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1

Introduction

The theoretical understanding as well as the practical development of quantum informa-

tion tasks build on our understanding of quantum evolutions. Significant technological

challenges such as the construction of devices for quantum computation, quantum com-

munication and quantum data storage boil down to our ability to engineer a certain

quantum evolution. The power of the mentioned quantum processes and their supe-

riority over their classical counterparts are expressions of the fact that the underlying

evolution is subject to the laws of quantum mechanics rather than classical physics. A

paradigmatic quantum evolution is the evolution of a closed system i.e. a system which

is isolated ideally from any interaction with the rest of the universe. Such evolutions

are modelled as unitary operators on some Hilbert space. The most basic model of a

quantum computer as a pattern of wires and unitary gates (that are applied succes-

sively to the wires) falls into this class. However, in any physical scenario some suitable

measurement will recover the influence of the environment and prove that the isolation

of the system is not ideal. In fact, closed systems simply do not exist1 and the uni-

tary description is insufficient. Quantum channels (i.e linear, trace-preserving/unital

and completely positive maps) constitute the most general framework to describe the

evolution of a physical system within quantum mechanics. In particular, irreversible

dynamics and the dynamics of open quantum systems are modelled by quantum chan-

nels. It is, however, crucial that the evolution itself does neither depend on the state

1It is a philosophical question if the universe as such constitutes a closed system and if the cor-

responding dynamics are unitary. However, this question cannot be answered by any experiment and

hence it is irrelevant from the point of view of physics.
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1. INTRODUCTION

of the system nor on its history. The latter assumption is often made implicitly, when

speaking about evolutions of open systems and the corresponding scenario is referred to

as Markovian. For a time evolution this assumption entails that it can be appropriately

described as a quantum Markov process. Such processes provide a natural generaliza-

tion of the ubiquitous concept of a classical Markov chain to quantum mechanics. They

can either arise naturally from relaxation or equilibration, or they may be engineered

for instance for the purpose of dissipative quantum computation, dissipative quantum

state preparation or quantum Metropolis sampling. With technological advance quan-

tum effects occur and are exploited in an increasing number of real-world situations.

Our theoretical understanding of quantum Markov processes, however, is much less

developed than in the classical case. This is contrasted by the fact that ultimately

nature is better described by the laws of quantum mechanics. It is presumable that

quantum Markov processes will develop a similar universal importance as their classical

counterparts. The purpose of the main research line of this dissertation is to contribute

to their understanding.

The content is mathematical in nature but the ubiquitous occurrence of quantum

evolutions in theoretical physics and the increasingly sophisticated methods of imple-

mentation demand for a more detailed understanding, also on the purely theoretical

side.

1.1 Our contribution

This is a cumulative dissertation based on publications achieved during the period of

the project. More than containing the treatment of one particular topic this transcript

reflects the scientific work of the author during a period of about two and a half years.

Although the emphasis lies on the study of spectral estimates in the theory of Markov

processes some of the contributed articles treat different topics. Naturally, the referee

process takes its time such that some of the contributed articles are already published

in scientific journals while others are published on ArXiv and currently under review.

We start with a sketch of our main contributions.

1. Spectral convergence estimates for Markov chains: Article I

The main purpose of this work is to contribute to our understanding of quan-

2



1.1 Our contribution

tum channels and quantum Markov processes. We do this in providing the first

rigorous and in-depth analysis of spectral estimates for quantum Markov evo-

lutions and by applying our results to various problems ranging from quantum

information theory to solid state physics. We introduce a new mathematical

framework to the theory of quantum and classical Markov chains, which appears

to be a powerful and elegant machinery for bounding norms of holomorphic func-

tions of operators. With the techniques developed we obtain the strongest so

far spectral convergence estimates for homogeneous Markov chains in the clas-

sical as well as the quantum case. We improve the known spectral convergence

bounds significantly for instance by replacing an exponential with a polynomial

dimension-dependent prefactor. The main bounds only rely on the spectrum and

on no other assumption (like irreducibility, aperiodicity, detailed-balance, etc.).

We emphasize that the developed methods are not merely extensions of an estab-

lished framework for classical Markov chains but are new even to the extremely

well developed classical theory. A core conceptual observation in our approach

is to view a spectral estimate for a Markov transition map as an interpolation

problem in a particular function space, the so-called Wiener algebra. The solution

of this problem involves deep results from interpolation theory, functional analy-

sis and operator theory and provides a nice tangible application for the abstract

methods (cf. Chapter 3).

2. Spectral stability estimates for Markov chains: Articles II, III

It is a well-studied question how sensitive the steady states of a classical ho-

mogeneous Markov chain are with respect to perturbations in the transition

map (1, 2, 3, 4, 5). In contrast, this topic is essentially untouched in the context

of quantum Markov chains, where stability estimates are necessary at least for

the following reasons. In the theory of quantum phase transitions it was recently

shown that phase transitions can occur as a result of a dissipative process. It is

natural to ask for conditions under which a perturbation of the generator of a

Markov process leads to a phase transition in the asymptotic state. In (6) novel

schemes for the preparation of quantum states and for quantum computation are

proposed. For state preparation the core idea is to engineer a dissipative quantum

process that drives a certain many-body system to a desired steady state. In case

3



1. INTRODUCTION

of quantum computation a dissipative process performs a given computation on

the input. Clearly, in any practical implementation the underlying processes can

be engineered only up to small errors. For this reason, it is crucial to provide a

priori estimates for the quality of asymptotic states given a certain level of error

in the transition map. We study two types of stability estimates in Article II. The

first directly bounds the distance of asymptotic states in terms of the distance of

transition matrices and resembles in flavour the classical approach of (1). This

method relies on strong resolvent estimates, which we develop in Article III, see

below. The second class of estimates bounds the distance of states resulting from

quantum evolutions at finite time and extends the results of (3, 7) to the quan-

tum context. This is motivated by the fact that in laboratory implementation

only a finite period of time can be observed. Not only do our results provide the

first rigorous discussion in the quantum case, but our methods also significantly

improve established stability estimates (3, 7) for classical Markov chains.

Motivated by the aforementioned sensitivity analysis for asymptotic states, we

study the problem of bounding the resolvent of an operator in Article III. In

this work we provide the strongest spectral estimates for the resolvents of finite-

dimensional Hilbert space contractions and power-bounded Banach space oper-

ators improving on previous work by E.B. Davies and B. Simon (8) as well as

N. Nikolski (9). In the case of Hilbert space contractions we present explicit op-

erators that achieve equality in our bounds. In this sense the estimates obtained

are optimal.

3. Stability of quantum matter: Article IV

We contribute to the theory of quantum many-body systems and quantum phase

transitions. We study the stability of quantum phases in the parent Hamiltonian

model (10, 11), which appears to be one of the most important rigorous models

for quantum many-body systems. This model describes the dynamics of a closed

quantum spin chain (i.e. systems of numerous quantum particles located in a row)

with local interaction. The parent Hamiltonian model is constructed with respect

to a so-called Matrix product state in a way such that the letter naturally emerges

as the ground state of the system. Matrix product states provide an efficient

description of the states of quantum spin chains. With their local structure these

4



1.1 Our contribution

states provide a natural framework to study ground states arising from local

particle interaction. The parent Hamiltonian model is important for the following

reasons. On the one hand it contains the mathematical structure necessary for a

rigorous analysis. On the other hand it is an extremely general model such that

basically all models for quantum spin chains discussed in the literature fall into

this class (11). We provide conditions under which certain properties of the model

change smoothly when a perturbation is added that is a sum of local interactions.

In particular, we prove that the system remains in the same ground state if

the local interactions are sufficiently weak. This is particularly delicate when

considering the limit of an infinite number of particles in the chain as in this case

the total perturbation is not bounded. Our result is of great importance in terms

of the physical relevance of the model, since the contrary assertion would predict

that arbitrary small perturbations result in a phase transition of the quantum

matter. Clearly, this is in conflict with physical observation. In addition, the

parent Hamiltonian model is an idealization, which cannot capture the behaviour

of a messy physical system. It is more natural to describe such systems using

a perturbed model. Our result shows that if perturbed models are close to the

original model then they are stable under sufficiently weak local perturbations,

which augments the range where the parent Hamiltonian model can be applied.

The physical implication of our result lies in a theoretical prediction that quantum

matter remains stable against phase transitions if the added interaction is small

enough.

4. Transmission of classical data over noisy quantum channels: Article V

Remark: This contribution was achieved in a scientific collaboration, where the

author contributed but did not take the leading role.

Suppose we have a quantum channel and that we want to use this channel to

send information from Alice (who has access to the input) to Bob (who receives

the output system). To achieve this Alice encodes her message into the input of

the channel and after its execution Bob applies a decoding operation to recover

the original message. Generally, the noise of the channel results in a part of

the message being sent to the environment and thus being lost from Bob’s point

of view. (See (12) for a detailed discussion of the data-transmission scenario.)

5



1. INTRODUCTION

It is a basic task of (quantum) Shannon theory to investigate and quantify the

theoretical limits for the transmission of data in this scenario. One of the most

fruitful ideas that arose in this area of research in the past few years is that

of decoupling : the fact that, in quantum mechanics, the absence of correlations

between two systems implies perfect correlations of those two systems with a third

one. (See (13) for an introduction.) In other words, if Alice and Bob do not share

any correlations, then the system that purifies Alice’s and Bob’s quantum systems

can be split in a part that posses full correlations with Alice and a part that is

fully correlated with Bob. Based on the concept of decoupling we present a new

approach to the problem of transmitting classical data over a quantum channel

and present a new proof of the Holevo-Schumacher-Westmoreland theorem (14,

15).

5. Quantum Rényi divergence: Article VI

Remark: This contribution was achieved in a scientific collaboration, where the

author contributed but did not take the leading role.

We introduce a new quantum generalization of the family of classical Rényi’s di-

vergences (16) and show that our quantum divergences exhibits various natural

properties. In particular, we show that key properties of the classical diver-

gences can be translated in natural quantum counterparts: We prove that our

new quantity can only decrease under the action of a quantum channel on its

arguments and show that our family of quantum divergences is monotonically

increasing in the family parameter. We introduce derived conditional entropies

via a specific optimization of our quantum divergence. The resulting entropic

measures include the von Neumann entropy and the well-established quantum

generalizations of min-, max- and collision-entropy as special cases (17, 18). Our

conditional entropies satisfy a duality relation and naturally generalize Maassen

and Uffink’s uncertainty relation (19) to the situation when quantum side infor-

mation present. Following conjectures in a previous version of our article, some of

our results were achieved (and extended) in the following two independent contri-

butions: R. Frank and E. Lieb (20) prove that our quantum divergences can only

decrease under the action of a quantum channel and extend the parameter range

6



1.2 Outline

where this property holds. S. Beigi (21) proves monotonicity in the family param-

eter, monotonicity under the action of quantum channels and a duality relation

for the conditional entropy. Moreover, M. Wilde, A. Winter and D. Yang have

applied our quantum Rényi divergences to solve an open problem in quantum

information theory (22) and M. Mosonyi and T. Ogawa provided an operational

interpretation of our divergences as cut-off rates in the strong converse problem

of hypothesis testing (23).

