A Network Virtualization Approach for Performance
Isolation in Controller Area Network (CAN)

Christian Herber, Andre Richter, Thomas Wild, Andreas Herkersdorf
Technische Universitidt Miinchen - Institute for Integrated Systems
Munich, Germany
{christian.herber, andre.richter, thomas.wild, herkersdorf} @tum.de

Abstract—An important trend in automotive CPS is the shift
from federated to integrated IT architectures, where multiple
functions are consolidated on shared electronic resources instead
of distributed electronic control units (ECUs). It is driven by
increasing complexity, cost and installation space requirements of
todays architectures. However, side-by-side integration of mixed-
criticality functions poses new challenges with respect to safety
and security.

To achieve isolated performance for multiple integrated par-
titions with different criticalities, an efficient separation within
computing and communication resources is required. This paper
introduces a network virtualization approach for CAN, which
enables concurrence of mixed-criticality communication on a sin-
gle physical CAN bus through a strict performance isolation. We
present a design concept as well as a prototypical implementation.
The feasibility of our approach is demonstrated by an analytic
evaluation of message latencies and through experimental case
studies.

Index Terms—Controller area network, CAN, network virtual-
ization, automotive electronics, embeddded virtualization, mixed-
criticality.

I. INTRODUCTION

Automotive IT architectures have evolved into complex
cyber-physical systems (CPS). In modern premium vehi-
cles around 70 electronic control units (ECUs) communicate
through a number of specialized fieldbuses like e.g. Controller
Area Network (CAN), FlexRay and MOST with more than
2.7 km in wire length [1]. In these architecture multiple
functional domains (e.g. powertrain, chassis, infotainment)
coexist while having different requirements with respect to
real-time capability, security, safety, and dynamics. This trend
will increase in future cars with the introduction of Car2X
connectivity and automotive cloud computing.

To handle the complexity of these mixed-criticality systems,
fieldbuses are usually exclusive to specific domains and each
electronic function has its own ECU. This approach has led to
a good fault isolation and eases the process of qualification,
but makes inefficient use of computational and communication
resources. Because the installation space demand and cost
are limiting the scalability of current architectures, new ap-
proaches are needed to cope with the requirements of future
automotive CPS.

This work was funded within the project ARAMIiS by the German Federal
Ministry for Education and Research with the funding IDs 01/S11035. The
responsibility for the content remains with the authors.

Automotive OEMs are planning to consolidate multiple
ECUs on multi-core controllers in so called domain controlled
architectures [2]. Here, the inherent parallelism of multi-
core processors is used for concurrent execution of multiple
electronic functions on a shared platform. This centralization
of functions reduces the number of ECUs in a car, increases
resource utilization and provides a tighter coupling of func-
tions, but also introduces challenges regarding performance
and fault isolation [3].

By integrating electronic functions, error sources and attack
vectors are integrated as well. Safe and secure side-by-side ex-
ecution of electronic functions on a shared multi-core platform
can be enabled through virtualization [4], [5]. Here, isolated
computational resources are allocated to multiple partitions or
virtual machines (VMs), which allows performance guarantees
and fault isolation among the VMs.

When computation nodes are interconnected as in automo-
tive CPS, additional challenges arise. On the one hand, effi-
cient and scalable implementations of centralized architectures
require communication resources to be shared, but on the other
hand, safe communication requires isolation among mixed-
criticality communication flows.

Because current fieldbuses like CAN do not provide suf-
ficient performance isolation, centralized architectures are re-
liant on dedicated physical buses for functional domains of
different criticality. To overcome this design constraint, field-
buses have to be adapted to be used within different functional
domains communicating on a shared physical medium, without
drawbacks in safety or security.

In this paper, we present a network virtualization ap-
proach for Controller Area Network that provides isolated
communication resources in the form of abstracted, virtual
Controller Area Networks (VCANs). Reserved bandwidths
are guaranteed by a decentralized admission control scheme,
which additionally ensures small temporal interference and
fault isolation between concurrent VCANs. The approach
enables mixed-criticality scenarios, in which e.g. powertrain
ECUs with strict real-time requirements and high qualification
effort can share a common bus with infotainment ECUs, which
produce dynamic best effort traffic and are rather constraint by
bandwidth requirements and security aspects.

The remainder of this paper is structured as follows: Sec-
tion II presents related work regarding network virtualization
and mixed-criticality systems. In Section III, the fundamentals
for CAN are introduced. Based on this, a concept for network

(© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers

or lists, or reuse of any copyrighted component of this work in other works.

virtualization in CAN is presented in Section IV. Additionally,
a bound for the delay of communication in a VCAN is
presented. Using the real-time analysis of message latencies
in VCANSs introduced in Section V, we evaluate the timing
behavior of our approach in Section VI. Additional timing
information is derived through an experimental approach in
Section VII. In Section VIII, we describe an architectural
implementation as well the hardware overhead necessary for
our extensions and finally, Section IX concludes this paper.

II. RELATED WORK

Mixed-criticality systems consolidate functions that differ
greatly in real-time, safety, reliability and security require-
ments on shared resources. Because the integration of such
functions requires the whole system to be certified at the
highest criticality level if interference between such functions
is possible, isolation mechanisms for computation and commu-
nication resources are required. In [6], Pellizoni et al. propose
a design methodology for SoC architectures, which achieves
strong isolation among different criticalities through static
resource reservations. A NoC for mixed-criticality systems,
which is capable of providing isolated real-time guarantees in
the presence of best effort communication, is presented in [7].

Other approaches address mixed-criticality systems by de-
riving schedules and schedulability analyses that take advan-
tage of criticality dependent parameters in such systems to
derive optimized schedules. Baruah et al. [8] exploit the fact
that worst-case execution times (WCETs) of tasks are de-
pendent on certification requirements associated with different
criticalities. Based on this assumption, an improved scheduling
for mixed-criticality systems on a preemptive uniprocessor
platform is derived. In [9], Burns and Davis propose a mixed-
criticality protocol for CAN. Here, different criticality modes
are introduced, in which the cycle time of a critical message is
dependent on the current mode. Isolation is achieved through
a trusted network component that constrains messages to
conform to their specification.

