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ABSTRACT

Smoothed Particle Hydrodynamics (SPH) is a Lagrangian method where the field quan-
tities are interpolated at individual discretization points (particles) that are advected
with the local flow field. Independently proposed in 1977 by Lucy [76] and Gingold
and Monaghan [49], SPH was first used for astrophysical problems where the gridless
nature of the method has several advantages. First, different resolution lengths i.e.
kernel-interpolation widths can be assigned to different particles allowing to simulate
large variations in length-scales. Second, as particles are advected with the flow, the
discretization does not need to cover the entire domain but only regions where gas
or fluid is present. Finally, SPH is Galilean invariant which is a desirable property in
astrophysics.

Since 1977, SPH was also successfully applied to fluid-mechanical as well as solid-
mechanical problems. The very broad range of applications (free-surface flows, multi-
phase flows, non-Newtonian fluids, fluid-structure-interaction, elastic solids, brittle frac-
ture) shows the generality and capabilities of SPH, yet its industrial relevance as tool
for CFD (Computational Fluid Dynamics) simulations is still to be opened up. Possible
reasons of the lack of commercial use are the higher computational cost compared to
grid-based solvers and the need for case-dependent numerical parameter tuning. Also,
still a strict mathematical proof for convergence and stability is missing as classical
numerical analysis fails for randomly distributed and moving particles. Nevertheless,
many examples of SPH applications for complex flows including sophisticated physi-
cal models have shown to give reasonable results especially for complex multiphase
problems that are very challenging for grid-based methods.

This work presents several important improvements of the state-of-the-art of SPH with
emphasis on generality and stability. The published developments on a general wall
boundary condition for SPH, a modified advection scheme, a new surface-tension
model and a conservative surfactant model are designed to be generally applicable
to arbitrary domains and dimensions, and special attention is paid to computational
simplicity.

A simple boundary condition for solid walls is proposed where the solid phase is dis-
cretized with Cartesian particles. Compared to existing body-fitted approaches the
representation of curved interfaces is inferior. However, with increasing resolution the
”numerical roughness“ of non-straight walls vanishes and arbitrarily complex bodies
can be easily discretized. A simple interpolation scheme for wall particles allows to
model no-slip walls and to impose a von-Neumann condition for the pressure.

Currently available SPH methods rely on stabilization techniques such as artificial vis-
cosity, density reinitialization or Shepard filtering to smooth the particle movement and

i



Abstract

allow for stable simulations. Mostly, a combination of several corrections is applied
and their numerical parameters are tuned to achieve correct results. Thus, the qual-
ity of SPH simulations is strongly dependent on the experience of the user. In this
work, a new advection scheme for particles is presented that allows to simulate single-
and multi-phase flows without additional numerical parameters. Therefore, to the best
of our knowledge for the first time a black-box SPH method thus has become avail-
able that can be used to simulate flows at unprecedentedly high Reynolds numbers
(Re=10000).

The interaction-based force calculation in SPH offers an implicit multi-phase model-
ing framework as interactions of different phases can be easily identified using integer
identifiers for particles and complex interface models can be employed. Surface ten-
sion is modelled in SPH with roughly three different models. Most simple, inter-particle
attraction forces similar to inter-molecular forces are introduced that result in qualita-
tively correct behaviour. Secondly, reconstructing the normals at the interface, surface
tension can be considered macroscopically as capillary force proportional to the local
curvature and the surface-tension coefficient. Finally, by reformulating surface tension
as gradient of a surface stress, the calculation of the curvature can be omitted and the
resulting method is momentum conservative. In this work, a modified capillary force
model is presented with advantages for high density ratios. Partitioning the surface
force according to the phase densities allows to use larger time-steps and reduces the
computational cost.

Surfactants (surface active agents) are additives or impurities in a fluid that have the
tendency to migrate to the interface and change locally the surface tension. The pres-
ence of surfactants in multi-phase systems can strongly alter the dynamics and in-
troduce new physical effects such as the Marangoni effect (interfacial motion due to
a surface tension gradient). Numerical modeling of surfactant dynamics is challenging
as the interface singularity has to be discretized accurately and surfactant conservation
is important for long-time simulations. In this work, an exactly conservative, fully cou-
pled surfactant model is presented that accounts for interfacial diffusion, bulk diffusion
and transport between the interface and the bulk (adsorption and desorption). When
applied to SPH, complex surfactant induced interface deformations can be simulated
without difficulty.

This cumulative thesis is structured as follows: in the first chapter a brief overview of
numerical flow simulation in general and multi-phase modeling is given. The fundamen-
tal issues of SPH are introduced in the second chapter. Chapter 3 presents the main
findings of this work with a literature review on each topic followed by a summary of
the respective publication. A list of all publications that emerged from this work includ-
ing journal publications, book contributions and conference talks/papers is presented
in chapter 4. Finally, conclusions are given in chapter 5 and the main publications are
attached in the appendix.
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KURZFASSUNG

Smoothed Particle Hydrodynamics (SPH, ”geglättete Teilchen-Hydrodynamik“) ist eine
Lagrangesche Diskretisierungsmethode bei der die Feldgrößen an den Knotenpunk-
ten (Partikeln) interpoliert werden und diese mit dem lokalen Geschwindigkeitsfeld mit-
bewegt werden. SPH wurde 1977 von Lucy [76] und Gingold und Monaghan [49]
unabhängig voneinander vorgeschlagen und wurde zunächst auf astrophysikalische
Probleme angewendet, da besonders hier die gitterlose Beschreibungsweise vorteil-
haft ist. Erstens können die Interpolationsradien, d.h. die Weite der Interpolationsfunk-
tion (”Kernel“) individuell für einzelne Partikel variieren und somit große Längenskalen-
Unterschiede abgebildet werden. Darüber hinaus liefert SPH aufgrund der Partikel-
advektion mit der lokalen Strömung implizit eine adaptive Diskretisierung, das heißt
Partikel müssen zu Beginn einer Simulation nur das mit Fluid ausgefüllte Volumen ab-
decken und nicht das gesamte Simulationsgebiet. Außerdem erfüllt SPH die Galilei
Invarianz, eine besonders in der Astrophysik erwünschte Eigenschaft.

Seit 1977 wurde SPH darüber hinaus erfolgreich zur Lösung fluidmechanischer und
strukturdynamischer Probleme eingesetzt. Die grundsätzlich flexible Einsatzmöglichkeit
und die hohe Funktionalität von SPH wird deutlich anhand der breiten Anwendungs-
gebiete (freie Oberflächen-Strömungen, Mehrphasen-Strömungen, Nicht-Newtonsche
Fluide, Fluid-Struktur-Interaktion, Elastische Körper, Rissbildung und Bruchentwick-
lung), dennoch ist SPH im industriellen Umfeld als Werkzeug für numerische Simu-
lationen (CFD) immer noch unbedeutend. Mögliche Gründe dafür sind einerseits der
erhöhte Rechenaufwand im Vergleich zu gitterbasierten Strömungslösern und die Ab-
hängigkeit von fallspezifischer Anpassung der numerischen Stabilisierungsparameter.
Darüber hinaus fehlt bis heute eine fundamentale, mathematische Analyse der Konver-
genz und Stabilität des Verfahrens, da die klassischen numerischen Analysemethoden
auf zufällig verteilte und bewegte Partikelkonfigurationen nicht allgemeingültig anwend-
bar sind. Trotzdem zeigen viele Beispiele komplexer Strömungen mit neuesten physi-
kalischen Modellen sinnvolle bzw. mit Experimenten vergleichbare Ergebnisse, beson-
ders für schwierige und mit existierenden gitterbasierten Methoden zum Teil unlösbare
Probleme.

In dieser Arbeit werden mehrere wichtige Weiterentwicklungen für SPH vorgestellt,
wobei der Fokus dabei auf Allgemeingültigkeit und Stabilität der Methode liegt. Die
veröffentlichten Arbeiten zu einer generellen Wandmodellierung für SPH, einem mo-
difizierten Advektionsschema, einem neuen Oberflächenspannungsmodell und einem
konservativen Surfactant-Modell sind allesamt so formuliert, dass sie generell einsetz-
bar sind für beliebige Geometrien und Dimensionen und vor allem einfach umsetzbar
sind.
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Kurzfassung

Für feste Wände wird eine neue, einfach zu realisierende Randbedingung vorgeschla-
gen, unter Verwendung von kartesischen Partikeln innerhalb der Wand. Im Vergleich
zu existierenden Kontur-angepassten Ansätzen ist die Darstellung von gekrümmten
Wänden in dieser Form natürlich ungenauer. Aber mit steigender Auflösung ver-
schwindet diese ”numerische Rauhigkeit“ von ungeraden Wänden, und beliebig kom-
plexe Körper können einfach realisiert werden. Mittels eines trivialen Interpolationss-
chemas für die Eigenschaften der Wandpartikel kann die Haftbedingung an der Wand
aufgeprägt werden und eine von-Neumann Druckrandbedingung abgebildet werden.

Derzeit verfügbare SPH-Ansätze benötigen numerische Stabilisierungen in Form von
künstlicher Viskosität, Reinitialisierung der Dichte oder Shepard-Filtern zur Kontrolle
der geordneten Partikelbewegung. Meistens wird dabei eine Kombination mehrerer
Korrekturen verwendet, was allerdings eine Parameterjustierung nötig macht, um ge-
naue Ergebnisse zu erzielen. Eine Konsequenz daraus ist die Abhängigkeit der Ergeb-
nisqualität von der Erfahrung des Benutzers. Im Gegensatz dazu wird hier ein neues
Advektionsschema vorgestellt, das ohne jeglichen numerischen Stabilisierungspara-
meter für ein- und mehrphasige Strömungen verwendet werden kann. Nach bestem
Wissen der Autoren bietet diese Methode erstmals die Möglichkeit einer Black-box
SPH-Simulation, die sogar für bisher unerreichbar hohe Reynoldszahlen (Re=10000)
stabil ist.

Die interaktionsbasierte Berechnung der Kräftebilanz mit SPH ermöglicht eine implizite
Mehrphasenmodellierung, da Interaktionen zwischen verschiedenen Phasen mittels
Farbcodes der Partikel leicht zu identifizieren sind und komplexe Phasengrenzflächen-
modelle eingesetzt werden können. Als Beispiel dafür kann Oberflächenspannung in
SPH mittels drei verschiedenen Ansätzen berücksichtigt werden. Am einfachsten ist
die Modellierung mittels zusätzlicher Anziehungskräfte zwischen Partikeln, die quali-
tativ ein Verhalten entsprechend einer Oberflächenspannung hervorrufen. Alternativ
kann ein makroskopischer Ansatz basierend auf der Rekonstruktion der Normalen-
richtung der Grenzfläche gewählt werden. Hier werden die Kapillarkräfte als Produkt
aus Krümmung und lokalem Oberflächenspannungskoeffizienten berechnet. Außer-
dem kann die Oberflächenspannung direkt als Spannungstensor formuliert werden
mit dem Vorteil, dass nicht erst die Krümmung einer Oberfläche berechnet werden
muss und diese Methode exakt impulserhaltend ist. In dieser Arbeit wird eine Variante
des Kapillarkraft-Modells vorgestellt, das besonders für Probleme mit hohen Dichte-
sprüngen über einer Phasengrenze geeignet ist. Mittels einer Gewichtung der Ober-
flächenspannungskraft entsprechend den Dichten der verschiedenen Phasen können
größere Schrittweiten für die Zeitintegration verwendet werden und somit der Aufwand
einer Simulation reduziert werden.

Surfactants (oberflächenaktive Substanzen) sind Additive oder Verunreinigungen in
einem Fluid, die die Eigenschaft haben, sich an einer Grenzfläche anzusammeln und
dort die lokale Oberflächenspannung zu verändern. Mehrphasen-Systeme unter Berück-
sichtigung von Surfactants können sich grundsätzlich anders verhalten als reine Gemis-
che, da neue Effekte wie Marangoni-Kräfte (induzierte Grenzflächenbewegung auf-
grund eines Oberflächenspannungsgradienten) auftreten können. Die numerische Mo-
dellierung von Surfactant-Verhalten ist herausfordernd, da einerseits die Singularität
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der Grenzfläche numerisch genau abgebildet werden muss und die exakte Massener-
haltung des Surfactants besonders für Langzeitsimulationen essentiell ist. In dieser Ar-
beit wird ein exakt konservatives, voll gekoppeltes Surfactant Modell für SPH vorgestellt,
das Diffusion entlang der Grenzfläche und im gelösten Medium sowie den Austausch
zwischen gelöstem und an der Phasengrenze aktivem Surfactant berücksichtigt. In
Kombination mit der Lagrangeschen Partikelbewegung können damit komplexe Surfactant-
induzierte Grenzflächendeformationen simuliert werden.

Die vorliegende kumulative Dissertation ist wie folgt aufgebaut: im ersten Kapitel wird
ein kurzer Überblick zu CFD und numerischer Mehrphasen-Modellierung gegeben.
Anschließend werden im zweiten Kapitel die Grundzüge von SPH vorgestellt. Kapi-
tel 3 beinhaltet die Ergebnisse dieser Arbeit. Jedes Thema wird begleitend mit einem
diesbezüglichen Literaturüberblick motiviert und die entsprechende Veröffentlichung
zusammengefasst. Eine komplette Liste der Veröffentlichungen, die im Rahmen dieser
Arbeit entstanden sind (Journal Paper, Buchbeiträge und Konferenzbeiträge), ist in
Kapitel 4 zu finden. Abschließend wird die Arbeit in Kapitel 5 zusammengefasst und
die relevanten Veröffentlichungen sind im Anhang eingebunden.
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1. MOTIVATION

This thesis gives on overview about my research in the field of Smoothed Particle Hy-
drodynamics (SPH). Over the past five years I have worked on the method development
and improvement of SPH with emphasis on multi-phase modeling.

Originally, as sub-project of the DFG priority program “Protective Artificial Respiration”
(PAR) the objective was a fundamental investigation on flow-induced stresses on epi-
thelial lung cells in the alveolar airway ducts coupled with air-water interface dynamics
and soft-tissue interaction. The long-term goal of this project is a better understanding
of the human respiration system aiming for new developments of protective ventilation
techniques. Intensive care medicine patients or patients suffering from the Acute Res-
piratory Distress Syndrom (ARDS) require artifical ventilation. Although this treatment
currently is mostly without alternative, ventilator induced lung injuries (VILI) show a
mortality rate on the order of 50% [118]. It is widely accepted that VILI originates from
the fact that artificial ventilation reverses the physiological lung functionality by pumping
air into the airways rather than air suction controlled by the diaphragm. However, a pro-
found understanding of the lung injury is still missing and a key question in the medical
community. Most probable is a combination of shear-induced mechanical stresses at
the endothelial lung cells that cause alveolar overexpansion and mechanotransduction,
i.e. inflammatory injuries due to mechanical stimulation of the cells.

In collaboration with the group of Prof. Dr. rer. nat. E. Koch (Klinisches Sensoring
und Monitoring, Technische Universität Dresden) we worked both experimentally and
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1. Motivation

Figure 1.1.: Schematic diagram of a single alveolus with the surfactant system, taken from
Hawgood and Clements [52].

numerically on the fundamental investigation of the pathogenesis mechanisms at the
alveolar level. A schematic diagram of a single alveolus is given in Fig. 1. A liquid lin-
ing is coating the endothelial cells and serves as a buffer layer between the incoming
air and the cells. This liquid layer is of special interest as its presence and properties
strongly affect the dynamics of a single alveolus. In case of a film rupture the incoming
air would get into direct contact with the endothelial cells and this might be one rea-
son for inflammatory injuries. The film dynamics itself are a complex fluid mechanical
problem as due to the length-scale of an alveolus (≈ 100 µm), surface-tension effects
are relevant at the liquid-air interface and additionally so-called “surfactants” (surface
active agents) manipulate the film stability. In the absence of surfactants, the high
surface-tension at the interface of the water-like liquid layer and the air would collapse
the alveolus due to the high capillary pressure forces. In addition to immune function,
the surfactant mainly takes effect in strongly reducing surface tension when adsorbed
at the air-water interface, thus prevents the so-called atelectasis (collapse of the lung).
Besides the general fact that surfactants are strongly necessary in mammal respiration
systems, many questions are still open, e.g. the effect of mechanical stresses on the
production rates of surfactant by the type II endothelial cells or the effect of varying
surfactant properties in the fluid film and at the interface.

Numerical investigations of such complex problems are a challenging if not infeasible
task. The difficulty arises from the fact that on one hand very sophisticated compu-
tational models are required to capture the relevant physical phenomena, and on the
other hand many unknown parameters and uncertainties for example in the bound-
ary conditions or surfactant properties occur in the system. Nevertheless, numerical
simulations can provide detailed insight into complex problems under well-defined con-
ditions. Unlike experiments, simulations allow for studying the effect of isolated param-
eters in the system or to manipulate individual characteristics to analyse their influence
on the fully coupled problem.

Given the complexity of the problem (geometry, physics) standard grid-based compu-
tational tools are clearly inappropriate, and a main milestone of the original research
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1.1. Computational Fluid Dynamics

project was the development of a numerical method that can simulate air-water inter-
face dynamics with emphasis on surfactant dynamics and surface-tension effects. Due
to its promising properties with focus on multi-phase modeling, the smoothed particle
hydrodynamics method (SPH) was chosen as numerical framework. This method is
based on a gridless discretization using Lagrangian particles that are advected with
the local flow and thus is particularly suitable for complex deforming geometries. Al-
though conceptually promising, application of SPH to a complex problem as described
above showed several limitations of the method that prompted us to focus on develop-
ing and improving the capabilites of SPH itself.

The following two sections give a short introduction on computational fluid dynamics
in general and an overview of classical multi-phase modeling approaches. The sub-
sequent chapter on Smoothed Particle Hydrodynamics summarizes the fundamental
properties of the numerical method and deals with particular computational aspects
of gridless schemes. Chapter 3 presents the four major improvements of the SPH
method in this thesis prepended with a literature review on each topic, namely a new
wall boundary condition for arbitrarily shaped geometries, a transport-velocity formula-
tion that allows for accurate and stable simulations without artificial damping parameter,
a surface-tension model for interfaces with high density ratios and, finally, a conserva-
tive formulation for surfactant dynamics including interfacial and bulk diffusion and an
adsorption-desorption-based transport model. An overview of all publications related
to this dissertation is provided in the next chapter, ordered by peer-reviewed journal
publications, contributions to book sections and conference proceedings. The relevant
journal publications together with the publisher agreement are attached in the original
layout in Appendix A. Finally, chapter 5 gives a conclusion on the state of the method.

1.1. COMPUTATIONAL FLUID DYNAMICS

Computational Fluid Dynamics (CFD) is the discipline of predicting fluid mechanics
with computer simulations on the basis of mathematical models for the physical phe-
nomenon of interest. The generic term CFD includes strictly speaking the entire pro-
cess of abstracting a physical problem with a mathematical model and deriving the
governing equations, discretizing the equations with the numerical method of choice,
implementing the routines in a computer code, performing the simulations and finally
postprocessing the data and visualizing the results. Commercial software packages
are usually optimized for a limited range of applications and imply a specific implemen-
tation of an appropriate numerical method. Using such tools requires only generation
of input data such as geometry and initial conditions, performing the simulation and
analyzing and visualizing the results of the simulation.

As subgroup of computer aided engineering (CAE), CFD has gained industrial rele-
vance over the past decades thanks to the increase of available computational re-
sources (both resulting from cost reduction and performance increase). CFD as a de-
sign tool is for example already highly used in the automotive industry or the aerospace
industry. Although simulations cannot replace real experiments completely, numerical
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1. Motivation

experiments can strongly reduce their necessity. Often, it is easier to study parameter
variations or geometrical modifications using numerical simulations as state-of-the-art
commercial CFD tools often predict qualitative trends reasonably well. Also, data ac-
quisition from simulations is superior to experiments since any quantity can be mon-
itored at any location and more complex derived variables can be evaluated easily.
Another important field of operation for simulations are investigations at extreme con-
ditions that are difficult or impossible to achieve in experiments. The overall trend is to
include CFD in the product development as early as possible and finally only validate
the observations from the simulations with a few experiments.

In the context of academic research the interest in CFD is, roughly speaking, threefold.
Firstly, meeting industrial demands, the flow physics of a problem can be analyzed in
detail using CFD to identify the relevant parameters and optimize e.g. the shape of an
object with respect to drag reduction. Secondly, CFD offers the possibility to investigate
the flow physics itself. That means by carefully analysing numerical simulation results
it is possible to improve the understanding of the underlying physical phenomena. Mi-
crofluidics is a prime example where numerical simulations can give new insights when
experiments are unfeasible. Given the small length-scales of these problems, quanti-
tative measurements are extremely difficult and often inaccurate. Today still, in many
cases prototypes of microfluidic applications (e.g. lab-on-a-chip, inkjet printhead) serve
as proof-of-concept, but the development process follows mostly trial-and-error studies
rather than well-directed research. With CFD it is possible to model such microfluidic
flows and study their dynamics. In contrast to experiments, with numerical simulations
it is possible to separate and investigate different physical phenomena individually. This
decoupling often helps to understand the behavior of a complex system, hence opens
up room for improvement. Thirdly, the research on numerical methods per se seems
purely academic but helps to improve existing schemes (e.g. accuracy, computational
cost) and can lead to new approaches that enable investigations of previously unfeasi-
ble problems.

The work presented in this thesis goes with both last two categories. As SPH is prefer-
able for numerical studies of multi-phase problems with complex geometries and mul-
tiple physics it is the method of choice to address the challenging modeling of alveolar
dynamics. On the other hand, although already available sporadically in particular
commercial software, e.g. LS-DYNA [75], SPH is not yet well established in the CFD
community mainly due to crucial limitations regarding stability, convergence or compu-
tational cost. Therefore, development and improvement of the method itself is neces-
sary.

1.2. MULTI-PHASE MODELING

Multi-phase models in numerical methods are used to incorporate the physical effects
caused by the presence of different phases. This requires on one hand algorithms that
identify these phases, and on the other hand mathematical relations that describe the
interfacial physics.
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Grid-based continuum methods for multi-phase problems can be split into two groups
according to the type of the interface representation. Lagrangian approaches explicitely
discretize the interface singularity and allow for discontinuous physical quantities. In
contrast, Eulerian approaches evolve field equations that are used to locate the in-
terface. Examples for the first group are boundary-integral methods (BIM) [96] and
front-tracking methods [119]. In the second group level-set methods (LS) [94, 93] and
volume-of-fluid methods (VOF) [56] are commonly used.

In the boundary-integral method an interface is explicitely discretized with piecewise
curved sections between marker points and the evolution of these markers follows
the solution of an integral equation. More generally, front-tracking methods evolve
the location of an interface (“front ”) coupled with an underlying fluid solver. Similar
to BIM, the interface is represented with Lagrangian marker points that are used to
reconstruct the contact line between different phases. In addition, surface forces and
other interfacial phenomena (surface diffusion, species transport) are fed back to the
continuous phase equations and form a fully coupled system.

In the level-set method (LS) [94, 93] a signed distance function specifies the distance
of a discretization point to a nearby interface. Hence, the zero-level set of this function
defines the interface. This field function evolves over time according to an additional
advection equation.

All previously mentioned methods approximate the interface singularity with a so-called
sharp-interface or zero-thickness model. Contrarily, the volume-of-fluid method (VOF)
[56] leads to a smeared interface approximation with a smooth transition between the
opposing phases at an interface. For a two-fluid problem a scalar volume-fraction
field or color-function is introduced to distinguish between the phases. This fraction
defines the mixture of the two phases at any discretization point and varies from zero
to one. Accordingly, the interface can be reconstructed from the iso-surface (in 2D
it is a line) at one half of the volume-fraction. Except for the initial condition, where
a sharp transition between the phases can be imposed, usually the color-function or
volume-fraction gradually changes between the phases and gives a smoothed interface
representation with a finite thickness on the order of the numerical resolution length. As
a consequence, the governing equations are formulated for a single field using mixture
properties and the mixture fraction (color-function) evolves according to an additional
equation.

There exist many other approaches as well as modifications or combinations of the
fundamental methods with higher complexity in literature [100, 127]. Here, only a brief
survey of classical multi-phase methods is presented to recall the widely-used funda-
mental concepts in multi-phase modeling. It is difficult to discuss these approaches in
terms of relevance or preferability since the method-of-choice for a specific problem is
always case dependent. Each of the modeling attempts has several advantages and
disadvantages that have to be taken into account when choosing a numerical frame-
work for the application of interest. Front-tracking methods for example need a priori
knowledge of the number of closed surfaces that might be unavailable for complex
mixtures. Level-set methods without special treatment ensure a sharp interface dis-
cretization but might violate mass conservation.
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1. Motivation

Fundamentally different, Lagrangian particle methods offer a very powerful numerical
framework especially for multi-phase problems as a number of the mentioned difficul-
ties is omitted by the nature of the method. With Lagrangian discretization points that
advect with the flow, it is possible to distinguish between different phases with the use
of a simple integer identifier. For each point the single fluid equations can be solved
according to a purely present phase and at the same time the interface can be dis-
cretized with a smooth surface delta-function with bounded thickness. These properties
allow for modeling surface phenomena in conservative form and complex topological
changes such as merging or breakup of interfaces can be handled implicitely.

Recently, Wörner [127] has given an overview on numerical modeling of multiphase
flows in microfluidics. Interestingly, meshless particle-methods such as Smoothed Par-
ticle Hydrodynamics (SPH) were not considered as “[...] they have only limited appli-
cation in microfluidics so far [...]” [127]. Given the potentials of Lagrangian methods
especially for multi-phase problems, it is indeed surprising that these methods are still
lacking broad acceptance and usage in the CFD community. Actually, many studies
have already shown that particle methods can successfully simulate microfluidic prob-
lems ranging from wetting dynamics [115, 35] or droplet dynamics [43, 92, 59, 8] to
porous transport phenomena [106] and coarse-grained multiscale problems [74, 66].

The focus of this work is on improving the capabilities of SPH for complex multi-phase
problems (high density ratios, interfacial surfactant transport) and especially on in-
creasing the accuracy and stability of the method. With the presented developments
SPH can be used for a broad range of applications without the need for parameter cal-
ibration and highly diffusive stabilization techniques. Thus, for the first time a blackbox-
type status of the method is achieved that is necessary to gain industrial relevance.
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2. SMOOTHED PARTICLE HYDRODYNAMICS

SPH was introduced independently by Lucy [76] and Gingold and Monaghan [49] in
1977. Although Lucy did not call the method “SPH” and used the terminology “broad-
ening function” rather than “kernel” or “smoothing function” as in [49], the basic principle
of a Lagrangian particle method with finite range interactions resulting from a mollifica-
tion function is similar in both methods.

In the beginning, SPH was applied to astrophysical problems such as the fission of a
rapidly rotating star [49]. Although over the years SPH was extended to a broad range
of fluid and solid mechanical problems, astrophysics still today is a classical field of
research with SPH as it clearly benefits from the key features of the method. In SPH,
“particles” represent discretization points where numerical solutions to the governing
equations are calculated. When moving these particles with the local flow field, pure
advection is treated exactly by the nature of the method and Galilean invariance is en-
sured. Being exact for SPH, even linear advection of a scalar field in diagonal direction
on a Cartesian lattice can be approximated only with a modern finite-difference-method
(FDM) or finite-volume-method (FVM). Next, as particles advect with the flow the dis-
cretization includes already adaptive capabilities since the computational domain can
vary from the initialization of a simulation to the final configuration. This feature is
maybe the most important advantage as it allows to simulate complex evolving flows
as dambreaks or avalanches [34, 104]. With the use of particles the mesh generation is
omitted and there is no need to discretize the entire domain a fluid might reach during
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2. Smoothed Particle Hydrodynamics

a simulation from the beginning. Also, variations in spatial and temporal resolution can
be realized as different particles can have different interpolation length-scales. Useful
for multi-phase problems, particles can be tagged with an identifier to distinguish dif-
ferent phases without the need for explicit front-tracking or front-capturing algorithms.
Thus, complex interfacial phenomena can be modeled and e.g. different constitutive
laws or governing equations for different sets of particles can be introduced.

From these properties it is clear that SPH has huge capabilities and potentials in many
fields of research. Since 1977 the method was used and developed further for a large
variety of complex phenomena. By no means exhaustive, the following overview is
intended to show this versatility.

Taking advantage of the Lagrangian advection of particles and the simple discretiza-
tion of complex domains, SPH can be used to simulate highly-violent free-surface flows
such as dam breaks or coastal wave breaking events [34, 83, 77]. By assigning dif-
ferent properties to different particles it is straightforward to model multi-phase flows
including surface tension effects [59, 51, 88, 92]. Ellero et al. and Vazquez-Quesada et
al. [42, 121] have introduced more complex particle-particle interactions and showed
that non-Newtonian fluid behavior can also be modeled with SPH. Recently, Pan et
al. proposed a non-Newtonian SPH model to simulate ice-shelf dynamics [95]. Be-
sides fluid mechanics, due to the flexibility in the constitutive equation for the stress
tensor of a continuum phase, it is possible to simulate solid bodies and their interac-
tion [25, 123, 72]. Benz and Asphaug [26] introduced a fracture model to study the
propagation of cracks in loaded rods. Again, since Lagrangian particles by the na-
ture of the method advect according to the local momentum it is possible to track and
evolve fragments caused by brittle fracture of material or simulate impacting projectiles
[37, 111]. Combining fluid and solid mechanics, SPH can be used to couple fluids
and structures in a monolithic framework [24, 50, 124]. Although this elegant approach
reduces the code complexity and simplifies the boundary conditions at solid-fluid in-
terfaces, more recent attempts to simulate fluid-structure interactions (FSI) use SPH
as fluid solver and couple it to well established structural finite-element-method (FEM)
codes [101, 47]. The Lagrangian particle discretization also offers the possibility to
change the behavior of individual particles as they evolve in time. Monaghan et al.
[86] used this functionality to model solidification of a binary fluid system like freezing
of a salt solution, but they used fixed particles and only propagated the front of the
phase-change. More general, Tartakovsky et al. [116] proposed a SPH model for re-
active transport and precipitation including particle motion. Rather new, the capability
of SPH to simulate turbulent flows has been shown by several groups and especially
this area of research is currently of high interest [125, 103, 110, 85]. Unchanged from
the beginning, SPH is highly used in astrophysics to study e.g. the formation of stars
[112] or magnetohydrodynamics (MHD) [98]. Apart from this collection SPH is more
and more used for very complex and “exotic” applications where other methods fail or
hardly give reasonable results. Hieber et al. [54] showed that with Lagrangian particle
methods it is possible to simulate nonlinear soft tissue and they reproduced numer-
ically the experimental results of an aspiration test on liver tissue. Another example
is given by Van Liedekerke et al. [120], who proposed a plant cell model to simulate
the dynamics of parenchyma cells and aggregates allowing for large deformations and
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2.1. Method details

arbitrary shapes.

