
TECHNISCHE UNIVERSITÄT MÜNCHEN
Lehrstuhl für Steuerungs- und Regelungstechnik

Design and Control of Shape Rendering Interfaces

Stefan Klare

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik der
Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr.-Ing. habil. Gerhard Rigoll

Prüfer der Dissertation:

1. TUM-IAS Junior Fellow Dr.-Ing. Angelika Peer

2. Univ.-Prof. Gordon Cheng, Ph.D.

Die Dissertation wurde am 16.01.2014 bei der Technischen Universität München eingereicht
und durch die Fakultät für Elektrotechnik und Informationstechnik am 30.09.2014
angenommen.

Foreword

This thesis summarizes four years of my research carried out at the Institute of Automatic
Control Engineering (LSR), Technische Universität München. The work is supported in part
by the BEAMING project within the 7th Framework Programme of the European Union.
First of all, I would like to thank my thesis advisor Dr.-Ing Angelika Peer, who guided me
through academia to where I am today. She always left me enough space and freedom for
exploration and innovation.
My next most sincere appreciation goes to Prof. Dr.-Ing/Univ. Tokio Martin Buss who offered
me a research position in one of the best-established robotics group.
Thanks go to the technicians, Mr. Gradl, Mr. Kubick, Mr. Geng, Mr. Stöber, Mr. Lowitz, Mr.
Jaschik and especially Mr. Weilbach who always helped me to realize my ideas.
Next, I would like to thank Dr. Dirk Wollherr and Dr. Marion Leibold as well as the sec-
retaries Ms. Werner, Ms. Schmid and Ms. Renner who had always kindly helped me with
administrative issues.
Further thanks goes to my colleagues who inspired me and helped with intensive discussions.
I especially want to thank Markus Rank, Laith Alkurdi, Sheraz Khan, Alexander Schmidts,
Daniel Carton, Roderick de Nijs, Ken Friedl, Andreas Lawitzky, Sebastian Söntges, Stefan
Sosnowski, Harald Voit, Moritz Stötter, Thomas Schauss, Daniel Althoff, and everybody I for-
got. I had a lot of fun with all of you.
A very special thank goes to my friends who always supported me during my thesis. Espe-
cially I want to thank Carlo von Reumont, Dr. Nikolai von Hoyningen-Hüne, Philipp Scherer,
Andreas Massat, Till Neßeler, Andreas Trapp and Lukas Stubenrauch.
My final and most sincere thanks go to my family, who had always put their faith in me.

Munich, December 2013 Stefan Klare

iii

to my parents

Abstract

This thesis shows a systematic analysis for the design and control of 3D shape rendering inter-
faces (SRI). The corresponding research field is still very young and no commercial solutions
for SRIs are existent up to now. Scientific solutions for the design of SRIs are not satisfying
as they have a low spatial resolution, are not feasible to display objects with undercuts or are
not actuated. Plenty of promising applications for SRIs are thinkable. Potential applications
lie in the fields of telerobotics, virtual reality and design. A SRI, which is used in the design
process of e.g. car bodies, on the one hand offers the opportunity to display the shape of spe-
cific parts which were previously designed by e.g. CAD-software tools. On the other hand,
changes to these parts can be made intuitively by interacting with a SRI. Other promising
applications can be found in the fields of virtual or augmented reality. As haptic interactions
of a human operator with the SRI occurs with the bare hand, a high transparency can be
gained for the system. Thereby, the combination of SRIs with encounter-type interfaces is of
special interest, as the workspace of SRIs can be extended by the encounter-type interface.
This dissertation describes a systematic approach for the design of SRIs. After defining design
guidelines, a numerical method to quantitatively compare different SRIs or different configu-
rations of it, is presented. This method is used to gain an optimal hardware design to render
cylindrical and spherical objects. The derived design, a parallel kinematics with 24 Degrees
of freedom (DoF), is implemented in a prototype. The prototype has a higher resolution than
the existing analogues, is fully actuated and can be extended easily. Maximum curvatures,
stiffness and dynamics are determined for the prototype.
Further, a kinematic description for SRIs, that are characterized by a high amount of DoF and
a parallel kinematic design, is presented. Existing methods, which are based on numerical
optimizations are not real-time capable. In contrast, the method presented here is real-time
capable as the kinematics is solved in a differential way. For this purpose, tasks are intro-
duced, which must be satisfied simultaneously. The tasks are embedded in a hierarchical
framework in accordance to their importance, and take care of the kinematic constraints of
the parallel kinematics, the shape to render and user-interactions. The kinematic description
is divided into two modes. For haptic interaction with compliant objects a different descrip-
tion is used as for interactions with stiff objects. Furthermore, two shape descriptions can be
distinguished. The shape (surface) of objects can either be described by implicit functions or
with the help of polygon data sets, which is a prevalent shape description in common CAD
software tools.
The ambition to cover a large interaction area with a kinematics which features a high reso-
lution inevitably leads to a kinematics with a high amount of actuators, which further leads
to an expensive hardware design. Thus, this thesis analyses a measure, which can be used
to reduce the amount of needed actuators for SRIs. Sequentially actuating the joints with
one single actuator only is simulated and a method for determining the time-optimal switch-
ing sequence is analyzed. For this, a hybrid system description is derived. The optimization
problem is solved with a heuristic graph search method.
Thus, this thesis gives extensive and innovative directions for the design and control of SRIs,
which exceed state-of-the-art approaches.

vii

Zusammenfassung

In der vorliegenden Dissertationsschrift wird eine umfangreiche und systematische Analy-
se für das Design und die Regelung von 3D-Formdarstellungsgeräten (SRI) vorgestellt. Der
entsprechende Forschungsbereich ist noch sehr jung und derzeit sind keine kommerziellen
Lösungen für SRIs bekannt. Wissenschaftliche Lösungen für das Design von SRIs sind unbe-
friedigend, da sie eine geringe räumliche Auflösung besitzen, keine Hinterschnitte darstellen
können, oder nicht aktuiert sind. Vielversprechende Anwendungsbereiche für SRIs sind na-
heliegend. Mögliche Anwendungen liegen in den Bereichen der Telerobotik, der virtuellen
Realität und im Design. Ein SRI, das beispielsweise im Design-Prozess von Fahrzeugkaros-
serieteilen verwendet wird, bietet einerseits die Möglichkeit, Formen bestimmter Teile, die
beispielsweise mit einer CAD-Software designed wurden zu visualisieren. Andererseits kön-
nen Änderungen an diesen Teilen in intuitiver Weise vorgenommen werden, indem ein SRI
als Eingabegerät verwendet wird. Andere vielversprechende Anwendungen liegen im Be-
reich der virtuellen oder erweiterten Realität. Da haptische Interaktionen zwischen einem
menschlichen Bediener und dem SRI mit der bloßen Hand durchgeführt werden, kann eine
hohe Transparenz für das haptische System gewonnen werden. Dabei ist insbesondere die
Kombination von SRIs mit Begegnungseingabegeräten (Encounter-type) von Interesse, da
der Arbeitsbereich von SRIs durch Begegnungseingabegeräte erweitert werden kann.
Diese Schrift beschreibt ein systematisches Vorgehen für das Design von 3D-Eingabegeräten.
Hierzu werden zunächst Designrichtlinien festgelegt. Eine numerische Methode, zum quan-
titativen Vergleich von verschiedenen Eingabegeräten bzw. verschiedenen Konfigurationen,
wird vorgestellt. Diese Methode wird verwendet, um ein optimales Hardwaredesign zur Dar-
stellung von zylindrischen sowie kugelförmigen Objekten zu ermitteln. Das so ermittelte De-
sign, eine Parallelkinematik mit 24 Freiheitsgraden, wird in einen Prototyp umgesetzt. Der
Prototyp weißt eine höhere Auflösung als bekannte Alternativlösungen auf, ist voll aktuiert
und kann einfach erweitert werden. Maximale Krümmung, Steifigkeit und Dynamik werden
für den Prototypen ermittelt.
Zudem wird eine kinematische Beschreibungsweise für Formeingabegeräte präsentiert, die
sich durch eine hohe Anzahl von Freiheitsgraden und ein parallelkinematisches Design aus-
zeichnen. Bestehende Verfahren, die auf numerischen Optimierungen basieren, sind nicht
echtzeitfähig. Im Gegensatz dazu ist das hier vorgestellte Verfahren echtzeitfähig, da die
Kinematik in differenzieller Weise gelöst wird. Hierzu werden sogenannte Teilaufgaben ein-
geführt, die simultan erfüllt sein müssen. Diese Teilaufgaben werden in eine hierarchische
Struktur eingebettet, um deren Wichtigkeit zu berücksichtigen. Die Aufgaben berücksichti-
gen insbesondere Nebenbedingungen, hervorgerufen durch die geschlossenen kinematischen
Ketten des Mechanismus, die darzustellende Form und Interaktionen mit dem Benutzer. Die
kinematische Beschreibungsweise wird in zwei Modi unterteilt. Für haptische Interaktionen
mit nachgiebigen Objekten wird eine andere Beschreibungsweise verwendet als für Inter-
aktionen mit steifen Objekten. Außerdem werden zwei Formbeschreibungen unterschieden.
So kann die Form (Oberfläche) von Objekten entweder als implizite Funktion oder als Poly-
gondatensatz beschrieben werden, was eine verbreitete Beschreibungsweise in den meisten
gängigen CAD-Software-Tools ist.
Das Streben nach einer großen Interaktionsfläche der Kinematik mit einer hohen räumlichen

ix

Auflösung führt zwangsläufig zu einer Kinematik mit einer hohen Anzahl an Aktoren, was
wiederum zu einem teuren Hardware-Design führt. Daher wird in dieser Arbeit eine Maßnah-
me diskutiert, die zu einer Reduktion der Anzahl der benötigten Aktuatoren führen sollen.
Es wird das sequenzielle Aktuieren von Gelenken mit einem einzigen Aktuator simuliert und
eine Vorgehensweise zum Ermitteln der zeitoptimalen Schaltsequenz analysiert. Hierzu wird
eine hybride Systembeschreibung hergeleitet. Die Optimierungsaufgabe wird mit einer heu-
ristischen Graphensuche gelöst.
Diese Arbeit bietet also eine umfangreiche und innovative Anleitung für das Design und die
Regelung von SRIs, die den Stand der Technik in vielen Gesichtspunkten übertrifft.

x

Contents

1 Introduction 1
1.1 Problem Definitions and Challenges . 4
1.2 Main Contributions and Outline of the Dissertation 6

2 Design of a Shape Rendering Interface: The Formable Object 9
2.1 Mechanical Design Considerations . 13

2.1.1 Requirements . 13
2.1.2 Determinacy . 14
2.1.3 Basic Elements . 15
2.1.4 Kinematic Design of Basic Configuration 15
2.1.5 Expanding the FO . 20

2.2 Mechanical Construction . 23
2.2.1 Telescopic Element . 24
2.2.2 Cardan Element . 25
2.2.3 Formable Object . 25
2.2.4 Motor-Module and Cable-Transmission . 25

2.3 Control . 27
2.4 Evaluation . 28

2.4.1 Rendering of Different Curvatures . 28
2.4.2 Stiffness . 29
2.4.3 Dynamic performance . 32

2.5 Conclusion . 33

3 Inverse Kinematics for Shape Rendering Interfaces 37
3.1 Problem Description . 38

3.1.1 Aspects of Shape Rendering . 38
3.2 Shape Rendering . 40

3.2.1 Hierarchical Nullspace Projection . 40
3.2.2 Desired Task Velocities . 41
3.2.3 Task Definition . 42
3.2.4 Loop Constraint Task . 42
3.2.5 Node Positioning Task . 44
3.2.6 Shape Forming Task . 45
3.2.7 Joint Limits & Singularities . 48
3.2.8 Shape Rendering . 49
3.2.9 Dynamic Shape Rendering with User Interaction 50

xi

Contents

3.3 Shape Descriptions: Implicit Surfaces and Polygon Sets 51
3.4 Results . 57

3.4.1 Shape Rendering . 57
3.4.2 User Interaction . 62
3.4.3 Polygon Sets . 63

3.5 Conclusion . 68

4 Actuator Reduction for Shape Rendering Interfaces 71
4.1 Problem Description . 71
4.2 Hybrid Optimal Control and Heuristic Search . 72
4.3 Time and Sequence Optimization for Hybrid Shape Rendering Interfaces 73

4.3.1 Hybrid Model of Shape Rendering Interface 73
4.3.2 Combinatorial Graph Search . 78

4.4 Results . 83
4.5 Conclusion . 87

5 Conclusions and Future Directions 89
5.1 Concluding Remarks . 89
5.2 Outlook . 90

A Appendix 93
A.1 Proof of Determinacy . 93

A.1.1 Design 1 . 93
A.1.2 Design 2 . 93
A.1.3 Design 3 . 94

A.2 Details on FO design . 94
A.3 Revised Design of the FO and the Motor Module 95

xii

Notations

Abbreviations

FO Formable Object
DoF Degrees of Freedom
SFM Surface Freedom Measure
FGM Freedom from Ground Measure
DR Data Resolution
FM Formability Measure
CAD Computer Aided Design
ABS Acrylonitrile Butadiene Styrene
PID Proportional-Integral-Differential
SFI Shape Forming Index
MEMS Micro Electro Mechanical System
FEM Finite Element Method
STL Surface Tesselation Language

Conventions

Scalars, Vectors, and Matrices
Scalars are denoted by lower case letters in italic type. Vectors are denoted by bold lower
case letters in italic type, as the vector x is composed of elements x i. Matrices are denoted
by upper case letters in italic type.

x scalar
x vector
X matrix
X T transposed of X
X−1 inverse of X
X∗ weighted damped Pseudoinverse
|x | Euclidean norm
x mean value of vector
f (·) scalar function
f (·) vector function
ẋ , ẍ , . . . first, second, . . . time derivative of x

xiii

Notations

Subscripts and Superscripts

x 0 initial state at initial time t0 = 0
x e target state at end time te

x C task descriptor for loop constraint task
x C j task descriptor for loop constraint j
x C ja, x C jb task descriptor for loop constraint j from each side of the virtual cut (a and b)
x P task descriptor for node positioning task
x Pi task descriptor for node positioning task (node i only)
epPi, eoPi position and orientation error of node i in node positionining task
x S task descriptor for shape forming task
x A task descriptor for active joints task
ẋ d desired value for task descriptor of task k
ẋ kd desired task velocity of task k
ϕi, max maximal joint angle of joint i
ϕi, min minimal joint angle of joint i

Symbols

General

L closed loop
l number of closed loops
M overall DoF of mechanism
m number of free nodes of the mechanism (without base node)
N number of nodes of the mechanism (including base node)
j number of connections between nodes
fi number of DoF of i-th connector
s step of extension
hT node height (Telescopic Element)
wT node width (Telescopic Element)
dT distance between neighboring nodes (Telescopic Element)
hC node height (Cardan Element)
wC node width (Cardan Element)
dC distance between neighboring nodes (Cardan Element)
pS surface point on node (to approximate shape)
pC center point of node
r vector determining normal direction of node
j T i (homogeneous) transformation from frame i to j
I identity matrix
0 zero matrix
ϕ vector of joint angles
g inequality constraint function

xiv

Notations

h equality constraint function
F cost function
ep position error
eo orientation error
e x , e y , ez unit vector in x-, y- and z-direction
nS normal vector of virtual surface
N Nullspace
W weighting matrix
λ damping factor
ω angular velocity

xv

List of Figures

1.1 Classification of haptic interfaces . 1
1.2 Tactile display: vibrotactile pattern [1]. Reprinted, with permission, from K.-

U. Kyung, S.-C. Kim, D.-S. Kwon, and M. A. Srinivasan,Texture display mouse
kat: Vibrotactile pattern and roughness display, International Conference on
Intelligent Robots and Systems, 2006 . 2

1.3 Tactile display: electric stimulation [2]. Reprinted, with permission, from H.
Kajimoto, N. Kawakami, S. Tachi, and M. Inami, Smarttouch: Electric skin to
touch the untouchable, Computer Graphics and Applications, 2004 3

1.4 Kinesthetic interfaces . 4
1.5 Basic idea of an encounter-type interface [3]. Reprinted, with permission,

from Y. Yokokohji, J. Kinoshita, and T. Yoshikawa, Path planning for encountered-
type haptic devices that render multiple objects in 3d space, Virtual Reality,
2001. 4

1.6 Shape rendering interfaces . 5

2.1 Two formable body concepts . 10
2.2 Formable crust concepts . 12
2.3 Non-contact display [4]. Reprinted, with permission, from T. Hoshi, T. Iwamoto,

and H. Shinoda, Non-contact tactile sensation synthesized by ultrasound trans-
ducers, EuroHaptics conference, 2009 . 13

2.4 Square grid with 9 nodes . 14
2.5 Side view of Telescopic Element with 4 DoF. (hT : node height, wT : node width,

dT : distance between nodes, pc: node center, ps: node surface point, r: direc-
tion vector) . 15

2.6 Side view of Cardan Element with 4 DoF. (hC : node height, wC : node width,
dC : distance between nodes, pc: node center, ps: node surface point, r: direc-
tion vector) . 16

2.7 Different assemblies of the square grid design . 17
2.8 Position and orientation error of node . 19
2.9 Formability of configuration 1 . 21
2.10 Formability of configuration 2 . 21
2.11 Formability of configuration 3 . 21
2.12 Formability of configuration 4 . 21
2.13 Formability of configuration 5 . 21
2.14 Formability of configuration 6 . 21
2.15 Formability of configuration 7 . 22
2.16 Formability of configuration 8 . 22

xvii

List of Figures

2.17 Formability of configuration 9 . 22
2.18 Design 1: changing kinematic design (s: step of extension) 23
2.19 Design 2: recursive kinematic design (decreasing resolution, s: step of exten-

sion) . 24
2.20 Design 3: recursive kinematic design (unchanging resolution, s: step of ex-

tension) . 24
2.21 CAD drawing of Telescopic Element with 4DoF . 25
2.22 CAD drawing of Cardan Element with 4DoF . 26
2.23 The Formable Object . 26
2.24 The motor module of the Formable Object . 27
2.25 Prototype of the motor module . 27
2.26 Signal flow to control the FO . 28
2.27 Formability of the real configuration . 29
2.28 The FO rendering surfaces . 30
2.29 Determing the stiffness of the FO . 31
2.30 Maximum stiffness of FO when applying normal forces at nodes 2, 4, 6 and 8

(unpowered) . 32
2.31 Maximum stiffness of FO when applying normal forces at nodes 3, 5, 7 and 9

(unpowered) . 33
2.32 Maximum stiffness of FO when applying normal forces at nodes 2, 4, 6 and 8

(powered) . 34
2.33 Maximum stiffness of FO when applying normal forces at nodes 3, 5, 7 and 9

(powered) . 34
2.34 Maximum errors (position & orientation) of all 9 nodes 35
2.35 Mean of errors (position & orientation) of all 9 nodes 35

3.1 Node with body-fixed coordinate system . 39
3.2 Mechanism with 10 nodes and three closed loops with base node 9 fixed to

the environment . 40
3.3 Hierarchy with and without user interaction . 43
3.4 Mechanism with open loops . 43
3.5 Projection of the node velocity in normal direction 46
3.6 Area defining the direction of angular velocity . 46
3.7 Example of polygons with IDs . 53
3.8 Algorithm to find distance d and normal vector n from a polygon set 54
3.9 Projection on surfaces . 55
3.10 Projection on edges . 56
3.11 Static shape rendering . 59
3.12 FO rendering a sphere with radius R= 0.1m . 60
3.13 FO rendering a sphere with radius R= 0.05m . 60
3.14 Convex rendering of cylindrical shape with R= 0.07 m 60
3.15 Concave rendering of cylindrical shape with R= 0.03 m 60
3.16 Convex rendering of spherical shape with R= 0.09 m 61
3.17 Concave rendering of spherical shape with R= 0.06 m 61
3.18 Convex rendering of elliptical shape with A= 0.15 m, B = 0.07 m and C = 0.10 m 61

xviii

List of Figures

3.19 Concave rendering of elliptical shape with A= 0.15 m, B = 0.07 m and C = 0.10 m 61
3.20 Dynamic shape rendering . 62
3.21 Shape rendering of a compliant object with all nodes controlled in a Shape

Forming task . 64
3.22 Shape rendering of a compliant object with some nodes controlled in a Node

Positioning task . 65
3.23 FO adapting to deformations when all nodes are controlled in a Shape Forming

task (3D-view) . 66
3.24 FO adapting to deformations when all nodes are controlled in a Shape Forming

task (xz-view) . 66
3.25 FO adapting to deformations when some nodes are controlled in a Node Posi-

tioning task (3D-view) . 67
3.26 FO adapting to deformations when some nodes are controlled in a Node Posi-

tioning task (xz-view) . 67
3.27 FO adapting to a polygon set . 69
3.28 FO adapting to a hexagonal object (3D-view) . 70
3.29 FO adapting to a hexagonal object (yz-view) . 70

4.1 Parallel kinematics with 6DoF . 75
4.2 Parallel kinematics with 6 DoF (cut at node 5) . 75
4.3 Example of a graph . 79
4.4 Cost estimation at node ni . 80
4.5 Initial and target configuration of example kinematics 81
4.6 Comparison of 3 possible paths in the state space: joint limits are reached

when driving active joint 5 or 6 towards their desired values 82
4.7 Initial and target configuration (mSW (ne)< m̂a0 + 1) 84
4.8 Optimal path of passive states (mSW (ne)< m̂a0 + 1) 84
4.9 Initial and target configuration (mSW (ne) = m̂a0 + 1) 85
4.10 Optimal path of passive states (mSW (ne) = m̂a0 + 1) 85
4.11 Initial and target configuration (mSW (ne)> m̂a0 + 1) 86
4.12 (Sub-)optimal path of passive states (mSW (ne)> m̂a0 + 1) 87

A.1 Exploded view of the Telescopic Element . 94
A.2 Exploded view of the Cardan Element . 95
A.3 FO with actuation supply from below . 96
A.4 Bottom view of revised FO . 96
A.5 Revised motor module with actuation supply at top 97
A.6 Assembly of revised FO and motor module . 98
A.7 Revised Telescopic Element . 99
A.8 Revised Cardan Element . 99
A.9 Exploded view of revised Telescopic Element . 100
A.10 Exploded view of revised Cardan Element . 100

xix

List of Tables

2.1 Comparison of existing analogues . 11
2.2 Comparison of configurations . 20
2.3 Maximum curvatures of Formable Object . 29

3.1 STL-data set and its extension . 52

xxi

1 Introduction

In applications where a human operator is interacting with a remote or virtual environment,
all sensory channels of the human operator must be appealed. These senses are sight, hear-
ing, touch, smell and taste. Especially when objects in the environment must be manipu-
lated, sight, hearing and touch are of utmost importance. A human operator interacts with
the environment with the help of a human-system interface. While systems for the display of
visual and auditory information are already rather developed, providing haptic information
by haptic interfaces represents a major challenge in the design of human-system interfaces.
One aims for haptic interfaces with a high transparency [5] [6]. A haptic interface is char-
acterized by a high transparency, if the user has the impression of directly interacting with
the remote (or virtual) environment and not through a haptic interface. An example for a
scenario, where haptic interfaces are used, can be found in the field of telerobotics [7] [8].
Here, a human-system interface is used to control a telerobot intuitively. Visual, auditory, and
haptic information is provided by the human-system interface and gives the human operator
the impression as if he/she is actually present at the remote environment. The telerobot on
the other hand executes the actions of the human operator and conduces as an avatar of
the human operator in the remote environment. In other applications, which lie in the field
of virtual reality and design, the remote environment is replaced by a simulation. A shape
rendering interface (SRI), which is used in the design process of e.g. car bodies, offers the
opportunity to display the shape of specific parts, which were previously designed by CAD-
software tools. The shape of a part, which is reconstructed by a SRI, can be evaluated and
analyzed by exploring it with the bare hands. On the other hand, changes to these parts can
be made intuitively by interacting with the SRI. Existing solutions for haptic devices can be
divided into tactile displays and kinesthetic interfaces (cf. Figure 1.1).

Haptic Interfaces

Kinesthetic Interfaces Tactile Displays

Non-portable Portable

Continuous Contact Encounter-type Encounter-typeContinuous Contact

Figure 1.1: Classification of haptic interfaces

1

1 Introduction

Tactile displays are used for delivering information about surface properties. Specific regions
on the users palm are therefore stimulated (e.g. with vibrating actuators or by using electric
stimulation) in order to give the user the impression as if he/she would touch an object
with a specific surface character. A tactile display is, in most cases, not designed for the
manipulation of objects. A wide overview of existing tactile displays is presented in [9]. An
example of a vibrotactile tactile display and a tactile display which uses electric stimulation
to provide tactile feedback is shown in Figure 1.2 and Figure 1.3.