Network virtualization is a concept that is most prominently
used in Ethernet and IP-based networks to allow multiple log-
ical networks to coexist on shared physical network resources.
It enables concurrent networks, which are abstractions of the
underlying physical networks using a subset of the nodes
and edges available in the network. The concepts are used to
improve the isolation and security of sub-networks, increase
the overall utilization and to reduce complexity [10].

While such networks do not require to meet latency require-
ments as stringently as in automotive environments, a number
of approaches have been introduced that aim at providing
bandwidth guarantees in virtualized networking environments.
In [11], a data center virtualization approach is presented,
in which a logically centralized manager ensures bandwidth
guarantees in virtual networks interconnecting virtual servers.
A similar, but decentralized mechanism is introduced in [12],
which enforces bandwidth guarantees for distributed cloud
services based on distributed, cooperating policers.

The concept of network virtualization has been applied
to many other networks, ranging from mobile communica-
tion networks like LTE [13] to on chip interconnects like

mdominant mrecessive
l - | [| | I-
,)
2
1 11

1 4 {0..,8}8 15 17
SoFMSG ID DLC Data Field CRC ACKEoF

length
, (bits)

Fig. 1. Standard CAN Data Frame

NoCs [14], [15]. No research has yet been conducted regarding
the virtualization of embedded fieldbuses. Previous research
for virtualization in transportation CPS has rather dealt with
platform virtualization [4] and I/O virtualization [16], [17].

Here, we introduce the concept of a virtual Controller Area
Network (VCAN), which allows mixed-criticality components
to transfer messages through isolated communication networks
that share a single physical CAN. In contrast to Ethernet/IP
based network virtualization approaches, this work focuses
strongly on isolated real-time capabilities of the virtual net-
works. While previous work regarding mixed-criticality in
CAN [9] has focused on developing mixed-criticality message
schedules, we provide a performance isolation mechanism,
which allows message latencies to be guaranteed without
knowledge of the communication in other VCANSs. This
reduces the systems complexity and eases the burden of
certification and qualification.

ITI. CONTROLLER AREA NETWORK

Controller Area Network (CAN) is a serial field bus with
a bandwidth of up to 1 Mbit/s. It is the most widely used
bus in automotive electronics being employed in many func-
tional domains like powertrain, body, safety, infotainment and
comfort. It was designed to provide safe and cost-efficient
communication between ECUs in a car.

The nodes within a CAN do not have addresses and all
messages are broadcasted. The content of a message is derived
from its message ID. This ID is also used for the arbitration
of messages on the CAN bus. A standard CAN data frame is
depicted in Fig. 1, in which logical high and low levels are
depicted by dominant and recessive states.

Access towards the CAN bus is managed using a non-
preemptive, strict priority scheme, where lower message 1Ds
guarantee a higher priority. This arbitration process is handled
bitwise by every node on the bus. All nodes that have a
frame ready for transmission start transmitting the message
IDs concurrently. Dominant bits override recessive ones, and
nodes that have been overwritten back off the arbitration and
only one participant remains in the end.

CAN is an asynchronous protocol and does not require
nodes to have a common time base. However, the sampling
points of nodes have to be synchronous during the transmission
of a frame. A soft synchronization is done after each transition
from recessive to dominant state on the bus. After five bits
of equal state, a bit with opposite level is inserted to enable
this synchronization (bitstuffing). After a longer idle phase,
synchronization can be lost and will be restored upon the
transmission of the Start-of-Frame (SoF) bit (hard synchro-
nization).

VCAN 2
250 kbit/s

VCAN 1
125 kbit/s

125 kbit/s

Physical CAN VCAN 0

500 kbit/s

Fig. 2. Virtual Controller Area Networks (VCANSs) coexisting on a shared
physical CAN bus.

IV. DESIGN OF A VIRTUALIZED CAN

The goal of this work is to enable multiple concurrent
virtual CANs (VCANS) to coexist on a shared physical bus
in mixed criticality scenarios. Each VCAN must have its
exclusive namespace and guaranteed performance. Within
CAN, the main performance metrics are the bandwidth and
the latencies experienced by each message. While CAN is
used for many real-time critical control applications, it is also
used for best effort traffic, which is mainly constrained by
bandwidth requirements. For VCANSs that rely on real-time
communication, the latencies should be as close as possible
to the native case with an exclusive CAN bus of equivalent
bandwidth. The goals have to be achieved under the following
design space constraints:

1) The CAN protocol must not be modified. Any changes
necessary should happen within the participating nodes.

2) The changes within the nodes should be as minimal as
possible.

3) The admission control should be realized in a decentral-
ized way. CAN does not have a central arbiter and the
introduction of one would add a high overhead.

4) A high utilization of the physical communication re-
sources is required. The available bandwidth should be
fully utilizable by the VCANS.

In the following, we present concepts for the two main
design challenges: the naming of messages within different
VCANSs and the admission control, which enforces bandwidth
guarantees and minimizes temporal interference. Afterwards,
we show how the admission control mechanism can ensure
fault isolation among VCAN:S.

A. Naming

Naming in CAN is solely based on message IDs. Within
a single CAN, the message IDs have to be unique in order
to avoid collisions on the bus and to have an explicit relation
between ID and message content. In addition, this ID also
specifies a strict priority on the CAN bus.

Under these conditions, an applicable scheme has to be
found, which allows the IDs within each VCAN to coexist
on the physical bus without inference. The easiest way of
dividing the ID space among VCAN:S is the use of tags within
the message IDs, from which VCAN ID of a message can be
derived.

