac proposed the Dirac sea in which all
negative energy states are occupied. This, however, leads to particle interactions, thus
leaving the theory. Instead one can restrict the theory to positive energy states by
means of a projection. In that case the Wightman localization becomes unsharp and
no particle is strictly localized.

So far, there has been no attempt to make a concrete connection between causal
localizations and Dirac’s theory, i.e. to show that Dirac’s theory is causal in the sense
that there exists a causal localization whose energy operator is the Dirac operator.
We will see that the Dirac system is indeed causal. Moreover, we succeed in showing
that there are further previously unknown causal localizations. We give a complete
description of the irreducible causal localizations for massive systems. It turns out that
they are closely related to the Dirac system — we will call them Dirac tensor systems.
These are obtained by ‘tensoring’ the Dirac system (V, U, E) with (I, D) I), i.e. by
means of

Vit =V(t)®l U(b,B):=UM,B)@ DY (B) E(A):=EA)®I,

where V' is the Dirac time-evolution, U is the ISU(2) representation induced from
DW/2 @ DU/2) | E is the canonical projection-valued measure and D) (J > 1/2) is a
finite dimensional irreducible representation of SU(2). One of our main results is that
the Dirac system and the Dirac tensor systems are up to unitary equivalence the only
irreducible finite causal localizations which have a massive relativistic extension.

This thesis is structured in two parts.

In part I we first review the postulates of the Wightman localization which is the
notion of localization we are using primarily throughout this thesis (section [I)).

The causality condition is studied in section [2 where we meet our first main
result, Theorem which can be understood as a continuation of [Cas84]. The
theorem provides sufficient and necessary conditions for finite causal localizations. In
Theorem we show that the energy operator for every finite causal localization
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viii A Brief Overview

is a matrix multiplication operator corresponding to a linear function. However, this
condition is not sufficient for a localization to be causal. We therefore bring relativistic
causal localizations into focus.

In section [3] we review some basic facts about the representations of the Poincaré
group, we introduce the Newton-Wigner localization and we derive a generalization
of the BTF formulas, which connects the Newton-Wigner localization with the boost
of the representation. This localization is never causal but very helpful in Lemma
4.7, where we state sufficient and necessary conditions for a localization and a time
evolution to have a relativistic extension.

Another important result of section [4] is Theorem [£.9, which says that ‘tensor-
ing’ a relativistic extendable causal localization with (I, D), I) always gives another
relativistic extendable causal localization.

Theorem then refines Theorem for relativistic causal localizations by
including the linearity condition from Theorem [2.17] Applying this result to the Dirac
system shows that this system is indeed a relativistic extendable causal localization.
Using the ‘tensoring scheme’ we obtain additional relativistic causal localizations, the
Dirac tensor systems. As already mentioned above, these are the only irreducible finite
causal localizations which have a massive relativistic extension, see Theorem [5.10}

Using the generalized BTF formula we obtain in Theorem [6.3]and Discussion [6.4]
a canonical relativistic extension for every Dirac system and Dirac tensor system given
by the boosts

sgn(H)

1
N:=-1{H X¢ —_—
X+ e

P x (S — iZ,A < A), A —i[X, H].

In section [7] the most simple nonrelativistic causal localizations are studied.

Regarding the problem of negative energies, it is shown in section |8 that for
the Dirac system and the Dirac tensor systems there exist arbitrarily good localized
states of positive energy and there exist localized states with arbitrary small amount
of negative energy. Moreover, due to causality, these properties remain invariant under
the time evolution, see Theorem [3.§]

Finally, in section [9] some open problems are discussed.

The results of part II, i.e. sections [I0] [II] and [I2] are more of a mathematical
nature, so I devoted them their own place. They are, however, needed in part I, but
including them in a linear way would result in a distraction from the main theme of
the first part.
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Part 1

1 Localizations in Quantum Mechanics

In this section we recall some results from [Wig62], [Cas84] and quantum mechanics.

1.1. The Postulates of the Wightman Localization. The concept of localization
in quantum mechanics we use is well-known and has been introduced by Wightman
[Wig62]. Tt is given by a projection-valued measure E : B(R?) — L(J#), where
P(R3) is the Borel o-algebra of R? and . is a complex separable Hilbert space, and
a projective representation (or ray representation) U of the Euclidean group satisfying
the covariance condition

U(a, R)E(A)U(a,R)™" = E(RA +a), YacR} Re SO(3), A c %B(R?.

The definition and some properties of a projection-valued measure are given in
Appendix[A] As Wightman explains, replacing Z(R?) by the field of sets generated by
the cubes in R?® and replacing the o-additivity of E by a finite additivity leads to a
notion of F which can be extended to the one we are using.

This definition has the following quantum mechanical interpretations: (i) For
every set A € Z(R?) there exists an observable E(A) describing the property[l] of a
system being localized in A. The expectation value of E(A) in a given state is the
probability of finding the corresponding system in A. (ii) Every system is localized in
R3. (iii) The probability of finding a system in A U A/, where A and A’ are disjoint,
is the sum of the probability of finding the system in A and the probability of finding
the system in A’. (iv) The localization is covariant with respect to translations and
rotations, i.e. the probability of finding a system in A equals the probability of finding
the rotated and translated system in the corresponding rotated and translated A.

The occurrence of projective representations is due to the fact that the states v
and e*1), where o € R, are physical equivalent, since they yield the same expectation
values for any observable. Instead of working with projective representations of the
Euclidean group one usually considers the unitary representations of its universal cov-
ering group, which is the I.SU(2) [[Wig62], [Bar54] and [BR86] Ch. 13 §2]. Elements of
ISU(2) will be written as (b, B), where b € R® and B € SU(2), and the group law is
given by (b, B)(b’, B') :==(b+ B -b’, BB'), where B -b:=A(B)b, A : SU(2) — SO(3)
is the universal covering homomorphism (see Appendix . We note that the inverse
of (b, B) is given by (b, B)"! = (—=B~'-b, B™).

We will only consider strongly continuous representations U, i.e. £1_I>Ié U(s)y =
for every 1p € S, where e is the identity element of the group. As noted by [[BR86]

IThis is to say that E(A) corresponds to a yes/no measurement, in this case “yes’ means the system
is inside A and ‘no’ means the system is not inside A. According to conventional quantum theory
such an observable must be an orthogonal projection.



2 Localizations in Quantum Mechanics

Ch. 5 §7. A.] discontinuous representations (of a locally compact group on separable
Hilbert spaces) must be non-measurable [SvN50], so their physical meaning is regarded
as doubtful.

To be concrete we consider the following definitions.

1.2 Definitions. Let U be a strongly continuous unitary representation of 7SU(2) on
a complex separable Hilbert space ¢, and let E : 2 — L(¢) be a projection valued
measure. Then (U, E) is called a localization on .5 if the covariance condition

US)E(A)U(s) ' =E(s-A), VselISU(2), A€ B[R?),

holds, where (b, B) - A:=b + B - A:=b + A(B)A.

If (U, E') is a localization in a Hilbert space 5" then (U, E) and (U’, E’) are
said to be unitarily equivalent if there exists a unitary mapping 7" of 2 onto ¢’
such that

TU(s)=U'(s)T  V¥se€lISU(2) and TE(A)=FE (AT VA< B(R.

In this case we will write (U, E) = (U', E').
If F is not a projection-valued measure but a positive operator-valued measure
we will call (U, E)) an unsharp localization.

1.3. Discussion and Definition. Let L be a strongly continuous unitary represen-
tation of SU(2) on a Hilbert space Hy. Then

Ur(b, B)[g]:=[L(B)g((b, B)"")],

where (b, B)"'z:=B~!. (z — b), defines a strongly continuous unitary representation
of ISU(2) on s := L*(R?, Hy), cf. [[BR8E] Ch. 5 §1 Example 2|. Let FEr, : Z(R?) —
L(A), EL(A)]g] :==[xag], where xa is the characteristic function of A. Then it is easy
to see that (Ur, EL) is a localization, which is unitarily equivalent to the canonical
system of imprimitivity associated to the induced representation of L to ISU(2). The
projection-valued measure £, is called the canonical projection-valued measure.

By Mackey’s Imprimitivity Theorem [[Mac49] Theorem 2, [Fol95] Theorem 6.31]
every localization is up to unitary equivalence of the form (U, Fr). Moreover, if L/
is a strongly continuous unitary representation of SU(2) then (U, EL) is unitarily
equivalent to (Up, Fp/) if and only if L is unitarily equivalent to L’.

A localization (U, E) is called finite if there exists a strongly continuous unitary
representation L of SU(2) on a finite-dimensional Hilbert space Hy such that (U, F) is
unitarily equivalent to (Ur, EL).

1.4 Discussion. Let # be a separable complex Hilbert space and let £ : Z(R3) —
L(A) be a projection-valued measure. Put

E;: B(R) — L(#), E;:=FEom, ", i RP 5 R, m(x):={e;x).



Localizations in Quantum Mechanics 3

The self-adjoint position operators X;, ¢« = 1,2,3, corresponding to F are then
defined by

X, ::/iddEZ-

cf. [[Tha92] Sec. 1.7.3 Eq. (1.174)]. It will be convenient to use the vector notation
X 3:(X1, XQ, X3)T.

If # = L*(R?,C™) and F is the canonical projection-valued measure then the
corresponding position operators are given by Z(X;) = {f € 5 : [{e;, ) f] € 7} and
Xi[f] = [{es, ) f]. This is the well-known “multiplication by z operator” from quantum
mechanics.

We note that ,

E(A) = ]] Ei(mi(A))

i=1
for all orthotopes A C R3. This and the following Lemma show that the correspondence

E — X is injective, i.e. if £’ is a projection-valued measure and X’ the corresponding
position operator, then X’ = X implies £ = F’.

1.5 Lemma. Let E,E' : B(R3) — L(5#) be projection-valued measures on a Hilbert
space . If E(A) = E'(A) for all orthotopes A C R3, then E = E'.

Proof. Put
9:={A e BR: E(A)=E(A)}.

Let € denote the set of all orthotopes in R®. Clearly, ¢ U {@} is stable under finitely
many intersections and we have Z(R3) = §(&), where §(&) is the smallest Dynkin
system containing ¢. Obviously R? € 4. If A € ¢ then

E(A)=1—-E(A)=1-FE'(A)=FE(A°),

thus A€ € 4. If Ay, Ag, ... is a sequence of mutually disjoint sets in ¢, then for every
f € A we have

hence U, A,, € 4. Thus ¢ is a Dynkin system. And since & is a subset of ¢ we have
BR?) =06(0) C9 C B(R?). Therefore E = F'. O
1.6. The coordinate space representation. Let {2 be a finite subset of Ny/2, let
H = ,@Q v; L*(R?, C¥ 1Y) where v; € N and let U : [SU(2) — L(#),
je
U= @ vjUpwy, (1.1)
JEQ

where DY) : SU(2) — L(C%*') are the standard irreducible strongly continuous uni-
tary representations of SU(2), cf. [[Cas84] Eq. (6)].



4 Localizations in Quantum Mechanics

We note that
@ VjL2(R3,(C2j+1) o~ LQ(R37 @ Vjc2j+1)
JEQ JEQ
and we identify these spaces.

Since SU(2) is a compact group, every strongly continuous representation of
SU(2) is unitarily equivalent to a direct sum of irreducible unitary representations.
This and the Imprimitivity Theorem (see Discussion thus implies that every finite
localization is up to unitary equivalence of the form (U, E), where E is the canon-
ical projection-valued measure on . We call this form of a finite localization its
coordinate space representation.

As an orthonormal basis for the sub-blocks C**! we choose the SU(2) standard
basis {|J,5)}cp;, where [j]:={—j,—j+1,...,j}, as explained in Appendix . This
basis then determines in a canonical way an orthonormal basis for ®ycqr;C?**! which
will be written as {|7,¢,s)};,,. Here the first index j is called the spin, the second
index ¢ € {1,...,v;} corresponds to the multiplicity and the third index s is called
the helicity index. We note that

(k, i, 7| @1eq DY (B) |, 1, 8) = BI "By " 0kj6x,0er

for k € Q, r € [k], whenever B is diagonal.
A function g € # can be written as g = 3, s gj..s |7, ¢, 5), where the component
functions g;, s € L*(R?, C) are given by g;,.s(x) := (J, ¢, 5| g(x)).

1.7. The momentum space representation. Let J :=®,cquv;L*(R* C¥*!) and
let F : H# —  be the Fourier transform (acting on each component separately in the
usual way). The Fourier transform of an operator 7' in . is given by T:=FTF '
The momentum space representation is then the Fourier transform of the coordi-
nate space representation. We have

Upw (b, B)[f] = [e7™IDY(B) f(B~"")].

Operators in the momentum space representation are usually denoted with a hat
to distinguish them from their coordinate space representation.

1.8. The helicity representation. Given the momentum space representation con-
sider the unitary transform
X:=o vy X0,

jen
where XU ¢ L(L*(R3,C%*1)), XW[f]:=[DY(B(-)™")f] and B : R® — SU(2) is a
measurable map satisfying
B(p)-es=p/lp|  VpeR*\{0}.
As in [Cas84] we will use the so-called helicity section: For p € R*\ {ae3 : a € R} put

1/2 .
a, —b*a_ ) L= (|p| ip3> / p.o PLE P2

B = - = . 1.2
() (ba— a, 2p) PR
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For a > 0 we put B(aes):=1 and for a < 0 we define B(aes) := (O

1 0) . Note that

B(+) is continuous on R*\ {aes : a < 0} and
B(ap) = B(sgn(o)p),  B(p)"'-p=Iples Va€eR peR”

If 7 is an operator in ¢ the superscript h will denote its helicity transform,
i.e. Th:= XT'X~'. The helicity representation is then the helicity transform of the
momentum space representation. It is easy to see that

Uh(bv B)fj,L,S |J7 L S> = [€_i<b’.>D(j)<R('v B))fj,L,S(B_I')] |]7 2 S> )

where R(p, B):=B(p) 'BB(B~! - p) is the Wigner rotation.
Let p # 0. Since R(p, B)-e3 = e3, R(p, B) must be diagonal. Thus DY) (R(p, B))
is diagonal. Hence

Uh(bv B)fjms ‘]7 2 3) = [eii<b7.>ﬁ<'7 B)stj,MS(Bil')} |]7 L, S) ) (13)

where k(p, B) := R(p, B)11, cf. [[Cas84] (7)]. We also note that |x(p, B)| = 1 for all
p € R3 B € SU(2). Thus U" transforms components with the same helicity in the
same way, hence the name helicity representation.

1.9 Lemma. Let p € R3\ {0} and let B, B' € SU(2). Then
k(p, B)(B™" - p, B') = k(p, BB').
Moreover, if B € SU(2) is diagonal, then R(p, B) = B for all p € R3\ {aes : a < 0}.
Proof. Let p € R*\ {0}. Since R(p, B) is diagonal for all B € SU(2), we have
k(p, B)s(B~" - p, B') = R(p, B)uR(B™" - p, B = (R(p, B)R(B™" - p, B))
= R(p, BB')11 = k(p, BB').

11

We can write, cf. [[Wig62] (4.36) fol.],

. —1/2 .
B(p) =217 <1+p 63) <1+p = —ia(e?’xm),
p| p| p|

for all p € R*\ {aez : a < 0}. Then, using

Bo(es x B'p) = o((Bes) x p)B Vp e R’

and the fact that a diagonal B leaves ez invariant, it is easy to see that R(p, B) = B
for all diagonal B € SU(2) and all p # —|p|es. O

1.10 Definition. An Operator T in L*(R% C™) of the form T[f] = [Af], where
A RY — C™™ is a measurable matrix-valued function, will be called a matrix
multiplication operator. If T is a bounded matrix multiplication operator then the
next Lemma shows that A can be assumed to be bounded.
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1.11 Lemma. Let T be a matriz multiplication operator in L?>(R? C™) and let A :
R? — C™ ™ be its corresponding measurable matriz-valued function.

(a) If T is bounded then ||A(})| < ||T|| a-e.

(b) If A is essentially bounded, i.e. ||A(-)|] < C a.e. for some constant C' > 0, then T
is bounded.

(c) If T is unitary then A is unitary a.e.

Proof. (a) Suppose T is bounded. Let {u,us,...} be a dense subset of the unit sphere
in C™. For each n,k € N put

SWi={z e R : [|A@@)uil® > |T))* + 1/n} .

Suppose 0 < A(S(). Then there exists a measurable set T¥) C S such that 0 <
MT#™) < oo. Put f i= X (0 Uk But then we have

ITIPATE) = ITIPF1? = (T F11> = /m IAC)uxl* dX = (71 + 1/m)A(T),
which is impossible. Hence A(S*¥)) = 0. Since

$Wi={r e R [ An)usl® > TP} = U S,
n=1

it is a countable union of null sets, so it must be a null set, i.e. A(S®)) = 0 for all
k € N. By the same argument A\(S) = 0, where

S:i= fj Sk,
k=1
If z € R? such that ||A(z)]| > ||T||, then there exists a normalized u € C™ such that
|A(z)u|| > ||T||. By the continuity of u +— ||A(x)ul| there exists a k € N such that
[A@)ux|| > | T]-

Hence x € S. So we must have |[|[A(x)| < ||T|| for all x € S°.
(b) If A is essentially bounded then it is easily checked that T is bounded.
(c) Let T be unitary. It is T*[f] = [A* f] and since

0=(T"T - D[f] = [(A"A-IL.)f]  V[f] €L

where I,,, is the identity operator on C™, (a) implies ||A*(-)A(-) — I]| < 0 a.e. Hence
A*A = I, a.e. Similarly, AA* = [, a.e. Since the union of two null sets is a null set,
A is unitary a.e. m
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1.12 Remark. The proof of Lemma shows that the Lemma also holds if C™ is
replaced by a complex separable Hilbert space H and if T is an operator in L?(R¢, H)
such that T[f] = [Af] for some measurable operator-valued function A : R — L(H).

1.13 Lemma (cf. [Cas84] (8)). Let (U, E) be the coordinate space representation of a
finite localization. Then a bounded operator T' commutes with U, i.e. TU(s) = U(s)T
for all s € 1SU(2), if and only if there exists a bounded matriz-valued function M :
Rso — L(@® v;C¥) such that in the helicity representation T"[f] = [M(] - |)f] and

jen
(k,k,r| M()|7,¢,8) =0 a.e. Vr#s.
Proof. The “only if” part of the Lemma: Since [U"(b,I),T"] = 0 for all b € R?,

Lemma [G.3] implies that there exists a bounded measurable matrix-valued function
AR = L(®jeqr;C¥*) such that T"[f] = [Af]. Then from [U"(0, B),T"] = 0 it

J
follows that for each B € SU(2) there exists a null set Ng such that

k(p, B)*A,5(p) = k(p,B)*A,s(B™' -p)  VpE€E Ng,

where A,4(-) :=(k,k, 7| A(-) |7, ¢, s) (the indices k, j, x and ¢ are fixed and will be omit-
ted). For r = s Lemma implies that

Ar?‘(') = Mr?"(| ’ |) a.e.

for some measurable bounded function M,, on R>.
Let l:=7 —s # 0 and A:=A,,. It remains to show that A = 0 a.e. For each

p € N we have
A(p) = r(p, B)*A(B™" - p).

Put g : R® — C,
o(p):= [ wlp. BY* A p) diu(B),

where 1 is the Haar measure on SU(2). A standard application of Fubini-Tonelli’s
Theorem shows that

[ l0®) =A@ < [ [ 150 BMAB™ - p) = A)| du(B) dp
- /SU@) |50, B) A(B™" - p) = A(p)| dp du(B) = 0.

Hence g = A a.e. Let p # 0. Using k(p, B'B) = k(p, B')x(B'~! - p, B), which holds
for all B, B’ € SU(2), and the invariance of the Haar measure, gives

o) = [, #lp. BB A(B'B) ") du(B)

= H(p B /SU(Q) K(B'™"p, B A(B™' B - p)du(B) = x(p, B')"9(B"" - p)
(1.4)
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for all B" € SU(2). Thus

9(p) = #(p, B(p))*9(B(p)™" - p) = g(Iples).
Hence g(p) = g(B~! - p) for all p € R?, B € SU(2). Then Eq. (1.4) implies g = 0
0 69m>, where a € R such that x(p, B')? = e £ 1 for
p € R*\ {ae; : @ <0}. Hence A =0 a.e.
The “if” part of the Lemma is trivial. ]

a.e., e.g., choose B':=

1.14 Lemma (cf. [Cas84] (8) fol.). Let (U, E) be the coordinate space representation
of a finite localization. Then T € L(A) commutes with (U, E) if and only if there
exists a matriz M € L(®;cqv;C¥*Y) such that T[f] = [M f] and

(k,k,r| M|j,¢,s) = 5,“55;@]»0,&]3)

for some constants ¢®) € C. Moreover, T" =T =T.

Proof. Although this is an almost direct consequence of [[BR86] Ch. 16 §3 Theorem 4]
we will give a different proof.

Let T commute with (U, E). By Theorem and Lemma there exists a
matrix M € L(®;eqv;C¥ 1) such that T[f] = [M f]. We have

D(BYMD(B ') =M VB e SU(2),
where D(B):=®;cqv; DY (B). In other words
(DBIMNED = DB)EIMED = (DB = MEDD(B)G,

where (M%), :=(k, k,7| M |j,1,s). Since the representations D) are irreducible and

inequivalent, Schur’s Lemma [[Fol95] 3.5 p. 71] implies that
<k7 K, 7"‘ M ‘.7’ L 5> = Cf(fli)érsékj

for some constants ¢*) € C. Since M is constant we have T' = T, and since D commutes
with M, it is T =1T.

The “if” part of the Lemma is trivial. O
1.15 Definition. Let (U, E)) be a finite localization on a complex separable Hilbert

space #. The self-adjoint operators P, and J,, (a = 1,2, 3), called the momentum
and angular momentum operators of U, are defined via Stone’s Theorem as

U(seq, I) = exp(—ish,), U(0, exp(iso,/2)) = exp(isd,),
where s € R. We will write P:=(Py, P», )T and J:=(Jy, Jo, J5)T.

1.16 Lemma. Let (U, E) be a finite localization on a complex separable Hilbert space
JC and let X be the position operator corresponding to F.
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(a) There exists a dense subspace 9 of A such that U9 C 9, 9 C D(A), AD C D
and Alg = A for every A € {X,P,J}.

(b) There is a unique bounded self-adjoint operator S, called the spin vector for
(U, E), satisfying
S[fl=0-XxP)[f]  V[fle 2,

where (A X B)k = 5kabAaBb-
(c) S? commutes with (U, E).

(d) The representation Upy occurs exactly v times in the decomposition of U if and
only if 7(j + 1) is an eigenvalue of S* with multiplicity (25 + 1)v.

Proof. For (a) — (c) it suffices to consider (Upy), E), where E is the canonical projection
valued measure.

We will show that in the momentum space representation 2 :=C(R3 C¥ 1)
(cf. [[BR8G] Ch.11 §1 (6) p. 319]) satisfies (a). In this particular representation it is
clear that Uy 2 € 2 and 2 € P(A) for A € {P,J}. Then [[RS80] Theorem VIII.11
p. 269] implies that Z is a common core for P and J.

To see that 2 is a core for X we show that 2 ¢ 2(X,) and X2 C @ for
a =1,2,3. In the coordinate space representation X, is given by

2(Xa) ={lg) € L7 : [(ea)gl € L2}, Xalg] = [(- ea)d],

(see Discussion [1.4). Clearly, the Schwartz space .7’ (R?) is a subspace of Z(X,). Thus
72 c SR =.Z7R Cc F9(X,) = 2(X,). For f € 2 we have

. - 1 e o
T = G [ T @) o = 77,

where fi= f(- — te,) € 2. Hence %9 C 9.
Let f € 2. Then integration by parts gives

G J (i) (p)dp

75 | € @0.0)(p) dp = F7(i0.1).

X T = s [P (o) dp =
1
@

Hence X,[f] = [i0,f] for all f € 2 and X2 C 9.
The momentum operator P for Up ;) is given by

2(P) ={[fl € L* : [(ea) fl € L2}, Pulf) = [(-ea)f]

(cf. Proposition [11.5). Clearly, P2 C 2.
We have

Julf] = [=i0a (DD (Po0/?) f(e7ioo/2)) | ]

a=0
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for every f € 9. Let L, denote the generators for DU, i.e.
D(]) (eiaaa/Q) _ 6iaLa.
Then for every f € Z it is
Jalf] = (Sa = (P x X)a) [],

where S, is the matrix multiplication operator corresponding to L,. This implies
J.2 C 2. Clearly, S is self-adjoint and bounded. Since [Xl, PJ] = id;; in 7, we have
P x X = =X x P. Thus S satisfies (b). Because 2 is dense, S is the only bounded
operator satisfying (b).

The well-known properties of L (see Lemma imply (c) and (d). O

1.17 Remark. If (U, F) is a finite localization then there exists a unitary 7' commuting
with U such that F:=TET' # E, e.g. for U = Upay2 let T"[f]:=[M f], where

(1/2,7|M|1/2, s) := 6,ce".

Plainly, (U, F') is also a finite localization and in general the spin vectors for (U, E)
and (U, F') will be different. So it is not possible to define S uniquely without E. In
fact, S is the difference between the total angular momentum J and the orbital angular
momentum X x P.



2 The Causality Condition

We now define and discuss causal localizations. Our first important Lemma is 2.1
which gives us a simple necessary and sufficient condition for causality. After this
Lemma we need the results of Part II, i.e. sections [10] [II] and [I2} to continue our
discussion. We think the subjects of these sections are interesting enough to devote
them their own place. Also, including them in this section would result in a distraction
from the objective given here.

2.1 Definition. A continuous unitary one-parameter group V on a complex
separable Hilbert space ¢ is a map V : R — L(J¢) such that V() is unitary for all
t € R and

(a) V(0)=1.
(b) V(s+1t) =V(s)V(t) for all s,t € R.
(c) %1_{101 V(t)y = 9 for every ¢ € .

Note that the continuity at 0 and the homomorphism property imply that V' is strongly
continuous:
lim V(1) = lim V(s)V (1 — s) = V(s) lim V(7)o = V(s)

for every s € R and ¢ € J7.

If (U, E) is a localization on a complex separable Hilbert space ¢, then V is
said to be a time evolution if V' is a continuous unitary one-parameter group on 5’
commuting with U. In quantum mechanical terms this means that if ¢ is the state of
system at time zero, then V()1 is the state of system at time ¢.

2.2 Definition. We use the same notation of causality as in [Cas84]: Let (U, E) be a
localization on a complex separable Hilbert space 7 and let V' be a continuous unitary
one-parameter group on . Then (V, U, F) is said to be a causal localization if V'
commutes with U (i.e. V' is a time evolution) and if E., the completion of F (see
satisfies

V() E.(A)V(-t) < E.(A,), VteR,AcBR?),

where

At::{yE]R?’ cdxe A |X—y]§|t|}.

Note that we use units where ¢, the velocity of light, and A, the reduced Planck constant,
are equal to 1.

In Discussion we explain why we need to use the completion of E.

We say (V,U, E) is a finite causal localization, if (V,U, E) is a causal local-
ization and (U, F) a finite localization.

Similar definitions apply if F is a positive operator-valued measure, in that case
we speak of causal unsharp localizations or finite causal unsharp localization.

11
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2.3. Interpretations of the causality condition. The causality condition for a
projection-valued measure is a mathematical description of Einstein causality [Cas84]:
Let 1) € S be a state of the system at time zero and let 1), := V()1 be the state of the
system at time ¢ > 0. Suppose ¢ is localized in A € Z(R?), i.e. E.(A)Y = 1. Then

<N = E(D))l* = (r, (I = E(A))tr) < (e, (I = V() E(A)V(=1))dh)
= (I = VO E(A)V(=t)te|]* = (I = Ec(A))¢]* =0

means that ¢ must be localized in A;. In other words, @) cannot move faster than
light.

Another way to interpret the causality condition is the following: The expectation
value of finding a state of a system 1) at time zero in a region A is given by (¢, E.(A)).
By the causality condition it is less or equal than (V(t)y, E.(A:)V (t)y), which is the
expectation value of finding the state of system at time ¢ in the region A;. Here we do
not require E.(A)Y = 1, thus this interpretation is appropriate when F is a positive
operator-valued measure.

In this way we may also consider a mixture of states

Te{lTeL):T>0,tx(T)=1}.

The probability of finding the state 7' in A is given by pr(A):=tr(TE.(A)) (see
[[BGLI5) I1.1.2 (1.21)]). We show that causality implies

Lett € Rand put V=V (t), F:= E.(A) and F':= E.(A;). Since T' > 0 and tr(7") < oo,

T is compact [[RS80] Theorem VI.21|, hence, by the Hilbert-Schmidt Theorem there
exists a complete orthonormal basis {¢,}, oy for ¢ such that

T = Z )\n<¢n7 >¢n>
n=1

where \, =% 0, in fact A\, € [0,1] and ¥, A\, = 1. Thus

W(TE) =S (60 TED) =3 Mlbes Eon) = 3 MV, VEV V)
k=1 k=1 k=1
k=1

This completes the proof.

2.4. The occurrence of negative energies. Before we go any further we want to
note that there is a deep physical problem with causal localizations. If one requires
the energy operator, i.e. the generator H of the time evolution V', to be semi-bounded
(positivity of energy) then V' commutes with FE [Cas84]. This implies that V is a
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constant matrix multiplication operator [[Cas84] (8) fol.] and, since V(0) = I, we must
have V(t) = I for all t € R. So in other words, any nontrivial causal localization will
suffer from negative energies.

A possible way out of this is to restrict the theory onto positive energy states,
i.e. by considering the Hilbert space 7, := P, (), where

Py = S(I + sg(H))

is the projection onto positive energy states (cf. Definition [3.5). Since H commutes
with V and U, it is clear that V and U leave /7, invariant. However, the projection-

valued measure E does not leave 7, invariant. A natural generalization of E which
leaves J#, invariant is [[BK03] Eq. (5)] F : B(R®) — L(7,),

F(A):=P,E(A)P,,

or more precisely, F(A):=in*E(A)in, where in : S — J is the inclusion map.
Then F'is not a projection-valued measure but a positive operator-valued measure and
(V]sw., Ul , F) is an unsharp causal localization.

For the Dirac system, defined in , it makes sense to consider X;":= P, X, P,,
since there is a dense subspace ¥ which is invariant under X;, the generators and
P.. Here X, are the position operators corresponding to £. In the momentum space
representation we may choose 2 = C°(R3) (cf. Theorem and [6.1)). However, the
X" no longer commute: We have

(X X o = _igijk}}gP+SkP+|.@
see [[Tha92] Eq. (1.154)], where S =J — X x P.

Hegerfeldt [Heg98] notes that also unsharp causal localizations have a similar
problem: Normalized states 1) € J# such that (¢, F(A)y) = 1 for some compactf]
A C R? do not exist unless (V(t)y, F(A)V(t)y) = 1 for all ¢ € R. Thus no state can
be expected with absolute certainty to be in a compact A unless it stays there forever.

For the Dirac System, and, as we will see, for every massive relativistic extendable
causal localizations, there exists no nonzero state of positive energy which is localized
in some bounded measurable set, see [Heg74] and Theorem [8.1] However, in section
we show that in the relativistic case for every € > 0 and every open ball A there exists
a state 1p € # such that P,y = 9, ||[¢|| = 1 and ||E(A°)Y|| < e. The last estimate
can also be written as ||E(A)y]|> > 1 — &2, and by causality we have

|E(A)Y|]> > 1 — ¢ vVt eR,

where 1, :=V ().

2Hegerfeldt does not really specify the sets for which this result holds and we will make no sophis-
ticated attempt here to do so. However, it is save to say that the result holds at least for compact
sets.
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So we think this is a good reason to pursuit these concepts. Moreover, the concept
of a relativistic causal localization enables us to derive the Dirac equation from first

principles (see Theorem and Discussion [5.13)).

2.5 Discussion. The reason for the use of the completion of £ in Definition is
that we cannot exclude that A; ¢ Z(R?). In Lemma we show that A; is always
Lebesgue measurable, and by Lemma the null sets of E are precisely the null sets
of the Lebesgue measure \ in %(R?). Thus the completion of F, denoted by FE., is a
projection-valued measure on the Lebesgue measurable sets satisfying

E(AUS) = E(A),

for Ae B(R®) and S € /' :={SCR?:IN € B[R : SCNAN)=0} (see
for details).

By the rotational- and translational-invariance of A we have E.(g - S) = 0 for
every g € ISU(2) and S € 4. Thus the completion of F still satisfies the covariance
property: For A € Z(R3), S € A and g € [SU(2) we have

U(9)E(AUS)U(g)™" = U(g)E(A)U(g)~" = E(g-A) = Ec(9-AUg-S) = E(g-(AUS)).