Figure 1.2: Tactile display: vibrotactile pattern [1]. Reprinted, with permission, from K.-U.
Kyung, S.-C. Kim, D.-S. Kwon, and M. A. Srinivasan,Texture display mouse kat:
Vibrotactile pattern and roughness display, International Conference on Intelli-
gent Robots and Systems, 2006

2

Figure 1.3: Tactile display: electric stimulation [2]. Reprinted, with permission, from H.
Kajimoto, N. Kawakami, S. Tachi, and M. Inami, Smarttouch: Electric skin to
touch the untouchable, Computer Graphics and Applications, 2004

Kinesthetic interfaces, on the other hand, are used to provide force feedback to the user.
Kinesthetic interfaces, see [10] for an overview, can be distinguished in the way they are
mounted to the environment. Portable interfaces are mounted to the operator’s body in form
of an exoskeleton. By doing so, the interface on one hand covers a large workspace, but on
the other hand, the transparency is decreased, as the user must carry the weight of the hap-
tic interface. Interfaces, which are mounted to the environment, have a limited workspace,
but have the advantage that the weight of the interface is only perceived slightly by the
human operator. The workspace of a non-portable interface can be extended by e.g. mount-
ing the interface on a mobile platform [11]. An example of a non-portable and a portable
kinesthetic haptic interface is shown in Figure 1.4. A further distinction can be made in
the way kinesthetic interfaces are controlled. Here, we differentiate between classical kines-
thetic interfaces the user is in continuous contact with and encounter-type interfaces. An
encounter-type interface can be regarded as a kinesthetic interface, with the special feature
that the user is only in contact with the end-effector of the interface when he really wants
to make contact with a remote object (see Figure 1.5) [13] [14] [15] [16]. By doing so,
the highest possible transparency is gained for free-space movements. Intention recognition
techniques are required to predict the users intention [17] [18] [19] [20]. This is needed
because the end-effector has to be positioned by the interface at the corresponding position
in space, before the user actually makes contact with it.
Shape rendering interfaces (SRI), also known as 3D shape interfaces, aim for replicating the
shape of specific objects or parts of it, in order to provide this information to the user. By
combining SRIs with encounter-type interfaces in the sense that a SRI is used as end-effector
of the encounter-type display, a very high transparency is gained for the system. The re-
search field dealing with SRIs is still very young. Pioneer work was made in the FEELEX

3

1 Introduction

(a) Non-portable kinesthetic interface: VISHARD
6 [12]. Reprinted, with permission, from M.
Ueberle and M. Buss, Design, control, and
evaluation of a new 6 dof haptic device, IROS,
2002

(b) Portable kinesthetic interface [10]. Reprinted,
with permission, from V. Hayward, O. R. Ast-
ley, M. Cruz-Hernandez, D. Grant, and G.
Robles-De-La-Torre, Haptic interfaces and de-
vices, Sensor Review, 2004

Figure 1.4: Kinesthetic interfaces

project where one of the first SRIs was developed in 1997 under the name FEELEX 1 [21].
Two examples of SRIs are shown in Figure 1.6.
This thesis shows a systematic analysis for the design and control of 3D SRIs.

Figure 1.5: Basic idea of an encounter-type interface [3]. Reprinted, with permission, from
Y. Yokokohji, J. Kinoshita, and T. Yoshikawa, Path planning for encountered-type
haptic devices that render multiple objects in 3d space, Virtual Reality, 2001.

1.1 Problem Definitions and Challenges

When developing SRIs multiple aspects have to be considered in the design process and when
controlling the interface. The major challenges are outlined in the following.

4

1.1 Problem Definitions and Challenges

(a) Digital Clay: parallel kinematics, unactuated [22]. Reprinted,
with permission, from D. Rosen, A. Nguyen, and H. Wang, On
the Geometry of Low Degree-of-Freedom Digital Clay Human-
Computer Interface Devices, Computers and Information in En-
gineering Conference, 2003

(b) FEELEX 1: pin array, actu-
ated [21]. Reprinted, with
permission, from H. Iwata,
H. Yano, F. Nakaizumi, and R.
Kawamura, Project FEELEX:
adding haptic surface to
graphics, Computer graphics
and interactive techniques,
2001

Figure 1.6: Shape rendering interfaces

In [23] Hayward and Astley define performance measures for kinesthetic haptic interfaces,
which are limitedly applicable to SRIs: Degrees of Freedom, Device-Body Interface, Motion
Range, Peak Force, Inertia and Damping, Peak Acceleration, Energy Flux - Power Density,
Resolution, Precision, Bandwidth, Structural Response, Dynamic Precision and Closed Loop
Performance.
Only few performance measures are defined for SRIs and some of the measures enumerated
above are not suitable for them. For SRIs especially Degrees of Freedom, Motion Range, Peak
Force and Resolution represent the most important performance measures and thus, extra
attention must be paid to them. Most of the existing kinesthetic interfaces feature a single-
point interaction. In this case, the control of one point, the point of the end-effector, is of
interest. In contrast to that, SRIs deal with the control of a whole surface, the surface, which
renders a virtual object. While for most kinesthetic interfaces 6 degrees of freedom (DoF)
are sufficient, because the position and orientation of one point can be completely described
with it, SRIs need more DoF in order to describe the profile of the surface, which is rendered.
In other words, multiple points on the surface must be described by multiple solid bodies
within the mechanism. Because of this, far more than 6 DoF are needed to render a shape
sufficiently precise, which consequently leads to a highly redundant mechanical design.
The motion range of a SRI highly contributes to the ability of the interface to render a wide
variety of shapes. It is clear that this performance measure is dependent on other perfor-
mance measures like the DoF and the detailed design of the mechanism.

5

1 Introduction

As haptic interfaces (SRIs included) must display soft as well as stiff objects, a high peak
force is requested for them.
Whether a SRI is able to display filigree shapes or not is strongly dependent on its spatial res-
olution. We define the spatial resolution by the distance of two neighboring surface points,
which can be rendered by the interface. The spatial resolution is not to be confused with the
resolution defined in [23]. In here, "the resolution is defined as the smallest deviation from
system equilibrium which can be detected by the sensors under study".
The foregoing thoughts lead to a design where a high amount of DoF is concentrated on
very limited space. A high amount of joints must be actuated by strong actuators and sensed
by precise sensors. These hardware components must be built in at very limited space. In
summary, one can say that the major challenge in the design of SRIs is to pack a high amount
of DoF and strong actuators in very limited space without restricting the motion of range of
the mechanism.
The control of SRIs is another major challenge when dealing with them. A framework to
handle the aforementioned redundancy in real-time must be developed. As mentioned be-
fore SRIs feature a high amount of DoF, which are actuated by a large number of actuators.
The DoF must be actuated conjointly in order to obtain a requested shape. Especially when
dealing with a parallel kinematics, which features high stiffness and speed, the dependency
of passive (unactuated) joints on active (actuated) joints represents a major challenge when
controlling the device. The forward and inverse kinematic description is in most cases not
available, and only time-consuming numerical solutions do exist. Even if a kinematic solution
is available, the optimal positioning of the mechanism to render a shape is an open question.
Multiple configurations of the mechanism might represent a solution to the shape-rendering
problem, as in most cases we deal with a redundant kinematics.
A further challenge within the field of SRIs is the scalability and extendibility of the mech-
anism. As said before, a SRI must feature a high amount of DoF/actuators/sensors on
limited space. When scaling down a SRI to gain a higher spatial resolution the space per
DoF/actuator/sensor is reduced further. On the other hand, one wants an interaction area,
which has an appropriate size. When scaling down an existing mechanism one wants to
keep or extract the size of the interaction area. Consequently, the mechanism must be ex-
tended and the amount of actuators increased. Finding appropriate proceedings to reduce
the amount of needed actuators represents a further challenge when dealing with SRIs.

1.2 Main Contributions and Outline of the Dissertation

The main goal of this thesis is to present a systematic analysis for the design and control of
SRIs. The design must have a high resolution, must be easily extendable and, in contrast to
most state-of-the-art interfaces, must be actuated.
The thesis is organized in five chapters. Chapter 2 presents the design of a SRI. Chapter 3
deals with the kinematics of SRIs and Chapter 4 gives directions to reduce the amount of
needed actuators. The thesis concludes with Chapter 5, which summarizes the most impor-
tant results and formulates directions of future work.
In Chapter 2 the design of a SRI, the Formable Object (FO), is presented. The interface has
24 DoF, is designed as a parallel kinematics and can easily be extended. The FO has, in op-

6

1.2 Main Contributions and Outline of the Dissertation

position to comparable state-of-the-art interfaces, a higher resolution and is fully actuated.
After defining requirements for the interface, basic elements, from which the mechanism is
assembled, are presented and their use for the mechanism is motivated. The smallest step
of extension for the mechanism is defined and the determinacy is proofed for all steps of
extensions. A numerical procedure for the quantitative determination of the formability of
the mechanism is presented. It is used to find the optimal configuration of combined basic
elements in terms of formability. A preselection of configurations is done a priori to reduce
the needed time for finding the optimal configuration of the SRI. After this configuration is
determined, a detailed description of the design including actuation and sensing principles
is presented and a realized prototype is introduced. The prototype is evaluated in terms of
maximum and minimum displayable curvatures, stiffness and dynamic performance.
Chapter 3 deals with the kinematics of SRIs especially with interfaces, which feature a par-
allel kinematic design. As mentioned earlier, no real-time kinematic solutions are known for
SRIs. After defining the problem of shape rendering, aspects, which have to be considered
in the problem solution, are identified. The kinematics problem is solved in a differential
way. The procedure of Nullspace projection outlined in [24], [25] or [26] is modified to
the problem of shape rendering. Therefore, specific tasks namely the Loop Constraint task,
the Node Positioning task and the Shape Forming task are introduced, which are executed on
the Nullspace of the corresponding higher order task. Two modes of shape rendering are
distinguished: with or without user interaction. Furthermore, different shape descriptions
are discussed, namely implicit surfaces and polygon sets. It is shown that the introduced
framework can be used similarly for both shape descriptions. The chapter concludes with
simulations of the different control modes and shows their differences.
In Chapter 4 actions to reduce the needed amount of actuators are discussed. Using one
actuator, which sequentially can be connected to the actuated joints of the mechanism with
the help of clutches, represents a practical procedure to reduce the amount of actuators and
therewith to minimize hardware costs. By doing so, the sequence in which the actuators are
controlled is not trivial, as the passive joints are dependent on the active joints. Not taking
care of the switching sequence and switching times could drive the passive joints into their
joint limits and the demanded shape cannot be reached or, in the worst case the mecha-
nism breaks. Thus, the system is defined as a hybrid system and the finding of the switching
sequence is formulated as a hybrid control optimization problem. After performing sim-
plifications, the problem can be formulated as purely discrete problem and is solved with
combinatorial graph search approaches. The approach is demonstrated on a planar parallel
kinematics with 6 DoF. The found solutions are discussed in terms of their optimality.
Finally Chapter 5 summarizes the main results of this thesis and elaborates directions of
future research.

7

2 Design of a Shape Rendering Interface: The
Formable Object

Interacting with 3D-shape objects using bare hands represents a very intuitive way to explore
object shapes and offers many new opportunities in the field of virtual reality and design.
Only a few 3D-shape interfaces are known in literature so far, but their resolution is rather
low and/or they are not actuated. Thus, a new parallel kinematic design for an actuated
3D-shape interface with a comparatively higher resolution is presented, which is fully ac-
tuated and which can be further extended to cover larger interaction areas. Starting from
a preliminary configuration, the kinematics is optimized for the rendering of basic shapes
like cylinders or spheres. Due to its specific parallel kinematic design, where a determined
system is gained by attaching one node to the environment, it can easily be mounted as an
end-effector to kinesthetic haptic interfaces. The prototype of the Formable Object (FO) is
evaluated concerning its ability to render shapes, along with stiffness measurements and its
capability for dynamic shape rendering.
Haptic interfaces for shape rendering are either devices that can morph their shape to form
a surface to be explored by a user, or devices that generate the illusion of experiencing a
real shape. Haptic interfaces for shape rendering promise applications in the field of design
and prototyping. By using a shape rendering interface (SRI) in the design process of cars or
household aids for example, shapes can be visualized and haptically explored without costs
for manufacturing real parts. The shape/design of a product body highly contributes to the
commercial success of it. With a SRI, shapes can be evaluated in a very intuitive way and
modifications can be made with bare hands and directly applied to the design. Further, by us-
ing a SRI, the surface of objects can be explored with bare hands in contrast to state-of-the-art
interfaces where only point-contacts can be simulated. A SRI is especially useful in combina-
tion with an encounter-type haptic interface [13], [14], [15], [16], [27], [28], [3], [29], [30].
Encounter-type haptic interfaces are interfaces where a user is only in contact with when con-
tact should be rendered. The end-effector of the encounter-type interface, which represents
an object in the user’s environment, is positioned at the corresponding position in the en-
vironment waiting for the user to make contact. Assuming that the user’s intention can be
predicted to a certain level, the encounter-type interface can be used to represent multiple
objects in the environment. Using a SRI as end-effector will make the encounter-type in-
terface universally applicable, as the different shapes of the objects can be felt by the user.
However, only few mechanical concepts have been developed up to now. Basically three de-
sign concepts can be distinguished: a) Formable Body Concepts, b) Formable Crust Concepts
and c) Non-contact Displays. These concepts will be described in the following paragraphs.

Formable Body Concepts: The Claytronics project [31] deals with a very preliminary
formable body concept. The main idea is, that 3D-shapes are generated by using pro-

9

2 Design of a Shape Rendering Interface: The Formable Object

grammable manner (modular robots). The manner consists of catoms (claytronic atoms),
which can move in three dimensions in relation to others or adhere to other catoms to form
a 3D shape. With the claytronic concept very complex shapes are possible (e.g. holes in the
object). The main drawback, however, is that at present the catoms are bulky (45mm in
diameter), thus the resolution is unsatisfying. The prototype shown in Figure 2.1a can only
display shapes in 2D.
A low cost version of a similar approach is presented in [32]. The so-called molecubes shown
in Figure 2.1b have a diameter of 66mm and can form shapes in 3D.

(a) Claytronic Atoms [31]. Reprinted, with permission, from S.
Goldstein, J. Campbell, and T. Mowry, Programmable matter,
Computer,2005.

(b) Molecubes [32]. Reprinted,
with permission, from V.
Zykov, A. Chan, and H.
Lipson, Molecubes: An open-
source modular robotics kit,
IROS, 2007

Figure 2.1: Two formable body concepts

Formable Crust Concepts: The FEELEX mechanism [21] can be regarded as a 2.5D-
formable crust concept (Figure 2.2a). The FEELEX uses a linear actuator array. Each actuator
drives a rod, which is located underneath a rubber membrane, which is deformed by the rods.
A drawback of this concept is that it is equipped with a bulky actuator arrangement and it
is not possible to display shapes with undercuts. A similar approach was already outlined
in [33].

In [34] multiple formable crust concepts for deforming a membrane or strip by bending
it with actuators located directly underneath the membrane/strip are discussed. However,
these concepts are only theoretical.

A preliminary concept is Digital Clay developed at Georgia Institute of Technology
[22](Figure 2.2c). The principle item of Digital Clay is a multiple collocated spherical joint
developed by Bosscher et al. [35], which can easily be manufactured in a very small scale.
By combining the spherical joints to an array, a formable crust is obtained. However, the
actuation of the Digital Clay is an unsolved problem.

Bordegoni et al. [36] developed a Self-Deformable Haptic Strip, which uses bending and
torsion modules to deform a plastic strip (Figure 2.2b). A prototype of the mechanism exists.
A drawback of the Haptic Strip is the missing extendibility of the mechanism. The Haptic
Strip can display a narrow band of the surface only and exploration of larger objects is only

10

possible if the Haptic Strip is moved or rotated.

Mazzone [37] [38] developed a parallel kinematics, the so-called Smart Mesh, where
multiple nodes are connected to a network of end-effectors to display universal shapes (Fig-
ure 2.2d). The mechanism is not actuated and has a rather low resolution (average node
distance: 195mm).

In [39] we presented a preliminary version of our Formable Object, which is described in
this chapter.

Non-contact Displays: Non-contact displays are often classified as tactile displays. Like
SRIs, they create haptic stimuli in 3D-space at multiple points of the users hand and are
therefore comparable to them to a certain extent. Such displays use air-flow or ultrasonic
transducers to provide haptic sensations. Hoshi et al. [4] developed an array of ultrasonic
transducers, which are able to provide haptic feedback in space above the array, but grasping
or manipulation of virtual objects is not possible (Figure 2.3).

As this thesis outlines the design of a formable crust concept, in Table 2.1 a comparison
of existing analogues [21], [22], [36] and [38] is shown.

Tabular 2.1: Comparison of existing analogues
FEELEX [21] Digital Clay [22] Haptic Strip [36] Smart Mesh [38]

Average 4.8cm 1.3cm 10cm 19.5cm
node distance (estimated)

Number of 36 > 100 6 (only one 16
nodes direction)

Undercuts no yes yes yes
Actuated yes no yes no

In this chapter a design for a formable crust, in the following called Formable Object (FO),
is presented. The FO is not only a theoretical concept, but, compared to several concepts
presented above, is designed to build a prototype with a comparatively higher resolution
than state-of-the-art developments. The FO can be mounted at the end-effector of a robotic
arm, which is important when the FO is to be moved to different positions in space. The
FO has 24 degrees of freedom (DoF) which allows displaying basic shapes like cylinders or
spheres.

In Section 2.1 preliminary considerations are made which lead to the optimal configura-
tion of the FO. In Section 2.2 details about the mechanical construction including actuation
and sensing principles and the control of the FO will be presented. In Section 2.4 the FO is
evaluated. Maximum curvatures, stiffness and the required time to render test shapes are
determined and discussed. Finally, this chapter concludes with a summary and outlook to
future work.

11

2 Design of a Shape Rendering Interface: The Formable Object

(a) FEELEX [21]. Reprinted,
with permission, from H.
Iwata, H. Yano, F. Nakaizumi,
and R. Kawamura, Project
FEELEX: adding haptic sur-
face to graphics, Computer
graphics and interactive tech-
niques, 2001

(b) Haptic Strip [36]. Reprinted, with permission, from [M. Borde-
goni, U. Cugini, M. Covarrubias, and M. Antolini, A Force and
Touch Sensitive Self-deformable Haptic Strip for Exploration
and Deformation of Digital Surfaces, Haptics: Generating and
Perceiving Tangible Sensations, 2010

(c) Digital Clay [22]. Reprinted, with permis-
sion, from D. Rosen, A. Nguyen, and H. Wang,
On the Geometry of Low Degree-of-Freedom
Digital Clay Human-Computer Interface De-
vices, Computers and Information in Engineer-
ing Conference, 2003

(d) Smart Mesh [38]. Reprinted, with permission,
from A. Mazzone, C. Spagno, and A. Kunz,
A haptic feedback device based on an active
mesh, ACM symposium on Virtual reality soft-
ware and technology, 2003

Figure 2.2: Formable crust concepts

12

2.1 Mechanical Design Considerations

Figure 2.3: Non-contact display [4]. Reprinted, with permission, from T. Hoshi, T. Iwamoto,
and H. Shinoda, Non-contact tactile sensation synthesized by ultrasound trans-
ducers, EuroHaptics conference, 2009

2.1 Mechanical Design Considerations

2.1.1 Requirements

In this section, requirements for the FO are stated and preliminary design measures are
derived. As the FO is to be used as end-effector of an encountered-type haptic interface
(cf. [3]), it must be lightweight and easily mountable. In order to be able to render stiff
objects, high stiffness of the mechanical structure is demanded (≈ 1 kN/m). The maximum
force of a pinch grasp is about 60 N [40]. Working against such high forces, however, is not
required, because most object manipulations are not performed with maximum forces, so we
decided to set the maximum demanded counterforce in normal direction of the FO-surface to
10 N. The resolution should be as high as possible, guaranteeing also actuation of the whole
device. Simple shapes like cylinders or spheres (concave & convex) must be presentable
by the interface. Furthermore, the expandability to interfaces, which cover larger surfaces
(more DoF), should be guaranteed. In this work, we deal with kinematics where a shape is
represented by nodes, which are solid bodies within the mechanism. However, we want to
render continuous surfaces. Thus, the nodes/kinematics must be covered by an elastic layer,
which bridges the gaps between the nodes. The layer must be stiff enough so that the regions
between the nodes are not perceived too soft and elastic enough so that the mechanism is
not limited in its motion. For a first version we propose to use a highly elastic layer, which
can be achieved by a thin layer of silicon or a thermoplastic elastomer. In future versions we
aim for a layer with controllable elasticity.

13

2 Design of a Shape Rendering Interface: The Formable Object

2.1.2 Determinacy

For simplicity, we aim for a square grid crust, which means that a mechanism consisting of
nodes and connections between these nodes is arranged in a square grid. Figure 2.4 shows a
simple square grid with 9 nodes where node 1 is the base node fixed to the environment. It
contains 4 closed kinematic chains (L1, . . . , L4). The connections between the nodes, which
are used to render the shape, feature several joints. In [41] we showed that 3 degrees of

x

y

z

1

2
3

4

567

8

9

L1

L2
L3

L4

Figure 2.4: Square grid with 9 nodes

freedom (DoF) per node are needed to render a shape. This means that M = 3m must
hold, with m the number of free nodes and M the number of overall DoF of the device. A
similar statement is given in [34] where the Surface Freedom Measure (SF M) is introduced.
The SF M relates the number of overall DoF to the number of surface points. The highest
possible value of the SF M is 3.
The overall DoF M of a mechanism can be calculated using the well-known Chebychev-
Grübler-Kutzbach criterion [42]

M(s) = 6m(s)−
j
∑

i=1

(6− fi) = 6(N(s)− 1− j(s)) +
j
∑

i=1

fi (2.1)

where M determines the overall degrees of freedom (DoF), m is the number of rigid bodies, j
the number of connections and fi the number of joints of the i-th connection. N is the number
of rigid bodies m plus the fixed base (N = m+1). The step of extension s is important when
analyzing the expandability of the FO, what will be done in Section 2.1.5. For the square
grid crust shown in Figure 2.4, m= 8 and j = 12. The overall DoF must be M = 3m= 24 in
order to be able to render shapes. Inserting these values into (2.1) one receives

∑ j
i=1 fi = 48,

which means that 48 joints are needed for the mechanism. We decided to equally distribute
these joints over the 12 connections which brings us to fi = 4 joints per connection. In order
to gain a statically determined mechanism, the number of overall DoF M must be equal to
the number of actuators a. This means that 24 actuators are needed. We also decided to

14

2.1 Mechanical Design Considerations

distribute the actuators equally over the 12 connections, to partition the available space for
the actuators equally. This means that 2 joints per connection are actuated.

2.1.3 Basic Elements

The FO is assembled of multiple basic elements with 4 DoF each. We distinguish two types
of elements: The Telescopic Element and the Cardan Element. The structures presented in the
following sections are assembled from these basic elements.

Telescopic Element

A schematic of the Telescopic Element is shown in Figure 2.5. Two nodes are connected
by a telescopic rod with 2 axial bearings on its ends. The axial bearings deliver 2 degrees
of freedom (DoF) and the telescopic rod, which can extend and rotate about its own axis,
delivers another 2 DoF. Thus, the connection between two nodes has 4 DoF.

NodeNode

Linear Bearing (2DoF)

Axial Bearing (1DoF)

ps

pc

r

hT

wT dT

Figure 2.5: Side view of Telescopic Element with 4 DoF. (hT : node height, wT : node width,
dT : distance between nodes, pc: node center, ps: node surface point, r: direction
vector)

Cardan Element

The Cardan Element is sketched in Figure 2.6. It has an asymmetric design and does not
include a telescopic rod. A small rod, which is able to rotate relative to the node, which it
is mounted to, is connected to a Cardan joint. This delivers 3 DoF similar to a ball joint.
The Cardan joint is further connected to a rod, which connects to the connecting node via
an axial bearing, which delivers another degree of freedom. Thus, the Cardan Element has
4 DoF, equal to the Telescopic Element.

