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ABSTRACT

With the impressive advances of deep learning in recent years
the interest in neural networks has resurged in the fields of
automatic speech recognition and emotion recognition.

In this paper we apply neural networks to address speaker-
independent detection and classification of laughter and filler
vocalizations in speech. We first explore modeling class pos-
teriors with standard neural networks and deep stacked au-
toencoders. Then, we adopt a hierarchical neural architec-
ture to compute enhanced class posteriors and demonstrate
that this approach introduces significant and consistent im-
provements on the Social Signals Sub-Challenge of the Inter-
speech 2013 Computational Paralinguistics Challenge (Com-
ParE). On this task we achieve a value of 92.4% of the un-
weighted average area-under-the-curve, which is the official
competition measure, on the test set. This constitutes an im-
provement of 9.1% over the baseline and is the best result
obtained so far on this task.

Index Terms— enhanced posteriors, hierarchical neural
networks, deep autoencoder networks, computational paralin-
guistics challenge

1. INTRODUCTION

The emerging field of computational paralinguistics is ded-
icated to the study of non-verbal elements of speech that
convey information about human affect, emotion, person-
ality, and speaker states and traits. There is an increasing
amount of research in that field [1][2][3][4] and a number of
Interspeech challenges in recent years have been organized
with the intention to foster research in the many different
aspects of paralanguage and to combine the sometimes scat-
tered research efforts leveraging synergy effects [5].

In this paper we introduce hierarchies of neural networks
and explore their effect on the classification performance on
the Sub-Challenge task. We show how adopting these net-
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works naturally leads to a smoothed and enhanced variant of
the posterior probabilities commonly obtained at the output of
standard multi-layer perceptrons (MLP). The time trajectories
of these enhanced posterior probabilities lead to better classi-
fication performance and generalize well. Next, we examine
if replacing these standard MLP with deep networks, such
as stacked autoencoders (SAE), improves the results. In pre-
vious work [6] we showed for the Likability Sub-Challenge
classification task of the Interspeech 2012 Speaker Trait Chal-
lenge [7] that the modeling power of Deep Belief Networks
(DBN) could not be leveraged. This was most probably due
to the severe overfitting that occurred as the relevant task was
based on utterance-wise feature vectors. In the Social Sig-
nals Sub-Challenge, however, frame-based acoustic features
are used. Therefore, overfitting does not pose any problem.
We evaluate different network architectures employing vary-
ing ranges of feature-level context. Further, we explore the
effect of different number of hidden units in the MLP and
SAE and the number of hidden layers in the SAE.

We explain the concept of enhanced posteriors in Sec-
tion 2, before giving a brief outline of autoencoder networks
in Section 3. The experimental results are detailed in Sec-
tion 4.

2. ENHANCED POSTERIORS

The use of posterior probabilities has become popular for im-
proving automatic speech recognition (ASR) systems and has
been extensively studied in the past [8][9][10]. There exist
two general ways to adopt posteriors: In the hybrid Hidden
Markov Model / Artificial Neural Network (HMM/ANN) ap-
proach [11] the posterior probabilities are used as local acous-
tic scores, while in the Tandem approach [12] the posterior
probabilities are fed as acoustic features into a HMM system,
usually after applying some transformation (e. g., PCA, LDA,
or logarithm) on the features.

In both cases Multi-Layer Perceptrons (MLP) have tradi-
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tionally been used to estimate the posteriors. In recent years
this idea has been extended to using deep networks of various
architectures and has led to a significant performance boost
on a wide range of tasks [13][14][15]. Instead of estimating
the posteriors with a single-hidden layer neural network, two
or more hidden layers are used. In the feed-forward evalua-
tion phase this may still be called a MLP, but different names
have been coined in the literature, e. g., Deep Belief Network
(DBN) [16], Stacked Autoencoder (SAE) [17], etc., depend-
ing on how the deep network has been pre-trained.

Another technique to improve upon the performance of
posterior-based systems is to build a second network on top
of the first one, thus building a hierarchical neural network.
This idea has previously been described for ASR systems [18]
and was shown to improve results. In this paper we will show
that this idea can successfully be employed also in the field of
social signal classification. Instead of optimizing the network
on a phone alignment we will optimize our networks on the
given target class labels.

In the following we will refer to the first layer posteri-
ors as regular or first-order posteriors and to any higher-layer
posteriors as enhanced or higher-order posteriors.