It has also been noted in [Wig62| that every E can be extended to all Lebesgue mea-
surable sets. Moreover, we have

V) EAUS)V(—t) = V() EL(A)V(~t) < E.(A) < EL((AUS),),

since Ay C (AU S);. Thus the causality condition also holds for every Lebesgue
measurable set.

The conclusion is that we can avoid the problem A; ¢ Z(R?) by considering the
completion of F.

2.6 Lemma. Let \ be the Lebesque measure on R, let A C R and let t # 0. Then
Ay is Lebesque measurable, U(A,t) C Ay C C(A,t) and

MC(A, )\ U(A,t)) =0,
where
UAt)={xeR 1 d(x,A) <|t]},  C(A1)={xeR®:d(x,A) < [t}
are Borel sets and d(x, A) :=inf{|x —y| : y € A}.

Proof. Clearly, we may assume that t > 0 and A # @. Since x — d(x, A) is continuous,
U(A,t) is open and C(A,t) is closed, in particular they are Borel sets. It is easy to see
that U(A,t) C A; C C(A,t). Hence, it remains to show that

N(A):=C(AD\UA 1) = {x e R® : d(x,A) =t}

is a null set.
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We show that N(A) N B.(z) C N(AN B.yy(z)) for all e > 0 and z € R3. Let
x € N(A) N B.(z). Thus |x — z| < € and for every 6 > 0 there is exists a y5 € A such
that |ys — x| <t + 4. If we choose § < ¢ — |x — z| we find

lys —z| <l|ys — x|+ |x—z|<t+0+|x—z| <t+e.
This implies ys € AN B.y4(z). Hence
t=d(x,A) <d(x,AN B+(2)) < |x —ys| <t +96,

and 6 — 0 shows that x € N(A N B.+(z)).

Thus it suffices to show that N(A N B..4(z)) is a null set for every z € R?® and
some fixed ¢ > 0, since R3 can be covered by countable many balls of radius €, and since
the countable union of null sets is a null set. Moreover, because B.,(z) can be covered
by finitely many balls of radius ¢/3 and since N(A;U...UA,) C N(4;)U...UN(A,)
(for arbitrary sets Ay, ..., A,), we may restrict ourselves to the case where A C By /3(c)
for some ¢ € R®. By the translational invariance of A we may assume ¢ = 0.

Let
Y::{XGR3 23 > 0 and \/2? + 23 §t/3}.

Since N(A) is compact, it can be covered by finitely many rotated Y. By the rotational
invariance of A it suffices to show that N:=N(A)NY is a null set.
Let x € N. This implies that A C G:= By(x)° N C, where

C .= {y cR3 - |(y1,y2) — (21, 22)] < %t and y3 < IL’3}.

Indeed, we have

t=d(x,A) <d(x,0)+d(0,A) <\/t2/9+ 23 +t/3,

which implies 3 > /3t/3 > t/3. Hence B;;3(0) C C, whence A C C. Plainly,
For a = (0,0, «) with a > 0 we have

2 1/2
d(x+a,A)2d(x+a,G):|X—l—a—y|:(t2+3\/gozt+a2> > t,

where y:=x + (2t/3,0, —/5t/3), see Figure . This implies x + a ¢ N(A), whence
x ¢ N—a, and therefore NN(N —a) = @. This also shows that (N+ae3)N(N+d'e3) =
@ for all o/ # a.

But now we have

n

nA(N)—A(U(N—i—eg/k) (kEle—l-eg/k) o  VneN,

k=1

which is only possible if A\(N) = 0. O
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Figure 2.1: The construction of G and y in the proof of Lemma

2.7 Lemma. Let (U, E) be a localization or an unsharp localization on a complex
separable Hilbert space S and let \ be the Lebesque measure on R®. For N € 2(R?)
we have E(N) = 0 if and only if \(N) = 0.

Proof. Put pu: B(R?) — R,

where {f1, f2,...} is a countable total set of normalized elements in 7. It is easy to
see that u defines a finite measure on %(RR3).
Let N € B(R?). If E(N) = 0, then obviously u(N) = 0. If u(N) = 0, then

I/ E(N)full?> = (fa, E(N)f,) = 0 for all n € N. Hence E(N)f, = 0 for all n € N.
Therefore by continuity, £(N) = 0. Hence, u(N) = 0 if and only if E(N) = 0. By the
covariance property it is E(N +a) = U((a,I))E(N)U((a,I))™" for every a € R?. So,
w(N)=0 < E(N)=0 < E(N+a)=0 < u(N +a)=0 for every a € R>.
So p is quasi-invariant under translations, and by Lemma 1 is equivalent to the
Lebesgue measure. O

2.8 Lemma. Let S,T C R? and lett € R. Then
(a) Sy = |J Bpy(x) fort #0.

xeSs
(¢) S CT implies Sy C Ty.
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(d) (B,(x)); = By4(x) for allx € R® and r > 0.

(e) If S is compact then Sy is compact and

Si={z R : d(z,9) < |t]}.

Proof. The statements (a) and (d) are clear.

(b) and (c) follow from (a) and the fact that Sy = S.

(e) For t = 0 there is nothing to show, thus let £ # 0. Since S is bounded, (c)
and (d) imply that S; is bounded. For a compact S it is

Si={z€R®: d(z5) <[t}
Indeed, if y € S, then there exists an x € S such that y € B (x). Thus d(y,S) <
d(y,x) < |t|, hence y € {z € R? : d(z,5) < |t|}. If d(y,S) < [t| then there exists
a sequence (X,)nen in S such that d(y,x,) —= d(y,S). By the compactness of
S there is a converging subsequence (x,, )rey with limit x € S. Then d(y,x) =
limy o0 d(y,Xp,) = d(y,S) < |t], thus y € Bj(x), and (a) implies y € S;.
Since x — d(x, S) is continuous, we see that S; is closed. O

2.9 Lemma. Let A, B be orthogonal projections in a Hilbert space 7. Then
A< B < A= BA.
Proof. Let A < B. Then for ¢y € 5 we have

I(A = BA)|? = ((I = B)AY, (I — B)Ap) = (A¢, (I — B)Ay)
= (Ay, AY) — (AY, BAY) < (AY, AY) — (A, AAY) = 0.
Hence A = BA.
Let A = BA. Taking the adjoint of this equation shows that BA = AB. Thus

(B—A)?* =B —-2BA+ A = B — A, hence B — A is an orthogonal projection, in
particular it is positive. O

2.10 Corollary. Let (U, E) be a localization on a complex separable Hilbert space F
and let 'V be a continuous unitary one-parameter group commuting with U. Then
(V,U, E) is a causal localization if and only if

V(t)E.(A) = E.(A)V () EL(A) Vi€ R,VA € BR?),
where E. is the completion of E.

Proof. Let t € R and A € B(R?). Put A:=V(t)E.(A)V(—t) and B:=E.(A;). The
assertion now follows from Lemma 2.9 O
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2.11 Lemma. Let (U, E) be a localization on a complex separable Hilbert space 7€ and
let V' be a continuous unitary one-parameter group commuting with U. Then (V,U, E)
is a causal localization if and only if

V() E(A) = E(A)V () E(A) VteR (2.1)
holds for every open ball A centered at the origin.

Proof. The “only if” part of the Lemma is trivial. To prove the “if” part of the Lemma
we may assume that ¢t > 0, since the case t = 0 is trivial and since A_; = A,.

By the covariance property we see that all open balls satisfy . Let % be the
collection of all A € %(R?) which satisfy 4, € Z(R?) and (2.1)).

(a) If A,B € ¢ then AUB € ¢: Clearly (AU B), = A, U B, € #(R?). Using

E(AUB)=E(A)+ E(B)— E(A)E(B)
and F(A)E(B) = E(B)E(A) we find, omitting the F and the argument of V|

(AUB)V(AUB) = (A + B, — A:B;)V(A+ B — AB)
=AVA+AVB-AVAB+ BVA+ BVB—-BVAB
- ABVA—-ABVB+ ABVAB
=VA+AVB-VAB+ BVA+VB-VAB
—BVA—-AVB+VAB
= VA+VB-VAB=V(AUB).

(b) By induction we obtain: If Ay, As,..., A, € € then U A, € 7.
(c) Every compact set is in 4 Let K C R® be compact. We will construct a
sequence (Up,)nen of open sets, each being a finite union of open balls, such that

Upir CU,, K=n",Up,, K, =002, (U
Let A; C K be a finite set such that

K C U1 = U Bl(a)
acA;

Put aq:=d(K,Uf)/2, where d(X,Y):=infycx d(x,Y). Note that Uf is closed and
K NUf = @. Thus by the compactness of K we have 0 < «;. It is also clear that

A(K, U}) = inf dGx, UF) < inf d(a,UF) <1,

hence oy < 1/2.
It Uy,...,U, and a4, ..., a, have been chosen, let A, 1 be a finite subset of K
such that
K CUnp1:= |J Ba,(a).

aGAn+1
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Put a1 :=d(K,Us,,)/2. Clearly 0 < 41 < @y, /2. Since d(K, US) = 2a,,, we have

U Ba.(x) C U,
xeK
Hence U,y C U,.
We show that K, = N%°,(U,);. K C U, implies K; C (U,); for all n € N and
thus K; C M2 (Uy)e. Let y € N72,(Uy)s. Then y € (Unt1): = Uaea, ., Bita,(a) for
all n € N. Thus for each n € N exists an x,, € K such that y € By, (x,). By the

compactness of K there exists a subsequence (Xn(k))keN converging to some x € K.
Then

k—o0

ly —x| <y — xn(k)\ + |xn(k) —-x|<t+ o—n(k) 4 ]Xn( —X| ——t

implies that y € K;. The same arguments imply that K = N>, U,.
Since A — E4(A):=(¢, E(A)¢) is a finite Borel measure for every ¢ € ¢, we
have

< lim (¢, E((Uy))) = (¥, E(K)),

for every ¢ € #. Note that K; € B(R?), since it is compact. This proves (c).

Finally, let B be a Borel set and ¢ € J#. Because L is regular for every ¢ € ¢
(see, e.g., [[Rud70] Theorem 2.18]) we have

(0, V()E(B)V(=t)¢) = sup {(¢, V() E(K)V(=t)y) : K C B, K compact}
<sup {(¥, E(K;)v¥) : K C B, K compact}

< (4, E(C(B, 1)),

since Ky C B, C C(B,t). By Discussion and Lemma we have E(C(B,t)) =
E.(By), where E, denotes the completion of E. For Borel sets it is E.(B) = E(B), so
we have

(0, V() Ee(B)V(=t)) < (b, Ee(By)Y).
This completes the proof. n

2.12 Discussion. In order to study causal localizations, Castrigiano introduced in
[Cas84] causal transformations (see Appendix [F| for a brief summary), which are more
general than causal time evolutions. But if V is a causal time evolution, then for
every t € R, V() is a causal transformation. So the necessary conditions developed
in [Cas84] for a causal transformation readily apply to causal time evolutions. With
the help of the last Lemma and the results of Part II we can now adapt the sufficient
conditions.

2.13 Proposition. (¢f. [Cas84] Lemma 2). Let (U, E) be the coordinate represen-
tation of a finite localization and let V be a unitary continuous one-parameter group.
Then (V,U, E) is a causal localization if and only if
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(a) For eacht € R there exists an entire matriz-valued function ®; : C* — L( @Q v;CH T
je
such that in the momentum space representation

V) f] = [@lesf]  VIf] € A

(b) For each t € R there exists a constant Cy > 0 such that
|@(2)|] < Gl vz e,

where |z| := \/|zl|2 + |22]2 + | 23]2.
(¢) For everyt € R we have
®,(|ples) = D(B(p) )®:(p)D(B(p))  VpeR’,
where D(B) := @ cqv; DY (B).
(d) For every p € R? it is
(k,k,r|P(|Iples)|s, ¢, s) =0 Vr #s.

Proof. The “if” part of the Proposition: Put M : Rsq — L(®;eqr,C¥ 1),

M(p) :=Pi(pes).
Then (c) shows that in the helicity representation V" (¢)[f] = [M(| - |)f]. Lemma [L.13]
and (d) imply that V' commutes with U.
Let t € R. From (a) and Lemma we have [|®|gs(-)|| = 1 a.e. By continuity
this must hold everywhere. Then by (b) and Theorem [10.15| (b) we find
V()E(A) = E(A)V (1) E(A)

for every open ball A centered at the origin. Lemma shows that (V,U, E) is a
causal localization.

It follows the “only if” part of the Proposition. Since V' commutes with U,
there exists for each t € R a measurable bounded matrix-valued function 4; : R3 —
L(®;eqv;C¥*1) such that in the momentum space representation

VS = [Af] V[f) et

Since |Imz| < |z, (a) and (b) follow from Theorem [10.15] (a).
Let t € R and let B € SU(2). Then [V (t),U(B)] = 0 implies

]
®,(p)D(B) = D(B)®,(B™" -p)  ae.
By continuity this must hold everywhere. Hence
D(B(p))~'®:(p)D(B(p)) = ®:(B(p)™" - p) = P(|ples).

This shows (c).

In the helicity representation we have V(t)[f] = [®4(| - |e3) f], and Lemma [1.13]
implies that (d) holds almost everywhere. By the continuity of ®; condition (d) holds
everywhere. O
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2.14 Theorem. (cf. Theorem of [Cas84)]). Let (U, E) be the coordinate representation
of a finite localization and let V be a unitary continuous one-parameter group. Then
(V,U, E) is a causal localization if and only if

(a) For eacht € R there exists an entire matriz-valued function ¥, : C — L( & v,C¥*1)

JEQ
such that in the helicity representation
V] =[] - DfF] Vifle st
(b) For each t € R there exists a constant Cy > 0 such that
W, (2)]| < Cyelll] VzeC.
(c) For each t € R there are entire functions ft(j;’i’l) : C — C such that
X ~ Jok U pin 2
(ky ki, r|Wy(2)|d, 0, 8) = 0ps > (1) V2041 e 0)? inr (27) VYzeC.
I=|k—j

Proof. The “if” part of the Theorem: Since V(0) = I, the case t = 0 is trivial. Let

t#0. Put A, : R® — L( @ v CHHh),
j€

Ai(p):=D(B(p))¥:(lp))D(B(p) ™),
where D(B) :=®;cqr; DY (B). Thus in the momentum space representation it is
Vil =14 viflesr.
For fixed j and k put o) : R3 — C,

)= 5 DOEE) VT () D)

Then, since (k, k,r|D(B(p))|l, \,v) = 5k15m\D(k)(B(p))m and

(j K l)zO Vv # u,

—u v 0
condition (c) implies

(ky ey Aup) 10 8) = 2 D) find” (IPP).

l

By [[Cas84] (19) fol.] the ) are polynomials. Thus

= <k,5,r‘(1)t ‘]7L S ng tllci]Ll) Zl +Z§ + Z?%):
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defines an entire extension for A;. Using the orthogonality relations for the Wigner 3j
symbols it is easy to see that (c¢) implies

A = VAT (L g) s,
By (b) we have
‘ftk]l (2 2)‘ Sctelt\lﬂ VzeC,

for some constant C; > 0. This implies (using |z| = ‘22’1/2)
R34 23+ 23)] < Qe < Celilel - g e 2,

Let ¢ > 0. Then, since the o)) are polynomials, there exists a constant C. > 0
such that
oW (z)| < C.el! Vz € C.
Hence

|(k, 1, 7| @(2)]], 0, 5)| < Cf ellFe)lel Vz € C?

for some constant Cj _ > 0. The estimate ||®y[gs(-)|| < |V (t)|| = 1 holds a.e. (Lemma
, and by the contlnulty of @, this holds everywhere. Using the equivalence of the
operator norm and the entry-wise norm on L(®;cqr;C*¥*!) and Corollary m we
find ||®,(z)| < e+9)=l for all z € C3. Since £ was arbitrary we have

|®,(2)]| < el Vz e C.

This proves conditions (a) and (b) of Proposition [2.13
Since B(|ples) = I, we have A;(|p|es) = ¥:(|p]|) for all p € R3. This implies

A(|ples) = D(B(p) )Ai(p)D(B(p))  Vp€eR?,

and, by means of (c),
(k k. r|A(|ples)|j, e, s) =0 Vr#s.

This proves conditions (¢) and (d) of Proposition [2.13]

The “only if” part of the Theorem: Let @, : C* — L(®;cqr;C¥ 1) be the function
given by Proposition 2.13] Then W, : C — L(®,eqv;C¥ ™), W,(z) := ®;(ze;) satisfies
(a) and (b).

Condition (c) follows from the main Theorem in [Cas84], since V() is a causal
transformation for every ¢t € R. m

2.15 Remark. Using the orthogonality relations for the Wigner 35 symbol (see Ap-
pendix , we see that

k+j .
<k,K,T|\IJ(Z)|j,L7S>:5TS Z (_1)j—5\/2l_‘_1<_i I;: l)Z (k]l)(Z)

‘ 0
I=|k—j]
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if and only if

A = S caEt (D @i, 22

s€[k]N[]

This, however, does not imply that condition (c¢) of Theorem is trivial, since in
general g(’” D Ryg = C,

R,L

» . - ko .
g (p)=p7? 30 (=1) v2l+1<_‘; ) )(k,fﬁ,s|‘1’(p”2)|],b78>-

s€[k]N[] 0
has no entire extension.

2.16 Discussion. So far, the fact that V' is a homomorphism has played no role.
The consequences of this property are studied in section In brief, the situation
is as follows: We have seen that in the helicity representation V" ()[f] = [W(] - |)f],
where UF : C — L(Djecqr;C¥*1) is an exponentially bounded entire matrix—valued
function. Then Stone’s Theorem leads us to the conjecture that W# = () for some
entire matrix-valued function h such that h(p) is self-adjoint for all p > 0. That this is
indeed the case is the subject of Theorem In Theorem [12.6] it is shown that the
exponential boundedness of ") implies that A is linear. In the next Theorem, which
is a generalization of [[Cas84] Lemma 7 fol.], we apply these results.

2.17 Theorem. Let (U, E) be the coordinate representation of a finite localization and
let V' be a continuous unitary one-parameter group. If (V,U, E) is a causal localization,
then there exist self-adjoint matrices M, N € L(®;cqu;C¥ 1) such that in the helicity
representation

VEO[f] = [N f] VieR, VIfle 2,

and

</<:/<7“|N]j,cs>:0 Vr#s, (kg Mljs) = c?6,0n,

for some constants ¢ € C. Moreover, the operator T defined as T"[f]:=[M f] com-
mutes with (U, E), and T =T = T".

Proof. Theorem and Theorem [11.10[ imply that in the helicity representation
VLS = [V 1],

where h : C — L(D;eqr;C¥*1) is an entire matrix-valued function such that h(p) is
self-adjoint for all p € R. Moreover, for each t € R we have

le™@| < Gl vz ec,

where C; > 0 is a constant depending on . In particular, (")) < |¢|. From Theorem
we have self-adjoint matrices M, N € L(®;eqr;C**1) such that h(z) = M + zN
for all z € C.
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e 0
0 e
p # —|ples. Since V(t) commutes with U(0, By), there exists for each ¢ a null set Sy
such that in the helicity representation

Let t € R and put B, := > By Lemma it is R(p, By) = B, for

PV D(B,) = D(By)e™PD vp e R3\ Sy, (2.3)
where D(B) :=®;cqv; DY (B), i.e.
(k, k6, 7| D(By) |, \, ) = 0p0x0pu€?".

By continuity, Eq. (2.3) must hold for all p € R? and then also for all ¢ € R. The
derivative with respect to ¢ of the equation at ¢ = 0 gives

h(lp))D(By) = D(Bys)h(lpl) VP ER’ Vo eR.

Thus for p = 0 we have MD(B,) = D(B,)M and then for p # 0 this implies
ND(By) = D(B,)N. Hence (k,r,r| N |j,¢,s) =0 for all » # s.
By Theorem [2.14] (c) it is
‘ jt+k '
(ky ko, | TN 50 8) = 6,0 D D(ﬁ”)zl (fthl(zZ)) VzeC,

S
I=[j—H

where Dggl’j) =(=1)"52l + 1 <_js IZ é) Thus for z = 0 we have
<k7 R, r|eitM‘ja L, 8> = 6r55ij£f€()7j) (ft,jk[)(o))m Vi € Ra

which implies
, kk
(k,k,7|M|j,1,8) = 57’56ij£,0 ane

where f; := —i0; fo jx0(0). Note that Dggo’k) = (=1)%*(2k + 1)7'/2 (see [E.1)) is indepen-
dent of s. Using Lemma [I.14] completes the proof. O

2.18 Note. We like to stress that the above conditions are not sufficient for (V, U, E)
to be a causal localization, since D(B(-))(M + | - [N)D(B(-)~!) in general has no
analytic extension to C? (e.g. M = 0, N = I). However, we will show in Theorem m
that every finite massive relativistic extendable causal localization is a direct sum of

Dirac- and Dirac tensor-systems. The most simple non-relativistic systems are studied
in Theorem [7.1]



3 Finite Massive Representations of the Poincaré
Group

3.1. The massive representations of ISL(2,C). In this subsection we recall some
well-known facts [adapted from [Sch70] and [Var(Q7]] about the universal covering group
ISL(2,C) of the Poincaré groupﬂ. It consists of elements (a, A), where a € R, A €
SL(2,C), and the group law is given by

(a,A)(a', A"):==(a + Ad', AA"),
where Aa:=A(A)a and A : SL(2,C) — L. is the covering homomorphism from

SL(2,C) onto the proper orthochronous Lorentz group L1 (see Appendix . The
Minkowski product of p, ¢ € R* will be written as (p, Gg), where

G:=diag(l,—-1,-1,-1).

The irreducible strongly continuous unitary representations of 1.SL(2,C) corre-
sponding to the Orbits XM :={p € R*: (p,Gp) = p?,npy > 0} of mass p > 0 and
sign of energy n € {—1,1} are given by

U(MJ]J)(CL’ A) LQ(X(”’"),C2j+1,OzZ) - LQ(X(MW)’C%‘H’O{Z)’

U(u,m)(a, A)[F] ::[€i<.,Ga>D(j)(R(wv)(_’ ANF(AY)], (3.1)
REMD (. A) = AWD ()L AAWD (471,

where o] is the invariant measure given by

/ Fd n'_/ F(n(p? +p*)'2,p) g
R Ty 2(u? + p2)1/? p
and AW . X 5 §1(2,C) is a measurable function satisfying
AU (p)pn eo = p (3.2)

for all p € X®" . This implies that R®“M(p, A)ey = ey for all p € X®7 hence
RwM(p, A) € SU(2). The orbits X" can be parameterized by p” : R® — X )

o) = (") =it

An explicit realization of A®™ is the so-called helicity section:

v/2 0 3
A(ﬂvn) (p) = B(np)A(U)7 A(U) — <60 e_v/2> , P = Zpiei7
i=1

3Since the Poincaré group is represented projectively on physical states, it is more convenient to
use its universal covering group (see, e.g., [[Wei95] Sec. 2.7] for details).

25
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where B : R® — SU(2) is given by Eq. and v is the non-negative solution of
cosh(v) = p~'e(p). Because A(v)ey = (coshwv,sinhves) and B(np)es = np/|p| it is
easy to see that the helicity section satisfies Eq. (3.2).

In the following Lemma we will describe a unitarily equivalent representation
which has two convenient properties: (i) it is an extension of Up,), and (ii) its Newton-
Wigner localization (see Definition is the canonical projection-valued measure, cf.
[[Mut84] Eq. (2.2) and fol.]. Before we state the Lemma some definitions are in order.

3.2 Definitions. For every (pg, p) € R* we define
(po, P)" :=p-

The canonical cross-section is the map Q" : XM — S[(2 C),

QU (p) == B(np) A(v) B(np) ",
where v is the non-negative solution of cosh(v) = u~'e(p).
3.3 Lemma. The representation UW™9) given in is unitarily equivalent to the
representation W) . [SL(2,C) — L(L*(R3, C¥*1)),
€(q")
€(p)

1/2
(W(um)(a,A)f)(p) = ( ) ei(p”,Ga>D(j)(Q(#ﬂ?)<pn)—1AQ(M777)(q77))f(q77)’ (3.3)

where ¢":= A71p" and q" :=(¢")*. Moreover, we have W(“’"’j)|15U = UD<j>.
Proof. First we transform from L2(X® C¥*1) to L?(R3 C¥+1) by
(SF)(p):==Q2e(p)2F(p"), (ST F)(p) :==e(p")"*f(p").

The factor (2¢(p))~/? ensures that S is unitary. We have

n 1/2 ‘ '
(SU(W,,J-)(CL’ A)S~1f)(p) = <€€(<1))> el<p”,Ga>D(J)(A(H77 (p")~ 1A Akm) (¢M)f(q").

Let T : L*(R3, C%*!) — L*(R3, C**!) be the unitary transformation given by

(T1)(p) =DV (B(1p))f ().

Then we have W) = 7Sy =171,
Let B € SU(2) and let b € R3. Since A(B™!) is a rotation, it is ¢" = A(B~!)p" =
(ne(p), B~'p), and so we obtain

(W2((0,b), B) f)(p)
= e PP DU(B(np)A(v) "' B(np) ' BB(nB 'p)A(v)B(nB 'p) ") f(B 'p).
Because B(np) 'BB(nB~'p) and A(v) are diagonal they commute and we have
(W*m9)((0,b), B) f)(p) = e~**DY(B) (B~ 'p).

Hence, W) |52 = Upo). =
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3.4 Lemma. For every p € X" we have

(i) QUM (p) = ———— (o + 10(p).
2u(e(p) + 1)

(i) QW (p) is self-adjoint.

(iii) QU is a cross-section, i.e.

Q(wz) (p)npeq = p Vpe X(wv)7

and it is the only positive cross-section.

(iv) QUM (p)t = ————((e(p) + p)oo — 10 (D).
2u(e(p) + 1)

(v) QU7 (p)* = 1o (p).
Proof. Let w:=np and let w:=||w|| = ||p||. Then

(1) () — COSh(“/z) + "4 sinh(v/2) % sinh(v/2)
Q) = < Ltz sinh(v/2) cosh(v/2) — %5 sinh(v/2) ) '

Because

1/ (o) — 1\ 2
sinh(v/2) = (;(cosh(v) - 1)) = ((F’;ﬂﬂ) ;

1/2 P 1/2
cosh(v/2) = (;(cosh(v) + 1)> = <(l)2)lj-,u>

the first statement follows.
It is

QU (pMnuey = B(np)A(v)B(np) 'nuey = B(np)A(v)nuey = AW (pMnuey = p,

thus Q™ is indeed a cross-section. Since A(v) is positive, Q(p") is positive.
Suppose Q' is another positive cross-section. Abbreviate @ := Q" . Because
Q7 'Q'ey = ey, we have B:=Q'Q' € SU(2). Therefore

(@) =Q(Q) =(@B)(@B) =QBB'Q" =QQ" = Q.

Hence, by positivity, Q" = Q.
The remaining statements are easy to check. O]
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3.5 Definitions. A representation W of ISL(2,C) on a complex separable Hilbert
space .7 is said to be a finite massive representation of ISL(2,C) if W is unitarily
equivalent to a finite direct sum of irreducible strongly continuous unitary massive
representations of ISL(2,C).

Thus W is a finite massive representation of ISL(2,C) if and only if there exists
a finite subset Q of {(u,n,j) : > 0,n€ {-1,+1},5 € Ny/2}, a mapping v : Q@ — N
and a unitary S : # — Geaﬂy(w)Lz(R‘g, C*#*t1) such that

W=5"a vwWws,
weN
where W) are the representations given by Lemma . The Newton-Wigner lo-
calization for W is then the projection-valued measure Ey given by Ey :=S 1ES,
where F is the canonical projection-valued measure. To see that Ey is well-defined let
T be another unitary map such that
W=T"® vwWWr

weN

Then T'S™! commutes with ®ocor(w)W* and by Schur’s Lemma [[Fol95] 3.5] we have
TS =& CYe1)f]  VYifle & v(w) LR C*T,

we weN
where C@) € CY@)>¥«) and 1, is the identity matrix in CRws+Dxws+l)  Thys 751
commutes with . Hence

By =S 'ES=T"'ET.

The Newton-Wigner position operator for IV is the position operator cor-
responding to the Newton-Wigner localization (see Discussion .

The mass square operator C' for W is defined as

C:=5"1 QEQ v(w)wil,s, (3.4)

where I, is the identity operator in L?(R3, C*3%1). The same argument as above shows
that this operator is independent of S. Its spectrum is {w? : w € Q} and hence finite
and positive.

Basis independent descriptions for Ey, and C are provided by Lemma [3.12] and
Lemma (c), respectively.

The self-adjoint operators H, P,, J,, Ny, (a = 1,2,3), called the energy, mo-
mentum, angular momentum and boost operators of W, are defined via Stone’s
Theorem as

W((s,0),1)=exp(isH), W((0,se,), ) = exp(—ish,),
W (0, exp(iso,/2)) = exp(isd,), W (0, exp(so,/2)) = exp(isN,),

where s € R (cf. [[Mut84] Eq. (2.1)]). We collect the P,, J, and N, into vectors P, J
and N, respectively. Moreover, we define P?:= P2 + PZ + PZ.



Finite Massive Representations of the Poincaré Group 29

The sign of energy for W is defined as
sgnH::/sgn dL,

where L : ZB(R) — L() is the spectral measure for H, i.e. H = [iddL and
sgn(z) :=x/|z| for z # 0, sgn(0):=0. Moreover, we use this definition if H is the
energy operator for a time evolution.

The energy operator for W9 is given by 2(H) = {[f] € L* : [¢f] € L7},

H(f] = [¢f], where € : R® — R, £(p):=nv2 + p2. The spectral measure for H is
L=Fo& ! where F: Z(R3) — L(L?), F(A)[f] = [xaf]. Hence

sgnf = > BL(sgn ' ({8}) = L(Rs0) — L(R<o) = 01,
Be{-1,0,1}

whence the sign of energy for EBQ V(W)W is given by (cf. Eq. (3.4))
we

sgn H = @ v(w)wsl,.
weN

3.6 Lemma. Let W be a finite massive representation of ISL(2,C) and let Ey be the
Newton-Wigner localization for W. Then the following statements hold.

(a) The sign of energy for W is a self-adjoint unitary bounded operator commauting
with W and Eyy.

(b) The mass square operator for W is a self-adjoint bounded operator with finite pos-
itive spectrum commuting with W, Eyw and the sign of energy.

Proof. The proof follows directly from the definitions. O]

3.7 Lemma. Let W be a finite massive representation of ISL(2,C) on a complex
separable Hilbert space €, let Ey be its Newton- Wigner localization and let

V(t):=W((t,0),1), U(b, B):=W((0,b), B), teR, (b,B) € ISU(2).
Then (U, Ew) is a localization but (V,U, Ew) is not a causal localization.

Proof. The localization property follows from Definition . Suppose that (V,U, Ey)
is causal. Let Py := %(I +sgn(H)) be the projection onto positive and negative energy
states. Since V', U and Ey commute with sgn H, they leave ¢, := P, (%) invariant.
From Discussion we have Vo :=P.VPy = P.. But thenitis V =V, +V_ =1
which is impossible. [

Despite of this Lemma the Newton-Wigner localization is still useful for our
objectives, in particular for finding relativistic extensions for (V,U), see Lemma
and section [6]

3.8 Lemma. Let W be a finite massive representation of ISL(2,C) on a complex
separable Hilbert space 7. Then the following statements hold.
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(a) There are unique self-adjoint bounded operators A and B such that for all [g] €
2(|H])
[H|Alg) = AlH|[g] = [g].  B(|H|+C"*)g] = (|1H| + C"*)Blg] = [g].
Moreover, we have
Hsgn(H)Alg] = sgn(H)AH[g] = [g]  V|g] € Z(H).

and
sgn H = HA.

(b) The domain for H? is a dense subspace of ¢ and equals the domain of P2.
(¢) The mass square operator C' for W is the unique bounded operator satisfying

H*[g] = (C+P?)[g] Vg € 2(H).

Proof. Tt suffices to consider the representation W #:9).
(a) We have

o ={ifler? /it +1-PAerr), Al =lm/w+] P

A

PE)={[f1€ L : [(ea) 1 €L}, Pulf]=1[(ea)f]
(cf. Proposition [11.5). Also, 2(|H|) = 2(H), |H|[f] = [\/u2 +| - |2f]. Plainly,

A

Alfl=102 + - )72 ]

and

and X
Bl =[((u? + |- )2+ )7 f]
define bounded self-adjoint operators satisfying the stated equations.