2.1.4 Kinematic Design of Basic Configuration

In this section we aim to find an optimal distribution of basic elements within the design
with 9 nodes (cf. Figure 2.4). We therefore compare different configurations with regard to

15

2 Design of a Shape Rendering Interface: The Formable Object

NodeNode

Cardan Joint (2DoF)

Axial Bearing (1DoF)

ps

pc

r

hC

wC dC

Figure 2.6: Side view of Cardan Element with 4 DoF. (hC : node height, wC : node width, dC :
distance between nodes, pc: node center, ps: node surface point, r: direction
vector)

their ability to render some basic shapes, in the following referred to as formability. In [39]
we simulated a configuration of the FO, which solely contained Telescopic Elements. We
observed that especially spherical shapes were not rendered satisfactorily. The nodes were
not able to position and orient properly at the same time. As shown in [41] 3 DoF per node
are needed to render a shape. To be more precise we need one translational DoF (distance
to the virtual surface) and two rotational DoF (alignment normal to virtual surface) per
node. Thus, some translational DoF must be replaced by rotational DoF. On the other hand,
in [34] authors propose to introduce prismatic joints to increase the formability of a grid
crust. Thus, in order to allow for stretching of the mechanism, not all Telescopic Elements
should be replaced by Cardan Elements. We have 12 connectors distributed between the 9
nodes of a basic structure where Telescopic or Cardan Elements can be installed. As the Car-
dan Element can be installed in two different directions we have 3 possible configurations
per connection and 312 = 531441 configurations for the whole device. For the comparison of
different configurations the Formability Measure (F M) is introduced in this section. With the
F M a quantitative statement about the formability of a configuration can be made. In terms
of expandability, we favor a symmetric design configuration to get similar characteristics in
all directions of the mechanisms surface. With a symmetric design, the gained knowledge
at a certain design step can be used for any step of extension. Further, as the determination
of the F M for one configuration takes several hours, it is not practical to compare every sin-
gle configuration. Thus, we decided to reduce the amount of configurations, by considering
only symmetric configurations. This reduces the amount of possible configurations to 9 (see
Figure 2.7).
In order to find the optimal solution out of these nine configurations we compare them in
terms of their formability. In [34] some related performance measures for a digital clay are
defined: the Surface Freedom Measure (SF M), the Freedom from Ground Measure (FGM) and
the Data Resolution (DR). The SF M relates the number of DoF to the surface points and the
highest possible value is 3. The FGM is a measure of the average distance that a surface
point has from the ground in terms of joint freedoms. There is no upper bound for the FGM
and higher values are preferred, but if the FGM is too high the structure may have problems

16

2.1 Mechanical Design Considerations

to maintain rigidity. The DR relates the number of DoF to the used actuators and my range
from 0 to 1 with 1 the best possible value. For a detailed description on these performance
measures, the reader should refer to [34]. All these measures are based on the amount of
DoF and nodes and do not take into account the precise configuration of a mechanism. Thus,
all configurations in Figure 2.7 have the same values for SF M , FGM and DR. For integrity
reasons we want to give the values for these performance measures for the FO: SF M = 3,
FGM = 6 and DR= 1.
Before comparing the different versions quantitatively, a qualitative analysis should be given.

Config. 1 Config. 2 Config. 3

Config. 4 Config. 5 Config. 6

Config. 7 Config. 8 Config. 9

Telescopic Element

Cardan Element

Figure 2.7: Different assemblies of the square grid design

As already mentioned, a combination of Telescopic and Cardan Elements and not only one of
the two types must be installed. When reforming from a flat configuration to a sphere some
connections have to change length (Telescopic Elements) in order to form the curved surface
of the sphere. Telescopic Elements are not implicitly needed to render cylindrical shapes
because only one bending direction exists in this case. Configuration 1 has only Telescopic
Elements built in. In configuration 2 and 3 the Cardan Elements are distributed over the con-
nectors, which connect the base node (node 1) with the remaining nodes. Configurations 4
and 7 have Cardan Elements in the surrounding connectors and Telescopic Elements connect

17

2 Design of a Shape Rendering Interface: The Formable Object

to the base node. Configuration 5, 6, 8 and 9 use Cardan Elements only. We expect bad shape
rendering results for configuration 1, 5, 6, 8 and 9 because only one of the two basic element
types is used. Configurations 4 and 7 are preferred over configurations 2 and 3 because of
the following reason: When rendering shapes the loop constraints (L1 . . . L4, cf. Figure 2.4)
must hold. In all configurations, nodes 2, 4, 6 and 8 have 4 DoF relative to the base node
(when considered without nodes 3, 5, 7 and 9). As mentioned before 3 DoF per node are
needed to render a shape. This means that 1 DoF is redundant and can be used to find a
suitable configuration of the FO so that nodes 3, 5, 7 and 9 also render the shape properly.
In configuration 2 and 3 this remaining DoF is a rotational DoF in z-direction which does not
change the position of the node (2, 4, 6, 8), but rather distorts the adjoining closed loops.
Thus, this DoF is important for nodes 3, 5, 7 and 9, but will in most cases remain unused in
order to not violate the closed loop constraints. This is not the case with configuration 4 or
7, because the redundant DoF for node 2, 4, 6 and 8 can be regarded as a translational DoF.
This DoF can be used to position nodes 2, 4, 6 and 8 so that nodes 3, 5, 7 and 9 can better
render the shape. In the following we quantitatively compare the 9 configurations.
In [39] we presented a numerical method for the inverse kinematics of the FO, which we
want to recapitulate here: The shape-rendering problem is formulated as a constrained opti-
mization problem. The decision space of the optimization is defined by the four closed loops
(L1, . . . , L4), which specify the nonlinear equality constraints

L1 : 1T 2 · 2T 3 · 3T 4 · 4T 1
︸ ︷︷ ︸

T1

−I = 0, (2.2)

L2 : 1T 6 · 6T 5 · 5T 4 · 4T 1
︸ ︷︷ ︸

T2

−I = 0, (2.3)

L3 : 1T 6 · 6T 7 · 7T 8 · 8T 1
︸ ︷︷ ︸

T3

−I = 0, (2.4)

L4 : 1T 2 · 2T 9 · 9T 8 · 8T 1
︸ ︷︷ ︸

T4

−I = 0. (2.5)

In (2.2) - (2.5) j T i = j T i(ϕ) specifies a transformation from frame i to frame j, depend-
ing on all joint angles ϕ. These frames are body fixed to the corresponding node. We use
homogeneous transformations, but other descriptions like e.g. Quaternions can be used as
well. As each loop ((2.2) - (2.5)) provides 12 equations (9 rotation, 3 position), 48 equality
constraints hl(ϕ) must hold. The joint limits of the linking elements specify the inequal-
ity constraints. As each joint has one maximum and one minimum value and 48 joints are
built in, 96 inequality constraints gk(ϕ) must hold. Note that this mathematical description
can easily be modified for different kinematics with more or less loops and joints, as only the
amount (and form) of equality and inequality constraints must be adapted. The optimization
problem is formulated as follows:

min
ϕ

F(ϕ) = ko
Fo(ϕ)
π/2

+ kp

Fp(ϕ)

1m
(2.6)

subject to gk(ϕ)≤ bk, k = 1, . . . , 96,

hl(ϕ) = 0, l = 1, . . . , 48.

18

2.1 Mechanical Design Considerations

Node

Virtual Surface

e x
e y

ez = r

p

ep

nS

Figure 2.8: Position and orientation error of node

In (2.6) Fp and Fo is the Euclidean norm of the position and orientation errors

(ep =
�

ep2 . . . ep9

�T
and eo =

�

eo2 . . . eo9

�T
) of the 8 free nodes. On each node i a surface

point p i is defined, which is used to render the shape of interest. The orientation of the
node surface at p i is defined as r i. The position error epi of node i is defined as the Cartesian
distance of p i to the virtual surface which is to be rendered (cf. Figure 2.8). The orientation
error eoi of node i is defined as the angle between r i and the normal vector of the surface
nS. The weighting factors kp and ko are used to weight position and orientation errors.
The errors are normalized to 1 m and π/2, respectively. For the optimization the interior-
point-algorithm [43] is used. All optimizations were executed in Matlab R© 2012b. The opti-
mization was performed on an Intel Core i5-2500K Quad-Core-Processor (3.3GHz/7.5GB).
A maximum number of 2.000 iterations was selected. A flat configuration of the FO was
used as starting configuration for the optimization. Note that the kinematics (configuration
1 to 9) is reflected in the equality constraints. The optimization cannot run in real time, but
changes in the kinematics can be made easily and thus, multiple configurations can be tested
in short time.

In order to compare diverse configurations quantitatively, we introduce the Formability
Measure F M :

F M =

∫

p1

∫

p2

. . .

∫

pn

F(ϕ) dpn . . . dp2 dp1 (2.7)

In (2.7) the integral of the normalized node errors as defined in (2.6) is built over the param-
eter space with n parameters, which define the shapes of interest. The Formability Measure
F M can take values between zero and infinity, while zero denotes perfectly rendered shapes
(no position and no orientation errors) over the whole parameter space. The unit of F M
depends on the parameter space which is analyzed. In the following, we want to compare
the 9 configurations mentioned earlier with regard to elliptic shapes. The implicit form of a
3D-ellipsoid is:

f (x , y, z) =
x2

a2
+

y2

b2
+

z2

c2
− 1 (2.8)

19

2 Design of a Shape Rendering Interface: The Formable Object

with a, b and c the semi-axes of the ellipsoid. Note that spheres (a = b = c) and cylinders
(e.g. a = inf, b = c) are special cases of the ellipsoid. The 9 configurations are analyzed over
the parameter space of a = 0.08m . . . 0.5m and b = c = 0.08m . . . 0.5m. The center node
(node 1) is positioned at position p1 =

�

0 0 c
�T

with orientation r 1 =
�

0 0 1
�T

. The
Formability Measure with parameters p1 = a and p2 = b = c has the following form:

F M =

∫ p1,max

p1,min

∫ p2,max

p2,min

F(ϕ) dp2 dp1 (2.9)

Tabular 2.2: Comparison of configurations
Config. 1 2 3 4 5 6 7 8 9

F M
�

1
m2

�

0.0684 0.0729 0.0723 0.0048 0.0369 0.0372 0.0053 0.0217 0.0233

Table 2.2 shows F M of configuration 1 to 9. Note that, as F(ϕ) is obtained by a time-
consuming optimization, we did not build the continuous integral. We rather changed p1 and
p1 in steps of ∆p1 = ∆p2 = 0.001 m (cf. Figure 2.9 - 2.17). For the optimization (2.6) we
used kp = 1 and ko = 0.05. We simulated a mechanism with node width wT/C = 24 mm and
node height hT/C = 22 mm. The node distance was set to dC = 21 mm in case of the Cardan
Element and dT = 19 . . . 28 mm in case of the Telescopic Element. These limits are realistic
for a telescopic rod of that size. Joint limits for revolute joints were set to ±45◦. As expected,
configuration 4 and 7 deliver the most satisfying results for F M . Their design differs in the
direction in which the Cardan Elements are built in. This means that the designs are similar,
which explains the similar results for F M . The best result is delivered by configuration 4,
which is also reflected by a flat surface in Figure 2.12 over nearly the whole parameter space.
For all configurations higher F -values are gained at the boarder of the parameter space, what
can be explained by reached joint limits. Peaks in the surfaces (e.g. Figure 2.14) can be
explained by prematurely stopped optimizations, because each optimization was limited to
2000 iterations. As all configurations have high values at the border of the parameter space
and as perfect values (F = 0) are reached for configuarion 4 over the rest of the parameter
space, inaccuracies because of prematurely stopped optimizations can be neglected. We thus
chose configuration 4 for the prototype.

2.1.5 Expanding the FO

As mentioned before, the number of DoF M must match the number of actuators a in order to
gain a determined structure. Figure 2.18, 2.19 and 2.20 show three design concepts and their
possible extensions, where s is the step of extension. Note that the first step (s = 1) describes
the square grid crust with 9 nodes (Figure 2.4). It can be seen, that the FO can be arbitrarily
extended to cover larger areas. Design 1 is a design where the kinematics is changing with
each extension, while the resolution remains the same. A new step of extension is added to
the previous step so that a mural structure is formed. By doing so, rectangular loops occur
in vertical and horizontal direction whereas square loops remain in the diagonal directions
(cf. Figure 2.18). Design 2 has a recursive kinematic design, so that all knowledge attained

20

2.1 Mechanical Design Considerations

0

0.5

0

0.5

0

0.05

0.1

a [m]

FM = 0.068365 1/m2

bc [m]

F

Figure 2.9: Formability of configuration 1

0

0.5

0

0.5

0

0.1

0.2

a [m]

FM = 0.072935 1/m2

bc [m]

F

Figure 2.10: Formability of configuration 2

0

0.5

0

0.5

0

0.1

0.2

a [m]

FM = 0.072299 1/m2

bc [m]

F

Figure 2.11: Formability of configuration 3

0

0.5

0

0.5

0

0.02

0.04

a [m]

FM = 0.004794 1/m2

bc [m]

F

Figure 2.12: Formability of configuration 4

0

0.5

0

0.5

0

0.1

0.2

a [m]

FM = 0.036939 1/m2

bc [m]

F

Figure 2.13: Formability of configuration 5

0

0.5

0

0.5

0

0.1

0.2

a [m]

FM = 0.037152 1/m2

bc [m]

F

Figure 2.14: Formability of configuration 6

21

2 Design of a Shape Rendering Interface: The Formable Object

0

0.5

0

0.5

0

0.02

0.04

a [m]

FM = 0.005329 1/m2

bc [m]

F

Figure 2.15: Formability of configuration 7

0

0.5

0

0.5

0

0.02

0.04

a [m]

FM = 0.021720 1/m2

bc [m]

F

Figure 2.16: Formability of configuration 8

0

0.5

0

0.5

0

0.05

0.1

a [m]

FM = 0.023339 1/m2

bc [m]

F

Figure 2.17: Formability of configuration 9

22

2.2 Mechanical Construction

at step 1 can be transferred to all further steps. The recursive characteristic of design 2
becomes clearer when considering all lower steps of the kinematics as one big center node:
Each new step brings in 4 new closed loops, which have the same kinematic structure as the
loops of the previous steps. The drawback of the latter design, however, is that the resolution
decreases with each additional layer. Similar to design 2 also design 3 has a recursive design,
but with homogeneous resolution. Each step is built out of 9 elements of the previous step
and is assembled in the same of the 1st step. In terms of determinacy it is not important at
which nodes the single elements connect, but for simplicity connections from center node to
center node between the single elements should be preferred. One can show that for each
step s the number of actuators a matches the number of overall DoF, so that a(s)

!
= M(s)

and thus, all three mechanisms are determined, for any step of extension. For the proof
of determinacy please refer to (A.1), (A.2) and (A.3). Finally, it should be noted that all
extension designs foresee that the FO is fixed to the ground at node 1, which means that this
node has to support all interaction forces. In consequence, extension of the design is only
possible up to a certain limit. The nodes, which are far away from node 1, might need extra
support. Supporting the FO at more than one point would overdetermine the system, which
must be respected when positioning and orienting the supported nodes in 3D space. In other
words, the positions and orientations of the supported nodes are dependent on each other
and must be controlled accordingly. As, however, the device is designed to be mounted at
the end-effector of a robotic arm, which can move the FO in space, only areas close to the
specific interaction point need to be covered. In this thesis we limit ourselves to the design
and control of the basic square grid crust with 9 nodes, while all the presented methodologies
also hold for the three possible extension designs.

s = 1 s = 2 s = 3

Base node

Node

Link

Figure 2.18: Design 1: changing kinematic design (s: step of extension)

2.2 Mechanical Construction

This section illustrates the mechanical construction of the FO considering the results of the
previous section. The nodes of the FO are built from Acrylonitrile Butadiene Styrene (ABS)
with the help of a rapid-prototyper. This gives us a large freedom of scope when designing
the nodes. Parts, which are exposed to high mechanical stress, are made from steel, brass or

23

2 Design of a Shape Rendering Interface: The Formable Object

s = 1 s = 2 s = 3

Base node

Node

Link

Figure 2.19: Design 2: recursive kinematic design (decreasing resolution, s: step of exten-
sion)

s = 1 s = 2

Base node

Node

Link

Figure 2.20: Design 3: recursive kinematic design (unchanging resolution, s: step of exten-
sion)

aluminum. As mentioned before we choose configuration 4.

2.2.1 Telescopic Element

Figure 2.21 shows the CAD construction of the Telescopic Element. The nodes (type 1) are
equipped with bearing lugs, which are used to mount the telescopic rods. On these rods,
which are made from brass, cable fasteners are mounted. The cable fasteners are made from
ABS and are needed to fix cables, which are used to actuate the swivels at the nodes. The
two DoF of the telescopic rod are unactuated and unsensed. The angles of the swivel joints
are measured by magnetic encoders: A diametrically polarized circular magnet is fixed to the
axis of rotation and its position is captured by a rotary position sensor (Austriamicrosystems,
AS5040). The sensor has a resolution of 0.35◦ and the board which the sensor is attached to,
is clamped to the corresponding bearing lug. The height of the nodes is hT = 22 mm and the

24

2.2 Mechanical Construction

width is wT = 24 mm. The distance between two nodes is dT = 27 mm . . . 44 mm, depending
on the configuration of the telescopic rod. An exploded view of the Telescopic Element can
be found in Figure A.1.

Node (Type 1)Rod

Cable-Fastener

Encoder

Cable-Lead-Through

Figure 2.21: CAD drawing of Telescopic Element with 4DoF

2.2.2 Cardan Element

A CAD drawing of the Cardan Element is shown in Figure 2.22. On one side (node type 1) the
Cardan Element is designed like the Telescopic Element. One sensor measures the rotational
position of the swivel point at the node of type 1. The angles of the Cardan joint are difficult
to measure and thus, we leave them unmeasured and capture the remaining DoF, the rotation
between the rod and the node of type 2. In order to do so we designed the node so that the
rod is fed through the node. The magnet, whose position is sensed by the sensor, is mounted
on the other side of the node. As two rods connect to the nodes 3, 5, 7 and 9 with an angle
of 90◦, the jacking points are shifted upwards and downwards, to avoid an intersection of
the rods. The shift S must be at least S = D/2, with D the diameter of the rod. In our
construction the shift is S = 1.5mm. The dimensions of the node next to the Cardan joint
(type 2) has slightly different dimensions: wC = 23mm and hC = 25mm. Beside the sensor, a
guide washer is mounted to the rod where cables are fixed and guided for actuation purposes.
An exploded view of the Cardan Element can be found in Figure A.2.

2.2.3 Formable Object

Figure 2.23a shows the CAD drawing of the FO while Figure 2.23b shows a photo of it. The
center node (node 1) is extended to make the FO mountable for example to a robotic arm
to increase its workspace. By doing so, the FO can be positioned and oriented in 3D space,
which adds another 6 DoF to the device.

2.2.4 Motor-Module and Cable-Transmission

One big problem for shape-rendering interfaces is their actuation, because powerful actuators
are not available in small scale. Putting actuators next to the joint which is to be actuated

25

2 Design of a Shape Rendering Interface: The Formable Object

Node (Type 1)

Node (Type 2)

Rod

Guide Washer

Cable-Fastener

Encoder

Cable-Lead-Through

Cardan Joint

Figure 2.22: CAD drawing of Cardan Element with 4DoF

(a) CAD drawing of the Formable Object (b) Realized prototype of the Formable Object

Figure 2.23: The Formable Object

leads to a heavy and bulky mechanism and decreases the spatial resolution of the interface.
We thus, decided to use classical actuators and to transmit their power to where it is needed
via cables. Figure 2.24a shows the CAD-drawing of a motor module which includes motors,
motor drivers and cable tighteners. The real motor module is shown in Figure 2.25. We
use Maxon’s RE-max 13 motors in combination with the planet gear GP 13 A, which has a
reduction of 275:1. We drive the motors with the ESCON 36/2 DC servo controller. Cable
tighteners in form of springs are used to generate pretension in the cables (Figure 2.24b).
In order to drive the actuated joints in both directions the cables form a closed loop with
the motor and end on both sides of the correspondent cable fastener or guiding washer,
respectively. As cables we use steel wire ropes with a diameter of 0.75 mm provided by Carl
Stahl. The cable sleeves provided by Kavan have a length of approximately 1m and an inner

26

2.3 Control

and outer diameter of 1 mm and 2 mm, respectively. To operate the motor-drivers a PC with
3 Mecovis IntelliDAQ MF8A-PCI cards is used. Each card features 8 analog inputs, 8 analog
outputs, 24 general purpose I/Os, 24 digital ports and 8 quadrature encoders.

Cable

Cable Tightener

Motors

Motor Drivers

Motor Module (scaled)

Cable Sleeve

(a) CAD-drawing of motor module and basic element

Cable

Guidance

Spring

Cable Sleeve

(b) CAD-drawing of cable tightener

Figure 2.24: The motor module of the Formable Object

Figure 2.25: Prototype of the motor module

2.3 Control

The overall control scheme to drive the FO is shown in Figure 2.26. We assume that desired
joint angles are either calculated offline using an optimization function (2.6) or a differential
kinematics method ([41] and Chapter 3). The inverse kinematics delivers desired joint
angles of active joints ϕa, which can be measured by sensors and actuated by motors via
the cable transmission. As the passive joints ϕp are dependent on the active joints they are

27

2 Design of a Shape Rendering Interface: The Formable Object

not used for the control of the FO. The active joints ϕa are controlled using a classical PID-
controller. Note that the PID controller does not directly receive the error of the active joints,
but that the error is first fed through a dead zone block, which eliminates errors smaller than
0.4 deg. This is important to avoid permanent movements in the region of the desired values.
The output of the PID controller is the motor current i.

Virtual

Shape Inverse

Kinematics

PID FO
ϕϕ

a

ϕ
p

e i

−

Figure 2.26: Signal flow to control the FO

2.4 Evaluation

2.4.1 Rendering of Different Curvatures

In this section, the mechanical design is evaluated with respect to its capability of rendering
different curvatures using the Formability Measure. At first, we performed similar simula-
tions as in Section 2.1.4, but now considering the construction-conditioned changes. These
changes are different node dimensions for type 1 and 2 and the previously mentioned shift
of the jacking point of the rod of the Cardan joint. Figure 2.27 shows the formability of
the real design over the parameter-space introduced earlier. The Formability Measure is
F M = 0.0050 1/m2.

Next, the maximal curvatures, which can be rendered with the kinematics, are analyzed.
In [39] we investigated the ability of configuration 1 to render cylindrical and spherical
shapes. We further distinguished between concave and convex shapes. Worse results were
obtained in case of spherical shapes whereas concave shapes could be rendered better than
convex shapes. This behavior is also reflected in Figure 2.9. To analyze the kinematics of the
FO we proceed as detailed in [39]: We stepwise (1mm steps in radius) change the curvature
from 0 (flat) to higher values (cylindrical/spherical) and check at each step whether the
shape was rendered or not. We define a shape to be ‘rendered’ when all position errors are
below 1mm and all orientation errors are below 1◦. More complex shapes than cylinders
or spheres are not considered as they can mostly be composed of a series of basic convex
and concave shapes and the device is supposed to only render the local surface area, which
is close to the interaction point. Rendering of surfaces with finer details would require far
more than 9 nodes and also a higher resolution. Table 2.3 shows the maximum reachable
curvatures ρ = 1/R of the FO.

Figure 2.28a and 2.28b show the FO rendering parts of a cylinder surface with radius
R= 0.08 m. Figure 2.28c shows the FO rendering part of a sphere surface with radius R =
0.1 m.

28

2.4 Evaluation

0

0.1

0.2

0.3

0.4

0

0.1

0.2

0.3

0.4

0

0.01

0.02

0.03

0.04

a [m]

FM = 0.005035 1/m2

bc [m]

F

Figure 2.27: Formability of the real configuration

Tabular 2.3: Maximum curvatures of Formable Object
Concave Convex

Spherical 16.67 1
m 11.36 1

m

Cylindrical 71.43 1
m 15.15 1

m

2.4.2 Stiffness

The stiffness of the kinematics was determined by applying normal forces to the nodes and
measuring the corresponding offset from the initial position. This was achieved by attaching
a spring scale to the nodes, see Figure 2.29, and using the built-in sensors to read the current
configuration of the FO. The Cartesian position of the nodes is calculated with the help of
the forward kinematics. The forward kinematics of the FO is calculated offline by solving
an optimization problem analogous to the inverse kinematics problem discussed in [39] or
2.1.4, respectively. We therefore distinguish between unknown/passive joint angles ϕp and
measurable/active joint angles ϕa. The loops L1 . . . L4, can be expressed as homogeneous
transformations T 1(ϕp,ϕa) . . . T 4(ϕp,ϕa) and when the loop constraints are satisfied T j = I
must hold (see (2.2)-(2.5)). Thus, in order to find the solution of the forward kinematics
one has to minimize T j − I for all 4 loops:

min
ϕp

F̃(ϕp,ϕa) =
4
∑

j=1

(T j(ϕp,ϕa)− I) (2.10)

Note that, by using the forward kinematics, node displacements created by the deforma-
tion of the structure or by backlash in the joints, cannot be observed. Thus, a more accurate

29

2 Design of a Shape Rendering Interface: The Formable Object

(a) Part of a cylinder surface (view 1) (b) Part of a cylinder surface (view 2)

(c) Part of a sphere surface

Figure 2.28: The FO rendering surfaces

30

2.4 Evaluation

method would be to measure node displacements by an external measurement device. As
the major reason for node displacement is backlash in the cable and the cable tighteners,
we settled for using this measurement method. Once the passive joint angles ϕp are calcu-
lated the Cartesian positions of the nodes can be derived analytically. Thus, the Cartesian
deflection of the nodes can be calculated from the measurable joint angles ϕa.

