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Abstract—CoMP transmission gains attraction for future re-
leases of LTE-Advanced specifications. It is considered for
downlink cochannel interference mitigation of OFDMA systems
operated at full frequency reuse. However, channel knowledge at
the transmitter side will be required, where its usability reduces
over time, even under quasi-static mobility. This work studies the
range of performance degradation caused by channel aging and
delayed utilization for the purpose of joint zero-forcing precoding
from a subset of base stations. We demonstrate that channel
prediction significantly improves the CoMP performance: There
is hardly any difference between ideal and delayed feedback when
utilizing prediction filters in low mobility regime.

I. INTRODUCTION

Cooperative transmission from multiple base stations (BSs)

in the multi-cellular system is known to reduce the effects from

cochannel interference (CCI). Despite the fact of using zero-

forcing (ZF) beamforming, practical systems will always suffer

from intra-cluster interference. There is a variety of reasons

which destroy the inter-user orthogonality: Channel estimation

and quantization, channel aging effects and synchronization

errors of multiple BSs. In practical systems, there is always a

delay between the channel estimation at the mobile terminal,

the feedback of channel quality indicator (CQI) and CSI and

the time instant when this estimate is used for composing

the following downlink transmission, refer to Fig. 1. As the

channel may change during this delay time, the channel obser-

vation may be outdated for precoding the next transmission.

[1] provides a characterization of the channel evolution due to

this aging process for point-to-point MIMO links. However,

it assumes equal channel gain for all the links, which is not

appropriate for joint transmission (JT) coordinated multi-point

(CoMP). In addition, user equipments (UEs) may provide

feedback information within a certain interval.

In [2] we focused on synchronization. The contribution of

this work is to evaluate the effects caused by channel aging.

Therefore, we will describe our system model in sections II

and III. Second, we introduce a mismatch between the ideal

channel and its estimated or delayed version by evaluating

the corresponding relative mean square error (RMSE). Section

IV therefore assumes an zero mean additive white Gaussian

noise (AWGN) error distribution with different variances μ.

In section V, we will study different liner channel prediction

methods and their performance in an isolated MIMO link. The

overall performance evaluation, including precise modeling of

channel time evolutions, is carried out in section VI.
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Fig. 1. Definition of feedback delay and feedback interval according to 3GPP
specifications.

II. DOWNLINK SYSTEM MODEL

By exploiting channel adaptive spatial precoding we can

actively reduce the interference inside a cluster of cooperating

BSs, denoted as CoMP transmission. We consider a cellu-

lar OFDM downlink where a central site is surrounded by

multiple tiers of sites. We assume each site to be partitioned

into three 120◦ sectors, i.e. a set M consisting of M = |M|
sectors in total. Each sector constitutes a cell, and frequency

resources are fully reused in all M cells. Mc represents the

set of cells included in a given cluster and Mc = |Mc| denotes

its maximum dimension. In order to reduce the overhead for

pilots and signalization data, we focus on rather small clusters

with up to 3 up to 10 BS sectors. We assume disjoint clusters,

i.e. a given BS cannot belong to more than one cluster operated

at the same time/frequency resource. For OFDM systems,

the overlap of multiple clusters can be achieved conveniently

in the frequency domain. Joint processing is only allowed

between BSs belonging to the same cluster, where BSs outside

the cluster are not coordinated and thus cause residual inter-

cluster interference. Furthermore, dynamic clustering allows a

more efficient power allocation. Mobile users experiencing a

weak channel to a given cluster are assigned to another BS

cluster [3].

Each cluster selects a set of active users Kc following a

specific scheduling metric. In the c-th cluster, there are Mc

BSs, each one equipped with Nt transmit antennas, while the

Kc = |Kc| users are equipped each with Nr receive antennas.