Placing a VCAN tag within the ID of a message decreases
the number of total IDs available. Assuming 4 bits to be
reserved for VCAN tagging (support for 16 VCANSs), there
are still 7 bits left per VCAN for message identifiers (support
for 128 messages). While this should be sufficient in most
realistic cases, scenarios in which single VCANSs have a high
demand for IDs might not be possible to realize in this way. In
such scenarios, encoding the VCAN identifiers with variable
length (e.g. by Huffman Coding) could resolve this issue.

An important question is the placement of the VCAN tag
within the ID, because this directly influences the priority of
messages. This effect might be wanted or not, depending the
application scenario and admission control scheme applied.
We decided to place the tag within the most significant bits of
the message ID. Therefore, the CAN bus arbitration enforces
strict priorities among the VCANs, where VCAN v = 0
has the highest priority. Such a strict priority scheme is only
capable of giving isolated performance guarantees for the
highest priority VCAN, and therefore has to be extended by
an additional admission control scheme.

B. Admission Control

In order to achieve performance isolation among different
VCANS, the transmission of messages has to be restricted
by an admission control mechanism. For the design of the
admission control, we assume that the VCANs are spatially
isolated by placing a VCAN tag at the most significant bits
of the message ID. The physically available bandwidth 7y,
has to be divided among the VCANs. For a VCAN v with
a reserved bandwidth of r,, the latencies experienced should
be similar to the ones on a physical CAN bus with the same
bandwidth.

Dividing the bandwidth of the physical bus towards VCANs
can be achieved by means of time division multiplex (TDM)
methods, which ensure that frames from different VCANs
can access the CAN bus without exceeding a reserved band-
width. A variety of methods for TDM methods are known,
including time division multiple access (TDMA), in which
slots of a fixed length are served in a deterministic pattern.
However, such schemes (used e.g. in Time-Triggered CAN
(TTCAN) [18]) require a global synchronization and introduce
additional overhead if packet/frames do not all have the same
length.

The complexity that comes along with such time-triggered
schemes can be overcome by using an asynchronous scheme
for admission control. Statistical TDM (STDM) is not based
on strict timing checks, but rather enforces bandwidth guar-
antees by policing and/or traffic shaping based on statistical
measures. Such a scheme can be implemented using admission
control based on a token bucket or leaky bucket concept. These
mechanism have been used e.g. in ATM for virtual channel
arbitration [19].

Fig. 3. Admission control towards the CAN bus is handled by token buckets
for each VCAN, which enforce the reserved bandwidth. The fill level within
each node of a VCAN is consistent.

The principle of token bucket policing can be described as
an analogy to a bucket, in which tokens are added at a fixed
rate proportional to the required bandwidth, and are removed
upon transmission proportional to the size of the frame. It is
characterized by its size b, and the rate at which tokens are
added r,, which is equivalent to the reserved bandwidth.

Logically, the admission control is realized by constraining
the transmission of frames by one token bucket policer per
VCAN. In practice, this policing has to be performed de-
centralized and consistently within each node as depicted in
Fig. 3. The highest priority message in every node is eligible
to participate in the CAN bus arbitration, if sufficient tokens
are available. If no higher priority message from the same
VCAN and no message from a higher priority VCAN are
participating in the arbitration, the message can be transmitted
and the tokens will be removed according to its transmission
time.

Because the admission control is decentralized, only infor-
mation available to all nodes should be used for the policing.
Due to the broadcasting behavior of CAN, any information
that is propagated on the CAN bus can be seen by every
node, and is therefore fit to be used for admission control.
Other information, like the priority or length of a message
buffered locally within a node may not be used. Therefore, a
transmission should only be possible, if enough tokens for the
transmission of the maximum length message are available.
Otherwise, priority inversions could occur, where a short, low
priority message is transmitted despite a longer, higher priority
message being queued in a different node. The token bucket fill
level fli ., at which any message is eligible for transmission
can be derived as

fltm,v = (Cmaz,v : (Tphy - Tv)—l 5 (1)

where C,y,q4,, the worst-case transmission time on the bus
of the longest message within VCAN v and 7,5y — 1, is the
rate at which tokens are reduced during transmission.

The consistency of the bucket fill levels is important for
proper operation. Because the sample points of the CAN
nodes are constantly synchronized during transmission, these

a) Accumulation

O (v)
74
fltz,v

to ot
I B = = =

Ip(v) = i mmom .

b) Depletion} c) Normal

Operation

Fig. 4. Fill level of VCAN v during a burst scenario by higher priority
VCANSs.

points can be used to add tokens at a consistent rate and to
remove tokens according to the actual transmission time of a
message including bit stuffing. However, when the bus is idle,
oscillator quality may cause a drift of the different nodes. This
drift can be avoided, when idle phases are filled with dummy
transmissions, where a designated node is sending minimum
length messages of lowest priority. These messages are not
accounted for any VCAN and have no negative impact on the
worst-case timing of the overall system.

C. VCAN Delay and Token Bucket Size

Two parameters that are closely coupled are the size of
the token buckets b, and the maximum delay ©, experienced
in VCAN communication flows. Larger token buckets allow
larger bursts and can therefore cause delays in lower priority
VCANs. However, a minimum bucket size is necessary to
prevent a bucket overrun during a maximum length delay,
which would result in a loss of bandwidth.

The minimum token bucket size capable of maintaining
bandwidth guarantees during phases of maximum delay is

bv - fltz,v + (@vrv-‘ . (2)

It equals the sum of the minimum fill level necessary for
transmission as well as tokens added during ©,, the duration
of a maximum sized burst of messages by all VCANs with
higher priority than v.