Let [g] € Z(|H|) and let A’ be another self-adjoint bounded operator satisfying
the same conditions as A. Then [¢g] = |H|A[g] and A'[g] € Z(|H|) imply

Alg] = AlH|A'[g] = A'[g].

Since Z(|H|) is dense, it follows that A is unique. Similar arguments show that B is
unique.

(b) Let f € L? such that ¢f € L?, where €(p):=/u? + |p|2. Then the estimate
€ < 1+ € implies
lef 1 < NI+ lle* £l < oo.

Hence 2(H?) = {[f] € L* : [(u>+|-|*)f] € L*}. So this is a dense subspace of L?.
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We have 2(P2?) = N?_, 2(P2), and [f] € 2(P2) if and only if [f] € 2(P,) and
P,[f] € 2(P,). Let [f] € 2(H?). Then

lpafPI* < (1 + P @I* < IF @I+ 1(w* + [P f(P)I* VP eER’

implies that [f] € 2(P,), and

lp2f )| < [I(W*+Ip?)fP)I°? VpeR’

implies that P,[f] € 2(P,). Thus [f] € 2(P?).
If [f] € 2(P?), then |||p|2f(p)|?/3 < X3, [p2f(p)||? for all p € R? shows that
|- [?f] € L* and [(u? + | - |*) f] € L?. Hence [f] € Z(H?).

(c) Since C[f] = [u2f] for all f € L?, we have H2[f] = [(1*+]-*) f] = (C+P?)[f]
for all [f] € 2(H?). Moreover, Z(H?) is dense, so C is the only bounded operator
with this property. O

3.9 Note. The formulas given in part (d) and (e) of the next Theorem for finite massive
representations with sgn H = +1 (positive energies) are due to Bakamjian, Thomas
and Foldy [[BT53], [Fol61]] and we will call them the BTF formulas, cf. [[Mut84] Eq.
(2.3) fol.]. Part (a) is adapted from [[Mut78] Theorem 1]. But our version holds for
positive and negative energies. For the proof of (e) we follow [Jor&0].

3.10 Theorem. Let W be a finite massive representation of ISL(2,C) on a complex
separable Hilbert space 7 and let X be the Newton-Wigner position operator for W.
Then the following statements hold.

(a) There exists a dense subspace 9 of A such that W9 C 9, 9 C D(A), AD C P
and Alg = A for every A € {X,H,P,J,N}. Moreover, A9 C & for every
A€ {sgn(H), (|H| +CY?)~t H~, C71/2)

(b) Within 2 we have the commutations relations

[P, Pl =0 (P, H] =0 [Ji, H] =0

(i, Jj] = ieiji i [Ji, Pj] = i€ Dy, [Ji, N;| = ieiju Nk
[H, N;] = —iP; [Ni, Nj| = —igijiJi [P, Nj| = —idiy H
[Ji, X]] = ZEijXk

where a sum over a repeated index is understood and €51, is the Levi-Civita symbol.

(c) There is a unique bounded self-adjoint operator S, called the spin vector for W,
satisfying
S[fl=J-XxP)[f] V[fle2,

where (A X B)g := e As Be.
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(d) For every [f] € 9 it is

sgn(H)

1
N[f] = (2(HX+XH) + W

P x s) f]. (3.5)

(e) For every [f] € P it is

1
~ HC'2(|H| + C'/?)

X[f] = (; (H'N+NH) P x (HJ+P x N)) f].

(3.6)
(f) S? commutes with (W, Ey).

(g9) The representation W #3) occurs in the decomposition of W if and only if  is an
eigenvalue of sgn H, 1i* is an eigenvalue of C and j(j + 1) is an eigenvalue of S?.

Proof. For (a) — (f) it will be sufficient to prove the claims for W9 where n €
{—=1,1}, p > 0 and j € Ny/2 are arbitrary but fixed.

We will show that Z:=C*(R?) (cf. [[BR86] Ch.11 §1 (6) p. 319]) satisfies (a).

A

In this particular representation it is clear that Wiy < @ and 2 C P(A) for the
generators A of W®#3)  Then [[RS80] Theorem VIIL.11 p. 269] implies that 2 is a
common core for H, P, J and N.

_ By the same arguments as in the proof of Lemma [1.16| we see that 7 is a core
for X and that Xi[f] = [i0kf] for all [f] € 2. In particular X,2 C 2. Also, (cf.

Proposition
A(f] = ()], Belfl =[(enf]  Vifle2
where e(p) :=/p2 + |p|2. Clearly, HZ C 2 and P,2 C 9. For [f] € 2 it is

(Jef)(p) = =i (DY (/) f(e7"7+/*p))
= (|8 = (P x X)e] 1) (p),

a=0

where S, are the matrix multiplication operators corresponding to the matrices Ly
which are defined by

D(]) (eiaak/Q) _ eiosz )

This also shows that ja.@ C 9. Since [X'Z, 151] = 10;; in &, we have PxX=-XxP.
Thus

A

Selfl = (e = XxPl) /] VIfl€2.

Because & is dense S is the unique bounded operator satisfying this equation. This
proves (c). The properties of L imply (f) (see Appendix [C)). (g) is not difficult to see.
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Let A, :=exp(aoy/2), p":=(ne(p),p), ¢":=A.'p" and q":=(q")*. We need to
compute

(q")
e(p)

1/2
(Nef)(p) = —i0, (( ) D(j)(Q(p”)1AaQ(q"))f(q"))

a=0

Since 8aq77‘ = —(pr, ne(p)ex) and €(q") = nqg, we find

a=0

(Nﬁﬂm—=%<;ﬁ$+dDmU)N%BXﬂ)R%Q@ﬁho—wdm@me)

The first and the third term can be written as %(H X+ X H)f. To evaluate the second
term we use ]
Qp") = (noo +no(p")) .
2u(e(p) + 1)

This gives
1 B _
Q(¢") = (noo +nAT o (0 AL)
2p(e(qm) + p)

and we obtain

0.4.0("| _ = - 1

a=0 "~ 2(e(p) + ) P )+ NI (1= no(p")) o

1
N = e(p) + p)og —no
Qp") ESEYD ((e(p) + w)oo — no(p))

Because

it is not difficult to find that

n\—1 yj — "IPk — " o 0:777 /) XO)k.
0 QU A Q) |y = oy v Tete) 70 T B T

Using 1dDY)(I) o 03, = Ly, proves (d). And now it is clear that N,2 C 2.

The operators H~! and (|H| + C'/?)~! are the self-adjoint bounded operators
given by

A=l + 1 )72 (H+ CATH =1 + - )72+ ) )

Since the functions p +— n(u?+|p|?) "2 and p = ((u>+|p|?) /%4 1) ! have derivatives
up to all orders, it is clear that the corresponding operators leave & invariant. Plainly,
sen(H)2 C 2 and C~'/29 C 9. So the proof of (a) is complete.

The commutations relation in (b) are well-known, see, e.g., [Fol61].
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To prove (e) we follow [Jor80]. The subsequent formulas are understood to hold
on the subspace . By (d) we have

sgn H

(P(P-8)-Ps), (3.7)

where we used (A x (B x C)), = A,ByC, — (A - B)Cy. Because P-S =P -J and
P xX =S —J we have

sgn H

sgn H
= H PxN-—P(/P- )
< T+ PN = el J>>

S = C'1/2

Since [X, H] = if, it is
1 P
“(HX +XH) = HX 4 i—.
2( + ) i

Now the formula for N can be solved for X. We find

1 P 1
X=—=N-—1 — Px(HJ+PxN).
7N " smE  morqa s o)t X HIHPxN)
Using
1 1 1 P
N, 7] = FH N7 = —i5
proves (e). O

3.11 Note. The spin vector S for a finite massive representation W is related to the
Pauli-Lubanski four-vector w :=(wp, w), where

wy:=P-S, w:=HJ+P xN.
Using Eq. (3.7) and P x X =S — J we find (cf. [[Jor80] Eq. (2.6)])

sgn(H)

Because [H, Sx] = [P}, Sk] = 0 it is then easy to check that w? :=w} — w? = —C'S%.

3.12 Lemma. Let W be a finite massive representation of ISL(2,C) on a complex sep-
arable Hilbert space 7€ . Then the Newton- Wigner localization is the unique projection-
valued measure whose corresponding position operator is given by the BTF formula

B3).
Proof. See Discussion [I.4] and Lemma [L.5 O

3.13 Discussion. Another formula for the Newton-Wigner position operator is given
by
X=Q-Px(J-QxP)CY3(H|+CV*)!

— Q _ 0_1/2(|H| + Cl/?)—lP > (J o Q % P) (38)
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where Q:=1(H !N + NH™), cf. [[Mut84] Eq. (2.4)]. These can be easily seen by
considering
1 1P P
PxN=_-NxP, Q+5m Q) 7



4 Relativistic Causal Localizations

4.1 Definition. Let TV be a finite massive representation of ISL(2,C) on a complex
separable Hilbert space # and let E : Z(R?) — L(#) be a projection-valued measure.
Then (W, E) is called a relativistic causal localization if (W|z, W|isy(), £) is
a finite causal localization, where W/|s is the time evolution part of W, ie. t —
W((t,0),1).

Notice, that by means of the representation property and the fact that a matrix
B € SU(2) acts as a rotation in space, V :=W| » always commutes with U := W|15U(2).
Indeed,

V(t)U(b,B) = W((t,0),1)W((0,b), B)
= W((0>b)>B)W((t’ 0)7[)

W((t,b), B)
Ub,B)V(t) VteR,(b,B)eISU?).

A tuple (V, U, F) is said to be a relativistic extendable causal localization if
there exists a relativistic causal localization (W, E) such that (W |z, W|rsu(2)) = (V,U).

Note: Since we only consider finite localizations and massive representations, we do
not find the need to repeat the terms finite and massive in these definitions.

4.2 Lemma. Let (W,E) be a relativistic causal localization such that (W|isu(2), E)
is given in the coordinate space representation form and let V' be the time evolution
part of W. Then there exist self-adjoint matrices M and N such that in the helicity
representation

V@)L = [N Y fl e o2,

MN + NM =0, N?> = I and C"[f] = [M?f] for all [f] € . Here, C" is the mass
square operator for W given in the helicity representation. In particular, C' commutes
with (W, E).

Proof. Considering Theorem we only need to show that MN + NM =0, N2> =1
and Ch[f] = [M?f] for all [f] € .
We have 2 := 2((P")?) = {[f] € L* : [| - |*f] € L?}, and by Lemma

3
) = (M = PP WS e 2.
i=1
Since C' commutes with U, there exists an F € L®(R3, @Q v(w)L(C*3 %)) such that
€

in the helicity representation C"[f] = [F(-)f] (see Theorem |G.3). Put G : R® —
® V(W) L(CH),
we

G(p):=(M + [p|N)* - p|’I.
Then [(F — G)f] =0 for all [f] € 2, since

H[f] = [(M+|-IN)f]  VIfl € 2(H").

36
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We show that F' = G a.e. Let || - || be the Frobenius norm, i.e. ||A||% :=tr(A*A). For
n € N put

Su={pe® : |F(p) -G > .

n

Suppose A(S,) > 0. Then there exists a compact K C S, such that 0 < A(K) < oc.

Let f;:=xxb;, where {;}, is an orthonormal basis in @Q v(w)C*3 . Since f; € 2,
we
we have

0= Y II(F - G)AIP = [ IF0) - Gp) ar(p) = A(K).- >0,

which is impossible. So S, is a null set for each n € N. Because the union of all these S,
is still a null set, we obtain F' = G a.e. This implies G € L>°(R?, @Qu(w)L((CQ“’SH)),
we

in other words A(T3) = 0 for some 3 > 0, where
Ty:={p e R : ||G(p)|| > B} .
Let Cy:=M?, Ci:=MN + NM, Cy:=N?— I, then
G(p)=Co+Cilp| + Colp|*  VpeR®

Suppose Cy # 0. Then there exists a vector  with |z| = 1 such that Chx # 0. But
then the estimate

IG(P)Il > IG(P)z|l = [|Cox + Cra[p| + Cozlp’|  Vp e R’

shows that for each 8 > 0 there exists an r > 0 such that {p € R?® : |p| >r} C T.
This contradicts A(T3) = 0 for some 5 > 0. Hence Cy = 0. Similarly, we have C; = 0.
Hence, MN + NM =0, N*> = I and

Chfl = M) Vfle 2.
Since Z is dense, this holds for every [f] € . O

4.3 Corollary. Let (W, E) be an irreducible relativistic causal localization. Then the
mass square operator for W is given by C = u*I for some p > 0.

Proof. By Lemma C' commutes with (W, E). Then by the irreducibility of (W, E)
and the Spectral Theorem C' = p?1. O

4.4 Corollary. Let (V,U, E) be an irreducible finite causal localization. If there exists
a relativistic extension (W, E) for (V,U, E) then the mass square operator for W is
given by C = p2I for some p > 0.

Proof. 1f (V,U, E) is irreducible, then (W, E) is irreducible. Thus Corollary com-
pletes the proof. O



38 Relativistic Causal Localizations

4.5 Lemma. Separation of bosons and fermions. Let (U, E) be a finite localiza-
tion and let V' be a time evolution. If (V,U, E) is irreducible, then U contains only half
integer or only integer spins

Moreover, if (W, E) is an irreducible relativistic localization, then W contains
only half integer or only integer spins.

Proof. We may assume that (U, F) is given in the coordinate space representation.
Let P, and P; be the orthogonal projection onto the boson space and fermion space
respectively, i.e. in the momentum space representation

Bf]=[Myf],  Pylf):=[M;f],

where M, and M/ are the matrices defined as

5kjélib57“87 .] € NOa
07 j ¢ N07

5kj6m57‘37 ] §é N07
0, j € Np.

(k,k,r|M¢|j, e, s) ::{

Clearly, P, and Py commute with (U, E). Since V' commutes with U, it is of the form

VE@L = [F(- DA,

where for each ¢t € R, p — F;(p) is a measurable bounded matrix-valued function such
that (see Lemma [1.13))

<ka/€ar|Ft|j7L7S>:0 \V/T#S.

This implies that P, and Py commute with V. By the irreducibility of (V,U, E) and
Schur’s Lemma (Appendix [I) we have either P, =0 or Py = 0.

Now consider an irreducible relativistic localization (W, E). We may assume
that W = @yeov(w)W®. Since (U, E):=(W|rsv@), E) = (Bueav(w)Upes, E) is a
localization, Mackey’s Imprimitivity Theorem implies that there exists a unitary T
commuting with U such that TET ™! is the canonical projection-valued measure. By
the same reason as above P, and Py commute with 7". Thus P, and P; commute with

E., and it is easy to see that they commute with WW. Again by Schur’s Lemma we have
Pb =0or Pf =0. ]

4.6 Lemma. Let (U, E) be a finite localization and let V' be a time evolution. If there
exists a bounded operator C' > 0 such that H?> = C + P? then C commutes with U
and V. Moreover, the sign of energy, sgn H, is a self-adjoint unitary bounded operator
commuting with C,V and U.
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Proof. For f € C®(R x R3 x SU(2)), ¢ € H put
é; ::/Ef(t,b, B)V()U(b, B)pdtdbdB,  %:=R x R* x SU(2),

where dB denotes the Haar measure on SU(2), and dx denotes the Lebesgue measure
on R®. Let
2 :=span{¢; : f € CX(Rx R* x SU(2)),¢ € #}.

With some minor modifications to the proof of Stone’s Theorem [[RS80] VIII.8] we see
that Z is a dense subset of 7 suchthat VY Cc 2, U9 C 9, HY C & and P9 C 9.
Thus for each ¢ € & the expression [H, U]y makes sense and by Stone’s Theorem it is

[H, U = lim(—)[—=— Ul =0 Yy e2.

s—0
Hence [H?, Uy = 0 for all ¢ € 2. By the same reasoning [H?, V] = 0 for all ¢ € 2.
Since UZ2(P?) C 2(P?) and [P%,U]f = 0 for all f € 2(P?), which can be verified
easily in the momentum space representation, we have [P? U]y = 0 for all ) € 2.
As V' commutes with U, each V() is in the momentum space representation a matrix
multiplication operator commuting with P? on 2(P?). Hence [P?, V] = 0 for all ¢ €
9. Considering that Cv = (H? — P?)1 for all v € 2, we have [C, V] = [C, U =0
for all v € 2 and by continuity [C,V] = [C,U] = 0.

Let L be the projection-valued measure on (R, #(R)) such that H = [iddL.
Then sgn H = [sgn(-)dL. In order to show that [sgn H,A] = 0 for A € {C,V,U}
it suffices to proof that [L, A] = 0, see, e.g. [[Casll] Ch. 2 (11)(g)]. By the Spectral
Theorem [[Casll] Ch. 5 (7)] we have [L, A] = 0 if and only if AH C HA. The last
condition is true, since for ¢» € Z(H) we have
tim Y =Ly gy VO =L

t—0 it t—0 it

v,

which implies that Ay € Z(H) and HAY = AH.

Because P2 > 0 and C' > 0 it is H> = C +P? > 0. Then, from H? = [id*dL we
have L({id* < 0}) = 0, whence L({0}) = 0, which then implies that sgn H is unitary
(cf. [Casll] Ch. 4 (2)(f) and a minor modification of (i)). O

4.7 Lemma. Let (U, E) be a finite localization and let V' be a time evolution. Then
(V,U) has a relativistic extension W if and only if

(i) There exists a bounded operator C' having finite positive spectrum such that H?* =
C + P2,

(ii) There exists a projection-valued measure F : B(R3) — L(#) such that (U, F) is
a localization and [sgn H, F] = [C, F] = 0.

Moreover, if (i) and (ii) are satisfied then the following statements are true.
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(a) There exists one and only one relativistic extension Wg such that F is the Newton-
Wigner localization for Wg.

(b) If there is a unitary S commuting with U and V', then SWrS™1 is also a relativistic
extension and SWpS™ = Wepg-1.

(c) If W is a relativistic extension of (V,U), then there exists a unitary S commuting
with U and V such that W = Wepg—1 = SWpS™L.

Proof. The “if” part of the Lemma: Lemma implies that sgn H is a self-adjoint
unitary bounded operator commuting with V' and U, and C' commutes with V, U
and sgn H. By the Spectral Theorem there are orthogonal projections C, commuting
with (V,U, F) such that C' = >, ;) 7Cy, C,Cy = 6,C and 3 ¢,y Cy = 1. For
n € {-1,1} let P,:=2%(I + nsgn H) be the orthogonal projections onto positive and
negative energy states. The P, commute with (V,U, F)), P,P_,, =0 and P,+ P_, = I.
Also, by the Spectral Theorem, P, and C, commute.
We may assume that (U, F) is in the following form:

U= & I;®Upy, F=¢ ]j®E(j)a
jeQ jeQ

where [; € C**" is the identity matrix. The projections are then given by

C. = MY o 1G) P. = N & 1G)
K j?(l v K j?Q w0

where, for each j, M#j), N,(]j ) € C¥%>¥ are orthogonal projections commuting with each
other and V) is the identity operator acting on L?(R? C¥*!). Put

Wpi=Y_ < oL® WW’%J’)) p,C.,.

ny \JEL

Plainly, P, and C, commute with EBQ I;® W) so Wi is a finite massive represen-
j€

tation of ISL(2,C) and Wp|;sy2) = U. The energy operator Hp for W is then given

by

Hp =Y (jg;g L® n\/vf(j) + (P(ﬂ)?) P,C,.

Yy

By means of

2
— Z D Mv(j) ® (7](1) + (p(j))2)
ol S0

=390, + 30, (Sjeal; ® (PD)?)
Y Y

=C+P°

(Z (EQ I; @ /10 + (P<J’>)2> 07>

Y
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and the uniqueness of the positive square root we have

Hp =Y nWC+PP,=> n|H|P,=> HP,=H.
Z 1 1

Hence Wi is a relativistic extension for (V,U).

If we simultaneously diagonalize M) and N, then we see that W is unitarily
equivalent to a finite direct sum of W#79)  and since this transform leaves U and F
invariant, we see that F'is the Newton-Wigner localization for Wp.

The “only if” part of the Lemma: Let C' be the mass square operator for W and
let F' be the Newton-Wigner localization for W. Then (i) and (ii) follow from Lemma
B.8 and Definition 3.5

(a) The existence has already been shown above. To show uniqueness let W' be
another extension such that F' is the Newton-Wigner localization for W’. From the
BTF formula the boosts for W’ and Wr must be identical, hence W' = Wp.

(b) Let S be a unitary operator commuting with (V,U) and let N be the boost
of Wg. Then from the BTF formula SNS~! must be the boost for Wgpg-1, hence
SWFS_I = Wopg-1.

(c) Let W be a relativistic extension for (V,U) and let Ey be its Newton-Wigner
localization. Then C' is the mass square operator for W. Thus C' and sgn H commute
with (W, Ew) and (Wpg, F), which is to say that both pairs decompose in the same
manner and we may assume in the following that W and W contain a single mass
and a single sign of energy 7.

Assume that (Wpg, F) is in standard form, i.e.

We= @ v()Wr™), F= & v(j)EY,

JEQs JEQs
where Q3 = {j1,72,...,7Jn} is a finite subset of Ny/2 such that j; < 7o < ... <
jn and EV) is the canonical projection-valued measure, i.e. multiplication with the
characteristic function.

By the definition of a finite massive representation there exists a unitary operator
S such that

S(W’ EW)S* = ( ) ]//<j/>W(/"‘777’j/)7 D V(]/>E(J/)> ,
j'e, ey
where Qf = {j1,7%,...,7,} is a finite subset of Ny/2 such that ji < jb < ... < j/..
Plainly,

Let
U= & ,/(j/)W(um,j’)

e

ISU(2)"
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By Mackey’s Imprimitivity Theorem (U, Ey ) and (U’, F') are induced representations
of unitarily equivalent SU(2) representations. Hence, Q5 = Q3 and the multiplicities
v/ and v coincide. In other words it is

Wp= & y/(j/)W(anajl)’

J'eQ

whence

S(W, Ew)S* = (W, F).

Clearly, S commutes with U and V', since W and W are extensions of U and V. Now
(b) completes the proof. O

4.8 Lemma. Let A;, B; € L() be orthogonal projections such that A; < B;, (i =
]., 2) Then Al &® A2 S Bl & BQ.

Proof. By Lemma [2.9] we have
(B1® By)(A1 ® Ag) = (B1 A1) ® (B2Az) = AL ® As.

Since A; ® Ay and B; ® B, are orthogonal projections, Lemma [2.9] completes the
proof. O]

4.9. Theorem. Causal localizations via tensor products. Let (U, E) be a lo-
calization and let V be a time evolution on a separable complex Hilbert space €. Let
D : SU(2) — C¥? be a finite dimensional unitary representation of SU(2). Put

(VU E)=VeI,UD ExI),

where D'(b, B) := D(B) for (b, B) € 1SU(2) and I denotes the identity operator acting
on C?. More precisely,

V)=V (t)® I, U'(b,B):=U(b, B) ® D(B), E'(A)=E(A)®,
for allt € R, (b,B) € ISU(2) and A € B(R?). Then the following holds.
(a) (U',E") is a localization on 3¢ @ CA.

(b) If (V,U,E) is a causal finite localization, then (V' U’ E') is also a causal finite
localization.

(c) If (V,U,E) is a relativistic extendable causal localization, then (V', U’ E') is also
a relativistic extendable causal localization.

Proof. (a) It is easy to see that U’ is a strongly continuous unitary representation of
ISU(2) and that E’ is a projection-valued measure. Let A € Z(R3) and (b, B) €
ISU(2). Since (U, E) is a localization, we have

U'(b, B)E'(A)U'(b,B)™' = (U(b,B) ® D'(B))(E(A) ® I)(U(b, B)® D'(B)) !
= (U(b,B)E(A)U(b,B) ) ®1

E((b,B)-A) &1 =E'((b,B)-A).
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Hence (U’, E’) is a localization.

(b) Because U is a finite localization, there exists a finite dimensional represen-
tation D of SU(2) such that U = Up. Then U’ = Up,,p and since D @ D is a finite
dimensional representation, (U’, E') is a finite localization.

Lemma [£.8] implies that

VIOE'( AV (=t)= (V) @ I)(E(A)QI)(V(—t) 1)
<

=V EA)WV(=t) 1 < E(A)®I=FE'(A).

Thus (V/,U’, E’) is a causal finite localization.

(c) Let W be a finite massive representation of ISL(2,C) extending (V,U) and
let F' be its Newton-Wigner localization. The energy operator H' for V' is given by
H = H ® I, and the momentum operator P’ for U’ is given by P’ = P ® . Let
C be the mass square operator for W. We have H?> = C + P? and by Lemma
[sgn H, F] = [C,F] = 0. Then C":=C ® I is a bounded operator with finite positive
spectrum satisfying (H')? = C' + P2, Put F':=F ® I. By the same arguments as
above (U’, F") is localization. Applying Lemma for (V',U’) completes the proof,
since it is clear that [sgn H', F'] = [C", F'] = 0. O

4.10 Remark. This result implies that if there exists a causal finite localization —
which is indeed the case as we will see — then there are infinitely many inequivalent
causal localizations.

4.11 Remark. Theorem [1.9)leads directly to our main result. In the next section we
show that the Dirac system is a relativistic extendable causal localization. By applying
this Theorem to the Dirac system we obtain the Dirac tensor systems. Moreover,
it is shown that these and the Dirac system are up to unitary equivalence the only
irreducible relativistic extendable causal localizations.



5 Relativistic Extendable Causal Localizations and
the Dirac System

In this section we determine all relativistic extendable causal localizations (Theorem
(.10). These are up to unitary equivalence direct sums of Dirac- and Dirac tensor
systems, which are defined in 5.4 and 5.7 We like to stress that we consider only finite
localizations and massive representations of 1.SL(2,C).

5.1 Theorem. Let h: C — C¥9 be a matriz-valued function such that
(a) h(x) is self-adjoint for all z € R.

(b) h(z) = Az + B for all z € C, for some matrices A, B € C¥*4.

(c) There exists a positive matriz C' such h(z)* = 2* + C for all z € C.

Then d = 2m for some integer m € N and there exists a unitary matriz U independent
of z such that

Uh(x)U = & (VC_@' : ) VzeC,
=1\ z  —/G
where ¢y, ..., ¢y, are the eigenvalues with multiplicities of C'.

Proof. (a) implies that A and B are self-adjoint. By (b) and (c) we must have A? = I,

AB + BA = 0 and B? = C. Thus A is unitarily equivalent to (él _(]) ) for some

I,m € Ng such that | + m = d, where I, denotes the identity matrix on C**¢. In this
basis we may write
(B B,
=(5 %)

where B, € C*!, B, € C*™ By € C™*!, B, € C™ ™. Since B is self-adjoint, we have
B3 = Bj;. The condition AB + BA = 0 implies B; = 0 and By = 0. So, from B% = C

we obtain
_(Cy 0
o=(5 ¢);

where C):=ByB; and Cy = B3B,. Since C' is positive, C; and Cy are positive and
they are unitarily equivalent to some diagonal matrices. The unitary transform that
diagonalizes both matrices respects the block form of A and B. Therefore, without
loss of generality, we may assume that

(L, 0 (0 By _ (diag(cy, ..., q) 0
A‘(o —Im>’ B_<B; 0)’ O‘( 0 diag(ciy1, .-, ca))

where ¢y, ...,cq > 0.

44



Relativistic Extendable Causal Localizations and the Dirac System 45

Assume that [ > m. Then there exists a nonzero vector v € C! such that
Bjv = 0. But then Civ = ByBjv = 0 which is impossible. Similarly the case | < m
can be excluded. Hence, we must have [ = m, in particular d = 2m.

Let P € R™™ be the positive diagonal matrix such that P> = C;'. Then
Y := PBy is unitary: YY* = PB,B3P* = C,P? = [ which also implies that Y*Y = I.
We have C1Y = C1PBy; = PC 1By = PBy;B; By = Y (s, hence (5 is unitarily equivalent

I,
to €. Thus, using the unitary transform ( 0 3), we may assume that C), = Cy =

diag(cy, ..., Cm)-
Moreover, this implies that Bs is normal. By the Spectral Theorem By = VKV*

for some unitary V' and diagonal K. Since ByBj = diag(cy,...,¢y,), we may assume
that ' 4
K = diag(y/c1e"?, ..., \/cme™™),

for some ¢, € R. Put W :=diag(e*'/2,...,e"m/2), then

M) = VIV 0 I.- D WV 0
Vo vw /D —I,2 0 Wv+)’

where D :=diag(,\/c1,...,1/Cm).

Finally, we observe that

1 Iy Ly \(Iwz D\ 1 (L, L.\ (D Iz
2\, -1\ D -1, 2\l -I.) "\l -D)

D IL,z\ o ™ (VG z
(Imz —D) o ZE:B1 ( z —\/C_Z> ' =
5.2 Lemma. Let M, N € C™™ be self-adjoint matrices such that MN + NM = 0,
N? =1 and M? > 0. Let h,Y : RZO — Cmxm,
v ! (L
V20R()[(R(p) + (a2 A 1M

Then for all p > 0 we have

and

h(p) =M + pN,

M+pN>.

(a) Y(p) is self-adjoint and unitary.
7 h
) Y (i)Y (p) " = gy
| M]
(c) [Y(p), M?] =0.
Proof. Since |h(p)| = vV M? + p?, the Square Root Lemma implies that |h(p)| commutes
with |M|, so Y is well-defined. Obviously, Y (p) is self-adjoint. Since [M? N] =0, we

have [|M|, N] = [|h(p)|, N] = 0 again by the Square Root Lemma. Then it is easy to
prove the unitarity, (b) and (c). O
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5.3 Theorem. Let (U, E) be the coordinate space representation of a finite localization
and let V' be a time evolution. Then there exists a relativistic causal localization (W, E)
extending (V,U, E) if and only if there are self-adjoint matrices M and N satisfying
the following conditions:

(a) In the helicity representation it is
VE@)[f] = [N vl e

(b) MN +NM =0, N?> =1 and M? > 0.

(c) There are constants c*) € C such that

(ky ki, 7| M |4, 1, 8) = 6,615
(d) There are constants A%7) € C such that
(k,k,r| N|j,¢,s) = 5,,5D(]” Ak,
where

Dikld) ::(_1)j—s ol + 1 < Jj k l) ‘
’ —-s s 0

Proof. In the following we will occasionally omit the multiplicity indices x and ¢ — we
may think of them as matrix-indices.

The “only if” part: MN 4+ NM = 0 and N? = I have been proven in Lemma
[1.2] Since the mass square operator is positive and C*[f] = [M?2f] for all [f] € S, we
have M? > 0. This proves (a) and (b). (c) is part of Theorem [2.17
(d) By Lemma C commutes with (W, E), so we may assume that C' = p?I
for some p > 0. Theorem [2.14] gives
j+k
(W) wa(2) ==k, 1, 7P 0, 5) = 6 - D2 R0 (),

I=[j—F|

where h(z):=M + zN for z € C. The derivative with respect to z gives

Jj+k
k7‘ - k? Avl kv lvl
‘115«];])’( ) 5, Z Di,/) (lzl lft( J )(22)+22l+1ft/( J )(z2)>,
I=]j—kl|

and for z = 0 we have
wk(0) = 6,, D% (571 (0).

rs

On the other hand, since h(z)? = (u* + 2%)I, we have

) [e'¢) th [ee] t2n+1
I — Lith(z) _ —1)" 2 nI h 2 2\n
o) Z5271,—&—1
(0) = iN Y (—1) () = ——

(2n + 1)!
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where . o
S(x) :zg(—l)”m.
Choose t > 0 such that S(t?1?) # 0. Then we find
N W(0)
itS(t2u2)
and therefore
(k,k,7|N|j,1,8) = 6,sD ]”)ft]”1 (0 )ztS(tl?/ﬂ)

This proves (d).

The “if” part: By (a) we have H"[f] = [(M + |- |N)f] for all [f] € 2(H"). (b)
implies H? = C + P?, where C"[f] = [M?f] for all [f] € L? Since M? > 0 and M is
self-adjoint, C' has a ﬁmte positive spectrum.

Put T"[f]:=[Y () f], with Y from Lemma [5.2} and F:=TET~!. Using (c), (d)
and Lemmall.13] we find that T’ commutes with U, hence (U, F') is a finite localization
Since C' commutes with 7 and E, it commutes with . We have sgn(H")[f] = [‘h(‘ ) ‘f]
thus (T") "t sgn(H™")T"[f] = [M/|M|f]. This implies that [sgn(H), F] = 0. By Lemma
(V,U) has a relativistic extension.