1.2 Outline

The chapters 2,3 and 4 serve to facilitate the access of the interested reader to the

contributed articles. Chapter 2 contains an extremely brief introduction to quantum

mechanics with particular eyesight to the theory of quantum Markovian evolutions and

some glance at an algebraic formulation of quantum mechanics. Chapter 3 introduces

the mathematical framework that is required in order to understand the contributions I

and III. Important constituents are the theory of interpolation in function spaces and

the theory of model operators, which was developed mostly in the 1960s and was

promoted by various mathematicians including A. Beurling, H. Helson, B. Sz.-Nagy,

C. Foiaş, D. Sarason, N. Nikolski. Chapter 3 does not contain any new mathematics

(developed by the author), however the techniques introduced are new to quantum

information theory and to the theory of Markov chains. One standard text (24) covering

the topic of Chapter 3 refers to itself as “An easy reading’’. Chapter 4 contains and

introduction to the theory of Matrix product states and provides the background needed

to access Article IV. While a general understanding of quantum mechanics, Chapter 2

is essential for all articles, the content of Chapter 3 and Chapter 4 is independent.

7
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2

Quantum mechanics

2.1 The role of Mathematics in theoretical Physics

The aim of theoretical physics is to forecast, based on a developed understanding, the

future behaviour of physical systems. While this is an intractably hard task in general,

our description of idealized scenarios, so-called experiments is extremely successful.

A theory by definition is a framework comprising a pattern of rules that allow the

prediction of measurement outcomes of such experiments. The process of setting up a

theory naturally goes along with approximation and simplification. The obvious reason

is that we cannot describe everything. The role of mathematics in theoretical physics

is to provide an efficient approximate description of physical observations. If one is

faced with the task to describe in a most simple way (say with least Kholomogorov-

complexity) the appearance of a tree, then one might choose the following: “In first

approximation a tree looks like a cylinder on whose top there is placed a sphere.” The

mathematical structures (cylinder and sphere) occurring in this description are products

of our demand for a simple description. Similarly, we can describe the dynamics of a

stone bouncing against the trunk approximately as the scattering of a small sphere

off a cylinder. The endless number of acting forces in the real world scenario can be

approximated by neglecting all of them but the (homogeneous) gravitational force and

a force the sphere experiences in a direction radially off the trunk. More generally,

one chooses an approximation, which one optimizes according to given constraints (say

computational power, desired precision, a priori knowledge) and after a computation

obtains a prediction. The computation is nothing but an equivalent reformulation of

9



2. QUANTUM MECHANICS

the given data. The validity of this prediction is however limited to a certain parameter

range, where the initial approximation is sensible. If the results of our theoretical

considerations are not satisfactory i.e. if the predicted outcomes are not close to the

observed experimental reality, one goes back to the initial mathematical description

and tries to refine it. The process of building up a theory thus consists of an iteration

of three steps: First, setting up a mathematical approximation; second, computation

and third, comparison of the obtained results to experimental outcomes. Theoretical

physics is an optimization task, which iterates the above steps to recover better and

better approximations of the observed reality. In this sense there might not be so much

“Unreasonable [in the] Effectiveness of Mathematics in the Natural Sciences’’ (25). The

mathematical description is optimized such that it provides an effective approximation.

However, the more precise the description should be, the more involved the mathematics

must get.

In the following sections we present a brief introduction to quantum mechanics

with a particular eyesight on the theory of C∗-algebras. We emphasize some of the

deep connections between operator theory and the theory of quantum evolutions that

might be useful for the further development of our contributions. In Section 3.4 we will

study the dilation theory for Hilbert space contractions in a general operator-theoretic

framework. We suspect that based on Stinespring’s representation theorem a similar

theory might be developed for quantum channels. However, a general C∗-algebraic

formulation of the formalism will be inevitable for such an extension.

General introductions to quantum mechanics can be found in endless textbooks,

university scripts and on Wikipedia. Here, we just mention the extraordinarily good

writings (26, 27, 28). See (29, 30) for a general introduction to C∗-algebras and (31)

for an introduction with emphasis on completely positive and bounded evolutions.

2.2 The static structure of quantum mechanics

A quantum mechanical observable is a quantity that represents a measurable property of

a quantum system. It determines the set of measurement outcomes for an experiment on

the system. The measurement process attaches an expectation value to the observable

weighting the measurement outcomes with respect to some probability measure. The

10



2.2 The static structure of quantum mechanics

measurement is associated with (a possibly zero) gain of information: The observer

obtains an expectation value for a previously undetermined physical quantity.

In the mathematical formulation of quantum mechanics the observable is repre-

sented by a self-adjoint element A = A† of a unital1 C∗-algebra A2. The possible

measurement outcomes are elements of the spectrum of A. The measurement pro-

cess is implemented via a quantum state, which maps the observable to its expecta-

tion value3. In other words, the quantum state is described via a linear functional

ω ∈ A∗ := {f : A→ C, linear}, which takes observables A to their expectation values

ω(A). To make sense of ω(A) as an expectation value we require ω to be normal-

ized, ω(1) = 1 and positive ω(A†A) ≥ 0. It is not hard to show (29) that for any

λ ∈ [0, 1] and any two quantum states ω1, ω2 the linear combination λω1 + (1 − λ)ω2

is a quantum state again, that is the set of quantum states is convex. We call ω pure

if ω = λω1 + (1 − λ)ω2 with ω1 6= ω2 implies that λ ∈ {0, 1} and mixed otherwise.

In quantum mechanics one commonly interprets a convex combination of pure states

as a probabilistic mixture. If ω1 and ω2 are pure then in terms of expectation values

ω = λω1 +(1−λ)ω2 corresponds to the situation, where the underlying state is ω1 with

probability λ and ω2 with probability 1− λ.

The famous Gelfand-Naimark theorem builds the bridge to the more familiar Hilbert

space based formulation of quantum mechanics. It states that in a certain sense any

C∗-algebra can be seen as an algebra of bounded operators on some Hilbert space.

Recall that a ∗-homomorphism of C∗-algebras A,B is a map π : A → B that is

linear, multiplicative π(AB) = π(A)π(B) and that commutes with the ·†-operation

π(A†) = π(A)† (29, 30). A ∗-homomorphism into the C∗-algebra B(H) of bounded

operators on some Hilbert space is often called a representation.

Proposition 1 (Gelfand-Naimark (29, 32)). For any C∗-algebra A there is a Hilbert

space H and an isometric 4 ∗-isomorphism from A to a C∗-subalgebra of the bounded

operators on H.

1This means that the C∗-algebra contains a unit element.
2We shall write A† instead of A∗, which is the natural notation in the framework of C∗-algebras.

However, ·† is more common in quantum information theory.
3The splitting of the measurement process into notions of “states” and “observables” is not unique.

However, this splitting is irrelevant since in the end the observer is left with an expectation value,

which captures everything the theory can describe.
4A representation is isometric if and only if it is injective.

11



2. QUANTUM MECHANICS

In other words, every C∗-algebra can be isometrically represented as an algebra of

operators on Hilbert space. In our consecutive discussion we will not go into the details

of the representation theory of C∗-algebras. We just note the particularly important

special case, where A is a D2-dimensional vector space and there is no non-trivial

observable commuting with all elements of the observable algebra.1 From a physical

point of view these assumptions mean that all observables are confined to carry a finite

number of measurement outcomes and that the description of the physical system

is such that there is no environmental system, whose observables commute with all

elements in the observable algebra. In the depicted scenario we can view A as an

algebra of complex D ×D matrices MD. This algebra carries a natural scalar product

〈X|Y 〉 = tr(X†Y ) and it follows from Riesz’ representation theorem (33) (or simple

linear algebra) that any state can be written as ω(·) = tr(ρ ·) with a positive semi-

definite and trace one matrix ρ. Hence, any quantum state can be identified with

a so-called density matrix ρ ∈ MD. Pure quantum states correspond to rank-one

projectors ρ = ψψ†, ψ ∈ CD and are often identified with the vector ψ. In quantum

mechanics the natural notation for an element of a Hilbert space is |ψ〉, whereas 〈ψ|
denotes the corresponding2 element of the dual space H∗. Hence, we will often write

ρ = ψψ† = |ψ〉〈ψ| such that ω(A) = tr(ρ|ψ〉〈ψ|) = 〈ψ|Aψ〉 and say that pure quantum

states are given by a vector in a Hilbert space. The latter representation is possible in

finite dimensions but in the general context of C∗-algebras not every pure state can be

written in this form3.

2.3 Quantum mechanical evolutions

To a physical evolution of a quantum system corresponds an evolution of expectation

values of observables. Mathematically this can be implemented as a linear map T

acting on observables such that the expectation value of A after the evolution is given

by ω(T(A)). Note, that the same expectation value can be achieved via an evolution of

the state ω, while A remains unchanged. The whole physical information is contained

in the expectation values of observables such that both descriptions are equivalent. The

1More generally, any finite-dimensional C∗-algebra can be represented as a direct sum of matrix

algebras.
2If H has infinite dimension this correspondence is due to Riesz-Fréchet representation theorem (33).
3States that have such structure are commonly referred to as vector states (29).
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2.3 Quantum mechanical evolutions

dynamical picture of evolving observables is referred to as the Heisenberg picture while

in the Schrödinger picture the evolution of the system is reflected on the states. In

finite dimensions this can be realized via a duality relation between maps describing

the evolution on observables and states. We have that tr(ρT(A)) = tr(T∗(ρ)A), where

T∗ denotes the dual or adjoint of T and describes the evolution of ρ. Of course, T and

T∗ are mutually dual maps and their depiction as T and T∗ is arbitrary1. In order for

T (or T∗) to correspond to a physically sensible evolution we have to make sure that

T(A) is a valid quantum observable (or accordingly T∗(ρ) a valid quantum state). In

quantum mechanics the following properties are required for T : A→ A.

1. T is linear. This is an axiom of quantum mechanics, although intense research was

put into a derivation of this property from physically motivated assumptions (34,

35, 36). It seems that the static structure of quantum mechanics sketched in

Section 2.2 implies that T must be linear (36).

2. T is unital i.e. T(1) = 1. For finite systems one can equivalently demand that

T∗ preserves the trace tr(T∗(A)) = tr(A) ∀A ∈ A. This requirement states that

after the evolution the probability of measuring any outcome is 1.

3. T is completely positive. The following definition makes this notion precise.

Definition 1 ((31)). Let A and B denote two C∗-algebras and let T : A→ B be linear.