In order to model temporal context within neural networks
a common approach is to stack a fixed number of n successive
frames, so that a sequence of feature vectors is presented to
the network at each time step [19]. Often an equal number
of past and future feature frames around the central feature
vector x; is agglomerated. A sliding window from ¢ — (n —
1)/2tot+ (n—1)/2is applied to merge n successive feature
vectors of size N to an n - N-dimensional extended feature
vector 23, i.e.,

T = [Jctianl;...;xt;...;anTfl]
, —1 -1 )]
Ui gy

for

In order to obtain valid vectors for t < (n — 1)/2 and
t > T — (n— 1)/2, the first and last feature vector of z1.7
needs to be padded (n — 1)/2 times.

The extended feature vector x} is then fed into the first
MLP as input. The trained network transforms the input fea-
tures into regular posteriors. These can be stacked into an ex-
tended posterior vector just the same way as explained above.
This vector serves as input to a second MLP, which can be
learned based on the regular posteriors in order to learn long-
term inter- and intra-dependencies between class evidences
(posteriors) in the training data and transform the regular pos-
teriors into enhanced posteriors. Figure 1 shows a schematic
example of a network transforming a temporal context of n
stacked input frames into a vector of enhanced posteriors.

The first MLP receives the stacked baseline (acoustic) fea-
tures as input and estimates class posterior probabilities on
its output nodes. Subsequently, the second MLP uses a long
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Fig. 2. Example of a posteriorgram showing the posterior
trajectories over time for one utterance. The plot on the
top shows the posteriorgram of the regular posteriors for the
two classes garbage (solid blue line) and laughter (dotted red
line). The plot on the bottom shows the posteriorgram of the
enhanced posteriors for the same classes and utterance.

context of regular class posteriors as input and estimates en-
hanced class posteriors on its output. Here, we used the same
database for training the two MLPs. The long term depen-
dencies captured by the higher MLP leads to an enhancement
of the quality of the class posteriors. The rational behind this
is that at the output of every MLP, the information stream
gets simpler (converging to a sequence of binary posterior
vectors), and can thus be further processed (using a simpler
classifier) by looking at a larger temporal window [18].

A plot of the values of the posteriors over time is referred
to as a posteriorgram [20]. A typical example of a posteri-
ogram for the Social Signals database is given in Figure 2.

What is evident from the plot is that the enhanced posteri-
ors are much smoother than their regular counterparts. They
also exhibit less spiky behavior which usually leads to more
false alarms; this has often been tackled by some form of
heuristic smoothing [21]. A downside of this smoothing are
the shallower ramps at the class boundaries. We conjecture
that there will be more errors in these transition areas.

3. AUTOENCODER NETWORKS

An autoencoder (AE) is an artificial neural network that tries
to learn a compressed representation for its input data. This is
accomplished in the following way: given a set of input fea-
ture frames an AE computes the hidden layer activations, usu-
ally adopting a non-linear activation function, such as the sig-
moid function. This is referred to as the (encoding phase). It
then tries to reconstruct the input by computing the output ac-
tivations given the hidden layer activations (decoding phase)
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Fig. 1. Hierarchical network to generate enhanced posteriors: The first MLP transforms stacked (acoustic) features into regular
posteriors. A temporal context of those posterior vectors is created by frame stacking. The second MLP processes the temporal
context of regular posteriors and learns long term dependencies to estimate enhanced posteriors.

with the target being identical to the input. In the output layer
one usually adopts a non-linear function for binary input and
a linear function for real-valued input. The cost function to be
minimized generally is chosen to be the mean-squared error
(MSE) for real-valued input/output or the cross-entropy for
binary input/output.

It should be noted that without any further constraints suc-
cessfully training an autoencoder network requires the hidden
layer to be smaller than the input layer. Otherwise the en-
coding will easily learn the identity function, which is the
trivial solution the minimization problem. This approach is
generally referred to as the bottleneck architecture. However,
a number of alternative architectures have been proposed to
avoid this constraint, such as the denoising autoencoder [22]
or the contractive autoencoder [23].

The main motivation for adopting autoencoder networks
is to pre-train - possibly deep - neural networks in an unsuper-
vised manner. This pre-training moves the network parame-
ters close to an optimum and thus gives a good initialization
to a subsequent fine-tuning step, e. g., by running Stochastic
Gradient Descent (SGD).