We show that (V,U, E) is a causal localization. Let W,(2):=e*M+*N)  Clearly,
(a) implies part (a) of Theorem [2.14] By (b) we have |[N||? = | N?|| = 1, hence

Hezt (M+zN) H < 6|tH|M“ []|2] VzeC.

This shows part (b) of Theorem [2.14]

It remains to show that there are entire functions ft(k’j ! such that

(k, ke, 7| Uy(2) |4, 1, 5) Jz DI AfRID (2 vz ecC. (5.1)
l l7—Fkl
We have
U, (2) = O(t3(M? + 2%)) + it (M + zN)S(t*(M?* + 2%)),
where
C(z) :;(_1)"(%)!, S(z) ZnZZO(— )”(QnJr 1

Because of (c) we have

(k. i, 7] C(E (M + 22)) |, 0, 5) = afy) (2%)8rs0s,
<k’ Ky T’ S(tQ(MZ + ZQ)) |]7 2 $> = bm (22)5T56kj7
where a(®) and b¥) are entire functions (the time dependency is omitted). Then (d)

implies
(ks ey 1| Wi(2) [ 0, 8) = 980 (2)6s60; + 20, DV ALY (22), (5.2)
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where ~ .
g =al®) +itY b, AR =3 AL,
A A
Using
kk (_1)2k
Dg,o e

V2k+1
(cf. [E.1)), it is easy to see that

FEID (1) \/2k + 1g®) 6,00 + it AR5, (5.3)

solves Eq. (5.1). This completes the proof, but we show how the ft(k’j’l) have been
found.

Inverting Eq. (5.1)) (see Remark [2.15)) and using (5.2) gives

LRI = g0 (a3 DG+ itzA% (%) 30 DI DY,
S S

Since Y, D%R — 0 for | > 1 (see Lemma [E.4) and

s,l

S DGPDED =5y for |j— k[ <1<+,

we have . o

LRI (2) = gW (226 (= 1)V 2k + 100 + itz AR (22) 5,
for | — k| <1<j+k. O
5.4. The Dirac system. Let U:=Upas2 @ Upas2 and let E be the canonical
projection-valued measure. Consider the time evolution V', which in the momentum

space representation is given by V(t) = eith , where H is the Dirac Operator [[Tha92]
Eq. (1.41)] defined as

H[f]=[h(")f],
and h : R? — C*4,
_ [ ul o(p)
hp):= (0(1)) —ub) ’

where o(p) := X7, p;o; and u > 0. More precisely,

M(Srsa k=1=1
5 L,s> = —pdps, K=1=2 (5.4)
o(P)rs K F L.

Every system that is unitarily equivalent to (V,U, F) is then called a Dirac
system with mass p. The system (V, U, F) itself is called the standard Dirac system
with mass u.
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In the helicity representation the Dirac operator has the form H"[f] = [®(]-])f],
where @ : Rsq — C*4,

(1/2, 5, 7| ®(p) [1/2, 1, 8) :=0,511(03) s + 0rs25p(01) .- (5.5)

In Theorem it is proven that the Dirac system is an irreducible relativistic
extendable causal localization. Moreover, we show that the Dirac system is the only
irreducible finite causal localization with spin 1/2 that has a relativistic extension.

5.5. Notation. Consider
Hy:=1,C**l g WHCQ(ZH)H ®...¢v,CYTHL

where v, € Ny, J € Ng/2 and ¢:=0 if J € N, and £:=1/2 otherwise (cf. [L.G). Let
A € L(Hy) be a matrix satisfying

(k,k,7| Alj,t,s) =0 forr # s, (5.6)

such as M or N in Theorem It will be convenient to use the following matrix
notation. For s € [k] N [j], where [k]:={—Fk,—k+1,...,+k}, define the matrices
AkD) € Cxvi as

(AFID), = (K, 5, 8| Alj, ¢, 8) .

Put
AUD)AGTD L AUsD
AG-LD) AG-1I-1) L 4(T-Ls)
Ag=| 7. ° , o
AGLD 4GS0 AGsLls)

Note that A%®9) for k < |s| or j < |s| makes no sense. Also, if v = 0 or v; = 0 then
A9) is not defined and should not appear in A,.

If B € L(Hy) is another matrix satisfying Eq. then it is easy to see that
AsBs = (AB)s. Moreover, if A is self-adjoint and B is unitary, then Ag and Bj are self-
adjoint and unitary, respectively. In this notation Lemma states that an operator
commutes with (U, E) if and only if it is a matrix multiplication operator corresponding
to a matrix M satisfying Eq. and

M, = diag(M), ... MDY,

where (M®)),, = (k, k, s| M |k, ¢, s) for some s € [k]. If v, = 0 then M®*) is not defined
and should not appear in M.

5.6 Theorem. The following statements hold.
(a) The Dirac system is an irreducible relativistic extendable causal localization.

(b) If (V,U, E) is an irreducible relativistic extendable causal localization such that 1/2
is the highest spin occurring in U, then (V,U, E) is unitarily equivalent to the Dirac
System.
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Proof. Let us start with (b). We may assume that (U, E) is in the coordinate space
representation form. By Corollary (V,U, E) contains a single mass g > 0 and by
Lemma [£.5 we may assume that

U = v12Upas

for some v/, € N.
We use Notation [5.5] By Theorem [5.3] there are self-adjoint matrices M and N

such that V" (¢)[f] = [e*MFIN f] N2 = I, N;M, + M,N, =0, M? = 21, and
M, = M(/2) N1/21/2) _ p/21/2) 4(1/2,1/2)

,1 )

for s € {—1/2,1/2}. Using the symmetries of the Wigner 3j symbol (see Appendix |E])

we find
NW/21/2) —N§1/2’1/2).

Theorem for z +— N§1/2’1/2)2+M5 implies vy /5 = 2v for some v € N and there exists
a unitary matrix R(*/?) such that

R(l/g)Nl(}éllﬂ)R(l/Q)* - (IO Ié’) , R/2) pr/2) p(/2)x _ wS3:=p <IS —0[ > .

Since the matrix multiplication operator corresponding to R, := R(!/?) commutes with
(U, E), we may assume that M /2 and Nl%ll ?) are already in this form.

If v > 1, then (V, U, E) is reducible, since T :=T, where T, :=06,,(05,1 + dsp11),
defines an orthogonal projection onto an invariant closed subspace for (V,U, E) (cf.
Appendix . So we must have v = 1 and

Nijp =01, N_iyjp=—01 Myp=po3, M_,=puos.
In other words it is
(1/2,k, 7| N |1/2,1,8) = 6,528(01) s, (1/2,k, 7| M |1/2,1,8) = 0pspt(03) -

Clearly, the tuple (V,U, E) is irreducible, since the only operators commuting with
(V,U, E) are multiples of the identity.

Put (®*1),, = <%,/{,r ® 1, s>, where ®(p):=M + |p|N. It is

(‘P(“)(p) ®(1’2)(p)> _ <u1'2 |p|03>

o@D (p) @2 (p)) — \|plos —uls

and DU/?)(B) = B for all B € SU(2). Thus in the momentum space representation
the energy operator is given by

h(lvl) h(1,2) . B() O (P(l:l) @(172) B(.)fl O . u[2 O'()
h(2’1) h(272) o O B() @(271) @(272) O B(.)fl o O‘() _H'IQ )

where o(p): =2, p;o;. This proves (b).
It also follows (a), since the conditions of Theorem |5.3| hold. O
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5.7 Definition. Let (V?,UP, EP) be the standard Dirac system with mass p and let
1 < J € Ny/2. The Dirac tensor system with mass p and spins (J — 1, J) is defined
as (V,U, E), where

V(t)=VPt)®I Ub,B):=UPDb,B) @D V)(B) EQA)=EPA)aI

for t € R, (b, B) € ISU(2) and A € Z(R?). The energy operator for V will be called
the Dirac tensor operator.
In the next Theorem we will decompose the tensor product.

5.8 Theorem. Let 1 < J € Ny/2. The Dirac tensor system with mass p and spins
(J —1,J) is a relativistic extendable causal localization and it is unitarily equivalent to

(V,2Upwu-1 ®2Upw), E),

where E is the canonical projection-valued measure and the helicity representation of
the energy operator of V' is the matriz multiplication operator corresponding to

<k7 I{,’I"|<I>(p)|j, L, S> = 5rs (,u(skj(O-S)m + § ((_1)J_k36k;j —+ v J2 — 325\]@7]'\71) (0'1),“) s

fork,j €{J—1,J}, r € [k] and s € [j]. Using Notation 5.5 we have

<k7 R, T| q)(p) |j7 Ly S> = 67“S(Ms(k7j) + pNs(k’j))HH

where
Nij = *oy, NS:}] ( . SU} \/(J_S)(J+5)U1)
\/( —s)(J + s)ou —501 (5.7)
— _ [ HO3 0
W = M= ( 0 M<73> ’
for|s| # J.

Proof. Let (V',U’, E') be the Dirac tensor system with mass p and spins (J —1, J). By
Theorem we know that (V/,U’, E') is a relativistic extendable causal localization.
We note that the Dirac tensor operator is given by H' = HP ® I, where HP is the
Dirac operator.

Let T : (2C?) ® C?/ — 2(C*~1 @ C?*/*!) be the unitary map which transforms
the tensor product (2D1/2))@ D/=1/2) into the direct sum 2(D~1 @ D). Its inverse
is given by

T o, s) =Y T,

1 1
§,L,m>®’J—§,s—m>,

where

1 1 .
- e (L g1
=y (4 708 2,
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see Appendix[D] Let S be the matrix multiplication operator corresponding to 7. Then
S transforms (U’, E’) into the standard form (U, E), where U :=2Upu-1) @ 2Upwy. Let
V:=8V'S~! and let H denote the energy operator for V. Since the helicity transform
X can be written as

X[f] = [T(@DV)(B()™) @ DVVA(BO)™T ] (f] € L?), (5.8)

we see that
H'= XAX ' = XSH'S'X ' =S(HPY' @ 1)S™,

where (HP)" is the helicity representation of the Dirac operator, i.e.
(HO'f1=[2"(- D] (fel?)
and ® is given by Eq. (5.5). Hence H"[f] = [®(] - |) f], where

(k,k,r| D |j,t,8) = ZTm T(,)S<

/
Lym > 5rfm,sfm’-

Put
(@ﬁ)m:—< K m‘ oP ‘f L m>

Then, omitting the multiplicity indices x and ¢, we find

</{‘,7“’(I>‘j, Z ,n,f T(J mm’(b (57‘ m,s—m/ —(STSZT(k)STWfSCI)g.
Using
1Log_1 J+ (=1)7792ms 2
2 2 _ J—s+1 ()
(m s—m —s (=1) 2J(25+ 1) " vsellmel
(5.9)
where
(I,(j) — 17 ] = J
" 2m, j=J-1

(cf. Lemma [E.5) we obtain

<k‘,7“|q)|j, >_5

3] Z (7 + (~1)7*2ms)(J + (~1)"2ms)) " o) @D,

m Tm T m

If we write (k, 7| ®(p) |7, ) = 6,s(M*D 4+ pNFD) and use Notation [5.5]it is not difficult
to find Eq. (5.7)). ]

5.9 Lemma. Fvery Dirac tensor System is an irreducible relativistic extendable causal
localization.
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Proof. Let (V,U, E) be a Dirac tensor System. According to Theorem we only
need to show the irreducibility. In the helicity representation we may assume that the
energy operator corresponds to M + | - [N, where M and N are given by Eq. .

If R is a bounded operator commuting with (V" U", E") then R" is a matrix
multiplication operator and by Notation the corresponding matrix (denoted as R)
is given by Ry; =S and

S 0
RS_(O T)’ for s # £J,

for some matrices S and 7. Since R" commutes with V", it leaves Z2(H") invariant
and [H" R"|[f] = 0 for all f € 9(H). Therefore [M + |- |[N,R] = 0 a.e. (note that
C.(R?) Cc 2(H") and apply Lemma @ . By continuity this holds everywhere, hence
[M,R] = [N, R] = 0. By means of Eq. (5.7) it is now easy to check that R must be a
multiple of the identity. Schur’s Lemma (see Appendix then completes the proof. [

5.10 Theorem. Fuvery irreducible relativistic extendable causal localization is unitarily
equivalent to the Dirac system or a Dirac tensor system.

Proof. Let (V,U, E) be an irreducible relativistic extendable causal localization. By
Corollary [4.4and Lemma [4.5| (V, U, E) contains a single mass y > 0 and only bosons or
fermions. Therefore, we may assume that E is the canonical projection-valued measure
and that

U=viUpw ®ve1Upesny @ ... 5 v;Upwy,
where v, € Ng, J € Ng/2 and £ =01if J € N, else £ = 1/2.

If J = 0 then Theorem (d) and the selection rules of the Wigner 3j symbols
imply N = 0, in contradiction to condition (b) of the same Theorem, i.e. N? = [. If
J = 1/2 then Theorem implies that (V,U, E) is unitarily equivalent to the Dirac
system. Thus let J > 1.

We use Notation 5.5 By Theorem there are self-adjoint matrices M and N
such that V(¢)[f] = [e*MFIN) £, N2 = I, N;M, + M,Ng =0, M? = 21, and

M, = diag(M, ..., MUy Nk — pED gkd)

In the following we will introduce several unitary transforms commuting with
(U, E) to simplify the form of M and N. After each step we will assume that the
simplified form was given to begin with. Although being distinct transforms, we will
denote them by the same letter R.

We have

N; =N My =M.

Theorem for z — Njz + M; implies v; = 2v for some v € N and there exists a
unitary matrix R such tha

R“’)NY"”R“)*:&::(? ]o> RU)MU)RU)*:“S?’::“(% —01>

4Here, I, for a € N denotes the identity matrix acting on C®. However, sometimes, when there is
no confusion possible, we will omit this subscript.
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Since the matrix multiplication operator corresponding to R, —dlag(R R(‘ sl) )
where R®) :=T for k # J, commutes with (U, E), we may assume that M(J and NJJJ
are already in this form.

N(Jv‘]) I

The case v;_1 = 0 can be excluded, otherwise we would have N;_; = N;7|" =
@
DY AC) = 1;{;,; N = AN, but N2, = T and N2 = I implies J = 1/2,

which is imposs1ble Define B € C*7*¥/=1 and C' € C"/-1*"/-1 ag

N, (N N (s B Ay
NL(]{_lLJ) leti—ll,(]—l) B ()]’ 7

~

Since C' is self-adjoint, there exists a unitary matrix R(/~1 such that RV-DCRV-D*
is diagonal. Consider R,:=diag(R), ..., R*D) where R ):=1for k # J — 1. The
transform corresponding to this matrix leaves (U, E), M/) and N}J’J) unchanged, thus
we may assume that C' is already diagonal.

Because

(N_y)? = S, B\ (aS, B o’l,, + BB* aS,B+ BC g
U ABr )\ B C aB*SI+CB* B*B+(C? |~ rrtven

we must have
., 2J—1
BB — T]V
Thus BB* is invertible and diagonal. This and the fact that B € C*/**/-1 implies
that v;_, > v;. Also, B*B is diagonal, since B*B = I — C?. The column vectors of
B are orthogonal and there are v;_; — v; column vectors of B which are zero. Let us

interchange the column vectors via a permutation matrix R~ such that

7"

BR(J—U* — (Bl O) By € CVJXVJ7 = (CVJX(VJ—l—VJ)'

We note that RV~DCRY=D~* is still diagonal. Let

Cl 0 . R (J-1) CR (J-1)= Cl c CvIxvs CQ c (C(I/J_l—VJ)X(VJ_l—VJ)‘
0 O ) )

If R,:=diag(RY),..., RI*D), where R® :=1 for k # J — 1, then the transformation
corresponding to this matrix leaves (U, E), M) and N}J’J) unchanged and

. I 0 aS; B\ (I 0
RJlNJlRJ_1:<O R(J—1)><B*1 C) (O R(J—l)*)

( S, BRU-D* ) asy By 0
= =| Bf C; 0
(J—1) p=* (J-1) (J—-1)= 1 1

R B* R CR 0 e
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Therefore we can assume that N;_; is already in this form, where C; and C5 are

self-adjoint and diagonal. Again (N;_1)* = I implies

2J —1
J? L

and since By is a square matrix, we must have BiB; = 22711, Hence C} = o*I. For

M;_1 we have

BB} = aS By + B0, =0, BiBi+C!=1, C3=I,

S 0 0
MY His
MJ1:< 0 M- = 0 M, M, ,
0 M M,

where M; € Cv/>*¥/ M, € CW-1=v)xWr—1=v1) are self-adjoint matrices and M, is a
vy X (vj_1 — vy) matrix. Then Ny_{M; 4+ M;_1N;_1 =0 implies
5185+ 5351 =0, BiM; +puSsB; =0, Bi{M; =0,
BT,LLSg + MlBik = 0, ClMl + M101 = 0, ClM2 + MQCQ = O,
M;BY =0, CyoM;+ M;Cy =0, CoMy+ MuCy = 0.

But since B; is invertible, we must have M, = 0. From M3—1 = p*I we find M} = ,LLQL,J
and M? = p*1,

By appI;;rzlg;_VTJ}.leorem for z — —(Ci/a)z + M; we find that there exists a
unitary matrix R such that RC1R* = —aS; and RM;R* = S3. Then
R, :=diag(RY, ... RUD),
where R®) :=1 for k # J — 1 and
RY=Y = diag(R, I),

defines a unitary transform that leaves (U, E), M) and N}J’J) invariant. Therefore,
we may assume that

OéSl B2 0 ,LLSg 0 0
NJ_]_ = B; —OéSl 0 s MJ_]_ = 0 ,MS;; 0
0 0 CQ O 0 M4

Again (N;_1)> =1,, and Ny_;M; 1+ M;_1N;_; = 0 implies

2J -1

B2 B; = J2

I, SlBQ - BQSl - 07 BQS3 + S3BQ = 0
Thus we must have

(0 b « 2
B2—<b O>7 bb _/BIVJ

where b € C**" and [ := szfl. Put

_1(b 0 -1._ (120
R"g(o b)’ B2=1g 1)
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R®:=] for k # J — 1 and R,:=diag(R"Y),..., R*). Then it is easy to see that
R is a unitary matrix commuting with S; and S3. Thus the unitary transformation
corresponding to Ry leaves (U, E), M;, M;_; and N; unchanged, and since R*By =
RB; = 551, we may assume that

OéSl ﬁSl 0
NJ_1 = ﬁSl —0651 0
0 0 Co

In particular,

J,J JJ—1 J—1,J)x J—1,J-1 —aS; 0
NL(I—I) = aSlv N(S'—l ) = N§—1 ) = (551 0)7 N§_1 ) = < 0 ! 02> .

Now suppose v;_o > 0. This also means that J > 2. Because
NED = plka) glkd) (5.10)

and Dgﬁ’j) =0 for |k — j| > 1, we have

J.J JJ—1
N;,fl NJ‘(]?J )1 JQJ 2
Nj_o= N§_5 ) NLE 7Y N§—5 2

J=2,0-1 J—2,J—2
0 NN

The values of Dgﬁ’j ) can be calculated using [E.1l and the symmetries of the Wigner 37
symbol. Because

o pWI) .
N = NP for k,je {J 1,7},
D »])
J-1,1
we find
04/51 5/51 0 0
N B 6,51 —0/51 0 Dl
J=2 0 0 ~'Cy D, ’
0o D Dy N
where
D J—1,7-2
(Di) =N
and
a’::g B’::Qij_l 7’::7J_2

J J J—1
The condition (Ny_5)? = I implies #'S;D; = 0, hence D; = 0. Thus N;_, is block
diagonal. Using Eq. (5.10) shows that this structure holds for all Ny, |s| < J —1. So
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by the irreducibility we must have v; =v;_; =2rvand vy_, = ... = v, = 0. Moreover,
if v > 1 then (V,U, E) is reducible, since

Po;:=T, P, :=diag(T,T) for |s| # J, T =04 (01 + Oipt1)

defines an orthogonal projection onto an invariant closed subspace for (V, U, E'). There-
foreitis vy =v;_1 = 2.
So far we have
ao o o 0
Ny=o01, Nj.1= ( 1 pon >, My = po3, Mj;_,= <,u 5 ) . (5.11)

foy —aoy

Note that N*J) = Dgcl’j)A(k’j) is satisfied by

D7 DRI+ D sy _ (EDPH @I DRI
V3 J ’ V3 J
qv-ta-y — _EDP DRI

Y \/§ J

(Although Dg:]fl"jfl) = 0 for J = 1 this is not a problem to find a suitable A¢/~1/=1)
since in this case it is arbitrary.) Hence

ot V(T = $)(J +5)

AT —

A(Jfl,J) — _A(J,Jfl)

N — 5 N —
s J01, s 7 01
vty _ VI =90+ D NU-LI) _ S
S J ? S J Y
and .

Ms(k’]) = 5ij03 (512)
Now Theorem shows that (V, U, F) is unitarily equivalent to the Dirac tensor system
with mass p and spins (J — 1, J). O

5.11 Corollary. FEvery relativistic extendable causal localization is unitarily equivalent
to a direct sum of Dirac systems and/or Dirac tensor systems.

Proof. Let (V,U, E) be a relativistic extendable causal localization and let (W, E) be
an relativistic extension of (V,U, E). Then (W, E) decomposes as a direct sum of a
Boson and Fermion systems, and each further decomposes into a direct sum of single
mass systems. Plainly, (V, U, E') decomposes in the same way and these components are
relativistic extendable causal localizations. So we may assume that (V, U, E') contains
a single mass p > 0 and only bosons or fermions.

Now start with the highest spin J occurring in U. If J = 1/2, then the proof of
Theorem [5.6)shows that (V, U, E) is a direct sum of Dirac systems. If J > 1/2, then the
proof of Theorem m shows that (V,U, E') contains Dirac tensor systems with spins
(J —1,J). After separating these systems one repeats the above steps. O
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5.12. The Dirac tensor system in the coordinate space representation. Let
(V,U, E) be the Dirac tensor system with mass p and spins (J — 1,J). The helicity
representation of the Dirac tensor operator H was given in Theorem [5.8] By means
of Eq. it was not necessary to calculate H in the momentum or coordinate space
representation. So let us catch up on this.

In the coordinate space representation U has the form

U=2Upwu-1) ®2Upw

and F is the canonical projection-valued measure. The form of H is more complex:
We note that in the momentum space representation H[f] = [hf], where

(k,k,T|h|j,¢,s) Z Tk 7) <1 K m’

mrms

9y b, M > 5r—m,s—m’

and hP is given by Eq. (5.4)) (see the proof of Theorem|[5.8)). The block matrix structure
of h is given by
J—1,J-1 J—1,J-1 J—1,J J—1,J
My My ) e
hsy hsy hsy 7" hyy

h = J,J—1 J,J—1 Z}J 23J
f TN M IS T
SRS SR
where
(h,gf”)) (k,k,7r|h|j, ¢, )
We then obtain
plag 1 a 0 b
a —pday 1 b 0
H = ,
0 b* ILLIQJ_H C
b 0 c —plag i1
where
3 3 3
:Z zé?k b —Zbk(—zﬁk & :ch(—Zak)
— k=1 k=1
and

(a1)rs = 0518057 + 001000 (a2)rs 1= —i0rsm1 0L + 100100
(a3)rs = 0r0(D15) = 017)

(b1)rs = =Orsm1Op ™ 0rsia 77 (B = 001 ST i1 0L
(bs)rs 1= —=0ps (8557 + $10)

(1)rs = 0510 + 81807 () 1= =819\ 4 0801000
(ca)rs = =0ra(@L5 ) = 017)
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where

S0 V(T +ur)(J +vs) |
TS 2J
By interchanging the second row of blocks with the third row and the second column

with the third column we obtain
uwl S
H — ( s —p [> ,

where I is the identity matrix in C2/=D+1 g C2/+1) and

3 ) b
S::ZSk(—zak), Sk = (Zf k)
k=1 k

Ck
In this modified coordinate space representation U becomes
U— 2(UD(J—1) D UD(J)).

The similarity to the Dirac system now is obvious.

5.13 Discussion. In the Schrodinger picture states become time depending, i.e. for
Yo € P(H) one has
p(t)i=e My,  teR

Then @/AJ satisfies Schrodinger’s equation z‘@tzﬁ =H 7,/3 For the Dirac operator we obtain
in the coordinate space representation

So the Dirac equation is Schrodinger’s equation for the Dirac operator. Since the Dirac
tensor operator is H = H” ® I, there is a unitary transformation S such that SHS™"! is
a direct sum of Dirac operators, and we see that Schréodinger’s equation for a relativistic
extendable causal localization is always unitarily equivalent to a direct sum of Dirac
equations. But the same does not hold for the ISU(2) representation U of the Dirac
tensor system (V, U, E), where U = UP @ D’=!. Clearly, SUS™! is not a direct sum of
Upay2), since the Dirac tensor system is irreducible.

5.14. Higher dimensional Dirac equations. The Dirac tensor operator is
3
k=1

with

. 0 O o IQ 0
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For n = 1 we obtain the Dirac operator. The rotations are represented as
(U(B)g)(x) = (diag(B, B) ® D"/*71/2(B)) g(B™'x).
It is clear that o, and 3, satisfy the known anti-commutation relations

{an,j> an,k’} = 25jk’j7 {an,ja Bn} =0, 0[7217]‘ = 6721 =1

The momentum operator P is given by P; = —i0; and the causal position operator X¢ is
the multiplication with x. Every irreducible relativistic extendable causal localization
is up to unitary equivalence of the above form. For every n € N there is a Dirac
equation for mass p and spin spectrum {n/2 — 1,n/2} for n > 1 and {1/2} for n = 1.

Similarly to Dirac’s ansatz the anti-commutation relations are necessary to obtain
a relativistic description. However, Dirac chose a linear equation in order to obtain a
positive definite density, in our approach the linearity is a consequence of the causality
condition.

In the next section we will see that the boosts for these systems are given by

sgn(H)

1
N:=- {H, X} 4 o)
2{ ! H|+

P x (SC—i,AxA), A= —i[X°, H], S :=J—X‘xP.
3



6 Relativistic Extensions for the Dirac Systems

In section [p| we have seen that the Dirac system and the Dirac tensor system are
elementary building blocks of every relativistic extendable causal localization. Using a
Foldy-Wouthuysen transformation and the BTF formula (3.5) we can determine their
relativistic extensions.

6.1 Theorem. Let (V,U, E) be the Dirac system. Then there exists a unique repre-
sentation W of ISL(2,C) extending (V,U) such that the boosts for W are given by

Ny = ;(HXC +XH)y Yo e 9, (6.1)

where X€ is the position operator corresponding to E and & is a dense subspace satisfy-
ing 2 C D(A), AD C D and Aly = A for every A € {X°, X, H,P,J,N} (cf. Theorem
(a)). Here, X denotes the Newton- Wigner position operator for W. Moreover, W
s a finite massive representation.

Proof. We may assume that the Dirac system is given in standard form. Throughout
this proof we will work in the momentum space representation so there will be no need
to use the hat notation.

The Dirac operator corresponds to the matrix-valued function h : R3 — C**4,
which can be written as h(p) = M + K(p), where

(0 ) = )

(cf. Eq. (5.4)). In this form it is easy to see that the matrix multiplication operator
corresponding to M commutes with (U, E'). Moreover, we have M? = 121, MK (p) =
—K(p)M and K(p)* = p.

Since U = Upasz ® Upayy, it is clear that W’ :=Ww+L1/2) g W k—11/2) i 5
finite massive representation of 1.SL(2,C) extending U — here we need a positive and a
negative energy representation, because h has positive and negative eigenvalues. But
this is not an extension for V', since the energy operator for W’ is diagonal and H is
not. We thus need to diagonalize H by means of a unitary operator that commutes
with U. To this end consider the matrix-valued function Y : R? — C**4,

Y= 26(i+u) <€;MM+K>, (6.2)

where €(p):=+/pu2 + p2. It is easy to check that Y(p) = Y(p)* = Y(p)~'. Because
[H,UlYp = 0 for all ¢y € C., it is clear that the matrix multiplication operator corre-
sponding to K commutes with U on C,. Hence, the matrix multiplication operator Yy,
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62 Relativistic Extensions for the Dirac Systems

corresponding to Y, commutes with U on C.. Since Y, is bounded and C. is dense in
L? Y., commutes with U. Also,

s (2o

1 e 2 2 € 9 2 2 €
= —— | =(W'M — p*K)+2— M+ M + K | = —M.
2e(e + ) (uQ( ) I 0

YhY ! =

Hence W:=Y_'W'Y,, is an extension for (V,U). Since Y, C° = C2°, the proof of
Theorem shows that C'2° is a common core for X, X¢, H, P, J, N and each of these
operators leaves C'2° invariant.

For the remaining part of the proof it is understood that all equations hold
within C2°. Moreover, we will not introduce new symbols to distinguish between a
matrix multiplication operator and its corresponding matrix-valued function. From
the context it should be clear which object we consider.

The Newton-Wigner position operator for W’ in the momentum space represen-
tation is X7 = id;. Thus the Newton-Wigner position operator for W is given by

X; =Y XY = XS4+ Y 1(i0;Y) = X5 + Fj.

By means of the BTF formula (3.5) we can compute the boost N for W. The spin
vector for (U, E) in the momentum space representation is given by (see Lemma [1.16)

1
S¢ = (J — X° x P);, = ("k O).

2\0 oy
If we define .
= )
we may write K =P - A and
PxS = (P—KA). (6.3)

2i
This implies KA = P — 2iP x S¢. Taking the adjoint of this equation shows that
[A, K] =4iP x S°=2(P — KA).

Since S=J — (X°+F) x P=S°—F x P, we have to calculate

N= {H X} 4+ {HF} +H (P x (S°—F x P)),

e(e+p)
where {A, B} := AB + BA. Tt is

P (tys L k)a+r " (Lrm-1)p.
2e \ it €+ 2e(e+p) \en
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Using MK = —KM, MA = —AM, M? = ;?, K* = P? and the commutation relation
for A and K we find

{H,MA} =2M(P — KA), {H, KA} =2MKA +2KP, {H, KM} =0.
Thus

1 1
—{HF}=——M([P-KA).
By means of
Px(FxP):Z<1M+ ! K>P><(A><P)
2e \ 1 €+ [

- <1P2MA Ly + L prra- P))
2e \ i W €+ u

we obtain

PxS —Px(FxP)= —QL ((#* = ME)P + (P*M — j*K)A)
€
b
2€[1
= " HM(P - KA).
2ep

Hence N = {H, X} /2. O

(HMP + (P’M — )’ K)A)

6.2 Note. The unitary transformation Y given by is similar to a Foldy-Wouthuysen
transformation [FW50], [[Tha92] Sec. 1.4.3.]. There are many unitary Y which diago-
nalize H and commute with U. Some of these yield the same N but some yield different
N, e.g., consider e*/*Y instead of Y. This means that there are different finite massive
relativistic extensions, say W and W', for the Dirac system. Although W and W' are
unitarily equivalent, (W, E) and (W’ E) are not, which is easy to see, since the Dirac
system is irreducible. But if there are different extensions for the Dirac system, then
which extension describes the electron? At the time of this writing we can give no sat-
isfactory answer. However, good reasons to choose N = { H, X¢}/2 is its simplicity and
the fact that this expression is also obtained by symmetrizing the classical expression
xH for N (see [[Pry48] Eq. (6.5)] and [[Tha92] Eq. (1.39) and (2.71)]).

Similarly, it is not possible to talk about a unique Newton-Wigner localization
when considering the Dirac system, at least by our definition: By the BTF formula
the Newton-Wigner localization is uniquely defined for every massive relativistic rep-
resentation. For the Dirac system there exist different massive relativistic extensions.
Consequently there are different Newton-Wigner localization for the Dirac system.

6.3 Theorem. Let (V,U, E) be a Dirac tensor system. Then there exists a unique
representation W of ISL(2,C) extending (V,U) such that the boosts for W are given

by
sgn(H)

|H| + p

Nw:@{H,XC}Jr P><(SC—41Z,A><A)>w Vi € 2,
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where X€ is the position operator corresponding to E, A = —i[X° H|, S =J—-X°xP
is the spin vector of (U, E) and 2 is a dense subspace satisfying 9 C P(A), AD C D
and Alg = A for every A € {X,X,H,P,J, N} (cf. Theorem (a)). Here, X
denotes the Newton- Wigner position operator for W. Moreover, W is a finite massive
representation.