The users inside the cluster are served by signals jointly emit-

ted from McNt transmit antennas, where Mc ·Nt ≥ Kc ·Nr.
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yk,t(n) = Hc,k(n) [Bc,k]:,t (n− τ)
√
pc,txc,t(n) +

∑
j∈Ts\{t}

Hc,k(n) [Bc]:,j (n− τ)
√
pc,jxc,j(n) + zk(n)

= Hc,k(n)
[
[Bc,k]:,t (n)− [Δk]:,t (n, τ)

]√
pc,txc,t(n)

+
∑

j∈Ts\{t}
Hc,k(n)

[
[Bc]:,j (n)− [Δk]:,j (n, τ)

]√
pc,jxc,j(n) + zk(n) (1)

wH
k,t(n)yk,t(n)

(5)

=
(
βc,t −wH

k,t(n)Hc,k(n) [Δk]:,t (n, τ)
)√

pc,txc,t(n)

+
∑

j∈Ts\{t}

(
0−wH

k,t(n)Hc,k(n) [Δk]:,j (n, τ)
)√

pc,jxc,j(n) +wH
k,t(n)zk(n)

=
(
βc,t −wH

k,t(n)Hc,k(n) [Δk]:,t (n, τ)
)√

pc,txc,t(n)︸ ︷︷ ︸
hk

−
∑

j∈Ts\{t}
wH

k,t(n)Hc,k(n) [Δk]:,j (n, τ)
√
pc,jxc,j(n)

︸ ︷︷ ︸
ϑk,t

+wH
k,t(n) zk(n) (2)

The McNt ×MNt precoding matrix Bc = [Bc,1 · · · Bc,Kc
]

contains the precoders Bc,k designed for each of the users.

Note, each UE might receive multiple spatial layers at the

same time, i.e. Bc,k is of dimension McNt × |Ts,k|, where

Ts,k denotes the set of spatial layers selected for instantaneous

downlink service at user k. The maximum number of entries

in this set is limited by the number of receive antennas, i.e.

|Ts,k| ≤ Nr. The set Ts combines all selected spatial layers for

spatial division multiple access (SDMA) service of the UEs

in Kc.

For further analysis, we assume the c-th cluster is sur-

rounded by M−Mc BSs evoking non-coordinated CCI. Thus,

the received downlink signal yk,t for t ∈ Ts,k ⊂ Ts at user k
in the cellular environment is given by

yk,t = Hc,k [Bc,k]:,t
√
pc,txc,t︸ ︷︷ ︸

hk,t

+
∑

j∈Ts\{t}
Hc,k [Bc]:,j

√
pc,jxc,j

︸ ︷︷ ︸
ϑk,t

+
∑

m∈M\Mc

Nt∑
j=1

Hm,k [Bm]:,j
√
pm,jxm,j + n

︸ ︷︷ ︸
zk

(3)

The desired t-th data stream xc,t transmitted to the k-th user

from the c-th cluster is distorted by the intra-cluster and

inter-cluster interference plus noise aggregated in ϑk,t and

zk, respectively. Hc,k spans the Nr × McNt channel matrix

for user k formed by the c-th cluster and pc,t is its power

allocation valid for the t-th data stream. Thus, ϑk,t denotes the

interference generated within the cluster. The Nr×1 vector n
denotes the AWGN samples with covariance E

{
nnH

}
= Iσ2

n.

The noise power consists of the receiver noise figure and the

thermal noise power.
The achievable signal-to-interference-and-noise ratio

(SINR) is estimated at each UE, according to

SINRk,t =

∣∣∣wH
k,tHc,k [Bc,k]:,t

√
pc,t

∣∣∣
2

∑
j∈Ts\{t}

∣∣∣wH
k,tHc,k [Bc]:,j

√
pc,j

∣∣∣
2

+wH
k,t [zkz

H
k ]wk,t

,

(4)

with wk,t being the combining weights at the k-th receiver

and for data stream t.