Moreover, it is possible to stack the resulting, pre-trained
autoencoders to form a deep stacked autoencoder to get a
good initialization for a deep network, which can subse-
quently be fine-tuned. An alternative approach is to use Re-
stricted Boltzmann Machines (RBM), which has been inves-
tigated earlier on the task of Likability Classification [6]. As
a pre-training step for deep networks it is debatable whether
RBMs or AEs give better performance. In practice they seem
to give comparable results on many tasks. Some informal ex-
periments we have conducted on the current Sub-Challenge
has confirmed this and as AEs are somewhat faster to train,
we have decided to prefer AEs over RBMs.
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4. EXPERIMENTS

4.1. Database and feature set

The results presented in this section were obtained by running
experiments on the Social Signals Sub-Challenge of the Inter-
speech 2013 Computational Paralinguistics Challenge (Com-
ParE), which comprises 2763 utterances or roughly 3 million
frames in total. The task is to perform a frame-wise classifica-
tion of three vocalization classes during phone conversations
between two persons, where the voice of only one speaker is
audible. The classes are: laughter, filler (vocalizations such
as "uhm”, ’eh”, ”ah”, etc.), and garbage, which contains all
other vocalizations, such as speech, further also including si-
lence. The results reported in this paper are based on the base-
line feature set composed of 141 features. For details about
the Challenge and the underlying baseline feature set refer
to [24].

4.2. Regular posteriors

For the experiments on regular posteriors we trained all net-
works on the frame-wise class targets of the full training set.
As network input z; we used the full competition baseline
feature set comprising all 141 features. For feature frame
stacking, we evaluated sliding windows of lengths between
n = 1 and n = 15. Given the frame shift of 10 ms and
a frame size of 20 ms this amounts to a maximum temporal
context of approximately 160 ms, which is in the range of
average phone durations of human speech [25].

For training the networks we used standard Stochastic
Gradient Descent (SGD) using momentum. Further, we
applied Lo-regularization on the layer weights. All meta-
parameters used to train the networks such as the number



and size of the hidden layers, learning rate , momentum, and
batch size were chosen to be the ones that gave the highest
unweighted average area-under-the-curve (UAAUC) value on
the development set.

We evaluated two different network setups: single-layer
MLP without pre-training and multi-layer MLPs with stacked
autoencoder (SAE) pre-training. Contrary to the results re-
ported in [6], informal experiments on the Social Signals
database have shown that pre-training a single-layer MLP
does not improve performance.

Table 1 compares the UAAUC for a single-hidden layer
MLP and a two-hidden layer SAE for different layer sizes.

UAAUC [%] size of hidden layer(s)
64 128 | 256 | 512 | 1024
MLP 9251928 | 93.0 | 92.8 | 92.7
Deep SAE (2) | 93.1 | 934 | 93.7 | 934 | 933

Table 1. Regular posteriors: Comparison of a single-hidden
layer MLP and a two-hidden layer SAE for different hidden
layer sizes on the development set.

Based on these findings we fixed the layer size to 256 and
investigated how the number of layers in a deep SAE would
affect the performance. Table 2 shows the results.

UAAUC [%] number of hidden layers
1 2 3 4 5
Deep SAE | 93.0 | 93.7 | 934 | 93.2 | 93.0

Table 2. Regular posteriors: Effect of the number of hidden
layers in a deep SAE on the UAAUC on the development set.

Best results were obtained with 2 hidden layers only. We
conjecture that this is due to the relatively few (only three)
classes, so that no advantage can be drawn from the presumed
higher modeling power of deeper nets. However, this requires
a more thorough analysis.

On top of the experiments described above, we also tried
different temporal context sizes (results not shown here), but
a context of 11 frames gave the best results.

4.3. Enhanded posteriors

For training the enhanced or second-order posterior networks
we followed the approach described in Section 4.2: We took
the three-dimensional regular posterior vectors and applied
sliding windows of lengths between n = 3 and n = 201 for
stacking the frames, which amounts to a maximum temporal
context of approximately 200 ms.

The set of meta-parameters to be optimized was the same
as the one used for the regular posteriors. Again we chose the
ones that gave the highest UAAUC value on the development
set.
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First, we investigated the effect of different context
lengths of regular posteriors which were used as input to
the second network generating the enhanced posteriors. Ta-
ble 3 shows the results for a MLP with a hidden layer of 256
units.

UAAUC [%] # context frames
51 75 101 | 151 | 175 | 201
MLP 96.6 | 969 | 97.1 | 97.3 | 97.2 | 97.1

Table 3. Enhanced posteriors: Comparison of the effect of
the temporal context of stacked regular posteriors for a MLP
with 256 hidden units on the development set.

We obtained best results for a context size of 151 frames.
With this value we achieved an UAAUC of 97.3%. This is
an impressive improvement of 9.7% absolute over the base-
line on the development set. The table further shows that the
performance is not overly sensitive to the context size.

Next, using this setup, we varied the number of hidden
units in the network. The results are depicted in Table 4.