Although SPH is a promising method with large capabilities the industrial relevance is
still marginal. One possible reason is that a strict mathematical proof for convergence
and stability is missing. As the Lagrangian particles in general are strongly disordered,
classical numerical analysis fails so that convergence and consistency can only be
demonstrated empirically. Nevertheless, many examples have shown that SPH gives
reasonable results especially for very complex problems.1 Another handicap of the
method is the computational cost. Due to the smoothing concept the resulting number
of calculation operations per particle are much higher compared to a standard grid-
based method and consequently simulation times are longer. However, as the general
multi-particle SPH algorithm shows high parallelism it is well suited for GPU computing
(graphics processing unit). Using this technology the performance of SPH codes can
be strongly increased in terms of computational acceleration and acceptable simulation
times are achieved, see e.g. Hérault et al. [53] or Domínguez et al. [40]. Last, still
today SPH is not yet ready to be used as black-box tool and the quality of the results
can strongly depend on the experience of the user. This is due to several parameter-
dependent corrections that are necessary to allow for stable and accurate simulations.
Since these corrections usually need case-specific tuning it is difficult to use SPH as
design tool in an industrial environment. Yet, with the improvements presented in this
thesis to the best knowledge of the author, for the first time SPH can be applied to
various wall-bounded flows without any fitted adjustments (see Sec. 3.2 for details and
validation).

The following three sections briefly review the fundamental SPH concept. The smooth-
ing and gradient discretization is introduced and the governing equations for continuum
mechanical problems are presented. At the end of this chapter a few practical issues
specific to particle methods in general such as neighbor-search and interaction-lists
are discussed.

2.1. METHOD DETAILS

SPH particles are discretization elements that move with the flow and carry certain
properties such as mass or species concentrations. To calculate a field quantity φ as
function of the coordinate r the interpolation integral

φ (r) =

∫
φ (r′)W (r− r′, h) dr′ (2.1)

with the smoothing function W (or kernel) is introduced. The smoothing length h is a
measure of the width of the kernel. A discrete form of eq. (2.1) for a set of particles at

1In computer games and for special e�ects in movies (see e.g. www.nextlimit.com) SPH is successfully
used to simulate and visualize �ows (in constrast to �animating� them).
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positions rj is
φ (r) =

∑
j

φ (rj)W (r− rj, h)Vj . (2.2)

The value of φ at the position ri of particle i is obtained from a summation over all
neighboring particles j with weight W (ri − rj, h) multiplied by their respective volume
elements Vj.

2.1.1. KERNEL FUNCTION

The radially symmetric smoothing or kernel function is required to satisfy the following
requirements. In the limit of a vanishing smoothing length h the kernel should reduce
to a delta function

lim
h→0

W (r− r′, h) = δ (r− r′) (2.3)

giving an exact integral interpolant in eq. (2.1). The partition of unity property∫
W (r− r′, h) dr′ = 1 (2.4)

is important to interpolate constants exactly and requires proper normalisation of the
kernel. Compact support of the kernel, i.e. a vanishing kernel at finite distance, is
favorable for efficiency but not necessary.

The SPH formulation is not specific to the choice of the kernel function and various
choices for the smoothing can be found in literature. Among these the most used kernel
functions are the Wendland kernels [126] or B-Splines [108]. Recently, Dehnen and Aly
[39] showed that kernels with non-negative Fourier transform (such as the Wendland
functions) are favorable as they prevent the particle pairing instability. More details
on this instability are given in Sec. 3.2, where a new transport-velocity formulation
is presented that suppresses this pairing and allows for using more accurate spline
kernels without stability problems as well.

2.1.2. DERIVATIVES IN SPH

Derivatives of field quantities can be approximated in SPH by several ways. A compre-
hensive account of this issue is given in [84] or [99].

Starting from the SPH approximation, eq. (2.2), the gradient of φ at the position ri of
particle i is obtained as

∇φi =
∑
j

mj

ρj
φ (rj)∇Wij , (2.5)

where mj and ρj are the mass and density of neighboring particles j. Here, a differen-
tiable kernel function W with compact support is assumed and the mass elements ρdV
are replaced with the discrete particle mass. Note that the gradient of φ at particle i is
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2.1. Method details

calculated from the field function φ itself at neighboring particles, and the gradient of
the kernel function is an analytical expression. However, the discrete sum in eq. (2.5)
is zero-order consistent only, i.e. the gradient of a constant field p is non-zero for a
randomly distributed particle configuration.

It is straightforward to substract the first error term of a Taylor series about ri to obtain
a more accurate gradient approximation as

∇φi =
∑
j

mj

ρj
(φj − φi)∇Wij . (2.6)

Consequently, this form is first-order consistent. Further increasing the accuracy, a
renormalization can be introduced to recover second-order consistency. The problem
with these gradient approximations is that, when applied to the momentum balance
equation, the resulting numerical discretization is non-conservative.

Using the identity

∇φ = ϕ

[
φ

ϕ2
∇ϕ+∇

(
φ

ϕ

)]
, (2.7)

another variant of the gradient discretization is obtained as

∇φi = ϕi
∑
j

mj

(
φi
ϕ2
i

+
φj
ϕ2
j

)
∇Wij , (2.8)

where ϕ is a differentiable scalar quantity. As shown later in sec. 2.1.4, this anti-
symmetric form conserves linear and angular momentum when applied to the pressure
force in the momentum balance equation.

Comparing the two formulations eq. (2.6) and (2.8) it is interesting to note that the first
discretization gives worse results compared to the second one although linear error
analysis shows higher accuracy. The conservative formulation regularizes the particle
configuration when applied to the equations of motion resulting in a more accurate
approximation. This paradox is well explained in the section “Why a bad derivative
leads to good derivatives” of Daniel Price’s recent overview [99].

2.1.3. MASS CONSERVATION

In classical SPH mass conservation is intrinsically satisfied. Usually, each particle
carries a constant portion of mass that does not change during a simulation. Thus, the
total mass is exactly conserved. Two fundamentally different approaches exist for the
evolution of density, the density evolution form and the density summation form.

According to mass conservation of a Lagrangian particle, the continuity equation

dρ

dt
= −ρ∇ · v (2.9)
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relates the change of density to the divergence of the velocity field. For incompress-
ible flows the divergence of the velocity field vanishes, hence dρ/dt = 0. Solving the
resulting pressure-Poisson equation (PPE) with SPH is non-trivial and computationally
expensive since particles are randomly distributed and continuously move relative to
each other even for a stationary flow. Methods for dealing with incompressible SPH
(ISPH) can be found for example in [33, 61, 130]. Assuming a weakly-compressible
fluid the density can be evolved according eq. (2.9), and incompressibility is approxi-
mately satisfied by limiting the density variation to 1%. One possible discretization of
the continuity equation is

dρi
dt

= −
∑
j

Vj (vi − vj) · ∇Wij , (2.10)

where ρ, V and v denote the density, volume and velocity of a particle and the subscript
indicates particle i and its neighbors j. The density evolution approach can be applied
directly to free-surface flows, where surface particles do not have full-support. The
drawback of this form is that the total volume (V = m/ρ) can vary as errors in the
density evolution may accumulate due to the symmetric term in the summation of Eq.
(2.10).

Another way to calculate the density of a particle follows directly from the kernel inter-
polation and is given by

ρi =
∑
j

mjWij . (2.11)

Here, the density of particle i is directly obtained from the actual particle configura-
tion and requires full support for the summation. The total volume can vary with this
summation form as well, but when applied to wall-bounded flows the particle motion is
geometrically confined and the error in total volume is bounded during the simulation.

2.1.4. MOMENTUM CONSERVATION

Momentum conservation of an isothermal fluid is expressed by the Navier-Stokes
equation

d (ρv)

dt
= −∇p+ η∇2v + ρg + F(s) , (2.12)

where p, η and g denote pressure, dynamic viscosity and bodyforce, respectively. The
surface force F(s) describes additional interfacial effects such as surface tension. Fur-
ther details are given in the following section on multi-phase SPH. Using the weakly-
compressible approach to simulate incompressible flow with SPH the pressure is re-
lated to density by an equation-of-state (EOS) in the form of

p = p0

[(
ρ

ρ0

)γ
− 1

]
+ pb (2.13)
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to close the system of governing equations. The reference pressure p0, the exponent
γ and the background-pressure pb are numerical parameters that are chosen based on
a scale analysis presented by Morris et al. [90] to limit the density variation to 1%. The
artificial sound speed cs determines the reference pressure

p0 =
ρ0c

2
s

γ
(2.14)

and is usually taken to be an order of magnitude larger than the reference velocity of
the flow. This choice is a compromise between using the physical speed of sound that
would strongly constrain the numerical time-step size and the threshold of the density
variation. The background-pressure pb sets the constant reference pressure level in
the flow and is a case-dependent parameter that affects also the stability of standard
SPH simulations. The effect of pb and a new approach without case-dependent tuning
is discussed in detail in Sec. 3.2.

Using SPH derivatives for the gradient operators in eq. (2.12) the acceleration of a
Lagrangian particle is approximated as

dvi
dt

= gi −
1

mi

∑
j

(
V 2
i + V 2

j

) ∂W
∂rij

[
p̃ijeij + η

vi − vj
rij

]
. (2.15)

Here, the gradient of the kernel is rewritten as ∂W
∂rij

eij = ∇W (ri − rj) with the unit
vector eij between two particles i and j. The inter-particle pressure p̃ij for single-phase
problems is simply 1

2
(pi + pj).

It can be shown [99] that the SPH equations (without viscous term) form a Hamiltonian
system and are Galilean invariant. Note, the discretization in eq. (2.15) conserves
linear momentum exactly due to the anti-symmetric summation. Other formulations
are available in literature [31, 60, 84] that introduce particle-particle interactions only
on the centre-lines and conserve angular momentum as well. Finally, the velocity of a
particle is evolved in time using the actual acceleration and the position of particles is
updated with the equation of motion

dri
dt

= vi . (2.16)

2.2. MULTI-PHASE SPH

With small modifications to the single-phase model SPH can handle multi-phase prob-
lems with complex physical phenomena effectively. Due to the interaction-based force
calculation between different particles it is straightforward to handle interfaces implic-
itly. Each phase is tagged with an identifier to distinguish particles of different types.
When two particles of the same type interact, the single-phase model is applied. At
interfaces, the interaction naturally takes into account different properties of the fluids.
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2. Smoothed Particle Hydrodynamics

Hu and Adams [59] showed for the viscosity model used in eq. (2.15) that by replacing
the single-phase viscosity η with a combined viscosity in the form

η̃ij =
2ηiηj
ηi + ηj

(2.17)

the shear stress and velocity across the interface are continuous. Note, if two particles
belong to the same phase, this combined viscosity reduces exactly to the single-phase
viscosity. Hence, this formulation can be generally applied to any type of interaction.
In a similar way the pressure term is adapted to ensure a continuous gradient of ∇p/ρ
even for discontinuous density fields [61]. The only difference is the form of the inter-
particle pressure that is now given by

p̃ij =
ρjpi + ρipj
ρi + ρj

. (2.18)

As for the viscosity, this model reduces to the single-phase form when both particles
belong to the same phase and can be generally applied. The evolution equation (2.10)
for mass conservation takes into account the geometrical particle configuration and the
volume contribution. Therefore this approach can be directly applied even to interfaces
with large density discontinuities. For the density summation (2.11) Hu and Adams [59]
proposed a marginal modification that allows to use this form for multi-phase flows. In
their model, the particle density is obtained from

ρi = mi

∑
b

Wij . (2.19)

Since neighboring particles now only affect the specific volume of particle i, artificial
mass transport across the interface is suppressed and the summation applies to arbi-
trary density ratios.

The integer phase identifier is advected with the flow field and is constant for a particle
in the absence of a phase transition model. Together with the multi-phase model pre-
viously prescribed it is possible to incorporate interface effects implicitly in an elegant
way without a special interface reconstruction scheme. Arbitrary interface shapes as
well as complex deformations including interface breakup and merging can be consid-
ered.

To model additional interface phenomena such as surface tension a color-function c
is introduced with a unit jump at a phase interface. This function assumes the value
ckl = 1 if the k-th particle belongs to the phase of type l and ckl = 0 if not. Following
Brackbill et al. [29], the surface delta function δΣ is approximated with the gradient of
the color-function

nδΣ = ∇c (2.20)

and can be used to write the interfacial surface-tension force in volumetric form. Fur-
thermore, by

n =
∇c
|∇c|

(2.21)
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the normalized color-gradient gives the normal direction at the interface that is required
e.g. to calculate the curvature of an interface or to correctly impose Robin boundary
conditions [8, 105]. Fig. 2.2 shows a sketch of a two-fluid situation with the normal
n and the surface-delta function δΣ to further illustrate the particle discretization of an
interface.

Figure 2.1.: Sketch of the transition band at an interface with the surface delta function
δΣ, the normal n and particles of two di�erent phases.

The combination of maintaining a sharp phase discontinuity and the smooth interface
discretization using a surface delta function offers an enormous modeling potential for
complex problems. A well-designed SPH implementation is furthermore attractive by
its own, since simply exchanging, e.g., the constitutive law to calculate the stress tensor
allows for simulating fluid-structure interactions within a monolithic approach.

2.3. COMPUTATIONAL ASPECTS

The discretization of the governing equations using a Lagrangian particle method re-
sults in a multi-body interaction scheme. Fundamentally different to grid-based meth-
ods, the stencil of a particle is not known a-priori and needs to be reconstructed at
every time-step. As particles can move freely, the distance of interacting particles and
therefore the weighting in the summation changes. In addition, particles might enter or
leave the cutoff-range. The reconstruction of the interaction list requires approximately
5% of the computational time to calculate one numerical time step and contributes to
the increase in computational complexity. However, the significant increase in com-
putational cost compared to grid-based methods is due to the interaction-based dis-
cretization scheme itself. In SPH, using e.g. a quintic-spline kernel with a cutoff radius
of three particle spacings rc = 3∆x, the number of neighbors are on the order of O (30)
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in 2D and O (90) in 3D. Therefore it is very important to develop efficient algorithms to
create the interaction lists and to calculate the change rates of the governing equations.
Note, these algorithms are not specific to SPH but are shared by any particle method
such as Molecular Dynamics (MD) or Discrete Element Method (DEM) that depend on
a multiple-interaction scheme.

In 1989, Allen and Tildesley [23] have reviewed the cell-list approach using linked-lists
to build up the particle-interaction lists efficiently. These algorithms are still today the
state-of-the-art for particle methods. Without any presorting, the neighbor search for a
particle in a randomly distributed cloud of particles requires O (N2) operations, where
N is the total number of particles. With a given cutoff-radius rc it is possible to presort
particles in cells with a width of rc. Consequently, particles with a distance smaller than
the cutoff can only be located within the same cell or in the adjacent cell, i.e. the search
can be limited to a field of 9 cells in 2D (or 27 cells in 3D). Furthermore, using linked lists
all particles are reordered and assigned to their respective cell. With this approach it is
straightforward to find the neighbors for any given particle i without sweeping over the
entire set of particles. Verlet [122] proposed to use cells that are larger than the cutoff.
As a consequence, distant interactions with effectively zero weighting are also included
in the lists but the necessary frequency of reconstructing these so-called Verlet lists is
reduced. Obviously, the increase in considered interactions versus the reduced cost
of reconstructing the lists need to be properly tuned and can lead to a considerable
increase in computational efficiency.

Concerning computational efficiency the creation of individual interaction lists for differ-
ent phases and interfaces is beneficial, especially for multi-phase problems with com-
plex physical phenomena. Instead of identifying each pairwise interaction and defining
their relevant governing equations, it is profitable to create various lists first and then
to directly apply the corresponding routines. In doing so, the calculation of forces e.g.
due to surface tension effects is performed implicitly only for particles close to an inter-
face.

The drawback of the cell-list approach is the Cartesian decomposition of the domain
into cells, i.e. an arbitrarily complex geometry needs to be embedded in a rectangular
computational box including empty or fractionally particle-filled cells. Furthermore, cell-
lists are most efficient for kernels with a fixed cutoff radius. For weakly-compressible
fluids this is no issue as they are modeled by a constant cutoff radius and marginal
density variation. At the same time the cell-list decomposition of the domain enables a
straightforward parallelization using MPI routines as the cells can be used directly as
sub-domains to be distributed amongst individual processors. A very general frame-
work for particle simulations offering all the necessary functionality ranging from do-
main decomposition to efficient communication in a parallel code was presented by
Sbalzarini et al. [107]. They distributed a library called PPM that handles all challeng-
ing parallelization issues of a meshless numerical method where the user can focus
on the modeling part. Using this library in this work allowed for highly efficient SPH
simulations of millions of particles on the SuperMUC Petascale System at Leibniz-
Rechenzentrum (Leibniz Supercomputing Centre) in Garching.
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3. ACCOMPLISHMENTS

In this chapter the developed improvements of the SPH method are presented. Each
work is motivated with a short literature review to demonstrate the state-of-the-art of
each particular issue indicating the limitations that have been overcome by the respec-
tive research.
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3.1. WALL BOUNDARY CONDITION

The correct imposition of boundary conditions in general, and wall-boundary condi-
tions in particular, is of great importance for numerical methods. Yet, modeling of wall-
boundary conditions is non-trivial especially for SPH and an established best-practice
is not in place yet.

The SPH discretization relies on a kernel interpolation that requires full support to
obtain an accurate approximation of the field quantities and derivatives. As an example,
think of an uniform particle distribution within a wall-bounded box where the density of
a particle close to the boundary is estimated using the density summation in eq. (2.11).
Although particles are uniformly covering the fluid region, the density close to the walls
drops and gives an unreasonable pressure field, as the support extends beyond the
wall boundary.

Current wall-boundary treatments in SPH can be split into two fundamentally different
concepts. Using particles within the wall to mimic a continuous particle distribution
ensures full support of the summations in the fluid. However, additional interpolations
are necessary. To accurately impose no-slip conditions on a wall, for example, the
velocity field needs to be extrapolated beyond the wall boundary. The second concept
accounts for the missing support of the kernel by estimating the non-vanishing surface-
integral in the gradient approximation close to the boundary. Another variant is to add
artificial repulsive forces that ensure the non-permeability of solid walls.

Various methods have been proposed following the first concept with different ap-
proaches to define the location of wall boundary particles. Libersky et al. [73] have
used ghost particles to fill the boundary by simply mirroring real particles adjacent to
the wall surface. Manipulating the velocities of the ghosts allows to mimic no-slip walls,
free-slip walls and symmetry boundary conditions within the same framework. The two
main drawbacks of this method are a) the need of recreation of ghost particles at every
timestep and b) direct mirroring works only for simple (straight) wall geometries. The
latter argument is significant since the method cannot be applied to arbitrarily com-
plex geometries that occur in industrial applications. A more advanced wall-boundary
model was proposed by Morris et al. [90] who used fixed wall particles and applied
them also to curved surfaces. These wall particles are treated as real particles, i.e.
their fluid quantities are evolved in time and they ensure full support for the particles
in the fluid phase. The problem with this method is the velocity estimation for the wall
particles. Although giving an accurate discretization of a no-slip condition, the velocity
in the walls is calculated using a closed functional form of the exact geometry. Hence,
this method can be used for geometries that can be represented by combination of a
few generic forms (square, circle, sphere, ...) but again lacks generality. As a rem-
edy, Colagrossi [32] uses a pointwise mirroring at the local tangent of the boundary for
arbitrarily shaped walls to find the wall boundary particles. Here, the ghost particles
need to be recreated every timestep. For complex geometries special care must be
taken to maintain a uniform mass distribution of the ghost particles and to eliminate
intersections at sharp corners. Hieber and Koumoutsakos [55] proposed another wall
model based on the immersed-boundary method, but this method is currently limited to
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remeshed smoothed particle hydrodynamics and therefore not considered here. To en-
sure full support close to the walls, in all previously presented methods the boundaries
need to be discretized with several layers of particles. Thus, very complex geome-
tries with small-scale features determine the necessary particle spacing to accurately
represent the shape.

For the second concept of wall models the surface is discretized with only a single layer
of particles that simplifies the handling of complex geometries. These methods differ
mainly by the way the incomplete interpolation is corrected. DeLeffe et al. [38] propose
a normal-flux method where the non-vanishing surface integral in the SPH summation
close to a wall is considered. Testcases with straight walls show promising results but
the application to complex geometries is not presented and seems rather difficult. A
different approach to account for the presence of walls with non-full support is given by
Ferrand et al. [45, 46]. Here, the smoothing and gradient calculation are renormalized
to compensate for the missing particles in the wall. This renormalization introduces a
new quantity that has to be evolved in time for every wall-near particle, thus requires
additional computational effort. A very simple but still effective technique based on
repulsive boundary particles is presented by Monaghan and Kajtar [87]. By the use of
a Lennard-Jones-like potential, boundary particles cause an additional repulsion force
to the momentum balance of a fluid particle to prevent penetration of the wall. Varying
the magnitude of this force changes the repulsion between fluid and boundary particles
and gives different inter-particle distances for different flow configurations. Hence, this
model needs case-specific calibration and cannot be used as general black-box type
model. Nevertheless, its simplicity and qualitatively correct behaviour are impressive.

The presented overview is not exhaustive and combinations or enhanced modifications
are available. However, other approaches can be traced back to these concepts. Given
the limitations of the available wall boundary methods a new generalized model has
been proposed and is summarized here. Further details can be found in the paper
attached in the appendix A.1.
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S. Adami, X.Y. Hu and N.A. Adams (2012)
A Generalized Wall Boundary Condition for Smoothed Particle Hydrodynamics
J. Comput. Phys. 231(21):7057-7075. [13]

In this paper a wall boundary condition for SPH is presented with emphasis on gen-
erality. Focusing on wall modeling, a standard weakly-compressible SPH model [84]
is used for the fluid phase. To allow for free-surface simulations the density is evolved
with the continuity equation and an artificial viscosity is used to stabilize the simula-
tions. This artificial viscosity also takes effect as a real viscosity when its magnitude
is properly calibrated [84]. The particles are evolved in time using a velocity-Verlet
scheme [122] that is second-order accurate and reversible in time for inviscid flows.
Solid walls are discretized with Cartesian particles of a separate phase to ensure full
support for adjacent fluid particles. This simple procedure allows for discretizing com-
plex geometries with particles without user interaction and without special treatments
that are necessary for classical grid generators.

At the wall boundary free-slip or no-slip conditions for the velocity can be imposed.
Free slip is realized by simply omitting the viscous interaction of fluid particles with
wall boundary particles. For the no-slip condition the velocity of wall particles is ex-
trapolated from the neighboring fluid particles and further modified to result in the cor-
rect shear force at the wall. The wall impermeability is implicitly enforced for both
cases as approaching particles are compressed and the resulting increase in pressure
force prevents penetration. To obtain quantitatively correct results it is important to
accurately approximate the pressure gradient at the boundary. The pressure at wall
boundary particles is extrapolated from neighboring fluid particles taking into account
the acceleration of the wall and body force effects. Then, after rearranging the pres-
sure equation-of-state the density of a wall particle is calculated with the extrapolated
pressure. Together with the velocity, pressure and density approximation the walls con-
tribute to the fluid phase as dummy particles of the same phase and ensure full sup-
port. The additional summation of particle interactions to calculate the wall quantities
can be limited to pre-sorted interface particles only, thus the computational overhead
is insignificant.

The wall boundary method is validated for two- and three-dimensional problems in-
cluding channel flows and free-surface flows. Comparisons with analytical solutions
and reference solutions from literature show that the proposed method can be applied
to a broad range of problems without additional treatment. The flow examples over
a backward-facing step or through a periodic lattice of cylinders show that the shear
stress at the wall is accurately calculated and the correct velocity profiles are pre-
dicted. Hydrostatic tank simulations including complex wall geometries and multiple
fluid phases demonstrate the correct imposition of the von-Neumann-boundary condi-
tion for the pressure. The last example shows the simulation of a rotating, partially-fluid
filled rippled cylinder. This case includes complex moving boundaries with moving free-
surfaces and illustrates the robustness and generality of this method.

My contribution to this work was the development of the method and the implemen-
tation in the in-house SPH code. I tested and validated the software, performed the
numerical simulations and wrote the manuscript for the publication.
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3.2. ACCURACY AND STABILITY

Since its first publication on astrophysical simulations [76, 49] SPH has been success-
fully applied to a broad range of fluid- and solid-mechanics-problems. Nevertheless,
still today the method cannot be used as a blackbox simulation tool as numerical pa-
rameters need to be chosen carefully to allow for stable simulations. In addition, many
correction or stabilization schemes violate the conservation properties, and the accu-
racy of the results can be unsatisfactory.

It is important to note that modifications of the method itself often result in counter-
intuitive effects, especially compared to classical CFD experience. Although the contin-
uous interpolation formulation is second-order accurate, in practice SPH results show
grid-convergence rates less than second order. The reason is the strong dependency
on the particle configuration, i.e. for non-homogeneous particle distributions the dis-
crete field or gradient approximation is poor. Clearly, increasing the accuracy of the
interpolation would be a straightforward advancement as presented e.g. by Chen et al.
[30]. Based on a Taylor-series expansion, they expressed zero-, first- and second-order
derivatives using higher order terms to end up with a more accurate SPH scheme.
Not surprisingly, simple validation tests of heat conduction on static particles showed
improved results as temperature gradients are calculated more accurately. However,
besides the higher computational cost (in general, the method requires inversion of
a matrix for each particle) the method is no longer conservative. Additionally, using
higher-order derivative discretizations does not necessarily improve SPH results. Price
[99] gives a clear explanation with examples on this aspect. The relevant message is
that conservation is most important and numerical errors in SPH rearrange particles to
regularize their distribution. Then, as a consequence and not by an enhanced method
formulation, the gradient approximation becomes more accurate while conserving the
total energy.

To simulate incompressible fluid dynamics with SPH there are two concepts available.
Solving the truly incompressible Navier-Stokes equations with a zero-divergence con-
straint on the velocity leads to the ISPH method. Contrarily, allowing small density
variations, in weakly-compressible SPH (WCSPH) the fluid is weakly-compressible
and density and pressure are related with an equation-of-state. Choosing a proper
sound-speed scale limits the density variations to an admissible threshold and the
flow is quasi-incompressible. As many publications show, ISPH gives accurate re-
sults for free-surface and multi-phase flows [62, 33, 131, 70, 133]. However, solving
the pressure Poisson equation is non-trivial for moving particles and special treatment
for boundary-conditions is necessary. For reasons of simplicity and generality (in case
of free-surfaces ISPH requires an interface reconstruction/detection), the focus here is
on WCSPH.

Regardless of the quality of the results obtained with SPH, a significant challenge is the
stability of simulations itself. When the particle motion is erroneous, often the problem
is not an inaccurate result but an instability of the simulation. The classical instability
is the so-called tensile instability [114]. Here, attractive forces e.g. due to negative
pressures cause particles to lump. With decreasing distance between two particles
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this attractive force further increases and triggers a numerical instability. Monaghan
addressed this problem already in 1989 [82] and proposed to use a modified advection
velocity for the particle movement. In this case, the advection velocity is a combina-
tion of the local momentum velocity and the smoothed velocity field using neighboring
particles. As this blending is arbitrary, Monaghan himself called the correction XSPH
denoting the unknown parameter. Effectively, XSPH smoothes the flow field and in turn
particles move more regularly to avoid strongly disturbed configurations where nega-
tive pressures can occur. Alternatively and in practice additionally used, an artificial
viscous term is added to the momentum equation to stop particles from approaching
each other when they are very close [84]. For a given kernel this artificial viscos-
ity can be translated into an effective physical viscosity [84] and is used to simulate
viscous flows [31, 87, 95, 78, 32]. For high Reynolds number flows the necessary ar-
tificial viscosity to stabilize the simulations can exceed the physical viscosity and can
strongly affect the results. In addition, state-of-the-art SPH codes also use Shepard
filters and density re-initializations to smooth pressure oscillations and to stabilize the
simulations.

SPH can be applied to many complex problems if the numerical parameters are chosen
properly and all available corrections are used. However, quantitative results have to be
cross-validated carefully. In this work, a fundamentally different approach is presented
to overcome the stability problems of WCSPH and to allow non-experienced users
to use SPH as a simulation tool for general purposes. Currently limited to internal
flows, in the following publication a transport-velocity formulation is presented that is
successfully applied to a broad range of challenging problems without difficulties and
allows for simulating flows such as the lid-driven cavity at Re = 10000 that previously
have been out of reach for SPH.
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S. Adami, X.Y. Hu and N.A. Adams (2013)
A transport-velocity formulation for Smoothed Particle Hydrodynamics
J. Comput. Phys. 241:292-307. [17]

In this paper, a new advection scheme for WCSPH is presented that allows for simulat-
ing high Reynolds number flows. Although the necessary modifications to the standard
method are marginal, the resulting scheme is far more stable and accurate.