Proof. We declare the same conventions as in the proof of Theorem [6.1]

Since (V, U, E) is a Dirac tensor system, there exists a J > 1 such that U(b, B) =
UP(b, B) @ DV=Y2(B) for every (b, B) € ISU(2). Let L denote the generator of the
SU(2) representation D~1/2). Then the generators for the Dirac tensor system are
given by

H=HP® I, P=P°® I, J=J’®L,+I®L, X¢=XP® Iy,

where HP, PP and JP” are the generators of the Dirac system and XP” is the position
operator corresponding to the projection-valued measure of the Dirac system.

Since HP can be written as H? = MP + PP . AP we have H = M + P - A,
where M := MP ® I,y and A:=AP ® I,;. Thus A = —i[X¢, H].

Put Y :=YP®1I,;, where Y” is the Foldy-Wouthuysen transformation defined in
Eq.. Then Y commutes with U and diagonalizes the Dirac tensor operator. Thus
a Newton-Wigner position operator for (V,U, E) is given by

X:=Y XY =X +F® .
Then the BTF formula for N gives

1 sgn(H)
N = - {H,X) +
2{ } |H|+ n

P x (I®L).

Note that
[8L=J-3"® L, =3~ (8" ® L+ (X" x P")® L)
=J-XxP-SP®L,;=8-S"® L),

where S¢ = J — X¢ x P is the spin vector of (U, E). Since
P = LAD x AP
4q
(cf. [[Tha92] Eq. (1.152)]), we have
I®L:SC—LA><A.
41

Hence

sgn(H) 1
Px(S°——AxA
|H|+ p ( 4i )

and the proof is complete. O

1
N:i{H,XC}—F
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6.4 Discussion. Let (V,U, E) be a finite causal localization. By Lemma [4.7| we have
necessary and sufficient conditions for the existence of a finite massive representation
extending (V, U). If the existence of such an extension is given then the boosts

sgn(H)

1
N:=_{H X} + ———
2{ ’ }+1Hy+cv2

1

P x (S°— ZA x A), A:=—i[X% H| (6.4)
1

define such an extension. Note that for the Dirac system

S¢— i,A x A =0.
41
Thus this extension holds for finite direct sums of Dirac systems and Dirac tensor
systems, and since these are the only irreducible finite causal localization, it holds
for every finite causal localization which has an extension. We summarize this in the
following Corollary.

6.5 Corollary. Let (V,U, E) be a finite causal localization and let X¢ be the position
operator corresponding to E. Suppose the following conditions hold.

(i) There exists a bounded operator C having finite positive spectrum such that H?* =
C +P?,

(ii) There exists a projection-valued measure F' : B(R3) — L(H°) such that (U, F) is
a localization and [sgn H, F]| = [C, F] = 0.

Then the boosts in Eq. (6.4]) define a finite massive relativistic extension for (V,U, E).



7 Non-Relativistic Causal Localizations with a Sin-
gle Spin of Multiplicity One

Causal localizations with a single spin of multiplicity one, i.e. v, = 0, are studied.
We already know that these do not have finite massive relativistic extensions. But we
think it is worthwhile to see that there are causal localizations besides the Dirac- and
the Dirac tensor-system.

7.1 Theorem. Let U :=Up), let E be the canonical projection-valued measure and let
V be a time evolution on L*(R3,C%*). Then (V,U, E) is a causal localization if and
only if in the helicity representation V"(t)[f] = [®«(| - |) f] the matriz-valued function
D, : Rog — C¥H satisfies

(G, @ulp) |1, 8) = SreF07),
with a,c € R and |a| < 1/j for j #0. (For j =0 the constant a does not appear).

Proof. The “only if” part: By Theorem there are self-adjoint matrices M, N such
that in the helicity representation

VEO)[f] = [ ],

and
GorNlish=0 Vr#s, G Mljs) = cdn,

for some constant ¢ € R. By Theorem [2.14] there are for each ¢ € R entire functions
£ ¢ — C such that

2j . .
% z j—s ! 575

Gy rl e | ) = 6,03 (<1 mﬂ(_@ ! 0) 0. (T

=0

Let us abbreviate N, := (j, s| N |7, s) and V,(z,t) := (j, s| e?M+=2N) | g) = eitlel+=2Ns) Tf
we take the derivative of V; with respect to z at z = 0, we obtain

it Nye'te = s —s 0

(—1Y*v3 (j 7 1) FO0), = 1/2
07 ] — 0

Since

q1\ji-s ]']'1:_2];1 8
. ﬁ< o 0> . ﬁ¢<zj+1><j+1>j’

we have Ny = sa for some a € R. It is

wt(M+2zN) || — max |6 c+z5a)| — max |eztzsa| — maxe —tsalmz __ 6j|taHImz|‘

e
selj] s€(j] s€[j]
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Thus to satisfy condition (b) of Theorem we must have |a| < 1/j if 7 # 0. For
7 =0, the helicity index s is always zero and the constant a does not appear.

The “if” part: Conditions (a) and (b) of Theorem are easily verified. It
remains to proof condition (c¢) of the same Theorem. To this end we invert Eq. (7.1)).

A = VITT S - (9 )

selj] —s s 0

— meitc Z 6itasp(_1)j—s < J J l)

< —s s 0

1€itc - (Zta)

20 +

n n(_1\Jj—s j ] !
Z (=1) (—s s O) '
s€lj]

By Lemma [E.4 and the orthogonality relations for the Wigner 3j symbols we have, for
n <l,

n(_1\j—s ] .] [ _
ZS( 1 (—3 s O>_O'
s€[j]

Hence

s (L1]) o

- > (it
t(m,l) (p2) — /2l £ 1eite (ita
=l s€lj]

Using the symmetries of the Wigner 37 symbol we see that

ZﬂAW«ii®:Z“”“W%§ié>

s€(j] s€[j]
' S
_ Z ]+S( 1)2y+l ( J J )
selj -5 s 0
l n n j—s j j !
I A}
oy —-s s 0
Thus if [ — n is odd, then this expression vanishes. Hence the right hand side of (7.2])
is also a function of p?>. Whence ft ) has an entire extension. m

7.2 Remark. The condition jla| <1 in Theorem arises from the causality condi-
tion, i.e. the fact that the maximum speed of propagation equals 1.

7.3 Discussion. Let V' be the time evolution in Theorem [7.I, With the following
Lemma we can determine the energy operator for V in the momentum space rep-
resentation. It is the matrix multiplication operator corresponding to the function

h:R® — C¥*,

S (GG =+ 1) (o1~ P

+ ; (G+r+1)(j— 7“))1/2 (p1 + ip2)5r,s—1>-

h(p)rs = 0psC + a<rp367’s +
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where a,c € R and |a| < 1/j for j # 0.
For j = 1/2 we have
1
h(p) = clz + jao(p).

Hence for ¢ = 0 and a = £2 we obtain the irreducible parts of the Dirac operator with
mass zero. Note that the Dirac operator with mass zero corresponds to

e = (0 P

o(p)

The unitary transform corresponding to the matrix

1 (15 1,
Y =—
Al )

commutes with Upay2) & Upay2) and satisfies

Yhip)¥Y™ = (U(Op) —00(p)> '

7.4 Lemma. Let j € N/2 and let M,s = rd,s for r,s € [j|. Then
) ) 1) L. : 1/2 :
(D9(BE)IPIMDIBE)™)), = radve+ 5 (G + )0~ -+ D)2 (01— ip2)des

LG+ DG = ) (1 + ip2)bes,

T3

Proof. We have
mefa 0 _ trpi—r
D (<O b) )7”8 a b] 67'8

for every a,b € C. Hence

Nofa 0 )
M_aaD(j)(<O 1>)’a1_]1’

whence
IWNB@»MD@u%m*>:aJWNB@>G§?)B@ywhﬂ—jL
Using |
o (50 (3 5) 20 ) o= (e o)
and

(dDY(I)o M)ys = (j +17)Mi10ps + ((j+7)(j — 7 + 1))1/2 Mi20; 511
F((G+r+1)G—r)? Mo16, 1+ (j — m)Masd,s VM € C**°

completes the proof. O



8 Asymptotically Localized States and Hegerfeldt’s
Theorem

The occurrence of negative energies in causal localizations (see will be discussed
in more detail. After reviewing Hegerfeldt’s Theorem, which says that positive energy
states cannot be localized, we show that there is still a meaningful notion of localization
for such states.

8.1 Theorem (Hegerfeldt [Heg74]). Let (W, E) be a relativistic causal localization.

Then there are no non-zero positive enerqy states which are localized in a bounded set
A e B(R?), ie.

M:= {¢ € A : Pop =1, E(A)) =1, for some bounded A € ,%’(R3)} = {0},
where Py := %(I +sgn(H)). The same statement holds for negative energy states.

Proof. (Adapted from [Heg74]). By Discussion [2.5| we may assume that E is complete,
so that E(A;) is well-defined for every A C R? and ¢ > 0.

Suppose there exists a ¢ € M such that [[1)] = 1. Let ¢t > 0 and a € R®. By
means of covariance and causality, U(a)V (t)¢ must be localized in (A; + a). Indeed,

using Corollary we find
U@V ({)y =U(@)V({)E(A)) = U@)E(A)V () E(A)
= E(A+a)U(a)V(t).

Because A is bounded, there exists an R; > 0 such that AN (A; +a) = @ for all
|a| > R;. This implies that

E(AU@QVHY =0  VYla| > R

The mass square operator C' commutes with V,U and FE, thus if P, are the
projections onto the eigenspaces of C' and 1, := P,1), then

EA)U@)V(t)y, =0 Vl]al > R;.
Taking the scalar product with ¢, and using E(A)y, = ¢, we find
(Y, U(a)V(t),) =0 Vlal > Ry. (8.1)

Since this expression is basis independent, we may use the representation in which H
is diagonal. Then Eq. ({8.1)) becomes

/3 > [Yo.u(p)| P P2 WPt dp = 0 Vlal > Ry,
R g

where o denotes multiplicity and helicity indices.

By the Paley-Wiener Theorem f;(p):=3, [¢s.(p)|?€*V#*TP* has an entire ex-
tension on C3. But because of the square root this is impossible, which can be seen by
standard methods. O
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8.2 Discussion. Let A be a bounded set in Z(R3). By Hegerfeldt’s Theorem we
know that if 0 # ¢ € J€ is a positive energy state, then it cannot be localized in A.
It is therefore natural to ask if there are positive energy states that can be localized
arbitrarily good, i.e. given ¢ > 0 is it possible to find a normalized 1) € J such that
Pyt = b and |[B(A%)5] < e.

To answer this question we need some basic facts about the dilation operator.

8.3. Definition and Discussion. Let 7 := L*(R? C™). For A > 0 the dilation
operator is defined as D), : 77 — 3,

Dylg]:=A""lg(-/N)] Vgl e A
We have the following properties:
(i) X Dy is a unitary group homomorphism for (Rso,-) in L(I7).
(ii) The Fourier transform of Dy satisfies Dy := FD\F~' = D1y for all X > 0.
(iii) In the helicity representation Dy is given by D% = Dyy.

(iv) Let E : B(R3) — L() be the canonical projection-valued measure. Then we
have the covariance

DA\E(A)D' = E(\A) VA >0, A€ B(R.

(v) If S € L(J) is a matriz multiplication operator, i.e. Slg] = [hg|, for some
measurable bounded matriz-valued function h : R — C™*™, then

D\SDy'[g] = [h(-/N)g] Vgl € 2.

Note that if T is a matriz multiplication operator in the momentum space repre-
sentation, i.e. T|f] = [kf] for some measurable bounded matriz-valued function
k:R3 — C™™, then

DATDMf] = DinTDALf] = (M) f] - Yfle .

Proof. (i) It is easy to see that Dy = I, DoDg = D, and D}, = Dy, for all o, 3 > 0.
Thus D:D, = DoD% = D, = I.

(ii) For f € L' N L?* X > 0 we have D\.Z ~'[f] = % ' Dy,\[f], where .7 denotes
the Fourier transform. Since L' N L? is dense in L?, we have .# D,.% ! = Dy

(iii) This follows from (ii) and the fact that B(Ap) = B(p) for all A > 0, p € R?,
see Eq. fol.

(iv) and (v) are obvious. O
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8.4 Lemma. Let (V,U, E) be the standard Dirac system and let Py := 3(I+sgn(H)) be
the projection onto the positive enerqy states, i.e. in the momentum space representation

. 1 (e +m)l  alp)
PIf= kAl MP)= 5 <( <pa(p) (o) Pm)12> ,

for f € 2 :=L*R3 C*). Let Dy be the dilation operator. Then for every f € H,
D, Py DM f] =2 Q[f]
where Q. € L(57) is the self-adjoint projection given by Q+[f] =[qf],

_L( 1 ap)/lpl 3 _
qa(p) =5 (O‘(p)/|p| 1, ) Vp e R*\ {0}, q(0) :=14.

However, it is |D\Py Dy — Q1| > 1/8 for all A > 0.

Proof. Tt is clear that ¢(p) is a self-adjoint projection for each p € R?® and that each
component of ¢ is a bounded measurable function. Thus Q+ is a self-adjoint projection.
Let f € 2. By[8.3 (v) we have D, P, D-'[f] = [k(n-)f]. Clearly, k(np) 2= ¢(p)
for all p € R3. Since k(np) is a self-adjoint projection for all n € N and p € R3, we
have

9u(p) :=|(k(np) —q(p)) fP)II” < 4l f(P)I° VneN,peR’.

Hence, by Lebesgue’s Dominated Convergence Theorem

lim |(D, D' = Q) fI = lim [ g.(p) dp :/R lim g, (p) dp = 0.

n—oo n—oo 3 N—00

Let A > 0 and consider the function f, : R®\ {0} — R*,

m)\)l/Q 1

he)= (5 plVApE 2
Then ||fA|| = 1 and

||1A7/\1f’+f7;1 — Q4| > ||(1A)Af>+f);1 — Q) AP
mA [ m?+ (Ap| — €(Ap))’

= d
sw S PpPeOp)t
S mA /°°< m )2d 1
— 2m Jo \\2p2 +m? P=y
where we used ¢(Ap)? — A|p|e(Ap) > m?/2. This completes the proof. O

8.5 Note. Let (V,U, E) be a relativistic extendable causal localization. From Theorem
b.8land [5.10]it follows that (H, E) is unitarily equivalent to (HP®1, EP®1I), where HP
is the Dirac operator and EP is the canonical projection-valued measure. So by means
of this equivalence it is possible to define a dilation operator D, for every relativistic
extendable causal localization. Moreover, D, will satisfy all previous statements.
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8.6 Definition. Let (V,U, E) be a causal localization on a complex separable Hilbert
space . Let K,:={x € R? : |x| <r} forr > 0. A sequence (¢, )nen in F is said to
be an asymptotically localized state of positive energy if each 1, is a normalized
state of positive energy, i.e.

||¢n|| = 17 P+77Z)n = ¢n Vn € N,
and if
| E(K1)t | == 1.

Note that the last condition is equivalent to

One can also consider a set A € %(R?) other than K; and say (¢, )ney is an
asymptotically localized state of positive energy for A if each 1, is a normalized state
of positive energy and if

n—>oo
IE(A)Y, | —

However, if (1,,), is an asymptotically localized state of positive energy and if a € R3,
then, since by covariance F(K, +a) = U(a,I)D,E(K,)D'U(a, )™, we have

|B(K, +a)y,| =1,
where ¢/ :=U(a, I)D,1,. That is to say that (¢/),en is an asymptotically localized
state of positive energy for K, + a.

The following Lemma shows that asymptotically localized state of positive energy
obey the causality condition.

8.7 Lemma. Let (V,U, E) be a causal localization on a complex separable Hilbert space
H and let (Vn)nen be an asymptotically localized state of positive energy for some
A € B(R3). Then for everyt € R, (V(£)n)nen is an asymptotically localized state of
positive enerqy for ;.

Proof. By the unitarity of V'(¢) it is ||V ()1, || = 1 for all n € N, and since P, commutes
with V (), (V(t)¥n)nen is a sequence of positive energy states. Using Corollary
we find

[E(A)V (E)n =V ()]
= [[E(A)V () (4 — E(A)Pn) + E(A)V () E(A)Yn = V ()¢l
< [ E(AV () (n — E(A)n) || + HE (A)V ) E(A)pn = V(E)¢hn]l
< o = EQQ)Yall + [V () E(A)n =V ()00l
= 2| E(A)thn — thull == 0. 0
8.8 Theorem. Let (V,U, E) be a relativistic extendable causal localization on a com-

plex separable Hilbert space €. Let v € F such that Qi # 0. Then there exists a
k € N such that |PyD; '] # 0 for alln > k and

(1P+D 0 P )

s an asymptotically localized state of positive energy.
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Proof. By Note [8.5] it suffices to consider the Dirac case. We have
1P D71 l| = (| D Py D || === (| Q)] # 0,
thus | P, D, 19| # 0 for n large enough. Moreover,

1P D |7 == Q4 wl "

Then
|E(Ky)Py D || = || D E(Ky) D, D, Py D |
= | E(Kn) DpPyDy M| 2= Q14
since

| E(K) Do Py Dy — Q|| < (| E(Ky) Do Py Dy'p — B(K,)Q19||
+ [[E(K)Q+¢ — Q4|
<||DnPy DL — Qb + | E(R?\ Ky Q]| == 0.
This completes the proof. n

8.9 Discussion. We can change the perspective from positive energy states to local-
ized states by interchanging P, and E(A).

Let (V,U, E) be a relativistic extendable causal localization on a complex sepa-
rable Hilbert space ¢ and let 1, € S for each n € N. Then (¢, )nen is said to be
a localized state of asymptotically positive energy if for all n € N, |4, ]| = 1,
E(K1)¢n = 9, and

[Pytl] 222 1.

Note that the last condition is equivalent to

The analogous version of Lemma is obvious. The corresponding version of
Theorem 8.8 is stated in the next Theorem.

8.10 Theorem. Let ¢ € F such that Q¢ # 0. Put 1p:=Q,¢. Then there exists a
k € N such that | E(K,)D,'9|| # 0 for all n > k and

(HE(Kl)Dile’1E(K1)D;1w)n2k
is a localized state of asymptotically positive energy.

Proof. Again, we may assume that H is the Dirac operator. By Lemma it is

IE(E) D ¢l = | DuE(E) D, = | E(E)w] == ¢l #0,
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thus ||E(K,)D, '] # 0 for n large enough. Moreover,
IE(E) D, )7 === [~
Then

1P+ E(K1) D, || = || Do Py D Dy E(K) D, |
= | DuP. D E(K 0| === Q19 = [I¥]],

since

1DnPy D E(Ka )Y — Qi || < |DnPy Dy (E(K )Y — ) + (D P Dyt = Q)|
< |B(E)¢ = ¢l + (Do Py Dyt = Q1 )ul| === 0.

This completes the proof.



9 Open Problems

At this point we like to address some open problems.

9.1. Let (V,U, F) be a causal unsharp localization on a complex separable Hilbert
space 7. Then (V,U, F) is said to have a sharp extension if there exists a causal
localization (V',U’, E') on a complex separable Hilbert space ¢’ such that ¢ C ",
Ve =V,U|»=Uand F(A) =in*E(A)in for every A € B(R3), where in : 7 —
A" is the inclusion map. The hypothesis then is: every relativistic extendable causal
unsharp localization has a sharp extension.

In this context Naimark’s Dilation Theorem (see the Appendix of [RSN82]) and
[[Scu7] (15) and (16)] might be useful.

9.2. If (W, U, E) is an irreducible relativistic causal localization, then (V, U, E), where
V' is the time evolution part of W, is in general not irreducible. We know all irreducible
relativistic extendable causal localizations, but we do not know in what ways these can
be combined to result in irreducible relativistic causal localizations. So the problem is
to characterize all relativistic causal localizations.

9.3. Since we only considered finite localization, it might be interesting to study infinite
localizations, i.e. countable direct sums of finite localizations. The main problem here
is to adapt [12.6] to infinite dimensions.

9.4. In Note|6.2] we concluded that there are different extensions for the Dirac system.
Still there is no real satisfactory answer weather these extensions are physically equiv-
alent or not. However, we have a convenient formula (see Eq. (6.4)) for the boosts of
the Dirac system and the Dirac tensor system.

9.5. Characterize all finite causal localizations. As seen in section [ there are nonrel-
ativistic causal localizations. These may describe causal propagation in a solid-state.
We have seen that the energy operator for a finite causal localization corresponds in the
helicity representation to a linear matrix-valued function R>¢ > p — M + pN, where
M and N are self-adjoint matrices (cf. Theorem [2.17). The relativistic condition then
implies MN + NM = 0, N*> = I and M? > 0. Without this condition it will be more
difficult, but certainly not impossible, to study the consequences of part (c) of Theorem

214

9.6. In Theorem [8.8 the existence of asymptotically localized state of positive energy
was proven only for closed balls (in fact only for the closed unit ball, but by means of
the covariance the existence applies to every closed ball). So it might be interesting to
study the general case.
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Part 11

10 Paley-Wiener Theorems

10.1. Motivation. Consider the abstract the causality condition for a bounded op-
erator V in 7 := L*(R¢,C™):

VE(A) = E(AYWE(A), (10.1)

for some open balls A C A’ centered at the origin, where E is the canonical projection-
valued measure (cf. Lemma [2.11)). Suppose V satisfies

Vigl:==[Z"AZg] Vg € A,

for some measurable bounded matrix-valued function A : R¢ — C™*™ i.e. the Fourier
transform of V' is a matrix multiplication operator. Note that every time evolution is of
this from. To show what we are aiming for assume m = 1 and suppose V satisfies the
abstract causality condition. For some ¢ € L? with support in A the classical Paley-
Wiener Theorem (see below) implies that .%#¢ has an entire exponentially bounded
extension. From Eq. it follows that .# 'A% ¢q is supported in A’. Thus A.Zq
also has an entire exponentially bounded extension. The obvious questions then are:
does A have an entire extension and, if so, is it exponentially bounded? As we will see
in this section, both questions can be answered affirmatively.

10.2. Notation. Let d € N. We use the following definitions for the scalar product
and the norm in C%:

d
(z,w) = Zpwg, |2 :=(z, 2)1/? for z,w € CY,
k=1

where Z;; denotes the complex conjugate of z. The scalar product (-, -) we are using is
linear in the second variable — this is the convention used in quantum mechanics. The
space R? will be considered as a subspace of C%, i.e. R? = {z €Cl:z= z} Then ||
coincides with the usual Euclidean norm of x € R?, and (z, y) coincides with the usual
scalar product for z,y € R%. By means of this embedding it is clear what we mean by
(z,2), (z,z) and |Im 2| for € R? and z € C%

If A e C™™ is a matrix, ||A| will denote the operator norm of A, i.e.

|A]] := sup |Az].

£

If A:RY— C™™ is a bounded continuous matrix-valued function we will use

the following definition
[ Al := sup [|A(z)]].

zC€R4
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10.3 Definition. An entire function f : C* — C™*™ is said to be exponentially
bounded if
If ()] < Cef vzec,

for some constants C' > 0 and R > 0. Such functions are also called functions of
exponential type.

The following Theorem due to Plancherel and Pélya [PP37] is a generalization
of the Paley-Wiener Theorem. The version presented here is adapted from [[Ron74]
Chapter 3 §4 p. 171].

10.4. Theorem (Plancherel-Pélya). Let f : C¢ — C. Then f is an entire function
of exponential type and flga € L*(RY) if and only if there exists a ¢ € L*(R?) which
vanishes outside some bounded set such that

£(2) = (2m)~ 4?2 / e~ G(p)dp  Vze Cl (10.2)

R4

Moreover, if (10.2)) holds, then the support function Hp of D, where D is the smallest
convez set in RY such that ¢|pe = 0, coincides with the P-indicator hy of f.

Recall that Hg : R? — R,

Hp(A) :=sup(\, z),

zeB

and hy : RT —» R,
hy(X) = sup h¢(A, ),

zeR

where | B
hy(\ ) i lim sup 281/ + )

r—00 r

(z,\ € RY).

The “if” part of this Theorem has the following useful form:

10.5 Lemma. Let ¢ € L*(RY) vanish almost everywhere outside the compact ball with
radius R > 0 centered at the origin. Then f : C* — C,

f(2) 22(27T>_d/2/ e_i<p’z>¢(p) dp

Rd
is entire, flga € L?(R?) and there exists a constant C' > 0 such that
1f(2)| < CeRlim=l VzeCh

Proof. Since p + ¢(p)e'P¥) is a function in L' for all y € R?, we see that

fla+iy):=(2m) 2 [ et (p) dp

R4

is a well-defined function on C?. If (zn)nen converges to z then there exists an S > 0
such that [Im z,| < S for all n € N, hence e/®¢(-) is an integrable dominating function
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n—oo

for e=¢+#n) ¢(-), whence, by Lebesgue’s Dominated Convergence Theorem, f(z,) “—
f(2). Thus f is continuous.

Since [f|gq] is the Fourier transform of ¢, we have f|gs € L?. To show that f is
entire it suffices to see that ¢ : C — C,

W(z) = f(ay, ..., a1, 2, Qs1,- -, 0q)

is entire [[Die69] (9.9.4)], where a; € C. Fix z € C and let (&,)nen be a null sequence
in C\ {0}. Then there exists a constant > 0 such that

le=Pr(zHEn) _ o=ipkz| PN o S | o eleinl
& |B(p)] < lem™ |T!¢(p)! < e |TI¢(19)!
—ipgz e‘R£n| —1 —iprz
< e |T|¢(p)| < rle”[[o(p)]

for all n € N and for all p € R?. Thus by Lebesgue’s Theorem of Dominated Conver-

gence (Y(z +&,) — ¥(2)) /&, converges.
Finally, for z,y € R? we have

Fw+iy) < @m)= [ e @t o()| dp

= @m) 2 [ e o(p) dp < 2m) 2 [ o)) dp
R R
< (2m) =2 W g . O
10.6 Corollary. Let f € L*(RY) such that its Fourier transform f vanishes almost

everywhere outside the compact ball centered at the origin with radius R > 0. Then
there exists an entire function F : C* — C such that F|ge = f almost everywhere and

|F(2)] < Cefiltm= VzeCY,
for some constant C' > 0.

Proof. Let ¢ € [f] and let ¢(p) :=¢(—p) for p € R%. Then ¢ € L*(R?) and ¢ vanishes
almost everywhere outside the compact ball centered at the origin with radius R > 0.
Therefore, by Lemma F:C*—C,

F(z)=(2m) 2 [ e op)dp

is entire with
|F(2)] < Cefiltm= VzeCY,

for some C > 0. Since

F(z) = (27r)*d/2/

Rd

e~ 1P §(—p) dp = (27)~ 42 / e f(p) dp

Rd

and f € L*(R?) N L2(R%), we have Flgs = f almost everywhere. O
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To state some important Corollaries of the Plancherel-Pélya Theorem we need
two simple Lemmata.

10.7 Lemma. Let O, R > 0 and let f : C* — C be an entire function such that
1£(2)] < Ceft?! VzeCh
Then the P-indicator of f satisfies the estimate
hy(\) <R VAeR with |\ = 1.
Proof. Let |A| =1, z € R%. Then

J Rlz+iAr|
hf()\7 x) = lim sup 10g |f(x + ZAT>| S lim sup 10g(06 )

T—00 T r—00 T

thus hp(A) < R. O

10.8 Lemma. Let R > 0 and let D C R? such that Hp(\) < R for all A € R¢ with
|A\| =1. Then

< R\ =R,

DC{xERd : |x|§R}.
Proof. Let xy € D\ {0}. Then for \:=x/|zo| we have
’l’0| - </\,I’0> S Sup()\,x> - HD()\> S R. O
€D

10.9 Corollary. Let C,R > 0 and let f : C* — C be an entire function such that
flra € L*(R?) and
1£(2)] < Cefel VzeCh

Then there exists a ¢ € L?(R?) which vanishes outside the compact ball centered at the
ortgin with radius R > 0, such that

[(2) = @m) 2 [ e gp)dp  vzec

R4

Moreover,
|£(2)] < C'efilm=l VzeC?

for some constant C" > 0.

Proof. By Theorem there exists a ¢ € L?*(RY) which vanishes outside some
bounded set such that

[(2) = @m0 [ e Agp)dp  VzeC,

]Rd
Let D be the smallest convex set in R? such that ¢|pe = 0. Since Hp = hy and,
by Lemma [10.7] hs(\) < R for all |A\| = 1, Lemma implies

DcB:={zeR’: |z| <R}.

Hence ¢|pc = 0. Now Lemma completes the proof. O
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10.10 Corollary. Let Ry > 0 and let f be an entire function on C? such that f|gs €
L*(RY). If for each R > Ry there exists a Cr > 0 such that

f(2)| < Cre™  vzeC,
then
1f(2)| < Cefollm=l vy, e C?

for some constant C' > 0.
Proof. By Lemma, we have
hy(M) SR VR>Ry, VAeR?with |\ =1
Hence
hi(\) <Ry VAeRwith [\ = 1.

By Theorem there exists a ¢ € L*(R?) which vanishes outside some bounded
set such that

[(2) = @m) 2 [ e gp)dp Ve,

R4
Let D be the smallest convex set in R? such that ¢|p. = 0. Since Hp(A\) = hy(\) < Ry
for all |[A\| = 1, Lemma implies

DcCB:={xeR": |z] < R}.

Hence ¢ vanishes outside B.
By Lemma m there exists a constant C' > 0 such that |f(z)| < Cefollm=|
VzeCe O

Before we present a Paley-Wiener type Theorem for bounded measurable func-
tions we need some Lemmata.
The following Lemma and its proof is adapted from [[Rud91] Exercise 7.15].

10.11 Lemma. Let f : C* — C be an entire function, N € N, r > 0 and

1f(z)] < @+ ])Net™ vzecd,
|f(x)| <1 Ve R

Then we have

1f(2)] < erlm=] VzeCh
Proof. Fix z = 2 +iy € C? and let s > 0. Define g, : {A\ € C : Im\ >0} — C as

gs(N) i=(1 — isA\) "N 1WA £ (2 4 Ag))
Choose R > 1 such that (1 + |z| + R|y|)¥|sR —1|77~! < 1 and let

Q:={AeC: |\ <Rand ImX >0}.
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Then |gs(A)] <1 for all A € 9. Indeed: For A € [—R, R] we have
19s(V)| < |1 —dsA| ™V = (14 s2A2)N-D2 < 1)
and for A = Re'®, ¢ € [0, 7], we have

10,1\ IV
lgs(V)| < (L+ |z + ReY)7 _jyimsin(s) riRsin(@)u]
° ~ |1 —isRe|N+1

=1

Since '
|z + Re'®y| < |z| + Ry|

and ' '
[sR— 1] = |JisRe™| - [1]| < [1 — isRe™|,

we have [gs(\)] < 1.
Then the Maximum Modulus Theorem (see, e.g., [[Con78] Theorem VI.1.4]) im-
plies |gs(i)| < 1. So we have

|f<2)| < (1 —|—S)N+1€T|Imz‘.
Now s — 0 completes the proof. n
10.12 Corollary. Let C,r > 0 and let f : C* — C be an entire function such that

f(z)| < Ce™ vz ec,
lf(x)] <1 Vz e R

Then we have
|f(2)] < erfm=] VzeCh

Proof. Let 6 > 1. Then

By continuity there exists an R > 0 such that
LT

Choose an N € N such that

= Q

<(1+z)Y V|| >R

If we apply Lemma [10.11{ to 6! f we obtain
|f(2)] < derltm VzeCh

Now & — 1 completes the proof. n
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10.13 Lemma. Let (z,)nen be an unbounded sequence in R and let « € R\{0}. Then
there ezists a £ € (0,1) and a subsequence (T, )ren Such that

1
|sin(a€wy, )| > 3 VEkeN.

Proof. 1t suffices to show the assertion for a = 7, since then for the unbounded sequence
(Zn)nen, Where &, 1= ax, /7 we have

1
|sin(a€xy, )| = |sin(réZ,, )| > 3 VEkeN.
Without loss of generality we may assume that xz, > 1 for all n. Define T :

[0,00) — [0, 1] by

T(x) rmod 1, zmod1 € [0,1/2],
T) =
1—(xmodl), zmodl € (1/2,1].

Because | sin(7z)| > 27T () for all x > 0, it suffices to show that there exists a £ € (0,1)
and a subsequence (x,, ) such that T'(£x,,) > 1/4 for all k. Put z,, :=x; and

1
AP S
4z, 4z,

Vée .