Let Ms(A) and Ms(B) denote s × s matrices with entries in A and B, respectively.

Consider the map Ts : Ms(A)→Ms(B) defined via

(Ts(X))ij = T ((X)ij) .

T is called positive if it maps positive elements2 of A to positive elements of B and T

is completely positive (CP) iff for any s the map Ts is positive.

There are positive maps that are not CP (28, 37). Completely positive and trace-

preserving (CPTP) maps or completely positive and unital (CPU) maps are referred

to as quantum channels in the realm of quantum information theory (12). In the

context of matrix algebras T is CP iff T∗ is. Assumption 3. has the following physical

1In the attached contributions we mostly deal with finite dimensional systems and T will denote

the evolution of the quantum state. However, in the more general context the choice above is natural.
2An element X ∈ A is called positive iff there is Y ∈ A with X = Y †Y . Equivalently, one can

demand that X = X† and the spectrum of X is real and non-negative.
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2. QUANTUM MECHANICS

interpretation. Consider a state ρ of a bipartite system and an evolution that acts

as T on the first share of the system while the second share “remains frozen” i.e. an

operator identity I describes the evolution of this subsystem. For any dimension of

the Hilbert space of the auxiliary (frozen) system we require the outcome (T ⊗ I)(ρ)

of the total evolution to be a valid state, in particular to be positive semi-definite. In

mathematical terms we demand that T⊗ Is, where Is denotes the identity operation on

s× s is positive for any s, see Definition 1. Particular interest lies in the dual of maps

of the form T ⊗ I. The dual map tr2 (·) defined via tr(Xtr2 (Y )) := tr((T ⊗ I)(X)Y )

for all X,Y is called the partial trace (over the second system). It has the physical

interpretation of a process that erases or discards the second system (12, 28).

2.4 Norms and spectral properties

We denote by ||·|| any particular norm coming from a normed space (for example the

C∗-algebra A). For X ∈MD and p ∈ [1,∞] we denote by ||X||p the Schatten p-norm of

X. The Schatten p-norms naturally induce norms for linear maps (38) T : MD →MD′

(super-operators) we have the p-to-q-norms, which are defined as

||T||p→q = sup
X∈MD
X 6=0

||T(X)||q
||X||p

.

However, the distances ||T − E||p→q do not capture the physical distinguishability of

two quantum channels T,E. Surprisingly, distinguishing the channels E, T may become

easier when one applies them to one part of a bipartite state. We have that

||T − E||p→q ≤ ||T ⊗ I− E⊗ I||p→q ,

where strict inequality may occur (12, 38, 39). To better describe the situation, where

the channel is applied on part of a bipartite state one considers stabilzed norms defined

by (39)

sup
s∈N
||T ⊗ Is||p→q .

Particular interest lies in the stabilized ||·||∞→∞-norm. Operationally, it is the natural

norm to measure how well two CPU maps E,T can be distinguished in a statistical ex-

periment (12, 39). The dual of this norm reflects the experimental distinguish-ability of

14



2.5 The representation theorems of Stinespring and Kraus

CPTP maps and is defined by the equation ||T||� = sups∈N
∣∣∣∣T† ⊗ Is

∣∣∣∣
∞→∞ (see e.g. (40)).

||T||� is the so-called diamond -norm. Interestingly, the stabilized ||·||∞→∞-norm has been

studied in operator theory for different reasons over the past four decades (31).

Definition 2 ((31, 40)). In the set-up of Definition 1 consider the linear map Ts :

Ms(A)→Ms(B). We call T completely bounded if

||T||CB := sup
s∈N
||Ts|| <∞,

where ||Ts|| = supX∈Ms(A)
||Ts(X)||
||X|| . ||·||CB is called the norm of complete boundedness.

To each linear map T : MD → MD we can assign a spectrum σ(T) via the usual

eigenvalue equation: we have λ ∈ σ(T) if and only if there is X 6= 0 with T(X) = λX.

The largest magnitude of all eigenvalues is the spectral radius µ. The spectral radius

of any element M of a Banach algebra with norm ||·|| can be computed via Gelfand’s

formula µ = limk→∞
∣∣∣∣Mk

∣∣∣∣1/k (41). For a CPU map T we have from the Russo-Dye

theorem (31) that

||T||∞→∞ = ||T(1)||∞ = ||1||∞ = 1.

In particular, the spectral radius of a CPU (or CPTP) map T : MD →MD is given by

limk→∞
∣∣∣∣Tk∣∣∣∣1/k = 1. Furthermore the identity T(1) = 1 implies that 1 is an eigenvalue

of any CPU (or CPTP) map.

We write mT for the minimal polynomial associated with T (i.e., the minimal degree,

monic polynomial that annihilates T, mT(T) = 0) and |mT| for the number of linear

factors in mT. In many cases a more natural annihilator for T is the Blaschke product

B(z) =
∏
mM

z − λi
1− λ̄iz

,

where the product is taken over all i such that the linear factor z − λi occurs in mT

respecting multiplicities. Thus, the numerator of B as defined here is exactly the

minimal polynomial mT.

2.5 The representation theorems of Stinespring and Kraus

The concept of a completely positive map originates from the study of operator algebras.

A core observation for the application of such maps in theoretical physics is Stinespring’s

representation theorem. To demonstrate full respect to Stinespring’s work we formulate

the theorem for general completely positive maps.

15
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Theorem 2 ((31, 42)). Let A be a C∗-algebra with unit, let H be a Hilbert space and let

B(H) denote the bounded operators on H. Let T : A → B(H) be a completely positive

linear map. Then there exists a Hilbert space K a bounded linear map V : H→ K and

a ∗-homomorphism (a representation) π : A→ B(K) such that

T(A) = V †π(A)V ∀A ∈ A.

If T is unital then V †V = 1, i.e. V is an isometry.

In case that A has finite dimension it is not hard to see (28, 31) that any represen-

tation is given by π(A) = A⊗ 1. Hence, for matrix algebras we have that

T(A) = V †(A⊗ 1)V ∀A ∈MD.

Taking adjoints in the above formula shows (see (43)) that any CPTP map can be

written as

T(ρ) = tr2 (U(ρ⊗ φ)U †),

where U is a unitary, φ is a quantum state and tr2 (·) denotes the partial trace over

the second system. This equation has an obvious interpretation as a description of the

evolution of a state of an open system: The action of the channel T consists of a joint

unitary evolution of a system and its environment followed by the partial trace, which

discards the environment. Although this interpretation is appealing some care has to

be taken. The environment and in particular φ are not specified by Stinespring’s repre-

sentation theorem. Hence, in order to have a consistent interpretation it is necessary to

add ad hoc experimental knowledge about the state of the environment. Note that only

the mathematical existence of the unitary is guaranteed. This however must not cor-

respond to a an actual physical evolution of a certain system. An important property

of the Stinespring representation is that it is continuous. Two quantum channels are

close if and only if one can find Stinespring representation that are close. Theorem 3

can be stated for general completely positive maps on C∗-algebras (44).

Theorem 3 ((45)). Let T1,T2 be completely positive unital maps

T1,T2 : MD →MD′

with Stinespring isometries V1, V2 : CD′ → CD ⊗ CD′′. We have that

inf
U
||(1⊗ U)V1 − V2||2∞ ≤ ||T1 − T2||CB ≤ 2 inf

U
||(1⊗ U)V1 − V2||∞ ,

where the minimization is with respect to all unitaries on the extension space CD′′.
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2.6 Quantum Markov processes and the evolution of open quantum
systems

Another frequently used representation theorem for completely positive maps is due

to Kraus. We state the theorem for matrix algebras as the generalization to C∗-algebras

is too technical for this exposition.

Theorem 4 ((46)). The map T : MD → MD′ is completely positive and linear if and

only if there is a set of operators {Vi}i=1,...,n such that

T(X) =
n∑
i=1

V †i XVi ∀X ∈MD.

T is unital iff
∑n

i=1 V
†
i Vi = 1. Two sets {Vi}i=1,...,n and {Ṽi}i=1,...,n represent the same

map iff there is unitary U such that Vi =
∑

k UikṼk.

The operators Vi are commonly called Kraus operators. A classical stochastic ma-

trix1 S ∈MD(R≥) can be embedded into the framework of completely positive maps by

fixing an orthonormal basis |i〉i=1,...,D and setting T(·) =
∑D

ij Sij |i〉〈j| · |j〉〈i|. However,

as is obvious from the above theorem not every quantum channel stems from a stochas-

tic matrix. Hence, a quantum channel constitutes a concept strictly more general than

that of a classical stochastic matrix.

2.6 Quantum Markov processes and the evolution of open

quantum systems

One of the most fundamental and fruitful concepts in classical probability theory is that

of a Markov chain. Whenever a probabilistic process does not depend on the current

state or its past i.e. it has the Markov property it can be appropriately described as

a Markov chain. Such processes occur in ubiquitous real-world scenarios ranging from

the description of algorithms for Internet search over the description of stock markets

to computational biology and theoretical physics to name just a few. The universality

of the concept is accompanied by a significant effort to understand its mathematical

structure, which led to an almost endless body of literature on the topic. We list a few

standard references (47, 48, 49, 50, 51).

Quantum Markov processes constitute a natural analogue of the classical concept (28).

They occur for example in the natural sciences, whenever the dynamics of a large and

1S ∈MD(R≥) is called a stochastic matrix iff
∑
j Sij = 1∀i.
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2. QUANTUM MECHANICS

fast-mixing environment can be neglected; often times, the equilibration and thermal-

ization of physical systems is being described in a Markovian way. In this work we

will only be concerned with finite and homogeneous Markov chains. We formulate the

definition for the Heisenberg picture. The Schrödinger picture analogue is obvious.

Definition 3. Let T : MD → MD be a CPU map. A homogeneous quantum Markov

chain is a semigroup {Tt}t∈I of CPU maps with T0 = I1, where the parameter set I

is either R≥ or N. If A0 is the initial observable then the observable at time t ∈ I is

At = Tt(A0).

If I = N we call {Tt}t∈I a Markov chain in discrete time, while I = R≥ corresponds

to a Markov chain in continuous time. In discrete time T is referred to as the transition

map of the Markov chain. The Markov property is reflected in the semigroup structure

in Definition 3. For any times s, t ∈ I we have that Ts+t = Ts · Tt, which implies that

the state of the systems at time t+ s only depends on the state of the system at time s

and the evolution Tt. From a physical point of view it is natural to add the assumption

that a Markov chain in continuous time Tt is continuous in t2. In this case a detailed

characterization is as follows. (We focus on the Heisenberg picture but the analogous

equation in Schrödinger picture is very common, too.)