The improvement originates from the background-pressure dilemma of the WCSPH
scheme. It is well-known that SPH suffers from the tensile-instability [114], and usually
adjusting the equation-of-state to avoid negative pressures is sufficient to resolve it
[63, 78]. On the other hand, the 0th-order consistency of SPH gives spurious pressure
gradients for a formally constant field. Contrary to the theory of incompressible flow,
a constant background-pressure affects the result and introduces additional numerical
dissipation. In this work both effects are combined, i.e. the background-pressure effect
regularizes the particle motion while artificial dissipation of momentum is decreased.

Similarly to XSPH, a modified advection velocity is introduced that leads to an ad-
ditional stress term in the momentum balance equation. The method is still exactly
conservative as the gradient of this stress term can be discretized in anti-symmetric
form. The very simple but essential step now is to separate the constant background-
pressure level from the EOS. For the momentum equation the classical relation without
adding a constant pressure is used, i.e. for a particle at reference density the pressure
is zero. To move the particles the momentum velocity is then corrected by the effect of
the numerically non-vanishing gradient due to the constant background pressure.

The proposed method first is validated for classical low Reynolds number flows such as
the flow around a periodic lattice of cylinders [90] or the two-dimensional Taylor-Green
vortex. Comparisons with analytical solutions and reference results show excellent
agreement for the new formulation. Secondly, the lid-driven cavity problem is simulated
for Reynolds numbers up to Re = 10000 and velocity profiles along the horizontal and
vertical centreline are compared to highly-resolved multi-grid finite-difference scheme
results [48]. Surprisingly, at intermediate Reynolds numbers (Re = 100, 1000) the SPH
results converge to the reference solution already at lower resolutions. Good agree-
ment is found even for the large Reynolds number of Re = 10000. Note, to the best
knowledge of the authors this is the first time that SPH can be used to simulate a wall-
bounded flow at such a small physical viscosity. Finally, a Rayleigh-Taylor instability
is simulated for both two and three dimensions. This example shows the capability to
simulate multi-phase problems with the new method as well.

The transport-velocity formulation allows to simulate internal flows at high Reynolds
numbers at high accuracy and stability. Most importantly, the numerical setup for all
presented cases was identical. Thus, the new method is much more suitable for gen-
eral purposes as the quality of results does not depend on numerical parameter ad-
justment of an experienced user.

My contribution to this work was the development of the method and the implemen-
tation in the in-house SPH code. I tested and validated the software, performed the
numerical simulations and wrote the manuscript for the publication.
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3.3. SURFACE-TENSION MODELING

Surface-tension modeling is challenging for numerical methods since the presence of
an interface singularity can cause jumps in the field quantities, e.g. the pressure drop
across an interface, and the evolution of the interface has to be tracked. The particle-
particle interaction concept of SPH offers an implicit representation of interfaces since
neighboring particles of different types indicate the presence of an interface and special
forces/models can be applied locally. Over the last decade several surface tension
models have been proposed for SPH that can be divided into two different concepts.

In the first group, microscopic inter-particle forces are considered that eventually take
effect as a physical surface tension model. The difficulty for these models is the re-
lation between the inter-particle forces and the resulting surface tension. So far there
exists no closed formulation that relates both quantities and calibration of parameters
is necessary.

From a macroscopic point of view the surface tension effect can be modeled as stress
boundary condition that results in a singular force at the interface. This force is smoothed
and reformulated to contribute to the volumetric momentum balance equation. While
this approach recovers the prescribed surface tension, knowledge of the shape of the
interface is necessary that requires detection or reconstruction methods.

Nugent and Posch [92] modeled a van der Waals fluid in two dimensions using basi-
cally standard SPH with a special equation-of-state for the pressure of particles. The
resulting long-range attractive forces qualitatively give the same effect as surface ten-
sion. In the bulk of a fluid these forces cancel each other and only in the vicinity of
a free surface the residue due to the missing full support gives an effective surface
tension force. This model can be used to simulate a fluid phase surrounded by its
vapour phase, i.e. a single phase with free surface produces stable drops. Note, a
very similar modification of the equation-of-state is used by Colagrossi and Landrini
[32] to prevent particle penetration at interfaces of multi-phase problems, the auxiliary
effect is essentially an artificial surface tension. Nugent and Posch showed that the
Laplace law for drops and the free oscillation of drops can be well reproduced. How-
ever, to supress numerical instabilities the range of the cohesive forces needs to be
increased, thus the computational cost increases considerably. A very similar model
was proposed by Tartakovsky and Meakin [115], but the interaction range of the pro-
posed microscopic forces was explicitly designed not to exceed the underlying SPH
smoothing range. Interestingly, they state that ”the exact form of the particle-particle
interactions is not critical to the success of the simulations, but the interactions should
be repulsive at short distances and attractive at large distances“ [115]. The calibrated
model can be used to simulate the free oscillation of drops and even fluid-solid inter-
actions that produce contact angles are recovered. Recently, Kordilla et al. [65] used
this method to simulate three-dimensional droplet and film flow on smooth and rough
fracture surfaces. This group of models is very attractive in terms of numerical simplic-
ity since it only introduces an additional inter-particle force term without the need for
detecting or reconstructing the shape of an interface and holds both for free-surface
and multi-fluid situations. The main drawback is the lacking closed formulation for the
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surface tension, i.e. numerical parameters need to be calibrated since the effective
surface tension is not known beforehand.

Contrarily, macroscopic surface tension methods are based on an explicit interface
representation and modify the momentum of particles in the vicinity of an interface.
The basis for this group of methods goes back to Brackbill [29], who presented a vol-
ume reformulation of surface tension. In the so-called Continuum Surface Force (CSF)
method the surface tension force is proportional to the curvature of the interface mul-
tiplied with the surface-tension coefficient. Then, using a surface-delta function the
force is smoothed across the interface. This approach requires calculation of the nor-
mals and the curvature of the interface, which can be numerically difficult. The first
implementation of the CSF method using SPH was proposed by Morris [89]. A color-
function 0 ≤ c ≤ 1 is introduced to define the two pure phases c = 0 and c = 1 with
a smooth transition across the interface. The gradient of this color-function is aligned
with the interface’s normal direction and can thus be used to calculate the curvature
of the interface. The magnitude of this gradient gives an approximation of the surface-
delta function and is non-zero only within a narrow band region across the interface. As
the color-function itself is smoothed across the interface, the color-gradient is non-zero
within a band region of twice the cutoff range. Morris shows that this model accurately
predicts the Laplace law and droplet oscillation, but to stabilize the simulations addi-
tional smoothing procedures are required. The problem occurs at the fringes of the
interface band where the surface-delta function approaches zero. Here, the normaliza-
tion of the gradient vectors is erroneous and the curvature calculation needs correc-
tions. Still based on the CSF method, Zhang et al. [135] presented a surface-tension
model for SPH where the interface is reconstructed. Therefore interface or bound-
ary particles (in case of a free-surface) need to be detected and an interface curve is
reconstructed from these particles using Lagrangian interpolation polynomials. Subse-
quently, the curvature and normal direction are calculated from the reconstructed curve
and the resulting surface-tension force is added to the single layer of detected interface
particles. The presented results of pressure drops, oscillations and drop collisions both
in two and three dimensions illustrate the functionality of this method, but especially for
three-dimensional problems the reconstruction is elaborate. Circumventing the curva-
ture calculation, Hu and Adams [59] propose a multi-phase SPH method with surface
tension effects based on the Continuum Surface Stress (CSS) method. This approach
goes back to Lafaurie [67], who showed that surface tension can be formulated as gra-
dient of a stress tensor depending on the surface-delta function, the interface normal
direction and the surface-tension coefficient only. Furthermore, Hu and Adams intro-
duce a sharp color function that can be easily tracked by tagging particles of different
phases with constant integer identifiers. Consequently, the numerical width of the in-
terface singularity is reduced. Using the stress-term formulation the particle interaction
forces are pairwise anti-symmetric, thus the momentum is exactly conserved with this
method. Here, the limitations are on one hand that drops with a free-surface cannot be
handled directly and on the other hand that high density ratios give a strong numerical
time-step limitation with an increase in computing time.

In literature, several other works on surface tension modeling with SPH exist, e.g.
[51, 36, 69]. Here, the overview is intended to sketch the two main concepts of micro-
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scopic and macroscopic models and their respective fundamental works are referred
to in more detail. Modifications to the existing models do not present a significantly
new modeling attempt so far but enhance the capabilities, accuracy or applicability of
the model. The subsequently proposed surface-tension model is such a development
based on the CSF method, where a new curvature approximation is presented and the
difficulty for multi-phase problems with high density ratios is addressed.
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S. Adami, X.Y. Hu and N.A. Adams (2010)
A new surface-tension formulation for multi-phase SPH using a reproducing di-
vergence approximation
J. Comput. Phys. 229(13):5011-5021. [9]

In the model of Morris [89] and Hu and Adams [59] the interface is represented with
a symmetric surface-delta function. Consequently, the surface-tension force in both
phases at an interface has the same magnitude. For strongly differing densities this
induces much larger accelerations in the light phase that conversely restricts the nu-
merical time-step based on the stability criterion.

The idea of this improvement is to partition the surface-tension force according to the
density ratio to come up with accelerations in both phases of equal magnitude. Ad-
ditionally, combining the sharp color-function as used in [59] with the CSF model [89]
gives a surface-tension force with reduced interface thickness.

The color-function c has a unit jump at an interface. Using the standard SPH interpola-
tion to approximate the color-gradient gives a delta-function-like distribution that is sym-
metric at the interface. This gradient estimation is modified using a density-weighted
inter-particle average of c that takes into account the physical aspect that heavy liq-
uid particles are much more prominent at an interface compared to an adjacent light
phase, e.g. water and air. As the magnitude of the color-gradient approximates the
surface-delta function, this ratio is reflected in the surface-tension force and the in-
duced accelerations. Since the color-gradient is non-zero only within a band region
with a width of the cutoff radius the curvature calculation using standard SPH approx-
imations is erroneous. Therefore a new interpolation for the divergence of a vector
is presented that does not require full support and is still exactly reproducing a linear
field.

For a given surface-tension coefficient, the time-step criterion based on surface-tension
can now be relaxed and depends only on the reference density (heavier phase) rather
than taking the minimum for both phases. For an air-water problem this implies an
increase in numerical time-step about 30 times compared to the formulation of Hu and
Adams [59].

The proposed method is tested and validated with classical multi-phase test problems.
The Laplace-law is recovered accurately for both drops (heavy drop in light ambient
fluid) and bubbles (light bubble in heavy fluid) even for the physical water-air ratio. Al-
though the surface-tension force in the CSF method acts like a body force, parasitic
currents at the interface are of negligible magnitude. Further validations of free droplet
oscillations show excellent agreement with analytical results and two-dimensional drop
deformation simulations agree very well with previously published data and small-
deformation theory predictions [117]. Finally, a drop deformation simulation in 3D is
presented where the droplet is exposed to a strong shear and eventually breaks up.

My contribution to this work was the development of the method and the implemen-
tation in the in-house SPH code. I tested and validated the software, performed the
numerical simulations and wrote the manuscript for the publication.
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3.4. SURFACTANT DYNAMICS

Multi-phase flows can exhibit much more complex dynamics than single-phase flows
and are of great importance for many industrial problems. Besides the possibility of
discontinuous fluid properties, as e.g. for density or viscosity, additional physical effects
can become relevant and new phenomena might occur. The classical multi-phase
effect to consider when the characteristic length-scales are small is surface tension.
Interfacial stresses may dominate inertial effects and the flow dynamics can be strongly
altered. In many situations the surface tension can vary along the interface due to
so-called surfactants (surface active agents). Either intentionally added as additives
or present in a real fluid as impurities, surfactants change the local surface-tension
coefficient by a constitutive law. Since surface tension is proportional to the curvature
of the interface and the surface-tension coefficient, the presence of surfactants can
cause non-uniform normal capillary forces along an interface. Additionally, surfactant-
concentration gradients along the interface induce a gradient of the surface-tension
coefficient in tangential direction that results in the so-called Marangoni force. This
effect also occurs when the surface-tension coefficient varies with temperature in a
heated environment [109]. By their nature, surfactants adhere to an interface to form a
buffer zone that reduces the surface-tension coefficient, e.g. in water-air systems these
molecules are partly hydrophobic and partly hydrophilic. At the interface, surfactants
may diffuse along the interface and are advected with the interfacial motion. For soluble
species the concentration field in the bulk is coupled with the interface by a transport
mechanism (usually adsorption and desorption). Other effects of surfactants such as
surface viscosity are neglected here, for more information refer e.g. to [41].

Numerical modeling of surfactant dynamics is a challenging task. The governing trans-
port equations for the surfactant need to be solved on the interface singularity and need
to be linked to the flow solver. Most important, mass conservation of the species is
crucial for accurate long-term simulations, but only very few numerical models achieve
exact conservation. Whilst early works are limited to insoluble surfactants that are
present only at an interface, state-of-the-art methods include the fully coupled transport
mechanism allowing also for multiple species forming a reaction-diffusion system.

Boundary-integral methods solve an integral equation for the interface singularity and
can thus be used to incorporate directly surfactants present at the interface [113, 97,
81, 132, 44]. Mainly studying drop deformations with surfactant effects, the boundary-
integral methods consider only surface diffusion of insoluble surfactants since by the
nature of the method only the interface integral equation is solved and a full coupling
with the bulk phase is impossible. Front-tracking methods can solve the fully coupled
flow field allowing for soluble surfactants [134, 91, 1]. These methods are being ap-
plied to rather complex two- and three-dimensional flows but the mass of surfactant is
not exactly conserved. Level-set methods [129, 128] either achieve mass conserva-
tion by rescaling the global surfactant mass or are limited to insoluble species. VOF
methods are successfully extended to simulate insoluble surfactant dynamics on mov-
ing interfaces [64, 102] and a fully coupled three-dimensional model is proposed by
Alke and Bothe [22]. Within the VOF-framework James and Lowengrub [64] propose
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to track the surfactant mass instead of solving the evolution equation for the concen-
tration. This concept enables exact conservation of surfactant mass and is adopted by
most subsequent works. The problem with VOF models is the need for reconstruction,
as the interface is tracked by the volume-fraction field. Surfactant models using im-
mersed boundaries [68] or using finite-element methods [71, 79, 44] are available as
well. However, again either mass conservation is violated or the models are limited to
insoluble surfactants.

The advantages and disadvantages of each surfactant model are basically inherited
from the underlying interface model since the discretization for the singularity defines
the properties of the scheme. The two main aspects to consider are the exact con-
servation of species mass and the generality of the formulation, i.e. that arbitrary in-
terface deformation can be handled. The particular method-of-choice might depend
on the problem formulation, desired accuracy and computational cost. Here, the focus
is on the development of a general multi-phase method that is capable of simulating
surfactant dynamics in conservative form. Already shown earlier, SPH is capable of
handling multi-phase problems with surface tension effects where strong deformations
and break-up of interfaces occur. This method is extended for surfactant dynamics giv-
ing a fully coupled and exactly conservative method [8]. Note that almost at the same
time Bergdorf et al. [27] have proposed a reaction-diffusion model based on remeshed
SPH using level-sets to define interfaces and simulated deforming surfaces.
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S. Adami, X.Y. Hu and N.A. Adams (2010)
A conservative SPH method for surfactant dynamics
J. Comput. Phys. 229(5):1909-1926. [8]

The proposed conservative SPH method for surfactant dynamics is based on the multi-
phase formulation by Hu and Adams [59]. In this work surface-tension is modeled fol-
lowing the CSF model. The surface force is expressed as gradient of the surface stress
tensor. This approach is advantageous as the full stress tensor naturally incorporates
tangential stresses so that surfactant-induced Marangoni forces are considered.

The evolution of surfactant on the interface is solved for particles with non-zero surface-
delta function only, thus for the insoluble case the surfactant is implicitly bounded to the
interface. Following the concept of James and Lowengrub [64], an evolution equation
for the surfactant mass is solved. As particles can move freely there are rare events
where particles leave the interfacial region and still carry a small amount of surfactant
mass. This fraction of interfacial mass is mapped back to the neighbouring interface-
particles to avoid artificial transport of adsorbed species into the bulk. As the numerical
interface has a finite width, non-physical surfactant concentration profiles normal to the
interface can occur. As a remedy, in addition to the tangential surface diffusion an ar-
tificial normal diffusion is solved to smoothen these profiles. Validation examples have
shown that this directed-diffusion approach strongly decreases spurious concentration
profiles and increases the accuracy especially at lower resolutions.

To account for soluble surfactants an additional bulk diffusion equation is solved. Ex-
change of surfactant between the interface and the dissolved species in the bulk is
modeled with a conservative mass flux term. Here, the Langmuir kinetics [28] with
competing adsorption and desorption rates are considered, but any source term can
be used. A special treatment of this mass flux is necessary when surfactant is soluble
only within one of the phases present at the interface. In that case, the smoothed inter-
face representation requires interpolation of the bulk concentration field to the interface
particles of the insoluble phase to accurately calculate the adsorption/desorption. De-
tails of these mapping steps are given in the full article, most importantly to note is that
the method still conserves exactly the surfactant mass in the system.

The surfactant model is first validated for stationary interfaces, i.e. particle motion is su-
pressed and advective effects are neglected. Bulk and surface diffusion are validated
separately. Comparisons with the analytical solution show second order convergence
for bulk diffusion and first order convergence for surface diffusion. Note, although dif-
fusion at the interface is tested on a circular drop that is discretized with Cartesian
particles, the azimuthal concentration profiles are smooth and agree very well with the
analytical solution. Surfactant transport coupled with bulk diffusion is also tested first
on a non-moving circular interface showing exact conservation of global surfactant.
Using the new method three dynamic examples show the capability to simulate fully
coupled surfactant dynamics with SPH.

My contribution to this work was the development of the method and the implemen-
tation in the in-house SPH code. I tested and validated the software, performed the
numerical simulations and wrote the manuscript for the publication.
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5. CONCLUSIONS

SPH is a Lagrangian particle method that uses moving discretization points with over-
lapping fluid volumes to represent a continuum. The governing equations are solved
fo individual particles based on discrete particle-particle interactions. Moving these
particles with the local flow, advection is exact. The absence of the convective deriva-
tive is advantageous as this term usually causes problems for grid-based methods
and requires special treatments. An important field of application for SPH are multi-
phase problems. Using integer identifiers, particles of different phases can be easily
tracked and interfaces are captured implicitly without any additional detection scheme
(front-capturing, -tracking or -reconstruction). Also, most problems can be formulated
as multi-phase problem and therefore SPH offers a very general framework to handle
multi-fluid- and fluid-structure-interactions. Without effort, the constitutive law to calcu-
late the stress tensor can be adjusted to switch the particle behaviour from a fluid to an
elastic solid. In spite of the huge potentials of SPH the general acceptance in the CFD
community is for a number of reasons still poor and industrial applications are rare.
Certainly, the considerable higher computational cost of SPH compared to grid-based
solvers is an issue. Also, artificial numerical dissipation is necessary in many cases
and often the available numerical models are tuned for a specific problem rather than
a generalized formulation.

In this work, both improvements of existing models for stable multi-phase simulations
and a new conservative surfactant model extending the capabilities of SPH are pre-
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5. Conclusions

sented. The proposed modified advection scheme allows for simulating internal flows
at large Reynolds numbers without any additional smoothing scheme or artificial vis-
cosity. Besides excellent accuracy, this approach impresses by its simplicity as no
numerical parameter had to be tuned for the broad range of considered validation ex-
amples.

Wall-boundary treatment in SPH is not a new topic. However, currently many models
require exact knowledge of the solid wall interface in a closed form or use linear seg-
ments to construct the surface. For arbitrarily complex shapes this can be expensive
or impossible. Here, a generalized method to impose wall-boundary conditions is pre-
sented that uses Cartesian particles to discretize a wall. Fluid properties as well as the
flow field are extrapolated to these wall particles and free-slip or no-slip conditions can
be imposed. The idea of this approach is to ensure full kernel support for fluid particles
close to a wall, i.e. the only limitation for an accurate wall discretization is the minimal
wall thickness hmin = rc.

Furthermore, a modified surface-tension model based on the CSF model of Brackbill
[29] is presented. A very similar SPH method was already proposed earlier, but here
the efficiency for multi-phase problems with high density-ratios is strongly improved.
Additionally, the width of the delta-function approximation for the interface singularity is
reduced and a new, more accurate curvature calculation is presented.

The surfactant model for SPH is a new development and demonstrates the capabilities
of the Lagrangian framework. Important for accurate long-time simulations, the species
mass is exactly conserved with this method for both interfacial and bulk surfactant.
Using an equation-of-state to relate the surfactant concentration at the interface to the
local surface-tension coefficient, the fluid dynamics and surfactant dynamics are fully
coupled. The transport model for exchange of surfactant between the interface and the
bulk phase currently considers adsorption and desorption, but other relations can be
easily incorporated.

Combining all models together, geometrically complex wall-bounded multi-phase flows
can be simulated accounting for surface-tension effects and surfactant dynamics. The
new SPH method was already successfully applied to challenging problems such as
surfactant-induced tip-streaming of a drop in simple shear flow [11] or Lagrangian
statistics in turbulent flows [16]. These examples demonstrate the significant progress
in the state-of-the-art of SPH. The new transport-velocity formulation opens up a whole
new range of applications since it allows for stable simulations of high Reynolds number
flows at high accuracy.
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a b s t r a c t

In this paper we present a new formulation of the boundary condition at static and moving
solid walls in SPH simulations. Our general approach is both applicable to two and three
dimensions and is very simple compared to previous wall boundary formulations. Based
on a local force balance between wall and fluid particles we apply a pressure boundary
condition on the solid particles to prevent wall penetration. This method can handle sharp
corners and complex geometries as is demonstrated with several examples. A validation
shows that we recover hydrostatic equilibrium conditions in a static tank, and a compari-
son of the classical dam break simulation with state-of-the-art results in literature shows
good agreement. We simulate various problems such as the flow around a cylinder and the
backward facing step at Re = 100 to demonstrate the general applicability of this new
method.

� 2012 Published by Elsevier Inc.

1. Introduction

Gingold and Monaghan [1] and Lucy [2] presented in 1977, independently from each other, a gridless numerical method
to simulate astrophysical problems such as e.g. the fission of a rapidly rotating star. Fundamentally different from gridbased
methods, the so-called smoothed particle hydrodynamics (SPH) uses a kernel estimation at Lagrangian ‘‘grid’’ points (particles)
to solve the governing equations of the system of interest. Moving the particles in time with a flow, pure advection is treated
exactly. The rate of change of any conservative variable can be calculated from particle–particle interactions. For this reason
SPH has a high potential especially for simulating multi-phase systems and can be applied to a broad variety of problems.
Over the past three decades, SPH was successfully used to simulate complex problems ranging from magnetohydrodynamics
[3] and solid mechanics [4–7] to fluid mechanics including free surfaces [8,9], surface tension [10,11] and transport phenom-
ena [12,13].

Regardless of the application, boundary conditions are one of the key aspects of a numerical simulation and special atten-
tion should be paid to a correct and accurate representation of them. For the example of solid wall boundary conditions, we
emphasize the particular importance of a proper formulation of boundary conditions for SPH, as this is crucial to achieve
physically meaningful and quantitatively correct results. It is a misconception that SPH models of wall boundary conditions
lead to correct results as long as the particle distribution is uniform and stable. Besides preventing particle penetration of the
walls, a local force balance is essential to model solid boundaries accurately. We demonstrate the significance of this con-
dition with a numerical freefall experiment in Section 7.1.

Generally, wall models for SPH simulations follow two basic concepts. One concept is to fill the walls with boundary par-
ticles to ensure that the support of the smoothing kernel near a wall is completely covered with particles. In the other
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concept, either the non-vanishing surface integral when smoothing the flow quantities close to the boundary is accounted
for, or artificial repulsion forces are introduced to prevent that particles cross the interface.

Following the first concept [14], ghost particles as mirrors of real fluid particles along the surface are used to fill the solid
wall domain. Depending on the velocity assigned to the ghost particle a slip or no-slip condition at the wall can be imposed.
Similarly, ghost particles can be used to model symmetry and periodic boundary conditions, but in practice this method is
limited to simple interfaces where fluid particles can be mirrored easily at the wall surface. Furthermore, ghost particles have
to be created every timestep as mirrors of the evolving fluid particles. Without the need of recreating boundary particles,
Morris et al. [15] use fixed wall particles to model curved surfaces and treat them as real particles. The density and the pres-
sure of the boundary particles are evolved in time and they are considered in the continuity equation of the fluid phase. Con-
sequently, the pressure field increases or decreases when particles move towards or away from the wall in order to prevent
penetration. When fluid particles interact with boundary particles, the velocity of wall particles is chosen such that either a
slip or no-slip condition is satisfied. The calculation of this velocity requires the knowledge of the shape of the wall surface in
a closed functional form. Therefore this method cannot directly be applied for arbitrary geometries. Colagrossi [9] use a
pointwise mirroring at the local tangent plane of the boundary for arbitrarily shaped walls and impose a free-slip condition
at the wall. Density and pressure of these ghost particles are deduced from the fluid phase and the normal velocity compo-
nent is flipped to ensure no penetration. This method also recreates ghost particles every timestep, and in case of complex
geometries special care must be taken to maintain a uniform mass distribution of the ghost particles. Another boundary
treatment requiring full support was proposed by Hieber and Koumoutsakos [16], who presented an immersed-boundary
method in the context of remeshed smoothed particle hydrodynamics. There, a forcing term is added to the momentum
equation such that effectively the no-slip condition is satisfied on a boundary.

The second concept has the advantage that only a single layer of boundary particles at the wall surface is required, i.e.
complex geometries are rather easy to handle. DeLeffe et al. [17] account for the fact that the kernel support of fluid particles
near walls extends beyond the wall in their so-called normal-flux method by evaluating the non-vanishing surface integral.
They show that this method is suitable for testcases with straight walls but do not explain or show how it can be applied to
complex geometries. Instead of calculating the surface integral close to the boundary, Ferrand et al. [18] renormalize the
smoothing and gradient calculation with respect to the missing kernel support area. But as the geometrical quantities re-
quired for the renormalization are evolved in time, this method requires additional computational effort. A very simple tech-
nique based on repelling boundary particles is presented by Monaghan et al. [19]. They introduce a Lennard–Jones-like
potential between fluid and wall particles to add a repulsion force normal to the boundary. When a fluid particle interacts
with a wall particle, only the position of the boundary particle is used to calculate the repulsion force and all other quantities
are taken from the fluid phase. But the magnitude of this force has to be calibrated in order to preserve the initial distance
between fluid and wall particles on one hand and to prevent penetration on the other hand.

In this work we present a wall boundary formulation that can handle arbitrarily shaped geometries in two and three
dimensions. We discretize a solid wall with dummy particles and do not evolve their quantities in time. Thus, our approach
follows the first of the previously mentioned concepts for modeling solid wall boundaries with SPH. We use the dummy par-
ticles to ensure that the support of the kernel interpolants is fully contained within the fluid phase for density change and
force calculation. The pressure at a wall particle position for the force calculation is calculated from the surrounding fluid
particles with a boundary condition. Including the solid particles in the density change rate calculation ensures a pressure
response when fluid particles approach a wall, i.e. the impermeability condition of solid walls is fulfilled. Our formulation is
applicable for both stationary and moving walls.

We tested our method with two and threedimensional test cases and found excellent agreement with analytical results
and state-of-the-art results in literature. At first, we validate our method with simple straight channel flows such as the Cou-
ette and Poiseuille flow. Then, a more complex separated flow past a backward facing step as well as a flow through a peri-
odic lattice of cylinders is simulated, and both compare well with results available in literature. The correctness of our
pressure boundary condition is proved with several hydrostatic tank simulations including complex wall geometries, mul-
ti-phase problems with different densities and a threedimensional example. A numerical freefall experiment shows the
importance of the correct wall boundary formulation including the motion of the wall. We simulate the classical dambreak
problem and show very good agreement with state-of-the-art results in literature. Finally, a rotating rippled cylinder sim-
ulation demonstrates the coupling of moving walls with complex geometry interacting with a free surface.

2. Governing equations

The governing equations for the motion of an isothermal fluid in a Lagrangian frame of reference are the continuity
equation

dq
dt
¼ �qr � v ð1Þ

and the momentum equation

q
dv
dt
¼ �rpþ FðmÞ þ qg ð2Þ

7058 S. Adami et al. / Journal of Computational Physics 231 (2012) 7057–7075

46



Author's personal copy

with q;v; t; p; F mð Þ and g denoting the density of a fluid, the velocity, the time, the pressure, the viscous force and a body-force,
respectively.

Following the weakly-compressible approach [8,15,20] to simulate incompressible fluids with SPH, an equation of state is
introduced to estimate the pressure from the density field via

pðqÞ ¼ p0
q
q0

� �c

� 1
� �

þ v ð3Þ

The reference density q0 is set to the initial density of the fluid phase so that the pressure field is initially equal to the back-
ground pressure v. The stiffness of the equation of state can be adjusted with the two parameters p0 and c. For fluids it is
common to use c ¼ 7, and the reference pressure is given by

p0 ¼
q0c2

c
ð4Þ

The artificial sound speed c is chosen based on a scale analysis presented in Morris et al. [15] in order to limit the admissible
density variation to 1%. When applied to free-surface flows, the background pressure v in Eq. (3) is set to zero.

Assuming incompressibility of the fluid, the viscous force F mð Þ simplifies to

FðmÞ ¼ gr2v ð5Þ

with the dynamic viscosity g.