Then we have
T(Exn,) >

=

Now suppose Zp,, Tn,, ... 2Zn, and Iy D Iy D ... D I; are given, and that I; = [a;, b;],
where 0 < a; < b; < 1. Let x,, , be the first element in the sequence (y)n such that

7/4
njy1 > ny and T, > bjfaj. Put
(a’jx”j-u—l 1 (ajx"ﬂ—l—‘ + 3

Ljy1:= + 1 ) 1
nj+1 Tnji Tnjia Tnjiq

Y

where [z] is the smallest integer which is greater than or equal to x. It is easy to see
that I;;1 C I; and that we have T'({x,,,,) > 1/4 for all £ € I;;;. Hence we obtain a
subsequence (z,, ) and a sequence of compact sets (1), such that I C I # @ for
all k, whence there exists a £ € NjenI; such that T'(£x,, ) > 1/4 for all k. O

10.14 Lemma. Let r > 0. Then there exists a constant C' > 0 such that for each
z € C there exists an ¢ € (0,r] with s(ez) # 0 and

1
|s(e2)]

< C(L+[z])e e,

where s : C — C, s(z):=sin(z)/z if 2 # 0 and s(0) :=1.
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Proof. Let z = x+iy. If y = 0 choose € € (0,7] such that |ez| < 1. Then C:=sin(1)"!
satisfies the estimate. It thus remains to show the assertion for all z € C \ R. Note
that sin(z) = 0 if and only if z € 7Z. If the assertion fails, then for every n € N exists
a z, € C\ R such that

> n(1 4 |2,])e"m =] VneN Vee (0,r]. (%)

Then the sequence (z,),eny must be unbounded, since otherwise there exists an e € (0, 7]
such that |ez,| < 7/2 for all n € N, and the left-hand side of (x) is bounded but the
right-hand side is not, which is a contradiction.

For each n € N let z, = x,, +iy,. Since |sin(ez,)[* = 5 (cosh(2ey,) — cos(2ez,)),
we have

2 1 " 2
g2 > % ( —|i_ |’Z |> e~ 2ol (cosh(2ey,,) — cos(2ex,)) VneN Vee (0,r].
Zn

Suppose (Yn)nen is bounded. In that case (x,),en is unbounded. The estimate
cosh(2ey) — cos(2ex) > 1 — cos(2ex) = 2sin®(ex) Ve,ye R

implies

e2 > n2e 2l sin?(ex,,) > Dn?sin®(ex,,) VneN Vee (0,r],
for some constant D > 0. But by Lemma there exists an ¢, € (0,7] and a
subsequence (2, )ren such that sin?(e,z,,) > 1/4 for all £ € N, and thus

g2 > ini VkeN,

which is impossible. Thus (¥, )nen is unbounded. Since

cosh(2ey) — cos(2ex) > cosh(2ey) — 1 = 2sinh®(ey) Vr,y€R,

we have
e > p2e el sinh?(ey,,) VneN Vee (0,r].

which is impossible, because e=2"¥! sinh®(ry) > L for all large enough |y|. O

We are now ready to prove the following Paley-Wiener type Theorem for bounded
matrix multiplication operators. It is strongly motivated by [[Cas84] Lemma 2|. The
Theorem must not be confused with Schwartz’s Paley-Wiener Theorem for distribu-
tions.

10.15 Theorem. For a measurable and bounded matriz-valued function A : R? —
C™*™ et Ty be the bounded linear operator on L?(RY,C™) given by

Talg):=F ' AF[g],
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where # denotes the Fourier transform. For R > 0 let Eg denote the multiplication
operator on L*(R4,C™) given by

Erlg] =[XBr9];
where X py(0) 5 the characteristic function of Br(0):= {x eRY: 2| < R}.

(a) Let R > 0. If there exists an R > R such that (I — Er/)TaEr = 0, then there
exists an entire function ® : C* — C™™ such that ®|ga = A almost everywhere

and
1@(2)]| < [|@]palloc e vz e €l

(b) Let § >0 and let ® : C* — C™ ™ be an entire function such that ®|ga is bounded
and
|®(2)]| < Ce’l? VzeCt

for some constant C' > 0. Then A:=®|pa satisfies (I — Erys)TaEr = 0 for all
R>0.

Proof. (a) Let us first consider the case m = 1.

Let Qpc:=[c1 — 1,01 + 7r1] X ... X [cq — Ta,ca + T4] be the cuboid centered at
c € R? with edge lengths 271,...,2r4 > 0 and sides parallel to the axes. The charac-
teristic function of ), ., denoted by ¢, ., vanishes outside a bounded region, therefore
its Fourier-Laplace transform g, . is an exponentially bounded entire function given by

d
Gre(2) = (2m) Y2 /Rd e P2 g, (p)dp = K,e ") [ s(rezr) VzeCY,
k=1

where K, :=(27)"%22¢(r;-...-r4) and s : C — C, s(z):=sin(z)/z for z # 0 and
s(0):=1.

Let |¢|] < R and choose r such that g, . vanishes outside of Bg(0). Then by the
assumption there exists an R’ > R such that

0= (I - ER')TAERqT,C = (I - ER’)TAQT,c-

Thus T'4q, . vanishes almost everywhere outside the compact ball of radius R’ centered
at the origin. By Lemma [10.5

hro(z)=(2m) 2 [ e (Tg,. ) (p) dp

is an exponentially bounded entire function satisfying
o (2)] < C eV 1=l VzeCY
for some constant C, .. Since

[hr,cle] = yTA[Qr,C] = yyilAy[Qr,c] - [Agr,c‘Rd]a
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we have h, |ga = Ag, |ra almost everywhere.

To show that A has an entire extension let
c=0, 7”(0[) Z:(Oé, s Oé), Ja = Gr(),0s he = hr(a),07

where a € (0, R/v/d), and let N, C C% denote the set of zeros of g,. Note that
ga(z) = 0 if and only if 2z, € ma™'Z \ {0} for at least one k € {1,...,d}. For every
a, o’ € (0, R/Vd) it is

go/hoz|Rd = ga’AgochRd = gaAga’|]Rd = gaha’|]Rd~

Because every continuous function on R¢ which vanishes almost everywhere is identi-
cally zero, we obtain

ga’hcx|Rd - gaha’ ’Rd'

Moreover, since both sides of this equation consist of entire functions (restricted to the
real numbers), we must have

gor (Vhal2) = gal2hor(z) Yz T

(see [[Die69] (9.4.4)]). Hence,

=2

is almost everywhere an analytic extension of A for |z| < 7/a, and for these z it is
D, (2) = Pu(2) forall & € (0, ). By letting v tend to zero we obtain an entire function
® : C? — C such that ®|g« = A almost everywhere. Note that, since every continuous

function that is bounded almost everywhere is bounded, we have |®(x)| < || ®|ga||s0 for
all z € R%

To prove that ® is exponentially bounded let |¢| < R. Then @, . C Bg(0) as long
as |¢| +vdr, < Rforall k € {1,...,d}. We still have

|hyo(2)| < C, e 1] VzeCY,
for some constant C, .. Since h, . = ®g, ., we find
| e(2)] = |@(2)[|gre(2)] < |Ppalloc K Va e R,
and using Corollary we obtain the estimate
Pre(2)] < [|@]gal|oo Ko™ vz e C

Hence, for all r, ¢ satisfying @, . C Br(0) we have

d
1D(2)| IT Is(rzn)] < [|Plgallo e~ (elmz) R/ |Im | VzeCY (10.3)
k=1
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Let 6 € (0,R) and let y:=Imz # 0. Put c:=(R — d)y/|y|. Then |¢|] = R — 9,
(c,y) = (R —0)|y| and Eq. (10.3) implies that

d
AT Is(rezi)] < 1|®|gallso ('~ F+9)|lm 2] Vz e C? with Imz # 0
k=1

holds for all 7, satisfying 0 < 7, < §/v/d. By continuity the estimate holds true for
all z € C%. From Lemma [10.14] we obtain constants C} > 0 such that for each z € C¢
there exists an r € (0,6/v/d]* with s(rp2;) # 0 and

< Cp(1 + |z )eSloel/ Ve 1<k<d).
o) k(L + |2l) ( )

Therefore
[®(2)] < [|®lralloo C5(1 + |2]) e —EDl=0Wh/VE g 5 e
for some constant Cs > 0. Since |y| < |y|1, we have
1D(2)] < ||®|gallo Cs(1 + |2])deF ~Ftom)mz] VzeCY
where k:=1— 1/+/d. From Lemma [10.11{ and Corollary [10.12{ we find
|B(2)] < || ®[zallo e HEIA vz e C

Now § — 0 proves (a) for m = 1.

The case m > 1: For u,v € C™ with |u] = [v| = 1 put A,, : RY —» C,
Auo(r) :=={u, A(z)v). Then for every g € L*(R?) we have

0= (u,(I = Ep)TaER[vgl) = (I — Ep))Ta,,Erlg]-

Thus the case m = 1 applies to A,,. If we let u,v be standard basis vectors, we
see that for every matrix element A;; there exists an entire function ®;; such that
P;;|re = Aij almost everywhere. Thus if ® is the matrix-valued function with matrix
elements ®;; then ®|gs = A almost everywhere, since a finite union of null sets is a null
set. Moreover, we have

(1, ®(2)v)] < [[(®|ra)u,oloc eI vz e C?

Since
[(@|re)uwlloo = sup [{u, ®(z)v)| < [|P[ga|oo,
zER4

we have

[{u, ®(2)v)| < ||¢>|Rd||ooe(Rl_R)‘Imz| VzeCl,
for all u,v with |u| = |v| = 1. Fix z € C? and let |v| = 1. If ®(z)v # 0 put
w:=|P(2)v|1®(2)v, then we have

1D (2)v] = [(w, D(2)v)] < ||P|gal|oe e B2
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It follows
| (2)]| < [|®gal|o e OMmA,

(b) Let us first consider the case m = 1. Let [g] € L*(R?) and R > 0. Then
¢ := Erg vanishes outside the compact ball of radius R centered at the origin. Hence,

hz)i=m) 2 [ e o) dp

Rd

is an entire function satisfying h|ge = .% ¢ almost everywhere and
|h(z)] < Cpefmel vz e,
for some constant C}, > 0. Thus
|®(2)h(2)] < CCpeFHOI VzeC

Since ®h|ga € L?, Corollary implies that there exists a § which vanishes outside
the compact ball of radius R + ¢ centered at the origin such that .#g§ = Ah|ga« almost
everywhere. Because [§] = .7 "'AZ Eglg|, it follows that (I — Erys)TaEg[g] = 0.

The case m > 1: Since |®;;(2)| < ||®(2)| for all z € C?, the case m = 1 applies
to (I)Z](Z) Thus for f = (fh ey fm) c LQ(Rd, (Cm) we have

d
(ei, (I = Eris)TaER[f]) = > (I — Erys)Ta, Erlfi] =0 V1<i<m.
j=1

This completes the proof. n

If we combine both parts of the Theorem we obtain two important Corollaries.

10.16 Corollary. Let R > 0 and let A : R — C™ ™ be a bounded measurable matriz-
valued function such that (I — Er/)TaERr =0 for some R' > R. Then

(I — ES+5)TAES =0 VS > 0,
where 6 . =R' — R.

Proof. Apply Theorem [10.15 (a) and then (b). O

10.17 Corollary. Let ® : C¢ — C™ ™ be an entire matriz-valued function such that
®|ga is bounded and

[o(z)| <Cet vz ec,

for some constants C,6 > 0. Then

12(2)]| < | ®@lpefloo e”™ V2 eC?
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Proof. Put A:=®|gs. Theorem [10.15] (b) implies that (I — Erys)TaEr = 0 for all
R > 0. By part (a) of the same Theroem there exists an entire function ® : C?— C
such that ®|gs = A almost everywhere and

1D(2)] < [|®|gallco €™ vz e CY

Since every continuous function on R4 which vanishes almost everywhere is identically
zero, we must have ®|gpa = P|ga. Hence, & and ® must be identical (see [[Die69)
(9.4.4)]). O



11 Unitary One-Parameter Groups of Matrix Mul-
tiplication Operators

11.1. Motivation. Let (V,U, E) be the coordinate space representation of a finite
causal localization. From Theorem we have that in the helicity representation
VRO[f] = [®e(| - ) f], where for each t € R, ¥, : C — L(®;1,C**!) is an exponen-
tially bounded entire matrix-valued function. Then Stone’s Theorem leads us to the
conjecture that W, = " for some entire matrix-valued function h such that h(p) is
self-adjoint for all p > 0. That this is indeed the case is the subject of Theorem [11.10]
which is needed in the proof of Theorem [2.17]

11.2. Notation. In this section A will always denote the Lebesgue measure on R?.
Also, when no confusion is possible, we will abbreviate L?(R?, C™, \) by L.

11.3 Lemma. Let H be a densely defined self-adjoint linear operator in L?(R?,C™, \)
such that for all [f] € 2(H),

H[f] = [hf],  (hf)(p):=h(p)f(p),

where h : R4 — C™ ™ js a measurable matriz-valued function. Then h* = h \-a.e. and
the domain of H is

2(H) = {[f] € L*R",C™,\) : [hf] € LR, C™, \)}.
Proof. Consider the operator G in L?, G[f]:=[hf] with domain
2(G):={[fl € L* : [hf] € L*}

Obviously, H C . Since H is densely defined, so is G, thus G* C H* = H.

We show that G is closed. For (f,g) € graph(G) let (f,,, G fn)nen be a sequence in
graph(G) converging to (f,g). After having chosen a suitable subsequence, ( fyx))ren
and (hfnm) )ken converge pointwise almost everywhere to f and g, respectively. Since
(h fuk))ren also converges pointwise almost everywhere to hf, we have that g equals
hf almost everywhere, hence f € Z(G) and Gf = g. Thus G is closed.

This implies (cf., e.g., Theorem 13.12 in [Rud91]) that 2(G*) is dense. For
f € 2(G*) and g € 2(G) we have (f,Gg) = (G*f,g) = (Hf,g), thus

[ ). 05 ()~ (e))g(0) dAp) = 0.

For n € N put g,(cn) :=&,b,, where {by,... b} is some basis for C™ and &, is the
characteristic function of

A, = {p cR?: ||h(p)|| <n and [p| < n}

89
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Note that g\, hg™ and h*g{™ are L? functions, in particular ¢ € 2(G). Hence
(f, (7 =h)g”) =0 Vfe D).

Since Z(G*) is dense, this implies that for each k € {1,...,m} and each n € N there
exists a set Ny, of measure zero such that

(B*(p) — h(P))g () =0  ¥p e R\ Ny,

Let N be the union of all N ,. Then N, being a countable union of null sets, is itself
a set of measure zero. If p € R?\ N, choose n € N such that p € A,. So we have
(h*(p) — h(p))bx, = 0 for all k. Hence h* = h AM-a.e.

Finally, let g € 2(G). Then for all f € Z(H) we have

(Hig) = [ (@) 9(p) Np) = [

R4 R4

(f(p), h(p)g(p)) dX(p) = (f. Gy),
hence g € Z(H*) = Z(H), whence H = G. O
11.4 Lemma. Let h : R — C™™ be a measurable self-adjoint matriz-valued function

and let 7 := L*(RE,C™™ X). Then W : R — L(2#), W(t)[f] :=[e*"V f] defines a

continuous one-parameter unitary group on ¢ .

Proof. For each t, W(t) is a well-defined linear bounded operator, and it is easy to see
that W (t) is unitary. Let [f] € L? and let ¢,r € R. Then

WS W (r)[f]) = [p = PP f(p)] = [p s M f(p)] = W(E+1)[f].

Hence W (t)W (r) = W (t+r) for all t,r € R. It remains to show that W is continuous.
n—o0

Let t,, —— 0. Obviously the integrand in

IV () = DAIE = [ I = 1) F(p)]* dA(p).

vanishes pointwisely for n — oo, and 4[| f(-)||? is an integrable dominating function.

By Lebesgue’s Theorem of Dominated Convergence |[(W (t,) — I)f| === 0. O

11.5 Proposition. LetV be a continuous one-parameter unitary group on L*(R%,C™, \)
and suppose that for each t € R there exists a measurable matriz-valued function
v 1 RE — C™™ such that V(t)[f] = [vef] for all [f] € L*(RY,C™ N\). Then there
exists a measurable self-adjoint matriz-valued function h : R? — C™ ™ such that for
every t € R,

v:(p) = exp(ith(p)) A-a.e. (11.1)

In particular, vy(p) is unitary A-a.e. Moreover, if Eq. (L1.1)) holds, then the generator
H for V' has the domain

2(H) = {[f] € L*(R",C™,)) : [hf] € L*(R",C™, \)}

and satisfies H[f] = [hf] for every [f] in Z(H).
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Proof. By Stone’s Theorem (cf., e.g., Theorem 13.38 in [Rud91]) there exists a self-
adjoint operator H in L? such that

Hw —iH[f)| %0 Vi€ 2(H).

n—oo

Thus if (t,)nen is a sequence with 0 # ¢, —— 0, and [f] € Z(H) then

/ v, (p) f(p) — f(p)

tn
Since graph(H) is a subspace of a separable metric space, it is separable, so there
exists a countable set of functions A:={f1, fa,...} such that {[f1],[fs],...} € 2(H)
and {([fx], H[fx]) : k € N} is dense in graph(H).
By the Riesz-Fischer Theorem, applied for f;, there exists a subsequence (tnl))neN
of (t,)nen such that

—i(H)p)| drp) 22 0. (11.2)

Uti}’ (p)fl ((]1))) - f1 (p) n—00 Z(Hfl)(p) A-a.e. (113)

If the subsequences (t()),cn, ..., (t%~1), oy have been chosen, then the limit in Eq.

(I1.2) holds for (t*=1), .y and f,. Hence there exists a subsequence (t%*)), oy of

(t%*=D), oy such that Eq. (T1.3) holds for ({®),cy and fi, ..., fi. Because the count-

able union of null sets is a null set, there exists a null set N such that for all £ € N we

have

va, (P)Jr(P) = fu(P) nooo,
dn

where (d,,)nen is the diagonal sequence given by d,, :=t{™.

Now put h, :=—i(vg, — I)d,', I being the identity matrix in C™*™, and let
p € RT\ N. Suppose there is a matrix-valued function F' € A™, i.e. the columns of F
are functions from A, such that det(F(p)) # 0. Then

+ |l (hn(p)F(p) - (HF)(p))F(p)‘IH min(m,n)—oo

So in this case (h,(p))nen converges for n — oo.
In order to see that (h,),en converges A-a.e., we show that

i(H f1,)(p) VpeRY\ N,

0.

M:={peR’: det(F(p)) =0 VFeA"}

is a null set. Suppose A(M) > 0, then there exists a measurable set S C M such
that 0 < A\(S) < oco. Consider the function G : R4 — C™™ G(p):=xs(p)l. Since
G € (L*)™ and A™ is dense in (L*)™, there is a sequence (F),)ney with F, € A™
satifying F,, “==> G. Thus there exists a null set Ny and a subsequence (F, )ken such
that

F,.(p) 2% G(p) Vp e R\ Ng.
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k—o0

But then for p € S\ Ny we have 0 = det F),, (p) —— det G(p) = 1, which is impossible.
Hence M must be a null set, and h,, converges A-a.e. to a measurable matrix-valued
function h : R? — C™*™ and for all f € A we have

(Hf)(p) =h(p)f(p)  VpeR\(NUM).

Now for g € Z(H) let (gn)nen be a sequence in A such that (g,, Hg,) ——
(g9,Hg). Then, by Riesz-Fischer, there exists a subsequence (ga(n))nen Of (gn)nen such
that

h(p)ga(n) (p) TH_OO) (Hg) (p) A-a.e.
Because g, —— ¢ (again by Riesz-Fischer) there exists a subsequence (gp(n))nen 0f

(ga(n) )nEN such that

n—oo

Gm)(p) — g(p)  Aae,
hence
(Hg)(p) = lim h(p)gywm)(p) = h(p)g(p)  A-ae.

By Lemma [11.3| we have h = h* A-a.e. and
9(H)={[fl € L* : [hfl € L*}.

Thus by changing h on a set of measure zero we may consider h(p) to be a self-adjoint
matrix for all p € R%.

Finally, Lemma implies that W (t)[f]:=[p — €*"® f(p)] is a continuous
one-parameter unitary group on L?. Let K be the generator for . The preced-
ing arguments show that for some null sequence (s,)nen, kn:=—i(e?""* — I)/s, con-
verges pointwise A-a.e. to a measurable matrix-valued function k& such that Z(K) =
{[f] € L* : [kf] € L?*} and K[f] = [kf] for all f € Z(K). But on the other hand we
have k(p) = h(p) A-a.e., hence K = H, whence V(t) = W(t). This completes the
proof. O

11.6 Lemma. Let v : R — C™™ be a matriz-valued function such that v(0) = I and
v(t)v(r) =v(t+7) vVt reR.

If v is continuous at some point ty € R then there exists a unique matriz A € C™*™
such that
v(t) = e vVt eR.
n—00

Proof. Let t € R and let (t,),en be a sequence in R such that ¢, —— ¢. Then

n—oo

v(t,) = v(t, +to — t)u(t — to) —— v(to)v(t — to) = v(t),

so v is continuous. Let F': R — C™*™ be given by
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Since F(0) = 0, F'(t) = v(t) and F'(0) = I, we have t 2 F(t) — I =% 0. Hence there
exists an s > 0 such that ||s7'F(s) — I|| < 1. In particular, F(s) is invertible. Then
for t € R we have

w(t)F(s) = /0 o(t)o(r) dr = /Osva Fr)dr = /tHs'U(r) dr = F(t +s) — F(1),

thus

v(t) = (F(t+s)—F@)F(s)™" VteR.
This implies that v is differentiable. Since v'(t) = v(t)A, where A:=(v(s) — I)F(s)™!
we have (v(t)e ) = v(t)Ae ™ — v(t)Ae ™ = 0. Hence v(t)e™ = v(0)e %4 = I,
whence v(t) = e for all t € R. From v'(0) = A we see that A is unique. O

11.7. The logarithm of an operator. Let X be a complex Banach space. For a
bounded linear operator A on X denote by o(A) the spectrum of A. If 0(A) C C\ R«
then, since log is holomorphic on C\R<, log(A) can be defined by means of a Dunford
integral [[Yos65] VIII. 7.

log(A) = 22/1og YO — A) L),

where C'is a rectifiable Jordan curve in C\ R« oriented in the positive sense surround-
ing o(A). We then have

exp(log(A)) = (expolog)(A) = A,

see [[Yos65] VIII. 7. Corollary 2].

If B is a bounded linear operator on X such that o(B) C R+i(—m, ), the Spec-
tral Mapping Theorem [[Yos65] VIII. 7. Corollary 1] implies o(exp(B)) = exp(c(B)) C
C \ R<g, hence
log(exp(B)) = (logoexp)(B) = B.

Let A be a bounded linear operator on X such that ||A—I|| < 1. Then for A € C
with |]A—1| > 1 we have that A— I is invertible. Indeed: since ||[(A—1)"*(A—-1)|] < 1,
B:=1— (A—1)"Y(A — 1) is invertible, hence (1 — A\)B = A — A is invertible. Thus
oc(A)cU:={z€C: |z—-1|< 1}. By means of

k+1

(z —1)* Vzel,

Mg

log(z) =
1

k=
and [[Yos65] VIII. 7. Theorem (N. Dunford)| it follows that

log(A Z

By the submultiplicativity of the operator norm it is easy to see that the series con-
verges uniformly on compact subsets of U :={A € C"™*™ : |A — I|| < 1}, thus log is
continuous on U.

1)k+1

(A — 1)k
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If B is a bounded linear operator on X such that || B| < log(2), then [[e® —I| <
elBl — 1 < 1, hence o(e®) C U C R+ i(—n,7) and

loge? = B.

11.8 Lemma. Letv : C — C™™ be an entire matriz-valued function. If ||v(z) —I|| <
1 for all z in some non-empty open set U then z w— logv(z) is a holomorphic matriz-
valued function on U, and v(z) = €°8*®) for all z € U.

Proof. For n € N define the holomorphic matrix-valued functions A, : U — C"™*™,

If K is a compact subset of U, then there exists an a € (0, 1) such that ||v(z) — I]| < «
for all z € K. By the submultiplicativity of the operator norm we have ||(v(z) —I)*| <
|v(z) — I||* < aF, hence

1)k’+1

v(z) — )",

sup [| An(2) — log(v(2))]| < Z ==

zeK k=n+1

whence z — log(v(z)) is holomorphic on U (see, e.g., [[Rud70] Theorem 10.27] and
note that |A;;| < ||A|l for all A € C™*™).

From ||v(z) — I]| < 1 it follows o(v(z)) C C\ R<y. So by we have v(z) =
elogv(z)' 0
R

11.9 Lemma. Let (y,)nen be an unbounded sequence in R. Then there exists a t €
such that (e"),cn does not converge.

Proof. Assume the contrary. Then f(t):= nll_}lgo e defines a function on R with

fO)y=1, f(s+1t)=f(s)f(t) Vs, teR.

By [[SS11] Chapter 4 Theorem 1.3] — which states that the pointwise limit of continuous
complex valued functions is continuous except on a set of first category — and Lemma
there exists a y € R such that f(t) = e for all t € R. By Lebesgue’s Dominated
Convergence Theorem it is

. t t
0= lim —(e"™ —1) = lim [ ™" dr = / eV dr.
0 0

which is impossible. O
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11.10 Theorem. Suppose that V : R — L(L?*(R%, C™)),

V6L =lw(] - ) f]

defines a continuous one-parameter unitary group on L*(R? C™, \), where for each
teR, w: C— C™™ 4s an entire matriz-valued function. Then there exists an entire
matriz-valued function h. : C — C™*™ such that h.(p) is self-adjoint for all p € R and

wy(z) = exp(ithe(z))  VzeC,teR.
Moreover, the generator H for V' has the domain
2(H) = {[f] € ’(R,C™, ) : [he(| - )] € L(R%,C™ V),
and satisfies H(f] = [ho(|-|)f] for every [f] in Z(H).

Proof. By Proposition there exists a measurable self-adjoint matrix-valued func-
tion h : R? — C™*™ such that for every t € R,

wi(|p]) = exp(ith(p))  A-a.c.
Moreover, the generator H for V' has the domain
9(H) ={[fl € L* : [nf] € L*}

and satisfies H[f] = [hf] for every [f] in Z(H).
For n € N put h, :=—in(w, on—I), where n : R? — R, n(p) := |p| and I is the
identity matrix on C™*™. For each n there exists a null set V,, such that

wifmn(|pl) = exp(ih(p)/n)  Vp € R\ N,
Since the countable union of null sets is a null set, there exists a null set N such that
wi/n([pl) = exp(ih(p)/n)  Vp e R\ N,neN.

In particular, h,(p) === h(p) for all p € R*\ N. And for all p,p’ € R*\ N with
lp| = [p'| we have

h(p) = lim h,(p) = lim h,(p') = h(p).
Hence, there exists a self-adjoint matrix-valued function & : R>o — C™*™ such that
k(p))=h(p)  VpeR\N.

Let p:=Xon~! be the image measure on R>q. For a fixed ¢ € R let

S = {p >0 : |wlp) — PO > O}.
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Since A is complete and
77(8) € O (S \N)UN = {p e RI\N - [ue(lpl) — @) > 0} UN,
we have p(S) = 0. Thus for each fixed t € R,

wi(p) = exp(itk(p))  p-ae.

For ¢,r € R there exists a p-null set S;, such that

wi(p)wr(p) = wer(p)  Vp € Ry \ Siyre

Let p € R:=R5(\ S;, and assume there exists an open neighborhood U(p) of p in R
such that U(p) N R = {p}. But then 0 < u(U(p)) = w(U(p) N R) = u({p}) = 0, which
is impossible. Hence every point of R is a limit point of R. The Identity Theorem for
holomorphic functions, see, e.g., [[Rud70] Theorem 10.18 fol.], implies

wi(2)w,(2) = Wiy (2) VzeC.

Moreover, since wy(p) = I p-a.e., we have wy(z) = I for all z € C.
Consider the set

G:= {z € C : IB(z) € C™™ such that wy(z) = eP® Vit € ]R} :

Note that if z € G, then B(z) is unique by Lemma [11.6l Thus the set G defines a
function B : G — C™™ satisfying w;(z) = P for all z € G, t € R.

Claim 1. We have Roy C G.
Let p>0. ForneNlet R,:={r>0: |r—p| <1/n}and f,: R - C™™,

Fult) = p(B) ™" [ wila) dula).

n

Let t € R be fixed and let € > 0. Since w; is continuous, there is an N € N such that

|we(q) —wi(p)]| <e  Vq€ Ry.

Then for all n > N we have

1£2(0) = wilp)ll = [[a(R) ™ [ (wila) = wilo) dula)|

n

< uR) ™ [ ) = wlp)l dulg) < <.

n

n—oo

Thus f,(t) —= wy(p) for each fixed t.
On the other hand, since

Fult) = n(R)™ [ dp(q),

n
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we see that the f,, are continuous, indeed: Consider u(t,q) := pu(R,) " 'e®™*@Dyr (q). Let
t; — t. Because ||u(t;,q)|| < Cxr,(¢q) for some constant C, we can apply Lebesgue’s
Dominated Convergence Theorem and get

fult) = [t @) dulg) = [ lim ulty,q) du(a) = lim [ ult;.q)dpq) = lim fu(t;)

If we apply [[SS11] Chapter 4 Theorem 1.3] — which states that the pointwise limit of
continuous complex valued functions is continuous except on a set of first category — to
the matrix entries of f,,, we see that ¢t — w;(p) is continuous at some point ty € R. Then
Lemma implies that there exists a unique matrix B(p) such that w,(p) = e
for all t € R. Hence p € G.

Claim 2. G is closed.

Let z € G and let (2,),eny be a sequence in G converging to z. Then ¢ —
fult) :i=wy(2,) = P& is a sequence of continuous functions. Since z + wy(z) is
entire, we have lim fu(t) = wy(z) for each t € R. Thus t — w(z) is the pointwise
limit of continuous functions, and by the same argument as in the previous claim, we
see that w;(z) = P for all t € R, for a unique matrix B(z). Hence z € G.

Claim 3. (a) For zy € G and £ > 0 there exists an open neighborhood U of zy such
that
|B(z) — B(20)]| < & VzeUNG.

(b) If zo € C is a limit point of G, then there exists an open neighborhood U of zy such
that U C G and B is holomorphic on U.

(a) It suffices to show that for every converging sequence (2, )nen in G with limit
29 we have B(z,) —% B(z).

Let o(B) denote the spectrum of B € C"™*™,

Case 1. Suppose
U Imo(B(z,))

n>0
is bounded. Then there exists a t > 0 such that

t|J Imo(B(z,)) C (—m, ).
n>0
Thus log e!Bn) = tB(z,) for all n > 0 (see [11.7)). We may also assume that ¢ is small
enough such that
|etBE0) — || < 1.

Since wy(z9) = €'P*) and wy is continuous, there is an open neighborhood U of z, such
that

lwe(z) — I <1 Vzel.

Thus z — log wy(z) is holomorphic on U. By the convergence of (2, )nen we have 2, € U
for all n greater than some integer. So for all n large enough it is

tB(z,) = log e'BCn) = log wy(z,) 2= log wy(z9) = tB(z).
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Case 2. Suppose

U Imo(B(z))

n>0

is unbounded. Then there exist A,, € C and u,, € C™ such that
l|lun|| = 1, B(zp)un = Ay, VneN

and (Im A\, )nen is unbounded. Since ||u,|| = 1, we may assume that (u,)nen converges,
otherwise we consider an appropriate subsequence. Let x,:=Re\,, and y, :=Im \,.
Then for each t € R we have

tAn

Wi (2 )ty = By, = Py, = eltneityng, Vn e N.

Thus

trn,

el = |l e u, || = ||lwi(2n) .| Vn eN.

Since the right-hand side converges, (e"*"),en converges too, and so does (e7""),cn.
But then the right-hand side of

eity" — ¢ tan <Un7 etmnez‘tynun> = ¢ t&n <Um wt(zn)un>

also converges, and therefore (e"¥"),cy converges for all ¢ € R, which is impossible by

Lemma [I1.01

(b) Let 2o be a limit point of G. Since G is closed, zy € G, thus w;(z) = e'B(0)
for all t € R. Hence, there exists an r > 0 such that ||w,(z9) — I]| < 1 and ||rB(z)]| <
log(2). By the continuity of w, and by (a) there exists an open connected neighborhood
U C C of zy such that

|w,(2) = I|| <1 VzeU

and

lrB(z)|| < log(2) VzeUNG.
Put A: U — C™™

1
A(z):= log w,(2)
r
and for t € R define f; : U — C™*™,
fi(z) = e,

By Lemma A is holomorphic, thus f; is holomorphic. Moreover, we have

log w,

B =B _ ) vievne

Hence fi(z) = ¢4 = etBE) = g, (2) for all z € UNG. Since 2 is a limit point of
U N G, the Identity Theorem for holomorphic functions implies that f;(z) = wy(2) for
all z € U. Hence U C G. Since B(z) = A(z) for all z € U, B is holomorphic on U.
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Now we can show that G = C. Since R>y C G, claim 3 implies that G contains
a non-empty open set. Thus the interior of GG, denoted as G°, is non-empty. If z is a
limit point of G°, then, because G is closed, it follows by claim 3 that z € G°. So G°
is closed. Since C is connected we must have G° = C, hence G = C.