III. TIME-VARIANT SYSTEM MODEL

In order to describe the effect of outdated channel know-
ledge, we extend the above system model description from (3).
We define xc,t(n) as the data symbol to be transmitted on the
downlink and Hc,k(n) as the MIMO channel matrix at time
instance n. [Bc,k]:,t (n−τ) denotes the precoding matrix used
at time n but based on a τ -old estimate of the channel. Let
us assume the precoder to follow a ZF constraint, which can
be obtained using the Moore-Penrose pseudo inverse in case
of MISO CSI feedback

[Bc,k]:,t (n− τ) = HH
virt(n− τ)

[
Hvirt(n− τ)HH

virt(n− τ)
]−1

(5)

The total transmit power is equally distributed among all active

data streams, while we maintain a per antenna power constraint

(PAPC) by using a simplified solution from [4]. The transmit

power per antenna is chosen according to the row element in

Bc with highest norm.

In addition, we may define a difference matrix [Δk]:,t (n, τ)
that relates the τ -old channel inverse with the current precoder

as [Bc,k]:,t (n) = [Bc,k]:,t (n−τ)+[Δk]:,t (n, τ). The received

signal yk,t(n) at the discrete time index n is given by (1) and

the equalized signal after ZF precoding simplifies to (2)

From Eq. (2) it becomes obvious that the feedback delay

τ causes a time-variant change in the desired channel vector

hk and causes intra-cluster, i.e. inter-user, interference ϑk,t

depending on the column vectors [Δk]:,j (n, τ) from matrix

Δk(n, τ), as it breaks the inverse relationship between the

channel and the precoder.
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Fig. 2. Performance results as a function of the cluster size Mc. The
normalized MSE is per subchannel, i.e. in case of Mc = 10 sectors in
the cluster, each equipped with Nt = 2 antennas, the UE estimates up to
Mc ×Nt = 20 subchannels with an i.i.d. Gaussian distributed RMSE. Users
are equipped with Nr = 2 receive antennas.

IV. MODELING IMPERFECT CSIT

In general, we may describe the mismatch between the ideal

channel and its estimated or delayed version by evaluating the

corresponding RMSE.

rMSE =
E

∣∣∣H − Ĥ
∣∣∣2

E |H|2
. (6)

To ease comparison of results across different channels, we

normalize the mean square error (MSE) by the average

channel power. In this following, we evaluate the system

level performance of CoMP transmission using multi-user

eigenmode transmission (MET) [5], [6] and a dynamic cluster

selection and a round-robin scheduling metric for active UEs

[7]. Therefore, we assume each UE to decompose its MIMO

channel matrix into its dominant eigenspaces, where only the

dominant one is used for feedback. In particular, we use CSI

feedback from UEs and add a zero mean i.i.d. AWGN term

with variance μ, according to (6) per subchannel. This non-

perfect CSI is used at the BSs to calculated the ZF precoding

solution.

The erroneous feedback results in a more severe degradation

with increasing cluster size. Finally, we increase the cluster

size from Mc = 1 up to Mc = 10. Fig. 2 depicts the resulting

Shannon information rate per sector as a function of the cluster

size Mc and accuracy of CSI feedback, i.e. in case of error free

and erroneous channel feedback. From this figure it is obvious

that an RMSE of μ = −10 dB would restrict the useful cluster

size to Mc = 3. In essence, the CoMP gains as function of

the cluster size show less saturation behavior for improved

multi-cell channel knowledge. Concluding, we observe that

the median sector spectral efficiencies are increased by 220%,

300% and 430% for coordinating 3, 5 and 10 cells for error

free CSI feedback, respectively. These numbers are reduced

to 190%, 230% and 300% in case of erroneous feedback with

an MSE of μ = −20 dB.