3. Numerical method

The basic concept of SPH is to advect Lagrangian discretization points with a flow and to interpolate the quantities of
these particles from its neighbors with a weighting function W. Generally, any kernel function that satisfiesR

W r;hð Þdr ¼ 1 can be used, but due to numerical efficiency it is preferable to require compact support, see Monaghan
[21]. Due to a compact kernel support particles which are further away from each other than the cutoff radius rc do not inter-
act with each other, i.e. WðjrjP rc;hÞ ¼ 0. The relation of smoothing length h and cutoff radius rc with W rc ¼ jhð Þ ¼ 0 is a
measure of the smoothing property of the kernel function and the parameter j varies with the chosen kernel function.

In this work a quintic spline kernel with a compact support of 3h is used, i.e. j ¼ 3, see Morris et al. [15]. The usage of this
kernel is motivated by the work of Hongbin and Xin [22], who showed that the quintic spline or the Gaussian function are
favorable for SPH simulations in terms of computational accuracy. Particles are initially placed at Cartesian grid points with a
uniform distance Dx to fill the domain. Using Dx as the smoothing length h, in each coordinate direction approximately six
particles are spread across the kernel. The volume of a particle Va is given by Va ¼ Dxd, where d is the number of spatial
dimensions. Finally, the mass of each particle is set to ma ¼ qaVa and is fixed during the entire simulation. Each particle
is tagged with an integer flag to distinguish between fluid particles and solid particles. It is important to create three
(rc=Dx) layers of dummy particles normal to the wall interface for representing the interface since an accurate integration
of the field variables near the interface requires that the support of evolved particles is fully contained within the compu-
tational domain.

3.1. Continuity equation

The discretized form of the continuity Eq. (1) for particle a is [21]

dqa

dt
¼ qa

X
b

mb

qb
vab � raWab ð6Þ

where mb is the mass of particle b;vab ¼ va � vb is the relative velocity of particle a and b;raWab ¼ raW ra � rb;hð Þ is the
gradient of the weight-function and the summation is performed with all neighboring particles b. Note, that in literature
other discretizations of the continuity equation exist [21]. But here we use Eq. (6) since this form holds also for multi-phase
problems. The summation over the neighboring particles takes only into account a volume contribution (mb=qb ¼ Vb) and
therefore allows a stable simulation even when dealing with high density ratios.

3.2. Momentum equation

According to Hu and Adams [11], the acceleration of particle a due to a pressure gradient can be approximated as

dva

dt
¼ � 1

ma

X
b

V2
a þ V2

b

� �
~pabraWab ð7Þ

using the density-weighted inter-particle averaged pressure [23]
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~pab ¼
qbpa þ qapb

qa þ qb
ð8Þ

and the volume of both particles Va and Vb. This form conserves linear and angular momentum exactly as the force between
particles a and b is anti-symmetric along the line of centers of the two particles.

The viscous force is derived from the inter-particle-averaged shear stress with a combined viscosity

~gab ¼
2gagb

ga þ gb
ð9Þ

For incompressible flows, the acceleration of particle a caused by shear forces simplifies to

dva

dt
¼ 1

ma

X
b

~gab V2
a þ V2

b

� �vab

rab

@W
@rab

ð10Þ

with @W
@rab
¼ raWðra � rb;hÞ � eab and rab ¼ jra � rbj.

Monaghan and Gingold [24] added an artificial viscosity to the momentum equation to stabilize the numerical scheme.
Amongst various formulations [21,3] for this dissipative term available in literature, we chose the form

dva

dt
¼ �

X
b

mbahabcab
ðva � vbÞ � ðra � rbÞ
qabðjra � rbj2 þ �h2

abÞ
raWab ð11Þ

as this term can be shown essentially to increase physical viscosity, see Monaghan [25]. The coefficients hab; cab and qab are
the averages of the smoothing length, the sound speed and the density of the two particles a and b, respectively. The param-
eter � is usually set to � ¼ 0:01 and is included only to ensure a non-zero denominator. We empoly the artificial viscosity to
reduce spurious flow oscillations, and therefore it is applied only for interactions between fluid particles, i.e. no artificial dis-
sipation is introduced for the interaction of dummy particles and real particles. The parameter a is chosen such that the glo-
bal solution is essentially unaffected by the artificial viscosity but also to ensure sufficient damping of spurious oscillations.
When using an artificial viscosity in the form of Eq. (11) in the absence of a physical viscosity, an equivalent effective phys-
ical kinematic viscosity m can be calculated from a [26,3] as

m ¼ 1
2 dþ 2ð Þahabcab ð12Þ

In SPH simulations, a jump in initial data causes a transient behavior characterized by spurious high-frequency oscilla-
tions due to pseudo-sound waves travelling through the domain. Such artefacts can be reduced by the damping technique
proposed by Monaghan et al. [19] during the initial transient of simulations. This damping smoothes the motion of otherwise
impulsively accelerated particles. We define a damping time tdamp during which the acceleration of each particle due to the
body force is mitigated by the factor f as follows

fðtÞ ¼ 0:5 sin �0:5þ t
tdamp

� �
p

� �
þ 1

� �
; t 6 tdamp ð13Þ

3.3. Time-stepping scheme

The equations of motion are integrated in time with a velocity-Verlet scheme [27]

vnþ1
2

a ¼ vn
a þ

Dt
2

dva

dt

� �n

ð14Þ

rnþ1
2

a ¼ rn
a þ

Dt
2

vnþ1
2

a ð15Þ

qnþ1 ¼ qn þ Dt
dq
dt

nþ1
2

ð16Þ

rnþ1
a ¼ rnþ1

2
a þ Dt

2
vnþ1

2
a ð17Þ

vnþ1
a ¼ vnþ1

2
a þ Dt

2
dva

dt

� �nþ1

ð18Þ

Although using a mid-point velocity, the force calculation to obtain the particle acceleration has to be performed only
once per timestep. In the absence of viscous effects (where the force depends on the velocity) this scheme is second-order
accurate and reversible in time.

The step size of the time integration is limited for stability reasons based on several criteria [21]. Here, the three relevant
conditions are the CFL-condition based on the artificial sound speed cmax and the maximum flow speed
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Dt 6 0:25
h

cmax þ jvmaxj
ð19Þ

the viscous condition

Dt 6 0:125
h2

m
ð20Þ

and the body force condition

Dt 6 0:25
h
jgj

� �1=2

ð21Þ

The minimum of the three conditions is used as timestep to satisfy all conditions globally.

4. Solid wall boundary

Due to the special properties of SPH a whole range of different formulations to impose boundary data is possible. A proper
formulation is essential for physically meaningful and quantitatively correct results. As particles approach a rigid boundary,
the main problem arises from the fact that the support domain of the kernel is cut by the domain boundary. The question is
then how to treat these particles and what boundary conditions have to be imposed. In our method we use dummy particles
to approximate the interface between the fluid phase and the boundary, see Fig. 1. The main advantage of dummy particles
compared to mirror particles is simplicity when using complex geometries, and that the boundary is well-described through-
out the simulation once the particles have been initialized.

In Fig. 1, fluid particles (�) near the wall do interact with dummy particles representing the wall (o) according to the over-
lap of the kernel function. As the governing equations for the flow evolution apply only to the bulk phase wall-particle prop-
erties can be manipulated to mimic a continuous fluid phase for particles close to the boundary. Consequently, wall particles
represent dummy fluid particles that contribute to the continuity and momentum evolution in the fluid phase. In the con-
tinuity equation, Eq. (6), the initial particle volume is used for the wall particles and vb is set to the prescribed wall velocity.
Thereby the density of a fluid particle increases when moving towards a wall and the resulting pressure force prevents par-
ticles from penetrating the walls. Hence, the impermeability condition of rigid walls, i.e. v � n ¼ 0, is implicitly enforced.

A free-slip or no-slip boundary condition at a wall can be imposed by the choice of the wall velocity used for the viscous
interaction in Eq. (10). By simply omitting the viscous interaction of a fluid particle with adjacent dummy particles a free-slip
wall boundary condition is applied. To impose a non-slip condition we first extrapolate the smoothed velocity field of the
fluid phase to the dummy particle positions by

~va ¼
P

bvbWabP
bWab

ð22Þ

Then, the velocity

vw ¼ 2va � ~va ð23Þ

is assigned to the dummy particle in Eq. (10), where va is the prescribed wall velocity. Compared to the slightly more accu-
rate approach of Morris et al. [15] our method does not require explicit information about the geometry of the boundary, and

Fig. 1. Fluid particles (�) interact with cartesian dummy particles representing the wall (o) to ensure full support of the kernel interpolation.
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as the calculation of the extrapolated velocities can be restricted to interface dummy particles the computational overhead is
insignificant. Validation simulations for Poiseuille and Couette flows show that we recover the no-slip condition at walls
with satisfactory accuracy.

Furthermore, the pressure of a wall particle has to be calculated from the fluid to accurately approximate the pressure
gradient in the fluid phase near the boundary. A force balance at the wall interface gives

dvf

dt
¼ �
rpf

qf
þ g ¼ aw ð24Þ

where the indices f and w refer to the fluid phase and the wall. Note, that here the more general formulation with moving
walls is presented. A numerical freefall experiment (Section 7.1) shows that it is important to include the acceleration of the
wall aw when computing the boundary pressure. From a force balance along the centerline of a fluid-wall particle pair we
find Z

rp � dl ¼ qf

Z
ðg� awÞ � dl ð25Þ

where dl is a vectorial length element along the centerline of the two particles and the indices f and w denote a fluid and a
wall particle, respectively. The pressure of a wall particle due to the action of a single fluid particle can then be obtained from

pw ¼ pf þ qf ðg� awÞ � rwf ð26Þ

where rwf ¼ rwf ewf . Since wall particles interact with several fluid particles, the resulting pw is obtained by summation of all
contributions of neighboring fluid particles f using the kernel function as weight

pw ¼
P

f pf Wwf þ ðg� awÞ �
P

f qf rwfWwfP
f Wwf

ð27Þ

The calculation of the acceleration of a particle due to a pressure gradient in Eq. (7) uses a density-weighted inter-particle
pressure. As we do not evolve the properties of dummy particles in a wall, we obtain its density from the pressure pw as

qw ¼ q0;b
pw � v

p0;b
þ 1

 !1
c

ð28Þ

from the interacting fluid particle b.

5. Two-dimensional flow examples

The following two-dimensional examples show validation cases to demonstrate the performance of our method. Poiseu-
ille and Couette flow are presented, and very good agreement with exact velocity profiles is found. A correct computation of
these flows requires a correct no-slip boundary condition at the walls as the solution depends directly on wall friction. We
simulate the laminar flow over a backward facing step at Re ¼ 100 to show that seperated flows with rectangular walls can
be well predicted. The last example, a flow around a cylinder, shows that the method can also handle curved wall boundaries.
For all these flows we use a physical friction term in the fluid phase according to Eq. (10) and switch off the additional arti-
ficial viscosity term.

5.1. Poiseuille and Couette Flow

Our first examples are a Poiseuille flow and a Couette flow in a two-dimensional infinite channel with a distance between
the walls of Ly ¼ 1. The fluid phase is discretized with SPH particles at two different resolutions of rc ¼ 0:1Ly and 0:05Ly, i.e.
30 and 60 particles across the channel height, respectively. In x-direction we impose periodicity and simulate only a small
section of width Lx ¼ 0:4Ly. The viscosity and the density of the fluid are g ¼ 0:01 and q ¼ 1. The maximum velocity in both
cases is Vmax ¼ 1:25, thus we use a sound speed of cs ¼ 12:5 and the Reynolds number of the flows is Re ¼ 0:0125. The driv-
ing-force of the Poiseuille Flow is a body force F ¼ 0:1 and for the Couette flow we move the upper wall with a constant
velocity vw ¼ 1:25.

Fig. 2(a) shows a comparison of the SPH simulation with the analytic solution of the Poiseuille flow at t ¼ 2;10;20 and
100 for two resolutions. Initially, the fluid is at rest and is accelerated by the body-force. At steady-state parabolic velocity
profiles have developed and with increasing resolution the simulations converge to the analytical result. The average error of
the velocity in flow direction at t ¼ 10 for the two resolutions is 0.16% and 0.06%.

A comparison of the SPH simulation with the analytic solution of the Couette flow at t ¼ 2;10;20 and 100 is shown in
Fig. 2(b) for the two resolutions. The simulated profiles agree very well with the analytical results and converge for increas-
ing resolution. Here, the average error of the velocity in flow direction at t ¼ 10 for the two resolutions is 0.16% and 0.09%.
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5.2. Flow over a backward-facing step

We simulate the flow over a backward facing step in a periodic channel at Re ¼ 100 and compare our results with the
work of Issa et al. [28], who showed that this separated flow can be simulated using SPH. We use the same geometry as pre-
sented in [28], see Fig. 3 for a sketch and the dimensions of the problem. The marked positions P1–P4 show the locations
where we compare the velocity profiles with the reference results. As there is no analytical solution for this example, the
reference solution is obtained from a grid-based high-resolution simulation [29].

Instead of imposing a pressure gradient at the boundaries, we use a constant body force in x-direction to drive the flow in
the periodic channel. The magnitude of the body force is adjusted to achieve a mean bulk velocity in the thinner channel
above the step of U ¼ 0:14. Using twice the channel height above the step as hydraulic diameter D ¼ 2H1, the kinematic vis-
cosity of the fluid m ¼ 1:456� 10�2 follows from Re ¼ 100. The sound speed used for this simulations is ten times the max-
imum velocity in the channel above the step, i.e. cs ¼ 2:1. Also, we have used a small background pressure of v ¼ 0:05p0 in
the equation of state (3).

The result of the simulation of the flow over the backward-facing step is shown in Fig. 4 for two resolutions rc ¼ 0:2S and
rc ¼ 0:1S, where S ¼ 4:9 is the step height. After an initial transient a steady flow field develops. Fig. 4(a) shows a snapshot at
t = 2000 of a section of the channel. The fluid particles are colored with the axial velocity ranging from vx ¼ �0:015 (blue) to
vx ¼ 0:21 (red). The contour lines are postprocessed after a projection of the particle data onto a Cartesian grid.

When the background pressure in Eq. (3) is omitted, we find large artificial void regions just behind the step similar as
presented by Issa [29]. As a remedy, Issa showed that for his method only strongly increasing the speed of sound avoids the
particle clumping, leading to a much smaller time step according to the CFL condition. In contrast, we have introduced a
small background pressure (v ¼ 0:05p0) and maintain a sound speed for Ma = 0.1. We find that this constant background
pressure is sufficient to prevent void regions in the fluid.

To analyze the quality of the simulation in more detail we plot the streamwise velocity over the channel height at four
positions P1–P4 and compare the profiles with the reference results from [29], see Fig. 4(b). The instantaneous particle
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velocities are interpolated on a grid using the kernel W to obtain the smooth profiles. As the profile at P1 was used to adjust
the body force, the agreement with the reference solution at this position is very good. Note, the discrepancy especially for
the lower resolution close to the wall is an artefact of the interpolation. The results at P2 and P3 show that also the recircu-
lation bubble is well recovered, and in comparison to the SPH results of [28] we match the maximum velocity much better.
Far behind the step, the flow field is again parabolic, see P4.

5.3. Flow through a periodic lattice of cylinders

The previous examples have shown the validity of our method for a fluid flow confined by straight channel walls. Now we
study the flow through a periodic array of cylinders to test the wall boundary condition for curved geometries. A solid cyl-
inder of radius R ¼ 0:2 is centered in a periodic box of size L ¼ 1, and the driving pressure gradient for the flow is modeled by
a constant body force F ¼ 1:5 in x-direction. Following Morris et al. [15] we take the velocity scale to be V0 ¼ 0:5 and a sound
speed of cs ¼ 5:77. Using the kinematic viscosity m ¼ 0:1 in the fluid gives a Reynolds number of Re ¼ 1.

The fluid phase is discretized with particles placed initially on a Cartesian lattice at two resolutions using Dx ¼ 0:02 and
Dx ¼ 0:01. For the cylinder we placed particles on circular rings with the same spacing Dx to increase the smoothness of the
solid boundary. This was done for the reason of a better representaion of the circular interface compared to using solid par-
ticles on a Cartesian lattice at the same resolution. Starting from rest the fluid phase is accelerated by the body force, and
after about 5000 steps the particles are completely disordered and a steady flow field has developed. Fig. 5(a) shows the flow

Fig. 4. Simulation results of the laminar flow over a backward-facing step. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 5. Simulation results of the flow through a periodic lattice of cylinders.
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field and velocity contour lines in the steady state after projecting the particle data onto a Cartesian grid. The velocity mag-
nitude was non-dimensionalized with twice the reference velocity scale 2V0. A comparison with the steady incompressible
viscous flow using a finite element method (FEM) [15] is shown in Fig. 5(b). The streamwise velocities are plotted over the y-
axis at the center of the cylinder and at the downstream domain boundary for particles within a layer of width 2Dx at these
locations. The simulation results agree well with the reference profiles [15], and with increasing resolutions the SPH results
converge to the FEM solution.

6. Hydrostatic examples

In this section we present several test cases to validate in particular the pressure boundary condition. The first example
shows the development of a hydrostatic pressure field of a fluid in a tank under gravity. To show the robustness of our
boundary condition we replace subsequently the simple straight wall on one side of the tank by a sharp wedge geometry.
Next, the same setup is used to simulate the hydrostatic pressure field in a two-phase configuration where a stratified fluid
with two different densities layered on top of each other is considered. Finally, a threedimensional cylinder example shows
the versatility of our method. We use inviscid fluids in all hydrostatic examples, i.e. the physical viscosity is zero. For stabil-
ization of the inviscid flows an artificial viscosity as given by Eq. (11) is necessary.

6.1. Hydrostatic tank

We simulate a two-dimensional cross-section of a rectangular tank with a water depth of H ¼ 0:9. The width of the tank is
Lx ¼ 2 and the walls are about Ly ¼ 1 high. Fig. 6(a) shows the initial setup with red particles denoting the wall boundary and
blue particles showing the fluid phase. The initial distance between the particles in each direction is Dx ¼ 0:02, thus a total of
5000 fluid particles is simulated. We chose the sound speed ten times bigger than the reference velocity v ref ¼

ffiffiffiffiffiffi
gH

p
and use

the artificial viscosity parameter a ¼ 0:24. According to Eq. (12) the effective kinematic viscosity corresponds to a Reynolds
number of Re = 100. Note that we use the same setup as Monaghan et al. [19] in their first example in order to compare the
effect of the different boundary condition formulations.

At t = 0 the particles are placed on a Cartesian lattice with the density equal to the reference density, thus zero pressure in
the fluid phase. Accelerated by the gravity force g in negative y-direction, the particles move down, and due to the compres-
sion at the bottom wall their density increases. The pressure response creates a repulsive force, and finally the hydrostatic
pressure field counterbalances the body force effect. Thus, after an initial transient phase the particles settle down with a
steady and linear pressure field, see Fig. 6(a). We want to highlight the very ordered particle distribution in our simulation
compared to previous works [17,19]. We do not see spurious currents in the corners of the tank or a separation of particles
from the walls at the free surface. This shows the importance of proper boundary conditions formulated in terms of a force
balance as presented in this work.

Fig. 7(a) shows the averaged pressure in the middle of the bottom wall over time, nondimensionalized with pref ¼ qgH
and tref ¼ H=v ref . As intended by Monaghan et al. [19] when they introduced the smooth acceleration of particles, the initial
damping according to Eq. (13) until t = 1 results in a smooth pressure rise and finally the exact value of p = 1 is achieved. The
pressure profile in the water column is presented in Fig. 7(b). Here, the pressure profile is evaluated along the centerline of
the tank by a simple SPH-average pðyiÞ ¼

P
jpjWij=

P
jWij using the surrounding fluid particles j. A comparison with the exact

linear hydrostatic profile shows very good agreement. Note, the damping technique to smoothly accelerate the particles due
to gravity using Eq. (13) mimicks a slowly increasing gravitational acceleration. Thus, to compare the simulated pressure
profile during this transient phase the actual gravity used to obtain the analytical hydrostatic profile is also scaled with
the factor fðtÞ. At each time instant during the transient period the profile is linear and agrees well with the effective grav-
itational acceleration.

Fig. 6. Particle positions (a) and pressure field (b) in the cross-section of a rectangular tank with a water depth of H ¼ 0:9 at t ¼ 0 and t ¼ 2. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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6.2. Hydrostatic tank with complex geometry and two phases

The second example shows the capability of our method to simulate arbitrarily shaped geometries including multi-phase
problems. Starting with the geometry of the previously presented cross-section of a watertank, the left wall of the tank is
modified with a wedge according to the example presented by DeLeffe et al. [17]. This test demonstrates that even sharp
corners in the domain do not cause stability problems and that the correct pressure profile develops in the fluid phase. In
Fig. 8(a) the static wall particles are plotted in blue and the fluid particles are colored with the actual pressure at t = 5. Again,
very good agreement with the analytical hydrostatic pressure profile is achieved and the particles are nearly at rest after the
initial transient period.

At t = 0 particles are placed on a Cartesian lattice with density equal to the reference density and consequently the pres-
sure is zero in the fluid. Due to the gravitational acceleration the particles move slightly and finally settle down when equi-
librium between the external body force and the hydrostatic pressure field is achieved. Fig. 8(b) shows the velocity field in
the fluid during the transient phase where particles rearrange under gravity. This snapshot was taken at t = 0.3 where the
maximum velocity magnitude occured. The highest velocity magnitude occurs at the sharp corner, but note that it is on
the order of only 1% of the reference velocity. At late times, particles are at rest in hydrostatic equilibrium. We compared
this result with the results of DeLeffe et al. [17] who simulated this case using a much more complex normal-flux method
at the boundaries. They show that the classical ghost particle technique produces a strong circulation zone close to the sharp
wedge. Their normal-flux method apparently gives a stationary particle field, but it should be noted that the range of the
velocities shown by the colormap in their Fig. 4 about seven times the range we show in Fig. 8(b). In fact, we achieve a very
similar result with our rather simple method.

Now we further increase the complexity of this test and introduce a multi-phase problem, where two fluids of different
density interact with the walls. Fig. 9(a) shows the initial condition with a resolution of Dx ¼ 0:02. The heavy phase in the
lower left corner (lx ¼ 1; ly ¼ 0:5H) has a density of q ¼ 1 and the second fluid is four times lighter (q ¼ 0:25). Due to gravity,
the heavy patch of fluid sloshes against the right wall and displaces the light phase upward. Finally, the two fluids are on top
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Fig. 7. Temporal (a) and spatial (b) pressure profile at the bottom wall and on the centerline of the hydrostatic tank.

(a) Fluid particles are colored with the non-dimensionalized
pressure, the colormap from blue to red denotes the range of
the pressure between zero and one.

(b) This plot shows a snapshot of the velocity field when the
velocities are biggest (t=0.3). Blue to red color shows the
magnitude of the velocity in the range of 0− 0�015vrel.

Fig. 8. Pressure field (a) and spurious velocity field (b) for the hydrostatic tank problem with a wedge geometry at t ¼ 5 and t ¼ 0:3. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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of each other in hydrostatic equilibrium. Due to the different densities, the pressure gradient in each phase is constant but
discontinuous at the interface. The vertical pressure profile in the middle of the tank is plotted in Fig. 9(b) together with the
piecewise linear analytical solution. The discrepancy between the exact solution and the numerical results close to the free-
surface, the wall and near the phase interface comes from the fact that we used SPH interpolation of the pressure along the
vertical line. This smoothes the pressure profile between the heavy and the light phase, and since we only use fluid particles
for the interpolation it is obvious that the pressure close to the wall is underestimated, and it is overestimated near the
free-surface. With increasing resolution these interpolation effects vanish and the results agree well with the analytical
hydrostatic profile. Note that the artificial viscosity parameter a was adjusted for different resolutions following Eq. (12)
to maintain a Reynolds number of Re ¼ 100.

Several snapshots of the simulation at t ¼ 2;4;6;8;10 and 30 are shown in Fig. 10 for two resolutions of Dx ¼ 0:02 and
Dx ¼ 0:01. Due to the sloshing of the fluid the interface between the two fluids become distorted, and particles mix. Due to
the different densities the phases separate at late times and the fluids settle forming two layers with the heavy phase on the
bottom. Additionally, we have added a small constant background pressure to the lighter phase. Similarly to the modification
of Colagrossi [9], who changed the pressure equation of state for the light phase, this attempt results in a soft artificial sur-
face tension and suppresses strong mixing of particles of different phases at the interface.

6.3. Threedimensional cylinder

A last hydrostatic example shows the straight-forward application of the proposed method to a threedimensional prob-
lem. Now, we simulate a water column of height H = 1 in a cylinder with a radius of R = 0.5 under gravity. The artificial vis-
cosity in this example is equivalent to a Reynolds number of Re ¼ 100. Similar to the previous watertank example we
smoothly increase the gravity to avoid strong oscillations in the water. Fig. 11(a) shows a snapshot of the simulation at
T = 2 with static wall particles in grey and fluid particles colored with the pressure. Note, that the cylinder wall is cut only
to visualize the fluid phase.

The reference pressure is pref ¼ qgH and consequently the non-dimensional pressure at the bottom of the cylinder is
under hydrostatic equilibrium conditions equal to one, see the colormap in the figure. The pressure profile in the center
of the cylinder over the water height is shown in Fig. 11(b). We have interpolated the pressure over the height in the center
of the cylinder in z-direction from the particle values. Due to this averaging, the profile is flattened at the free-surface and at
the bottom of the cylinder since only fluid particles are included in the summation. This artefact is purely caused by the post-
processing and vanishes with increasing resolution. The simulated profile is almost indistinguishable from the analytic linear
hydrostatic profile already at the low resolution shown here.

7. Dynamic examples

So far we have only presented simple test cases with stationary walls. Now we want to show the importance of consid-
ering the wall motion for the pressure estimation at the wall boundary particles. To the knowledge of the authors this is the
first time that such an effect is discussed in terms of the SPH method, and we demonstrate the consequences with a numer-
ical free-fall experiment. Furthermore, we have performed a typical highly dynamical dambreak simulation for which a com-
parison with results from literature shows good agreement. The final example of a rotating rippled cylinder includes both a
quite complex shape and motion of the boundary, demonstrating the robustness and versatility of our method.

Fig. 9. Initial condition (a) and final spatial pressure profile (b) in the complex water tank with two phases. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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Fig. 10. Snapshots of the two-phase sloshing in a tank with complex wall geometry for different resolutions at t ¼ 2;4;6;8;10 and 30.
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7.1. Freefall experiment

A rectangular two-dimensional tank with water is exposed to a gravity field with a constant acceleration of g = 1 in neg-
ative y-direction. The water depth in the tank is H = 0.9 and the side walls have a length of L = 1. We discretize the walls and
the fluid phase with initially equidistant particles with Dx ¼ 0:04 and assign a density of q = 1 to the water particles. At T = 0
the bottom wall is at y = 5.5 and due to the body force the tank is accelerated and moving down. Fig. 12 shows two snapshots
of the simulation at T = 1 where particles are colored with the instantaneous pressure field.

The left snapshot is taken from a simulation where the boundary pressure is not corrected for the acceleration of the wall.
That means the pressure in the solid phase contains only the hydrostatic term accounting for the height difference between
the fluid and wall particles. Consequently, the pressure of solid particles is non-zero, and fluid particles are pushed off. Fi-
nally, fluid particles move relatively to the gravitationally imposed motion, and the noisy pressure field causes a collapse of
the simulation. Note also the distortion and non-physical motion especially of the corner particles of the fluid phase in
Fig. 12(a). In contrast, Fig. 12(b) shows the same simulation using the full boundary condition as given by Eq. (27). Due
to the freefall of the entire body the pressure in the fluid is zero everywhere and particles are at rest relative to the tank
motion.

7.2. Dambreak

Now we consider the collapse of a liquid column and compare our results with experimental data and SPH results from
literature. First, we study the water-front propagation of a square patch of fluid of size L ¼ H ¼ 1 over a dry bed. The fluid

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1

Pr
es

su
re

 [-
]

y [-]

t = 2
Hydrostatic profile

Fig. 11. Hydrostatic water column in a cylinder of radius R ¼ 0:5 and water height H ¼ 1. Particles are initially placed on cartesian coordinates with
Dx ¼ 0:04.

Fig. 12. Snapshot of the freefall test example at T ¼ 1 for two different boundary particle treatments; particles are colored with local pressure.
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phase of density q ¼ 1 is discretized initially with equidistant particles at cartesian positions with Dx and the artificial vis-
cosity parameter is chosen as a ¼ 0:4 to stabilize the simulation. Using g ¼ 1 in negative y-direction, all quantities corre-
spond to their non-dimensional variables. Since fluid particles interact with the walls only by the pressure force, the fluid
phase is effectively inviscid and slip can occur at the walls. In Fig. 13(a) we monitor the front position of the water column
over time in comparison with experimental data taken from Martin and Moyce [30]. At early times the results agree accept-
ably well, but from about t > 1 the simulation clearly overpredicts the speed of propagation of the front position. Due to sev-
eral uncertainties in this example (effect of surface tension, effect of wall roughness, exact experimental setup) it is not clear
what exactly causes the differences, but probably the major difference originates from the fact that the inviscid flow assump-
tion is not appropriate. A rough estimate of the Reynolds number in the experiment gives Re � 400, thus the inviscid flow
assumption at this moderate Reynolds number probably is not yet fully justified. Compared to an analytic water-front veloc-
ity derived for inviscid shallow-water conditions by Ritter [31], the simulated front propagation converges to that velocity at
late times. We have checked the influence of the artificial viscosity parameter a to ensure that the fluid is unaffected by the
numerical dissipation. To show convergence of the results we also have simulated the problem with a higher resolution, see
Fig. 13(a). Colagrossi [9] studied the same case using mirror wall particles with free-slip, but imposed initially at t ¼ 0 a pres-
sure field in the fluid obtained from a Level-Set method at t > 0 to avoid high-frequency oscillations due to acoustic waves in
the domain. Not shown here, we have also tested the influence of the initial condition and initialized the water column with
a hydrostatic pressure field. As expected, the only difference was a much smaller pressure fluctuation in the fluid since we
started the simulation from an equilibrium condition. The water-front propagation was unaffected.