Figure 2.29: Determing the stiffness of the FO

Uncontrolled Device

Measurements were performed with disabled motors. By doing so, the displacement of
the nodes is only dependent on the elasticity of the mechanism (mainly elasticity of cable
pulls and the pre-tensioning elements). Figure 2.30 and 2.31 show results for nodes of
type 1 (2, 4, 6 and 8) and nodes of type 2 (3, 5, 7 and 9). As the path length to the cen-
ter node (node 1) for type 2 is longer, we expect a lower stiffness for these nodes compared
to the nodes of type 1. The force was increased and decreased in steps of 1N. For each node,
one series of measurement was performed and the mean was calculated from the series for
type 1 and type 2 nodes, respectively. For the nodes of type 1 we determined a stiffness (in

31

2 Design of a Shape Rendering Interface: The Formable Object

force direction) of 2.3 N/mm for increasing forces and a stiffness of 12 N/mm for decreasing
forces. For the nodes of type 2 we determined a stiffness (in force direction) of 0.68 N/mm
for increasing forces and a stiffness of 3.4 N/mm for decreasing forces. It can be seen that
when returning to the initial point (F = 0 N), a significant deflection (2.6 mm and 8.3 mm)
remains. This deflection can be traced back to friction in the joints of the kinematics and in
the cable pulls.

−2 0 2 4 6 8 10
−1

0

1

2

3

4

5

Stiffness: 2.3N/mm

Stiffness: 12N/mm

Force [N]

D
is
p
la
ce
m
en
t
[m

m
]

Figure 2.30: Maximum stiffness of FO when applying normal forces at nodes 2, 4, 6 and 8
(unpowered)

Controlled Device

Analog measurements were performed for the kinematics with enabled motors/control.
Higher stiffness and no hysteresis is expected compared to the measurements performed
with disabled motors. As can be seen in Figure 2.32 and 2.33 significant higher stiffness
values were determined with enabled control. For nodes of type 1 we determined a stiffness
of 9.6 N/mm while for type 2 the stiffness was found to be 4 N/mm. In the actuated case no
significant difference was observed for increasing and decreasing forces.

2.4.3 Dynamic performance

In this section the dynamic performance of the FO is analyzed by switching between de-
sired joint angles for a flat configuration and for a configuration rendering a cylinder with
R = 0.1 m. By measuring the actual joint angles over time the node errors (position ep and
orientation eo) of all nodes can be calculated using (2.10). Figure 2.34 shows the maximum
position and orientation error of all nodes. Figure 2.35 shows the mean position and orien-
tation error of all nodes. One can see that it takes approximately 2s until a shape is rendered

32

2.5 Conclusion

after a switch. When a shape is rendered, a remaining error can be observed. This remaining
error can be explained by a) saturated actuators, b) the finite resolution of sensors, c) the
dead zone in the control loop (c.f. Figure 2.26), which reduces stick-slip effects in the region
of the desired values but does not allow accurate control.

2.5 Conclusion

This chapter introduced the design of a SRI with 9 surface points and 24 DoF, which is fully
actuated. Based on a preliminary design version an improved optimal design was found and
the improvement was quantitatively illustrated with simulations. Details about the hardware
design, actuation and sensing were given. Possibilities to extend the area of interaction of the
FO were discussed. Two possibilities with a recursive kinematic design and one possibility
with changing kinematic design were presented. Maximum curvatures allowed to render
cylinders and spheres were determined. Furthermore, the stiffness of the kinematics was
measured in a flat configuration. When the control of the FO was enabled we reached a
stiffness of > 4 kN/m which is above the demanded 1 kN/m. When switching between
shapes, we found that approximately 2s are needed until the new shape is rendered. When
rendering a shape a remaining shape error was observed which can be explained by saturated
actuators and inaccuracies in the control of the joint angles.
Future work must target a design, which keeps the configuration of the mechanism, but is
optimized to reduce friction so that a more accurate control of the active joint angles can
be achieved. Figures A.3 - A.6 illustrate how, by redesigning the motor module and the FO,
shorter cables length and better installations of the cables can reduce the friction.

−2 0 2 4 6 8 10
−2

0

2

4

6

8

10

12

14

Stiffness: 0.68N/mm

Stiffness: 3.4N/mm

Force [N]

D
is
p
la
ce
m
en
t
[m

m
]

Figure 2.31: Maximum stiffness of FO when applying normal forces at nodes 3, 5, 7 and 9
(unpowered)

33

2 Design of a Shape Rendering Interface: The Formable Object

−2 0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Stiffness: 9.6N/mm

Stiffness: 8.2N/mm

Force [N]

D
is
p
la
ce
m
en
t
[m

m
]

Figure 2.32: Maximum stiffness of FO when applying normal forces at nodes 2, 4, 6 and 8
(powered)

−2 0 2 4 6 8 10
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Stiffness: 4N/mm

Stiffness: 4.5N/mm

Force [N]

D
is
p
la
ce
m
en
t
[m

m
]

Figure 2.33: Maximum stiffness of FO when applying normal forces at nodes 3, 5, 7 and 9
(powered)

34

2.5 Conclusion

0 20 40 60 80
0

0.005

0.01

0.015

0.02

M
a
x
im

u
m

P
o
si
ti
o
n
E
rr
o
r
[m

]

Time [s]

Flat Cylinder Flat Cylinder

0 20 40 60 80
0

10

20

30

40

M
a
x
im

u
m

O
ri
en
ta
ti
o
n
E
rr
o
r
[D

eg
]Pos

Ori

Figure 2.34: Maximum errors (position & orientation) of all 9 nodes

0 20 40 60 80
0

0.005

0.01

M
ea
n
o
f
P
o
si
ti
o
n
E
rr
o
r
[m

]

Time [s]

Flat Cylinder Flat Cylinder

0 20 40 60 80
0

10

20
M
ea
n
o
f
O
ri
en
ta
ti
o
n
E
rr
o
r
[D

eg
]

Pos
Ori

Figure 2.35: Mean of errors (position & orientation) of all 9 nodes

35

3 Inverse Kinematics for Shape Rendering
Interfaces

Dynamically controlling the shape of shape rendering interfaces (SRI) is a major challenge
when dealing with them, especially when they have a parallel kinematic design like the FO
presented in the previous chapter. In a classical sense, the inverse kinematics of a robot maps
the Cartesian position of the end-effector to the joint angles (generalized coordinates) of the
mechanism. In the case of SRIs, inverse kinematics must be defined in a different way, as
we are not dealing with one end-effector, but with solid bodies within the mechanism, which
are used to approximate a shape of interest. How to position and orient these solid bodies
must be analyzed first. SRIs, in most cases, feature a parallel kinematic design as parallel
kinematics feature high stiffness and speed. SRIs are, in most cases, highly redundant, which
further complicates the inverse kinematics problem.
In [44], methods to derive the inverse kinematics for parallel kinematics are grouped into
analytical methods and geometrical methods. Within both methods, a system of equations
is generated. Geometrical methods in contrast to analytical methods capitalize on the fact,
that for each leg of a parallel mechanism the extremities have a known position in 3D space.
Cutting these legs and calculating intersections of the varieties of the two sides of the cut
leads to a system of equations of which the solution is easy in most cases. Both methods,
however, cannot be calculated in real time with a sampling rate of more than 1kHz as typically
required in haptic applications due to the complex parallel kinematics with highly nonlinear
equations. Common parallel kinematics for which analytical/geometrical methods exist and
which are simple enough to be calculated in real-time are the Delta robot [45] or the Stewart
platform [46].
In [47] an optimization-based method is presented, where the volume between the shape
rendering interface and a virtual object is minimized. The optimization is based on a so
called physically-based modeling technique where the interface is physically modeled as a
mass-spring system and contact forces, which deform this model, are generated by bringing a
model of the object to render in contact with the model of the interface. By doing so, update
rates of 11.5Hz were obtained, which is not sufficient for haptic applications where update
rates of at least 1kHz are needed to ensure a passive system, which remains stable even
when stiff objects are rendered (cf. [48]). In [39] we followed a similar approach (analytical
method), based on a constrained optimization method (cf. (2.6)), but we also found this
implementation unsatisfying because of the rather long converging times of the numerical
optimization (30 s− 2 min).
On the other hand, inverse kinematics of redundant serial manipulators can easily be solved
in real time using a differential kinematics approach. A hierarchy is formulated and tasks of
lower priority are projected into the Nullspace of respective higher order tasks [24] [25] [26].
In this context tasks refer to the control of the position and/or orientation of the end-effector
or points on the kinematic structure.

37

3 Inverse Kinematics for Shape Rendering Interfaces

In this chapter we present an approach of controlling the shape of 3D parallel kinematics.
The proposed method is real-time capable, based on a differential kinematics approach and
allows to render shapes by simultaneously taking into account loop constraints, joint limits
and user interaction points. A systematic approach for solving the inverse kinematics of SRIs
that consist of multiple nodes is derived. These nodes are to be positioned on and oriented
to a virtual surface. We therefore reinterpret the differential kinematics approaches for serial
kinematics to use them for SRIs, which feature a parallel kinematic design. To control the
shape, differential kinematics are used within a hierarchical framework. Shape- and loop-
constraints and user interaction are considered and joint limitations are taken into account.
In [41] we already presented preliminary considerations. Further, two alternative control
modes for stiff and compliant objects are presented. Finally, two methods for proximity
queries are specified: Implicit surfaces as well as polygon sets can be used as input for the
virtual shape, which is to be rendered.

3.1 Problem Description

To define the inverse kinematics problem, a general specification of the mechanism we are
dealing with is needed. Our parallel kinematics consists of nodes and connectors between
these nodes. The nodes are covered by an elastic layer and are used to approximate the
desired shape. Each node represents a small area of the virtual surface and has a body-fixed
coordinate system defining its position p and orientation (cf. Figure 3.1). The point p is
located on the nodes’ surface which is used to render the virtual shape. The nodes are linked
by connectors, which can have several joints. In general only a few joints are actuated (active
joints) whereas the others remain unactuated (passive joints), in order to gain a determined
system. At this stage, however, it is not important which joints are actuated, as the proposed
algorithm does not depend on this selection. We assume that we are dealing with a deter-
mined system and the passive joints adapt to the active joints as they are dependent on them.
We further assume that a proper selection was made for the actuated joints within the design
of the SRI. The kinematics has M DoF in total. In the following, we analyze aspects, which
have to be considered in shape rendering.

3.1.1 Aspects of Shape Rendering

When rendering shapes with SRIs, multiple aspects have to be considered simultaneously.
These are shape forming, loop constraints, joint limits and user interaction.

Shape Forming

We assume that a virtual surface to be displayed by the mechanism is given by a 3D implicit
function f (x , y, z) or a polygon set (triangles). To render the shape of the virtual surface the
nodes have to be positioned on the surface and aligned normal to it.

38

3.1 Problem Description

e x

e y

ez

p

Node

Figure 3.1: Node with body-fixed coordinate system

Loop Constraints

The mechanism is constrained by a certain number of loops l which form closed kinematic
chains between the m nodes of the mechanism (see Figure 3.2). When rendering shapes,
the corresponding loop constraints must hold at every time. Homogeneous transformations
j T i can be used to mathematically describe the loop constraints and the relative position and
orientation between nodes i and j, respectively. In Figure 3.2 a mechanism with m = 10
nodes is shown. The loop u contains mu nodes. For each loop a directed graph is introduced
with vertices v1, · · · , vmu+1. With this notation, the closed loop constraints can be described
as follows:

Lu :
mu
∏

t=1

(vt T vt+1
)− I = 0, with: u= 1 . . . l (3.1)

This means that, when transforming from one body-fixed coordinate system to another suc-
cessively, no displacement is observable when closing the loop (i T i = I). For the example in
Figure 3.2 the first loop constraint is given by:

L1 : 1T 2 · 2T 9 · 9T 10 · 10T 7 · 7T 8 · 8T 1 − I = 0 (3.2)

Each loop provides 6 independent equations (3 equations for the position and 3 equations
for the orientation). This means that 6l equations have to be satisfied to meet the given
constraints. Free nodes can be positioned and oriented within these constraints, using the
redundancy of the kinematics.

Joint Limits

Beside loop constraints, joint limits have to be considered. The joints can be prismatic or
rotational and can be moved within their physical limits only.

39

3 Inverse Kinematics for Shape Rendering Interfaces

1

2

3 4

5

6

78

9

10
v1 = v7

v2 v3

v4

v5v6

L1

L2

L3

Figure 3.2: Mechanism with 10 nodes and three closed loops with base node 9 fixed to the
environment

User Interaction

When rendering shapes, different types of user interactions have to be considered, especially
when compliant objects should be rendered. During haptic interaction, node movements
under the elastic layer should not generate unrealistic haptic impressions (shear-forces).

3.2 Shape Rendering

The above described aspects can be taken into account by formulating the problem of shape
rendering as a nonlinear constrained optimization problem (cf. Chapter 2.1.4). Such an
optimization, however, is very time consuming and the time to converge cannot be predicted.
Thus, the optimization cannot run in real time with sampling rates of about 1 kHz as typically
required for haptic applications. In the following sections we define the above problem as a
differential kinematics problem using multiple tasks ordered in a hierarchical way. By doing
so, the problem is formulated symbolically and every iteration requires the same number of
calculations.

3.2.1 Hierarchical Nullspace Projection

In [24] an algorithm to solve multiple tasks in a hierarchical way was presented. Our ap-
proach is an extension of [24], as it is used to derive the inverse kinematics for SRIs, which
feature a parallel kinematic design. This section briefly summarizes the main ideas of this
work before introducing its extension to shape rendering interfaces. In a first step, the dif-
ferent tasks have to be defined. The tasks can take care of various aspects. In most cases, a
task is to understand as the holding of a specific Cartesian position or a distance/orientation

40

3.2 Shape Rendering

relative to an object. When multiple tasks are defined, their importance is reflected in the
hierarchy of the algorithm. Tasks of higher importance are solved accurately while tasks
of lower importance are solved as good as possible, without influencing the higher priority
tasks. This is done by a projection of the tasks on the Nullspace of the respective higher
priority task. This means that higher order tasks are solved using all DoF of the mechanism,
while lower order tasks use the redundancy of the mechanism without affecting the higher
order tasks. The Nullspace of a task k can be calculated as follows [49]:

Nk = I − J∗kJ k, (3.3)

with J k the Jacobian of the task and J∗k its weighted-damped Pseudoinverse

J∗k = W−1
k J T

k (J kW−1
k J T

k +λ
2
k I)−1 (3.4)

with weighting matrix W and damping factor λ. Details about these parameters will be given
later. In the following equations the algorithm [24] is shown for multiple tasks where task
k− 1 has higher priority over task k:

Task 1: ϕ̇1 = J∗1N
ˆ̇x 1

with: J1N = J1

ˆ̇x 1 = ẋ 1

Task 2: ϕ̇2 = J∗2N
ˆ̇x 2

with: J2N = J2N1

N1 = I − J∗1J1

ˆ̇x 2 = ẋ 2 − J2(J
∗
1 ẋ 1)

... (3.5)

Task K: ϕ̇K = J∗KN
ˆ̇x K

with: JKN = JK NK−1

NK−1 = NK−2

�

I − (J∗(K−1)N J (K−1)N)
�

ˆ̇x K = ẋ K − JK

K−1
∑

k=1

(J∗kN
ˆ̇x k)

In (3.5), a task is formulated in terms of task space velocities ẋ (e.g. Euclidean space) while
ˆ̇x denotes task velocities which also consider velocities caused by higher order tasks. The
joint velocities to be sent to the low-level controllers are given by:

ϕ̇ = ϕ̇1 + ϕ̇2 + . . .+ ϕ̇K (3.6)

3.2.2 Desired Task Velocities

In order to apply the algorithm described in section 3.2.1 to the shape rendering device, the
speed for the corresponding tasks ẋ k is needed. The speed ẋ k is defined as the desired speed
of the task ẋ kd . An error term is needed to compensate inaccuracies in the velocity originating

41

3 Inverse Kinematics for Shape Rendering Interfaces

from the weighted-damped Pseudoinverse J∗k or rather from W k and λk. As the weighted-
damped Pseudoinverse does not represent the exact inverse of the Jacobian, erroneous joint
angle velocities ϕ̇k are calculated in (3.5), especially when the mechanism is close to a joint
limit or singularity. Thus, the task velocity is calculated as:

ẋ k = ẋ kd + Kkek = ẋ kd + Kk(x kd − x k). (3.7)

Note that the gain matrix Kk can be split into Kk =
�

Kkp Kko

�T
with different gains for

positions and orientations. This formulation (3.7) requires the selection of desired positions
and orientations x kd as well as the calculation of actual positions and orientations x k of the
single nodes by means of the forward kinematics.

3.2.3 Task Definition

In section 3.2.1 we generally introduced the hierarchical Nullspace projection. In the follow-
ing, we define tasks which need to be fulfilled for shape rendering. In the remainder of this
work we consider a Node Positioning task which will be identified with index ‘P’, a Shape
Forming task denoted with ‘S’ and a Loop Constraint task identified with ‘C’, where ‘C’ takes
priority over ‘P’ and ‘S’ and ‘P’ takes priority over ‘S’. With this indexing ϕ̇ becomes:

ϕ̇ = ϕ̇C + ϕ̇P + ϕ̇S (3.8)

Note that joint angles ϕ are obtained by integrating (3.8). The constraint task ‘C’ has highest
priority because these (physical) constraints must hold at every time. In the Node Positioning
task ‘P’, specific nodes are positioned at their desired positions in Cartesian space. To do that,
the redundancy of task ‘C’ is used as task ‘P’ is executed on the Nullspace of task ‘C’. In the
Shape Forming task ‘S’, nodes (which were not considered in ‘P’) are not placed at exact
Cartesian positions, but may take multiple positions, which render the virtual shape. By
doing so less redundant DoF of the higher order tasks ‘C’ and ‘P’ are needed. Note that task
‘P’ is only used when haptic interaction takes place with a compliant object. In this case,
some nodes need to be positioned at exact Cartesian positions to avoid unrealistic haptic
impressions. If stiff objects are rendered and its shape does not change over time, task ‘P’
is not used at all and task ‘S’ is on the 2nd level of the hierarchy after task ‘C’ as visualized
in Figure 3.3. The three tasks ‘C’, ‘P’ and ‘S’ will be mathematically defined in the following
sections.

3.2.4 Loop Constraint Task

The loop constraints of the parallel kinematics are described in a differential way. The loops
are therefore virtually cut into open loops at arbitrary positions. Figure 3.4 shows the previ-
ous example in an open loop configuration. Thus, the kinematic chains can be considered as
serial kinematics.
By doing so, only the forward kinematics of the open loops have to be known. The forward
kinematics are straightforward and can be gained in an analytical way following the stan-
dard rules for serial kinematics (e.g. following the Denavit-Hartenberg convention). For

42

3.2 Shape Rendering

Loop Constraint Task (C)

Node Positioning Task (P)

Shape Forming Task (S)

Loop Constraint Task (C)

Shape Forming Task (S)

User interaction

(compliant objects)

No user interaction

(stiff objects)

1st task

2nd task

3rd task

Figure 3.3: Hierarchy with and without user interaction

1a

1b

2

3a 3b
4

5

6a

6b

78

9

10

L1

L2

L3

Figure 3.4: Mechanism with open loops

43

3 Inverse Kinematics for Shape Rendering Interfaces

open loop j the forward kinematics can be written as follows:

x C ja = f C ja(ϕ) (3.9)

x C jb = f C jb(ϕ) (3.10)

Note that x C ja describes the Cartesian position and orientation of one side of the cut and x C jb

the Cartesian position and orientation of the other side. When the closed loop constraint is
satisfied, the following equation must hold:

f C j = x C ja − x C jb = x C j
!
= 0 with j = 1 . . . l (3.11)

Note that (3.11) must hold at any time due to imposed kinematic constraints of the kine-
matics. The Loop Constraint task is fulfilled in a differential way in the highest priority task
of (3.5). Therefore task velocities ẋ C j must be calculated. These loop constraint velocities
ẋ C j can be interpreted as relative velocities at the cuts (between a & b). The loop constraint
error eC j is calculated from the difference of the desired (relative) position x C jd = 0 and the
actual (relative) position x C j which is calculated using (3.11). The task velocity ẋ C j is then
calculated using (3.7). Beside task velocities also the Jacobian JC of the task ‘C’ must be
known in order to use (3.5). The time derivative of f C j leads to the Jacobian JC j.

ẋ C j =

�

ṗ
ω

�

C j

=∇ f C j(ϕ)ϕ̇ = JC j(ϕ)ϕ̇ =

�

J p(ϕ)
J o(ϕ)

�

C j

ϕ̇, (3.12)

with j = 1 . . . l

The Jacobian JC j can be split into Jacobians J pC j for positions and J oC j for orientations.
The desired velocity of the Loop Constraint task must be ẋ Cd = 0 at all times. If errors
in the Loop Constraint task are made because of the inaccuracy of the weighted-damped
Pseudoinverse or badly chosen joint angles in the first time step of the algorithm, this error
will lead to a task velocity ẋ C 6= 0. This velocity originating from the task error eC minimizes
the task error so that the loop constraints are fulfilled. The velocities of all loops are given
by ẋ C =

�

ẋ T
C1 . . . ẋ T

Cl

�T
with overall Jacobian JC =

�

J T
C1 . . . J T

Cl

�T
.

3.2.5 Node Positioning Task

As mentioned before the Node Positioning task ‘P’ is executed on the Nullspace of the Loop
Constraint task ‘C’. Thus, when assuming that the Loop Constraint task is fulfilled, for the
Node Positioning task we can virtually cut the loops and continue working with the resulting
serial kinematics, which simplifies the inverse kinematics problem significantly. It is not
important which path on the kinematic chain is taken, but, in order to reduce complexity,
short paths (few joints) should be favored. In other words, different virtual cuts can be made
for the Loop Constraint task and the Node Positioning task. The forward kinematics of one
specific node in the kinematics follows from a composition of the transformations between
the single nodes in the serial kinematic chain. The differential forward kinematics of node i
is given by (3.13) and is again gained by differentiating the forward kinematics of a specific

44

3.2 Shape Rendering

node:

ẋ Pi =

�

ṗ
ω

�

Pi

= J Pi(ϕ)ϕ̇ =

�

J p(ϕ)
J o(ϕ)

�

Pi

ϕ̇, (3.13)

with i = 1 . . . k

where J Pi is the Jacobian of node i, which can be split into J pPi(ϕ) for translational velocities
and J oPi(ϕ) for angular velocities. The translational velocity of node i is described by ṗ =
�

ṗx ṗy ṗz

�T
and the angular velocity by ω =

�

ωx ωy ωz

�T
. The overall Jacobian

for the Node Positioning task ‘P’ is given by J P =
�

J T
P1 . . . J T

Pm

�T
. Note that, if only a

few nodes are to be directly controlled, J P is composed of the Jacobians of these nodes only.
The Node Positioning task ‘P’ is used when haptic interaction takes place at specific nodes to
avoid unrealistic haptic impressions.

Position- and Orientation-Errors of Nodes

The errors for the Node Positioning task must be derived in order to obtain the desired speed.
The position error epPi for node i becomes:

epPi = p id − p i (3.14)

In (3.14) the position error is calculated as the difference of the desired (Cartesian) position
p id of node i and its actual position p i. In order to render the virtual shape one has to
ensure that p id lies on the virtual surface. For the orientation error eoPi of node i one has
to consider the actual rotation matrix Ri =

�

n i s i ai

�

and the desired rotation matrix
Rid =

�

n id s id aid

�

of node i. The orientation error is calculated as described in [50]:

eoPi =
1
2
(n i × n id + s i × s id + ai × aid) (3.15)

3.2.6 Shape Forming Task

To position a node with a specific orientation in 3D space using the Node Positioning task,
6 DoF per node are needed. This means that for exact positioning of m nodes 6m DoF are
necessary for the whole device. In most cases, such a high amount of DoF is neither available
nor necessary for shape rendering. To display a specific shape the nodes do not have to be
forced to a specific position, but the nodes can rather be positioned anywhere on the surface
with an orientation in normal direction to the surface. To achieve this, only 3 DoF per node
or 3m DoF for the whole device are needed. We developed a method where shape rendering
can be derived from the Node Positioning task as explained in Section 3.2.5.