Finally, if we define h, : C — C™ ™ h.(z) := —iB(z) we have w;(z) = e'th<(*)
for all z € C. Claim 3 implies that h. is holomorphic. Thus g(2):=h.(z) — h.(Z)* is
also holomorphic. Since wy|g., is unitary p-a.e., g|lg., = 0 p-a.e. and by continuity
glr., = 0. The Identity Theorem for holomorphic functions then implies h.(z) = h.(Z)*
for all z € C, thus h(p) is self-adjoint for all p € R. O



12 Growth Conditions on ¢ and the Linearity of
h

We show that if €™, where ¢t € R and h is a self-adjoint entire matrix-valued function,
satisfies certain growth conditions, then h must be a linear function. This is a result
inspired by [[Cas84] Lemma 7 fol.].

12.1 Definition. For an exponentially bounded entire function f : C¢ — C™*™ let

6(f)::inf{RZ 0 : 3C > 0 such that || f(2)| < CefFl vz E(Cd}.

12.2 Discussion. If f : C¢ — C is an exponentially bounded entire function and
flra € L?, then Corollary [10.10| implies that

|f(2)] < CelPImel w2 e

for some constant C' > 0. The following Lemma shows a similar conclusion if f|ga is
bounded.

12.3 Lemma. Let f : C* — C™™ be an exponentially bounded entire function such
that flga is bounded. Then

£ < NI flpalloo P21 vz e .
Proof. Put 6:=4(f) and let € > 0. Then Corollary [10.17| implies
1F () < N1 flzalloc e®FOM vz e C?

Now ¢ — 0 completes the proof. O

12.4 Lemma. Let f,g,h: C — C be entire functions such that f = gh # 0. If f and
g are exponentially bounded, then so is h. More precisely, if

max(|f(2)].[g(2)]) < Ce* ¥z eC,
for some constants C, 7 > 0, then
|h(z)| < C'et?] VzeC,
for some constant C’.

Proof. (The proof makes use of Nevanlinna’s Theory, for a brief introduction and de-
tailed proofs see Appendix [H| and Lemma [H.4). Let M(r, f):=max—, |f(2)| and
let

In™ () := max(0, In(c)) for ao > 0.

100
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Then for all |z| =7 > 0 we have, see [[Lev96] Lecture 2 (13) fol.],
InM(r,h) < 3In" M(2r, f/C) +3In" M(2r,g/C) — 3In|c| < 1277 — 31n]|c|,
for some constant ¢ # 0. Hence, for all |z| = > 0 we have
\h(2)] < M(r,h) < |c| 224,
By continuity the inequality also holds for z = 0. O]
12.5 Proposition. Let h : C — C™*™ be an entire matriz-valued function such that
h(z) is self-adjoint for all xz € R. If
||| < cetY vz ec,
for some constants C,t,s > 0 and N € N, then there exists a constant k > 0 such that
|h(2)| < k(1 + |2™) Vo elR.
Moreover, if §(h) = 0, then h is a polynomial of degree N at most.

Proof For z € C let u(z) be an eigenvalue of h(z). Then e is an eigenvalue of
zth and
|67jtu(z)| < ||€zth(z)|| < C€5|2\N

So we obtain the estimate

InC
—Im pu(z) < 7+,| |~

Since h(z)* = h(z) for all x € R, the entire function z — h(Z)* — h(z) vanishes on R.
By the Identity Theorem for analytic functions we have h(zZ)* = h(z) for all z € C.
This implies

|| —ith(z || _ ”< —ith(z ) ” _ Hezth _ ”eith(z)” < C€3|Z‘N VzeC.

Thus Im p(z) < 2€ + 2|2V and we have

[T pu(2)] < ep(2),

where p(z) :=1+]z|"Y and ¢ > 0 is some constant independent of . Let u(z) :=Re u(z)
and v(z) :=Im p(z). Then

Re (—p?) = Re (v* — u? — 2iuv) < v? < ?p?

implies
Re (—tr(h?(2))) < mc*p*(2) VzeC,

and thus we find
‘eftr(hz(z))’ _ eRe(ftr(hz(z))) S emc2p2(z).
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This shows that e~ "(**0) is an entire function of finite order, and by Hadamard’s
Factorization Theorem [[Con78| X1.3.4] tr(h?(-)) must be a polynomial of degree 2N
at most. For x € R the matrix h(z) is self-adjoint, therefore ||h(x)|| = max|o(h(z))],
where o(h(z)) denotes the spectrum of h(z). Since the eigenvalues for self-adjoint
matrices are real, we have

|h(z)]|* = max |o(h(x))|* = max o(h(z))* = max o (h*(z)) < tr h?(x) Vz eR.
Thus there exists a constant k£ > 0 such that
[h(z)]| < kp(z)  VaxeR.

Let 6(h) =0 and 1 < a,b < m. Put &.(2) :=ha(2)/(£i + 2)N. Then for every
e > 0 there exists a C. > 0 such that

1€4(2)] < Cefl! VzeGy:={w e C : £Imw > 0}.

Since

(1+aM)? 2

<2k Ve eR
It+a2)y = vew
a Corollary of the Phragmén-Lindel6f Theorem (see [[Con78| Corollary VI.4.4 p. 140])
implies that &1 is bounded in G4. Hence there exists a constant k&’ > 0 such that
|hao(2)| < E'p(2) for all z € C. By Liouville’s Theorem h,;(2) is a polynomial of degree
N at most. [

[Ea(@)* < &7

The following Theorem is inspired by [[Cas84] Lemma 7 fol.].

12.6 Theorem. Let T > 0 and let h : C — C™ ™ be an entire matriz-valued function
such that

(a) h(p) is self-adjoint for all p € R.
(b) ") is exponentially bounded for every t € [0,T).

(c) There exists a function f :[0,T] — R such that f(0) =0, f is continuous at 0 and
§(e0)) < f(t) for all t € ]0,T].

Then 6(h) = 0 and there are self-adjoint matrices A, B € C™*™ such that h(z) =
A+ Bz for all z € C.

Proof. In view of Proposition we only need to show that §(h) = 0.

By continuity there exists a ¢, € (0,7 such that f(t) < 1 for all t € [0, ).
Put g : [0,20] = R, g(t) :=sup,¢py f(7). Then f(t) < g(t) for all ¢t € [0,%], g is
monotonically increasing, g(0) = 0 and g is continuous at 0.

For t € [0,to] define W} : C — C™ ™,

o
Wt(z)::/o ™) .



Growth Conditions on €™ and the Linearity of h 103

If (z,)nen is a converging sequence in C with limit z, then there exists an R > 0 such
that ||h(z,)|| < R for all n € N, hence [[e/™®)|| < ™ for all n € N, 7 € [0, ).

Since e® is an integrable dominating function, Lebesgue’s Dominated Convergence
n—oo

Theorem implies that Wy(z,) ——— Wi(z), whence W; is continuous. Using the power
series of e"(?) we find

ih(2)Wy(z) = ™) T YzeC Vtel0t)

Let (z) denote the adjugat matrix of h(z). Using the property AA = AA = det(A)I
we obtain

idet(h(2))Wy(z) = h(z)(e™®) —T).

Note that det(h(-)), h and ¢) are entire functions. This shows that the matrix
elements of W; are meromorphic functions, and since W; is continuous, these functions

must be entire. Hence W} is entire. Because h(x) is self-adjoint, we have ||e”h(°”f =1
for all z € R. By the assumption §(e’™)) < f(7) it follows from Lemma that

Hei‘rh(Z)H < ef(T)\ImZ| Vz2eC Vre [O,T]

Let t € [0,to]. Since f(1) < g(t) for all 7 € [0, t], we have
¢
IWi(2)]| < / IOzl g — ges®lmel g e .
0

If W,(2) is the adjugate matrix of W;(2), then
ih(z) det(W,(2)) = (™) — DYW,(z) VzeC Vte|0,t).

Let 4,75 € {1,...,m}. Since the determinant of an n x n matrix has n! terms, and each
term contains n products, we have

Wi(2)5;] < (m — 1)lEm—telm=Dg(®)]im=] VzeC Vte|0,t).

This estimate and |(e®®) — I);;| < 2e90Im=1 gives
|h(2); det(Wy(z Z ) )l IWi(2)ng] < 2mlgm—temo(dlims]

for all z € C, t € [0, to].
In order to apply Lemma we show that det(W;(-)) # 0 for sufficiently small
t>0. Put F': Rsg — C™™, F(t):=W,(0). Then F(0) =0 and F’'(0) = I implies

F(t) _ F(t) = F(0) v,
t t—0 '

>The adjugate A of a matrix A is given by the matrix elements A;; :=(—1)"*7 det(AU"), where
A3) denotes the (m — 1) x (m — 1) matrix obtained by removing the i-th row and j-th column of A.
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Thus there exists an s € (0, tp] such that
It~ W, (0) = I|| <1  Vte(0,s).

Hence det W;(0) # 0 for all ¢t € (0, s), whence det W;(-) # 0 for all ¢ € (0,s). Suppose
hij # 0. Then h(-);; det(W;(-)) # 0 for all ¢t € (0, s). Since

| det(Wy(2))| < mltmems®imz]
Lemma implies that for each ¢ € (0, s) there exists a Cy; > 0 such that
|h(2)i] < Cre?™WE vz e C.

If h;; = 0 then this estimate holds trivially. Because ||h(z)[| < & 327", |h(2);;] for some
constant £ > 0 we have 6(h) < 12mg(t) for all t € (0,s). Now ¢ — 0 completes the

proof. O

12.7. Remark and Examples. In the one dimensional case, i.e. m = 1, Hadamard’s
Factorization Theorem shows that the condition §(e*()) < co for some t > 0 already
0 eiz

e 0
we see that this is not the case for m > 1. Here we have ||| < 2eMm2l thus
§(e™)) <1 for all t > 0, but §(h) = 1.

0 22
0 0
is crucial for Proposition [12.5] we have d(e*()) = 0 for all t > 0 and §(h) = 0, but h
is not a polynomial of degree 1.

implies that h is a polynomial of degree 1 at most. Considering h(z):=

The example h(z) := shows that the self-adjointness of h(x) for x € R




Appendices

A Projection- and Positive Operator-Valued
Measures

A.1 Definition. Let (2, &) be a measurable space and let # be a complex Hilbert
space. We say E : of — L(J) is a projection-valued measure (PVM) if

(a) E(A) is an orthogonal projection for all A € 7.
(b) E(2) = I, where I denotes the identity operator on JZ.

(c) For any sequence (A, )nen of mutually disjoint A,, € o/ we have

E< U An>¢ — Y BA) Vet

neN neN
If F satisfies
(') 0 < E(A) forall A € o7,

instead of (a), then F is called a positive operator-valued measure (POVM).
Since every self-adjoint projection is positive, it is clear that every PVM is a POVM.

The tuple (7, E) will be called complete if N € & and F(N) = 0 implies
S € o for every S C N.

A.2 Lemma. Let (Q, 7)) be a measurable space, let 7 be a complex Hilbert space and
let E:of — L(A) be a PVM or a POVM. Then for all A, B € o/ we have

(a) E(A°) = — E(A).

(b) BE(2) =

(¢c) AC B implies E(A) < E(B).

(d) B(A) < I.

(¢) E(AUB) = E(A) + E(B) — E(AN B).

Proof. (a) follows from I = E(§2) = E(A) + E(A°). (b) follows from (a). Let A C B.
Then
E(B)=FE(AU(B\ A))=E(A)+E(B\A)

implies (c). (d) follows from (c), since E(A) < E(Q2) = I. We have
FE(AUB)=E(A)+E(B\A)=E(A)+ E(B\A)+ E(ANnB) - E(ANB)
=E(A)+ E(B) — E(ANB).
This proves (e). O
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A.3 Lemma. Let P and Q) be projections (not necessarily orthogonal projections). If
PQ + QP =0 then PQ = 0.

Proof. We have P(Q) = PPQQ = —PQPQ = PQQP = PQP = —PPQ = —PQ,
hence PQ = 0. n

A.4 Lemma. Let (2, .97) be a measurable space, let 7€ be a complex Hilbert space and
let E: o — L(J) be a projection-valued measure. Then

E(ANB)=E(A)E(B) VABed.
Proof. For A € o/ we have E(A)E(A°) = E(A)(I—E(A)) = 0. If A and B are disjoint

we have
E(AUB) = (E(A)+ E(B))*=E(A)+ E(A)E(B)+ E(B)E(A) + E(B)
= E(AUB)+ E(A)E(B) + E(B)E(A).

Thus E(A)E(B) + E(B)E(A) = 0 and from Lemma [A.3] we have E(A)E(B) = 0. For
arbitrary A, B € o/ we have

E(A)E(B) = (E(A\(AN B)) + E(An B))(E(B\(AN B)) + E(AN B))
= E(ANB)E(AN B) = E(AN B). 0

A.5 Remark. Note that for the proof of Lemma[A.4] the projections E(A) for A € &
need not be orthogonal.

A.6 Lemma. Let 5 be a complex Hilbert space, and let A, B € L(). If0 < A<
B < A then A= B.

Proof. Put C':=B — A. Then we have 0 < (b, C) < 0 for all p € 5, hence C = 0,
see, e.g., [[Rud91] Theorem 12.7 p. 310], or use 0 = (b, C1p) = ||/ C|>. O

A.7 Definition. Let (€2, <) be a measurable space, let 5 be a complex Hilbert space
and let F : &7 — L(J¢) be a PVM or a POVM. Then (<7, F) is called complete, if
S CN e and E(N) =0 implies S € .

A.8. The completion of a PVM (or a POVM). Let (€2, «/) be a measurable
space, let s be a complex Hilbert space and let F : &/ — L(5¢) be a PVM (or a
POVM).

Similar to the completion of a measure space [[HS65] Theorem (11.21) p. 155] we
consider the following completion of o/ and E. Let

N ={SCQ:dINe« : SCN,E(N)=0}.

Define
o, ={AUS : Aed Se N},

and put
E.(AUS):=E(A),
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for A€ of and S € A
By the following statements it is justified to call (<7, E.) the completion of
(o, F).

(a) <. is a o-algebra.
(b) E.is a PVM (or a POVM).
(c) (., E.) is complete, o/ C o, and E.|; = FE

(d) If (&', E') is complete such that o C &' and F'|, = E then o, C /' and
E'l, =E..

Proof. (a) Obviously, Q € o,.. Let A € &/, S € A4 and N € & such that S C N
and E(N) =0. Then (AU S)® = (A°NN°) U R, where R:=N N (AU S)¢ shows that
(AU S)® € .. Let A} AL, ... € o.. Then for each k € N let A} = Ay U Sk, where
Ay € o and Sy, € A, Let Ny € o such that S, C Ny and E(Ny) = 0 for all £ € N,
Put
A::UAk, S::USkCN::UNk.
keN kEN keN

Let M;:=N; and put M, := Ny \ (N7 U...UNj_;) for k > 1. Then M, N M; = @ for
k # j and N = Upey Mg. Thus for every ¢ € 5 we have E(N)Y = E(Upeny Mi) =
limy, 00 Ypy E(My)Y) = 0, since My C Ny, implies E(My) < E(Ny) = 0, thus E(M;,) =
0 for all k. Now Upeny 4 = AU S and E(N) = 0 implies that Uy A) € .

(b) We show that E, is well-defined. Suppose A;US; = AyUS,, where Ay, Ay € of
and 51,5 € 4. We have to show that F(A;) = F(Ay). Let S; C Ny and Sy C Ny,
where Ny, Ny € &7 such that E(N;) = E(Ny) = 0. Then Ay C AyU S, = A, US, C
A; U Ny implies

E(As) < E(A{UN)) = E(A, U(N, \ A))) = E(A) + E(N, \ A,) = E(A)).

By the same reasoning E(A;) < E(Ay). Hence E(A;) = E(As).

The PVM (or a POVM) properties: By definition E.(B) is a self-adjoint projec-
tion (or positive) for all B € .. Clearly E.(2) = I. Let (B,)nen be a sequence of
mutually disjoint sets in .«7.. Let B, = A, U S,,, where A, € & and S,, € .47, and let
N, € o/ such that S, C N,, and E(N,,) = 0. Then A, N A; = @ for all kK # j. For
Y € F we have

E( U Bn>¢ - EC<(U A)u(U sn)>w - E( U An)w =Y B(A)Y

neN neN neN neN neN

- Z Ec(An U Sn)w = Z EC(B

neN neN

where we used Upen Sk € N :=Upen Ny and E(N) = 0, as shown in (a).
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(c) Let E.(M) = 0 for some M € o, and let T' C M. Then there exist A, N € o7,
S € A such that M = AUS, S C N and E(N) = 0. By definition E.(M) = E(A) = 0.
SinceT C M =AUS C AUN and

0< E(AUN) = E(A)+ E(N\ A) < E(A) + E(N) =0,

we have T'€ A, hence T € o,. o/ C o, and E.|, = E are obviously true.

(d) Let B € .. Then we may write B = AU S, where AN € &/, S € A such
that S € N and E(N) = 0. Since E'(N) = E(N) = 0 and by the completeness of
' we have S € &/’. Because A € & C &/', we have B = AU S € &/’. Moreover,
0<E'(S\A) <E'(N)=0, therefore

E'(B)=FE'(AUS) = E'(A) + E'(S\ A) = E(A) = E.(B).

This completes the proof. n



B The Covering Groups for L} and SO(3)

We summarize, loosely following [[Tha92] Sec. 2.5], some important facts about the
SO(3) and the proper orthochronous Lorentz group L' (also denoted as SO*(1,3))
and their covering groups, the SU(2) and the SL(2,C).

The Pauli matrices o; (i = 1,2,3) and oq are the self-adjoint 2 x 2 matrices
given by

(10 (01 (0 = (1 0
gg - — 01 y g1 = 1 0 y 09— i 0 y 03— 0 —1 .

They satisfy

3
[Uaa Ub] =2 Zgabcgca {Uay Ub} = 25ab12 ((I, b= 1,2, 3)a

c=1

where [A, B] := AB — BA and {A, B}:= AB + BA. Both relations are equivalent to

3
0a0b = Oaplo + 10D EabeOe (a,b=1,2,3).

c=1

The mapping (M, N) — (M, N):=1tr(M*N) defines a scalar product on C**?
for which o, (¢ =0,1,2,3) is an orthonormal base.
Define o : C* — C**2 by

3
o(z):=)_ x,0,
pn=0
For x € C? we put o(x):=37 , z;0;. Since the o, form a base, o is a bijection: For
N e C?*?and y € C*it is
o(y) =N < yr=(ox,N).

Thus
o(A(M)z) = Mo(z)M*  (M*:=M")

defines a mapping A : C?*? — C*“. In fact, A is an algebra homomorphism, for if
M, N € C**? we have

o(A(MN)z) = MNo(z)N*M* = Mo(A(N)z)M* = o(A(M)A(N)z),

hence A(MN) = A(M)A(N).

It is useful to know that

1
AM), = (0, Mo, M™) = §tr(0MMaVM*) (B.1)
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110 B. The Covering Groups for Ll and SO(3)

and
A(M™) = A(M)T, Mo, M* = (A(M™)o), = iA(M*)WUV, A(M) e R4,

v=0

for all M € C**2.

The fact that det(o(z)) = 23 — 23 — 23 — 22 for all z € R* leads to the follow-
ing Theorem, which shows that the restrictions of A to SU(2) and SL(2,C) are the
covering homomorphisms for the associated groups.

B.1 Theorem. The homomorphism A maps SL(2,C) onto the proper orthochronous
Lorentz group LY. and SU(2) onto SO(3). Moreover, A= ({1,}) = {—12, 15}.



C Finite Dimensional Representations of SU(2)

In this section we review some well-known results. The SU(2) is the group of all unitary
matrices in C2*2 with determinant 1, and the group multiplication is just the ordinary
matrix multiplication. Every B € SU(2) can be written as

a —b
B_<b a)’

for some a,b € C with |a|* + |b]*> = 1. A complete system of irreducible strongly
continuous unitary representations of SU(2) is given by DY : SU(2) — L(P;),

(DV(B)f)(z,w):=f(B™'(z,w))  (j € No/2), (C.1)

where P; is the set of all homogeneous polynomial of degree 25 in two variables, i.e.

2j
. k, 2j—k .
Pyi={(zw) = S ettt o,y € C
k=0

and B(z,w) :=(Bj12z + Biaw, Ba1z + Byw), see, e.g., [[Fol95] Sec. 5.4]. We note that
DY is not only a representation of SU(2) but also a representation of GL(2,C), i.e.
the set of all invertible matrices in C?*2,

Let D be a strongly continuous unitary representation of SU(2) on a finite di-
mensional vector space V. Define the self-adjoint matrices L, Lo, L3 by

D(exp(ico,/2)) = exp(iaL,).

The existence and uniqueness of these matrices is guaranteed by Stone’s Theorem (see
also Lemma [11.6]).

C.1 Lemma. We have the commutator relations

3
[Lm Lb] =1 Z 5abch'

c=1

Proof. Since D is a direct sum of DV s it suffices to consider the representation (C.I)
which is differentiable. Thus

L, = —i0, exp(iaL,)

T dDY (1) 0 0,/2,

hence

3 3
(Lo, Ly) = dDY (1) 0 [04, 03] /4 = dDY (1) 04 €0pe00/2 =1 apeLe O
c=1 c=1
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112 C. Finite Dimensional Representations of SU(2)

The diagonalization of L3 then leads to the following well-known Theorem (see,
e.g., [Mes61] or almost any book on quantum mechanics)

C.2 Theorem. Let D be an irreducible strongly continuous unitary representation of
SU(2) on a finite dimensional vector space V. Then there ezists a j € No/2 such
that dimV' = 25 + 1 and there are vectors |j,—j),|j,—7+1),...,|7,7) forming an
orthonormal basis of V' satisfying

L3 ‘jam> =m ’j7m> >

Lyljom) =272 ((G +m+1)(j —m))"*[jm+1),

L |j,m) =27 ((G+m)(G —m+ 1)) |j,m = 1),

1/2

form e [j]:={-j,—j+1,...,7}, where

Lyl
===

In this case we denote the representation D as D).

Lil

C.3 Lemma. Considering DY) we have

3
L2:=3 Li=3(+ DI

k=1

In particular, if D is a unitary representation of SU(2) on a finite dimensional vector
space V then L2 commutes with D, and DY) occurs v times in the decomposition of D
if and only if j(j + 1) is an eigenvalue of L? with multiplicity (25 + 1)v.

Proof. Using

1
Ll = E(L—i_ + L_) L2 - —Z

and the commutations relation [L,, L_] = L3 we find

(Ly— L)

Sl

L*=L3+L,L +L L,=L+L3+2L L,.

Then by Theorem it is easy to see that L?|j,m) = j(j + 1) |7, m). O



D Tensor Products of SU(2) Representations

Let D:= DUV ® DU2) The generators for D are then
Li=L{®1+10LY?, L[i=LPe1+1eLY,

where L) are the generators for the representations DUr),

If M is a vector of Weightﬁ my with respect to Lgl) and if ¥ is a vector of
weight ms with respect to LY, then ¢ @ ¢ is a vector of weight m; + msy with
respect to L, thus we see that in the tensor representation the weights add.

The representation D is (for min(j;,j2) > 0) reducible. By the general theory
of representations of compact groups, D is a direct sum of irreducible representations.
Because (j, m| DY (e73/2) |5, m/) = 6pme’®™ we have

D(e%7/%) = diag(a', o7, ... a7 @ diag(a?, a7, ... a77), ai=e,

By looking at the highest exponent we see that DU+72) must be a part of this direct
sum. The second highest exponent is j; + j» — 1 and it occurs two times, but one of
them is already accounted for by DU1*52) Hence DU*72=1 is a part of the direct sum.
If we continue in this manner we find

DU g pl2) o gintiz k),

k=|j1—j2|

We now decompose D2 @ DU=1/2) into DY=Y @ D) where J > 1. Since the
weights add, a vector |k, r) in the D=1 @ D) representation corresponds to

1/2
k,r) = > CST/Q’J_UQ"“) 11/2,8) @ |J —1/2,r —s) forke{J—-1,J}.

s=-1/2

Usually, we omit the prime on |k, r)’, although |k, 7) does not really live in C? @ C?”.
To be more precise one would consider the unitary map 7' : C?2® C?/ — C?/~1 g C?/+!,

1/2
T k)= > OV 1172 sy @ [T —1/2,7 — s) for k€ {J—1,J}.

s,
s=—1/2

To define the coefficients C(}/27=1/2%) we must specify the highest weight vectors:

1, J) =~ [1/2,1/2) @ |J — 1/2,J — 1/2) ,
J—1,J -1 =all/2,1/2) @ |J —1/2,J — 3/2)
+811/2,-1/2) @ |J —1/2,J —1/2),

5Weight is just a synonym for eigenvalue.
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114 D. Tensor Products of SU(2) Representations

where «, 5,7 € C will be defined by means of a phase convention (see below). Since
Ly|J—1,J—1) =0, we must have 8 = —a(2J — 1)'/?, and

(J-1,J-1J-1,J-1)=1

implies that |a|> + |3 = 1, i.e. |a| = (2J)""/2. Here we will use the convention
([Mes61] Eq. (XII1.109)]

(1/2,1/2| @ (J — 1/2,m| |k, k) > 0
which leads to

B 2J — 1\ /2
O{:(QJ) 1/2a 5:_< 9] ) ) v=1

In this convention the Wigner 35 symbol satisfies

CW/2I=1/2k) — (_1)1=T+r /oF 1 ] (1/2 J—1/2 k ) ‘

ST S r—s —r

D.1 Lemma. We have

C1/2.7-1/2,0) _ (J + 23T>1/2
s,r 2J °

Proof by induction on r. Let us abbreviate C, :=C/2/=1/27) " Because the highest

S,T

weight vector in D) is given by
1) = [1/2,1/2) @ = 1/2,0 —1/2),

we must have Cy/p; = 1 and C_y/5; = 0. Thus the claim is true for r = J. Now
suppose the formula holds for some r < J. Then

|J,r) = Cryor |1/2,1/2) @[T = 1/2,7 = 1/2) + C_1 )2, [1/2,-1/2) @ |J = 1/2,7 +1/2) .
Applying L_ = LY @1 +1® LY"Y? on both sides of this equation we obtain

1 1/2
ﬁ((J—l—r)(J—T—i- D)7 Jr—1)

1
= C'1/2,7~ﬁ 11/2,-1/2) @ |J —1/2,r — 1/2)

+ 01/2,7«i (J+r =1 —r+1)"21/2,1/2) @ |J — 1/2,r — 3/2)

V2
1
4 C,lmﬁ (J+r)(J —r)21)2,-1/2) @ |J —1/2,7 — 1/2) .
Since
c _ Cipop +Clypor (J+1)(J — 7“))1/2
—1/2,—1 = 1/2
(J+r)(J—=r+1))
Chran (J+7=1)(J —r+ 1))/
C(1/2,7“71 = )

(J+7r)(J —r+1)"?

the formula also holds for Cs,_; and the proof is complete. O
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D.2 Lemma. We have

S,r

CO1/2,J=1/2,J-1) _ (_1)371/2 (J - 237’>l/2.

2J

Proof by induction on r. Let us abbreviate s, := C{1/2J=1/2J=1) " The highest weight

KE
vector in D=1

is given by
|J—1,J—-1)=«al|l/2,1/2)®|J —1/2,J = 3/2)+5|1/2,—-1/2y@|J — 1/2,J — 1/2) .

Since Eyp -1 = a and E_y/5 1 = (3 the claim is true for r = J —1. Now suppose the
formula holds for some r < J — 1. Then

|J_ ]_,T’> = E1/27r |1/271/2> ® |‘]_ ]./2,7” - 1/2>
+E 1, ]1/2,-1/2) @ |J = 1/2,7 +1/2).

Applying L_ = LY @ 1+1® LY? on both sides of the equation gives

(J=1+7r)(J =) =1,r—1)

Sl

1
= El/2,rﬁ 11/2,-1/2) @ |J —1/2,r — 1/2)

+ El/g,rL (J+r—1)J—r+1)"21/2,1/2) @ |J — 1/2,r — 3/2)

V2
1
By s (T4 - )12, -1/2) ® | T — 1/2,7 — 1/2).
Because

s _ BEysy+ By, (J+7)(J — 1)

-1/2,r-1 = 172

(J=1+7)(J=7))
By (J 41 —=1)(J —r+ 1)/
E1/2,r71 =

(J=1+7)(J—r)?

the formula also holds for E;,_; and the proof is complete. O



E The Wigner 35 Symbols

We already encountered some Wigner 3j symbols in Appendix D], where we decomposed
DU/2) @ DU=1/2) - Considering the general case DUV @ DU2) one has the decomposition

|J, M) = Z (Jijamama|JM) |ji,m1) @ [j2,m2)

mi,m2

where J € {|j1 — jal, ..., 71 + Jo} and (j1jomims|J M) are the Clebsch-Gordon coeffi-
cients for which one usually stipulates the phase convention [[Mes61] Eq. (XIII.109)]

(J17251melJJ) >0,

in addition to the L. relations of Theorem for |71, m1) , |72, m2) and |J, M). Since
the weights add, we must have (j;jomims|JM) = 0 if my +mq # M.

Let us summarize the most important properties of the Wigner 35 symbols
[Weil3], [[Mes61] (C.12) and fol.]. The Wigner 3j symbols are defined as

(jl j2 J > o (_1)j1—j2+M

i1 Jomyims| JM).
mi my —M V2T +1 (ngzmama| JM)

(a) They are all real.

(b) Selection rules: If one or more of the following conditions are not satisfied then
the symbol vanishes:

my € [jl]a my € [j2]a M e [J]a
m1+m2:M7
1j1 — Jo| < J < g1+ Jo,
where [j]:={—j,—j+1,...,+j}.

(c) Symmetries:
mi My Mg Ma(1) Mx2) Mar(3) —my —my —mg)’

whenever 7 is an odd permutation. In particular, the symbol is invariant under an
even permutation of its columns.

(d) Orthogonality relations: We have

JivoJe g3\ (A J2 gz _ 1 o
2 ) [
mi,meo m1 Mgz Mg mp M2 Mg 2]3 +1 3 3

for mg € {—7js,...,js} and |51 — jo| < J3 < ji + j2. Moreover,

. Ji J2 J3 JioJ2 13\
Z (275 +1) <m1 me mg) (m'l m) m3>_5m1m15m2m’2

J3,Mm3

for my € {—j1,...,71} and mg € {—7J2,..., 72}
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E.1. Some special values. For s € [j] we have

joj 0y _ (=1

-s s 0)  25+F1

o | 5
<J J é) = —(—1)i*® i for j > 1/2
—5 s V(25 +2)(2) +1)2j

joj+1 1) s GH1+s)(+1-5) \"
<—s s 0)__(_1)+ﬁ<(2j+3)(2j+2)(2j+1)>

see [[Mes61] (C.27)].
E.2. Recursion relations for the Wigner 3j symbol. We have [SGT5]

- ' ) ) L1 . . . .
33A<]3+1)<31 J2 I3 )—B(g;;)(jl J2 J3>

my Mo ms my MMy M3

— (J3 + 1)A(js) (jl g 1) :

my Mo ms

(E.1)

where
. . . . 2/, . . o\1/2/. 1/2
A(s)i= (53 — G2 —0)?) (G + 2+ D2 = 33) " (53 —m3) ",
B(js) == —(2js + 1) (a2 + 1) = 11 + 1))ms — Galjs + 1) (m1 — ma) ).
E.3 Lemma. Let j € Ny/2, let n € {0,1,...,25} and let s € [j], then
_ Vs — S ) ] ] k
(=1)°s kz::oozn,kd (—s < 0)

for some a1 ; € R.