V. PREDICTING THE CHANNEL EVOLUTION

In the next section, we want to characterize the range of

channel degradation using different linear channel prediction

filters. Therefore, let us define h11
c,k to be the 1st sub-channel

coefficient of a MIMO channel matrix Hc,k. Further assume,

h11
c,k(n) being a row vector with the last p observations of the

channel frequency response, i.e.,

h11
c,k(n) =

[
h11
c,k(n− p+ 1) . . . h11

c,k(n)
]
. (7)

Then the predicted channel response at time instant n+ α is

given as

ĥ11
c,k(n+ α) = h11

c,k(n)ωn. (8)

The optimal weight vector which minimizes the MSE follows

from the solution of the normal equations [8], and is given as

ωn =
(
Rh11

c,k(n)
+ σ2

est1
)−1

rn,α, (9)

with σ2
est being the estimation error variance1, and

rn,α =
[
rh11

c,k(n)
(α+ p− 1) · · · rh11

c,k(n)
(α)

]T

, (10)

Rh11
i,m(n) =⎡

⎢⎢⎢⎣

rh11
c,k(n)

(0) rh11
c,k(n)

(1) . . . rh11
c,k(n)

(p− 1)

r∗
h11
c,k(n)

(1) rh11
c,k(n)

(0) . . . rh11
c,k(n)

(p− 2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
r∗
h11
c,k(n)

(p− 1) r∗
h11
c,k(n)

(p− 2) . . . rh11
c,k(n)

(0)

⎤
⎥⎥⎥⎦ ,

(11)

and

rh11
c,k(n)

(τ) = En

{
h11
c,k(n+ τ)

(
h11
c,k(n)

)∗}

≈ 1

M

M−1−τ∑
n=0

h11
c,k(n+ τ)

(
h11
c,k(n)

)∗
.

(12)

In (12) we use the sample autocorrelation function (ACF) [8],

[9] to estimate the ACF over the last M ≥ α+ p samples of

the channel response. If not stated different, we use M = 100
and p = 20 throughout this work, and solve Eq. (9) at every

time instant. Even though the linear system (9) may be solved

with computational complexity O(p2) using the Levinson-

Durbin recursion [10], this approach has comparable high

computational complexity and memory requirements.

Therefore, we also evaluate well-known adaptive algo-

rithms, namely normalized least-mean-squares (NLMS), and

recursive least squares (RLS) [11]. For the latter, we chose

the QR-decomposition (QRD) based implementation since it

has superior numerical properties in finite precision. Note, that

there exist fast RLS algorithms with only O(p) operations

per iteration, as opposed to O(p2) in case of the classi-

cal implementation, which may be applied to this problem.

Furthermore, we estimate the ACF over the whole channel,

1We model the estimation error as additive white Gaussian noise with zero
mean and variance σ2

est =
SNRest

E

{∣∣∣h11
c,k

∣∣∣2
} .
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TABLE I
PARAMETER ASSUMPTION FOR CHANNEL PREDICTION.

Default value Description Affected algorithm

λ = 0.99 Forgetting factor RLS
ε = 0.01 Regularization parameter NLMS & RLS
M = 100 Memory length Wiener
p = 20 Filter order all

α = 5 ms Prediction horizon all
d = 1 ms Channel sample spacing all
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Fig. 3. Channel prediction performance with p = 20, both feedback delay τ
and interval is set to 5 ms. The channel coefficients are generated using SCME
with 3 km/h or 50 km/h mobility; observation duration is 18’000 ms. In (b),
we linearly cross-fade the channels having 3 km/h into channels, where UEs
move with 50 km/h, in order to estimate the tracking behavior when channel
statistics are changing significantly.

and use (9) to obtain a nearly optimal predictor. This filter

will be used to assess the performance of the considered

prediction algorithms. Figs. 3(a), 3(b) and 3(c) depict the

tracking performance and the performance of ZF beamforming

in a single 2 × 2 MIMO link. Channel prediction parameters

are summarized in Tab. I.

VI. SYSTEM LEVEL SIMULATION INCLUDING CHANNEL’S

TIME EVOLUTION

In the following section, we discuss the results we obtained

from our system level simulations. Since both, channel predic-

tion and CoMP transmission, strongly depend on the channel

modeling, we spend much effort in designing an advanced

channel and scenario model for heterogeneous systems. While

the core-part based on the recommendation from [12], we

TABLE II
SIMULATION ASSUMPTIONS.