Distance to the Surface

When considering the positions of the nodes, the Euclidean distance to the surface di of each
node i is of interest and should be controlled to a specific desired value did (did = 0 in most
cases). Thus, the velocity of the nodes ṗ i must be reformulated using the time derivative
of the Euclidean distance ḋi. The temporal change of the distance ḋi can be calculated by

45

3 Inverse Kinematics for Shape Rendering Interfaces

projecting the velocity vector ṗ i onto the normal vector n i of the virtual surface at the actual
node position (cf. Figure 3.5) by using the scalar product

ḋi = nT
i · ṗ i. (3.16)

Combining (3.16) with the translational part of (3.13) leads to

ḋi = nT
i J pPi(ϕ)ϕ̇ = J pSi(ϕ)ϕ̇, with J pSi = nT

i J pPi, (3.17)

J pS =
�

J T
pS1 . . . J T

pSm

�T
. (3.18)

ṗ
i

ḋi · n i

n i

Virtual Surface

Figure 3.5: Projection of the node velocity in normal direction

αi

e x i

ezi

n
αi

n i

Virtual Surface

Figure 3.6: Area defining the direction of angular velocity

Angle between Node and Surface

In order to orient the nodes in an appropriate way, the body fixed z-axis ezi and the normal
vector of the surface n i at point p i must be aligned. This means that each node is allowed

46

3.2 Shape Rendering

to rotate about n i. Thus, 2 DoF per node are needed to control the orientation of the nodes.
We define the angle between the body fixed x-axis e x i and n i and the angle between the
body fixed y-axis e yi and n i to be αi and βi. In order to align ezi with n i, αi and βi must
be controlled to meet the desired values αid = βid = π/2. Note that the desired values αid

and βid might also be allowed to vary from π/2, if it is demanded by the application. The
angular velocityωi must be projected onto the rotation axes of αi and βi, respectively. These
directions are nαi and nβ i, the normal vectors of the planes which are spanned by n i and e x i

or e yi, respectively. Figure 3.6 shows the plane with normal vector nαi, which defines the
rotation axis of αi. The direction nβ i is defined analogously. The vector nαi (nβ i) is calculated
using the cross product of n i and e x i (e yi).

nαi =
n i × e x i

|n i × e x i|
; nβ i =

n i × e yi

|n i × e yi|
(3.19)

Note that the vectors n i, e x i (e yi) and nαi (nβ i) form a right-handed trihedron and if n i and
ezi are aligned, αi = βi = π/2. The angular velocity projected onto nαi (nβ i) is given by

ωαi = nT
αi ·ωi; ωβ i = nT

β i ·ωi. (3.20)

Combining (3.20) with the rotational part of (3.13) leads to

ωαi = nT
αi J oPi(ϕ)ϕ̇ = JαSi(ϕ)ϕ̇, with JαSi = nT

αi J oPi, (3.21)

ωβ i = nT
β i J oPi(ϕ)ϕ̇ = JβSi(ϕ)ϕ̇, with JβSi = nT

β i J oPi, (3.22)

J oS =
�

JαS1 . . . JαSm JβS1 . . . JβSm

�T
. (3.23)

Position- and Orientation-Errors of Nodes

The errors for the Shape Forming task must be derived in order to obtain the desired speed.
The position error epSi for node i becomes:

epSi = did − di. (3.24)

The orientation error eoSi of node i is defined with the help of the angles αi and βi between
the body-fixed vector e x i (e yi) and the normal vector n i at position p i:

eoSi =
�

αid −αi βid − βi

�T
(3.25)

with αi = arccos

�

eT
xi · n i

|eT
xi · n i|

�

(3.26)

βi = arccos

�

eT
yi · n i

|eT
yi · n i|

�

(3.27)

Please note that αi and βi are well defined between 0 and π, which is sufficient for orienting
the nodes.

47

3 Inverse Kinematics for Shape Rendering Interfaces

3.2.7 Joint Limits & Singularities

The hierarchical Nullspace projection described in Section 3.2.1 makes use of the weighted-
damped Pseudoinverse J∗. The diagonal weighting matrix W(ϕ) is used for joint limit avoid-
ance while the damping λ is used for robustness at singularities. If the joint ϕi is close to
its joint limit, a high value appears at the corresponding position in W and consequently ϕ̇i

becomes small (0 at the joint limit). The damping matrix is calculated as described in [24].
A joint limit function H(ϕ) is given by (3.28), where the joint limts for joint i are denoted
by ϕi,max and ϕi,min, respectively. The actual joint value is given by ϕi.

H(ϕ) =
1
4

n
∑

i=1

(ϕi,max −ϕi,min)2

(ϕi,max −ϕi)(ϕi −ϕi,min)
. (3.28)

The corresponding weighting factor wi is calculated with the help of the gradient function
∂ H(ϕ)
∂ ϕi

(see (3.29)(3.30)).

∂ H(ϕ)
∂ ϕi

=
(ϕi,max −ϕi,min)2(2ϕi −ϕi,max −ϕi,min)

4(ϕi,max −ϕi)2(ϕi −ϕi,min)2
(3.29)

wi =

�

1+ ∂ H
∂ ϕi

if ∆| ∂ H
∂ ϕi
| ≥ 0,

1 if ∆| ∂ H
∂ ϕi
|< 0

(3.30)

The weighting matrix W is built as a diagonal matrix with elements wi:

W =









w1 0 . . . 0
0 w2 . . . 0
... 0

.. .
...

0 . . . 0 wn









(3.31)

A very high damping factor λ will damp joint velocities ϕ̇ and thus, lead to a low Cartesian
accuracy. On the other hand, low damping causes high joint velocities at singularities, which
needs to be avoided.
If the shape task drives the kinematics close to a singular configuration and a low damping
λS is used within this task, high joint velocities ϕ̇S of the shape task can affect the fulfillment
of the constraint task even though the shape task is executed on the Nullspace NC of the
constraint task. This can be explained by an inaccurate calculation of the Nullspace NC : the
weighted damped Pseudoinverse J∗C (which is not the exact Inverse) is used for the calcula-
tion of NC . On the other hand, a high damping λS will avoid the fulfillment of the Shape
Forming task and consequently leads to potentially large shape errors eS. In [41] we pro-
posed the damping factor of the Shape Forming task to be dependent on the error resulting
from the violation of constraints. We extend this approach by a dependency of λS on the two
factors B1 and B2:

λS =
λ0

B1B2
. (3.32)

48

3.2 Shape Rendering

The factors B1 and B2 can take values between zero and one. The smallest possible value for
λS is λ0. The blending factor B1 is a function of the normalized constraint error eCn:

eCn =max
j
(|eC p j|+ po|eCo j|), (3.33)

B1 =
e(−α

eCn
d −δ)

1+ e(−α
eCn

d −δ)
. (3.34)

The normalized constraint error eCn is the maximum of the weighted sums of the position
error eC p j and the orientation error eCo j of all loops, with gain po. In (3.34) α, d and δ
are used to change the characteristics of the blending function. For a detailed description of
the blending function please refer to [24]. If, like in [41], only B1 is used (B2 = const = 1)
an error in the constraint task has to occur first in order to gain a small blending factor B1.
Thus, in some cases the loop constraints can be badly violated. We therefore suggest to use
the additional blending factor B2, which is defined as B2 =min(W−1), the smallest element
of the inverse weighting matrix W . This means that B2 is defined by the weighting factor
of the joint which is closest to its joint limit. Note that B2 only takes care of singularities
caused by joint limits. Singularities in the workspace are still considered by B1. As soon as
the kinematics comes close to a singular configuration B1 and/or B2 decrease.

3.2.8 Shape Rendering

The method driving all nodes using the Shape Forming task and simultaneously taking loop
constraints into account by means of the Loop Constraint task is called Shape Rendering.
Shape rendering combines the two tasks into a hierarchical framework. To fulfill the shape
task 3m DoF are needed. If that amount of DoF (or more) is available, the shape rendering
interface will render the shape without errors, as long as no joint limits are reached. When
using the Shape Forming task, nodes are not fixed to a specific position/orientation. The
nodes are allowed to slide on the surface and rotate around their ez-axes. This behavior can
be observed when compliant objects are rendered, because the shape changes due to haptic
interaction. The changed shape depends on the deformation model used and will not be
discussed further here. Some examples for deformation models can be found in [51], [52],
[53], [54], [55], [56] or [57]. In the following, we distinguish between Static and Dynamic
Shape Rendering.

Static Shape Rendering

We refer to Static Shape Rendering if an object which is to be rendered, keeps a constant
shape or only changes the shape slowly. This means that in (3.7) ẋ kd is small or zero for
the Shape Forming task. This is for instance the case when initially adapting to an object
with constant shape. The kinematics will in most cases be in a configuration which does
not render the shape and the task error eS 6= 0, but the desired task velocity is ẋ Sd = 0. In
this case the task velocity ẋ S and consequently the shape adaption will be driven by the task
error eS. For stability reasons the gain KS must be set to a small value and thus, ẋ S will also
be small. This means that the shape will not be adapted immediately, but after some time.
Once the static shape is rendered (eS = 0), a changing shape can be followed faster, because
ẋ Sd 6= 0.

49

3 Inverse Kinematics for Shape Rendering Interfaces

Dynamic Shape Rendering

We refer to Dynamic Shape Rendering if an object shape changes fast, e.g., in case of a si-
nusoidal movement. If the shape changes too fast, the shape rendering device will have
problems to follow the desired shape, because the damping λS and the weighting-matrix W S

of the Pseudoinverse of the Jacobian JS will limit the joint velocities ϕ̇S (cf. (3.4) and (3.5)).

3.2.9 Dynamic Shape Rendering with User Interaction

If a subject interacts with the shape rendering interface and a compliant object is to be ren-
dered, the virtual shape and thus, the configuration of the interface will change. In this
case, the interface must be equipped with sensors, e.g. pressure sensors, in order to detect
the user-interaction. If all nodes are controlled in a shape forming task, the subject can feel
shear forces because of the nodes moving parallel to the virtual surface. In order to avoid
this, we suggest adding a third task to the hierarchical framework. The nodes where haptic
interaction takes place are controlled to exact positions and orientations, in a Node Position-
ing task. At most M

6 nodes can be controlled to exact positions and orientations because in
order to do so, 6 DoF per node are needed. In contrast, 3 Dof are needed to control one node
in a shape forming task, where the node is positioned somewhere on the surface in normal
direction to it. The exactly controlled nodes gain higher priority over the other nodes con-
trolled in the Shape Forming task. If the kinematics is highly redundant, the shape will be
approximated like when controlling all nodes in the Shape Forming task (if no joint limits
are reached). But if not enough DoF are available, shape errors will occur.
The Jacobian for the Node Positioning task, which is executed in the Nullspace of the con-
straint task, is composed of the Jacobians J Pi of the nodes which are controlled in the Node
Positioning task. If for example node 1, 3 and 10 are to be controlled in the Node Positioning
task J P becomes:

J P =
�

J T
P1 J T

P3 J T
P10

�T
. (3.35)

In order to guarantee the fulfillment of the Node Positioning task one has to guarantee:
0≤

∑

r ≤ M
6 , with r the number of nodes to be controlled in the Node Positioning task. This

means that with this approach maximal M
6 nodes can be controlled. This only applies if the

desired positions lie inside the workspace of the mechanism (no joint limits are reached).
Further, please note that contacts occurring between the nodes are not discussed here. In
such a case unrealistic haptic impressions can appear, when the area of the operator’s fin-
gertip (diameter approx. 1 cm) is smaller than the distance of the nodes. Then the operator
feels the compliance of the elastic layer. Avoiding such unrealistic haptic impressions would
require modelling the elastic layer and introducing a new task, which controls the point of
interaction (between the nodes) to specific positions. To this end, one would need to model
the elasticity of the layer as a function of tension in the layer-material. The problem aris-
ing from the elasticity of the layer will, however, be dissolved automatically once a shape
rendering interface with a higher resolution (node distance smaller than the fingertip) will
become available. In this case the fingertip of the operator will always touch at least one
node. Finally, the rendering of compliant objects could be achieved by adding sensors to the
elastic layer to determine the desired dynamic displacement of the nodes in response to the

50

3.3 Shape Descriptions: Implicit Surfaces and Polygon Sets

selected deformation model. Alternatively and if only minor deformations are required one
could improve the elastic layer to control the elasticity of the layer itself. This could e.g. be
achieved by particle jamming as proposed in [58].

3.3 Shape Descriptions: Implicit Surfaces and Polygon Sets

The input of the Shape Forming task described in 3.2.6 uses task space velocities ẋ S (ḋ, ωα,
ωβ). For the calculation of the task space velocities all actual node distances di and the cor-
responding normal vectors of the virtual surface n i at position p i must be known. Position
p i is calculated with the help of the forward kinematics of the cut mechanism. Note that all
joint angles are assumed to be known. The position/orientation errors must be calculated
from the actual node position and the virtual surface, which is to be rendered. In the follow-
ing two possible descriptions of virtual surfaces are discussed: implicit surfaces and polygon
sets. Implicit surfaces are easy to handle but complicated surfaces are difficult to describe.
With polygon sets, complicated object shapes can be specified without effort. We show how
the distances di and the normal vectors n i required for the shape rendering can be obtained
from these descriptions, so that implicit surfaces and surfaces defined by polygon sets can be
handled.

Implicit Surface

Many object surfaces can be described by an implicit equation. An implicit surface in 3D
Euclidean space is defined as a function f (p) = f (px , py , pz) = d̂, where d̂ = 0 on the surface.
The function value is d̂ > 0 outside the object and d̂ < 0 inside. In most cases the function
value d̂ does not match the Euclidean distance d to the surface. The Euclidean distance d,
however, can be calculated with the help of the algorithm presented in [59], where the closest
surface point pS of a point p in space is calculated in a few iterations. Once the surface point
pS is known, the Euclidean distance can be calculated by:

d = sgn(f (p))|pS − p| (3.36)

The normal vector n at position
�

x y z
�T

can be calculated with the gradient∇ f (x , y, z)
of the implicit function:

n(x , y, z) =
�

nx ny nz

�T
=
∇ f (x , y, z)
|∇ f (x , y, z)|

(3.37)

Polygon Set

In many cases, implicit surface descriptions are not available, especially when complex ob-
jects are considered. Inspired by [60] and [61] we developed a method where node distance
and normal vectors are gained from polygon sets (triangle meshes). In [60] active constraints
(restricting planes) were used to define Lagrange multipliers to be solved by means of op-
timization. The optimization delivers the position of the so-called god-object, which is the
closest surface point to the haptic interaction point that penetrates the virtual object. In con-
trast we do not base our algorithm on optimization, but we rather aim for a method which

51

3 Inverse Kinematics for Shape Rendering Interfaces

uses offline calculations to generate a database which delivers information about neighbor-
ing primitives of the polygon data set by orthogonally projecting p i onto the surfaces/edges
and vertices of interest. No distinction of convex and concave constraints (for convex and
concave surface regions) is needed because this distinction is indirectly performed by our
algorithm. By doing so, at each time step only a small part of the dataset has to be taken
into account, which accelerates the execution of the algorithm. In [61] a similar approach
was presented, but the dataset was built based on 3 primitives (Vertex, Line, Polygon) and
in each iteration it was checked if the surface point is on the primitive or on its neighboring
primitives. This means that if for example in iteration j the surface point pS lies on a polygon,
in the next iteration (j+1) it is checked if pS lies on that polygon or on its surrounding prim-
itives (edges and vertices). Our algorithm also takes into account all surrounding polygons
and thus, achieves a more accurate solution at iteration j + 1 compared to [61]. In contrast
the algorithm in [61] would find a surface point pS on a neighboring polygon in iteration
j + 2.
We assume that the polygon set is available in STL-format, where vertices and normal vec-
tors are given for each polygon. This dataset is preprocessed offline in a first step to make it
usable for the online phase of our algorithm.

Offline Phase: In the Offline Phase, the given information from the polygon set is converted
into an extended data set. We add the following information to the data set:

• Polygon ID

• Neighbor polygons of vertex 1, 2 and 3 of a certain polygon

• Neighbor polygons of edges 1, 2 and 3 of a certain polygon

Table 3.1 shows the elements of the STL-data set and the extended data set. The last column
shows values for the example polygon set shown in Figure 3.7.

Tabular 3.1: STL-data set and its extension

STL-Dataset

Vertex 1 Cartesian position
Vertex 2 Cartesian position
Vertex 3 Cartesian position
Normal Vector Cartesian vector

Extension

Polygon ID P7
Neighbor-IDs Vertex 1 P1,P2,P3,P8,P9
Neighbor-IDs Vertex 2 P3,P4,P5,P6
Neighbor-IDs Vertex 3 P6,P9,P10,P11
Neighbor-IDs Edge 1 P3
Neighbor-IDs Edge 2 P6
Neighbor-IDs Edge 3 P9

52

3.3 Shape Descriptions: Implicit Surfaces and Polygon Sets

P1

P2 P3

P4

P5

P6

P7

P8

P9

P10

P11

V1

V2

V3

E1

E2

E3

Figure 3.7: Example of polygons with IDs

Online Phase: In the Online Phase the previously generated data set is used to find the
closest surface point pSi and the corresponding normal vector n i. The distance di is defined
by the Euclidean distance between pSi and p i. At any time step the distances di of all nodes
and normal vectors n i at positions p i are needed to calculate the actual task-errors (cf. (3.24),
(3.25), (3.26), (3.27)) and to gain the Jacobians JSi(ϕ) for the shape task ((3.17), (3.23)).
The most obvious solution to get the distances di would be to identify the closest vertex of
the polygon set to the node of interest to define pSi, whereas pSi is a 3D Cartesian position
on the virtual surface. This approach can lead to a surface point pS which has a high distance
to p i even if p i is close to the virtual surface. This especially can be observed, when large
polygons are enclosed in the dataset and p i is close to such a large polygon, but far from
the vertices defining the polygon. A better solution is consequently to obtain the distances
of p i to the closest polygon face and pick this distance as the demanded distance di. This,
however, may lead to situations, in which the orthogonal projected point pSi lies outside
of the corresponding polygon, which means that a projection to an edge or a vertex would
produce a more accurate solution for the distance (cf. Figure 3.9 and 3.10). We therefore
suggest an algorithm, which takes into account projections to faces and edges, for finding
the minimal distance and normal vector. A flowchart of the algorithm is shown in Figure 3.8.

The algorithm takes advantage of the dataset created in the Offline Phase. In the first
step, the closest vertex is determined from either all polygons or a meaningful choice of
polygons (e.g. the polygons close to the node of interest). The distance is determined by
the Euclidean distance of p i to the vertex. The offline dataset provides the polygons, which
share this closest vertex (involved polygons). The point p i is then orthogonally projected to
all surfaces of the involved polygons and it is checked how many projected points lie inside
the corresponding polygons. If multiple projected points lie inside the polygons, the one

53

3 Inverse Kinematics for Shape Rendering Interfaces

take projected point closest
to and normal vector of

corresponding polygon

>1

1

0

>1

1
0

all polygons / meaningful choice
of polygons

keep polygons which
adjoin closest vertex

for next iteration

take projected point
and normal vector of
corresponding polygon

project on
edges of polygons

How many projected
points lie on edge?

take projected point closest
to and normal vector of

corresponding edge

take projected point
and normal vector

of corresponding edge

take closed vertex
and normal vector
of closest vertex

pi
pi

pi

How many projected
points lie inside polygon?

determine closest vertex to

get neighboring polygons of closest vertex

project to polygonspi

pi

Figure 3.8: Algorithm to find distance d and normal vector n from a polygon set

54

3.3 Shape Descriptions: Implicit Surfaces and Polygon Sets

p

p
1

p
2

p
3

p
4

Face 1

Face 2
Face 3

Face 4

(a) Multiple projected points (p1, . . . , p4) are inside polygon

p

p
1

p
2

p
3

p
4

Face 1

Face 2

Face 3

Face 4

(b) One projected point (p4) is inside polygon

p

p
1

p
2

p
3

p
4

Face 1

Face 2

Face 3

Face 4

(c) No projected point is inside polygon

Figure 3.9: Projection on surfaces

55

3 Inverse Kinematics for Shape Rendering Interfaces

p

p
1

p
2

p
3

p
4

(a) Multiple projected points (p1, p2) are on edge

pp
1

p
2

p
3

p
4

(b) One projected point (p1) is on an edge

p

p
1

p
2

p
3

p
4

(c) No projected point is on edge

Figure 3.10: Projection on edges

56

3.4 Results

with the smallest distance to p i is chosen to be pSi. If only one projected point lies inside
the corresponding polygon this point is set to be pSi and if none of the projected points lies
inside, further projections to edges must be made: The point p i is orthogonally projected
to all edges, which share the previously determined vertex (closest vertex). Analog to the
plane projections, it is checked how many projected points lie on the corresponding edge. If
more than one projected point is on an edge, the one with the shortest distance is chosen to
be pSi. If only one point lies on the corresponding edge, this point is chosen. If no projected
point is on the edge, the closest vertex determined at the beginning is defined to be pSi.
To summarize we have three cases where pSi can be located: on a polygon, edge or vertex.
Depending on these cases, the corresponding normal vectors are calculated: if the point pSi

lies on a polygon, the normal vector n i is given by the normal vector of the polygon np. If
the point pSi lies on an edge n i =

np1+np2

|np1+np2|
, with np1 and np2 the normal vectors of the planes

adjoining the edge. The normal vector at a vertex is calculated by the normalized mean of the
normal vectors of all r adjoining planes: ni =

np1+...+npr

|np1+...+npr |
. The involved polygons (polygons

adjoining the closest vertex) are used as input for the next iteration. In Figure 3.9 and 3.10
the different cases considered in the algorithm are visualized.

3.4 Results

In this section, the previously explained methods for controlling SRIs are applied to a kine-
matics with 24 DoF, the Formable Object (FO) presented in chapter 2. The Formable Object
consists of 9 nodes, which are connected by links with 4 DoF each. The nodes are connected
to form a network of nodes with 4 closed kinematic chains. The FO is to be positioned in
space by a robotic device, which is not considered here. Node 1 (fixed node) is thereby posi-
tioned in the center of the region which is to be rendered by the FO. Nodes 2-9 (free nodes)
are controlled using the methods described in this chapter. As the FO is to be positioned in
space by a robotic device and rotations about the ez-axis of node 1 are allowed, we add this
rotational DoF to the kinematics of the device. Thus, we are dealing with 25 DoF whereas
the additional/redundant DoF helps in finding a better configuration to render a shape in
some cases.

3.4.1 Shape Rendering

This section demonstrates the shape rendering of the FO. As shape input, a 3D elliptic surface
is used, which is described implicitly:

f (x , y, z) =
x2

a2
+

y2

b2
+

z2

c2
− 1= d̂, (3.38)

n(x , y, z) =
�

2x
a2

2y
b2

2z
c2

�T
. (3.39)

We chose the elliptic shape as test shape as any complex shape can be assembled of concave
and convex elliptic shapes. The simulation was performed with a sampling rate of 1 kHz.
A wide range of performance measures for haptic interfaces can be found in [23]. As these
measures are specified for classical haptic interfaces with one interaction point, we introduce

57

3 Inverse Kinematics for Shape Rendering Interfaces

the Shape Forming Index (SF I). In the following sections, the shape rendering performance
is measured and compared with the help of the SF I , which is defined as the mean of the
normalized position and orientation errors of all nodes:

SF I =
arctan (Kp

�

|ep1| . . . |epm|
�

) +
�

|eo1| . . . |eom|
�

π
, (3.40)

with epi and eoi the position and orientation errors of all nodes 1 . . . m. The SF I can take
values between zero and one. The gain Kp is used to generate a balanced weighting between
position errors ep and orientation errors eo. In order to equally weight a position error of
ep = 0.001 m and an orientation error of eo = 1◦ = 0.0175 rad we chose a gain of Kp = 17.5.