The height of the water column in the simulation and in the experiment is compared in Fig. 13(b). As the velocity of the
water-front is overpredicted in the numerical method, the height of the water column over time is slightly lower than in the
experiment. The various simulations we have performed give more or less the same evolution of the water height. Again we
conclude that the result is independent from the artificial viscosity and from the resolution. Comparing our simulations with
results in literature [9,32] we find that our results for the evolution of the water front and height of the water column match
with state-of-the-art weakly-compressible SPH simulations with different formulations for wall boundary conditions.

Now we modify the size of the water column and the tank to simulate the classical dam-break problem, as presented in
Colagrossi [9]. In this case the water phase covers initially a rectangle of size L ¼ 2 and H ¼ 1, and the right wall of the tank is
positioned at Lwall ¼ 5:366. In Fig. 14 we show snapshots of two simulations at different resolution at T ¼ 1:7;2:0;4:8;5:7;6:2
and 7.4. The color of the particles shows the local non-dimensional pressure between p ¼ 0 (blue color) and p ¼ 1 (red color).
The two resolutions used in Fig. 14(k) and (l) are Dx ¼ 0:02 and Dx ¼ 0:01. Thus a total of 5000 and 20000 fluid particles was
used, respectively. We want to highlight the very good agreement between the two resolutions. The high resolution simu-
lation reproduces the pressure field and free surface of the reference case showing some more small structure, see for exam-
ple the cavity at the right wall at the free surface at t ¼ 7:4.

We compare our results with the simulation of a dam-break flow and impact against a vertical wall by Colagrossi [9]. The
free-surface evolution of the breaking column agrees well with the snapshots of [9]. We observe a very similar roll-up and
and second splash after the impact on the right wall. The main difference is in the pressure field of the fluid. We do not see a
pressure distribution similar to a hydrostatic field in the fluid. Our converged results show traveling pressure waves during
the highly dynamical collapse of the water column and pressure maxima at the impact positions with the wall. These pres-
sure fluctuations are caused by the weakly-compressible nature of the method, and since viscous effects are small in this
case, sound waves are very weakly damped in the simulations. Given the fact that we did not use a smoothed velocity to
move the particles (XSPH, [33]) and did not renormalize the density as done in [9], the very good agreement with their re-
sults shows that our quite simple method is adequate to handle wall boundaries correctly. We have also confirmed the long-
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Fig. 13. Time evolution of the front (a) and the height (b) of a colapsing water column for varying parameter of a and Dx compared to experimental data
[30].
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time stability of our method by simulating six wave impacts at the end walls without facing numerical stablity problems,
neither for the fluid nor for the boundary particles.

Fig. 14. Snapshots of the dam-break simulation at t = 1.7, 2.0, 4.8, 5.7, 6.2 and 7.4 for two different resolutions.
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For a quantitative validation we compare the temporal pressure profile on the downstream wall with experimental data
from Buchner [34] and the SPH result of Marrone et al. [35]. Fig. 15 shows the pressure on the right wall at y=H ¼ 0:19 over
time obtained from our simulation and measured data from the experiment [34]. The simulation results were interpolated
on this wall position using the same SPH kernel as used in the corresponding calculation. Note, the probe position in the
numerical setup does not exactly match the position in the experiment, but Greco [36] showed that this shift gives better
agreement and reported several uncertainties in the measurements motivating this adjustment. As expected, the pressure
profile obtained with our SPH simulation contains high frequency oscillations but the main pressure plateau is reasonably
well captured. The strong peak at tðg=HÞ1=2 ¼ 6 is caused by the plunging wave of the first roll-up after the flow hit the wall.
As similarly presented already in [35] this peak occurs slightly delayed in the simulation since the air cushion effect is not
captured with a mono-fluid simulation.

7.3. Rotating rippled cylinder

Finally, we simulate a cross-section of a partially filled rippled cylinder that is rotating about its own axis. The interface of
the cylinder with radius R ¼ 0:7 varies with a sinusoidal disturbance with an amplitude of rd ¼ 0:1 and eight periods along
the circumference. The height of the water column is H ¼ 1:0, measured from the lowest point of the interface. Particles are
initially placed on a Cartesian lattice, and the thickness of the wall is equivalent to the cutoff radius rc , see Fig. 16(a) for a
snapshot of the initial setup with rc ¼ 0:12.
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Fig. 15. Comparison of temporal pressure profile at y=H ¼ 0:2 between experimental data [34] and SPH simulation with H=rc ¼ 100.
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Fig. 16. Rotating rippled cylinder: (a) Initial position of wall (�) and fluid (o) particles using a cutoff radius of rc ¼ 0:12. (b) Pressure profile over the height
in the center of the cylinder at T ¼ 18 for two resolutions rc ¼ 0:12 and rc0:06.
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First, the water column is exposed to a constant gravitational acceleration of g ¼ 1 in negative y-direction. As for the
hydrostatic tank simulations, we damp the motion of the fluid until T ¼ 1 to smooth spurious oscillations caused by the ini-
tial gravitational acceleration. To stabilize the simulation we use a small artificial viscosity a ¼ 0:1 which according to Eq.
(11) is equivalent to a Reynolds number of Re ¼ 200. Then, we rotate the walls with an angular velocity of _u ¼ 0:1 for a half
turn. The water column eventually settles in the cylinder with a hydrostatic pressure profile. Fig. 16(b) shows the pressure in
the center of the cylinder along the y-axis from the bottom of the wall to the free surface at T = 18, where the fluid has settled
again after the half turn. The linear slope of the pressure profile in the water column is well reproduced and with increasing
resolution the pressure converges to the analytic solution.

Fig. 17. Snapshots of the rotating cylinder with rippled wall for two resolutions rc ¼ 0:12 (upper half) and rc ¼ 0:06 (lower half). The fluid phase is colored
with the pressure field in the range of p = 0 (blue) to p = 1 (red) and velocity vectors visualize the instantaneous flow field and the rotating cylinder wall.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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A visualization of the flow field and pressure field in the fluid is shown in Fig. 17. The two columns show the result with
different resolutions of rc ¼ 0:12 and rc ¼ 0:06 at T ¼ 2;4;6;8 and 18. After the initial damping time Tdamp ¼ 1 the cylinder is
rotated with _u ¼ 0:1 until T = 6 for a half turn. To clarify the motion of the walls we tracked the initial tip of the cylinder wall
with the black bold mark over time in the snapshots. The color in the fluid phase denotes the pressure field in the water in
the range of p = 0 (blue) to p = 1 (red). We also show qualitatively the instantaneous velocity field with velocity vectors. The
simulation shows a strong sloshing in the fluid phase due to the rotation of the walls and finally the fluid settles to a hydro-
static water column. With a higher resolution the free surface and flow field reproduce the results of the lower resolution and
show some more details of the fluid phase during the sloshing phase. This case demonstrates the robustness of our method
for simulating complex moving boundaries interacting with violently moving free-surfaces.

8. Conclusion

We have developed a new approach to simulate solid, non-permeable walls with SPH. Derived from a force balance at the
wall boundary, this method incorporates external body forces such as gravitation in dynamical situations. Our proposed
boundary particle treatment is simple and general. Solid walls are discretized with dummy particles in a layer of width rc

along the interface. The velocity at dummy particles is extrapolated from the adjacent fluid phase allowing for free-slip
or no-slip boundary conditions and a pressure boundary condition prevents penetration of the wall. To calculate the velocity
and pressure of dummy particles at the boundary an additional summation over its neighbors has to be performed. But as
this operation is limited to interface particles only, i.e. particles that interact with other particles than of its own type/phase,
the computational overhead is small. We have shown that our method is capable of simulating hydrostatic problems includ-
ing complex and sharp wall geometries in two and three dimensions. A numerical freefall experiment demonstrates the rel-
evance of the correct boundary condition for wall particles, and a comparison of the well-known dambreak simulation with
results in the literature shows good agreement. The simulation of a rotating rippled cylinder shows that this method is capa-
ble of dealing with violent free-surface deformations interacting with moving complex boundaries. Another attractive fea-
ture of this wall boundary method is its straightforward extension to fluid–structure-interaction (FSI) problems. Since only
geometric information is used, the dummy particles can represent real solid particles or can be evolved according to a sep-
arate material law.
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a b s t r a c t

The standard weakly-compressible SPH method suffers from particle clumping and void
regions for high Reynolds number flows and when negative pressures occur in the flow.
As a remedy, a new algorithm is proposed that combines the homogenization of the parti-
cle configuration by a background pressure while at the same time reduces artificial
numerical dissipation. The transport or advection velocity of particles is modified and an
effective stress term occurs in the momentum balance that accounts for the difference
between advection velocity times particle density and actual particle momentum. The
present formulation can be applied for internal flows where the density summation is
applicable. A wide range of test cases demonstrates unprecedented accuracy and stability
of the proposed modification even at previously infeasible conditions.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Smoothed particle hydrodynamics (SPH) is a fully Lagrangian, mesh-free method that was proposed 1977 independently
by Lucy [1] and Gingold and Monaghan [2]. Originally, SPH was used to simulate astrophysical problems as its meshless nat-
ure and the exact advection are very attractive for these kind of problems. The key idea of SPH is to use a smoothing kernel to
approximate field quantities at arbitrarily distributed discretization points (particles) and move these points with their local
velocity. As a result of this smoothing technique, spatial derivatives are calculated only from interactions with any neighbor-
ing particles. In practice, the smoothing kernel has compact support to limit the number of interacting particles and the
width of this kernel represents the discretization length scale of SPH.

In the past, SPH has been applied successfully to a broad range of problems beyond its original purpose. Different equa-
tions of motion can easily be incorporated by modifying the interactions between different particles, thus almost any con-
tinuum system that can be formulated in terms of partial differential equations can be discretized by SPH. A comprehensive
overview of the capabilities of SPH is presented in the review article of Monaghan [3], where the principles of the method to
simulate compressible flows (astrophysical problems) and incompressible fluid dynamics as well as solid mechanics within a
unified framework are described.

Compared to mesh-based methods the evolution of a system in a Lagrangian framework offers many important advan-
tages. Most obviously, advection is treated exactly by a Lagrangian particle method and exact conservation of mass and
momentum is ensured in a straightforward way. Furthermore, for multi-phase problems the interaction-based force
calculation allows for a modeling of very complex physical phenomena at phase interfaces without the need of additional
surface-front detection algorithms. Large deformations and complex geometry changes such as fragmentation can be treated
implicitly with SPH and the required preprocessing of a simulation is small.
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When solving incompressible fluid dynamics with SPH there are mainly two basic strategies, namely a true incompress-
ible formulation (ISPH) and the weakly compressible model (WCSPH). In the former method a pressure Poisson equation is
solved and the divergence condition for the velocity field is enforced, see e.g. [4–6]. This approach was shown to give accu-
rate results for free-surface and multiphase flows but the computational complexity is high. The latter approach treats the
fluid as weakly compressible with an equation of state that relates the fluid density to a hydrodynamic pressure. Given that
the magnitude of the speed of sound and the characteristic flow velocities are well separated, density fluctuations remain
small and the fluid behaves quasi-incompressible. Due to its simplicity and lower computational cost this method is widely
used for various kinds of problems, see e.g. [7–11].

In this work we propose a new transport-velocity formulation for weakly-compressible SPH that resolves an impor-
tant dilemma of the classical WCSPH scheme. According to the theory of incompressible flow, the pressure in the fluid
takes effect merely by its gradient. Therefore, the flow is invariant of a superimposed constant background pressure field,
i.e. it is gauge invariant. However, since the standard SPH is not 0th-order consistent, gauge invariance is not recovered
numerically, leading to a spurious pressure gradient from a formally constant pressure field. Hence, the simulation re-
sults change with different background pressures. Ideally, no background pressure should need to be added to the sys-
tem. On the other hand, when a low (zero) background pressure is imposed, SPH suffers from the so-called tensile
instability. This instability is caused by particle clumping due to attraction forces between neighboring particles with
effectively negative pressures. A possible solution to this problem is to increase the background pressure that ensures
non-negative pressures in the entire domain, but as mentioned before this introduces additional numerical viscous dis-
sipation that can be comparable to the physical viscous dissipation. Thus, increasing the background pressure effectively
changes the Reynolds number of the flow, and consequently the application of SPH to practical industrial applications is
substantially impeded. Note that our method mainly addresses the tensile instability problem, a ‘‘cousin of the pairing
instability’’ with the same symptoms [12]. As a side-effect we found that with the new method the pairing instability
[13] does not occur either. Alternatively the latter instability could also be circumvented by using kernels that have non-
negative kernel Fourier transforms [12,14].

In 1989 Monaghan [15] addressed the problem of penetration in particle methods and proposed a modified advection
velocity based on a smoothing of the velocity field. This so-called XSPH correction can improve the smoothness of the flow
field, but, strictly speaking, the smoothing is arbitrary involving an unknown parameter. Another classical workaround for
the clumping problem is to use an artificial viscosity that stops particles approaching each other when they are very close,
e.g. Monaghan [3]. Whilst this artificial dissipation can be shown to take effect as a physical viscosity, and thus is used to
simulate real flows at finite Reynolds numbers, at the same time the numerical dissipation required to stabilize the simula-
tion of high Reynolds number flows can become comparable to the physical viscosity and of course strongly affects the
results.

For truly incompressible SPH methods the particle clumping problem is easily suppressed as the divergence-free condi-
tion for the velocity field and the constant-density condition can be enforced separately. Hu and Adams [4] use a fractional
time-step integration with an intermediate projection step and experienced no problems with particle penetration. Xu et al.
[6] proposed an ISPH method that takes advantage of an additional diffusion-based particle shifting scheme ensuring well
homogenized particle configurations at all times. Very recently, Lind et al. [16] extended this approach for free-surface prob-
lems where the standard method failed due to the incomplete kernel support of particles at the free surface. Additionally,
they use the kernel gradient normalization and approximate the shifted particle quantities by a Taylor series to improve
the accuracy of the scheme.

As a new, fundamentally different approach, we present here a simple and effective algorithm based on the classical
WCSPH without need for additional parameters and involving only a marginally small computational overhead. The new
method is characterized by the different utilization of a background pressure on computing the particle momentum
velocity and the particle advection velocity. As a consequence of the new advection velocity, an additional term appears
in the momentum equation that accounts for the difference between the motion of a particle and its averaged momen-
tum. In more detail, the particle advection velocity is obtained from the momentum velocity corrected for the effect of a
constant background pressure. Thus, regularization of the particle motion is achieved by the background pressure but
the particle momentum is unaffected, i.e. no artificial dissipation of momentum occurs. The correction term in the
momentum equation due to the different velocities acts as an effective stress and can be discretized in conservative
form. While this correction is negligible when the flow is well resolved with the given size of a particle, it has consid-
erable effects when the flow is not well resolved, e.g. for huge Reynolds numbers, and helps to prevent particle cluster-
ing. We point out that the present method is currently limited to internal flows. Free surfaces and inner surfaces of
breaking waves for example would be treated as empty space and be filled with particles. An extension of this method
for such cases requires the incorporation of suitable boundary conditions at the free surface and is subject of current
work.

After describing our new method in detail in Section 2 we present many classical test problems of SPH in Section 3. The
results show that our scheme prevents voids and particle clustering while strongly reducing numerical dissipation compared
to standard WCSPH. Allowing for stable simulations at high Reynolds numbers, this method strongly extends the capabilities
of SPH to simulate real applications. Finally, concluding remarks are given in Section 4.
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2. Method

In this section we present our method in detail and focus on the new particle transport or advection velocity. We initialize
all our simulations with Cartesian particles using a constant particle spacing Dx. Each particle is assigned a constant mass
and the density is calculated using the density summation at every time step. Thus, mass conservation is satisfied exactly.
We solve the incompressible Navier–Stokes equations in a Lagrangian frame and consider external body forces, viscous
forces and pressure forces. Note, our general formulation holds for multi-phase problems as well (see the Rayleigh–Taylor
instability in Section 3.6), but in the current work we do not include surface-tension effects. Fluids are treated as weakly
compressible using an equation-of-state to relate the pressure to the density, and viscous effects are incorporated with a
physical viscosity model [8] rather than an artificial viscosity.

In XSPH [15] particles are moved with a smoothed velocity field to prevent particle penetration. Here, we do not advect
particles with the momentum velocity but use an advection velocity ev which is defined as the momentum velocity corrected
by a pressure force due to an arbitrary but constant pressure field. Effectively, this advection velocity maintains a homoge-
neous particle distribution while it avoids the classical background-pressure problem in the momentum equation. Introduc-
ing the modified advection velocity into the conservation law for the momentum of a Lagrangian particle, for clarity using
index notation, we obtain

@ qv ið Þ
@t

þ ev j
@ qv ið Þ
@xj

� ev j
@ qv ið Þ
@xj

þ v j
@ qv ið Þ
@xj

¼ ½� � � �i � qv i
@v j

@xj
; ð1Þ

where ½� � � �i is short for the other components of the right-hand-side (pressure force, viscous force and body force). Defining
the material derivative of a particle moving with the modified advection velocity ev ased �ð Þ

dt
¼ @ �ð Þ

@t
þ ev � r �ð Þ ð2Þ

we rearrange the momentum equation to obtained qv ið Þ
dt

¼ ½� � � �i þ
@

@xj
qv i ev j � v j
� �� �

� qv i
@ev j

@xj
: ð3Þ

By the weakly compressible approximation the divergence of the advection velocity ev is approximately zero and thus can be
neglected. Hence, the final form of the momentum equation for a Lagrangian particle moving with ev ised qvð Þ

dt
¼ �rpþ gr2v þ qgþr � qv ev � vð Þð Þ: ð4Þ

The last term on the right-hand-side is a consequence of the modified advection velocity and can be interpreted as the con-
vection of momentum with the relative velocity ev � vð Þ. In the following we use the tensor A ¼ qv ev � vð Þ for this term. Note
the relation to the concept of Lagrangian mean motion [17]

2.1. Density summation

The density of each particle is calculated from a summation over all neighboring particles j

qi ¼ mi

X
j

Wij; ð5Þ

where qi and mi denote the density and mass of particle i. As kernel function Wij ¼W ri � rj;h
� �

we use the quintic spline
function [18] with the smoothing length h set equal to the initial particle distance Dx. Note that the use of the density sum-
mation allows for density discontinuities, and, as the particle mass mi does not change during a simulation, total mass is
conserved exactly.

2.2. Conservation of momentum

The conservation equation for the momentum (4) is discretized following the standard SPH methodology in conservative
form, i.e. using symmetric inter-particle pair forces. The properties v; p; m;g and t in Eq. (4) are the particle velocity, pressure,
kinematic viscosity, external body force and time, respectively. Using the inter-particle-averaged shear viscosity (g ¼ qm)

egij ¼
2gigj

gi þ gj
; ð6Þ

together with the density-weighted pressure,

epij ¼
qjpi þ qipj

qi þ qj
ð7Þ
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the discretized momentum equation allowing for multi-phase problems is given by [8,19]

edvi

dt
¼ 1

mi

X
j

V2
i þ V2

j

� �
�epij

@W
@rij

eij þ
1
2

Ai þ Aj
� �

� @W
@rij

eij þ egij
vij

rij

@W
@rij

� �
þ gi: ð8Þ

Here, vij ¼ vi � vj is the relative velocity of particle i and j; rij is the distance ri � rj

�� �� between two interacting particles and
@W
@rij

eij is the kernel-function gradientrW ri � rj;h
� �

. The additional term on the right-hand-side approximates the divergence

of the tensor A using simply the average of both interacting particles i and j. Generally, the momentum equation can be dis-
cretized with SPH in various forms but we favor the above realization since due to the anti-symmetry the linear momentum
is conserved exactly.

In the classical weakly-compressible SPH method the pressure of a fluid particle is obtained from the density by an equa-
tion of state in the form

p ¼ p0
q
q0

	 
c

� 1
� �

þ v; ð9Þ

where p0;q0 and v are the reference pressure, reference density and background pressure, respectively. Following Morris
et al. [18] the reference pressure p0 ¼ cc2=q0 is calculated with an artificial speed of sound c and the exponent c ¼ 7 to limit
the density variation to 1%. Usually, the speed of sound is chosen at least one order of magnitude larger than the reference
velocity to limit the effect of compressibility on the flow. With our new scheme we suggest to use c ¼ 1 and v ¼ 0, i.e.

p ¼ c2 q� q0ð Þ ¼ p0
q
q0
� 1

	 

; ð10Þ

which reduces significantly the magnitude of spurious pressure.

2.3. Particle advection velocity

The key element in our proposed method is the modification of the particle advection velocity. Different from moving the
particles with the momentum velocity we define a transport or advection velocity ev that is used to evolve the position of
particles from one time step to the next by

dri

dt
¼ evi : ð11Þ

Using a constant background pressure field pb, the particle motion takes advantage of the regularization and anti-clumping
effect when advecting with the transport velocity ev . In particle notation, this velocity is obtained at every time-step dt from

evi t þ dtð Þ ¼ vi tð Þ þ dt
edvi

dt
� 1

qi
rpb

 !
; ð12Þ

Note that although rpb ¼ 0, the SPH discretization of rpb following Eq. 13 below is not 0th-order consistent and therefore
generates a non-vanishing contribution. By simply calculating this discrete gradient of a constant pressure field pb we incor-
porate the effect of the actual particle distribution to the motion of the fluid. The discretized form of Eq. (12) is obtained from
the standard pressure term discretization using only the position information of the neighbors of particle i. Thus, the back-
ground pressure pb defines the magnitude of this force and occurs as a prefactor in Eq. (13). Using this relation it is straight-
forward to model multi-phase problems allowing for different reference pressures in different phases. The resulting discrete
pressure forces are non-vanishing and create a more uniform pressure distribution. Also, attractive forces between particles
with negative pressures from the equation of state are counterbalanced, and tensile instability is suppressed. In the same
time we avoid using a background pressure directly in the momentum equation that can lead to pressure-driven instabilities
or freezing of particles under very high background pressure conditions [20]. Another important aspect is that the shifting
velocity is not decoupled from the momentum velocity since we only modify the momentum velocity by the discrete back-
ground-pressure gradient at each time-step. For a uniform particle distribution these contributions would cancel out so that
in regions where the flow field is smooth and particles are uniformly distributed the two velocities are almost identical. But
in regions with strong flow distortions where particles exhibit an inhomogeneous distribution the trajectory velocity is cor-
rected by the background pressure effect and void regions are inhibited.

In discretized form the trajectory velocity of a particle i reads

evi t þ dtð Þ ¼ vi tð Þ þ dt
edvi

dt
� pb

mi

X
j

V2
i þ V2

j

� � @W
@rij

eij

 !
: ð13Þ

We use a background pressure pb which is on the order of the reference pressure p0. Generally, this pressure could be chosen
arbitrarily large as long as the time-step criterion is adjusted properly as a large pb can cause high accelerations. Note that
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the additional force in Eq. (13) can be calculated simultaneously with the right-hand-side of the momentum equation so that
the additional computational cost of this step is marginal.

2.4. Time-integration scheme

To integrate the equation of motion and the momentum equation in time we adopt the so-called kick-drift-kick scheme
as presented by Monaghan [3]. First, the intermediate momentum velocity and the shifting velocity are calculated for each
particle using the pressure force f pð Þ, the viscous force f gð Þ, the body force g and the background pressure force f pbð Þ

vnþ1
2 ¼ vn þ dt

2m
fn�1

2
pð Þ þ fn�1

2
gð Þ þ g

� �
; ð14Þ

evnþ1
2 ¼ vnþ1

2 þ dt
2m

fn�1
2

pbð Þ: ð15Þ

This step is referred to as the kick step, as only velocities are updated. Using the advection velocity we shift the particles to
their new positions by

rnþ1 ¼ rn þ dt evnþ1
2: ð16Þ

Now, the density at the new time step nþ 1 is calculated from the updated positions using Eq. (5). At this stage the new

inter-particle forces fnþ1
2

pð Þ ; fnþ1
2

gð Þ and fnþ1
2

pbð Þ are calculated with the intermediate momentum velocity and the new positions. Fi-
nally, the velocity at the full time-step is obtained from

vnþ1 ¼ vnþ1
2 þ dt

2m
fnþ1

2
pð Þ þ fnþ1

2
gð Þ þ g

� �
: ð17Þ

Note, with this scheme the force calculation is performed only once per time-step since in the first sub-step the forces from
the second sub-step of the previous time step are used.

For stability reasons the global time-step dt is taken as the minimum of the CFL-condition based on the artificial speed of
sound c and the maximum flow speed U

dt 6 0:25
h

c þ Uj j ; ð18Þ

the viscous condition

dt 6 0:25
h2

m
ð19Þ

and the body-force condition

dt 6 0:25
ffiffiffiffiffiffiffiffiffiffiffi
h= gj j

q
: ð20Þ

2.5. Boundary conditions

Symmetric and periodic boundary conditions are enforced by the use of mirror or ghost particles [21], respectively. These
virtual points inherit the fluid properties from their corresponding real particle and are included in the force calculation to
ensure full support of the kernel. Furthermore, in case of a symmetry condition the normal velocity component is flipped to
mimic a symmetric velocity field. Solid walls are represented with real fixed particles where a Neumann-boundary condition
for the pressure is imposed. The velocity at these particles vsolid is interpolated from the adjacent fluid phase and adjusted to
enforce the no-slip condition by

vsolid ¼ 2vwall � vfluid: ð21Þ

For details of this boundary treatment we refer the reader to our previous work [22].

3. Numerical examples

We use our proposed method to simulate a broad range of classical SPH test cases, including the challenging Taylor–
Green vortex flow or the lid-driven cavity problem. We want to emphasize that the current formulation does not require
any additional parameters that need to be adjusted for each problem. The same numerical setup is used for all cases. More
precisely, in all examples the speed of sound is chosen ten times larger than the characteristic reference velocity of the prob-
lem, and as background pressure for the advective acceleration we use the reference pressure p0 from the equation of state.
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3.1. Flow around a periodic lattice of cylinders

In the following example we study the flow through a periodic lattice of cylinders as presented in Morris et al. [18]. In this
example all data are given in dimensional form as in the reference. A cylinder of radius R ¼ 0:02 m is placed in a square box
with length L ¼ 0:1 m and the driving body force in x-direction is g ¼ 1:5� 10�7 m=s2. The fluid is characterized by
q ¼ 1000 kg=m3 and m ¼ 10�6 m2=s and taking the velocity scale to be Uref ¼ 5� 10�5 m=s gives a Reynolds number of
one. We apply periodic boundary conditions at all boundaries to represent the periodic lattice of cylinders. If this case is sim-
ulated with the classical SPH method it is necessary to use a suitably adjusted constant background pressure in the equation
of state to avoid void regions without particles in the wake behind the cylinder. The proposed method, however, works well
without background pressure in the equation of state. The advective background pressure pb is fixed as described above and
does not require problem-specific adjustment.

The described geometry is discretized with Cartesian particles with an initial spacing of Dx ¼ 0:002 m and 0:001 m in
both directions, thus a total of 2500 particles and 10,000 particles is used, respectively. We compare our results with the
finite element method (FEM) reference results of this problem given in [18]. Fig. 1(a) shows two velocity profiles of the axial
velocity component VxðyÞ as function of the height of the periodic box for the two resolutions. The profiles are taken along
vertical lines at x ¼ L=2 (Path 1) and x ¼ L (Path 2), i.e. through the center of the box and at the exit of the domain. We find
very good agreement in the presented velocity profiles indicating that we obtained converged results. The discrepancy of the
velocity profile close to the cylinder surface is caused by the smoothing of the results due to interpolating the particle data
onto the vertical lines. With increasing resolution this interpolation error vanishes, see the results at the higher resolution.

Morris et al. [18] also present contour plots of the velocity magnitude in the periodic box. In Fig. 1(b) we superpose their
FEM reference results with the flow field extracted from our high-resolution simulation (red lines) using the same velocity
scale (Vref ¼ 10�4 m=s) for non-dimensionalization and find excellent agreement.

3.2. Channel flow through periodic array of cylinders

To further validate our method we analyze the drag on a cylinder in a periodic channel. The drag is an integrated quantity
over the cylindrical surface and is therefore a suitable parameter to quantify the accuracy of a numerical simulation. Differ-
ent from the previous example, the flow is now wall-bounded at the upper and lower boundaries with a channel height of
H ¼ 4R, where R ¼ 0:02m is the radius of the cylinder. The cylinder is placed on the centerline of the channel and the total
length of the periodic channel segment is L ¼ 0:12 m, thus the inter-cylinder distance is 6R. The liquid has a density and vis-
cosity of q ¼ 1000 kg=m3 and g ¼ 0:1 kg=ðmsÞ, respectively. A very detailed study of this problem using standard weakly-
compressible SPH is presented in Ellero and Adams [23]. Different to their approach, here we do not adjust the body force
in time to achieve a specified, constant mass flux but use a constant driving force g ¼ 2:5� 10�4 m=s2 in x-direction that
yields an average flow velocity of similar magnitude as their imposed flow (hvi ¼ 1:2� 10�4 m=s). Note that, as we are com-

Fig. 1. Comparison of SPH results with FEM reference results [18] for the flow through a periodic lattice of cylinders at Re = 1, references reproduced with
permission of Elsevier.
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paring non-dimensional results, the exact flow rate is not important as long as the flow characteristics are similar (the Rey-
nolds number in our simulation differs only by about three percent from Re ¼ 2:4� 10�2 given by Ellero and Adams [23]).
For this example the dominating criterion for determining the speed of sound is the body-force scale and we use
c ¼ 0:1

ffiffiffiffiffiffiffiffiffi
gj jR

p
¼ 2:236� 10�4 m=s. As shown before, with the proposed method the region behind the cylinder is filled with

particles immediately after starting the flow, unlike standard SPH that requires a specifically adjusted background pressure
in the equation of state to avoid void regions.