Proposition 5 ((52)). Let T be a CPU map and let {Tt}t∈R≥ be a continuous semigroup

with T0 = I. Then there is a set of operators {Lj} ⊂ MD and a Hermitian operator

H ∈MD such that

Tt = etL

with

L(X) = i[H,X] +
∑
j

LjXL
†
j −

1

2
{LjL†j , X} ∀X ∈MD,

where [X,Y ] = XY − Y X and {X,Y } = XY + Y X. In particular, the semigroup is

differentiable.

Hence, the dynamical equation governing a Markovian evolution in the Heisenberg

picture is
d

dt
A = L(A).

1Recall that I denotes the operator identity.
2In the infinite dimensional context this step is tricky as there are various inequivalent definitions

for continuity.
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2.7 Dissipative quantum state preparation and quantum computation

Setting Lj = 0 we obtain the famous Heisenberg equation (26, p. 129)

d

dt
A = i[H,A],

which describes the evolution of a closed quantum system in the Heisenberg picture.

It is the quantum mechanical analogue of the classical Liouville equation (53, p. 344).

H is called the Hamiltonian of the evolution. Eigenvalues of H are called energy levels

and eigenvectors of H are called energy-eigenstates. The eigenstate corresponding to

the smallest energy is called the ground-state. The total evolution of the system is

unitary in the sense that

A(t) = eiHtAe−iHt

solves the Heisenberg equation and eiHt is a unitary operator (26). The remaining

terms of L in Proposition 2.1 determine the dissipative part of the evolution. The

physical interpretation of this decomposition is that a Markovian evolution of an open

system can be seen as a “superposition” of a unitary and a dissipative constituent. The

unitary part reflects a “coherent” evolution of a closed system while the dissipative

term reflects the interaction with the environment. Again certain care has to be taken

with this interpretation since the above decomposition is not unique. However, the

choice can be made unique via a gauge transformation setting tr(Lj) = 0.

2.7 Dissipative quantum state preparation and quantum

computation

In this section we discuss specific quantum information theory tasks and shift to the

Schrödinger picture as this is the natural language for the discussion. Under certain con-

ditions (28, Proposition 7.5) a purely dissipative quantum evolution drives an arbitrary

initial state to a steady state that only depends on the evolution. In fact the evolution

can be engineered to prepare important classes of quantum states or to perform an

arbitrary quantum computation (6). We consider a quantum system composed of a

number of subsystems (e.g. qubits1) interacting with local environments giving rise to

memoryless and time-independent dissipation processes. (See Chapter 4 for a rigorous

1A qubit is a quantum system, whose observable algebra is M2(C).
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discussion of quantum many particle systems.) The dynamical equation is d
dtρ = L(ρ)

with generator in Lindblad form

L(X) =
∑
j

LjXL
†
j −

1

2
{L†jLj , X} ∀X ∈MD. (2.1)

In the following schemes the evolution is engineered to have a unique steady state,

which shall encode the outcome of the computation or state preparation.

1. Dissipative Quantum Computation (DQC): A quantum circuit is a set of wires on

which gates are applied. Each wire corresponds to a quantum system (e.g. qubit)

and each gate corresponds to some unitary operation being applied to neighbour-

ing wires. Hence, the computation can be modelled by a sequence of unitary gates

{Ut}Tt=1 acting locally on neighbouring sites. The outcome of the computation is

ρT := UT · .... · U1ρU
†
1 · .... · U

†
T .

In (6) explicit operators Lj (Equation 2.1) are constructed with the following

properties: The operators act locally (on neighbouring wires) and the evolution

has a steady state, (1) that is unique; (2) that can be reached in a time poly(T );

(3) such that ρT can be extracted from it in a time poly(T ). This method defies

some of the DiVincenzo-criteria for quantum computation as it neither requires

state preparation, nor unitary dynamics (54). However, in the above sense it is

nevertheless as powerful as standard quantum computation.

2. Dissipative State Preparation (DSE): We consider a quantum system with N

particles on a lattice Λ in any dimension. (Chapter 4 contains in introduction to

the topic.) We are interested in ground states of Hamiltonians H that are local

and frustration-free. “Local” here means that H consists of a sum of Hamiltoni-

ans hλ that act non-trivially only on a small set λ of sites (for example, nearest

neighbours), H =
∑

λ⊂Λ hλ. A ground state of H is called frustration-free if

minimizes the energy of each hλ individually, that is if ρ minimizes the energy of

H then it minimizes the energy of hλ for any λ. Ground states of such Hamil-

tonians constitute an extremely wide class. They include matrix product states

(MPS) (10) and projected entangled-pair states (PEPS) (55) as for instance Ki-

taev’s topological code (56). In (6) it is shown how to engineer a dissipative
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2.7 Dissipative quantum state preparation and quantum computation

processes (Equation 2.1), which prepares any ground state of a frustration free

Hamiltonian as its steady state.

Both DQC and DSE are robust in the following sense: The dissipative process drives

the system towards a steady state independent of perturbations of the system along

the evolution. For a practical implementation of the described schemes it is however

crucial to analyse

1. whether the evolution is stable with respect to perturbations in the generator L

and

2. whether the computation or state preparation can be performed on a reasonable

time scale.

The first point is crucial since in any practical implementation the generators will be

furnished with errors that might accumulate along the way. The second point is crucial

since the dimension of the state space in quantum mechanics is exponential in the

number of underlying sites (qu-bits). For the schemes to be feasible one requires that

the computation time should be polynomial in the number of underlying sites. So far

such estimates only exist in extremely restricted special case and the general study is

a hard task. At the moment of appearance of our contributions the first topic was

essentially untouched territory. Motivated by the mentioned issues we study spectral

stability and convergence estimates for quantum Markov processes. We develop a

new theory for spectral estimates of Markov processes and approach the above points,

although admittedly we cannot present a satisfactory treatment of DQC and DSE. The

following chapter lays down the mathematics required.
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3

Spectral estimates from

Nevanlinna-Pick interpolation

and Model Theory

In the articles I, II and III we employ recent1 mathematical methods to derive norm

estimates for functions of quantum channels. The techniques used are new to the

quantum information theory community. The purpose of this chapter is to facilitate

the access of the interested reader to those articles. The presented exposition mostly

relies on the textbooks (24, 57, 58) and does not contain any scientific discoveries made

by the author (although the selection and collocation of results did not occur in the

literature so far). It contains a very brief introduction to a model theoretic approach

to spectral estimates. The latter constitutes a powerful framework that enables us

to obtain spectral estimates for functions of wide classes of operators, a particularly

interesting instance of which constitute CPTP maps. We are looking for estimates of

the type

||f(X)|| ≤ Φ(σ(X), n),

where X denotes an operator, σ(X) is its spectrum and n the dimension of the un-

derlying space. For simplicity we restrict our attention to X acting on spaces of finite

dimension, although under certain constraints the theory can be extended to infinitely

1The Nagy-Foiaş invariant subspace theory and their commutant lifting approach to interpolation

theory originate in the 1960s.
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INTERPOLATION AND MODEL THEORY

dimensional spaces1. At the core of the presented approach lies the observation that

the task of finding a spectral bound on ||f(X)|| is related to a Nevanlinna-Pick interpo-

lation problem in a certain class of functions. The latter problem was solved by G. Pick

(for the space H∞, see below) already in 1916 but until today the theory experienced a

vivid development. The modern approach we take here is based on the theory of certain

function spaces and operators thereon and was pioneered by B. Sz.-Nagy, C. Foiaş and

D. Sarason.

3.1 The Nevanlinna-Pick interpolation problem

The classical Nevanlinna-Pick interpolation problem is the following task. Let D = {z ∈
C||z| < 1} denote the open unit disk and let Hol(D) be the set of holomorphic functions

on D. Suppose we are given distinct points {λi}i=1,...,n ⊂ D and let {wi}i=1,...,n ⊂ D.

The problem is to find f ∈ Hol(D) that interpolates the data i.e. satisfies

f(λi) = wi 1 ≤ i ≤ n

such that

sup
z∈D
|f(z)| ≤ 1.

The second requirement only serves as a normalization of the problem and could be

scaled to any constant other than 1. A necessary and sufficient condition to solve this

problem was found by G. Pick in 1916 (59).

Proposition 6 (Pick (59)). There exists f ∈ Hol(D) such that f(λi) = wi for 1 ≤ i ≤ n
and supz∈D |f(z)| ≤ 1 if and only if the Pick matrix

(P )ij =
1− wiw̄j
1− λiλ̄j

is positive semi-definite P ≥ 0. The function is unique if and only if the Pick matrix

has not maximal rank.

Intuitively, one might suspect that our initial problem of estimating ||f(X)|| in terms

of the spectrum is related to a Nevanlinna-Pick problem. The reason is as follows.

Suppose that X can be diagonalized. A simple way to define f(X) is by diagonalizing

X and by letting f act on its eigenvalues λi. Consequently, any function g that coincides

1In fact the extension to algebraic operators is trivial.
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with f on the spectrum of X satisfies f(X) = g(X). In order to compute ||f(X)|| one

can minimize the norm ||g(X)|| under the constraint that g(λi) = f(λi). This resembles

“an operator version of the original Nevanlinna-Pick problem”. We will make this

precise in Section 3.10.

3.2 Function spaces

In our consecutive discussion we will be concerned with certain subspaces of Hol(D), an

important class of which constitute the Hardy spaces (60). For p > 0 they are defined

as

Hp :=
{
f ∈ Hol(D)| ||f ||pHp := sup

0≤r<1

1

2π

∫ 2π

0
|f(reiφ)|pdφ <∞

}
,

and

H∞ :=
{
f ∈ Hol(D)| ||f ||H∞ := sup

z∈D
|f(z)| <∞

}
.

It is immediate from the definition that the spaces Hp are vector spaces, that the

mapping f 7→ ||f ||Hp is a norm for p ≥ 1 and that Hp ⊂ Hq for p ≥ q.

Elements of Hardy spaces can be characterized by their boundary behaviour. We

denote by Lp(T) the usual complex Lp-space of the unit circle T. For any f ∈ Hp the

limit

fb(e
iφ) := lim

r→1
f(reiφ) (3.1)

exists for almost every φ (61). Furthermore we have the following.

Proposition 7 ((24, 61)). Let fb be as in Equation 3.1 and let p ≥ 1. Then f ∈ Hp is

equivalent to fb ∈ Lp(T) and the Fourier coefficients f̂b(n) of fb satisfy f̂b(n) = 0 for

n < 0. Moreover, ||fb||Lp = ||f ||Hp.

Proposition 7 yields a canonical identification for p ≥ 1 of the Hardy space with the

subspace of Lp with vanishing Fourier coefficients for negative n,

Hp ≡
{
f ∈ Lp | f̂(n) = 0, n < 0

}
.
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Under this identification the Taylor coefficients and the Fourier coefficients of f ∈ Hp

are treated equivalently. Finally, we will encounter the Wiener algebra, which is the

subset of Hol(D) of absolutely convergent Taylor series,

W := {f =
∑
k≥0

f̂(k)zk | ||f ||W :=
∑
k≥0

|f̂(k)| <∞}.