Static Shape Rendering

At the beginning of the simulation, we assume the kinematics in a flat configuration (cf.
Figure 2.23a). Node 1 is placed at the center of the surface to be approximated by the FO.
As mentioned before node 1 is allowed to rotate around its ez-axis, which is useful to find a
better orientation of the FO to render the desired shape. We simulated the adaptation of the
FO to a spherical shape (a = b = c = R) where R is the radius of the sphere. In Figure 3.11
one can see how the blending factors B1 and B2 behave and the SF I visualizes how well the
shape is approximated:
The radius R is slowly changed from 0.2 m to 0.1 m and backwards as well as from 0.2 m
to 0.05 m. In the very beginning one can see that the blending factor B1 rises from 0 to 1.
This means that loop constraints are slightly violated at the very beginning. Because in every
iteration of the algorithm the joint angles ϕ are calculated by integrating the joint velocities
ϕ̇, initial joint angles are needed for the integrator. These angles are numerically not accurate
enough, such that the loop constraints are slightly violated, and thus B1 is found to be close to
zero. The error in the Loop Constraint task is eliminated by the control algorithm after 70 ms.
Note that this small error in the Loop Constraint task does not affect the hardware, which
is controlled by the algorithm. Such small errors in the loop constraint are compensated
by backlash in the mechanism and on the other side cannot be measured because the sensor
accuracy is not high enough. As soon as the Loop Constraint task is fulfilled the SF I decreases
to 0 which means that the FO adapts the desired shape (R = 0.2m). From t = 1 s . . . 4 s the
shape changes from R = 0.2 m to R = 0.1 m and backwards. Slight shape errors are made
while the radius changes, because the task velocity of the shape task ẋ S and the related joint
velocities ϕ̇S are reduced because of the weighted damped Pseudoinverse (cf. (3.4)). As
soon as the radius remains constant, the shape error is eliminated by the error term in (3.7).
From t = 5 s . . . 8 s the radius changes from 0.2 m to 0.05 m and backwards. A sphere with
radius 0.05 m cannot be rendered by the FO without shape error, because joint limits are
reached. One can see that the blending factor B2 decreases to zero in the very beginning.
This means that a very high damping is used for the shape task and thus, joint velocities ϕ̇S

are inhibited. The blending factor B2 depends on the weighting matrix W . If B2 is not low
enough to guarantee the fulfillment of the Loop Constraint task, B1 helps to further increase
the damping λS. This behavior can be observed after 6 s. Figures 3.12 and 3.13 show the
simulation of the FO adapting to the desired shapes at time t = 2.5 s (R = 0.1 m) and

58

3.4 Results

t = 6.5 s (R = 0.05 m), respectively. One can see that a radius of R = 0.1 m is rendered
without shape errors, but rendering a sphere with R= 0.05 m is not possible without errors.

Figure 3.11: Static shape rendering

Figures 3.14 - 3.19 show simulations of the FO rendering several shapes. Cylindrical,
spherical and elliptical shapes are visualized. It is shown how convex and concave shapes
can be rendered.

Dynamic Shape Rendering

In order to evaluate the performance of the algorithm to render varying shapes, simulations
with dynamically changing shapes were performed. The changing radius R, blending factors
B1 and B2 and the SF I are shown in Figure 3.20. The radius R was changed with different fre-
quencies, namely 1 Hz, 2 Hz and 3 Hz. These frequencies were chosen because subjects select
frequencies of about 2 Hz when being asked to perform cyclical flexion-extension movements
with their fingers [62] and thus, we expect shape changes in this frequency range when hap-
tic interaction takes place. One can see that higher frequencies produce larger shape errors.
The faster the shape/radius changes the larger values can be observed for the SF I . The

59

3 Inverse Kinematics for Shape Rendering Interfaces

Figure 3.12: FO rendering a sphere with ra-
dius R= 0.1m

Figure 3.13: FO rendering a sphere with ra-
dius R= 0.05m

Figure 3.14: Convex rendering of cylindrical
shape with R= 0.07 m

Figure 3.15: Concave rendering of cylindrical
shape with R= 0.03 m

60

3.4 Results

Figure 3.16: Convex rendering of spherical
shape with R= 0.09 m

Figure 3.17: Concave rendering of spherical
shape with R= 0.06 m

Figure 3.18: Convex rendering of ellipti-
cal shape with A= 0.15 m,
B = 0.07 m and C = 0.10 m

Figure 3.19: Concave rendering of ellip-
tical shape with A= 0.15 m,
B = 0.07 m and C = 0.10 m

61

3 Inverse Kinematics for Shape Rendering Interfaces

reason is the same as described in the previous section: joint velocities ϕ̇S are damped by
the damping factor λS and the weighting matrix W . The errors, which are made, must be
eliminated by the error term in (3.7), which works the better the slower the desired shape
changes.

Figure 3.20: Dynamic shape rendering

3.4.2 User Interaction

This section demonstrates the case when haptic interaction takes place in the region of one or
more nodes. This case can be understood as dynamic shape rendering with the special feature
that specific nodes are controlled in a node positioning task in order to avoid unrealistic haptic
impressions, when the shape deforms while touching the object. We simulated the behavior
of the FO when a subject touches the FO at node 3 and simultaneously at node 3, 4 and 5.
At the beginning of the simulation the FO is in a flat configuration rendering a flat surface
(f (x , y, z) = z). Figure 3.21 and 3.22 show simulation results when a force acts first on one
node only (node 3, t = 2 s . . . 4 s) and then on three nodes (node 3,4 and 5, t = 6 s . . . 8 s),
respectively. The forces act along the negative z-axis of the global coordinate system. To
simulate the shape deformation we use a simple deformation model. The amplitude of the

62

3.4 Results

deformation Â is calculated with the help of a spring model: Â = c f , with spring constant
c = 1 N

mm and force f . The deformation in the surrounding region of the point of interaction

is defined by a 2D-Gaussian function A(x , y) = Âexp
�

−
�

(x−x0)2

2σ2
x
+ (y−y0)2

2σ2
y

��

, with (x0, y0) the

point of interaction on the flat surface. We chose σx = σy = Â for haptic interactions at one
point (node 3) and σx = Â, σy =∞ for haptic interactions on multiple points (node 3, 4
and 5), which can be interpreted as a line contact. More complicated deformation models
could be implemented but would exceed this thesis. Figure 3.21 shows results when all
nodes are controlled in a Shape Forming task for the whole duration of the simulation. The
flat surface deforms in consequence of the interaction force. One can see that the SF I is
low when the shape does not change (t = 3 s, t = 7 s). Figure 3.23 shows the 3D-plot of
the FO adapting to the changed shape at t = 3 s and t = 7 s, while Figure 3.24 shows the
xz-view at t = 7s. One can see that the nodes where the interaction takes place change
orientation and slide on the virtual surface in order to render the shape by fulfilling the
Shape Forming task. In case of a point force on node 3 the device is rotating using the
25th DoF mentioned before in order to better approximate the shape. These movements
can be felt by the subject in the form of shear forces and are undesired. In order to avoid
such undesired haptic impressions we control the nodes where the haptic interaction takes
place to exact positions (Node Positioning task) such that the corresponding nodes follow
the point of haptic interaction with no change in orientation (cf. 3.2.9). The remaining
nodes are controlled in the Nullspace of these nodes by the Shape Forming task. The result
of a simulation controlling specific nodes to exact positions is shown in Figure 3.22, where
SF I(S) is the Shape Forming Index of nodes controlled in the Shape Forming task and takes
into account the errors of these nodes only. SF I(P) is the Shape Forming Index of the exactly
controlled nodes (Node Positioning task). If no haptic interaction takes place (f = 0 N), all
nodes are controlled by the Shape Forming task and thus, SF I(P) = 0. As mentioned before
the FO has 25 DoF and 8 nodes are controlled to render the shape. This means that all nodes
can be controlled by the Shape Forming task, but when one or more nodes are controlled
with the help of the Node Positioning task (6 DoF per node), the remaining DoF are not
sufficient to properly control the remaining nodes by the Shape Forming task (3 DoF per
node). When controlling all nodes in the Shape Forming task, SF I(S) is zero or decreases
towards zero. In Figure 3.22 SF I(S) decreases slowly because B2 has a low value. As soon
as haptic interaction takes place at node 3 (t = 2 s . . . 4 s), this node is controlled in the
Node Positioning task. This task is fulfilled as can be seen from the low SF I(P). On the
other hand, the SF I(S) becomes worse because not enough DoF are left for the remaining
nodes. The SF I(S) becomes even worse if 3 nodes (t = 6 s . . . 8 s) are controlled by the Node
Positioning task. Figure 3.25 shows the corresponding 3D-plots of the FO adapting to the
deformed shape, while Figure 3.26 shows the xz-view at t = 7s.

3.4.3 Polygon Sets

In this section, we show results of using polygon sets as shape-input instead of implicit sur-
faces. The algorithm described in (3.5) uses distances di from nodes i to the object and
normal vectors n i at position p i, which are determined at every iteration using the method
described in Section 3.3. Thus, polygon sets can be handled similar to implicit surfaces. For

63

3 Inverse Kinematics for Shape Rendering Interfaces

Figure 3.21: Shape rendering of a compliant object with all nodes controlled in a Shape Form-
ing task

64

3.4 Results

Figure 3.22: Shape rendering of a compliant object with some nodes controlled in a Node
Positioning task

65

3 Inverse Kinematics for Shape Rendering Interfaces

Point contact Line contact

Figure 3.23: FO adapting to deformations when all nodes are controlled in a Shape Forming
task (3D-view)

Figure 3.24: FO adapting to deformations when all nodes are controlled in a Shape Forming
task (xz-view)

66

3.4 Results

Point contact Line contact

Figure 3.25: FO adapting to deformations when some nodes are controlled in a Node Posi-
tioning task (3D-view)

Figure 3.26: FO adapting to deformations when some nodes are controlled in a Node Posi-
tioning task (xz-view)

67

3 Inverse Kinematics for Shape Rendering Interfaces

compliant objects, displacements of vertices can be calculated (e.g. FE models). Please note
that remeshing must be avoided as this would lead to a recalculation of the offline dataset,
which would harm the real-time capability of the algorithm. Node 1 is placed at the center
of the virtual surface area, which is to be rendered with the FO. Nodes 2 to 9 (free nodes) are
then controlled to be on the surface with the corresponding orientation. At the beginning
of the simulation the FO is in a flat configuration. The algorithm described in Section 3.3
requires a meaningful choice of triangles for initialization of the algorithm. This choice has
to be made for all free nodes of the FO. We chose the vertex, which is closest to node 1, for all
free nodes, because this vertex is close to all nodes even if the object represented by the poly-
gon set is large. Another meaningful choice would be the closest vertex to the corresponding
node, but these vertices must be determined offline from the whole polygon set beforehand,
which is time consuming. Figure 3.27a-3.27f show the simulation of the FO adapting to the
polygon set (sphere with diameter d = 0.2 m). One can see how the polygons, which are
taken into account by the algorithm (highlighted triangles), shift from node 1 towards the
triangles closest to the corresponding node. This happens in the first 5 iterations. The FO
then adapts to the shape in about 0.5s. The adaptation to the shape takes relatively long
because it is driven by the task error eS only with a small gain KS (KSp = 100, KSo = 50).
Figure 3.28 and 3.29 show the FO adapting to a hexagonal object subscribed by a polygon set
with relatively large polygons. One can see that the FO makes a small error due to reached
joint limits but renders the object as good as possible. The free nodes position themselves on
two neighboring faces.

3.5 Conclusion

This chapter presented a method for controlling SRIs. In order to approximate a shape,
the nodes of the shape rendering interface have to be positioned on the virtual surface and
oriented into the normal direction of the surface. This was achieved using differential kine-
matics within a hierarchical framework, which considered three different tasks: A Shape
Forming task as well as two constraint tasks taking into account closed-loop constraints as
well as constraints resulting from user interaction. Joint limits and singularities were han-
dled by a weighted-damped least-square Pseudoinverse. Two surface descriptions and their
desired proximity queries for haptic rendering were introduced: Implicit surfaces as well as
polygon sets. A series of simulations provided insights into the proposed algorithms based
on the kinematics of the FO presented in chapter 2 with 9 nodes and 24 DoF and showed
that the algorithms run in real-time with a sampling rate of 1 kHz.
In future works one has to further consider different shape descriptions. In this chapter,
shapes were described by either implicit functions or polygon data sets. In case of the poly-
gon data set triangular polygons were considered. This is a common description but different
polygons must be addressed in future works. Furthermore, shape descriptions in the form
of splines must be analyzed because such a description is common in many CAD-software
tools.

68

3.5 Conclusion

(a) 1st time step (b) 3rd time step

(c) 5th time step (d) 7th time step

(e) 600th time step (f) 600th time step

Figure 3.27: FO adapting to a polygon set

69

3 Inverse Kinematics for Shape Rendering Interfaces

Figure 3.28: FO adapting to a hexagonal object (3D-view)

Figure 3.29: FO adapting to a hexagonal object (yz-view)

70

4 Actuator Reduction for Shape Rendering
Interfaces

4.1 Problem Description

Mechanisms with a high amount of DoF, like shape rendering interfaces (SRIs), come along
with a high number of actuators because, assuming we are not dealing with an underactu-
ated system, every single DoF must be actuated. We call these actuated joints active joints
ϕa of the mechanism. In case of a parallel kinematics we also have unactuated joints in the
mechanism, which we call passive jointsϕp. In this chapter, we analyze a possible actuator re-
duction for parallel kinematic SRIs. When considering SRIs, one aspires to a mechanism with
a high resolution covering a large interaction area. This means that the amount of required
actuators grows immensely when pursuing these goals and actuation becomes impractical.
In order to reduce the amount of required actuators, sequentially actuating active joints with
one actuator only, which can be connected and unconnected to the corresponding joints,
represents a practical solution to this problem. In order to not end up with a highly underac-
tuated kinematic system, semi-active actuators (breaks) can be included in the mechanism
so that the joints, which are not connected to the actuator remain in their current position.
By doing so, the needed space and costs for the actuators can be reduced immensely. On the
other hand, actuating the active joints cannot be done without considering passive joints. In
other words, when actuating an active joint, joint limits of the passive joints can be reached
and thus, a switch to another active joint might be required. In this chapter, we investigate a
(sub-)optimal switching sequence, which transfers a mechanism from an initial configuration
into a target configuration in minimum time. We assume that the initial and target config-
uration was previously calculated e.g. with the method described in Chapter 3. Switching
from one active joint to another changes the kinematics of the system. Thus, the problem
is formally described as a hybrid control problem. The dynamic system model is given by
the differential kinematics of the mechanism. To simplify the problem, we, as first attempt,
considered a formulation of the problem, which neglects dynamics. By doing so, a permitted
solution for the switching sequence is obtained as we assume that we are dealing with a sys-
tem, which is controlled by a stiff position control. With this assumption the system is able
to follow the desired value of the active joint with no or only small errors and the obtained
solution will be close to a solution, which also consideres the dynamics of the system. Taking
the dynamics into account would namely complicate the problem significantly. Further, an
exact model is difficult to obtain. For an exact model, a highly nonlinear model description
(friction, couplings, etc.) would have to be developed.

71

4 Actuator Reduction for Shape Rendering Interfaces

4.2 Hybrid Optimal Control and Heuristic Search

Hybrid control deals with systems where continuous and discrete states and inputs are mixed.
Examples for hybrid systems are robots where the system dynamics discretely changes due to
the grasping of an object or, automatons where the system dynamics changes due to reached
thresholds, etc. An optimal hybrid control minimizes a cost function with regard to multiple
constraints (system model, etc.). Several works exist, which extend Pontryagin’s maximum
principle [63] and the method of dynamic programming for hybrid systems [64], [65], [66]
and [67]. Several procedures like mixed-integer programming [68], value function ap-
proaches [69] and the hybrid maximum principle [65] have been proposed, to solve hybrid
optimization problems. Approaches for subclasses, like switched linear, affine or quadratic
dynamics are also known [70], [71], [72], [73]. Most of these concepts assume that a dis-
crete switching sequence is known a priori and solving the optimization problem is to be
understood as finding the optimal switching states and times. On the other hand, in the
work of Shaikh and Caines ([67] [74] [75]) an optimal switching sequence is identified.
The procedure can be regarded as finding the optimum switching pair to transfer a state
from one position in the state space to another with one switch. Hereby all possible pairs of
positions in the state space are calculated a priori. When aiming for an optimal switching
sequence, a combinatorial graph search must be performed in most cases. Approaches of re-
ducing the computational effort like e.g. branch-and-bound methods are typically employed
in such situations. [76], [77], [78]. Branch-and-bound methods are a type of heuristic search
methods. A wide overview on heuristic search methods is given in [79].
In the following, the hybrid optimization problem is formulated for SRIs. It will be shown,
how the problem described in Section 4.1 can be simplified to a purely discrete problem
and thus, the hybrid optimization problem can be reduced to a combinatorial graph search
problem, which can be efficiently solved with branch-and-bound methods.

Hybrid System Model

In [80] a hybrid dynamic system is defined as follows:

ẋ = f (x , u,q , t) if si(x , u,q , v , t) 6= 0, (4.1)
�

x+(t)
q+(t)

�

= φ i(x , u,q , v , t) if si(x , u,q , v , t) = 0, (4.2)

y = h(x , u,q , v , t). (4.3)

The continuous dynamics of the hybrid system is described in (4.1), while the discrete dy-

namics is given in (4.2). The hybrid state ξ(t) =

�

x (t)
q(t)

�

is formed by the continuous state

x (t) ∈ X ⊆ Rn and the discrete state q(t) ∈ Q ⊆ Ns. Inputs to the system are the continuous
control input u(t) ∈ U ⊆ Rm and the discrete control input v(t) ∈ V ⊆ Nk. The transi-
tion φ i becomes active if the discontinuous hypersurface si = 0. This is equivalent with a
state reset and, if at time ts the hypersurface i is hit (si(ts) = 0), the hybrid state is reset to

ξ(ts) =

�

x+(ts)
q+(ts)

�

. The hybrid system output y ∈ Y ⊆ Rb ×Rc is given by (4.3).

72

4.3 Time and Sequence Optimization for Hybrid Shape Rendering Interfaces

Optimization Cost Function

In [81] the optimization cost function of a hybrid optimization problem, which is to be min-
imized (or maximized) is defined as follows:

J = θ (x (te), te) +
N−1
∑

r=1

cr(x r , v r , t r) +

∫ te

0

φ(x , u,q , v , t)d t (4.4)

In (4.4) θ (x (te), te) specifies the costs for the target state x e = x (te). Switching costs
cr(x r , v r , t r) appear for any of the N − 1 switches, when passing N systems. The contin-
uous costs, which are described by φ(x , u,q , v , t), occur during the whole time period from
t0 = 0 to te. The optimization problem is formulated as follows:

min
u,v

J (4.5)

s.t. ẋ = f (x , u,q , t),

x (0) = x 0,

g (x (te), te) = 0,

h(x , ẋ , t)≤ 0.

In (4.5) multiple boundary conditions must be taken into account. Beside the continuous
system dynamics the initial state x 0 and the target condition g (x (te), te) must be met. Fur-
thermore, inequality constraints h(x , ẋ , t) can be defined for the optimization problem.

4.3 Time and Sequence Optimization for Hybrid Shape
Rendering Interfaces

In this section the problem described in Section 4.1 is formulated as a hybrid optimization
problem, following the framework of Section 4.2. Especially the boundary conditions as well
as the cost function are defined in the following subsections.

4.3.1 Hybrid Model of Shape Rendering Interface

The continuous system model describes the change of the continuous system states ẋ with
respect to the continuous states x itself and the continuous input u. As mentioned before
we neglect the dynamics of the system, because we assume that the system is controlled by a
stiff position control. As we need a mapping of the continuous state on its derivative, we use
the differential kinematics of the mechanism as system model. Multiple continuous system
models qi to describe the current kinematics of the SRI exist, depending on the currently
selected actuation of the device. Since the position of passive joints ϕp strongly depends on
the position of active joints ϕa, the system model must describe this dependency. Note that a
determined system is assumed, which means that the number of active joint ma is equal the
number of DoF M (ma = M). The dependency of all joints ϕ (passive joints ϕp ∈ X p ⊆ Rnp

included) on active joints ϕa ∈ X a ⊆ Rna is formulated by:

ϕ =
�

ϕT
a ϕT

p

�T
= f pa(ϕa) (4.6)

73

4 Actuator Reduction for Shape Rendering Interfaces

As we are dealing with parallel kinematics, the dependency given by (4.6) cannot be de-
scribed analytically in most cases, especially if the mechanism has a high amount of DoF. On
the other hand, the differential dependency f̂ pa (4.7) can be stated more easily.

ϕ̇ =
�

ϕ̇T
a ϕ̇T

p

�T
= f̂ pa(ϕa,ϕp, ϕ̇a) (4.7)

The joint angles of the mechanism define the continuous state of the hybrid system
ϕ =

�

ϕT
a ϕT

p

�T
:= x =

�

x T
a x T

p

�T
, while the (scalar) discrete state q is defined by the

actuated active joint. The (scalar) continuous system input u is defined by the velocity of the
actuator, which drives the actuated active joint. The (scalar) discrete input v is defined by
the actuated joint itself. Note that the discrete state q is directly correlated to the discrete
input v. In other words, a change of the discrete input changes the discrete state so that
q = v.

Differential Dependency of Passive Joints on Active Joints

As mentioned before a differential dependency f̂ pa of passive joints ϕp = x p on active joints
ϕa = x a is used as dynamic model considered for optimization. In the following, it is shown
how a differential kinematic solution (4.7) can be determined with the help of a hierarchical
task space projection.
The dependency of passive joints on active joints is determined by the closed loops of the par-
allel kinematics. When actuating one or more active joints, the passive joints always adapt
so that these loop constraints are fulfilled. Figure 4.1 shows an example kinematics with
M = 6 DoF. The mechanism contains ma = 6 active and mp = 3 passive joints. The mecha-

nism is statically determined as M
!
= ma. As for a serial kinematics it is easy to identify the

forward kinematics in an analytical way, every loop of the mechanism is virtually cut free,
and thus, two serial kinematics per loop are gained (a and b)(cf. chapter 3). Figure 4.2
shows the previous example with a virtual cut at node 5. The forward kinematics, which
describes the position and orientation of the cut using the kinematics a or b can be deter-
mined in an analytical way. In the following we want to use the algorithm of hierarchical
Nullspace projection (cf. Chapter 3 and [25]) to determine the differential kinematics f̂ pa

of the mechanism. Thus, we define two tasks: Loop Closure and Active Joint Positioning. The
Loop Closure task controls the serial kinematics (a and b) so that the loops, which were
virtually cut free, are closed. This task must be fulfilled at every time and thus, gains the
highest priority in the task hierarchy. The Active Joint Positioning task is executed on the
Nullspace of the Loop Closure task and its goal is to drive the active joint angles to its desired
values. In order to fulfill the previously introduced tasks, the passive joints must adapt so
that both tasks are fulfilled. Note, that the Node Positioning task and the Shape Forming
task, which were introduced in Section 3.2.3 are not considered here. In this chapter, the
method of hierarchical task-space projection is solely used to gain a dependency of passive
joints on active joints.

The hierarchical Nullspace projection is described in detail in Section 3.2.1 (3.5). In order
to use the algorithm, Jacobians and task velocities must be defined for each task. These
definitions are made in the following.

74

4.3 Time and Sequence Optimization for Hybrid Shape Rendering Interfaces

1 2 3 4 5

ϕa1

ϕp1

ϕa2
ϕp2 ϕa3 ϕa4

ϕp3 ϕa5 ϕa6

0

Figure 4.1: Parallel kinematics with 6DoF

1 2 3 4 5a 5b

ϕa1

ϕp1

ϕa2
ϕp2 ϕa3 ϕa4

ϕp3 ϕa5 ϕa6

0

Figure 4.2: Parallel kinematics with 6 DoF (cut at node 5)

Task 1 (Loop Closure): The Loop Closure task is the most important task in the hierarchy as
it guarantees the fulfillment of the loop closure constraints. A detailed description about the
Loop Closure task was given in Section 3.2.4. The most important aspects of the Loop Closure
task are recapitulated in the following. As mentioned before, the serial forward kinematics of
the open loop j (f C ja and f C jb) can be calculated analytically. By subtracting f C ja from f C jb

the relative position and (orientation) of the two sides of the cut f C j is obtained (cf. (3.11)).
The time derivative of f C j leads to the Jacobian of the loop closure task JC = J1 (cf. (3.12)).
The task velocity ẋ C j is the relative Cartesian velocity (position and orientation) of the two
sides of the cut of loop j. As the relative position (and orientation) must be zero at all times
the task velocity must be ẋ C j = 0. Note that the index is j = 1 . . . l with l the number of
loops.

Task 2 (Active Joints): The Jacobian J2 = JA of the Active Joint Positioning task shows
the dependency of active joints ϕa on all joints ϕ =

�

ϕT
a ϕT

p

�T
:

ϕ̇a = J2(ϕ)ϕ̇ = JA(ϕ)ϕ̇. (4.8)

In the cut free state, the active joints have no effect on the passive joints and thus, JA is
composed of an identity- and a zero-matrix:

JA =
h

I
[ma×ma]

0
[ma×mp]

i

. (4.9)

The according Pseudoinverse J∗A is given by the transposed matrix:

J∗A = J T
A JAJ T

A = J T
A . (4.10)

The algorithm (3.5) executes tasks of lower priority on the Nullspace of higher priority
tasks. The adjusted Pseudoinverse is calculated by multiplying the Pseudoinverse with the

75

4 Actuator Reduction for Shape Rendering Interfaces

Nullspace of the higher priority task. Thus, the needed Pseudoinverse for the Active Joint
Positioning task is calculated as follows:

JAN = JANC and J∗AN = N∗C J∗A, (4.11)

ϕ̇ =
�

ϕ̇T
a ϕ̇T

p

�T
= J∗AN ϕ̇a. (4.12)

Note that neither J1 = JC nor J2 = JA use damping or weighting, because it would falsify
the kinematics, which describes the dependency of passive joints on active joints. The task
velocity ẋ 2 = ẋ A is given by the velocity of the active joints ϕ̇a, which is a vector of the length
ma.