As example, Fig. 2 shows several snapshots of the flow using 96 particles spanning the channel height, i.e. a total of 13,824
particles is used in this case. The particles are colored with the magnitude of the local velocity where the colormap ranges
from 0 (blue)1 to 3hvi (red). The time is scaled with the reference time t0 ¼ R=hvi to indicate the initial transient phase in
terms of the characteristic time of the flow.

As we start the simulation from a lattice configuration, i.e. particles are initialized on nodes of a regular Cartesian lattice,
it takes several characteristic times to obtain a homogenous particle distribution. After T ¼ 2:5 the particle distribution is
fully homogeneous. Steady-state quantities are extracted thereafter. The drag coefficient is defined as

CD ¼
FD

ghvi ; ð22Þ

where FD is the drag force exerted on the cylinder by the fluid. Note that due to symmetry in y-direction with respect to the
center of the cylinder the only unbalanced force on the cylinder is FD in x-direction. Instead of integrating the total stress
along the cylinder surface, with particle methods it is straightforward to add all the force interactions between fluid and cyl-
inder-wall particles in order to calculate the resulting drag on the cylinder [23].

Fig. 3 shows the temporal evolution of the drag coefficient obtained from SPH simulations using three resolutions with
Dx ¼ H=48; Dx ¼ h=96 and Dx ¼ H=192. The black dashed line denotes the reference result of Liu et al. [24], who obtained a
drag coefficient of 106.76 for this case using a FEM code.

At early times, the extracted drag coefficient shows strong variations due to the rearrangement of particles from the ini-
tial lattice configuration, as can be seen from the particle snapshots. Later, only small fluctuations around the steady-state
can be observed, and with increasing resolution the magnitude of these fluctuations decreases. The agreement with the ref-
erence value is very good and with increasing resolution we observe convergence to the exact value.

Fig. 2. Snapshots of the particles at various time steps colored with the magnitude of the velocity in the range between 0 (blue) and 3hvi (red) using 96
particles spanning the channel height.

1 For interpretation of color in Figs. 1–3, 5, and 7–13 the reader is referred to the web version of this article.
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3.3. Taylor–Green vortex at Re = 100

We simulate the two-dimensional Taylor–Green flow at Re = 100 to show that our new approach does not suffer from
particle clustering. The analytical solution of the incompressible Navier–Stokes equation for this periodic array of vortices
is given by

u x; y; tð Þ ¼ �Uebt cos 2pxð Þ sin 2pyð Þ ð23Þ
v x; y; tð Þ ¼ Uebt sin 2pxð Þ cos 2pyð Þ: ð24Þ

It is used as initial velocity distribution at t ¼ 0 and as reference solution to check the accuracy of our simulations. The decay
rate of the velocity field b is�8p2=Re, where Re ¼ qUL=g is the Reynolds number obtained from the maximum initial velocity
U, the density and viscosity of the fluid q and g and the length of the periodic vortex array L. In our simulations we use a
domain with unit length L ¼ 1 and apply periodic boundary conditions in both coordinate directions. At t ¼ 0 we initialize
the velocity of the particles with the analytical solution using a reference velocity of U ¼ 1. We vary the initial particle spac-
ing to study the influence of the resolution and use Dx ¼ 0:02 (50� 50 particles), Dx ¼ 0:01 (100� 100 particles) and
Dx ¼ 0:005 (200� 200 particles).

Fig. 4 shows several snapshots of the particle distribution for the Taylor–Green vortex at Re = 100 using 2500 particles
(50� 50). At t ¼ 0:2 it is clearly visible that some particles are aligned with the stagnation lines of this flow. Standard
SPH applied to this case starting from a regular lattice particle distribution results in a wrong decay of the vortex. Our current
method does not suffer from such an error, produces a homogeneous particle distribution and predicts the correct decay rate.

A comparison of the decay of the maximum velocity is shown in Fig. 5, where the decay and error of the maximum veloc-
ity over time are shown. Using a log scale the analytical maximum velocity decays linearly with the slope �b. Our simulation
results show the correct decay rate but with a small shift in the absolute magnitude of the vortex velocity, see Fig. 5(a). This
difference is due to the rearrangement of the particles at early times (t < 0:5) which causes the small peak and subsequent
decrease of the maximum velocity. To show the improvement of our new scheme we also plot the result obtained from the
standard weakly-compressible SPH approach, see the crosses in the figure. With the standard SPH method the maximum
velocity decay is largely overpredicted and does not converge to the analytic solution (not shown here). The new proposed

t=0 t=0.2 t=0.4 t=0.6

Fig. 4. Particle snapshots for the Taylor–Green problem at Re = 100 with a resolution of 50� 50 particles.
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method shows satisfactory agreement with the analytical decay rate and we find first-order convergence in the relative error
of the maximum velocity L1 tð Þ, see Fig. 5(b). The error norm L1 tð Þ is defined as

L1 tð Þ ¼ max vi tð Þj jð Þ � Uebt

Uebt

�����
�����: ð25Þ
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Fig. 6. Particle snapshots for the Taylor–Green problem at Re = 100 using 2500 particles.

Fig. 7. Instantaneous velocity field and spatial density variation at t = 2 for the Taylor–Green flow at Re = 100.
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To avoid the particle rearrangement at the beginning which causes the shift in the maximum velocity, we use the final
particle distribution of the previously presented results as initial condition and impose the analytical velocity profile at
t ¼ 0. Now, the particles are uniformly distributed during the entire simulation as shown in Fig. 6.

We also show the absolute velocity field with velocity vectors for this case at t ¼ 2 in Fig. 7(a). Here, the colormap ranges
from 0 (blue) to Umax t ¼ 2ð Þ (red). Velocity vectors are scaled to clearly show the structure of the flow. At this point we want
to highlight the smoothness of the velocity field and remember that we do not use any additional smoothing, reinitialization,
or remeshing scheme in our method. Supporting this fact, Fig. 7(b) shows the density of all particles at t ¼ 2 simply plotted as
function of the y-coordinate. The small scattering regions occur in the vicinity of the stagnation points, note however, that
the total density variation is well below one percent.

The decay of the maximum velocity over time and the relative error for the Taylor–Green flow at Re = 100 using a relaxed
particle distribution at t ¼ 0 is shown in Fig. 8. The strong particle rearrangement as for the lattice setup case is avoided, and
the initial overshoot in maximum velocity does not occur. The results for the three resolutions shown in Fig. 8(a) are almost
identical and agree well with the analytical decay. Similarly to the previous case, from error plot we find approximately first-
order convergence. The maximum error is remarkably reduced below five percent even for the lowest resolution of 50� 50
particles. We also show the decay rate obtained with standard SPH in Fig. 8(a). The result with the standard SPH also shows
now a linear decay when starting from a relaxed particle configuration, but the decay rate is strongly overestimated.

To the knowledge of the authors this is the first time that a weakly-compressible SPH method gives consistently correct
results at different resolutions for the Taylor–Green vortex problem with a fully explicit scheme. Especially the accuracy of
simulations starting from an initial Cartesian lattice particle configuration shows a strong improvement by the current ap-
proach. Note that for practical applications such an initial particle configuration is much more convenient than relaxed con-
figurations that require pre-runs.

3.4. Lid-driven cavity

Another well-known and challenging test-case for SPH is the lid-driven cavity problem. A rectangular cavity with side
length L ¼ 1 is filled with a fluid, and the top wall moves at a constant speed Umax ¼ 1. We simulate the flow in the cavity
for three Reynolds numbers Re = 100, Re = 1000 and Re = 10,000 by adjusting the viscosity of the fluid accordingly, while fix-
ing the density to q0 ¼ 1. The speed of sound for the equation of state is taken equal to c ¼ 10Umax.

Two main difficulties arise in the lid-driven cavity problem. First, two singularities occur at the upper corners due to the
moving lid on the horizontal wall boundary and the no-slip condition on the vertical walls. Second, strong velocity gradients
are present in the flow at Re = 10,000 and several secondary vortices occur. As there exists no analytical solution for this
problem we use as a reference the results of Ghia et al. [25], who simulated this case with a highly-resolved multi-grid fi-
nite-difference scheme on a 257� 257 mesh. We simulate all three variations with 50� 50; 100� 100 and 200� 200 par-
ticles initially placed on a regular Cartesian lattice, to check for convergence of our results and compare them with the
reference. Different from previous SPH results of this problem, we do not use a background pressure in the equation of state
(compare de Leffe et al. [26]) nor do we need to impose a very high sound-speed (Lee et al. [27] use c ¼ 100Umax). We con-
sider the results once the steady-state of the flow has been reached. We have checked for the steadiness by monitoring that
the total kinetic energy in the system remains constant in time.

A visualization of the steady velocity field at Re = 100 is shown in Fig. 9(a). The colormap shows the magnitude of the
velocity ranging from zero (blue) to Umax (red), and the velocity vectors visualize the structure of the flow. Essentially, a sin-
gle core vortex develops in the upper half of the cavity due to the shear force at the moving wall, and the fluid in the lower
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Fig. 8. Simulation results for the Taylor–Green problem at Re = 100 using a relaxed initial particle distribution.
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part of the cavity moves only slowly. A quantitative comparison with the reference is shown in Fig. 9(b), where the velocities
in x and y-direction are plotted along the vertical and horizontal centerline, respectively. The reference results by Ghia et al.
[25] are denoted by the colored symbols ( for the velocity in y-direction along the horizontal centerline VyðxÞ and � for the
velocity in x-direction along the vertical center line VxðyÞ). The simulated profiles agree well with the reference results and
the two higher resolutions show only marginal difference, thus converged results were obtained. For such a low Reynolds
number already the lowest resolution using 50� 50 particles gives satisfactory results.

The following Figs. 10 and 11 show the corresponding analysis for Re = 1000 and Re = 10,000. From the flow field we ob-
serve that the core vortex is more centered with increasing Reynolds number and the intensity of the vortex increases. Fur-
thermore, in agreement with Ghia et al. [25] we find secondary vortices in the two lower and the upper left corner, but due to
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the scale of the velocity vectors they are hardly visible in the presented figures. At Re = 1000 the velocity profiles along the
centerlines match the reference results at all three resolutions. With higher resolutions we find a more accurate flow pre-
diction in regions with strong velocity gradients (wall-near regions) but the core flow is approximated accurately even at
the lowest resolution.

At Re = 10,000 a much larger resolution is required to converge to the reference results, see Fig. 11. As mentioned earlier,
the core vortex at this Reynolds number is almost centered in the cavity and secondary vortices develop. With the lower
resolutions we underestimate the intensity of the center vortex. At the highest resolution presented here (200� 200 parti-
cles) the agreement with the reference result is satisfactory, especially the modified velocity profile in the thin boundary
layer at the upper wall is already captured nicely. Note that the reference results were obtained with a resolution of
257� 257 grid points.

The lid-driven cavity example demonstrates that our proposed method with the wall boundary formulation of our pre-
vious work [22] can be used to simulate accurately shear-driven flows with stagnation points at high Reynolds numbers.

3.5. Flow over a backward-facing step

Another wall-bounded flow driven by an external body force is the flow over a backward-facing step in a spanwise peri-
odic channel. Fig. 12 shows a sketch and the dimensions of the geometry as presented in the work of Issa et al. [28]. The
marked positions P1—P4 show the locations where we compare velocity profiles with the reference results. As there is no
analytical solution for this example, the reference solution is obtained by a grid-based high-resolution simulation using FLU-
ENT [28] (note, the resolution of the simulation using the Eulerian Finite-Volume method is not given in the reference).
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The incompressible fluid is characterized by a density of q ¼ 1 and a kinematic viscosity of m ¼ 1:456� 10�2. Using twice
the channel height above the step as hydraulic diameter D ¼ 2h and a mean bulk velocity in the thinner channel above the
step of U ¼ 0:14 gives a Reynolds number of Re = 100. The mean flow is driven by a constant body force in x-direction that
was adjusted to achieve the specified mean bulk velocity. The speed of sound used for this simulation is ten times the max-
imum velocity in the channel above the step, i.e. cs ¼ 2:1.

Fig. 13(a) shows a comparison of the streamwise velocity over the channel height at four positions P1—P4 with the ref-
erence results from [28]. We plot the steady-state results of the flow field at two resolutions rc ¼ 0:2S and rc ¼ 0:1S, where
S ¼ 4:9 is the step height. The instantaneous particle velocities were interpolated on a grid using the kernel W to obtain
smooth profiles.

With the proper driving body force for the high resolution case to obtain the specified mean bulk flow at P1, the agree-
ment with the reference solution is very good. The results at P2 and P3 show that the recirculation bubble is well recovered,
and far behind the step, the flow field again becomes parabolic, see P4. Instead of fitting the driving force for each simulation
we use the parameter from the highest-resolution case for all other simulations. Thus, the flow at rc ¼ 0:2S is slightly under-
predicted but the overall agreement with the reference solution is still satisfactory. Also, this underprediction is reflected
systematically in the consecutive profiles and shows that this effect could be scaled out by increasing the driving force.

Fig. 13(b) shows a snapshot of the simulation at steady-state in the vicinity of the backward-facing step. Particles are col-
ored with the magnitude of the velocity in the range of vj j ¼ 0. (blue) – vj j ¼ 0:21 (red) and only in the recirculation bubble
we visualize the flow with velocity vectors. There are no void regions behind the step and the flow is well captured with the
SPH method. The bold red dot in the figure denotes the reattachment point of the flow at the lower channel wall and is lo-
cated at xR ¼ 6:2S. Issa [28] presents the reattachment point positions for the FLUENT and SPH results at xR ¼ 6:3S and
xR ¼ 6:0S. Thus, our results agree well with the high-resolution grid data and the accuracy of the proposed SPH method is
improved.

3.6. Rayleigh–Taylor Instability

We mainly applied our method to single fluid problems, but this last example shows that the modification of the particle
advection velocity can also be used to simulate multi-phase problems. The Rayleigh–Taylor instability develops under the
action of gravity when two fluids of different density are in contact and the heavier phase is on top of the lighter phase.
We consider a rectangular domain of size Lx ¼ 1 and Ly ¼ 2 and use Cartesian particles to initialize the geometry. The density
of the fluid in the lower part of the domain is set equal to one and above that phase the density is qu ¼ 1:8. To induce a well-
defined instability the interface between the lighter and heavier phase is slightly disturbed following y > 1� 0:15 sinð2pxÞ.
Gravity acts in negative y-direction and the Froude number is set to Fr ¼ 1. The Reynolds number based on the reference
velocity vref ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ly=2g

p
is Re = 420 and defines the kinematic viscosity. Initially, all the particle velocities are zero and we

use a resolution of 60� 120 particle for the fluids. The wall boundaries are modeled with non-moving SPH particles to en-
force the no-slip boundary condition [22].

Fig. 14 shows the particles of the heavy phase for the Rayleigh–Taylor instability at three time instants t ¼ 1;3 and 5.
Starting from the initial perturbation of the interface, initially two big plumes develop and the heavier and lighter phase
are accelerated in opposite directions. Due to the relative motion shear forces act on the interface and produce interface
roll-up.
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Fig. 15 shows the simulation results at t ¼ 3 and t ¼ 5 for two higher resolutions, each increased by a factor of two in both
coordinate directions. Comparing all three cases we find that the main roll-up is well-captured at all resolutions and the
shape of the main plumes at t ¼ 3 is converged. At later times, we observe similar secondary plumes as presented in Hu
and Adams [4], who used an incompressible SPH method to simulate this case.

Finally, we present a high-resolution simulation of a three-dimensional Rayleigh–Taylor instability in a periodic box of
size 1� 1� 2 using 120� 120� 240 particles, i.e. a total of about 3:5� 106 particles was used. The initial interface pertur-
bation is now y < 1� 0:15 sinð4pxÞ sinð4pyÞ and gravity acts in negative z-direction. Fig. 16 shows the evolution of the vol-
ume-rendered lighter phase at t ¼ 0;2;4 and 6. Note that here we only visualize 1.5 wavelengths but the domain covered
two wavelengths of the disturbance. The initial interface disturbances grow with time and the plumes rise to the top of
the container. Due to shear-forces the interfaces roll up and produce the well-known three-dimensional mushroom-shape
structures. In the last frame of Fig. 16 the lighter phase reaches the upper wall and the remaining liquid pushes upwards
through the liquid bridges that have developed.

Fig. 14. Snapshots of the heavy-phase particles for the Rayleigh–Taylor instability using 60� 120 particles at t ¼ 1; 3 and 5.

Fig. 15. Snapshots of the heavy-phase particles for the Rayleigh–Taylor instability at t ¼ 1; 3 and 5.

S. Adami et al. / Journal of Computational Physics 241 (2013) 292–307 305

84



Author's personal copy

4. Conclusions

We have presented a simple modification of the advection scheme for SPH particles that allowed us to simulate many
challenging problems that so far have suffered from the well-known tensile instability or the creation of void regions in
the flow when computed by standard SPH. Due to the modification of the advection velocity an additional term appears
in the momentum equation that is added to the standard method without any difficulties. This extra term and the modified
advection velocity are the only necessary changes of the standard weakly-compressible SPH method as presented by Mona-
ghan [3], without additional smoothing schemes or artificial viscosities. In all our problems we were able to use exactly the
same setup, thus no empirical parameter has to be adjusted with this method. The main advantage of this method is its gen-
erality and simplicity while achieving unprecedented accuracy and stability properties even for flows at large Reynolds num-
bers. Extensions of this method to two-phase flows and free-surface flows are subject of ongoing research.
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a b s t r a c t

In this paper, we propose a new surface-tension formulation for multi-phase smoothed
particle hydrodynamics (SPH). To obtain a stable and accurate scheme for surface curva-
ture, a new reproducing divergence approximation without the need for a matrix inversion
is derived. Furthermore, we introduce a density-weighted color-gradient formulation to
reflect the reality of an asymmetrically distributed surface-tension force. We validate
our method with analytic solutions and demonstrate convergence for different cases. Fur-
thermore, we show that our formulation can handle phase interfaces with density and vis-
cosity ratios of up to 1000 and 100, respectively. Finally, complex three-dimensional
simulations including breakup of an interface demonstrate the capabilities of our method.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Surface-tension effects are important for many multi-phase flow phenomena. Especially when the characteristic length
scales of the investigated system are sufficiently small, the surface-tension forces become relevant compared to inertia ef-
fects and affect the flow field. Many industrial applications include multi-phase flow systems and encounter problems such
as drop deformation and breakup in rather simple shear flows, wetting effects or Marangoni-force driven motion of inter-
faces. Therefore the accurate simulation of flows with complex interfaces is an interesting problem with practical relevance
and motivates our work.

There are mainly two approaches for the numerical solution of the governing equations of the flow system, either using a
grid-based method with a Eulerian formulation or a meshless method from a Lagrangian point of view. In this paper, we employ
smoothed particle hydrodynamics (SPH) [10] due to its conceptual advantages for modeling of complex multi-phase flows.
With this Lagrangian particle method, material interfaces are represented self-adaptively without the need for complex inter-
face-capturing or front-tracking algorithms. By the use of a color function each particle is assigned to a single phase throughout
a simulation. In doing so, interfaces can easily be followed and strong deformations and even breakup can be handled.

With SPH there are generally two ways to model the surface-tension effect: one is based on microscopic inter-phase
attractive potentials [13,16]; the other one is based on a macroscopic surface-tension model [11,6]. Although the implemen-
tation of an inter-phase attractive potential is straightforward, one of the difficulties is that the resulting surface tension
needs to be calibrated. Furthermore, with given parameters, the surface tension is resolution-dependent and does not con-
verge to a fixed value with increasing resolution. On the other hand, the approach using a macroscopic surface-tension mod-
el recovers the prescribed surface tension and converges to the exact value with increasing resolution. Usually, this model is
implemented in SPH by the continuum surface force (CSF) method of Brackbill et al. [1]. In this method, a color function is
used to describe different phases, and the interface is defined as a finite transitional band, where the color gradient does not
vanish. Within this band, the surface tension is approximated as a continuous force.

0021-9991/$ - see front matter � 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcp.2010.03.022
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The surface-tension model for multi-phase SPH of Morris [11] uses a smoothed color function and has difficulties in pre-
dicting the surface curvature, i.e. the divergence of the unit interface-normal direction. One difficulty arises from the fact,
that the standard SPH approximation of the divergence requires full support of the kernel function, which cannot be satisfied
within the transitional band. Another problem is the color gradient near the edge of the transition band, which has small
magnitude and may lead to an erroneous direction. In the work of Hu and Adams [6] a sharp color function with a discon-
tinuity at the interface is used directly. The calculation of the surface curvature is circumvented by introducing a surface-
stress tensor which only depends on the color gradient. Furthermore, since the magnitude of the surface-stress tensor is pro-
portional to the magnitude of the color gradient, the contribution of a small color gradient vanishes hence does not introduce
numerical difficulties.

In realistic configurations the surface force may not be distributed uniformly on each side of the interface. For example at
an air–water interface, the surface force is dominantly acting on the water side. In all current approaches the surface force
modeled by SPH is assumed to be distributed uniformly across the interface. Not only being nonphysical, this assumption can
also introduce numerical problems. For example, in an air–water interface flow the surface force on the air side can introduce
an acceleration about 1000 times higher than that on the water side. Consequentially, the stiffness of the equation of motion
increases dramatically, and the step-size for time integration is strongly limited.

In this work, we revisit the formulation of surface curvature based on a sharp color function. To obtain a stable and accu-
rate surface-curvature calculation without full support of the kernel function, a new reproducing divergence approximation
is derived. Unlike previous formulations, which calculate the divergence from reproducing gradient approximations, the new
approximation does not require a matrix inversion. Furthermore, we have not found notable effects caused by the errors due
to small color-gradient values at the fringes of the transitional band. To reflect the reality of non-uniformly distributed sur-
face forces, a new density-weighted color-gradient formulation is used. Several numerical tests on static water drops, oscil-
lating drops, drop deformation and splitting in shear flow are carried out to demonstrate the potential of the present method.
The results show that we achieve a comparable accuracy as with the formulation of Hu and Adams [6]. But as we can relax
the dominating surface-tension based time-step criterion in the lighter phase, the computational effort of our new formu-
lation is significantly smaller, especially for problems with large density ratios.

2. Governing equations

The isothermal Navier–Stokes equations are solved in a moving Lagrangian frame

dq
dt
¼ �qr � v; ð1Þ

dv
dt
¼ gþ 1

q
½�rpþ FðmÞ þ FðsÞ�; ð2Þ

where q; p; v and g are material density, pressure, velocity and body force, respectively. FðmÞ denotes the viscous force and
FðsÞ is the interfacial surface force.

With SPH incompressible flow is usually modeled by the weakly-compressible approach in which a stiff EOS is used to
relate the pressure to the density, i.e.

p ¼ p0
q
q0

� �c

� 1
� �

þ v; ð3Þ

with c ¼ 7, the reference pressure p0, the reference density q0 and the background pressure v. These parameters and the
artificial speed of sound are chosen following a scale analysis presented by Morris et al. [12] which limits the threshold
of the admissible density variation usually to 1%.

The viscous force FðmÞ simplifies to the incompressible formulation

FðmÞ ¼ gr2v; ð4Þ

where g is the dynamic viscosity. Following the CSF model of Brackbill et al. [1] for constant surface tension, the surface force
can be expressed as a volumetric force using the surface delta function dR by

FðsÞ ¼ �ajndR: ð5Þ

The capillary force ajndR is calculated with the curvature j, the normal vector of the interface n and the surface-delta func-
tion dR. This expression describes the pressure-jump condition normal to an interface. In this work we focus only on the case
where the interfacial surface tension is constant. Hence, the Marangoni forcersadR has no influence on the interface dynam-
ics since the interfacial gradient of the surface tension rsa is zero.

3. Numerical method

The governing equations are discretized by the multi-phase SPH method presented in Hu and Adams [6]. Each particle
represents a Lagrangian element of fluid, carrying all local phase properties. With updating the positions of the particles this
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method accounts for advection as the governing equations are formulated in terms of material derivatives. For implemen-
tation we employ the Parallel Particle-Mesh (PPM) Library [15] which allows for large-scale particle simulations on parallel
computer architectures.

3.1. Multi-phase flow solver

According to Hu and Adams [6] we calculate the density of a particle i at each time-step from a summation over all neigh-
boring particles j

qi ¼ mi

X
j

Wij ¼
mi

Vi
: ð6Þ

Here, mi denotes the particle mass, Wij ¼Wðri � rj;hÞ is a kernel function with smoothing length h, and Vi is the volume of
particle i. This summation allows for density discontinuities and conserves mass exactly.

The interpolation kernel function W can be any function which satisfiesZ
Wðr; hÞdr ¼ 1 ð7Þ

and has the Dirac delta-function property

lim
h!0
¼Wðr; hÞ ¼ dðrÞ: ð8Þ

Furthermore, according to Monaghan [10] a suitable kernel function should also have compact support to allow for numer-
ically efficient approximations of the field quantities and gradients. Here, we use the quintic spline function presented by
Morris et al. [12] with a compact support of 3h. This kernel satisfies the above mentioned criteria, and Hongbin and Xin
[5] showed that among 10 proposed kernels the quintic spline function or the Gaussian function are favorable in terms of
computational accuracy.

The pressure term in the momentum equation is approximated as

dvðpÞi

dt
¼ � 1

qi
rpi ¼ �

1
mi

X
j

V2
i þ V2

j

� �
~pij
@W
@rij

eij; ð9Þ

with the weight-function gradient @W
@rij

eij ¼ rWðri � rjÞ and the inter-particle pressure

~pij ¼
qipj þ qjpi

qi þ qj
: ð10Þ

In the case of interacting particles of the same phase this form of ~pij recovers the simple midpoint-averaged pressure be-
tween the two particles. But when two particles of different phases interact, the density-weighted inter-particle pressure
from Eq. (10) ensures that rp=q is continuous even for a discontinuous density field, see [8].

The viscous force is derived from the inter-particle-averaged shear stress with a combined viscosity. A simplification for
incompressible flows gives

dvðmÞi

dt
¼ mir2vi ¼

1
mi

X
j

2gigj

gi þ gj
V2

i þ V2
j

� �vij

rij

@W
@rij

; ð11Þ

where mi ¼ gi=qi is the local kinematic viscosity of particle i; vij ¼ vi � vj is the relative velocity of particle i and j and
rij ¼ jri � rjj is the distance of the two particles. This form of the viscous force conserves linear momentum. Angular conser-
vation can be achieved using other formulations such as presented by Hu and Adams [7].

To distinguish between particles of different phases we use integer identifiers. Without a phase transition model this
identifier is constant for a particle i during the entire simulation and is advected with the flow field. Introducing special inter-
actions between particles of different phases, interface effects are incorporated within our method adaptively without the
need of special interface reconstruction schemes. Therefore we can handle arbitrary interface shapes as well as breakup
or merging of phases.

To calculate surface-tension forces between particles of different phases we introduce a color function c as

ck
l ¼

1; if the kth particle does not belong to the phase of particle l;

0; if the kth particle belongs to the phase of particle l:

�
ð12Þ

This color function has a unit-jump at a phase interface. Consequently, the gradient of the color function has a delta-func-
tion-like distribution and gives an approximation of the surface-delta function dR in Eq. (5). Furthermore, the normal direc-
tion at the interface can be obtained from the color gradient by

n ¼ rc
jrcj : ð13Þ
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To further illustrate the transition region with a non-zero color gradient and the normal direction, Fig. 1 shows a sketch of
the particles near an interface with the surface-delta function dR.

In this work, we do not use the color-gradient formulation of Hu and Adams [6], but introduce a new density-weighted
summation. Physically, at an air–water interface the surface-tension forces in the liquid phase are much more prominent
than those in the gas phase. Consequently, the interfacial motion is mainly driven by the water phase. Reflecting this behav-
ior, we formulate the gradient of the color function as

rci ¼
1
Vi

X
j

½V2
i þ V2

j �~cij
@W
@rij

eij ð14Þ

using the inter-particle average

~cij ¼
qj

qi þ qj
ci

i þ
qi

qi þ qj
ci

j: ð15Þ

Note that for a density ratio Uq ¼ q1=q2 ¼ 1 between the two phases, this expression is equal to the midpoint average of
two particles i and j of Hu and Adams [6]. Fig. 2(a) shows the situation when two particles of different phase but with the
same density interact. Here, the surface-delta function is symmetric since ~cij ¼ ~cji ¼ 0:5. For density rations Uq different from
one the density-weighted inter-particle average Eq. (15) leads to a discontinuous color gradient as shown in Fig. 2(b).

It is important to note, that with the assumption of incompressibility of both phases and given the fact that ~cij þ ~cji ¼ 1,
this new color gradient distribution maintains the property

Z þ1

�1
dRðrÞdr ¼

Z þ1

�1
jrcðrÞjdr; ð16Þ

thus we can replace the surface-delta function in the surface-force term, Eq. (5), with the weighted color gradient, Eq. (14). In
doing so, the resulting surface-tension force distribution along the interface is physically more sensible than for previous
approaches.

To calculate the interface curvature within the transition band, we present a new reproducing divergence approximation
without the need for the full support of the kernel function to be contained in the transition band. Starting from a Taylor
series of a continuous vector field u about the ith particle, we multiply the equation with the gradient of the kernel function

Fig. 1. Sketch of the transition band at an interface with the surface delta function dR , the normal n and particles of two different phases.