3.3 Shift-invariant subspaces of L2(T)

In this section we introduce the multiplication operator on L2(T) and identify its invari-

ant subspaces. The structure of these spaces is described by the famous Beurling-Helson

Theorem. We denote by L2 = L2(T) the Hilbert space of square-integrable functions

with respect to normalized Lebesgue measure dm

L2 =

{
f : T→ C measurable | ||f ||22 =

∫
T
|f |2dm <∞

}
.1

If ϕ is such that ϕf ∈ L2 for any f ∈ L2 we denote by Multϕ the multiplication

operator

Multϕ : L2 → L2

f 7→Multϕ(f) := ϕf.

The multiplication operator by z is of particular importance. We reserve the notation

S := Multz

for this operator.

Recall that the list B = {zn}n∈Z is an orthonormal basis for L2. Any f ∈ L2 can

be written with respect to B as

f =
∑
n∈Z

f̂(n)zn,

f̂(n) =

∫
T
fz̄ndm.

1In this section we slightly overload the notation for L2. To achieve a clearer exposition we do

not factor out the kernel of the L2-seminorm. It would be too much to introduce a new notation to

emphasize this.
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This expansion yields a natural isomorphism F of L2 with the space of square summable

sequences l2(Z) = {(an)n∈Z |
∑

n∈Z |an|2 <∞}

F : L2 → l2(Z)

f 7→ (f̂(n))n∈Z.

The action of S is realized on l2(Z) by a bilateral right shift of coefficients. For this

reason S is simply called the shift operator.

We call a subspace E ⊂ L2 invariant with respect to S if

SE ⊂ E.

We always will assume that E is closed. An important example of an invariant subspace

is the Hardy space:

H2 = {f ∈ L2 | f̂(n) = 0, n < 0} = span{zn | n ≥ 0},

where span{·} denotes the closed linear span of a list. The following theorem classifies

the invariant subspaces of L2 and reveals the extraordinary role played by H2.

Theorem 8 (Beurling-Helson (62, 63)). Let E be an invariant subspace of L2 with

respect to the multiplication operator S. Then there are only two possibilities.

1. If SE = E then E = χσL
2, where σ is a measurable subset of T and χσ is its

characteristic function.

2. If SE 6= E then there exists a measurable function θ on T with |θ| = 1 almost

everywhere and E = θH2.

Hence, any invariant subspace of L2, which is not mapped onto itself by S is equiv-

alent to H2 up to a function θ with |θ| = 1 almost everywhere. We can use the above

to classify the invariant subspaces of H2.

Corollary 9 (Beurling). Let E 6= {0} be an invariant subspace of H2 with respect to

the multiplication operator. Then there exists θ ∈ H2 with |θ| = 1 almost everywhere

on T with E = θH2.

A function θ ∈ H2 with the property |θ| = 1 almost everywhere on T is called an

inner function.
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Proof. In view of Theorem 8 we exclude the possibility SE = E. For the sake of

contradiction suppose that z−1E ⊂ E. Choose f ∈ E, f 6= 0 and note that the latter

implies that for some n we have f̂(n) 6= 0. It follows that z−(n+1)f ∈ E by assumption.

On the other hand z−(n+1)f /∈ H2, a contradiction. It follows that SE 6= E and by

Theorem 8 there is θ with |θ| = 1 almost everywhere and E = θH2. Since E ⊂ H2 it

follows that θ ∈ H2.

3.4 Operator dilation theory

We introduce the concept of a dilation of a Hilbert space operator and show a fun-

damental observation going back to D. Sarason, which characterizes when a certain

operator is a dilation of another. This observation is at the core of a Hilbert space

theoretic approach to Nevanlinna-Pick interpolation and plays a fundamental role in

model theory more generally. We start by recalling some basic concepts from the theory

of operators on Hilbert space. Let X : H→ H be a linear operator on a Hilbert space

H. We denote the operator norm of X by

||X||∞ := sup
v∈H
v 6=0

||Xv||2
||v||2

,

where ||v||2 =
√
〈v|v〉. We call X a Hilbert space contraction iff ||X||∞ ≤ 1. If X is

bounded (i.e. ||X||∞ <∞) the adjoint of X is the unique operator X† : H→ H with

〈Av|w〉 = 〈v|A†w〉 ∀v, w ∈ H.

An operator V : H→ H is called an isometry iff

〈V v|V w〉 = 〈v|w〉 ∀v, w ∈ H.

V is called a co-isometry, iff V † is an isometry. If an operator U is both an isometry

and a co-isometry we call it unitary. With these notions defined we can proceed to the

main topic of this section. We study dilations of operators on Hilbert space.

Definition 4. Let H and K be Hilbert spaces and let H ⊂ K. Let X : H → H and

Y : K→ K be bounded linear operators. We call Y a dilation1 of X and equivalently

X a compression of Y iff for every polynomial p we have p(X) = PH p(Y )|H, where PH

denotes the orthogonal projector in K on H.

1Sometimes the Stinespring representation theorem is referred to as ”Stinespring dilation theorem”.

In view of this (standard) definition the terminology is wrong.
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Suppose we are given an operator X : H → H and let Y : K → K be an operator

on the larger space K. Clearly Y can only be a dilation of X if X = PH Y |H. However

the latter condition is insufficient in general and a certain relation of H to the invariant

subspaces of Y is required to ensure that Y is a dilation for X. Suppose we could

decompose K such that

Y =

∗ ∗ ∗
0 X ∗
0 0 ∗


then X would be a compression of Y . Here X acts on a space which is the orthogonal

difference of two invariant subspaces for Y . It is natural to ask if this is the most

general structure such that Y is a dilation for X.

Theorem 10 (Sarason (64)). Let Y : K→ K, let H ⊂ K and let X := PH Y |H. Y is

a dilation of X if and only if there exist two invariant subspace H1,H2 for Y such that

H1 ⊂ H2 and H = H2 	H1
1.

Observe that X does not necessarily have to act on an invariant subspace of Y in

order for Y to be a dilation of X. The latter situation would correspond to H = H2 in

Theorem 10. A stronger property of Y than being a dilation is being an extension.

Definition 5. Let Y be a dilation of X and suppose that X acts on an invariant

subspace of Y . Then we call Y and extension of X or equivalently X a part of Y .

A paradigm of the study of dilations is the following theorem, which must be stated

in this context.

Theorem 11 (Sz.-Nagy (65)). Every contraction has a unitary dilation and a co-

isometric extension.

A powerful extension of this result is Andô’s theorem, which generalizes Theorem 11

to the situation, where one is given a pair of commuting contractions.

Theorem 12 (Andô (66)). Any two commuting contractions have commuting unitary

dilations and commuting co-isometric extensions.

Perhaps surprisingly there is no obvious generalization of Andô’s theorem to three or

more contractions. Parrott (67) constructed three commuting contractions that do not

1The difference H2 	H1 is defined with respect to the scalar product from K.
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have commuting unitary dilations. The operator-theoretic significance of Theorem 12

together with Parrott’s counterexample triggered further research in this direction. We

list some references for the interested reader (68, 69, 70, 71).

The following theorem is the famous commutant lifting theorem by B. Sz.-Nagy and

C. Foiaş. It will constitute the core building block for our solution of the Nevanilinna-

Pick interpolation problem presented in Sections 3.7 and 3.9.

Theorem 13 (Commutant lifting theorem (72, 73)). Let T : H→ H be a contraction.

Let W : K→ K be a co-isometric extension of T . Let X : H → H be an operator that

commutes with T . Then there is an operator Y such that

1. PHY |H = X

2. YW = WY

3. ||Y ||∞ = ||X||∞.

Proof. The commutant lifting theorem can be seen as a corollary of Andô theorem. It

is not hard to see that any co-isometric extension W on K of a contraction T on H can

be decomposed into a direct sum W = Wmin ⊕W ′, where Wmin has the property

K = spann{(W ∗min)nH | n ∈ N}

and W ′ is another co-isometry (58). Wmin is called the minimal co-isometric extension.

Let us come back to the statement of Theorem 13. Without loss of generality we can

assume that ||X||∞ ≤ 1. (Otherwise rescale X dividing it through ||X||∞.) By Andô’s

theorem there exist commuting co-isometric extensions say A and B for T and X,

respectively. Suppose for the moment that W (as in Theorem 13) is a minimal co-

isometric extension for X. Then A = W ⊕A′ for some co-isometry A′. Set Y := PKB|K
and observe that PHY |H = X that YW = WY and that ||Y ||∞ = 1. Hence, we have

proven the theorem in the special case that W is minimal. In general W = Wmin⊕W ′

and we set Y = PHminB|Hmin⊕0, where Hmin is the subspace on which Wmin acts.

3.5 Kernels and multiplication operators for H2

For any ζ ∈ D the evaluation map

evalζ : H2 → C

f 7→ evalζ(f) := f(ζ)
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is a continuous, linear functional on H2. Hence, by the Riesz representation theo-

rem (33) there is kζ ∈ H2 such that

f(ζ) = 〈f |kζ〉. (3.2)

In the context of general Hilbert function spaces1 Equation 3.2 is referred to as the

reproducing property of the reproducing kernel kζ . In the particular case of H2 we call

kζ the Cauchy kernel. It is not hard to verify that kζ(z) = 1
1−ζ̄z . We have

〈f |kζ〉 =

∫
∂D
f(z)kζ

|dz|
2π

=

∫
∂D
f(z)

z

z − ζ
|dz|
2π

=
1

2πi

∫
∂D

f(z)

z − ζ
dz = f(ζ)

by the Residue theorem.

The rest of this section is devoted to the study of restrictions of multiplication operators

(as in Section 3.3) to H2. We slightly overload the notation and also write Multϕ for

the multiplication operator on H2. In this case the shift operator acts on a sequence-

space l2(N) as an unilateral right shift of coefficients. A first question to answer in this

context is for which functions ϕ is Multϕ : H2 → H2 an endomorphism. The multiplier

algebra of H2 by definition is the set of functions ϕ on D given by

{ϕ | ϕf ∈ H2, ∀f ∈ H2}.

To begin with, for f ∈ H2 and ϕ ∈ H∞ the estimate

||ϕf ||H2 ≤
(∫

∂D
|ϕ|2|f |2 |dz|

2π

)1/2

≤ ||ϕ||H∞ ||f ||H2

implies that any ϕ ∈ H∞ is contained in the multiplier algebra of H2. This allows one

to study for ϕ ∈ H∞ the action of the adjoint multiplication operator Mult∗ϕ on the

reproducing kernels, which is of particular interest. Observe that for any f we have

〈f |Mult∗ϕkζ〉 = 〈Multϕf |kζ〉 = 〈ϕf |kζ〉 = ϕ(ζ)f(ζ) = ϕ(ζ)〈f |kζ〉 = 〈f |ϕ(ζ)kζ〉.