Continuous Dynamics

Equation (4.12) defines the required differential dependency of passive joints on active joints.
Thus, the continuous system model is:

ϕ̇ = f̂ pa(ϕ, ϕ̇a) = ẋ = f (x , ϕ̇a) = J∗AN(x)ϕ̇a. (4.13)

In (4.13) ϕ̇a is considered the continuous system input, which is a vector with ma ele-
ments. As, per definition, we can actuate one active joint at a time only, ϕ̇a is in the following
described with the help of u and v.

Discrete Dynamics

The discrete input v is defined on the finite discrete input space v ∈ N = {0,1, 2, . . . , ma},
with ma the number of active joints. As only one active joint can be actuated at a time per
definition, the continuous input u must appear at the corresponding position in ϕ̇a, while the
other elements must be zero. Thus ϕ̇a is described with u and v = q in the following way:

ϕ̇a =









1− sgn (|1− v|)
1− sgn (|2− v|)

...
1− sgn (|nv − v|)









u=









1− sgn (|1− q|)
1− sgn (|2− q|)

...
1− sgn (|nv − q|)









u. (4.14)

With this definition u only appears at the position of ϕ̇a of the corresponding active joint and
(4.12) becomes:

ϕ̇ = ẋ = J∗AN ϕ̇a = J∗AN(x)









1− sgn (|1− q|)
1− sgn (|2− q|)

...
1− sgn (|nv − q|)









u= f (x , u,q , t) (4.15)

76

4.3 Time and Sequence Optimization for Hybrid Shape Rendering Interfaces

Transitions

In the case of the SRI we have control over the switching at all times, as switching can be
dictated by the discrete control input v. Thus, the transition has a simple form:

si(v) = p− v with p ∈ Q. (4.16)

This description means that a switch to system p (active joint ϕap) occurs if v = p. When
switching from one system to another, the continuous state x does not change, but only the
discrete state q changes to the new system:

�

x+(t)
q+(t)

�

= φ i(v, t) =

�

x−(t)
v+(t)

�

(4.17)

Hybrid Optimization of Switching Sequence of Shape Rendering Interface

The previously described hybrid system is to be transferred from an initial hybrid state

ξ0 =

�

x 0

q0

�

into a target state ξe =

�

x e

q e

�

, which were previously calculated using e.g.

the methods described in Chapter 3. Note that the discrete system state q e is of minor
interest, as any active joint may be connected to the actuator, when the continuous tar-
get state x e is reached. In the following we want to find an optimal switching sequence
Q = {q0, q1, . . . , qN−1} so that the system is transferred from ξ0 into ξe in minimal time.
When applying the sequence Q, N systems are passed, while the systems of Q are not nec-
essarily distinct. Thus, N − 1 switches occur. We assume that switching from one system to
another takes a constant time TSwitch. Thus, the cost function, which is to be minimized in
the optimization, is defined by:

J =
N−1
∑

j=1

TSwitch

︸ ︷︷ ︸

discr. costs

+

∫ te

0

1d t.

︸ ︷︷ ︸

cont. costs

(4.18)

By comparing (4.18) with (4.4) one can see that:

θ (x (te), te) = 0; cr = TSwitch; φ = 1 (4.19)

The cost function in (4.18) includes continuous costs and discrete costs. The discrete costs are
caused by the time, which is required to switch from one system to another. The continuous
costs are caused by the time, which is needed to drive from the initial state to the target
state. Thus, the cost optimal control must have as least switches as possible on the one hand
and on the other hand, drive as fast as possible from one continuous state to another. This
means that the cost function can be further simplified making the following assumptions for
our simplified scenario: As we consider only one active joint to be actuated (and all other
active joints are blocked) at a time, the path of this active joint and the passive joints is
predetermined by the state at the switching time, and can be illustrated by a fixed trajectory
in the state space. Thus, the time to cover a distance on that trajectory can only be minimized
by driving the corresponding active joint with maximum velocity. This can easily be shown

77

4 Actuator Reduction for Shape Rendering Interfaces

with the help of Pontryagin’s maximum principle. Taking a different trajectory in the state
space to transfer the state from one state to another is not possible. As this fact holds for all
continuous system models qi, the continuous system input must be set to its maximum value
u = ±umax to minimize the continuous costs of the cost function. Furthermore, one can say
that, when using a maximal continuous input at all times, the continuous costs will take a
constant value no matter which switching sequence is used. This statement only holds, when
the active joints are driven towards their desired values, which is assumed here, in order to
further simplify the problem. Driving the active joints away from their target would increase
the continuous costs of the cost function and considering the problem as discrete problem
would not be allowed in this case. Thus, the cost function is simplified to:

Ĵ =
N−1
∑

j=1

TSwitch. (4.20)

Thus, minimizing the cost function is a matter of finding a switching sequence in which as
least switches as possible occur.

4.3.2 Combinatorial Graph Search

As the optimization problem can be reduced to the problem of finding an optimal switching
sequence (as least switches as possible), the problem is transformed into a combinatorial
graph search optimization. The challenge lies in the cardinality of the graph. As mentioned
before switching from one system to any of the other systems can be conducted at any time
(at any position in the state space). This fact blows up the graph and the number of branches,
which have to be analyzed to find a global optimum. In the following paragraphs a general
approach of finding a (sub-)optimal solution in the obtained graph is shown. Based on this
approach suboptimal and optimal solutions are discussed.

Graph Search Algorithm

To find a (sub-)optimal solution in a branch tree, Stursberg presented a method that opti-
mizes the discrete and continuous degrees of freedom in a two-stage procedure [77]. The
discrete controls are selected by a graph search algorithm and the continuous controls are
obtained by embedded nonlinear programming. As the continuous part of the optimization
problem examined here is trivial, the graph search algorithm is of interest, which implements
the well-known A*-algorithm which is briefly recapitalized in the following paragraph.
A graph G is defined to be a set {ni} of elements called nodes and a set {ei j} of directed
line segments called arcs [82]. The element epq is an arc from node np to nq and nq is a
successor of np. Each arc has costs ci j associated with it (see Figure 4.3). The purpose of
the A*-algorithm is to find the path with minimum costs in the graph, which leads from an
initial node n0 to a target node ne (e.g. n5). The costs from the initial node n0 to the target
node ne are evaluated using an evaluation function f (ni), which calculates the costs of the
path when passing node ni:

f (ni) = g(ni) + h(ni). (4.21)

78

4.3 Time and Sequence Optimization for Hybrid Shape Rendering Interfaces

n0

n1 n2
n3

n4
n5

n6 n7
n8

c01

c02

c03

c14

c15

c25

c26

c27

c65

c38

Figure 4.3: Example of a graph

In (4.21) g(ni) is the actual cost of an optimal path from n0 to ni. The function h(ni) estimates
the costs from ni to the target node ne, which is done by a lower bound estimation. Note
that the graph G is expanded during the run of the algorithm. This means that the graph
is not completely available at the beginning, but it is rather expanded during the run of the
algorithm. This clarifies why an estimation function h(ni) is needed. Multiple modes to
expand the graph are known: breadth-first, depth-first and best-first [77]. The breadth-first-
mode selects all nodes of the graph from which the system evolution has to be investigated
further. The depth-first-mode selects the node from the last iteration, which has minimum
cost. And the best-first-mode selects the node from the whole graph, which has minimum
cost (min f (ni)). For the following considerations the best-first-mode is used.

A*-Algorithm applied to the Time Optimization Problem

In this section the aforementioned A*-algorithm is applied to the combinatorial problem of
the SRI. Note that we are dealing with controlled switching and thus, a switch from one
system to another can take place at any time and state. Thus, discretizing the state space
is a suitable procedure to avoid an infinite cardinality. The highest discretization, which is
most sensible in a practical sense, is dictated by the resolution of the encoders measuring
the joint angles of the active joints ϕa, which are called discretization points in the following.
Such a high resolution in most cases still leads to a high cardinality, but for the following
derivations, we stick to this resolution, if not specified differently. Let us assume that we
deal with a kinematics with ma active joints and mp passive joints. Furthermore, m̂a0 ≤ ma

active joints are initially not in their corresponding desired target state. Thus, the minimum

79

4 Actuator Reduction for Shape Rendering Interfaces

costs estimated are:

h(n0) = m̂a0Tswitch. (4.22)

The value estimated by (4.22) assumes that no joint limits of the passive jointsϕp are violated
when driving the active joints ϕa towards their desired values, which delivers a lower-bound
estimation. This estimation can be used at any node in the path:

h(ni) =

�

m̂a(ni)Tswitch if q− 6= q+,
(m̂a(ni)− 1)Tswitch else .

(4.23)

In (4.23) m̂a(ni) determines the number of active joints which have not reached their desired
values at node ni, yet. The second case takes care of paths, which do not include a switch to
another system. This occurs if a discrete state position is met and proceeding with the same
system is permitted. Figure 4.4 shows node ni and its possible successors. For the path where
no switch to another system takes place (q = 1), the lowest cost is estimated by h(ni). This
path will always be preferred by the algorithm as it promises the lowest costs. After defining
h(ni) we have to define g(ni), which delivers the actual costs at node n:

g(ni) = mSW (ni)Tswitch. (4.24)

In (4.24) mSW (ni) is the number of switches conducted to reach node ni.

ni

q = 1

q = 1

ma(ni)− 1

q = 2

ma(ni)

q = 3

ma(ni)

Figure 4.4: Cost estimation at node ni

Transitions

In 4.3.1 it was stated that switching to any other system is possible at any time. In order
to reduce the cardinality arising from this assumption, the transitions are redefined in the
following way. A new node/transition arises, whenever one of the following three cases
occurs:

1. The desired value of the active joint is reached.

2. A joint limit of one of the passive joints is reached.

80

4.3 Time and Sequence Optimization for Hybrid Shape Rendering Interfaces

3. A discretization point of the active joint is reached.

These three cases are mathematically formulated as:

si =|
�

ϕaq −ϕaq,e

�

|+ | (p− v) |, (4.25)

with v ∈ V |
�

ϕav −ϕav,e

�

6= 0 and p ∈ Q,

si =|
�

ϕaq −ϕaq,min

� �

ϕaq −ϕaq,max

�

|+ | (p− v) |, (4.26)

with v ∈ V |
�

ϕav −ϕav,e

�

6= 0∧ v 6= q and p ∈ Q,

si =|
nd−1
∏

b=1

�

ϕaq −ϕaq,d(b)
�

|+ | (p− v) |, (4.27)

with v ∈ V |
�

ϕav −ϕav,e

�

6= 0 and p ∈ Q.

In (4.25) - (4.27) ϕaq denotes the active joint (system q) and ϕaq,e is its target state. Each
active joint ϕaq has a valid range, reaching from the minimum joint angle ϕaq,min to the max-
imum ϕaq,max . This range is discretized into nd discrete sectors. These sectors are separated
by the discretization points:

ϕaq,d(b) = ϕaq,min + b∆ϕaq = ϕaq,min + b
(ϕaq,max −ϕaq,min)

nd
with b = 1 . . . (nd − 1) (4.28)

Figure 4.5 shows the previously introduced kinematics in a start configuration (solid lines)
and a target configuration (dashed lines). One can see that in order to drive the configuration
to the target, the active joint 4, 5 or 6 can be chosen in the beginning. Figure 4.6 visualizes
the possible paths at the initial state. One can see that when choosing active joint 4, no joint
limits are violated on the way to its target state. In the case of active joint 5 or 6 the target
position for the corresponding active joint cannot be reached, due to joint limit violations.
The discretization points ϕaq,d are shown for a discretization with nd = 5. The joint limits of
the passive joints are illustrated by a box.

1 2 3

4

4

5

qa1

qp1

qa2 qp2 qa3 qa4

qp3 qa5

qa6

Target Initial

Figure 4.5: Initial and target configuration of example kinematics

81

4 Actuator Reduction for Shape Rendering Interfaces

Figure 4.6: Comparison of 3 possible paths in the state space: joint limits are reached when
driving active joint 5 or 6 towards their desired values

(Sub-)optimal Solution

As mentioned before, the cardinality of the graph search tree tends to infinity, when all pos-
sible permutations are to be considered. Beside that, we know that, if no joint limits are
violated, the algorithm will try to avoid switches and thus, switches at the boarder of the
allowed passive state space will be favored. This leads us to a description for the transitions,
which massively reduces the cardinality of the search tree. We artificially set the transitions
so that only case 1 and case 2 (4.25)(4.26) are considered. As, only in rare cases, switching
at discretization points leads to an optimal solution, the corresponding transitions are disre-
garded. By doing so a lot less paths have to be considered while keeping the most promising
paths in the search. The following statements can be made:

1. If mSW (ne)≤ m̂a0 + 1 a global optimal solution is found

2. If mSW (ne) > m̂a0 + 1 a sub-optimal solution is found which might be the global opti-
mum

These statements are motivated by the following chain of thoughts. As the lowest thinkable
number of switches is known a priori (m̂a0) one can say that m̂a0 must be a global optimum.
All possible permutations to reach that value are included in the search with the transitions
defined before (4.25) (4.26). Thus, if no solution with m̂a0 switches is found a solution with
m̂a0 + 1 switches must be a global optimum. As the transitions only include switching if a
passive joint angle limit is reached, there might be a solution with less switches (switching
somewhere in the state space) in the case when more that m̂a0 + 1 switches are found with

82

4.4 Results

the graph search. If one wants to give a statement about global optimality, one would have to
consider a search with a higher cardinality (discretization points included). This search can
be interrupted once a solution of the first case is found. The suboptimal solution m̃SW (ne)
is used as lower-bound estimation so that branch-and-bound approaches can be used. This
avoids, that paths which contain more switches than found within the suboptimal solution
(m̃SW (ne)), are evaluated. A path is pruned as soon as f (ni) = g(ni)+h(ni)≥ m̃SW (ne)Tswitch

(cf. (4.21)). As the number of paths, which have to be evaluated to find a solution, is not
known a priori, the method presented here cannot run in real-time. On the other hand, the
system behavior is well predictable, which means that little time is needed to search large
graphs.

4.4 Results

In this section we aim for demonstrating the functionality of the (sub-)optimal search proce-
dure. The mechanism introduced earlier (Figure 4.1) is used to demonstrate the optimization
of the switching sequence.
The kinematics is to be transferred from an initial position to a target position. Transitions
occur if the joint limit of one of the passive joints is reached or, if the active joint reaches
its desired value (no discretization). The A*-algorithm with best-first mode is applied to the
optimization problem. In the following, we show examples for the two cases introduced in
4.3.2.

Optimal Solution: mSW (ne) = m̂a0

Figure 4.7 shows the initial and the target configuration of the mechanism. One can see
that m̂a0 = 3 active joints (4,5,6) are not in the target state at the beginning. A solution
with mSW (ne) = 3 switches is found with the A*-algorithm ({4 5 6}), which is an optimal
sequence. The A*-algorithm generated 4 nodes (initial and target node included), until the
solution was found. The path of the passive states is shown in Figure 4.8. One can see that
no joint constraints are violated during the state transfer from x 0 to x e.

Optimal Solution: mSW (ne) = m̂a0 + 1

Figure 4.9 shows a different initial and target configuration of the mechanism. Active joints
1, 2, 5 and 6 are not in the target state at the beginning, which leads us to m̂a0 = 4. A
sequence with mSW (ne) = 5 switches was found ({2 6 5 1 5}). As all potential paths
which could lead to mSW (ne) = 4 were included in the search one can say, that an optimal
solution was found and a solution with only 4 switches does not exist. The A*-algorithm
generated 21 nodes (initial and target node included), until the solution was found. The
path of the passive states is shown in Figure 4.10. One can see that no joint constraints are
violated during the state transfer from x 0 to x e.

83

4 Actuator Reduction for Shape Rendering Interfaces

0 0.1 0.2 0.3 0.4

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

x [m]

y
[m

]

Initial

Target

Figure 4.7: Initial and target configuration (mSW (ne)< m̂a0 + 1)

Figure 4.8: Optimal path of passive states (mSW (ne)< m̂a0 + 1)

84

4.4 Results

0 0.1 0.2 0.3 0.4

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

x [m]

y
[m

]

Initial

Target

Figure 4.9: Initial and target configuration (mSW (ne) = m̂a0 + 1)

Figure 4.10: Optimal path of passive states (mSW (ne) = m̂a0 + 1)

85

4 Actuator Reduction for Shape Rendering Interfaces

Suboptimal Solution: mSW (ne)> m̂a0 + 1

Figure 4.11 shows another initial and target configuration of the mechanism. One can see
that m̂a0 = 6 active joints are not in the target state in the beginning. A solution with
mSW (ne) = 8 switches was found ({3 4 5 2 1 6 1 6}). This means that a subopti-
mal solution was found and an optimal solution with 7 switches might exist. To find such a
sequence, one has to discretize the state space, but the finding of an optimal solution cannot
be guaranteed. The A*-algorithm generated 323 nodes (initial and target node included),
until the solution was found. A run of a graph-search with a discretization of nd = 40 us-
ing mSW = 8 as lower bound did not find a solution. Thus, we assume that the solution
found before is an optimal solution. The path of the passive states, using the sequence with
8 switches, is shown in Figure 4.12. One can see that no joint constraints are violated during
the state transfer from x 0 to x e.

0 0.1 0.2 0.3 0.4

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

x [m]

y
[m

]

Initial

Target

Figure 4.11: Initial and target configuration (mSW (ne)> m̂a0 + 1)

86

4.5 Conclusion

Figure 4.12: (Sub-)optimal path of passive states (mSW (ne)> m̂a0 + 1)

4.5 Conclusion

In this chapter, the problem of finding an optimal switching sequence to transfer a parallel
kinematics from an initial state into a target state was analyzed. Therefore, the problem was
formulated as a hybrid optimization problem. The state model was formulated with the help
of a hierarchical task space projection. After several simplifications the optimization problem
could be simplified to a pure discrete optimization problem, and was solved with combina-
torial graph search techniques. These simplifications are only allowed when assuming that
the position control can follow the desired values of the active joints with no or only small
errors. To deal with the cardinality of the combinatorial graph search, switching transitions
were artificially introduced. With the help of these transitions (sub-)optimal solutions are
found by searching an immensely reduced search tree. Statements, whether the found so-
lution is optimal or sub-optimal, are given. In the case of a sub-optimal solution, a better
(global optimal) solution might exist. Finding such a solution can, in some cases, be achieved
by discretizing the state space and increasing the search tree. In most cases, the sub-optimal
solution is sufficient.
In the future the method presented in this chapter must be extended to problems where
more than one active joint can be actuated at a time. In this case, the cardinality of the
graph increases as each combination of active joints, which can be actuated simultaneously,
represents a separate path. The optimization problem is further complicated once the dy-
namics of the system is taken into account. In this case, the problem is not purely discrete
any more, as the continuous part of the optimization is not constant.

87

5 Conclusions and Future Directions

5.1 Concluding Remarks

This thesis described the design and control of shape rendering interfaces (SRI), which can
be used for haptic applications, where a high transparency in free space and full-hand inter-
action is desired.

The main goal of this thesis was the design of a SRI, with a sufficiently high resolution,
which is easily extendable and which, in contrast to most state of the art interfaces, allows
full bare hand interaction and is fully actuated. A further goal was to present control
strategies for SRIs.

In Chapter 2 the design of a SRI, the Formable Object, was presented. The interface has
24 DoF and is designed as a parallel kinematics, which is fully actuated. After analyzing
the determinacy and expandability of the device major requirements for the interface were
defined. Basic elements, the so-called Telescopic Element and the Cardan Element, from
which the FO is assembled, were presented. It was shown that both elements and not only
one of the twos must be used in order to gain a high formability for the FO. It was further
shown that not only the type of basic element, but also the way these basic elements are
assembled, highly contributes to the formability of the FO. In order to find the optimal
configuration out of a preselection of 9 configurations, we defined the so-called Formability
Measure (F M), which was helpful to quantitatively compare different configurations in
terms of formability. Based on this comparison the optimal configuration was selected
and a prototype of the FO was designed. It was shown that construction-conditioned
changes to the optimal design did not significantly change the formability of the mechanism.
Details of the actuation, sensing and control principles were given. The prototype was
evaluated in terms of maximum and minimum displayable curvatures, stiffness and dynamic
performance. The FO can reach curvatures of 16.67 1/m (concave) and 11.36 1/m (convex)
in the spherical case and 71.43 1/m (concave) and 15.15 1/m (convex) in the cylindrical
case. A stiffness of > 4 N/mm was reached in normal direction to the interaction surface. A
switch from one shape to another takes approximately 2 s.

Chapter 3 dealt with the kinematics of SRIs, especially with interfaces, which feature a
parallel kinematics. After defining the problem of shape rendering, aspects, which have to
be considered in the problem solution, were identified. The kinematics problem was solved
in a differential way. The procedure of Nullspace projection outlined in [24], [25] or [26]
was modified to the problem of shape rendering. Therefore, specific tasks namely the Loop
Constraint task, the Node Positioning task and the Shape Forming task were introduced. For
these tasks, which are executed on the Nullspace of the corresponding higher order tasks,
task descriptors as well as the corresponding Jacobians, which link the task space to the joint

89

5 Conclusions and Future Directions

space of the mechanism, were defined. Two modes of shape rendering were distinguished:
with or without user interaction. In the case when no user interaction was considered (stiff
object without compliance) only the Loop Constraint task and the Shape Forming task had
to be considered. If user interaction was considered all three tasks were used, because some
nodes within the mechanism had to be controlled to exact positions to avoid unrealistic
haptic impressions. Furthermore, different shape descriptions were discussed, namely
implicit surfaces and polygon sets. It was shown that the framework introduced earlier can
be used similarly for both shape descriptions. The chapter concluded with simulations of
the different control modes, which showed that shapes can be rendered in real-time. The
difference between rendering with and without user interaction was illustrated and it was
shown that the procedure of shape rendering is independent of the shape description.

In Chapter 4, actions to reduce the needed amount of actuators were discussed. Using
one actuator, which sequentially can be connected to the actuated joints of the mechanism
with the help of clutches, was introduced as practical procedure to reduce the amount of
actuators. The SRI was defined as a hybrid system, where each active joint defined a different
system within the hybrid system description. Finding an optimal switching sequence to drive
the kinematics from an initial configuration into a target configuration in minimum time was
established by solving a hybrid control problem. Hereby a major challenge was to avoid joint
limits of the passive joints of the mechanism. When assuming that the position control of the
active joints can follow the desired values with no or only small errors, one can simplify the
problem to a purely discrete problem, which can be solved with combinatorial graph search
approaches. The approach was demonstrated on a planar parallel kinematics with 6DoF. The
found solutions were discussed in terms of their optimality. Statements, if an optimal or a
suboptimal solution is found could be made in most cases.

5.2 Outlook

This thesis provides new approaches to handle the challenges of designing and controlling
SRIs. In the following, possible extensions of this work and collocated future research direc-
tions are pointed out.
As within shape rendering the forming of physical objects is requested, a highly perfected
hardware is demanded for the task. The FO presented in chapter 2 already showed a well-
engineered device but improvements can be done with respect to the following points. The
FO is mainly built from ABS parts manufactured by a rapid-prototyper. This is done in or-
der to have maximum scope in the design process. In a future version, these parts must
be replaced by metallic parts (e.g. aluminum). This replacement will add strength to the
mechanism, which, along with stronger actuators, will increase the stiffness of the device
and make the mechanism long lasting. As can be seen from the results in chapter 2, precise
position control is limited because high friction in the cable transmission leads to stick and
slip effects. Reducing this friction by shortening the cables and choosing optimized ways to
install the cables is an important task in future developments. Figures A.3 - A.6 illustrate how
friction can be reduced by redesigning the motor module and using shorter cables lengths
and better installations of the cables. Alternatively, other actuation principles can be con-

90

5.2 Outlook

sidered. Hydraulic actuation represents a promising actuation principle because, in contrast
to pneumatics, the fluid is incompressible and thus, a high stiffness can be gained for the
device. Further, the nodes of the FO must be covered by an elastic layer, so that a continuous
surface can be explored by the user. This layer must be stiff enough so that the regions be-
tween the nodes are not perceived too soft and elastic enough so that the mechanism is not
limited in its motion. Another important task is the miniaturization, and in connection to this
the extension of the FO. The prototype presented in this thesis has a node distance of about
40 mm, which is higher than state-of-the-art developments On the other hand, if one aims
for rendering very detailed objects, this resolution will not be sufficient. The author believes
that for miniaturizing the FO one needs to focus on two major aspects: Batch fabrication
(e.g. MEMS-technology) with compliant joints [35], and integrated miniature actuation and
sensing (e.g. electroactive polymers) [83].
If miniaturization is achievable, the amount of actuators increases drastically and thus, the
approaches considered in chapter 4 become important. First of all, hardware modifications
to the FO and its motor module need to be made in order to enable sequential actuation. As,
when using discrete optimization more than one switching sequences may deliver the same
value for the cost function, one might consider weighting these solutions in terms of errors
to the target shape. This can be done by modifying the cost function and adding a cost term
for the shape error. By doing so, one can identify a switching sequence which minimizes
the shape error over the time interval of the deformation, while the time to reach the target
state is minimal. A subject who touches the interface before the target position is reached
will experience a smaller shape error compared to other sequences. Furthermore, sequences
where specific joints are actuated simultaneously with one actuator must be considered. As
mentioned before, we aim for a design where one actuator can be connected to one active
joint and the other active joints are fixed. With a suitable hardware design, one can connect
as many active joints to the actuator as are available in the mechanism. If multiple active
joints must be driven in the same direction, these joints can be actuated simultaneously and
the time until the target configuration is reached is reduced significantly by this measure.
From a kinematic point of view, one has to further consider different shape descriptions.
In this thesis, we considered shapes given by either implicit functions or polygon data sets.
The polygon data set is restricted to triangular polygons. This is a common description, but
different polygons must be considered in future works. Furthermore, shape descriptions in
the form of splines must be analyzed because such a description is common in many CAD-
software tools.