In the following, we will present the worst-case scenario,
which maximizes the delay for any VCAN v. We then give
an upper bound for ©,,, which can be used to determine the
bucket sizes based on (2). Throughout the scenario, higher
priority VCANs minimize the possible communication flow
in VCAN v by transmitting at the maximum allowed rate.
The scenario is divided into three different phases, which are
illustrated in Fig. 4:

a) Accumulation: A message from a lower priority
VCAN of maximum length C;, 4 1p(v) has started transmis-
sion at t = t3. With V being the set of all VCANSs, the
set of lower priority VCANSs is defined as Ip(v) = {u €
V : prio(u) < prio(v)}. Afterwards, higher priority VCANs
occupy the bus until their buckets are empty and no more
transmissions are possible. VCAN v becomes able to transmit
(fly = fliz) an infinitesimal time after ¢y and is delayed
during the interval (¢o,to + ©,).

b) Depletion: At the beginning of this phase, higher
priority VCANs are not allowed to transmit, because they
consumed their tokens. VCAN v has accumulated tokens

equivalent to its bucket size. During this phase, the accumu-
lated tokens allow VCAN v to transmit above its reserved
bandwidth, which leads to a depletion of the tokens until no
more transmission is possible.

c) Normal Operation: After the depletion of tokens,
the transmission of VCAN v and higher priority VCANS is
restricted to their reserved bandwidth r,. This implies that
lower priority VCANs are allowed to transmit. The tokens
accumulated at the end of phase a) can only be reached again,
if the initial conditions are again established and the scenario
is repeated.

The longest VCAN delay occurs during the accumulation
phase and is composed of blocking from higher and lower
priority VCANS.

0, = @lp(v) + 6hp(v)7 (3)

where ©y,(,) = Chaz,ip(v) and Op,(,) describes the longest
possible burst from higher priority VCANS. It is constraint by

by + rue)hp(v)
®hp(v) < § o ; “4)
Yuehp(v) pry

which is equivalent to the transmission time of data admitted
through tokens stored within the buckets and tokens that are
added throughout ©y,,(,). It poses an upper bound for the
delay imposed by higher priority VCANS, because any other
transmission requests from higher priority VCANs will not
pass admission control at this point.

Solving (4) for ©,(, and inserting it in (3) gives an upper
bound for the VCAN delay as

ZVuEhp(u) bu

@v < Cm,{m?,lp(v) + r &)

phy — ZVuEhp(v) Tu .

After t =ty + O,, the depletion phase begins and the fill
level will not reach another maximum. Therefore, sufficient
bucket sizes for all VCANs can be calculated by using (2)
with the upper bound for the VCAN delay derived from (5).

D. Fault Isolation and Error Handling

CAN is a fault-tolerant bus, i.e. it is capable of providing
reliable communication in aggressive environments with high
electromagnetic interference (EMI). In this Section, we ana-
lyze fault isolation and error handling in a virtualized CAN.
We distinguish between faults introduced due to erroneous
software behavior and faults that occur within the data layer
or physical layer.

An unexpected software behavior can affect the operation
of the CAN bus if it causes a deviation from the intended ID,
cycle time or data length of a message. An alteration within
most significant bits of the ID, which contain the VCAN tag,
would allow senders to break out of their VCAN and affect
other partitions. Therefore, these bits must not be modifiable
during run-time. Any other changes to the ID cannot cause
faults, which can cascade to other VCANs. An increase in
data lengths or decrease in cycle times increases the required
bandwidth of the sending node and its VCAN. An extreme
case of such a fault is a ’babbling idiot’ [20], which is a

faulty node flooding the bus with messages. The proposed
admission control module ensures that such behavior does not
affect other VCANS. The faults presented so far are all capable
of influencing the communication within its VCAN. However,
the network virtualization ensures faults are constrained to the
partition they originated from, resulting in a fault isolation
among concurrent VCAN partitions.

Other faults do not originate from a specific VCAN parti-
tion, but rather occur within the data layer or physical layer.
Bit-level errors caused e.g. by EMI occur at rates between
10~7 and 10~!! depending on the environment [21]. They
are coped with by the CAN error handling and might require
a retransmission of the frame. The necessity to retransmit
reduces the utilizable bandwidth compared to the error-free
case. Because no specific VCAN domain is accountable for
such faults, these faults do not require to be isolated, but
the effects should be handled to optimize the systems overall
availability.

In mixed-criticality systems, highly critical functions are
considered crucial to the availability of the entire system. Un-
der the assumption that highly critical messages are mapped to
high priority VCANs, we propose an error-handling, in which
message retransmissions mainly affect low priority VCANS.
This can be realized within the admission control by only
reducing the tokens of a VCAN after successful transmissions.
If a transmission fails in the highest priority VCAN, the
retransmission can happen immediately. The retransmission of
messages in low priority VCANs might get deferred by higher
priority VCANS that gained additional tokens during the failed
transmission attempt.

V. REAL-TIME ANALYSIS

In many applications of CAN, messages have to meet
bounded deadlines. We will therefore show, how the maxi-
mum delay experienced by messages in virtual CANs can be
calculated. The time span from issuing a message until its
successful transmission on the bus will be called worst-case
response time (WCRT) in the sequel. This analysis can be used
to show the isolation properties necessary to enable mixed-
criticality scenarios. We first introduce a conventional WCRT
analysis for CAN and then extend the analysis for VCANSs.

A. WCRT in conventional CAN

CAN is a non-preemptive, strict-priority bus for which a
real-time analysis is presented in [22]. Because our analysis
poses an extension to this work, it will briefly be introduced.

In a worst-case scenario for message m, all higher priority
messages are issued at the same instant and the longest
lower priority message has started transmission on the bus
an infinitesimal time before.

The queuing delay w,, of message m describes the time
from the issuing of the message until it wins the CAN
arbitration. It is iteratively computed as

Wit =Ba+)

’Vw::z + Jk + Tphy
Vkehp(m)

T -‘ Cr (6)

and is composed of the blocking B,, and the transmission
times of higher priority messages that are transmitted before
message m. The maximum blocking is given as the transmis-
sion time of the longest lower priority message

By, = mazyeip(m)(Ck)- (7N

The response time of each of these instances can be cal-
culated by summation of queuing delay, jitter and message
transmission time.