Proof. We have

(2, 0) =
/ 1 s 5
(—js . 0>:_(_1j JiG+DEj+1)

and the recursion relation (E.1|) gives

(j jk+1>:_ 2(2k 4+ 1)s (j jk)

—s s 0 (k+1)y/(2 + 12— (k+1)2\75 s 0
k& ( (2 + 1)2 — k2 >1/2<j jk—l)
k+1\(254+1)2— (k+1)2 -s s 0 )

This shows that (—1)7T* ( J J k) is a polynomial in s of degree k where the coef-

—s s 0
ficients depend on k and j. n
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E.4 Lemma. Forl > n € Ny we have

3 81y (_JS / é) )

s€[j]

Proof. Forl > 2j the Lemma is trivial, since the selection rules implies that the symbols
are zero. Let 0 <[ < 2j. Using Lemma and the orthogonality relation (and [ > n)
we obtain

> s"(=1)7 (—js s 0) ZO‘”’”Z (—'8 s 0> <—js i é>

sel] s€ls]

5kl
= Z ke j = 0. O
=2+

E.5 Lemma. Let m € [§]. Then

1/2
1/2 J-1/2 J—-1 Jst1 [ J —2ms
= 2m(—1 — J—=1],J>1
<m s—m —s) (=1) 2J(2J —1) . s€l LJ =1,

note that m € [1] and s € [J — 1] implies s —m € [J — ]. And
1/2 J—1/2 J J+2ms '
B = (=1 = >1/2
(270 ) o () etz

note that if m € (3] and s € [J], then s —m & [J — %] implies J +2ms = 0, so there is
no need to restrict s —m.

Proof. See Appendix [D] or use [[Mes61] (C.27)]. O



F Causal Transformations

Causal transformations have been introduced by Castrigiano [Cas84], they are more
general than causal localizations, which are the main subject of this thesis, so we give
a brief overview of the main results.

F.1 Definition. Let (U, E) be a localization on a complex separable Hilbert space 7.
A bounded operator T' commuting with U is called a causal transformation if there
is a compact ball K of positive radius such that for each state ) € 7 localized within
K, ie. E(K)y =1, there is a compact region A such that the transformed state T
is localized within A, i.e. E(A)TY = T.

The following Lemma shows that the As can be found in a uniform manner, i.e.
they only depend on K and do not depend on the specific state.

F.2 Lemma ([Cas84] Lemma 1). Let T be a causal transformation. Then there exists
a compact ball K" O K concentric with K such that for all states 1 localized within K
we have that T is localized within K'. In other words: (I — E(K'))TE(K) = 0.

Proof. (Adapted from [Cas84]). Assume the contrary. Choose f; € 4 such that
Y :=E(K)fi # 0. Then E(K)y, = 1, and since T is a causal transformation, there
exists a compact ball A; of radius > 1 such that E(A1)T%; = T4;. Then, since we
assume the claim to be false, there exists an fy € ¢ such that

E(A)TE(K) fa # TE(K) -

This implies that ¢y := E(K) fa # 0.

Suppose ¥1,...,¥, and Ay, ..., A,_1 have been chosen. Then there exists a
compact ball A, of radius > n such that E(A,)T, = T1,. Choose f,i1 € S such
that

and put ¥y, ::E<K>fn+1 7£ 0.

Since 1, # 0 for all n € N, we may assume that [[¢,|| = 1 for all n € N. Also
without loss of generality assume that ||7|| = 1. For n € N put

Bii=1,  Bupr=[II = E(A))Tna] € (0,1],  an:=37"8"]] 8
=1

Then ¢ :=32°, a,y, € E(K)F. Since T is a causal transformation, there exists a
compact ball A of positive radius such that F(A)Ty = T1. Let k € N such that
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120 F. Causal Transformations

A C A;. Then
0=[I( = BQA))TY[ = 1| >_ anll = E(AR))T,||
n>k+1
> a1 (I = EQA) TVl = | D2 an(l — E(Ay))Tn]|
n>k+2

> 1P — D, O > g1 Brgr — §@k+15k+1 >0,
n>k+2

which is impossible. Note that a,, = 37'8,_1a,,_1 for all n > 2 and jyn < 37"y for
all 7,n € N. Thus for all j > 2,

oo oo oo 1
doom =2 i <a; )y 37" =z, =
n=j n=0 n=0

F.3 Lemma. Let (V,U,E) be a causal localization. Then for every t € R, V(t) is a
causal transformation.

Proof. See[2.3] O

F.4 Lemma (cf. [Cas84] Lemma 2). Let (U, E) be the coordinate space representation
of a finite localization and let T' be a causal transformation commuting with U. Then
there exists an entire matriz-valued function F : C — L(®jv;C¥*Y) such that in the
helicity representation

and
|F(2)] < cefim wzec,

for some constant C > 0, where § is the difference between the radii of K' and K (cf.
Lemma[F.9). Moreover, (k,r,r|F|j,i,s) =0 forr # s.

Proof. (Adapted from [Cas84]). Since T" commutes with U”", we have that T" com-
mutes with Ly, Ly[f]:=[e"“>) f] for all b € R3. By Theorem there exists a mea-
surable bounded matrix-valued function M : R?® — C™ ™, m:=dim @gij%“ such
that T"[f] = [M f]. By Lemma we can apply Theorem [10.15] Thus there exists an
entire function ® : C* — C™ ™ such that ®|gs = X 1M X almost everywhere and

|®(2)]| < Cem=l vz eC?,
for some constant C' > 0. Let D(B) :=&/v;DY(B), then we have
®(p) = D(B(p))M(p)D(B(p)™")  Aae.

Since T' commutes with U(0, B), there exists for every B € SU(2) a nullset Ng C R?
such that
D(B)®(B~'-p)=®(p)D(B)  Vpé€ Ng.
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By continuity this equation must hold everywhere. Then

M(p) = D(B(p) ")®(p)D(B(p)) = ®(B(p)~'p) = (|ples).

Hence F': C — C™ ™, F(z):=®(ze3) satisfies the first part of the Lemma. Lemma
1.13] completes the proof. n

o
e}

Further analysis of these entire functions reveal the main Theorem of [Cas84]:

F.5 Theorem (Castrigiano). Let (U, E) be the coordinate representation of a localiza-

tion. A bounded operator T' commuting with U is a causal transformation if and only

if there exists an entire matriz-valued function F' : C — @Q v; L(C¥*Y) such that in
j€

the helicity representation T"[g] = [F(] - |)g] for all [g] € L*(R3,C™) and

(ky k| F(p) 4,0, 8) = 0ps D _(—1)775V20 + 1 (_‘; ]z é) P (fir(0*)) e Vp=>0,
I

(F.1)
where fjn are entire matriz-valued functions of one complex variable such that z —
fir(2%) are uniformly exponentially bounded and (_‘; ]z é) is the Wigner 35 symbol.



G Auxiliary Lemmata

The purpose of this section is to provide theorems and lemmata needed in the proofs
of section [I| T assume that they are well-known, however for the most of them I could
not find any references giving proofs.

G.1 Theorem. LetT be a bounded operator on L*(RY, C™, \), where X is the Lebesque
measure on R, Then E(A)T = TE(A) for all A € B(RY), where E : B(RY) —
L(L*(RY,C, \)) is the canonical projection valued measure, i.e. E(A)[f] = [xaf], xa
being the characteristic function of A, if and only if there exists an A € L (R, C™ ™ \)
such that T[f] = [Af].

Proof. For the “only if” part of the Theorem consider first the case for m = 1.

Let Ky, Ky, ... be asequence of compact sets such that K,, C K, 11 and U,y K, =
R? Let A; : R? — C be a representative of [Txx,|. If A;,..., A, have been chosen,
let A,11: R? — C be a representative of [T'xk,,] such that

Ans1(p) = Anlp) Vp e K,,

which is possible because
XKnAn+1 = E(KH)TXKnH = TE(KH)XKnH = TXKn = Anu A-a.e.

Put A(p) = lim A, (p). Since A is the pointwise limit of a sequence of measurable

functions, it is measurable. We show that A is essentially bounded, i.e. A(Sz) = 0 for
some 3 > 0, where Sy:={p € R? : |A(p)| > B} Put S{":={p e R : |A,(p)| > B}.
Then we have

FASE) < [ 1Aulge dh = [IBSE) TN A = 1Txg I
< ITIPP s ere, I” < ITIP A(S5Y).

Hence )\(Sé")) =0 for all n € N if 5 > ||T||, whence A(Sz) = 0 for 8 > ||T||.

Thus T"[f] :=[Af] defines a linear bounded operator on L*(R%, C,\). It remains
to show that T = T". Let A € B(R?) be a set of finite measure. For ¢ > 0 choose
n € N such that A(ANK¢) <e. Put A, :=ANK,, then

ITxa = T'xall = (T = T) (xank, + xank)l
< T = T)xa, |+ 1T = T2,

and since

(T = Txa.ll = 1Txa, — Auxa, | = [TE(AW) XK, — Anxa,l
- HE(ATL)An - AnXAnH = Oa
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we have T'xya = T"xa. This shows that T'g = T"g for all simple functions g, and since
these are dense in L*(R¢, C, \), we have T =T".
For the case m > 1 let {by,...,b,} be an orthonormal basis in C™. For 1 <
i,7 < m define the operators T}; on L?(R?, C, \) by
Ty f]=(bi, Tf5])-

Then [T}, E'(A)] = 0 for all A € B(R?), where E'(A)[f]:=[xaf]. By the case for

= 1 there exist A;; € L®(R?, C, \) such that T};[f] = [A;; f] for all [f] € L*(R%,C, \).
This implies T[f] = [Af] for all [f] € L?*(R?,C™, \).
The “if” part of the Theorem is trivial. O

G.2 Corollary. Let T be a bounded operator on L?*(RY,C™) and let E : B(RY) —
L(L*(R%,C™, X)) be the canonical projection-valued measure. Then E(S)T = TE(S)
for all S € O, where O denotes the set of all open orthotopes in R?, if and only if there
exists an A € L®(R*, C™ ™ \) such that T[f] = [Af].

Proof. Clearly, ¢ U {@} is stable under finitely many intersections and we have
BR') = 0(0) =(0),
where 0(0) is the smallest Dynkin system containing . It remains to show that
¢ :={Ac BRY) : B(A)T =TE(A)}

is a Dynkin system, since then Z(R%) = §(0) C 4 C B(R).
Obviously R? € 4. If A € 4, then

TE(AY) = T(I — E(A)) = (I — E(A))T = E(A9T,

thus A¢ € 4. If Ay, Ag, ... is a sequence of mutually disjoint sets in ¢, then for
f € L3R4,C™, \) we have

TE(UAS =TS B(A)f = S TE(Af = BATS = BUA)TS,
hence U, A, € 4. O
G.3 Lemma. Fort € R and k € {1,2,...,d} define Uy(t) € L(L*(R4,C™, ))) as

Un(t)[f]:=[e" f].

Then a bounded operator T commutes with all Uy if and only if there exists an A €
L®(RE, C™™ X) such that T[f] = [Af].
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Proof. The “if” part of the Theorem is trivial. The “only if” part of the Theorem:
Clearly, Uy is a continuous unitary one parameter group. The self-adjoint generator
Hj, for Uy is then given by

2(Hy) = {[f) € L* : [(er, ) f () € L*},  Hi[f]:=[{ex, ) ()]

If [f] € 2(H}) then the limit ¢ (U (¢t) — I)T[f] for t — 0 exists, since T commutes
with Uy. Hence, TP (Hy) C Z(Hy) and [T, H][f] = 0, whence THy, C HiT. Let
Ey : B(R) — L(L?) be the projection-valued measure defined as

Ey(M):=E({(z1,...,7a) € R : 34 € M}),
where E : B(RY) — L(L?) is the canonical projection-valued measure, i.e.

EA)[f]=[xaf]

Since [udEg[f] = [u({ek,))f] for every simple function u : R — C, we have
H = [iddE,.

By the Spectral Theorem [[Casll] Ch.5 (7) p. 68] we have [T, Ex] = 0. Considering
that .
E((al,bl) X ... X (ad,bd)) = H Ek((ak,bk)),
k=1

we have [T, E(S)] = 0 for all open orthotopes S in R?. By Corollary the proof is
complete. O

G.4 Lemma. Let \ be the Lebesque measure on RY. For y € R? let L, be the left
translation operator on L°°(R4,C™* ™), i.e.

Ly[f1:=[f(-+y)]-
Then Ly,[f] = [f] for all y € R?, if and only if f is constant almost everywhere.

Note. Let y € RY, then L,[f] = [f] means, that there exists a set N, of measure zero
such that f(x) = f(x +y) for all z € R*\ N,,.

Proof. The “if” part of the Theorem is trivial. For the “only if” part of the Theorem
consider first the case for m = 1. The case m > 1 then follows easily, since every
component of f must be constant almost everywhere.

Let f € L>°(R? C, \) such that L,[f] = [f] for all y € R?. Then by means of f =
Uy —u_~+i(vy—v_), where uy (z) = max {£Re f(z),0} and v4(z) = max {£Im f(x), 0},
we see that Lyfuy] = [uy] and Ly[vy] = [vi], hence we may assume without loss of

generality that f is nonnegative.
Let I:=[0,1]%. Put

ci= /1 f(a)dX(a).
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Note that
c:/f(a+m)d)\(a) Vz e R
I

Let K C R? be a compact set. Since
[ 17 (a+a) = f@)]dr@) =0

for every a € R?, the Fubini-Tonelli Theorem implies

0</ e — f(z)] d\(@ /]/ fla+ ) — f(2)) dA(@)] dA(x)
<//|fa+x (2))] dA(a) dA()
:/I/K|fa+x — f(2))] d\(z) dA(a) = 0.
Hence f = ¢ almost everywhere. O

G.5 Lemma. Let \ be the Lebesque measure on R? and let A : R? — C™™ be a
measurable matriz-valued function. If A[f] = [0] for all f € C*(R4,C™) then A =0
almost everywhere.

Proof. Fix 1 < 4,7 < m and assume that A;; = 0 not almost everywhere. Then
A(S) > 0 where

Si={x eR": |Ay(z)| > 0}.
For n € N put

1 1
._ d . B - d . g —Z
So={w € R : [Ay(x)| > 1} Sy= {x eR!: —— < |45(0)] < n}
Then S;NS; = @ for i # j and S = U;2,S,. Since 0 < A(S) = Y023 A(S,,), there
exists an n € Ny such that 0 < A(S,). Then there exists a measurable bounded set
R C S, such that 0 < A(R) < oo. Let f € C°(R?) such that f|g > 1. But then

0=l Afe;l? = [ |4yPaA = AR)(n +1)72 > 0
R

is a contradiction. Hence A;; = 0 a.e., whence A =0 a.e. O

G.6 Lemma. Let T € L(L*(R3,C™)), T[f]:=[®f], for some measurable and bounded
matriz-valued function ® : R — C™™. Let U : SU(2) — L(L*(R3,C™)),

Then T commutes with U if and only if there exists a measurable bounded function
O : Rsg — C™™ such that

o(p) = 0(|p])  ae.
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Proof. The “if” part of the Theorem is trivial. By considering the operators 7;; on
L*(R3,C) given by
TisLf] = (s, [ fb5]) = [Py f],

where {b1,...,b,} is an orthonormal basis in C™ and ®;; :=(b;, b;), we see that it
suffices to prove the case for m = 1.
Put & : RZO — C,

O(p) = /SU(Q) (B~ - pes) du(B),

where g denotes the normalized left Haar measure of SU(2). Obviously ® is bounded,
and since (p, B) — B™!-pes is continuous, (p, B) — ®(B ™! pe3) is B(R>o)RB(SU(2))
measurable. By Fubini’s Theorem ® is measurable.

For each p € R? there exists a B’ € SU(2) such that |p|ez = B’ - p. Then by the
invariance of the Haar measure we have

B(pl) = [, ®BB p)du(B) = [ ®(B-pldu(B) VPR’

Let fr denote the characteristic function of the ball with radius R > 0 centered
at the origin. Then for every B € SU(2) we find

0< [19(B7) = ®lfndr = (1(B™) ~ Blfn. fa) < N(®(B™) = @) fxllfx]
= 0B T1alll ]l = 0.

Hence, by Fubini-Tonelli
0< [18(-) = #lfgdr = [| [ (@(B™)~@)du(B) fad)
-1
</ /Sm) (®(B~") — @| fr dpu(B) dA

_ /gU(Z)/|¢(B‘1-) — ®|frd\du(B) = 0.

This implies (] - |) = ® a.e. O
G.7 Lemma. Let p be a o-finite measure on B(R?). If u is quasi-invariant under
translations, i.e. u(N) = 0 implies u(N +a) = 0 for every a € RY, then u is equivalent

to the Lebesgue measure .

Proof. (ct. [[Wig62] Appendix III.]) Let v be another o-finite quasi-invariant measure
on B(R?) and let N € Z(R?) be a v null set. Since

0=v(N) =v(N -2) = [xnolg)duly)  VaeR?,
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where x4 denotes the characteristic function of A, Fubini-Tonelli implies

:/</XN—xy dvy>du(ﬂf)

= [ [xnta + ) doty) dp(e //xNx+y)du( )dv(y)

—//XNy ) dp() dv(y /u v(y).

Therefore (N — (+)) = 0 v-a.e. and there exists a yo € R? such that u(N — y) = 0.
Hence (u(N) = pu(N —yo + y0) = 0.

By interchanging p and v, the same reasoning shows that p(N) = 0 implies
v(N) = 0. Hence p and v are equivalent. Since the Lebesgue measure is o-finite and
quasi-invariant under translations, the proof is complete. O



H Nevanlinna Theory and Related Results

H.1 Lemma. We have

27
/ Insin(6/2) d0 = —2r n 2.
0

Proof. (cf. [[Rud70] 15.17 p. 299] where an equivalent formula is proved in a different
manner.) It is easy to see that the integral exists, for example the right hand side of
| [FInsin(0/2)df] < — [} 1n(0/4)dO converges for ¢ — 0. Let I denote the integral,
then

1 2m g T
I= —/ Insin®(6/2) df = / Insin®(6) df = / In((1 — cosf)(1 + cosb))do
2 Jo 0 0
= / In(1 — cos ) df + / In(1+ cosf) df = 2/ In(1 — cosf) df
0 0 0

- 2/” In(2sin26/2) df = 2w In2 + 4/” Insin(6/2) df = 2w In2 + 21,
0 0

hence I = —27In 2. O

H.2 Lemma. Let (X,d) be a metric space. If U C X is an open set containing a
compact set K, then there exists an € > 0 such that

U B:(z) C T,

zeK
where B.(z) :={y € X : d(z,y) < ¢e}.

Proof. 1t suffices to show that there exists an € > 0 such that B.(x) C U for all z € K.
Suppose the contrary. Then for every n € N there exists an x,, € K such that By, (x,)
is not a subset of U. Since K is compact, there exists a converging subsequence (x,, )ken
whose limit, denoted by z, is an element in K. Since U is open, there exists a ¢ > 0 such
that Bs(x) C U. Then there exists a k € N such that z,, € Bjs(x) and 1/n; < §/3.
But then By, (7,,) C Bs(z) C U. O

H.3. A Brief Introduction to Nevanlinna Theory. In this number we collect
some well known results on meromorphic functions in order to prove Lemma[H.4] The
hurried reader can skip this number, since the Lemma, although in a slightly different
form, can be found in [[Lev96] Lecture 2 (13) fol.].

Poisson Formula. Let f be analytic in a region 2 containing B, (0), then for z =
Re' € B,(0) we have

, 1 2 r? — R? -
i} — i6
Re f(Re™) 27 /0 r2 — 2rRcos(¢ — 0) + R? Re f(re”) df.

128
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Note that
Re T@’ie + Re’:‘ZS — Re 1+ R/rel?
re®? — Rei® 1— R/rez(‘f’ 9)
1—(R/r)? _ r? — R?

T 1- 2R/rcos(0 — ¢) + (R/r)2 12 —2rRcos(¢ — ) + R2’

Proof. (Adapted from [Hol73] Theorem 3.2.1, p. 42) By Lemma there exists an
r’ > r such that B,(0) C Q. Thus f has a power series representation

[e.o]

f(z) = (on +1iBn)2" Vz e B.(0),
n=0
for some «,, 3, € R, cf. [[Rud70] Theorem 10.16, p. 208]. For R < r and ¢ € [0, 2)

we have
o0

f(Re™®) = > (a4 iB,)R"e™.

n=0
Put u(Re™) :=Re f(Re'), then

o0

u(Re") =Y (v, cos(ng) — B, sin(ng)) R"

n=0
ap = 1/2ﬂu(r6ia) do
" ar Jo ’
and
1 2 .
a,r" = —/ u(re) cos(nd) df VneN,
7 Jo
27 .
Bar™ = —1/ u(re) sin(nd) df Vn eN.
7 Jo
Thus
u(Re') = —/ u(re') df
1 > R" [2m 0
Z - / u(re") (cos(ng) cos(nd) + sin(ng) sin(nd)) db
— T
1 27 . n
= ;/o u(re®) <2 +nz::lcos(n(¢ - R ) de,

where we used the uniform convergence to interchange summation and integration.
Now let v:=¢ — 0 and x:= R/r, then

1 & 1 &, 1 1+ ze?
— n _— — my\n — —
5 + Y cos(ny)z" = Re (2 + nE:1(x6 ) ) 2Re <1 — xe”) : O

n=1
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The Poisson-Jensen Formula. Let f be analytic in a region (2 which contains
B,.(0) and let ay,...,a, be the zeros of f in B,(0) repeated according to multiplicity.
If |z| < rand f(z) # 0 then

In|f(2) Zln

Note that if f # 0 is analytic in a bounded region €2, then f has only finitely many
zeros in (), otherwise the zeros of f would have a limit point zy and by continuity
f(20) = 0, by the Identity Theorem f = 0.

7”€ZG

1 21
+—/ Re (Te +Z>ln|f(re )| do.
2m Jo

z—ak)

Proof. [Adapted from [Hol73| 3.4, p. 47] If f has no zeros in B,.(0), then there exists an
r’ > r such that B, (0) C Q2 and f(z) # 0 for all z € B,+(0). Then [[Con78] Corollary
IV.6.17 p. 94] implies that there exists an analytic function g : B./(0) — C such that
f(2) = €9 for all z € B.(0). Thus |f(z)| = e®9) hence In |f| is the real part of a
function analytic in a region containing B,(0). The P01sson Formula implies

In|f(z / (Tezie - - ) In | f(re®)] do.

ret?

Now let ay,...,a, be the zeros of f in B,.(0) repeated according to multiplicity.
Then by [[ConT78] Corollary IV.3.9 p. 79] there exists an analytic function g : B,.(0) — C
such that g(z) # 0 for all z € B,(0) and

f(z):g(z)ﬁ(z—ak) vz € B,(0).

k=1

Applying the previous step to g, it remains to show that

1 o i0 )
+ 7/ Re |- REATH lre’ — al dé),
27 Jo re — z

for z,a € B,(0), z # a. It suffices to prove that

a 1 27 10 .
1n|r—%\ :—/ Re (re‘ +Z>ln\r6’9—a|d0 Vz e B,(0).
r 0 2

T@Zg _

r? —az

Injz —al=—1In

r(z —a)

To see this, consider h(z) :=In(r—az/r) which is analytic in B,.(0) [Note that r—az/r €
B,(r) for all z € B,(0)]. Since

Reh(re®) = In|r — ae| = In|re” — al,

the Poisson formula implies

— 1 2T it .
In |r — %’ =Reh(z) = */ Re <W> Re h(re) df
T 21 Jo

rei — z

and the poof is complete. O]
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We now discuss the Poisson-Jensen Formula for the special case where z = 0.
Let f be an analytic function in an open set containing B,.(0) such that f(z) # 0
for all z € B,(0), then the Poisson-Jensen Formula implies

In |£(0)] = ;ﬁ/jﬂ In |f (re™)| db. (H.1)

Eq. (H.1)) still holds if f has a zero of modulus r. To see this let f(z) = (z —
rei?)g(z), then In|f(re?)| = In|g(re?)| +Inr + In|e? — e*|. Since

2m . . 2m . 2w
/ In | — | df / In|e® — 1|df = 2 In(2) + / Insin(6/2) dé = 0,
0 0 0

by Lemma , and since Eq. (H.1|) holds for g, we have

1 27 . 1 27 .
—/ In | f(re®)| do = —/ In|g(re®)| df + Inr = In|g(0)| + Inr = In|£(0)].
2m Jo 2m Jo
Now suppose f has a zero of modulus less than r, say at a. Following [[ConT7§]
XI.1.2 p. 280] we put
r? —az

F(z):=f(2)

r(z—a)’

then F is analytic in an open set containing B,(0) and F(z) # 0 for all z € B,(0).
Hence Eq. (H.1)) holds for F' and since

r? —az

FE = = = 1FE)] for = = e,
we have I )
%/o In|f(re)] df = In| F(0)] = In|~ f(0)r|.

By means of f(z):=1/f(z) we can generalize Eq. (H.I) in case of a pole. We
thus obtain:

Jensen’s Formula. Let f # 0 be a meromorphic function on C with zeros ay, as, . . .
and poles by, b, . . . repeated according to multiplicity and arranged with non decreasing
moduli. If f(0) # 0, then for > 0 we have

i (| 20 g0 ) = - [T e do (12)
ai - G, 21 Jo ’ .
where ay, .. .,a,, are the zeros and by, ..., b, are the poles of f in B,(0).

We now go further, following [[Hol73] 9.1, p. 163] and consider the case where f
has a zero or a pole at the origin.
Case I. Suppose f has a zero of order k at 0. Put

2Ff(2), =
g(z) = { 1(z), 270 where ¢:= ;!f(k)(()) # 0.

c, z =0,
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Then we may apply (H.2) to g and we obtain

i

Case II. Now suppose f has a pole of order k£ at 0. Put

{zkf(z), 270 where ¢:=lim 2" f(2) # 0.

c, z =0, z—0

by by
,

al-..am

1 2 .
_"> +1In|c| = 27T/0 In|f(re?)|dd — kInr.

9(2) =

Applying (H.2) to g we find

n

Before we combine both cases we need the following

by--by| .
-

al...am

1 21 .
”) +1In|c| = %/0 In|f(re®)|dd + kInr.

Lemma. Let f # 0 be a meromorphic function on C. If n(r,0) is the number of zeros
of fin B,(0) counted according to their multiplicity, then

In L _/T n(t,O)—TL(O,()) dt
lay---am|) Jo t ’

where ay,...,a, are the zeros of f in B,.(0) \ {0}. Similarly, let n(r, co) denote the
number of poles of f in B,(0), then

" rn(t,00) — n(0,00)
" <|b1 |> /0 t .

where by, ..., b, are the poles of f in B,(0) \ {0}.

Proof. We have

m m—1
In (\alra|> —mlnr—21n|a]| =Y j(nlajs1] — Infa;|) + m(Inr — Inla,,|)

7j=1 7j=1
m—1 |a+1|1 ro1
Z /] cdttm [

aj lam|

For |a;| <t < |aj;+1]| we have j = n(t,0) —n(0,0), which proves the first equation. The
second equation follows similarly. O

The general case. Let f # 0 be a meromorphic function on C. Define

N(r, f):= /O n(t, ) - 10:%0) 1y 4 (0, 00) In.
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[Note that if n(0,0) > 0, then n(0, 00) = 0 and vice versa.] We have

N 1/f) = N(r, f) = ;ﬂ /02” In |f(re®)| df — In |c]. (H.3)

The notation uses the fact that the poles of f are zeros of 1/f.

The characteristic function. Define In* a:=max(In o, 0) for a > 0. Then In and
InT are related by

1
Ina=In"a—In" —, Va>0.
o

Put 1 on
_ + i0
m(r, f):= o /0 In™ | f(re"”)|db.

By (H.1) fol. the integral is well-defined even if f(rei%) = 0 for some 6, € [0, 27]. The
characteristic function of f is defined as

T(r, f):=m(r, f)+ N(r, f).
Now Eq. (H.3)) may be written as

T(r,1/f)=T(r, f) —In|c|. (H.4)

Lemma. Let f, g be meromorphic functions then

T(r,fg) <T(r,f)+T(r.9)
see [[Lev90], Lecture 2 Problem 1].

Proof. 1t is easy to check that m(r, fg) < m(r, f) + m(r,g). If z, is a pole of fg,
then it must be a pole of f or g, hence ny,(t,00) < ny(t,00) + ny(t, 00), whence
N(r, fg) < N(r,f)+ N(r,g). O

Growth of entire functions. For an entire function f we define

M f)i=max|f)] (> 0).
By the Maximum Principle M (r, f) = max). <, |f(2)], so the function » — M(r, f)
increases monotonically.
We finish this number with a Theorem that relates the characteristic function to
the growth of an entire function.

Theorem. Let f # 0 be an entire function, then

T(r,f) <Int M(r, f) < g—l—T

T(R, f) for 0 <r < R.

In particular (taking R = 2r) we have In™ M(r, f) < 3T(2r, f).
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Proof. (Adapted from [[Hol73] Theorem 9.4.2 p. 174]) Since f has no poles we have
N(r, f) =0, thus T'(r, f) = m(r, f). The left-hand inequality is thus

7/ It [f(re'?)| df < In* max [£(2)],

which is clearly true.
Choose ¢ such that |f(re'®)| = M(r, f) # 0. Then by the Poisson-Jensen Formula,
for z = re® we have

In | f(re Zln e —akZ) + 217T/027FRe (]J:;Z:i_z> In | f(Re)| db,
where ay, ..., a, are the zeros of f in Bg(0). Since |R(z — a;,)| < |R* — @zz| and
R—r <R€w+7"€i¢>: R* —r? - R*—r® R+r
- - Ret® — retd R? —2rRcos(¢p—0)+r2 — (R—r)2 R-—7’
we have Rir1 o, ) R—{—r
() < T L | (re) a0 = S r, ),
Note that ];Li— T(R, f) >0, hence In* M(r, f) < Rt:T(R, f). O

The following Lemma is motivated by [[Lev96] Lecture 2 (13) fol.].

H.4 Lemma. Let f,g and h be entire functions, such that f = gh # 0. Suppose
max(|f(2)],[g(=)]) < Ce ¥z eC,
for some constants C, 7 > 0. Then
|h(2)| < C'et?] VzeC,

for some constant C'.

Proof. By assumption C' > 0. Let r > 0, then we have In M(r,h) < 3T(2r,h) =
3T(2r f/g) <3T(2r, f/C)+3T(2r,C/g) =3T(2r, f/C)+3T(2r,g/C) —31n|c|, where
c:=2%g®(0)/C if 0 is a zero of g of order k, hence

In M(r,h) < 3In" M(2r, f/C) +3In* M(2r,g/C) — 3In|c| < 127r — 31n]|c|,
whence, for all |z| = r > 0 we have

|h(2)] < M(r,h) < |c|_3el27‘zl.

By continuity the inequality also holds for z = 0. [



I A Note on Schur’s Lemma

Schur’s Lemma is usually formulated for unitary representations of some group, here
we present a useful generalization.

Let 57 be a complex separable Hilbert space and let 1" be a nonempty subset
of L(A) such that A € T implies A* € T. We then say that T is reducible if there
exists a nontrivial closed subspace .# C ¢ such that

AHd C A VAeT.

In this case we say that .# is an invariant subspace. T' is said to be irreducible if it
is not reducible. The set

¢ ={CeL():[C,A]=0forall AcT}

is called the commutant of 7.

I.1 Theorem. The following statements hold.

(a) If A is an invariant closed subspace for T, then .+ is invariant.

(b) Let T be reducible and let A be a nontrivial invariant closed subspace. Let P €
L(A) denote the orthogonal projection onto 4. Then P € €. In particular €
contains nontrivial operators.

(c) If S € €, then S* € €.
(d) If R,S € € and o, € C, then aR+ S € €.

(e) If there exists an S € € which is not a multiple of I, then T is reducible.

Proof. (a) Let ¢ € .#*. Then (¢, AY) = (A*¢,¢)) = 0 for all A € T, ¢ € M,
hence Ay € #*+. (b) Let A € T. Then AP = PAP and A*P = PA*P. Hence
AP = (PA*P)* = (A*P)* = PA. (c) Let A € T then AS* = (SA*)* = (A*S)* = S*A.
(d) This is obvious. (e) (Adapted from [[Fol95] 3.5]) S+ .S5* or i(S—.S*) is not a multiple
of . Since these operators are self-adjoint, (c¢) and (d) implies that € contains a self-
adjoint operator R which is not a multiple of I. By means of the spectral measure L
of R we then have a nontrivial projection in %. Thus there exists a nontrivial closed
invariant subspace. [

Statements (b) and (e) are known as a part of Schur’s Lemma: T is irreducible
if and only if its commutant contains only scalar multiples of the identity operator.

The notion of irreducibility then naturally applies to causal localizations (V, U, E)
by considering the set

T:={V(t): t e R}U{U(g) : g € ISUR)}U{E(A) : A€ BR)}.

Similarly the notion can be applied for relativistic localizations.
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