It follows that kζ is eigenvector of Mult∗ϕ with eigenvalue ϕ(ζ)

Mult∗ϕkζ = ϕ(ζ)kζ .

1A Hilbert function space is a Hilbert space that consists of functions, such that the evaluation

map is a non-zero, continuous functional. In particular Riesz’ representation theorem applies.
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For the operator norm this entails the following estimate

||Multϕ||∞ ≥ sup
ζ∈D
|ϕ(ζ)| = ||ϕ||H∞

The latter holds for multipliers in general Hilbert functions spaces, with D replaced

with the appropriate domain of functions. But in H2 we can say more, namely that

(as above)

||Multϕ||∞ = sup
f∈H2

||f ||
H2=1

||Multϕf ||H2 = sup
f∈H2

||f ||
H2=1

(∫
∂D
|ϕ|2|f |2 |dz|

2π

)1/2

≤ ||ϕ||H∞ .

In total we have found

||Multϕ||∞ = ||ϕ||H∞ . (3.3)

On the other hand if ϕ is in the multiplier algebra of H2 then clearly ϕ must itself be

in H2. The above implies that ϕ is bounded and therefore in H∞.

Proposition 14 ((58)). The algebra H∞ is isometrically isomorphic to the multiplier

algebra of H2.

3.6 The compressed shift operator

We use Theorem 10 in combination with Beurling’s Theorem 9 to study compressions

of the multiplication operator on H2.

Definition 6. Let θ be an inner function. The model space is defined as

Kθ := H2 	 θH2.

The model operator is defined as

Mθ : Kθ → Kθ

f 7→Mθf := PKθ(zf),

where PKθ denotes the orthogonal projection onto Kθ.

Theorem 15. Let θ be an inner function and let p be a polynomial. Then for any f ∈
Kθ we have p(Mθ)f = PKθ(p(S)f) = PKθ(pf). In addition ||p(Mθ)||∞ = ||PKθp(S)|Kθ ||∞ ≤
||p||H∞.
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3.7 Lifting the commutant of Mθ

Proof. By Theorem 8 H2 and θH2 are invariant subspaces of L2. By definition Mθ =

PKθS|Kθ . Thus it follows from Theorem 10 that S is a dilation of Mθ to the whole

space L2 i.e. p(Mθ) = PKθp(S)|Kθ .

Theorem 15 is important for several reasons. First, the theorem gives a meaning

to the model operator a as compression of the shift operator onto the model subspace.

Second, the property p(Mθ) = PKθp(S)|Kθ greatly facilitates the computation of matrix

entries of p(Mθ) as for any orthonormal vectors {ek}k in Kθ

(p(Mθ))ij = 〈ei|p(Mθ)ej〉 = 〈ei|pej〉.

Lastly, we have already pointed out in Proposition 14 that the multiplier algebra of

H2 is H∞. The commutant of the model operator will play a fundamental role in our

approach. For this reason we need to give a meaning to ϕ(Mθ) for arbitrary ϕ ∈ H∞.

This can be achieved via Theorem 15.

Definition 7 (Sz.-Nagy and Foias (65)). Let ϕ ∈ H∞. We define ϕ(Mθ) by the relation

ϕ(Mθ)f := PKθ(ϕf) ∀f ∈ Kθ.

3.7 Lifting the commutant of Mθ

The commutant of Mθ is the set of all linear operators X : Kθ → Kθ with

XMθ = MθX. (3.4)

It is clear that any operator ϕ(Mθ) with ϕ ∈ H∞ commutes with Mθ. It turns out

that the converse is also true i.e. if Equation 3.4 holds then X = ϕ(Mθ). The reason

is that one can lift the commutation relation 3.4 to H2 using the Commutant Lifting

Theorem 13 and exploit that the multiplier algebra of H2 is H∞.

To be more concrete let us consider the adjoint commutation relation

X†M †θ = M †θX
†, (3.5)

which is equivalent to Equation 3.4. We note that
∣∣∣∣∣∣M †θ ∣∣∣∣∣∣∞ ≤ 1 . The adjoint shift

operator S† is a co-isometry because S is an isometry on H2 i.e. S†S = 1H2 . Further-

more we have that Kθ is the difference of two invariant subspaces for S and Mθ is a

compression of S to Kθ i.e.

S =

(
∗ ∗
0 Mθ

)
.
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The equivalent statement

S† =

(
∗ 0

∗ M †θ

)
is nothing but the assertion thatKθ is an invariant subspace for S†. We conclude that S†

is a co-isometric extension for M †θ to H2. Hence, we can apply the Commutant Lifting

Theorem 13 to the commutation relation 3.5. We conclude that there is an operator

Y † that commutes with S† on H2 such that X† = PKθY
†|Kθ and

∣∣∣∣Y †∣∣∣∣∞ =
∣∣∣∣X†∣∣∣∣∞.

Observe that any bounded operator Z that commutes with the shift on H2 can be

written as

Z = Multϕ (3.6)

for some ϕ ∈ H∞. For suppose Z(1) = ϕ ∈ H∞ then Z(zn) = znϕ and for any

polynomial p it follows Z(p) = ϕp. By continuity this extends to any function in H2,

see Proposition 14. We conclude that Y = Multϕ such that X = ϕ(Mθ). We can

also write the norm of X in terms of ϕ. We note that Y = Multϕ is chosen such that

||X||∞ = ||Y ||∞. Hence,

||X||∞ = ||ϕ||H∞ .

Finally, observe that any operator Y ′ onH2 that satisfiesX = PKθY
′|Kθ (and commutes

with S, see below) has norm larger than or equal to the norm of X. The following

proposition summarizes our discussion.

Proposition 16 ((24, 74)). Let θ be an inner function. Then XMθ = MθX holds if

and only if

X = PKθMultϕ|Kθ = ϕ(Mθ)

for some ϕ ∈ H∞. Moreover, we have

||X||∞ = min{||ϕ||H∞ |X = ϕ(Mθ)}.

3.8 Model spaces with respect to a Blaschke product

In view of the Nevanlinna-Pick interpolation problem a particular interest lies in model

spaces where the inner function is a Blaschke product. These spaces also play an impor-

tant role when one is looking for (optimal) spectral bounds for functions of operators.
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We denote by

B(z) =
n∏
i=1

z − λi
1− λ̄iz

the Blaschke product associated to a multi-set {λi}i=1,...,n ⊂ D, where to each λi we

associate one factor in B respecting multiplicities. Observe that |z| = 1 implies that

|B(z)| = 1 therefore B is an inner function. We start our analysis of the model space

KB = H2 	 BH2 by providing one natural (though not orthogonal) basis. With the

Cauchy kernels kλi = 1
1−λ̄iz

(see Section 3.5) we can write

〈f |kλi〉 = f(λi).

Since B has zeroes at λi it follows that any function f ∈ BH2 satisfies f(λi) = 0 for

1 ≤ i ≤ n. With the above relation we conclude that f must be orthogonal to all kλi .

Hence, if the zeros {λi}i=1,...,n of B are distinct KB is spanned by the Cauchy kernels

kλi i.e.

KB = span

{
1

1− λ̄iz

}
i=1,...,n

.

Thus KB is a space of rational functions f of the form

f(z) =
p(z)∏

i(1− λ̄iz)
,

where p(z) is a polynomial of degree at most n− 1. Note that if the zeros of B are not

distinct the above argument remains valid but the Cauchy kernels have to be replaced

by

zki−1

(1− λ̄iz)ki
,

where ki denotes the multiplicity of λi.

The action of the adjoint model operator M∗B on the kernels kλi is particularly

interesting. For any f ∈ KB we have

〈MBf |kλi〉 = 〈PKB (zf)|kλi〉 = 〈zf |kλi〉 = λif(λi) = λi〈f |kλi〉.

We conclude that for any f ∈ KB it holds that 〈f |M∗Bkλi〉 = 〈f |λ̄ikλi〉 and hence

M∗Bkλi = λ̄ikλi . (3.7)
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The kernel kλi is an eigenvector of M∗B with eigenvalue λ̄i. This implies that the eigen-

values of the model operator MB are {λi}i=1,...,n. For any given matrix with distinct

eigenvalues we can consider the Blaschke product corresponding to the spectrum and

construct MB, which will have the same spectrum as the original matrix.

3.9 A solution to the Nevanlinna-Pick problem

To demonstrate the power of the framework introduced above we present a solution

to the Nevanlinna-Pick interpolation problem proving Proposition 6. Recall that we

are given a set of distinct1 points {λi}i=1,...,n ⊂ D and a set {wi}i=1,...,n ⊂ D. We are

looking for f ∈ H∞ with f(λi) = wi and ||f ||H∞ ≤ 1.

For any ϕ ∈ H∞ we have by Definition 7 and Equation 3.7 that

ϕ(MB)∗kλi = ϕ(λi)kλi 1 ≤ i ≤ n. (3.8)

Let now W be an operator on KB defined by the relation

W ∗kλi = w̄λikλi .

Clearly, MBW = WMB and we conclude from Proposition 16 that W = ϕ(MB) for

some ϕ ∈ H∞ and that

||W ||∞ = min{||ϕ||H∞ |W = ϕ(MB)} = min{||ϕ||H∞ | wi = ϕ(λi)}.

For the second equality we used Equation 3.8. The requirement ||ϕ||H∞ ≤ 1 is equivalent

to ||W ||∞ ≤ 1 i.e. for any f ∈ KB we have

〈Wf |Wf〉 ≤ 〈f |f〉.

Equivalently

0 ≤ 〈f | (1−WW ∗) f〉 =
∑
ij

aiāj〈kλi | (1−WW ∗) kλj 〉

=
∑
ij

aiāj

(
1

1− λ̄iλj
− w̄iwj

1− λ̄iλj

)
,

which proves Proposition 6.

1It is not crucial that the λi are actually distinct. However, the situation where multiplicities occur

would corresponds to a mixture of the Schur- and Nevanlinna-Pick interpolation problems (see (24, 75)).

This generalized problem can also be studied within the framework of this chapter.
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3.10 Bounding the norm of a function of an operator

In this section we return to our original problem of bounding the norm of an operator

acting on a (finite-dimensional) Hilbert or Banach space. The main idea is to associate

to a given class of linear operators Γ a certain Banach algebra A of functions, which

“mirrors the way those operators are bounded”. Instead of working with operators

directly we switch to the function algebra and estimate the norm of a representative

function in the function algebra. More precisely, our discussion is based on inequalities

of the type

||f(X)|| ≤ C ||f ||A , (3.9)

which relate for a given X ∈ Γ the norm ||f(X)|| to the norm of f in A. Let us make

the notions described above more precise.

Definition 8 (Function algebra). A unital Banach algebra A with elements in Hol(D)

will be called a function algebra, if

1. A contains all polynomials and limn→∞ ||zn||1/nA = 1.

2. (a ∈ A, λ ∈ D, a(λ) = 0)⇒ a
z−λ ∈ A.