The analysis can be extended to consider multiple instances
of a message [22]. However, because the probability of this
extended analysis being necessary is very low and only rele-
vant for very high bus utilizations [23], we just consider the
first instance of each message here.

B. WCRT in virtual CAN

In a virtual CAN, the transmission of messages is con-
strained in two additional ways: First, the average rate r,,
at which a VCAN is allowed to transmit is a fraction of the
physical bandwidth 7, and second, the communication flow
of a VCAN can be delayed by other VCANs by up to ©,. In
the following, we will present the worst-case scenario for a
message transmission on a VCAN and derive a corresponding
real-time analysis for message m in VCAN wv.

For the worst-case scenario, traffic from other VCANSs has
to be assumed in such a way, that the interference maximizes
the delay in the transmission of message m. This can be
achieved, if higher priority VCANs have the maximum amount
of tokens accumulated.

Similar to the scenario in conventional CAN, we assume
that just when message m is about to get ready for trans-
mission, the longest lower priority message within VCAN v
starts transmitting on the bus. All higher priority messages
within VCAN v are released synchronously with message m.
At this point, the tokens had just reached the point, at which
a transmission is possible. Even though the transmission time
of the longest lower priority message on the bus is B5,,, no
transmission within VCAN v is possible for By, - mpny /T,
because only then, the tokens are recovered.

Additionally, the transmission of a message m can be
blocked by other VCANs by up to ©,. Such a blocking
scenario was already presented when deriving the bucket
sizes b, for each VCAN and is illustrated in Fig. 4. After
such a scenario, VCAN v can transmit at an increased rate and
will eventually equalize the blocking. Therefore, the maximum
blocking occurs, if other VCANS start delaying VCAN v just
before message m is eligible for transmission.

An upper bound for the possible delay can be calculated
using (5). This delay cannot be exceeded, even if the burst
scenario happens multiple times, because of the increased
transmission rate afterwards. We therefore derive the increased
blocking for message m in VCAN v as

Bm,v = Bm,v [phy + @v~ (9)

Ty

Using the increased blocking Bmw, the queuing delay can
be calculated iteratively based on (6).

~ wh + Jk + Tphy Toh
Wit = Buot) [BT W ry
Vk€Ehp,(m)
(10)

This equation takes the increased blocking as well as the
reduced bandwidth into account. By introducing the fac-
tOr 7'phy /Ty, the transmission time is increased based on the
reserved bandwidth of VCAN v. While the transmission of
individual messages does not actually take longer, it has to
be extended in the analysis, because during this duration,
no transmission is possible in this scenario due to a lack of
tokens. Using the queuing delay from (10) the WCRT R,,, of
message m can be calculated using the unmodified (8).

While the delay in the overall communication flow of
messages in VCAN is bound by ©,, individual messages can
experience bigger delays if additional higher priority messages
get ready for transmission during the delay imposed by other
VCAN:Ss. The effect of the increased blocking will be evaluated
in the next Section.

VI. ANALYTIC EVALUATION

The relevance of the presented VCAN approach is tightly
linked with its ability to provide latencies similar to those
in physical CAN buses with the same bandwidth. Based on
the analysis presented above, we computed latencies using a
realistic traffic scenario for a setup with distinct physical buses
and a setup, where these buses are consolidated as VCANs on
a shared bus. We used the VCAN configuration described in
Table I, which is equivalent to the one depicted in Fig. 2.

TABLE I
VCAN CONFIGURATION: SCENARIO 1

VANV rn [b [6
0 125 kbit/s | 136 bit | 0.27 ms
1 125 kbit/s | 182 bit | 0.63 ms
2 250 kbit/s | 386 bit | 127 ms

We randomly generated a message set, which utilizes 82%
of the 125 kbit/s VCANSs. The set is duplicated for the VCAN
v = 2 with 250 kbit/s. Messages are cyclic and the cycle time
distribution is based on actual in-car measurements presented
in [24]. The cycle times T,,, are depicted along with the results
in Fig. 5.

The first row of Fig. 5 shows the message latencies in each
VCAN compared to the case of dedicated physical buses. The
additional latencies increase for decreasing VCAN priority.
However, the qualitative development of the WCRT with
respect to message priority indicates that VCANs show a
temporal behavior very similar to physical CAN buses.

A more detailed evaluation is possible by analyzing the
added latencies experienced in the VCAN setup, as depicted
in the second row of Fig. 5. For VCAN v = 0, negative
added latencies can be seen. The WCRT is 300 to 600 ps
smaller for the VCAN. While the queuing delay w,, is

—e— Cycle Time T},, (ms) —— WCRT on VCAN R,, , (ms) —e— WCRT on physical CAN R, ,p, (ms)

|

£ 100 ‘ ‘ ‘ 100 ‘ ‘ ‘ 100 ‘ ‘
>
=
&
g
& 50 50 50
s
S
5 q & i
S 0§22 | | ‘ 0F
&~ 0 10 20 30 0 10 20 30
Message m Message m Message m
~ [[[
e -0.3 20 4 20 =
2
&
g L B L |
o 10 10
\
g
Q: | | | O | | | 0 L | | | |
0 10 20 30 0 10 20 30 0 20 40 60
Message m Message m Message m
a) VCAN v = 0, ro = 125kbit/s b) VCAN v = 1, rq = 125kbit/s ¢) VCAN v = 2, ro = 250kbit/s

Fig. 5. Results from the analytical evaluation of a CAN with 3 concurrent
shows added latencies compared to an equivalent physical bus.

similar, each message m in VCAN v benefits from a faster
transmission due to the higher physical bit rate. The effect is
stronger for greater values of rpp, /7, and for longer messages.
Within VCAN v = 0, the variation in added latencies can be
accounted to different message lengths.