Parameter Value

Channel model According to 3GPP SCME [12]
Simulation type Monte Carlo plus time evolution
Drops 500
Channel evolution 500 ms with 1 ms resolution
Scenario Urban-macro
Propagation NLOS
Large-scale fading Geo-correlated parameters maps
Traffic model Full buffer
fc 2.6 GHz
Velocity 3 km/h
Frequency reuse 1
Signal bandwidth 18 MHz, 100 RBs
Inter-site distance 500m

Number of BSs 19 having 3 sectors each
Nt ; spacing 4 ; 4λ
Transmit power 46 dBm
Transmit antenna Azimuth: FWHM of 58◦

Elevation: FWHM of 6.2◦

10◦ electrical downtilt
BS height 32m
Beamforming Cluster-wide MET, ZF constraint
Clustering Network-centric
User grouping 3 user per sector, round-robin

Nr ; spacing 2 ; λ/2
UE height 2m
Feedback interval 6 ms
Feedback delay 5 ms
Channel prediction RLS with α = {5, 10} ms and d = 1 ms

have three main extensions included: (a) According to [13],

we generate geo-correlated parameter maps for all required

large-scale fading coefficients, such as delay spreads, shadow

fading, k-factors and angular spreads in azimuth and elevation.

(b) We include precise modeling of directional base station

antennas with remote electrical tilt (RET) units. Here we use

a 3D-model of a Kathrein 80010541 antenna2. More details

on antenna modeling and its impact on cellular system perfor-

mance evaluation can be found in [14]. (c) Quasi-deterministic

channel’s time evolution with drifting of multi-path scattering

objects. A detailed list of the multi-cell channel is given in

Tab. II.

Each UE is assumed to provide CSI and CQI feedback under

the assumption of its own dominant eigenmode vector with

respect to the cluster Mc. Based on the conveyed downlink

user CSI, the cluster determines the sum received power per

BS antenna array. For each BS, the scheduler groups the users

from Kc according to their individual highest channel gain,

yielding Mc different user groups Kc,m ⊂ Kc. Within the

next step, the round-robin3 scheduler entity selects from each

user group Kc,m a 3 different users for SDMA service, such

that the number of active spatial layers Ts from the cluster

Mc is given by Mc(Nt − 1) = |Ts|. Hence, we reserve one

antenna per BS for transmit diversity.

2http://www.kathrein-scala.com/catalog/80010541.pdf
3Note, this very simple metric ensures a certain degree of fairness between

the users.
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VII. CONCLUSION

Fig. 4 shows the results, obtained from our computer

simulations. In particular, Fig. 4(a) depicts the median RMSE

at different time instances, i.e. after certain settling times of the

prediction filter. The error starts at a relatively low value, then

starts rising since the RLS, at this stage, covered insufficient

channel statistics while the probability for a changing channel

is increasing. After a certain settling time, channel statistics

gets more sufficient and thus the error starts dropping and

converges to a minimum value. Note, for the selected time

window of 500 ms, we cannot observe this convergence

behavior.

Figs. 4(b) and 4(c) provide performance results for cluster

size Mc = 1 and Mc = 3, respectively. The ideal case depicts

the system with perfect, non-delayed channel knowledge,

while the other CDFs show the performance with delay and

with or without prediction filter: At cluster size Mc = 1, we

hardly observe any degradation without prediction for 5 ms

feedback delay and only small loss when experiencing 10 ms

delay. For Mc = 3 and 10 ms delay, the degraded system

suffers from 8% loss. Note, from Fig.2, we would expect a

stronger degradation, which is attributed to the modeling of the

error distribution. As a result, we conclude that the errors from

channel outdating may not follow a Gaussian distribution,

which was assumed in section IV. When we apply the RLS

channel prediction, there is a hardly any loss at 10 ms delay

and 3 km/h for both cluster sizes.
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