Definition 9 (Functional calculus). Let X : B→ B be an operator on a Banach space

B. A bounded algebra homomorphism from a function algebra A into the set of linear

operators on B,

JX : A→ L(B),

will be called a functional calculus for X, if it satisfies JX(z) = X and JX(1) = 1.

Intuitively JX captures the notion of “plugging X into f ”, that is for f ∈ A we

set f(X) = JX(f) and by the boundedness property there is a constant CX such that

||f(X)|| ≤ CX ||f ||A . Clearly this is only possible if the spectrum of X is contained in

the closed unit disk σ(X) ⊂ D̄. Given a family Γ of operators we say that this family

obeys a functional calculus with constant C if each X ∈ Γ admits a functional calculus

with CX ≤ C. Thus, one approach to the problem of bounding the norm ||f(X)|| for

X ∈ Γ is by constructing a functional calculus for the family Γ and then bounding the

norm of f in the function algebra.
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At first glance the outlined method might appear to be of little use since the right

hand side of Inequality 3.9 no longer depends on X. However, it is possible to exploit

spectral properties of X to significantly strengthen the inequality. Let mX be the

minimal polynomial of X. For any f, g ∈ A we have then that ||(f +mXg)(X)||A =

||f(X)||A and an application of (3.9) reveals that for all g ∈ A we have ||f(X)|| ≤
C ||f +mXg||A. This reduces the problem of bounding ||f(X)|| to an interpolation

problem in the associate function algebra, i.e. we are looking for the least norm function

f +mXg in A. The following simple but crucial lemma summarizes this point:

Lemma 17 ((9), Lemma 3.1). Let m 6= 0 be a polynomial and let Γ be a set of matrices

that obey an A functional calculus with constant C and that satisfy m(X) = 0 ∀X ∈ Γ.

Then

||f(X)|| ≤ C ||f ||A/mA , ∀X ∈ Γ,

where ||f ||A/mA = inf {||h||A| h = f +mg, g ∈ A}.

Proof. For any g ∈ A we have that ||f(X)|| := ||(f +mg)(X)|| ≤ C ||f +mg||A.

For convenience we shall assume in the sequel that σ(X) ⊂ D and that X can

be diagonalized. This does not affect the generality of our discussion since a spectral

bound obtained for ||f(X)|| under these assumptions extends by continuity to hold even

if X cannot be diagonalized and σ(X) ⊂ D̄. It follows straight from the definition of

the function algebra, Definition 8 (see also (9), Section 3.1 (iii) or (75), Section 1.2 P4)

that we can rewrite

||f ||A/mA = inf{||g||A | g ∈ A, g(λi) = f(λi) ∀λi ∈ σ(A)}. (3.10)

We make a crucial observation. The right hand side of Equation 3.10 is a Nevanlinna-

Pick interpolation problem in the function algebra A. This is the link to the model

theory developed in the previous sections.

Since for σ(A) ⊂ D the Blaschke product is holomorphic on a set containing D̄ we

can define ||f ||A/BA as above and note ((75), Lemma 3.1) that as before

||f ||A/BA = inf{||g||A | g ∈ A, g(λi) = f(λi) ∀λi ∈ σ(A)}.

In the special case A = H∞ we can directly evaluate ||f ||H∞/BH∞ using our solution to

the Nevanlinna-Pick problem in Section 3.9 and in particular Proposition 16.
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Theorem 18 ((65, 74),Thm. 3.12 (9),Thm. 3.1.11 (24)). For any ϕ ∈ H∞ it holds that

||ϕ||H∞/BH∞ = ||ϕ(MB)||∞ .

We conclude this section with two examples. In the first example we consider

power-bounded Banach spaces operators, while the second one treats Hilbert space

contractions.

i) Consider a family Γ = {X ∈ L(B)| ||Xn|| ≤ C ∀n ∈ N} of Banach space operators

that are power bounded by some constant C. This family admits a Wiener algebra

functional calculus since for any f ∈W and X ∈ Γ

||f(X)|| =

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
k≥0

f̂(k)Xk

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤

∑
k≥0

|f̂(k)|
∣∣∣∣∣∣Xk

∣∣∣∣∣∣ ≤ C∑
k≥0

|f̂(k)| = C ||f ||W (3.11)

holds. We use Lemma 17 to trace back the norm estimate to a Nevanilinna-Pick

interpolation problem in W , ||f(X)|| ≤ C ||f ||W/BW .

ii) We consider the semigroup of Hilbert space contractions Γ = {X ∈ L(H)| ||X||∞ ≤
1}. This family allows for an H∞ functional calculus (with constant C = 1), since by

von Neumann’s inequality (31, 65) we have for any ϕ ∈ H∞ and X ∈ Γ

||ϕ(X)||∞ ≤ ||ϕ||H∞ .

From Lemma 17 we conclude that ||ϕ(X)||∞ ≤ ||ϕ||H∞/BH∞ and Lemma 18 provides a

solution to the interpolation problem

||ϕ(X)||∞ ≤ ||ϕ(MB)||∞ . (3.12)

Equation 3.12 is a remarkable result. For any contraction X on a finite dimensional

Hilbert space we have found a contraction MB, which has the same spectrum as X

with equal or larger operator norm. Hence, to obtain a spectral estimate for ϕ(X) it

is sufficient to consider ϕ(MB). This is the reason why we took an operator-theoretic

approach to the Nevanlinna-Pick problem in this chapter. This method allowed us to

compute the norm of an optimal function for the Nevanlinna-Pick problem (in H∞)

in terms of the norm of an operator, MB. In this section we have shown how we

can bound the norm of an operator with given spectrum provided that we can solve a

related Nevanlinna-Pick problem. Both points taken together yield that we can bound

the norm of any sufficiently regular function of any contractive operator in terms of the

same function of MB, which has the same spectrum.
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4

Quantum Spin Chains

The most simple model of a quantum condensed-matter system is provided by a so-

called spin chain. The latter is a rigid one-dimensional lattice with quantum particles

located at its vertices. We demand that the algebra of observables for each quantum

particle has finite dimension. However, when the number of sites in the lattice grows

to infinity a general C∗-algebraic framework is often inevitable (see for example (29)).

The particles exhibit a certain interaction, which should be confined within the sys-

tem. Under this assumption the spin chain constitutes a closed quantum system, whose

evolution is governed by a Hamilton operator (see Section 2.6). Although spin chains

are extremely well studied in the literature, important questions remain unanswered.

Perhaps most prominently, the Haldane conjecture (76) is open despite considerable

effort. One core difficulty lies in the peculiar complexity of the structure of quantum

states. The matrix product state (MPS) representation provides a framework in which

the structure of quantum states on spin chains can be described and analysed efficiently.

In fact, the MPS formalism lies at the heart of the ubiquitous “density matrix renor-

malization group” methods (77, 78) and constitutes the basis for a large number of

developments in quantum information and condensed-matter theory. In the literature

one also encounters more sophisticated models for condensed-matter systems such as

higher dimensional lattices of quantum particles and dissipative evolutions of many-

particle systems. For simplicity we will not consider such systems in this exposition.

41



4. QUANTUM SPIN CHAINS

4.1 Classical vs. quantum spin chains

We model quantum spin chains using subsets Λ ⊂ Z, where each site x ∈ Λ is equipped

with a d-dimensional, complex Hilbert space Hx
∼= Cd. The total Hilbert space associ-

ated with a finite subset Λ will be HΛ =
⊗

x∈Λ Hx
1 For finite Λ any pure state of the

spin system is given by a vector |ψ〉 ∈ HΛ. When convenient we will impose periodic

boundary conditions on |ψ〉 by identifying the last and first sites of Λ.

Let us briefly compare the structures of pure states of a lattice system in the case

that the particles at each site constitute a two-level system that is a) subject to the

laws of classical physics, or b) is governed by quantum mechanics. In the classical case

a) each particle can occupy either one or the other state. We can view the classical

lattice as a sequence of coins, which can either show “head” or “tail”. If we have full

information about the system i.e. the system’s state is pure, this means that it can be

described completely by a sequence of heads and tails. If our knowledge was incomplete

we would have to assign a probability to each coin to show head or tail resulting in

a mixed state for the system. The number of pure states of the system is simply 2N ,

where N is the number of particles in the lattice. The situation is entirely different for

the quantum spin chain b). In this case each local two-level system is described by a

normalized vector in C2 such that the description of the whole system requires a vector

in C2N ∼=
(
C2
)⊗N

. Even if we posses full knowledge about the system the number

of states is infinite and the dimension of the Hilbert space grows exponentially. The

complexity of the state space of quantum many-particle systems makes them hardly

tractable with classical methods. A key observation at this point is that physical inter-

actions are often local such that states arising from such interactions are not uniformly

distributed in Hilbert space and potentially have a much simpler structure. For this

reason it is necessary to have an efficient representation of such states. Despite the fact

that it is hard to make this point rigorous the so-called matrix product state represen-

tation (MPS) intuitively captures the idea of states, whose correlations arise from local

interaction. Ultimately, the use of this formulation is justified by its success.

1It is a postulate of quantum mechanics that the representative Hilbert space of a composite system

is given by the tensor product of the Hilbert spaces of constituent systems.
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4.2 Matrix product state representation

We consider a finite subset Λ ⊂ Z consisting of N sites with representative Hilbert

space HΛ
∼=
(
Cd
)⊗N

. Clearly, every pure state of the spin system of Λ can be written

as

|Ψ〉 =
d∑

i1,...,iN

ci1i2...iN |i1...iN 〉,

where {|ik〉}ik=1,...,d denotes an orthonormal basis for the Hilbert space at site k and

|ikil〉 = |ik〉⊗ |il〉. The matrix product state representation corresponds to a particular

way of writing the coefficients ci1i2...iN . |Ψ〉 is referred to as a matrix product state if

ci1i2...iN = tr(A
[1]
i1
·A[2]

i2
· ... ·A[N ]

iN
),

where A
[k]
ik

denotes a Dk ×Dk+1 matrix “at site k”1. In fact, every pure state can be

written in this way. Hence, the matrix product state representation is a true represen-

tation of quantum states rather than the characterization of a specific class. However,

when speaking about MPS one typically has in mind that the dimension of the matrices

A
[k]
ik

(the so-called bond dimension) is “small”. This property in fact distinguishes a

class of states, which has a local structure and bears local correlations.

Theorem 19 ((79)). Every pure state of the spin system of Λ can be written as

|Ψ〉 =
d∑

i1,...,iN

tr(A
[1]
i1
·A[2]

i2
· ... ·A[N ]

iN
)|i1...iN 〉

with site dependent Dk ×Dk+1 matrices A
[k]
ik

.

For completeness we provide the simple proof.