The added latencies for VCAN 1 and 2 show peaks,
which exceed 17 ms. Because messages in these VCANSs can
experience additional blocking when waiting for transmission,
they can be overtaken by further instances of higher priority
messages from the same VCAN, which get queued during this
delay. This can happen for messages with a WCRT close to
multiples of the cycle times of other messages. The highest
peaks can be witnessed for messages with a WCRT around 50
ms, because here messages with 10 ms and 50 ms get queued
for transmission.

TABLE 11
VCAN CONFIGURATION:SCENARIO 2

VCANvV] by O,
0 100 kbit/s | 135 bit | 0.27 ms
1 100 kbit/s 169 bit 0.61 ms
2 100 kbit/s | 237 bit | 1.28 ms
3 100 kbit/s | 406 bit | 2.98 ms
4 100 kbit/s | 1055 bit | 9.47 ms

VII. EXPERIMENTS & RESULTS

In scenario 1, the added latencies do not cause the WCRTs
of any message to exceed its cycle time, which is often equal
to its deadline. A second scenario described by Table II shows
the scalability limitations of the approach. The results depicted

VCANS. The upper row shows the WCRT for all messages and the lower row

in Fig. 6 show an increase in added latencies for lower priority
VCANSs, which eventually leads to WCRTs for VCAN v = 4
that exceed their respective cycle times for a number of
messages, indicating that deadline violations are possible.
However, realistic application scenarios are unlikely to require
hard real-time communication in all VCANs. Additionally, the
probability for the occurrence of message response times close
to their WCRT is decreasing with the VCAN priority, because
of the increasing complexity of the assumptions made for the
worst-case scenario in lower priority VCANS.

For soft-real time and best effort communication, no formal
schedulability analysis is required. Rather, experimental mea-
surements can be considered to determine the feasibility of the
communication channel. Hence, we simulated an experiment
in order to gain an estimation regarding average and maximum
latencies experienced in VCANS. In the following, we will first
introduce the experimental setup and afterwards, we present
and discuss the obtained results.

A. Experimental Setup

To achieve comparable results, the traffic patterns used
in the experiments are equivalent to the ones created for
the analytic evaluation presented in Section VI. The VCAN
configuration corresponds to the second scenario and features
five VCANs with 100 kbit/s each.

The worst-case scenario presented makes pessimistic as-
sumptions regarding the alignment of message release times
and the bucket fill level of each VCAN. Due to e.g. unequal
cycle times between messages and oscillator drifts between
CAN nodes, these cases will not occur consistently and
average latencies are much smaller than in these cases. Goal

= —e— Cycle Time T},, (ms) —— WCRT on VCAN R,, , (ms) —e— WCRT on physical CAN R, ,p, (ms)
g
- 100 » 100 p 100 »
i D
S
& 50 50 50
g
S
Q’{ 0 I] "' i i i 02 I I -
ﬁ 0 10 20 30 0 10 20 30 10 20 30 0 10 20 30
Message m Message m Message m Message m
£ 6
> 30
5 4
Q;’E 9 20
|
3 0 10
g | | | | | |]] I I I I
S0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30
Message m Message m Message m Message m Message m
a) VCAN v =0 b) VCAN v =1 ¢) VCAN v =2 d) VCAN v =3 e) VCAN v =14

Fig. 6. Results from the analytical evaluation of a VCAN with 5 concurrent VCANs of equal bandwidth (100 kbit/s). The upper row shows the WCRT for
all messages and the lower row shows added latencies compared to an equivalent physical bus.

of the experimental design is to gain measures, which reflect
a realistic and average behavior.

We simulated 100,000 short experiments, each seeded with
random values for the token bucket fill levels and for the first
release of each message. The random numbers are uniformly
distributed and include values between 0 bit and the bucket
size b,, and release times between O s and the cycle time 7T,,.
After the first instance of a message, further instances are
issued cyclic with respect to their cycle time. Each experiment
covers 200 ms, which ensures that at least one instance of each
message is transmitted. A longer simulation does not improve
the results because possible message alignments have been
covered. The total simulated time is around 5.5 h.

The main measures deducted are the average response time
(time from release till successful transmission) of a message
Reyp and the maximum response time measured max(Regp).
The simulation is carried out with a temporal resolution of 2 ps

(equivalent to a CAN bit time), which guarantees bit accurate
results.

B. Results & Discussion

The maximum and average latencies of all messages within
every VCAN measured throughout the experiments are pre-
sented in Fig. 7. They are compared with the results obtained
with a 100 kbit/s physical CAN bus using the same message
set as the VCANS.

Throughout the experiments, the VCANs show a behavior,
which is similar that of a distinct physical CAN bus, where
maximum and average latencies increase with decreasing
priority. However, the absolute values differ between physical
and virtual CANs, as well as between VCANSs of different
priorities.

Fig. 7a shows that the maximum latencies of high priority
messages are increasing with decreasing VCAN priority. As

| |
0 5 10 15 20 25 30
Message m

a) Measured maximum latencies

Message m

b) Measured average latencies

Fig. 7. Experimental results for 5 concurrent VCANS on a shared 500 kbit/s CAN bus compared to a 100 kbit/s physical CAN bus.

predicted in the analytic evaluation, the highest priority VCAN
slightly outperforms the physical CAN, while high priority
messages from lower priority VCANSs suffer from an increas-
ing blocking and therefore increased maximum latencies.

Despite the potential blocking from higher priority VCANS,
low priority messages have lower maximum latencies when
transmitted through low priority VCANSs. Low priority VCANs
have increased token bucket sizes to be able to cope with
the blocking from higher priority VCANs. The increased
bucket size enables more back-to-back transmissions from a
single VCAN and is responsible for the decreased maximum
latencies. The worst-case for lower priority VCANS is less
probable, because it requires additional worst-case behavior
from higher priority VCANs. The experiment suggests that the
use of low priority VCANS is feasible in functional domains,
where no formal verification is required.