Fig. 2. Sketch of the color function and surface-delta function between two particles i and j of different phases with density ratio (a) qi=qj ¼ 1 and (b)
qi=qj � 1.
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and integrate over the entire domain. Neglecting second and higher order terms, we obtain the summation form of the cor-
rected gradient as

rui ¼
X

j

uji �rWðrjiÞVj

" # X
j

rji �rWðrjiÞVj

" #�1

: ð17Þ

This formulation is very similar to the reproducing gradient approximation of Chen et al. [2]. One way to obtain the repro-
ducing divergence approximation is to take the trace of Eq. (17). But since the denominator is a d� d matrix, where d is the
number of spatial dimensions, this matrix must first be constructed and then inverted. To avoid this additional computa-
tional work, we further approximate the denominator of the formulation given above by two identities presented in Español
and Revenga [3]Z

r�rWðrÞdr ¼ �I;
Z

r � rWðrÞdr ¼ �d ð18Þ

with I being the unit matrix, as

X
j

rji �rWðrjiÞVj �
I
d

X
j

rji � rWðrjiÞVj

 !
: ð19Þ

Combining Eqs. (17) and (19) and taking the trace, we find that the approximated divergence can be written as

r �ui ¼ d

P
juij � eij

@W
@rij

V jP
jrij

@W
@rij

V j
: ð20Þ

Now only two simple summations are required to approximate the divergence for a particle i. Furthermore, for a linear field
u ¼ Ar with A being a constant, Eq. (20) gives Ad, hence reproduces the divergence of a linear field. Note, that Eq. (20) repro-
duces the divergence even when there is no full support of the kernel function of a particle contained within the transition band.

Using the above formulation to calculate the curvature of the interface, i.e. the divergence of the interface-normal direc-
tion, we finally obtain the acceleration of an interface particle by surface tension as

dvðsÞi

dt
¼ � ai

mi
jirci: ð21Þ

Unlike the formulation in Hu and Adams [6] Eq. (21) takes effect as a body force, hence does not exactly conserve the total
momentum of the system. Note, that when the density ratio Uq at the interface is large, according to Eq. (14) the surface
force on the heavier phase is Uq-times of that on the lighter phase, thus both phases obtain accelerations with the same
magnitude.

3.2. Time-step criteria

The equations presented above are integrated in time with the velocity Verlet scheme. For stability reasons the maximum
time-step is chosen based on several time-step criteria [10,18]. Within the weakly-compressible SPH formulation, the time-
step must satisfy the CFL-condition based on the maximum artificial sound speed and the maximum flow speed

Dt 6 0:25
h

cmax þ jumaxj
; ð22Þ

the viscous condition

Dt 6 0:125
h2

m
; ð23Þ

the body force condition

Dt 6 0:25
h
jgj

� �1=2

; ð24Þ

and the surface-tension condition

Dt 6 0:25
qh3

2pa

 !1=2

: ð25Þ

For satisfying all conditions the global time-step is taken as minimum of Eqs. (22)–(25). Note that the surface-tension
condition for the time-step constraint is based on the reference density. Hence, the admissible step-size of the time integra-
tion for a surface-tension dominated flow problem can be much larger than obtained with the formulation of Hu and Adams
[6].
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4. Numerical examples

In the following section we validate our surface-tension model by comparison to analytic solutions of two-dimensional
problems for steady and unsteady problems. We demonstrate the capabilities of our method by simulating the breakup of a
three-dimensional drop in a shear flow. For all cases we use ghost particles to impose the boundary conditions, see [14]. The
mirror-particle technique is well suited for simple geometries with straight walls and allows for symmetry and no-slip con-
ditions. Except for the last numerical example we use symmetry conditions at the boundaries and enforce a Neumann
boundary condition for the pressure. Additionally, for walls we adjust the velocity of a mirrored ghost wall particle to
vvirtual ¼ 2vwall � vreal.

4.1. Square-droplet deformation

In our first test, we investigate the surface-tension driven deformation of an initially square droplet. We place a square
patch of fluid ‘‘1” with an edge length of lx ¼ ly ¼ 0:6 into a box of fluid ‘‘2” with a domain size of Lx ¼ Ly ¼ 1. The density of
both phases is q ¼ 1, and we use a dynamic viscosity of g ¼ 0:2. The surface-tension coefficient is set to a ¼ 1. Fig. 3(a) shows
the initial particle positions of the two fluids of same density. After t ¼ 1 a circular droplet is formed and the particles are at
rest, see Fig. 3(b).

From the Laplace-law we find that the pressure within the droplet must be higher than that of the surrounding fluid. In
two-dimensions the pressure drop across the interface must satisfy the condition

Dp ¼ a
R
¼ a

ffiffiffiffi
p
p

lx
; ð26Þ

where R is the final radius of the drop. In Fig. 4(a) the pressure profiles of two different initial square droplets of size lx ¼ 0:4
and 0.6 each with two different resolutions (3h ¼ 0:06 and 0.03) are plotted against the radial coordinate. The dotted lines
represent the analytic solutions for the two cases. The calculated pressure profiles agree well with the Laplace-law and con-
vergence is demonstrated for both cases. Note also the thinning of the transition region at the interface with increasing
resolution.

For our non-conservative surface-tension formulation we expect good stability properties with only small parasitic cur-
rents at the interface. Evidence is provided by the kinetic-energy evolution, Fig. 4(b), for an initially square droplet of size
lx ¼ 0:6 and two resolutions 3h ¼ 0:06 and 3h ¼ 0:03. As a reference, we also computed the same case with the method
of Hu and Adams [6], see the dashed line in the figure. At early stages, the surface-tension force produces interfacial motion
deforming the square droplet, which is reflected by the peak in the logarithmic kinetic energy plot. At approximately t ¼ 1 a
circular droplet is formed and the particles are nearly at rest, i.e. the kinetic energy is very low. The energy-decrease at later
times indicates the stability of the circular droplet configuration. Comparing our result with the simulations performed with
the conservative method, good agreement is found for both resolutions. Consequently, our method neither introduces nor
dissipates noticeable energy to a significant amount into the system. As the maximum velocity in the system at later times
is on the order of Oð10�3Þ for both methods, parasitic currents are of negligible magnitude.

We also tested the square-droplet deformation with different densities for the two phases. Fig. 5 shows the pressure drop
for density ratios ranging from Uq ¼ q1=q2 ¼ 0:001 to Uq ¼ 1000. These ratios represent the situation of an air bubble in
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water or a water droplet in air, respectively. Although the result is not as accurate as for the case with Uq ¼ 1, we find good
agreement with and convergence to the analytic solution. Note that over- or underestimation of the pressure drop depends
on the sign of the density gradient at the interface. This dependence can be explained by reference to the surface-tension
model in our method. As we bias the surface-tension force towards the heavy phase at the interface, the approximation error
implies an interface position slightly shifted towards the heavy phase.

4.2. Oscillating rod

A dynamic test case is the circular liquid-droplet oscillation under the action of capillary forces. Instead of starting from
an initially elliptic droplet we prescribe an initial velocity field

Ux ¼ U0
x
r0

1� y2

r0r

� �
exp � r

r0

� �
; ð27Þ

Uy ¼ �U0
y
r0

1� x2

r0r

� �
exp � r

r0

� �
ð28Þ

with U0 ¼ 10 and r0 ¼ 0:05 for the particles within the drop of radius R ¼ 0:2. The computational domain is a box of size
Lx ¼ Ly ¼ 1:0 and the droplet is placed at the center of the box. The densities of the liquid phase and the droplet are both
set to ql ¼ qd ¼ 1, the dynamic viscosities are gl ¼ gd ¼ 0:05 and the surface-tension coefficient between the two phases
is a ¼ 1. At the boundaries we apply no-slip wall boundary conditions. Fig. 6 shows the positions of the droplet particles
at t = 0.0, 0.08, 0.16 and 0.26.

To show convergence of our method we simulate the oscillating droplet with different resolutions of 900, 3600 and
14,400 particles. The result of these simulations is shown in Fig. 7(a), where we compare the position of the mass center
of the particles of the upper right-quarter section of the droplet.
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Now we study the small-amplitude oscillations of an air–water like interface with U0 ¼ 1. For this purpose we set the
density and viscosity ratio of the droplet phase and the surrounding phase to U ¼ qd=ql ¼ 1000 and k ¼ gd=gl ¼ 100, respec-
tively. A study of the influence of the surface-tension coefficient on the resulting oscillation period s is shown in Fig. 7(b). The

solid line represents the theoretical relation between the surface tension a and the oscillation period s ¼ 2p
ffiffiffiffiffiffiffiffi
R3qd

6a

q
. We find
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good agreement between the analytic expression and the simulations over the entire range of studied parameters and dem-
onstrate once again convergence of our method. As in Hu and Adams [6], the largest deviation from the theoretical values is
less than 5%.

This second test case is of special importance for our new surface-tension formulation. If the simple inter-particle-aver-
aged color gradient summation is used to obtain the curvature and normal direction, as in Hu and Adams [6], the artificial
sound speed and the time-step size are determined by the surface tension and the density ratio, which leads to a much smal-
ler Mach number (less than 0.05) and a much smaller time-step size than that obtained based on the maximum flow velocity.
For the density-weighted color-gradient formulation we find that we can relax the time-step criterion implied by the surface
tension (Eq. (25)) and use a suitable chosen reference density instead of the minimum density as threshold. In this example
we set qref ¼ 0:1qmax which allows for a 10 times larger time-step as compared to qmin. The theoretical relation between the
surface tension and the oscillation period can be computed accurately with a more reasonable Mach number (0.1) and sig-
nificantly better efficiency, see Fig. 7(b).

4.3. Drop in shear flow

We consider a circular drop in a shear flow with a density ratio of U ¼ 1. The drop of size R ¼ 1 is located in the middle of
a periodic rectangular channel of size Lx ¼ Ly ¼ 8. A velocity of 	u1 is applied to the no-slip wall boundaries. The capillary
number Ca and the Reynolds number Re are defined by the shear rate G ¼ 2u1=Ly, i.e.

Ca ¼ GgR
a

; Re ¼ qGR2

g
: ð29Þ

In the range of parameters where a steady solution is obtained, the flow shear deforms the droplet to an ellipsoid, balancing
the viscous stresses and the surface tension. As a measure of the deformation the parameter D ¼ ða� bÞ=ðaþ bÞ is used,
which is a ratio of the transverse drop diameter a and conjugate diameter b.

Fig. 8(a) shows a snapshot of the simulation with the parameters Ca ¼ 0:2; Re ¼ 1:0 and a viscosity ratio of k ¼ 100. The
calculation was performed with a smoothing length 3h ¼ 0:25, i.e. a total of 9216 particles. The deformation parameter is
calculated with the least-square ellipse fitting method of Fitzgibbon et al. [4]. A comparison of the calculated deformations
and the analytic predictions using the small-deformation theory suggested by Taylor [17] is plotted in Fig. 8(b). For both the
viscosity ratios of k ¼ 1 and 100 we find good agreement with theory in the range of small capillary numbers. Contrary to Hu
and Adams [8], the deformation parameter is slightly overpredicted, but the absolute deviation from theory using the same
number of particles is smaller.

As last case we simulate a complex multi-phase problem with topology change of the interface geometry to show the
capabilities of our method for technically relevant flows. For this purpose we place a three-dimensional drop of size
R ¼ 1 at the center of a computational domain of size 8R� 4R� 4R and move the upper and lower wall boundaries with
the velocity u1 ¼ 	2. Periodic boundary conditions are applied at the remaining boundaries. The shearing fluid and the drop
phase have a density and viscosity ratio of Uq ¼ k ¼ 1. The other fluid properties are chosen to correspond to Re ¼ 1 and
Ca ¼ 0:25. Fig. 9 shows the steady-state solution at T ¼ 25 for a simulation with a resolution of 3h ¼ 0:15, i.e. a total of
1,024,000 particles. The left half of the droplet is represented with particles, the right half shows the extracted surface con-
tour using pv-meshless [19]. The surrounding bulk phase is shown by blue particles. At Ca ¼ 0:25 the shear forces are mod-
erate compared to the surface-tension forces and the droplet deforms to a steady ellipsoid. We simulated 80,000 time-steps
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Fig. 9. Three-dimensional drop deformation in shear flow at Re ¼ 1; Ca ¼ 0:25 and a resolution of 3h ¼ 0:15 at T ¼ 25.

Fig. 10. Drop deformation and breakup in shear flow at Re ¼ 1 and different capillary numbers at T ¼ 25 (left figure) and T ¼ 50 (right figure). After the
breakup into two main daughter drops, the liquid thread in the middle is still unstable and separates two further small droplets.
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of this example on a SGI Altix 4700 platform using 64 processors within about 80 h. The performance of the implemented
SPH-client using the PPM library is about 2 � 10�4 s/time-step/particle, which is comparable to the performance for a basic
SPH code without surface-tension effects, see Sbalzarini et al. [15].

When the capillary number is increased, i.e. the surface-tension forces become less dominant, the capillary force is not
strong enough to balance the viscous stress and no steady drop deformation is obtained. In Fig. 10 we show the results of
the simulations with capillary numbers ranging from Ca ¼ 0:25 to Ca ¼ 0:4 in a channel of size 18R� 4R� 4R with a reso-
lution of 3h ¼ 0:3. As a reference we show again the last example with Ca ¼ 0:25 in Fig. 10(a). Above the critical state, see
also Li et al. [9], droplet breakup occurs and produces two droplets, see Fig. 10(b). Further increasing the capillary number,
the neck is more pronounced before breakup, and a very small third droplet between the other droplets is generated in
Fig. 10(c). For high capillary numbers, the so-called ‘‘dumbbell” shape has a very long neck and a more complex breakup
process occurs. In Fig. 10(d) we show that at Ca ¼ 0:4 five droplets occur.

This example shows quite clear one advantage of SPH (and particle methods in general) compared to grid-based methods
in studying multi-phase problems: once the studied problem is initialised, by its nature the method incorporates interface
phenomena adaptively, i.e. the change of the interface geometry or even separation and merging are handled without the
need of special numerical algorithms.

5. Concluding remarks

In this work, we present a novel surface-tension method for multi-phase SPH. With a new reproducing divergence
approximation, we propose a new formulation for the surface curvature and modify the color gradient summation with a
density weighting. While the new formulation has comparable accuracy as the formulation of Hu and Adams [6], it can
achieve much faster computation for problems with large density ratio. Although demonstrated here only for the case of
two different fluids distinguished by a single color function, we emphasize that an extension to handle more complex mul-
ti-phase problems is straightforward. We have validated our method with analytic solutions for steady equilibrium droplets,
capillary waves and drop deformations in shear flow. We demonstrate convergence of our method and good stability prop-
erties even for long time simulations. The simulation of a complex three-dimensional problem shows the capabilities of our
method in handling multi-phase problems with complex interfaces.
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a b s t r a c t

In this paper, a Lagrangian particle method is proposed for the simulation of multiphase
flows with surfactant. The model is based on the multiphase smoothed particle hydrody-
namics (SPH) framework of Hu and Adams (2006) [1]. Surface-active agents (surfactants)
are incorporated into our method by a scalar quantity describing the local concentration
of molecules in the bulk phase and on the interface. The surfactant dynamics are written
in conservative form, thus global mass of surfactant is conserved exactly. The transport
model of the surfactant accounts for advection and diffusion. Within our method, we can
simulate insoluble surfactant on an arbitrary interface geometry as well as interfacial
transport such as adsorption or desorption. The flow-field dynamics and the surfactant
dynamics are coupled through a constitutive equation, which relates the local surfactant
concentration to the local surface-tension coefficient. Hence, the surface-tension model
includes capillary and Marangoni-forces. The present numerical method is validated by
comparison with analytic solutions for diffusion and for surfactant dynamics. More com-
plex simulations of an oscillating bubble, the bubble deformation in a shear flow, and of
a Marangoni-force driven bubble show the capabilities of our method to simulate interfa-
cial flows with surfactants.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

Multiphase systems occur in a wide range of technical or biological applications. The dynamics of such systems are much
more complex than that of single-phase systems. Depending on the characteristic length scales, surface-tension forces at an
interface may dominate inertia effects and thus have a strong influence on the overall flow evolution. Surface-tension effects
can be differentiated into the capillary force and the Marangoni-force. The former is proportional to the local curvature and
minimizes the interface area, the latter accounts for surface-tension gradients along the interface (Scriven and Sternling [2]).

Surface-active agents (surfactants) offer the possibility to manipulate or even control the dynamics of multiphase sys-
tems. By their nature, surfactant molecules adhere to a fluid interface and reduce the local surface tension as they form a
buffer zone between the two phases. The surfactant at an interface is advected with the interfacial motion and may diffuse
along the surface. Consequentially, surface-tension gradients can develop and influence the flow evolution. Besides the insol-
uble case, where all molecules are confined to the interface, the dynamics of the surfactant can be coupled with the adjacent
phases. Depending on the bulk concentration and the local interface concentration, adsorption and desorption may transport
surfactant molecules between the bulk phase and the interface.

Surfactants are widely used in technological and biological applications. Due to the presence of surfactant, e.g. in a mix-
ture of water and air, very small droplets can be formed which is useful to drug delivery, water purification and other appli-
cations. Even more important is the presence of surfactant in pulmonary alveoli, whose liquid-lining layer can function only
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with a substance that reduces surface tension (Pattle [3], Clements [4]). A simple estimate of the pressure in the liquid layer
of an alveolar structure with a characteristic length scale of about 100 lm and the Young–Laplace equation shows that a
pure water–air interface ðr0 � 0:07 N=mÞ would cause endexpiratory alveolar collapse and atelectasis (Von Neergard [5]).
Moreover, surfactant molecules are believed to contribute also to pulmonary defence mechanisms and local immunomod-
ulation (Hamm et al. [6]).

A numerical model describing interface dynamics including surfactants needs to handle the phase singularity at the inter-
face and solve the surfactant evolution equation on the interface. Also, an evolution equation for the surfactant in the bulk
solution needs to be coupled with the interfacial dynamics. As a consequence, the surfactant dynamics and the flow field
cannot be solved independently from each other. Another important issue is the conservative formulation of the governing
equations, in particular with respect to the mass of surfactant. These requirements render the modeling of multiphase flows
with interfaces including surfactant effects a challenging task which has been studied already since about 20 years.

Early numerical investigations of the effect of surfactants in multiphase systems were limited to the insoluble case, where
the transport of molecules between the bulk phase and the interface is neglected. The models were mainly used to investi-
gate the effect of surfactants on drop deformation in a shear flow. Stone and Leal [7] solved the time-dependent convective-
diffusion equation for surfactant transport on an interface using the boundary-integral method. Including the effect of sur-
factant solubility, Milliken and Leal [8] studied the deformation and breakup of a drop in an axial extensional flow with their
extended boundary-integral method, but they did not present a general method for simulating arbitrary interfaces with sol-
uble surfactants. While these works were restricted to two-dimensional problems, Yon and Pozrikidis [9] developed a fully
three-dimensional finite volume method combined with the boundary-element method to study shear flows past a viscous
drop. Whereas these methods described the interface in a discrete way, many following works used a continuous interface
representation to account for interface dynamics. Xu and Zhao [10] used the Eulerian level-set method, where the moving
interface is formulated as zero level-set on a Cartesian grid. They considered the interface to be convected passively by the
flow, i.e. they prescribed the flow field and solved the surfactant dynamics on the interface without feedback to the flow
field.

With respect to its importance for realistic long-time simulations and for accuracy reasons, the surfactant mass conser-
vation property was of special interest in subsequent works. James and Lowengrub [11] presented a fully coupled, axisym-
metric, incompressible Navier–Stokes solver based on the ‘‘volume of fluid” (VOF) method and simulated insoluble
surfactant dynamics on a moving interface. Different from previous works, they tracked the surfactant mass instead of solv-
ing the evolution equation for the concentration. Also, the surface area is tracked in this method instead of a reconstruction
from the volume fraction. As consequence, for long-time simulations and strong interface deformations the reconstruction of
the interface might be inconsistent with both the volume fraction and the surface area. Xu et al. [12] used a level-set method
for interfacial Stokes flows to investigate the effect of insoluble surfactants on single drops and droplet interactions. Conser-
vation of surfactant material on the interface was enforced numerically by a rescaling operation, since the method itself was
not formulated in conservative variables.

Recently, Lai et al. [13] proposed an immersed-boundary method to simulate the interfacial problems with insoluble sur-
factant. Their main achievement is a new discretization for the surfactant concentration equation and a Lagrangian tracking
of the interface, which allows for numerical conservation of the total mass of surfactant.

An important increase of considered complexity in the contaminated and moving interface problem was achieved by
Zhang et al. [14]. They solved the fully coupled flow field and surfactant dynamics on the interface and in the bulk phase.
The flux of surfactant on the interface was assumed to be balanced by adsorption and desorption. But this front-tracking
method does not conserve the total mass of surfactant. Muradoglu and Tryggvason [15] also used the front-tracking method
to simulate interfacial flows with soluble surfactant, but assumed that the mass transfer between the bulk phase and the
interface occurs within a thin adsorption layer. They considered the axisymmetric motion and deformation of a viscous drop
moving in a circular tube and demonstrated first-order convergence of the surfactant mass error.

Another class of methods use finite elements to simulate free surface flows with surfactant transport, e.g. Liao et al. [16]
and McGough and Basaran [17]. Such approaches do not satisfy discrete conservation of surfactant mass at the interface,
which can be of particular importance for the long-time simulations of realistic applications.

In this article, we present a numerical method that includes all main relevant surfactant dynamics in an incompressible
Navier–Stokes solver based on the smoothed particle hydrodynamics (SPH) method. This Lagrangian formulation for multi-
phase problems requires no special interface capturing or tracking and can handle complex geometries as well as topology
changes. We introduce the surfactant dynamics in conservative form and use mass fluxes to consider the exchange of sur-
factant between the interface and the bulk phase. Within the thin interface layer, we solve a diffusion equation for the sur-
factant and due to our Lagrangian method advection is naturally included. Furthermore, we use different constitutive
equations for the surface-tension correlation to demonstrate the general applicability of our method. We validate the meth-
od by comparisons with analytic solutions and grid convergence studies and show the exact conservation of surfactant mass
on the interface and in the bulk phase. Finally, we study some more complex multiphase problems such as the oscillating
bubble experiment, the bubble deformation in shear flow and the Marangoni-force driven bubble.

In the next section, the governing equations for the flow field and the surfactant dynamics are presented and the numer-
ical algorithm summarizing also the main aspects of the SPH particle method is described in Section 3. The diffusion model in
the bulk phase as well as on the interface and the coupling between them is validated and tested in Section 4. Some complex
simulations are presented in Section 5 and finally, concluding remarks are given in Section 6.
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2. Governing equations

The isothermal Navier–Stokes equations are solved on a moving Lagrangian frame

dq
dt
¼ �qr � v; ð1Þ

dv
dt
¼ gþ 1

q
�rpþ FðmÞ þ FðsÞ
h i

; ð2Þ

where q; p; v and g are material density, pressure, velocity and body force, respectively. FðmÞ denotes the viscous force and
FðsÞ is the interfacial surface force.

In SPH, incompressible flow is usually modelled by the weakly-compressible approach, in which a stiff equation of state
(EOS) is used to relate the pressure to the density, i.e.

p ¼ p0
q
q0

� �c

þ b; ð3Þ

with c ¼ 7, the reference pressure p0, the reference density q0 and a parameter b. These parameters and the artificial speed of
sound are chosen following a scale analysis presented by Morris et al. [18] which determines the threshold of the admissible
density variation.

The viscous force FðmÞ then simplifies to the incompressible formulation

FðmÞ ¼ gr2v; ð4Þ

where g is the dynamic viscosity. Following the continuum-surface-tension model (CSF), the surface force can be expressed
as the gradient of the surface stress tensor with the surface-tension coefficient a

FðsÞ ¼ r � aðI� n� nÞdR½ � ¼ �ðajnþrsaÞdR: ð5Þ

The capillary force ajndR is calculated with the curvature j, the normal vector of the interface n and the surface-delta func-
tion dR. This expression describes the pressure jump condition normal to an interface. In case of surface tension variations
along the interface (e.g. due to non-uniform temperature or surfactant concentration) the Marangoni-forcersadR results in a
tangential stress acting along the interface (rs is the surface gradient operator).

The evolution of surfactant on the interface is governed by an advection–diffusion equation with a source term account-
ing for the surfactant transport between the bulk and the phase interface, e.g. adsorption and desorption,

dC
dt
¼ rs � DsrsCþ _SC; ð6Þ

where C; Ds and _SC are the interfacial surfactant concentration, the diffusion coefficient matrix (in case of isotropic diffusion
Ds ¼ Ds � I) and the source term, respectively.

After integration over the domain, Eq. (6) gives the variation of the total mass ms of the interfacial surfactant

dms

dt
¼ 1

dt

Z
V
CdRdV ¼

Z
V
rs � DsrsCdRdV þ

Z
V

_SCdRdV : ð7Þ

The source term _SC specifies the surfactant mass flux between the bulk phase and the interface. As widely used in the liter-
ature, the transport of surfactant is assumed to follow Langmuir kinetics (see Borwankar and Wasan [19])

_SC ¼ k1CsðCH � CÞ � k2C; ð8Þ

where k1 and k2 are the adsorption and desorption coefficients and Cs is the volumetric concentration of surfactant in the
fluid phase immediately adjacent to the interface. The maximum equilibrium surfactant concentration is given by CH, which
is only reached by C in the limit of large concentration Cs.

Assuming that each surfactant molecule can move freely in the bulk phase, the transport of surfactant can be described by
the advection–diffusion equation

dC
dt
¼ rD1rC: ð9Þ

Here, D1 denotes the bulk diffusion coefficient and C is the volumetric surfactant concentration in the liquid. After integra-
tion over the domain the rate of change of the total surfactant mass in the liquid Ms is obtained by

dMs

dt
¼
Z

V
D1r2CdV �

Z
V

_SCdRdV : ð10Þ

The second term on the right side of Eq. (10) is equal to the second term on the right hand side of Eq. (7), hence ensures
global mass conservation.
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To close our model, we relate the interfacial surfactant concentration C to the surface-tension coefficient a by a consti-
tutive equation. In this paper, the model of Otis et al. [20] defined by two piecewise linear functions is used

aðCÞ ¼
a0 þ ðaH � a0Þ C

CH ; C 6 CH

aH � a2
C

CH � 1
� �

; CH < C 6 Cmax:

8<
: ð11Þ

In Eq. (11), a0 is the reference surface tension of the clean surface and aH is the reduced surface tension at the maximum
equilibrium surfactant concentration CH. The second part of the function is defined up to the maximum possible surfactant
concentration Cmax where the surface tension a changes proportionally with factor a2 to the non-dimensional concentration
C=CH. Cmax is the maximum dynamic concentration of surfactant obtainable on dynamic compression of the interface, see
[20].

Note that the use of other relations, such as the Frumkin isotherm or the Langmuir model [21,14,9,22,23], is
straightforward.

The governing equations are non-dimensionalized using reference values for the velocity u0, the length scale l0, the den-
sity q0 and the bulk concentration C1. The non-dimensional characteristic numbers are

Re ¼ q0u0l0

g
; Ca ¼ gu0

a0
; Bo ¼ qgl2

0

a0
; ð12Þ

Pes ¼
u0l0

Ds
; Pe1 ¼

u0l0

D1
; Da ¼ CH

C1l0
; ð13Þ

where Re; Ca; Bo; Pes; Pe1 and Da are the Reynolds number, the capillary number, the Bond number, the Peclet number
based on Ds, the Peclet number based on D1 and the Damköhler number [15].

3. Numerical method

The governing equations are discretized using the multiphase SPH method of Hu and Adams [1]. Each particle represents
a Lagrangian element of fluid, carrying all local phase properties. With updating the positions of the particles, this method
accounts for advection as the governing equations are formulated in terms of material derivatives.

3.1. Multiphase flow solver

According to Hu and Adams [1], we calculate the density of a particle i each timestep from a summation over all neigh-
boring particles j

qi ¼ mi

X
j

Wij ¼
mi

Vi
: ð14Þ

Here, mi denotes the particle mass, Wij ¼Wðri � rj;hÞ is a kernel function with smoothing length h and Vi is the volume of
particle i. This summation allows for density discontinuities and conserves mass exactly. Based on the studies of Morris et al.
[18], we use the quintic spline function with compact support of 3h as kernel function.

The pressure term in the momentum equation is approximated as

dvðpÞi

dt
¼ � 1

qi
rpi ¼ �

1
mi

X
j

V2
i pi þ V2

j pj

� � @W
@rij

eij; ð15Þ

with the weight-function gradient @W
@rij

eij ¼ rWðri � rjÞ. Note that this form conserves linear momentum exactly since
exchanging indices i and j in the sum leads to an opposite pressure force. The viscous force is derived from the inter-parti-
cle-averaged shear stress with a combined viscosity. A simplification for incompressible flows gives

dvðmÞi

dt
¼ mir2vi ¼

1
mi

X
j

2gigj

gi þ gj
V2

i þ V2
j

� �vij

rij

@W
@rij

; ð16Þ

where mi ¼ gi=qi is the local kinematic viscosity of particle i;vij ¼ vi � vj is the relative velocity of particle i and j and
rij ¼ jri � rjj is the distance of the two particles.