91

A Appendix

A.1 Proof of Determinacy

A.1.1 Design 1

N1(s1) = 4s2
1 + 4s1 + 1

j1(s1) = 6s2
1 + 6s1

fi,1 = 4

n1(s1) = N1(s1)− 1

M1(s1) = 12s2
1 + 12s1

a1(s1) = 2 j1 = 12s2
1 + 12s1

M1(s1) = a1(s1) q.e.d. (A.1)

A.1.2 Design 2

N2(s2) = 8s2 + 1

j2(s2) = 12s2

fi,2 = 4

n2(s2) = N2(s2)− 1

M2(s2) = 24s2

a2(s2) = 2 j2 = 24s2

M2(s2) = a2(s2) q.e.d. (A.2)

93

A Appendix

A.1.3 Design 3

N3(s3) = 9s3

j3(s3) =
s−1
∑

i=0

9i

fi,2 = 4

n3(s3) = N3(s3)− 1

M3(s3) = 6(9s3 − 1)− 24
s−1
∑

i=0

9i = 48
s−1
∑

i=0

9i

with 9s3 − 1= 8
s−1
∑

i=0

9i (Geometric Sum)

a3(s3) = 2 j3 = 24s3

M3(s3) = a3(s3) q.e.d. (A.3)

A.2 Details on FO design

Figure A.1 and A.2 show the exploded view of the Telescopic Element and the Cardan Ele-
ment, respectively.

Figure A.1: Exploded view of the Telescopic Element

94

A.3 Revised Design of the FO and the Motor Module

Figure A.2: Exploded view of the Cardan Element

A.3 Revised Design of the FO and the Motor Module

A revised version of the FO and its motor module is outlined in the following figures. Fig-
ure A.3 and A.4 show the FO with the same dimensions and configuration of DoF as described
in chapter 2. The difference is that the cable transmission is arranged such that the cables
connect to the corresponding joints from below. In Figure A.4 one can see the supplies for
the cables. Corresponding modifications must be made to the motor module as well, such
that the cables stick out to the top (cf. Figure A.5). By doing so the cable length and thus,
the friction in the cables can be minimized. The assembly of FO and motor module is shown
in Figure A.6. The revised Telescopic and Cardan Element is shown in Figure A.7 and A.8,
while the corresponding exploded views are shown in Figure A.9 and A.10

95

A Appendix

Figure A.3: FO with actuation supply from below

Figure A.4: Bottom view of revised FO

96

A.3 Revised Design of the FO and the Motor Module

Figure A.5: Revised motor module with actuation supply at top

97

A Appendix

Figure A.6: Assembly of revised FO and motor module

98

A.3 Revised Design of the FO and the Motor Module

Figure A.7: Revised Telescopic Element

Figure A.8: Revised Cardan Element

99

A Appendix

Figure A.9: Exploded view of revised Telescopic Element

Figure A.10: Exploded view of revised Cardan Element

100

Bibliography

[1] K.-U. Kyung, S.-C. Kim, D.-S. Kwon, and M. A. Srinivasan, “Texture display mouse kat:
Vibrotactile pattern and roughness display,” in Intelligent Robots and Systems, 2006
IEEE/RSJ International Conference on, pp. 478–483, IEEE, 2006.

[2] H. Kajimoto, N. Kawakami, S. Tachi, and M. Inami, “Smarttouch: Electric skin to touch
the untouchable,” Computer Graphics and Applications, IEEE, vol. 24, no. 1, pp. 36–43,
2004.

[3] Y. Yokokohji, J. Kinoshita, and T. Yoshikawa, “Path planning for encountered-type haptic
devices that render multiple objects in 3d space,” in Virtual Reality, 2001. Proceedings.
IEEE, pp. 271–278, IEEE, 2001.

[4] T. Hoshi, T. Iwamoto, and H. Shinoda, “Non-contact tactile sensation synthesized by
ultrasound transducers,” in EuroHaptics conference, 2009 and Symposium on Haptic In-
terfaces for Virtual Environment and Teleoperator Systems. World Haptics 2009. Third
Joint, pp. 256–260, IEEE, 2009.

[5] D. A. Lawrence, “Stability and transparency in bilateral teleoperation,” Robotics and
Automation, IEEE Transactions on, vol. 9, no. 5, pp. 624–637, 1993.

[6] G. J. Raju, G. C. Verghese, and T. B. Sheridan, “Design issues in 2-port network models
of bilateral remote manipulation,” in Robotics and Automation, 1989. Proceedings., 1989
IEEE International Conference on, pp. 1316–1321, IEEE, 1989.

[7] C. Passenberg, A. Peer, and M. Buss, “A survey of environment-, operator-, and task-
adapted controllers for teleoperation systems,” Mechatronics, vol. 20, no. 7, pp. 787–
801, 2010.

[8] T. B. Sheridan, “Telerobotics,” Automatica, vol. 25, no. 4, pp. 487–507, 1989.

[9] M. Benali-Khoudja, M. Hafez, J.-M. Alexandre, and A. Kheddar, “Tactile interfaces: a
state-of-the-art survey,” in Int. Symposium on Robotics, vol. 31, 2004.

[10] V. Hayward, O. R. Astley, M. Cruz-Hernandez, D. Grant, and G. Robles-De-La-Torre,
“Haptic interfaces and devices,” Sensor Review, vol. 24, no. 1, pp. 16–29, 2004.

[11] A. Peer, Y. Komoguchi, and M. Buss, “Towards a mobile haptic interface for bimanual
manipulations,” in Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ Interna-
tional Conference on, pp. 384–391, IEEE, 2007.

[12] M. Ueberle and M. Buss, “Design, control, and evaluation of a new 6 dof haptic device,”
in In Proc. of the 2002 IEEE/RSJ Int. Conf. on Intellig. Rob. and Syst, pp. 2949–2954,
2002.

101

Bibliography

[13] P. Weangsima, K. Fujita, and T. Honda, “A study of haptic representation of virtual plain
wall,” in Robotics and Biomimetics, 2004. ROBIO 2004. IEEE International Conference
on, pp. 323–327, IEEE, 2004.

[14] K. Hirota and M. Hirose, “Development of surface display,” in Virtual Reality Annual
International Symposium, 1993., 1993 IEEE, pp. 256–262, IEEE, 1993.

[15] S. Nakagawara, H. Kajimoto, N. Kawakami, S. Tachi, and I. Kawabuchi, “An encounter-
type multi-fingered master hand using circuitous joints,” in Robotics and Automation,
2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on, pp. 2667–
2672, IEEE, 2005.

[16] T. Nojima, M. Inami, T. Maeda, and S. Tachi, “Applying an’encounter-type’haptic display
to telexistence,” in Proceedings of the Virtual Reality Society of Japan Annual Conference,
vol. 4, pp. 395–398, 1999.

[17] C. Heinze, “Modelling intention recognition for intelligent agent systems,” tech. rep.,
DTIC Document, 2004.

[18] M. E. Bratman, D. J. Israel, and M. E. Pollack, “Plans and resource-bounded practical
reasoning,” Computational intelligence, vol. 4, no. 3, pp. 349–355, 1988.

[19] H. A. Kautz and J. F. Allen, “Generalized plan recognition.,” in AAAI, vol. 86, pp. 32–37,
1986.

[20] M. Wooldridge, “Agent-based software engineering,” IEE Proceedings-software, vol. 144,
no. 1, pp. 26–37, 1997.

[21] H. Iwata, H. Yano, F. Nakaizumi, and R. Kawamura, “Project FEELEX: adding haptic
surface to graphics,” in Proceedings of the 28th annual conference on Computer graphics
and interactive techniques, p. 476, ACM, 2001.

[22] D. Rosen, A. Nguyen, and H. Wang, “On the Geometry of Low Degree-of-Freedom Dig-
ital Clay Human-Computer Interface Devices,” in Proceedings ASME Computers and In-
formation in Engineering Conference, Chicago, Sept, pp. 2–6, 2003.

[23] V. Hayward and O. R. Astley, “Performance measures for haptic interfaces,” in Robotics
Research, pp. 195–206, Springer, 2000.

[24] B. Dariush, M. Gienger, A. Arumbakkam, Y. Zhu, B. Jian, K. Fujimura, and C. Goerick,
“Online transfer of human motion to humanoids,” International Journal Of Hr: Hu-
manoid Robotics, vol. 6, no. 2, p. 265, 2009.

[25] L. Sentis and O. Khatib, “Synthesis of whole-body behaviors through hierarchical con-
trol of behavioral primitives,” International Journal of Humanoid Robotics, vol. 2, no. 4,
pp. 505–518, 2005.

[26] W. Decré, R. Smits, H. Bruyninckx, and J. De Schutter, “Extending itasc to support
inequality constraints and non-instantaneous task specification,” in Robotics and Au-
tomation, 2009. ICRA’09. IEEE International Conference on, pp. 964–971, IEEE, 2009.

102

Bibliography

[27] E. Ruffaldi, C. A. Avizzano, P. Tripicchio, A. Frisoli, and M. Bergamasco, “Surface percep-
tion in a large workspace encounter interface,” in Robot and Human Interactive Commu-
nication, 2008. RO-MAN 2008. The 17th IEEE International Symposium on, pp. 21–26,
IEEE, 2008.

[28] Y. Yokokohji, R. L. Hollis, and T. Kanade, “What you can see is what you can feel-
development of a visual/haptic interface to virtual environment,” in Virtual Reality An-
nual International Symposium, 1996., Proceedings of the IEEE 1996, pp. 46–53, IEEE,
1996.

[29] Y. Yokokohji, N. Muramori, Y. Sato, T. Kikura, and T. Yoshikawa, “Design and path
planning of an encountered-type haptic display for multiple fingertip contacts based
on the observation of human grasping behavior,” in Robotics and Automation, 2004.
Proceedings. ICRA’04. 2004 IEEE International Conference on, vol. 2, pp. 1986–1991,
IEEE, 2004.

[30] Y. Yokokohji, N. Muramori, Y. Sato, and T. Yoshikawa, “Designing an encountered-type
haptic display for multiple fingertip contacts based on the observation of human grasp-
ing behaviors,” The International Journal of Robotics Research, vol. 24, no. 9, pp. 717–
729, 2005.

[31] S. Goldstein, J. Campbell, and T. Mowry, “Programmable matter,” Computer, vol. 38,
no. 6, pp. 99–101, 2005.

[32] V. Zykov, A. Chan, and H. Lipson, “Molecubes: An open-source modular robotics kit,”
in Proc. IROS, vol. 7, 2007.

[33] K. Hirota and M. Hirose, “Surface display: Concept and implementation approaches,”
in Proceedings of the Fifth International Conference on Artificial Reality and Tele-Existence,
pp. 185–192, 1995.

[34] P. Bosscher and I. Ebert-Uphoff, “Digital clay: Architecture designs for shape-generating
mechanisms,” in Robotics and Automation, 2003. Proceedings. ICRA’03. IEEE Interna-
tional Conference on, vol. 1, pp. 834–841, IEEE, 2003.

[35] P. Bosscher and I. Ebert-Uphoff, “A novel mechanism for implementing multiple col-
located spherical joints,” in IEEE International Conference on Robotics and Automation,
vol. 1, pp. 336–341, Citeseer, 2003.

[36] M. Bordegoni, U. Cugini, M. Covarrubias, and M. Antolini, “A Force and Touch Sensi-
tive Self-deformable Haptic Strip for Exploration and Deformation of Digital Surfaces,”
Haptics: Generating and Perceiving Tangible Sensations, pp. 65–72, 2010.

[37] A. Mazzone, Deformable mechanical structure for physical generation of objects and pro-
vision of wide area haptic feedback. VDI-Verl., 2005.

[38] A. Mazzone, C. Spagno, and A. Kunz, “A haptic feedback device based on an active
mesh,” in Proceedings of the ACM symposium on Virtual reality software and technology,
pp. 188–195, ACM, 2003.

103

Bibliography

[39] S. Klare, D. Forssilow, and A. Peer, “Formable object: A new haptic interface for shape
rendering,” in Worldhaptics (WH), 2013 IEEE International Conference on.

[40] A. Swanson, I. Matev, and G. De Groot, “The strength of the hand,” Bulletin of prosthetics
research, vol. 10, no. 14, pp. 145–153, 1970.

[41] S. Klare and A. Peer, “Inverse kinematics for shape rendering interfaces,” in Robotics
and Automation, 2013. Proceedings. ICRA’13. IEEE International Conference on.

[42] Z. Huang, Q. Li, and H. Ding, Theory of parallel mechanisms, vol. 6. Springer, 2013.

[43] R. Byrd, M. Hribar, and J. Nocedal, “An interior point algorithm for large-scale nonlinear
programming,” SIAM Journal on Optimization, vol. 9, no. 4, pp. 877–900, 1999.

[44] J. Merlet, Parallel robots. Springer-Verlag New York Inc, 2006.

[45] R. Clavel and C. W. Burckhardt, “Conception d’un robot parallèle rapide à 4 degrés de
liberté,” tech. rep., 1991.

[46] D. Stewart, “A platform with six degrees of freedom,” Proceedings of the institution of
mechanical engineers, vol. 180, no. 1, pp. 371–386, 1965.

[47] A. Mazzone and A. Kunz, “Sketching the future of the smartmesh wide area haptic
feedback device by introducing the controlling concept for such a deformable multi-
loop mechanism,” Links, vol. 3, p. 248, 2005.

[48] J. E. Colgate and J. M. Brown, “Factors affecting the z-width of a haptic display,” in
Robotics and Automation, 1994. Proceedings., 1994 IEEE International Conference on,
pp. 3205–3210, IEEE, 1994.

[49] Y. Chen and I. Walker, “A consistent null-space based approach to inverse kinematics of
redundant robots,” in Robotics and Automation, 1993. Proceedings., 1993 IEEE Interna-
tional Conference on, pp. 374–381, IEEE, 1993.

[50] J. Luh, M. Walker, and R. Paul, “Resolved-acceleration control of mechanical manipu-
lators,” Automatic Control, IEEE Transactions on, vol. 25, no. 3, pp. 468–474, 1980.

[51] S. A. Cover, N. F. Ezquerra, J. F. O’Brien, R. Rowe, T. Gadacz, and E. Palm, “Interactively
deformable models for surgery simulation,” Computer Graphics and Applications, IEEE,
vol. 13, no. 6, pp. 68–75, 1993.

[52] A. Joukhadar and C. Laugier, “Fast dynamic simulation of rigid and deformable ob-
jects,” in Intelligent Robots and Systems 95.’Human Robot Interaction and Cooperative
Robots’, Proceedings. 1995 IEEE/RSJ International Conference on, vol. 2, pp. 305–310,
IEEE, 1995.

[53] M. Bro-Nielsen and S. Cotin, “Real-time volumetric deformable models for surgery sim-
ulation using finite elements and condensation,” in Computer graphics forum, vol. 15,
pp. 57–66, Wiley Online Library, 1996.

104

Bibliography

[54] W. M. Hsu, J. F. Hughes, and H. Kaufman, “Direct manipulation of free-form deforma-
tions,” in ACM Siggraph Computer Graphics, vol. 26, pp. 177–184, ACM, 1992.

[55] T. W. Sederberg and S. R. Parry, “Free-form deformation of solid geometric models,” in
ACM Siggraph Computer Graphics, vol. 20, pp. 151–160, ACM, 1986.

[56] H. Hoffman, D. Stredney, and S. Weghorst, “Force interactions in laparoscopic simu-
lations: Haptic rendering of soft tissues,” Medicine Meets Virtual Reality: Art, Science,
Technology: Healthcare (R) Evolution, vol. 50, p. 385, 1998.

[57] H. Çakmak and U. Kühnapfel, “Animation and simulation techniques for vr-training
systems in endoscopic surgery,” in Computer Animation and Simulation 2000, pp. 173–
185, Springer, 2000.

[58] A. A. Stanley, J. C. Gwilliam, and A. M. Okamura, “Haptic jamming: A deformable
geometry, variable stiffness tactile display using pneumatics and particle jamming,” in
World Haptics Conference (WHC), 2013, pp. 25–30, IEEE, 2013.

[59] K. Salisbury and C. Tarr, “Haptic rendering of surfaces defined by implicit functions,”
in ASME Dynamic Systems and Control Division, vol. 61, pp. 61–67, 1997.

[60] C. B. Zilles and J. K. Salisbury, “A constraint-based god-object method for haptic dis-
play,” in Intelligent Robots and Systems 95.’Human Robot Interaction and Cooperative
Robots’, Proceedings. 1995 IEEE/RSJ International Conference on, vol. 3, pp. 146–151,
IEEE, 1995.

[61] C.-H. Ho, C. Basdogan, and M. A. Srinivasan, “Efficient point-based rendering tech-
niques for haptic display of virtual objects,” Presence: Teleoperators and Virtual Envi-
ronments, vol. 8, no. 5, pp. 477–491, 1999.

[62] C. Häger-Ross and M. H. Schieber, “Quantifying the independence of human finger
movements: comparisons of digits, hands, and movement frequencies,” The Journal of
Neuroscience, vol. 20, no. 22, pp. 8542–8550, 2000.

[63] L. S. Pontrëiìagin, The mathematical theory of optimal processes, vol. 4. CRC Press, 1962.

[64] M. S. Branicky, V. S. Borkar, and S. K. Mitter, “A unified framework for hybrid control,” in
Decision and Control, 1994., Proceedings of the 33rd IEEE Conference on, vol. 4, pp. 4228–
4234, IEEE, 1994.

[65] H. J. Sussmann, “A maximum principle for hybrid optimal control problems,” in Decision
and Control, 1999. Proceedings of the 38th IEEE Conference on, vol. 1, pp. 425–430, Ieee,
1999.

[66] M. Broucke, M. D. Di Benedetto, S. Di Gennaro, and A. Sangiovanni-Vincentelli, “Op-
timal control using bisimulations: Implementation,” in Hybrid Systems: Computation
and Control, pp. 175–188, Springer, 2001.

105

Bibliography

[67] M. S. Shaikh and P. E. Caines, “On the optimal control of hybrid systems: Optimization
of trajectories, switching times, and location schedules,” in Hybrid systems: Computa-
tion and control, pp. 466–481, Springer, 2003.

[68] A. Bemporad and M. Morari, “Control of systems integrating logic, dynamics, and con-
straints,” Automatica, vol. 35, no. 3, pp. 407–427, 1999.

[69] S. Hedlund and A. Rantzer, “Optimal control of hybrid systems,” in Decision and Control,
1999. Proceedings of the 38th IEEE Conference on, vol. 4, pp. 3972–3977, IEEE, 1999.

[70] B. De Schutter, “Optimal control of a class of linear hybrid systems with saturation,”
SIAM Journal on Control and Optimization, vol. 39, no. 3, pp. 835–851, 2000.

[71] B. Lincoln and A. Rantzer, “Optimizing linear system switching,” in Decision and Control,
2001. Proceedings of the 40th IEEE Conference on, vol. 3, pp. 2063–2068, IEEE, 2001.

[72] A. Bemporad, A. Giua, and C. Seatzu, “A master-slave algorithm for the optimal control
of continuous-time switched affine systems,” in Decision and Control, 2002, Proceedings
of the 41st IEEE Conference on, vol. 2, pp. 1976–1981, IEEE, 2002.

[73] X. Xu and P. J. Antsaklis, “Quadratic optimal control problems for hybrid linear au-
tonomous systems with state jumps,” in American Control Conference, 2003. Proceedings
of the 2003, vol. 4, pp. 3393–3398, IEEE, 2003.

[74] P. E. Caines and M. S. Shaikh, “Optimality zone algorithms for hybrid systems: Efficient
algorithms for optimal location and control computation,” in Hybrid Systems: Compu-
tation and Control, pp. 123–137, Springer, 2006.

[75] M. S. Shaikh and P. E. Caines, “On the hybrid optimal control problem: theory and
algorithms,” Automatic Control, IEEE Transactions on, vol. 52, no. 9, pp. 1587–1603,
2007.

[76] O. Stursberg, “A graph search algorithm for optimal control of hybrid systems,” in De-
cision and Control, 2004. CDC. 43rd IEEE Conference on, vol. 2, pp. 1412–1417, IEEE,
2004.

[77] O. Stursberg, “Dynamic optimization of processing systems with mixed degrees of free-
dom,” in Dynamics and Control of Process Systems 2004 (DYCOPS-7): A Proceedings
Volume from the 7th IFAC Symposium, Cambridge, Massachusetts, USA, 5-7 July 2004,
p. 649, Access Online via Elsevier, 2004.

[78] B. Passenberg and O. Stursberg, “Graph search for optimizing the discrete location se-
quence in hybrid optimal control,” in 3rd IFAC Conf. on Analysis and Design of Hybrid
Systems, pp. 304–309, 2009.

[79] N. R. Sturtevant, A. Felner, M. Likhachev, and W. Ruml, “Heuristic search comes of age.,”
in AAAI, 2012.

[80] M. Buss, “Methoden zur regelung hybrider dynamischer systeme,” VDI Fortschritt-
Bericht, Reihe, vol. 8, 2002.

106

Bibliography

[81] M. Papageorgiou, Optimierung: statische, dynamische, stochastische Verfahren. Springer
DE, 2012.

[82] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic determination
of minimum cost paths,” Systems Science and Cybernetics, IEEE Transactions on, vol. 4,
no. 2, pp. 100–107, 1968.

[83] Y. Bar-Cohen, “Electroactive polymers: current capabilities and challenges,” in SPIE’s
9th Annual International Symposium on Smart Structures and Materials, pp. 1–7, Inter-
national Society for Optics and Photonics, 2002.

107

	Introduction
	Problem Definitions and Challenges
	Main Contributions and Outline of the Dissertation

	Design of a Shape Rendering Interface: The Formable Object
	Mechanical Design Considerations
	Requirements
	Determinacy
	Basic Elements
	Kinematic Design of Basic Configuration
	Expanding the FO

	Mechanical Construction
	Telescopic Element
	Cardan Element
	Formable Object
	Motor-Module and Cable-Transmission

	Control
	Evaluation
	Rendering of Different Curvatures
	Stiffness
	Dynamic performance

	Conclusion

	Inverse Kinematics for Shape Rendering Interfaces
	Problem Description
	Aspects of Shape Rendering

	Shape Rendering
	Hierarchical Nullspace Projection
	Desired Task Velocities
	Task Definition
	Loop Constraint Task
	Node Positioning Task
	Shape Forming Task
	Joint Limits & Singularities
	Shape Rendering
	Dynamic Shape Rendering with User Interaction

	Shape Descriptions: Implicit Surfaces and Polygon Sets
	Results
	Shape Rendering
	User Interaction
	Polygon Sets

	Conclusion

	Actuator Reduction for Shape Rendering Interfaces
	Problem Description
	Hybrid Optimal Control and Heuristic Search
	Time and Sequence Optimization for Hybrid Shape Rendering Interfaces
	Hybrid Model of Shape Rendering Interface
	Combinatorial Graph Search

	Results
	Conclusion

	Conclusions and Future Directions
	Concluding Remarks
	Outlook

	Appendix
	Proof of Determinacy
	Design 1
	Design 2
	Design 3

	Details on FO design
	Revised Design of the FO and the Motor Module