UAAUC [%] # hidden units
64 128 | 256 | 512 | 1024 | 2048
MLP 96.8 | 97.1 | 97.3 | 97.2 | 97.2 | 97.1

Table 4. Enhanced posteriors: Comparison of the effect of
the number of hidden units for a MLP using an input context
of 151 frames on the development set.

The table confirms the previously chosen value of 256 as
the optimal hidden layer size for the enhanced posterior net-
work. Again, we observe that the decrease in performance is
rather small as we move away from the optimum number of
hidden units.

Due to limitations in the available training time we were
unable to investigate deep SAEs on the regular posteriors to
generate the enhanced posteriors. We plan to investigate this
issue in the future.

4.4. Higher-order enhanced posteriors

In the spirit of generating enhanced posteriors built from the
regular posteriors we have also tried to stack another MLP on
top of the current system and use the (second-order) enhanced
posteriors as input to generate higher-order enhanced posteri-
ors. Just as described in Section 4.2 we have taken a context
of enhanced posterior frames and used the stacked frames as
input to yet another MLP. The outputs of this trained network
still represent posteriors - we refer to them as third-order pos-
teriors. The results of using these higher-order posteriors are
given in Table 5.

Comparing these results with those shown in Table 3 we
observe that for shorter, sub-optimal context lengths (51 is



# context frames (regular) 51 151
# context frames (enhanced) | 51 151 51 151
UAAUC [%] 96.8 | 96.9 | 97.1 | 96.8

Table 5. Third-order posteriors: Results obtained for a 2nd-
order MLP on the development set. The first row shows the
number of frames of regular posteriors (output from the first
MLP) used to build the input of the second MLP. The second
row shows the number of frames of enhanced posteriors (out-
put from the second MLP) used to build the input to the third
MLP.

this case) higher-order posteriors give rise to a slight improve-
ment. However, for the optimum context length of 151 frames
the performance slightly decreases. We suspect that this is
due to the effect of overly smoothing the posterior trajecto-
ries, especially at the transition boundaries between classes.

In summary, for the task at hand going beyond second-
order posteriors does not further redound to performance im-
provements.

4.5. Summary

In the following we summarize the best results obtained on
the Sub-Challenge. Note that we have strictly adhered to the
challenge rules which in particular imposed a maximum of 5
submissions of results obtained on the test data.

In Table 6 we show the baseline results together with the
results of our best setups for regular posteriors and for en-
hanced, i. e., second-order, posteriors. We report the AUC and
UAAUC measures obtained on the development set, which
served as the basis for choosing the optimal parameters as
well as the numbers for the test set.

[%] \ \ devel set | test set
AUC [Laughter] 86.2 82.9
baseline AUC [Filler] 89.0 83.6
UAAUC 87.6 83.3
regular AUC [Laughter] 92.8 90.5
. AUC [Filler] 94.5 88.0
POSeriors | yaAuC 937 | 89.2
enhanced AUC [Laqghter] 98.1 94.9
posteriors AUC [Filler] 96.5 89.9
UAAUC 97.3 92.4

Table 6. Summary of best results. Depicted are results on
the development and the test set using models trained on the
full training set. Only the test results for the baseline were
obtained training on the training and development set.

Note that for the results of the baseline on the test set the
respective models were retrained on the union of the training
and development sub-sets. On the contrary, retraining our net-
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works on both sub-sets, the results slightly worsened, so our
results on the test set are based on networks that were trained
on the training set only.

5. CONCLUSIONS

We have successfully applied a hierarchical neural network
architecture that generates enhanced posterior probabilities on
the problem of classifying the three different classes garbage,
laughter, and filler of the Social Signals Sub-Challenge of the
Interspeech 2013 Computational Paralinguistics Challenge.
Exploiting temporal contextual information over the regular
class posteriors the enhanced posteriors exhibit smoothed
time trajectories yielding substantial improvements over the
regular posteriors.

In adopting our approach we view the task as a conventional
classification task and manage to obtain a UAAUC of 92.4%
on the test set, an increase of 9.1% absolute over the baseline
result. This is the best result on this task reported so far in
the literature, outperforming the Sub-Challenge winner’s re-
sults [26] from the Interspeech 2013, while strictly adhering
to the challenge rules.

A promising direction for future research is, hence, explor-
ing upsampling or downsampling the data of the respective
classes. Further, instead of treating the problem as a pure
classification task, approaching it using keyword or detection
techniques and a combination of these with the presented
strategy might yield further improvements. We also plan to
feed the enhanced posterior features into sequential mod-
els, such as HMMs or recurrent neural networks in order to
exploit their temporal modeling capacities.
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