The calculation of the interface curvature to determine the surface tension can be avoided. For this purpose, in the con-
tinuous surface force model (CSF) the surface force is rewritten as the gradient of a stress tensor. The gradient of the color
function ci is used as approximation of the surface-delta function dR. This color function defines to which phase particle i
belongs, i.e. ci ¼ 0 for phase 1 and ci ¼ 1 for phase 2. Since this function has a unit jump across the phase interface, the par-
ticle-averaged gradient rci of particle i
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rci ¼
1
Vi

X
j

V2
i ci þ V2

j cj

h i @W
@rij

eij ð17Þ

has a delta-function-like distribution. Hence, the interface stress between phases 1 and 2 is obtained as

PðsÞi ¼ ai
1
jrcij

1
d

Ijrcij2 �rcirci

� �
; ð18Þ

where d denotes the spatial dimension and a is the surface tension coefficient between the phases 1 and 2. Finally, the par-
ticle-averaged gradient of this stress term gives the particle acceleration due to surface tension

dvðsÞi

dt
¼ 1

mi

X
j

@W
@rij

eij � V2
i P

sð Þ
i þ V2

j P
ðsÞ
j

� �
: ð19Þ

3.2. Surfactant kinetics

Using the color function to distinguish different phases in the system, particles with a non-vanishing color-function gra-
dient approximate the singularity at an interface as a narrow transition band, see Fig. 1. As only particles with at least one
neighbor of a different phase have a non-vanishing color-function gradient, the thickness of this transition band is of the size
of 3h at each side of the interface. Within this narrow band of particles, the governing equations for the interfacial phenom-
ena (6)–(8) are solved locally for each individual particle. Hence, using the color gradient function as surface-delta function,
an interfacial particle i contributes to the interface area by

Ai ¼ Vijrcij ð20Þ

(in two dimensions, Ai and Vi are the interface length and the particle area). Corresponding to the individual interface area
fraction, each particle carries a fraction of interfacial mass of surfactant msi. The evolution of the surfactant mass fraction of a
single particle due to adsorption and desorption is given by

dmðsÞsi

dt
¼ _SCi

Ai ¼ k1C1 CH � Ci
� �

� k2Ci
� 	

Ai; ð21Þ

where the subscript ðsÞ indicates the effects due to adsorption and desorption. To assure the numerical stability for particles
with small interface area, the interfacial surfactant concentration is calculated from a kernel average

Ci ¼
P

jmsjWijP
jAjWij

; ð22Þ

where summation is on all neighboring interface particles, i.e. all neighboring particles which are within the narrow tran-
sition band.

Fig. 1. Sketch of the transition band at an interface with the surface delta function dR and particles of two different phases. The width of the transition band
is equal to the compact support of the kernel function on each side of the interface, i.e. in total 6h.
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As we solve the surfactant equations in conservative form, the total mass of surfactant is conserved exactly. Due to par-
ticle motion it may happen, that interface particles leave the transition band and transport surfactant material away from the
interface. To ensure exact conservation of surfactant mass in the system, we must treat these particles k that leave the inter-
face transition band in a special way. Their fraction of interfacial mass of surfactant msk is mapped back to a particle i that
remains within the transition band by

Dmmap
si ¼

X
k

msk
WkiP

IWkI
; ð23Þ

where the smoothing function Wki serves as weighting factor. To satisfy the consistency condition, this weight is normalized
with

P
IWkI. Here, the summation is on all particles I of the intersection of neighbors of k and the remaining interface

particles.

3.3. Bulk diffusion

The diffusion in the bulk phase has a similar form as the viscous force in the momentum equation for an incompressible
flow. Hence, the SPH approximation of the diffusion equation in conservative form follows in analogy to Eq. (16) as:

dMsi

dt
¼
X

j

2D1iD1j

D1i þ D1j
V2

i þ V2
j

� �Cij

rij

@W
@rij

; ð24Þ

where Msi is the mass of surfactant in the bulk phase of particle i;D1i and D1j are the bulk diffusion coefficients of particle i
and j and Cij ¼ Ci � Cj is the concentration difference. Note that the average diffusion coefficient in Eq. (24) ensures the zero-
flux condition between two phases if one diffusion coefficient is zero. Each time-step, after updating the particle surfactant
mass and particle volume, the local bulk concentration is calculated from

Ci ¼
Msi

Vi
: ð25Þ

3.4. Interfacial diffusion

Following Bertalmío et al. [24], the interfacial diffusion Eq. (6) can be expressed as

dC
dt
¼ rs � DsrsC ¼

1
jrcjr � ½PsDsrCjrcj�; ð26Þ

where Ps ¼ I� n� n is the operator, which projects the gradient of the surfactant concentration rC tangentially to the
interface (i.e. the surface gradient operator rsC). This formulation solves the interfacial diffusion on a surface of a finite
width and thus is well suited for the interfacial modelling within the smoothed particle hydrodynamics framework.

Discretizing Eq. (26) with SPH, we calculate the term in the brackets on the RHS ðk ¼ PsDsrCjrcjÞ for each particle and
use the general SPH summation formula to calculate the divergence of k. Finally, the material derivative of the interfacial
surfactant mass fraction by interfacial diffusion is

dmðdÞsi

dt
¼
X

j

kiV
2
i þ kjV

2
j

� � @W
@rij

eij: ð27Þ

Particles on the fringes of the interface transition band might have only one neighboring particle of a different phase. Hence,
the simple normalized color gradient could lead to a wrong approximation of the interface normal direction. As a remedy, we
calculate the normal vector by a weighted summation of the color gradients of the interfacial neighbors j

ni ¼
P

jrcjAjP
jrcjAj




 


 : ð28Þ

Here, the interfacial area fraction Aj is used as weighing factor since the color gradient of the interface nearest particle is a
better approximation of the normal direction (see Section 4.2, Fig. 4(b)).

As a consequence of the finite transition region, the general SPH discretization does not everywhere give an accurate esti-
mate of the surfactant gradient. The neighbors of a particle adjacent to the interface do not all belong to the interface and
must therefore be excluded from the gradient calculation. Following Chen et al. [25], a corrected gradient calculation at po-
sition xi yields

rCðxiÞ ¼
X

j

ðxi � xjÞV2
jrWijVj

" #�1

�
X

j

ðCi � CjÞV2
jrWijVj: ð29Þ
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This formulation is valid for all situations where the gradient rCðxiÞ of particle i is calculated with at least two neighboring
particles in the transition band. The implementation of Eq. (29) is for both two and three dimensions straightforward since
only a d� d matrix inversion has to be performed.

During time integration, due to particle motion in the transition band around the interface a non-uniform and non-
smooth surfactant concentration profile normal to the interface may develop. In the limit of an infinitely high resolution, this
unphysical effect vanishes as the width of the transition region tends to zero. Nevertheless, to increase the accuracy espe-
cially for lower resolution simulations, we introduce a smoothing of the surfactant concentration normal to the interface.
Instead of using a reinitialization as presented by Sbalzarini et al. [26], we adopt the directed-diffusion approach to introduce
artificial normal diffusion within the transition band. For this purpose, Eq. (26) is extended with the artificial normal diffu-
sion as

dC
dt
¼ rs � DsrsC ¼

1
jrcjr � ½PsDsrCjrcj þ PnDnrCjrcj�; ð30Þ

where Pn ¼ n� n and Dn ¼ DnI are the normal projection matrix and the normal diffusion coefficient matrix.

3.5. Coupling between the bulk phase and the interface

The evolution of surfactant on the interface and in the bulk phase is coupled by the source term _SCA, thus global conser-
vation of mass is ensured. If one fluid phase is insoluble for surfactant but has an interface containing surfactant, a special
treatment of its interface particles is needed. Physically, the bulk surfactant concentration Ck and the interfacial surfactant
concentration Ck of such a particle k are zero. But as these particles contribute to the surfactant dynamics within the tran-
sition band, the bulk concentration must be extrapolated from the interface particles of the adjacent phase. Accordingly, the
calculated surfactant mass flux of these particles must be taken into account on the opposite bulk particles. Mathematically,
the mass exchange between an interface particle k (of an insoluble phase ) and a bulk particle i (of the opposite soluble
phase) is represented as

D
dMsi

dt

� �
¼ �

X
k

_SCk
Ak

AiP
lAl
; ð31Þ

where the fraction of the interface area Ai is used as weight. For consistency this weight is normalized with the sum of the
fractions of the interface areas

P
lAl. Here, the summation is on all particles l, which are in the surfactant soluble phase and in

the neighborhood of particle k (within the support domain of the kernel function).

3.6. Time-step criteria

The equations presented above are integrated in time with an explicit predictor – corrector scheme. All quantities are
updated in every substep. For stability reasons the global time-step is chosen based on several time-step criteria [27,28].
Within the weakly-compressible SPH formulation, following [27,28,1] the time-step must satisfy the CFL-condition (Cou-
rant–Friedrichs–Lewy-condition) based on the maximum artificial sound speed and the maximum flow speed

Dt 6 0:25
h

cmax þ jumaxj
; ð32Þ

the viscous condition

Dt 6 0:125
h2

m
; ð33Þ

the body force condition

Dt 6 0:25
h
jgj

� �1=2

; ð34Þ

the surface tension condition

Dt 6 0:25
qh3

2pa

 !1=2

ð35Þ

and the diffusion condition

Dt 6 0:125
h2

D
: ð36Þ

Therefore, the global time-step is evaluated through the minimum between Eqs. (32)–(36).
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4. Validation

To validate our modeling and implementation of the diffusion effects and surfactant kinetics with SPH we consider sev-
eral two-dimensional test cases isolating each single effect. Provided that an analytic solution is available, we compare our
results and test for convergence.

4.1. Bulk diffusion

In a first test we calculate the diffusion of a scalar species in a bulk liquid phase. For the computational domain we choose
a square of fluid surrounded by solid walls with a length of lx ¼ ly ¼ 0:1 m in each direction. The diffusion coefficient of the
liquid phase is taken to be D ¼ 4� 10�6 m2=s. Using an initial exponential distribution of the concentration field Cðx; tÞ

Cðx; t ¼ 0Þ ¼ exp
�ðx� x0Þ2

4DT0

" #
; ð37Þ
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Fig. 2. (a) Concentration profiles of bulk diffusion at t = 0.0, 1.5 and 3.0; solid line: analytic solution, symbols: SPH results. (b) L1 error with respect to
smoothing length h for the bulk diffusion test (see Section 4.1).
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the analytic solution of the diffusion problem follows from:

Cðx; y; tÞ ¼ Affiffiffiffiffiffiffiffiffiffiffiffiffi
t þ T0
p exp

�ðx� x0Þ2

4Dðt þ T0Þ

" #
; ð38Þ

where T0 ¼ 1s; A ¼ 1 kg m�3 s1=2 and x0 ¼ lx=2.
Fig. 2(a) shows the evolution of the concentration profiles at t ¼ 1:5 and 3. The solid lines represent the exact analytic

solution and the symbols denote the results of a simulation with smoothing length h ¼ 8:�3� 10�3. The time and spatial val-
ues are made dimensionless with the reference values T0 and lx, respectively. Even though this resolution is relatively poor,
the calculated profiles are in very good agreement with the analytic solution. To evaluate the accuracy of our calculation
quantitatively we define the error norm L1

L1 ¼
P

jjCj � Cðxj; tÞj
C1N

; ð39Þ
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Fig. 3. (a) Concentration profiles of interfacial diffusion at t = 0, 0.5, 1.0 and 2.0; solid line: analytic solution, symbols: SPH results. (b) L1 error with respect
to smoothing length h for the interfacial diffusion test (see Section 4.2).
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which is the normalized particle-averaged deviation from the analytic solution. Here, N denotes the total number of parti-
cles. In Fig. 2(b) the error norm L1 is plotted with respect to the smoothing length h. As expected, with increasing resolution
the error decreases and converges approximately with second order.

4.2. Surface diffusion

For validation of the surface diffusion model we calculate the temporal evolution of an initially non-uniformly distributed
surfactant concentration profile on an interface. We put a drop with radius R ¼ 1� 10�3 m into a liquid environment (cen-
tered in a Cartesian coordinate system) and initialize the interfacial surfactant concentration with the solution from Xu et al.
[10] at t ¼ 0

CðH; tÞ ¼ C1
2
½expð�tÞ cosðHÞ þ 1�: ð40Þ

Here, H is the counterclockwise angle of the interface with respect to the x-axis.
Fig. 3(a) shows the prediction of the interfacial concentration profiles with our SPH-model compared to the analytic solu-

tion at several timesteps. The calculations were performed with a smoothing length h ¼ 5� 10�3 m, a surface diffusivity of
D ¼ 1� 10�6 m2=s for both the tangential and normal diffusion and a maximum surfactant concentration
C1 ¼ 3� 10�6 kg=m2. The reference values used to non-dimensionalize the results are T1 ¼ 1 s;C1 and l1 ¼ R. The calcu-
lated profiles only show very small discrepancies from the analytic solution. These errors converge with about first-order,
see Fig. 3(b).

To clarify the influence of the interface-normal approximation, in a next step we neglect the diffusivity on the interface
(Ds ¼ 0) and simulate the surfactant concentration evolution on a steady air–water interface. Physically, the profile is ex-
pected to remain at the initial condition. The left profile in Fig. 4(a) shows the surfactant profile after t ¼ 5 using the nor-
malized color gradients as normal direction ni ¼ rci=jrcij. The profile is not smooth and differs strongly from the initial
condition. This problem arises from the fact, that the particles are initially positioned on a Cartesian grid and that the circular
interface is not represented accurately. Consequently, the color gradients do not represent the correct normal direction,
which is shown in the left plot of Fig. 4(b). Note that the length of the vectors is adjusted for clarity.

We solved this problem with the introduction of the averaged normal calculation with Eq. (28). The corresponding sur-
factant profile and normals are shown in the right plots in Fig. 4(a) and (b). The initial surfactant profile is preserved and the
normal diffusion does not introduce artificial surface diffusion.

4.3. Surfactant kinetics

Now we test our implementation of the interfacial surfactant transport and the coupling between the bulk phase and the
interface. For this purpose, the adsorption of surfactant molecules to an initially clean interface is investigated. A bubble of
size R ¼ 1� 10�3 m is exposed to a liquid phase with a constant surfactant concentration of Cðx; t ¼ 0Þ ¼ C0 ¼ 1 kg=m3.
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Fig. 4. (a) Non-dimensional surfactant concentration profile at t = 5 with Dn ¼ 1 and h ¼ 0:125 for the two normal formulations (curves are shifted for
clarity). (b) Comparison of interface normals formulation; left: calculation with ni ¼ rci=jrcij, right: calculation with Eq. (28).
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Assuming the bulk phase to be very large and the diffusion process to be infinitely fast, the bulk surfactant concentration
is homogeneous in space and constant in time. Hence, the bulk surfactant concentration directly underlying the interface is
constant as well. From Eq. (8) using the parameters k1 ¼ 1 kg=m3=s; k2 ¼ 0:1� 1=s and CH ¼ 0:005 kg=m3 an equilibrium
interfacial surfactant concentration can be obtained as

Ceq

CH
¼ k1C

k1C þ k2
� 0:91; ð41Þ

where the adsorption and desorption rates balance each other, and the interfacial surfactant concentration remains constant.
The first line in Fig. 5(a) shows the result of a simulation of a fixed air bubble in a surfactant rich water surrounding
ð1 : D1 ¼ 1Þ. Here, time is non-dimensionalized with the reference time t1 ¼ 1=k2. As a reference, the broken horizontal line
shows the analytic equilibrium state.

Now we include diffusion effects, i.e. the surfactant kinetics from Eq. (8) depend also on the local volume concentration of
surfactant at the interface Cr¼R. The diffusion coefficient in the bulk liquid phase is set to D1 ¼ 1� 10�6 m2=s, which corre-
sponds to a Peclet number of Pe1 ¼ 0:1 (using the velocity scale u1 ¼ l1k2). The second line in Fig. 5(a) shows the evolution

0.0

0.2

0.4

0.6

0.8

1.0

 0  0.2  0.4  0.6  0.8  1
 0

 0.2

 0.4

 0.6

 0.8

 1

Γ 
/ Γ

*

C
r=

R
 / 

C
∞

Time t [−]

(a)

0.0

0.2

0.4

0.6

0.8

1.0

 0  0.2  0.4  0.6  0.8  1

m
s /

 m
s(

t=
0)

Time t  [−]

(b)

Fig. 5. (a) Surfactant transport to a steady interface, comparison between adsorption-limited Pe1 ¼ 1 and diffusion-limited Pe1 ¼ 0:1 case. (b) Mass of
surfactant on the interface and in the liquid phase over time.
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of the interfacial surfactant concentration including the coupling with the liquid phase ð2 : Pe1 ¼ 0:1Þ. The corresponding
evolution of the bulk concentration in the subsurface region directly underneath the interface is also plotted in this figure
ð3 : Cr¼R; Pe1 ¼ 0:1Þ. Since the adsorbed surfactant material is taken from the liquid phase, the bulk concentration Cr¼R de-
creases, and at the same time the interfacial concentration C does not increase as fast as in the infinite diffusion case. From
t � 0:2 the bulk concentration increases again, caused by diffusion of surfactant in the liquid phase and a reduced surfactant
flux between the interface and the bulk phase. The evolution of surfactant mass on the interface and in the liquid phase over
time is shown in Fig. 5(b). As can be expected, with an increasing surfactant mass on the interface the surfactant mass in the
liquid phase decreases. The total amount of surfactant in the system is conserved.

5. Results and discussion

With the results presented above we have shown the validity and accuracy of our model. In the following, we perform
more complex two-dimensional simulations with coupled effects.

5.1. Oscillating bubble

Following Otis et al. [20], we simulate the dynamic surface tension of an air–water-like interface with surfactant. As in
this problem the densities of the two phases do not determine the evolution, we assume the ‘‘air” and ‘‘water” phase to have
a density ratio of 10 only to facilitate computation. The viscosities of the two phases are chosen such that the ratio of the
kinematic viscosities is comparable to the realistic case. Due to this smaller density difference, we avoid too small timesteps
and decrease the computational time, see Hu and Adams [1].

As in the experiment, an air bubble is exposed to a liquid environment containing surfactant molecules. Enforcing an
oscillating of the bubble, the dynamics of the surfactant transportation can be investigated. In our SPH method we perform
the bubble oscillation by changing the mass of the air particles. This resembles the blowing and suction of air in the exper-
iment. Consequently, the density of the particles changes and the pressure force drives the bubble to change its size. Starting
from a droplet with initial radius of rmax ¼ 0:02 m at an equilibrium surfactant concentration CH ¼ 3� 10�6 kg=m2, the size
of the air–water interface is oscillated sinusoidally with the period T and the evolution of the surfactant concentration on the
interface is calculated. In the first set of simulations we assume adsorption-limited surfactant dynamics. Thus the bulk sur-
factant concentration is constant since the diffusion in the liquid phase is considered to be infinitely fast. The surfactant
dynamics from Eq. (8) are extended to the insoluble and the squeeze-out regime, see Otis et al. [20]. In the second regime
ðCH
6 C < CmaxÞ the interface is insoluble, i.e. the concentration changes only by interface deformation,

dms

dt
¼ dðCAÞ

dt
¼ 0: ð42Þ

Reaching the maximum surfactant concentration Cmax, the surfactant molecules are packed as tightly as possible in the inter-
face and further compression results in an squeeze-out of molecules back to the bulk phase.

Fig. 6(a) shows the surface-tension loops for various adsorption depths ~k ¼ k1C=k2 at a Biot number of Bi ¼ k2T ¼ 1 for the
adsorption-limited case. At a very low adsorption depth the minimum possible surface tension is never reached during an
oscillation cycle. This is due to the fact, that in the bulk phase there are not enough surfactant molecules available to accu-
mulate at the interface. Increasing the adsorption depth, this limit is overcome and the nearly-zero surface tension occurs in
the loop. Furthermore, the hysteresis increases with increasing adsorption depth.

Morris et al. [29] showed that under some conditions ‘‘pseudo-film collapse” occurs in the dynamic surface-tension loops.
Similarly to the true film collapse at the lowest possible surface tension, in this case the surface tension remains relatively
constant near the equilibrium aH even though the interface is further compressed. As they showed in their experiments, this
is not a numerical artifact but a physically realistic behavior. Following the experimental investigations, we have checked if
our model recovers this phenomenon correctly. A variation of the Biot number at a fixed adsorption depth is given in
Fig. 6(b). As seen in the experiments, with increasing Biot number the maximum occurring surface tension within the loop
decreases. At very high desorption rates the ‘‘pseudo-film collapse” is observed.

Comparisons with experiments have shown, that under certain conditions the adsorption-limited model tends to predict
a wrong transient behavior, i.e. the assumption of a constant bulk surfactant concentration does not hold in all situations. As
a remedy, Morris et al. [29] consider the diffusion-limited surfactant dynamics. With this model they are able to reproduce
the experimental observations of Schürch et al. [30] and get even better agreement with the steady-state oscillations than
with the adsorption-limited model. Using Eqs. (7) and (10), we can simulate with our SPH method the fully coupled inter-
facial surfactant dynamics with the bulk diffusion. As an example, Fig. 7 shows the concentration evolution in the bulk sub-
surface region directly underneath the interface and the surface-tension loop for the dynamic cycling with the parameters
Bi ¼ 10; ~k ¼ 10; Da ¼ 1 and Pe ¼ 1. Due to the transient bulk concentration available at the interface, the maximum surface
tension in the loop increases as well as the minimum surface tension decreases. Furthermore an increase of the hysteresis is
observed. Our simulations confirm the findings of Morris et al., who were the first to simulate the influence of the diffusion
process in the bulk phase on the dynamic cycling based on a one-dimensional model.
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5.2. Drop in shear flow

We consider a circular drop in a shear flow with qa ¼ qw ¼ 1000 kg=m3 and k ¼ ga=gw ¼ 0:01. Initially we assume the
interface to be clean of any surfactant and keep the surface tension coefficient constant during the whole calculation. The
drop of size R0 ¼ 1� 10�3 m is located in the middle of a periodic rectangular channel of size lx ¼ ly ¼ 8R0 with a wall veloc-
ity of �u1. In this case, the capillary number Ca and the Reynolds number Re are redefined by the shear rate G ¼ 2u1=ly, i.e.

Ca ¼ GgR0

a
; Re ¼ qGR2

0

g
: ð43Þ

The reference length to non-dimensionalize spatial variables in this example is l1 ¼ R0. Caused by the flow shear, the drop
deforms to an ellipsoid balancing the viscous stresses and surface tension. Here, we only consider subcritical Reynolds- and
capillary numbers where the drop deforms to a steady ellipsoid, see Li et al. [31]. Above the critical state breakup occurs,
where in the case of surfactants at the interface Marangoni effects can play an important role, see Timmermans and Lister
[32] or Ambravaneswaran and Basaran [33].
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Fig. 8(a) shows a snapshot of the simulation when Ca ¼ 0:1 and Re ¼ 1:0. The calculation was performed with a non-
dimensional smoothing length h ¼ 8:�3� 10�2, i.e. a total of 9216 particles. The deformation parameter is calculated with
the least-square ellipse fitting method of Fitzgibbon et al. [34] using the interface particles to denote the shape of the droplet.
A comparison of the current calculated deformations and the analytic predictions using the small-deformation theory sug-
gested by Taylor [35] is plotted in Fig. 8(b). Even though we slightly overpredict the deformation, the agreement is good.
Comparable results are presented in Hu and Adams [1], who simulated the same case but with a higher viscosity ratio of one.

Starting from the clean drop in a shear flow as a reference simulation, we consider now an initially circular droplet in the
presence of an insoluble surfactant on the interface. That means that the bulk surfactant concentration in the two phases
vanishes everywhere for the entire simulation time and the interfacial surfactant mass is distributed only over the particles
within the transition band at the interface. The constitutive equation for the surface-tension coefficient a as function of the
surfactant concentration C reduces in this example to

a ¼ a0 1� b
C

CH

� �
; ð44Þ
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where b is a parameter. Fig. 9(a) and (b) shows the deformed interface and the velocity vector plot at steady-state for the case
without surfactant ðb ¼ 0Þ and with insoluble surfactant ðb ¼ 0:5; Pe ¼ 1Þ at Re ¼ 1; Ca ¼ 0:1 and k ¼ 0:01. The deformation
parameters for the two cases are calculated to be D ¼ 0:107 and D ¼ 0:130.

Considering an insoluble surfactant present on the interface, we observe an increase of the bubble deformation of about
20%. The bubble inclination angle with respect to the x-axis at steady-state decreases slightly. The parameters in Eq. (44) are
chosen such that initially the surfactant concentration and the surface tension for both the clean drop and the insoluble case
are the same.

Note that in this example we used the very simple linear relation between a and C with the parameter b being the slope of
this function ðb ¼ da=dCÞ. Of course more complex constitutive equations and other parameter ranges of b can be used, but
our focus is to investigate the influence of surface diffusion and variable surface tension. Varying b would not change the
basic characteristics of the problem, an increasing b e.g. would only amplify the increase in deformation caused by an insol-
uble surfactant present at the interface.
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To study in more detail the influence of surfactants present on the interface of a shearing drop, we consider the tangential
velocity along the interface and the surfactant profile. Fig. 10 shows these distributions against the polar angle / measured
around the drop’s transverse diameter for the three simulated cases of a clean interface ðb ¼ 0Þ, a low diffusive
ðb ¼ 0:5; Pe ¼ 1:0Þ and a high diffusive ðb ¼ 0:5; Pe ¼ 0:1Þ surfactant on the interface.

The distribution of the surfactant concentration at steady-state forms two local maxima at the tips of the deformed drop,
see Fig. 10(b). With lower Peclet numbers ðPe ¼ 0:1Þ surface diffusion of the surfactant becomes more dominant and pro-
duces a nearly constant profile. Hence, the drop deformation and tangential velocity converge to the clean interface results
in the limit of an infinite surface diffusion.

Contrary to Lee and Pozrikidis [22], we do not observe any region where the tangential velocity of the clean interface is
negative, see Fig. 10(a). The drop rotates continuously in clockwise direction with a maximum non-dimensional tangential
velocity of approximately one (non-dimensionalized with uref ¼ GR). To the knowledge of the authors, so far no experiment
provides evidence for the correct flow pattern of this example. But from our simulations with Lagrangian particles we do not
see neither particles moving with a negative tangential velocity nor four stagnation points on the interface, as reported in
[22]. Including surfactant effects with Pe ¼ 1, the oscillations of the tangential velocity around GR=2 decrease. Comparing
the velocity vector plots in Fig. 9 shows how the diffusive surfactant on the interface affects the flow field within the droplet
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Fig. 10. Effect of surfactant on the steady deformation of a drop in a shear flow at Re ¼ 1; k ¼ 0:01 and Ca ¼ 0:1. (a) Distribution of tangential velocity for the
cases b ¼ 0:, b ¼ 0:5; Pe ¼ 0:1 and b ¼ 0:5; Pe ¼ 1:0. (b) Distribution of the interfacial surfactant concentration for Pe = 0.1 and Pe = 1.
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and in the bulk phase. The drop with the contaminated interface rotates more like a rigid body with a continuous nearly
uniform tangential velocity, which is in agreement with the results of the surfactant enriched drop in a shear flow presented
in [22].

From a Lagrangian point of view it is easy to explain, that the interface of a surfactant enriched insoluble drop in a shear
flow at steady-state necessarily has to rotate continuously in one direction. Assuming that there are regions on the interface
where the tangential velocity is negative, particles would move towards these stagnation points. As an example for such a
flow situation we refer to Lee and Pozrikidis [22] (Figs. 8 and 9), who showed the streamline pattern for a clean drop in a
shear flow with four stagnation points. As a consequence, particles would leave the interface band at these regions. Without
diffusion, the insoluble surfactant is transported along the interface only by advection. Whenever a particle leaves the inter-
face region, the insoluble surfactant must stay on the interface. Hence, finally all surfactant would be concentrated at the
point where the particles leave the interface region. Since this singularity is incompatible with a stable drop or ellipsoid, this
flow pattern cannot exist when the interface contains insoluble surfactant.

5.3. Marangoni-force driven motion

When surfactants are present at an interface, surface-tension gradients can develop and influence the flow physics, see
e.g. Pawar and Stebe [36]. Here, we do not study the Marangoni effect on the flow physics of a problem in detail. We solely
intend to show that our proposed method incorporates this effect. Therefore, we simulate the Marangoni-force driven mo-
tion of a bubble. We consider a bubble with the initially non-uniform distributed surfactant concentration on the interface
given by C ¼ C0ð1þ tanhð4ðH=p� 0:5ÞÞÞ. The density and viscosity ratio of the initially quiescent bubble and bulk phase are
both q1=q2 ¼ k ¼ 1. The diffusion coefficient Ds is set to zero, i.e. the Peclet number is infinite. A similar test case but in three
dimensions and with a different density and viscosity ratio is presented in Zhang et al. [14].

According to Eq. (44) and the variation of surfactant along the interface, the interfacial surface-tension gradient rsa is
non-zero and produces a motion of the bubble caused by the Marangoni effect. Interfacial particles at low surface tension
are forced to advect towards regions of higher surface tension smoothing out the surfactant concentration distribution.
On the left side of Fig. 11(a) the initial interface position and the final steady-state location of the bubble particles are shown.
As the bottom part of the bubble contains initially more surfactant, the Marangoni-force induced motion along the interface
produces a counterclockwise rotation in the bubble phase and thus moves down. The vector plot of the velocities of the par-
ticles within the bubble (see right plot in Fig. 11(a)) shows the counterclockwise rotation of the interface and the downward
motion of the drop center. The corresponding surfactant profiles along the interface during the bubble motion are shown in
Fig. 11(b). The surfactant is transported along the interface by advection resulting in lowering the maximum concentration
and producing an uniform profile. Hence, the surface tension finally is constant over the interface and the bubble rests at a
steady position.

6. Concluding remarks

We have developed a fully Lagrangian particle method for simulating incompressible interfacial flows with surfactant
dynamics. The surfactant transport model accounts for exchange between the bulk phase and the interface (adsorption,
desorption, squeeze-out) as well as diffusion on the interface and within the bulk phase. In our numerical scheme, the
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Fig. 11. Interface positions (left) and velocity field (right) for an initially non-uniform surfactant covered bubble moving due to the Marangoni effect.
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different transportation phenomena can be considered simultaneously or separately, depending on the problem statement.
In the present model the mass of surfactant is conserved exactly in the fluid phases and on interfaces. We have shown the
validity of our method by several convergence studies and have performed several more complex simulations demonstrating
the capabilities of this grid-free method. In this work we have only presented results of two-dimensional examples. The
extension of the SPH-model for three-dimensional flows along the lines given in this paper is straightforward.
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