The average measured latencies shown in Fig. 7b strengthen
this observation. They develop similarly, where high priority
messages in high priority VCANs have the best performance
and low priority VCANSs provide lower average latencies for
low priority messages. Again, the increased token bucket sizes
allow low priority VCANs to overcome the higher average
blocking from higher priority VCANSs.

The highest priority VCAN is the only one to eventually
exceed the average latencies measured in the physical case.
Because of its small token bucket, it cannot burst multiple
messages on an idle bus and therefore benefits less from the
resource sharing than lower priority VCANs. Compared to
the physical case, low priority messages in VCAN v = 0
can be delayed by other VCANs, which allows them to be
overtaken by high priority messages. While the same effect
occurs in lower priority VCANS, the benefits of resource
sharing outweigh these delays.

On average, the resource sharing enabled through network
virtualization allows VCANSs to outperform the physical CAN
independent of the VCAN priority. The VCANSs benefit from
lower transmission times, because the actual physical bit rate
is higher. Additionally, because other VCANs are not 100%
utilized, the bus is idle more often, which opens up additional
options for message transfers.

VIII. IMPLEMENTATION

We implemented an admission control module as extension
to current CAN controllers. It constrains the transmission
of messages to conform with the virtualization concepts
presented in this paper. In the following, we present an
architectural description and implementation results.

Fig. 8 shows the architectural view of the module. Its
inputs are exclusively signals that are derived from the CAN
bus. Therefore, these signals are consistent in every CAN
node on the same physical bus. The only output of the
module zx_allowed indicates, whether a potential transmission
conforms with the admission control rules.

The submodules time_counter and vcan_lookup provide
essential input to the bucket_mgmt module. The signals id
and ide (ID extended) represent the message ID of the frame
currently transferring, from which the VCAN ID is extracted

can_sample point) tx_allowed
¥ i ¥
— . time
£ time_counter
5] 8
!
-% bucket_mgmt
(2]
E vcan
B vcan_lookup -
T —
§| ok29 transfer_startl Itransfer_end

Fig. 8. Block diagram of the admission control module

by vcan_lookup. In this exemplary implementation, the vcan
signal consists of three bits and therefore supports 8§ VCANS.

Each rising edge in can_sample_point is used to increment
a counter within the time_counter submodule to create a time
value with the resolution of a CAN bus bit time 7,,. In order
to reliably measure the transmission time of a message, it
must not be possible for the counter to overrun more than
once during a single transfer. With a signal width of 8 bit,
it can represent values within the range of {0...255}7,p,.
This is sufficient to guarantee correct operation, because the
maximum value exceeds the worst-case transmission time of
a maximum length message (160 7, for extended IDs).

The main part of the admission control is done by the
bucket_mgmt module. It maintains the token bucket and con-
strains message transmission. After each n-th sample point, a
token is added to the bucket, where n is given as n = ry, /7ppy.
Therefore, only integer values for r,/rpp, are possible with
this implementation. At the start of a message transfer, in-
dicated by a rising edge in transfer_start, a time stamp is
taken. By comparison with the time signal after a successful
transfer indicated by transfer_end, the transmission time of the
last transfer can be computed. If the transfer happened within
its own VCAN, tokens equivalent to the actual transmission
time will be removed from the bucket. Because bucket size
might temporarily be exceeded, the tokens will be adjusted
at the beginning of each transmission. The signal #x_allowed
is logically high if the fill level of the bucket exceeds the
minimum amount necessary for transmission.

The module can easily be integrated with existing CAN
controllers. They usually feature a user-programmable bit
to indicate a Tx request. A logical AND connection with
tx_allowed allows to restrict transmissions in conformance
with the admission control mechanism.

We integrated the admission control module together with
an OpenCores CAN controller, which is functionally equiva-
lent to the Philips/NXP SJA1000. The design was prototypi-
cally implemented for Spartan-6 FPGAs. In order to achieve

TABLE III
HARDWARE RESOURCE REQUIREMENTS

Area

81355.04 um?
82668.54 pm?

module ‘ ‘

Standard CAN Controller
VCAN Controller

NAND?2 equivalents

14711.58
14949.10

comparable figures regarding the hardware requirements of the
extensions, we synthesized the standard and the extended CAN
controller at 24 MHz using the Synopsis 90 nm generic library.
The results presented in Table IIl show the area demand in
both implementations measured in area and normalized to
the size of a NAND2 gate in this technology (5.53 um?).
The synthesis results show that the extensions for network
virtualization support require only 1.61% additional area.

IX. CONCLUSION

To enable future integrated automotive IT architectures, we
developed a network virtualization approach for Controller
Area Network (CAN). In this paper, we presented a token
bucket based admission control scheme, which guarantees
isolated performance for concurrent virtual CANs (VCANs)
on a shared physical bus. The concept focuses on providing
real-time capable communication in mixed-criticality scenarios
and provides fault isolation among the partitions.

We showed that the worst-case delay of VCAN commu-
nication flows is bounded. Based on an extended worst-
case response time analysis for VCANs, we evaluated the
performance with respect to message latencies in different
VCAN setups. Because latencies for low priority VCANs
increase with the total number of VCANSs, message sets might
be schedulable under real-time constraints. Using a realistic
automotive workload, we showed that deadline violations can
occur in the lowest priority VCAN for when using 5 VCANS.
However, automotive application scenarios are not expected to
require hard real-time guarantees in all partitions.

Additionally, we evaluated the average and maximum laten-
cies in a simulated experiment. The experiments show that the
VCANS outperform its physical equivalent in average latencies
and show very similar maximum latencies. The results show
that scalability limitations can be overcome if not all VCANs
require hard real-time communication, which is common in
mixed criticality scenarios.

We presented a prototypical implementation of the exten-
sions required for the network virtualization. The synthesis
in 90 nm technology showed that the network virtualization
extensions increase the area demand of a standard CAN
controller by 1.61%.

REFERENCES

[1] H.-U. Michel, “Taming multicores for safe transportation: Aramis in the
automotive domain,” in Workshop on the Integration of mixed-criticality
subsystems on multi-core processors, presented at HIPEAC 2013, 2013.

[2] D. Reinhardt and M. Kucera, “Domain controlled architecture: A new
approach for large scale software integrated automotive systems,” in
Pervasive and Embedded Computing and Communication Systems, 2013,
pp- 221-226.

[3] M. Di Natale and A. L. Sangiovanni-Vincentelli, “Moving from fed-
erated to integrated architectures in automotive: The role of standards,
methods and tools,” Proceedings of the IEEE, vol. 98, no. 4, pp. 603—
620, 2010.

[4] D. Reinhardt, D. Kaule, and M. Kucera, “Achieving a scalable e/e-
architecture using autosar and virtualization,” SAE International Journal
of Passenger Cars-Electronic and Electrical Systems, vol. 6, no. 2, pp.
489-497, 2013.

[5]

[6]

[7

—

[8

[t}

[9]

[10]

(1]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

(19]

[20]

[21]

[22]

[23]

[24]

S. Trujillo, A. Crespo, and A. Alonso, “Multipartes: Multicore virtual-
ization for mixed-criticality systems,” in Digital System Design (DSD),
2013 Euromicro Conference on. 1EEE, 2013, pp. 260-265.

R. Pellizzoni, P. Meredith, M.-Y. Nam, M. Sun, M. Caccamo, and
L. Sha, “Handling mixed-criticality in soc-based real-time embedded
systems,” in Proceedings of the seventh ACM international conference
on Embedded software. ACM, 2009, pp. 235-244.

S. Tobuschat, P. Axer, J. Diemer, and R. Ernst, “Idamc: A noc for mixed-
criticality systems,” in Embedded and Real-Time Computing Systems
and Applications (RTCSA), 2013 19th IEEE International Conference
on, 2013.

S. Baruah, H. Li, and L. Stougie, “Towards the design of certifiable
mixed-criticality systems,” in Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2010 16th IEEE. 1EEE, 2010, pp.
13-22.

A. Burns and R. Davis, “Mixed criticality on controller area network,”
in Real-Time Systems (ECRTS), 2013 25th Euromicro Conference on.
IEEE, 2013, pp. 125-134.

N. Chowdhury and R. Boutaba, “A survey of network virtualization,”
Computer Networks, vol. 54, no. 5, pp. 862-876, 2010.

C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and
Y. Zhang, “Secondnet: A data center network virtualization architecture
with bandwidth guarantees,” in Proceedings of the 6th International
COnference, ser. Co-NEXT ’10. New York, NY, USA: ACM, 2010,
pp. 15:1-15:12.

B. Raghavan, K. Vishwanath, S. Ramabhadran, K. Yocum, and A. C.
Snoeren, “Cloud control with distributed rate limiting,” in ACM SIG-
COMM Computer Communication Review, vol. 37, no. 4. ACM, 2007,
pp. 337-348.

L. Zhao, M. Li, Y. Zaki, A. Timm-Giel, and C. Gorg, “Lte virtualization:
from theoretical gain to practical solution,” in Proceedings of the 23rd
International Teletraffic Congress. 1TCP, 2011, pp. 71-78.

J. Flich, S. Rodrigo, J. Duato, T. Sodring, A. Solheim, T. Skeie, and
O. Lysne, “On the potential of noc virtualization for multicore chips,” in
International Conference on Complex, Intelligent and Software Intensive
Systems (CISIS). 1EEE, 2008, pp. 801-807.

J. Heisswolf, A. Zaib, A. Weichslgartner, R. Konig, T. Wild, J. Teich,
A. Herkersdorf, and J. Becker, “Virtual networks — distributed commu-
nication resource management,” ACM Trans. Reconfigurable Technol.
Syst., vol. 6, no. 2, pp. 8:1-8:14, Aug. 2013.

J. Kim, S. Lee, and H. Jin, “Fieldbus virtualization for integrated
modular avionics,” in Emerging Technologies & Factory Automation
(ETFA), 2011 IEEE 16th Conference on. IEEE, 2011, pp. 1-4.

C. Herber, A. Richter, H. Rauchfuss, and A. Herkersdorf, “Self-
virtualized can controller for multi-core processors in real-time ap-
plications,” in International Conference on Architecture of Computing
Systems (ARCS), 2013, pp. 244-255.

G. Leen and D. Heffernan, “Ttcan: a new time-triggered controller area
network,” Microprocessors and Microsystems, vol. 26, no. 2, pp. 77-94,
2002.

G. Niestegge, “The leaky bucketpolicing method in the atm (asyn-
chronous transfer mode) network,” International Journal of Digital &
Analog Communication Systems, vol. 3, no. 2, pp. 187-197, 1990.

I. Broster and A. Burns, “An analysable bus-guardian for event-triggered
communication,” in Real-Time Systems Symposium, 2003. RTSS 2003.
24th IEEE. 1EEE, 2003, pp. 410-419.

J. Ferreira, A. Oliveira, P. Fonseca, and J. Fonseca, “An experiment
to assess bit error rate in can,” in Proceedings of 3rd International
Workshop of Real-Time Networks (RTN2004). Citeseer, 2004, pp. 15—
18.

R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien, “Controller area
network (can) schedulability analysis: Refuted, revisited and revised,”
Real-Time Systems, vol. 35, no. 3, pp. 239-272, 2007.

M. Di Natale and H. Zeng, “Practical issues with the timing analysis
of the controller area network,” in Emerging Technologies & Factory
Automation (ETFA), 2013 IEEE 18th Conference on. 1EEE, 2013, pp.
1-8.

B. Miiller-Rathgeber, M. Eichhorn, and H.-U. Michel, “A unified car-it
communication-architecture: Design guidelines and prototypical imple-
mentation,” in Intelligent Vehicles Symposium, 2008 IEEE. TEEE, 2008,
pp. 709-714.