Proof of Theorem 19. We perform a successive singular value decomposition (80) of the

coefficients ci1i2...iN . In the first step we group the coefficients i2i3...iN into one single

coefficient (i2i3...iN ) running from 1 to dN−1 such that ci1(i2...iN ) denote the entries of

a d× dN−1 matrix. Singular value decomposition of the latter yields

ci1(i2...iN ) =
∑
α1

Ui1α1σα1Vα1(i2...iN ) =
∑
α1

(
A

[1]
i1

)
α1

Vα1(i2...iN )

1Mostly, subscript indices will enumerate different mathematical objects, while superscripts identify

the physical system to which the objects belong.

43



4. QUANTUM SPIN CHAINS

where U and V are unitary and σα1 denote singular numbers. In the second step

we introduced an appropriate 1 × d matrix A
[1]
i1

. We proceed with a singular value

decomposition of Vα1i2i3...iN . As above there is unitary W and appropriate A
[2]
i2

with

V(α1i2)(i3...iN ) =
∑
α2

(
A

[2]
i2

)
α1α2

Wα2(i3...iN ).

We conclude by induction that

ci1i2...iN =
∑

α1α2...αN

(
A

[1]
i1

)
α1

(
A

[2]
i2

)
α1α2

(
A

[3]
i3

)
α2α3

· · ·
(
A

[N ]
iN

)
αN

for appropriate A
[1]
i1
, ..., A

[N ]
iN

. We observe that the first and last matrix in this rep-

resentation are in fact vectors and that the bond dimension maxkDk is bounded by

maxkDk ≤ d
N
2 .

A particularly instructive way of looking at MPS is provided by the so-called valence

bond picture. The idea here is to imagine that each site of the spin chain is subdivided

into two “virtual” sites. Virtual sites that belong to different nearby physical sites share

a maximally entangled state of the form |I〉 =
∑D

α=1 |αα〉, see Picture 4.1. Suppose now

that we identify the last and first site of the chain (i.e. we impose periodic boundary

conditions on states of the spin system) and we apply maps of the form

A[k] =
∑
ik,α,β

A
[k]
ik,α,β

|ik〉〈αβ|

to the k-th site of the chain. The resulting state is a MPS of the form of Theorem 19.

ANAkA1

Figure 4.1: Valence bond picture for MPS (with periodic boundary conditions). Ovals

depict physical sites. Each physical site is subdivided into two virtual sites (black circles).

Solid lines depict entangled states of the form |I〉 =
∑
α |αα〉.
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4.3 Translational invariance and canonical form

In many cases it is convenient to impose periodic boundary conditions on the states

of a spin chain, that is to identify the last with the first site of the spin chain. Often

the physical structure1 of the spin chain motivates the assumption that the state of the

chain should be invariant under translations. Any MPS

|Ψ〉 =

d∑
i1,...,iN

tr(Ai1 ·Ai2 · ... ·AiN )|i1...iN 〉

with site-independent D×D matrices {Ai}i=1,...d has both properties. It turns out that

the converse statement is also true.

Proposition 20 ((11)). Let |Ψ〉 be a translationally invariant MPS with periodic bound-

ary conditions on Λ ⊂ Z then there are D ×D matrices {Ai}i=1,...d such that

|Ψ〉 =
d∑

i1,...,iN

tr(Ai1 ·Ai2 · ... ·AiN )|i1...iN 〉.

Proof. Let

|Ψ〉 =
d∑

i1,...,iN

tr(A
[1]
i1
·A[2]

i2
· ... ·A[N ]

iN
)|i1...iN 〉

be a MPS representation of |Ψ〉 with site-dependent matrices. Consider the matrices

Bi =

(
1

N

)1/N



0 A
[1]
i 0 · · · 0

0 0 A
[2]
i

. . . 0
...

...
. . .

. . . 0

0 0 · · · 0 A
[N−1]
i

A
[N ]
i 0 · · · 0 0


and compute

d∑
i1,...,iN

tr(Bi1 ·Bi2 · ... ·BiN )|i1...iN 〉

=
1

N

N∑
j=1

d∑
i1,...,iN

tr(A
[1]
i1+j−1

·A[2]
i2+j−1

· ... ·A[N ]
iN+j−1

)|i1...iN 〉

=

d∑
i1,...,iN

tr(A
[1]
i1
·A[2]

i2
· ... ·A[N ]

iN
)|i1...iN 〉.

1Think for instance of a large number of atomic spins located in a cavity.
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In the last step we used that by assumption |ψ〉 is translationally invariant and has

periodic boundary conditions. Note that if D was the bond dimension in the original

MPS representation, then the bond dimension is bounded by ND in the representation

with site-independent matrices.

It follows that a set of matrices {Ai}i=1,...d provides complete description of trans-

lationally invariant MPS with periodic boundary conditions. It is an important con-

ceptual step to associate a CP map

E(X) =
∑
i

AiXA
†
i (4.1)

to such a MPS. The study of the structure of E reveals many important properties of

the state |Ψ〉. We will use E to study the large scale behaviour of |ψ〉 in Section 4.5.

For now we restrict our discussion to the following observations. The Kraus operators

of E are uniquely determined up to unitary summation, see Theorem 4. It follows that

E determines |Ψ〉 up to local unitary rotations of each site. The converse question,

which CP maps belong to the same MPS is much harder to answer. Obviously the

correspondence between sets {Ai}i=1,...d and MPS is not bijective; for example the

set {UAiU †}i=1,...,d with unitary U belongs to the same |Ψ〉 as above. The following

theorem provides a canonical choice of {Ai}i=1,...d for translationally invariant MPS

with periodic boundary conditions.

Theorem 21 ((11)). Let |Ψ〉 be a translationally invariant MPS with periodic boundary

conditions. The matrices Ai can be decomposed as

Ai =


λ1A

(1)
i 0 · · · 0

0 λ2A
(2)
i · · · 0

...
...

. . .
...

0 0 · · · λlA
(l)
i

 ,

where λi ∈ (0, 1] and the matrices A
(j)
i in the j-th block satisfy:

1) The map Ej(X) =
∑

iA
(j)
i X

(
A

(j)
i

)†
has a unique fixed-point, which is 1.

2) There are positive and diagonal Λ(j) such that
∑

i

(
A

(j)
i

)†
Λ(j)A

(j)
i = Λ(j).

Proof. Let |Ψ〉 =
∑d

i1,...,iN
tr(Ai1 · ... ·AiN )|i1...iN 〉 be given and consider the map E as

in 4.1. By rescaling E with a factor λ > 0 we can assume that the spectral radius of E

is one. A modification of Brouwer’s fixed-point theorem (81, Theorem 2.5) yields that
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E has a positive-semidefinite fixed-point. (Note, that the positive-semidefinite matrices

constitute a convex cone, which is preserved under the action of E.) So let Y ≥ 0 be

such that E(Y ) = Y and suppose for now that Y is invertible (that is Y is strictly

positive). We can then consider the matrices Bi = Y −1/2AiY
1/2 and observe that

|Ψ〉 =

d∑
i1,...,iN

tr(Ai1 · ... ·AiN )|i1...iN 〉 =

d∑
i1,...,iN

tr(Bi1 · ... ·BiN )|i1...iN 〉

and that the map Ẽ(X) =
∑

iBiXB
†
i satisfies

Ẽ(1) = 1,

which is the first assertion of 1). (We check the other conditions later.) Now suppose

that Y has not maximal rank and define P to be the projector onto the support of Y .

It follows that

AiP = PAiP ∀i. (4.2)

To see this suppose for the sake of contradiction that |µ〉 is an eigenvector of Y with

non-zero eigenvalue λµ such that Ai|µ〉 is not in the support of Y . Since E(Y ) = Y it

follows that the matrix given by

E(Y )− λµAi|µ〉〈µ|A†i

has a negative eigenvalue. But this is impossible since any map of the form X 7→ AjXA
†
j

is CP and the matrix is a sum of positive-semidefinite matrices and 4.2 follows. Let

Q = 1− P . We can decompose

|Ψ〉 =
d∑

i1,...,iN

tr(PAi1 · ... ·AiN )|i1...iN 〉+

d∑
i1,...,iN

tr(QAi1 · ... ·AiN )|i1...iN 〉

and observe that due to 4.2

tr(PAi1 · ... ·AiN ) = tr(PAi1P · ... · PAiNP )

and

tr(QAi1 · ... ·AiN ) = tr(QAi1Q · ... ·QAiNQ).

The above reasoning shows that we can write |Ψ〉 with matrices(
Bi 0

0 Ci

)
,
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where Bi = PAiP and Ci = QAiQ. Now the CP map with Kraus operators Bi has

an invertible fixed-point and we can reason as above to conclude that it can be chosen

unital without affecting the MPS. The fixed-point of the channel with Kraus operators

Ci might have maximal rank. If this is the case then we argue as before. If not then

we proceed iteratively and decompose the matrices Ci as in 4.2. In the end we obtain

a block matrix as in Theorem 21, where the λi’s stem from the scaling of the spectral

radii of CP maps. To check the uniqueness of the fixed-point 1, let us assume that

one of the maps Ej in Theorem 21 has a further fixed-point, Z. Since Ej preserves

hermiticity we can assume that Z = Z†. Let λmax denote the largest eigenvalue of Z.

Clearly, 1 − 1
λmax

Z is a positive fixed-point that has not full rank, which allows us to

further decompose the matrices in this block until every block satisfies condition 1). In

an identical way we can argue that any fixed-point of the dual maps E
†
j has maximal

rank. Finally, observe that we can diagonalize this fixed-point using some unitary U

such that a final renaming of blocks (Ai 7→ UAiU
†) achieves that the fixed-point is

diagonal.

It is natural to ask for conditions under which there is only one block in the above

canonical form. In our consecutive discussion two special classes of such MPS will be

of particular importance. Both classes are characterized by a condition that is satisfied

in generic cases.

4.4 Generic Matrix product states

In this section we consider two generic classes of MPS with translational invariance and

periodic boundary conditions. The characterizing conditions (G1) and (G2) turn out

to be essentially equivalent. For a more detailed discussion we refer to (10, 11).

Condition (G1):

There is a finite number L0 such that for all L ≥ L0 the list of matrices

{Ai1 · ... ·AiL}ij∈{1...d}

spans the entire algebra of D ×D matrices.

Condition (G1) is generic in the sense that d matrices chosen randomly according
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4.4 Generic Matrix product states

to some uniform measure will comply with this condition with probability one. It is

not hard to see that (G1) holds iff the map

ΓL : X 7→
d∑

i1,...,iL

tr(XAi1Ai2 ...AiL)|i1...iL〉

is injective for L ≥ L0.

Our second condition for generic MPS is related to the spectral properties of the

map E associated to |Ψ〉. Without loss of generality we can choose the spectral radius

of E to be one. Hence, all eigenvalues of E are confined within the closed unit disk in

the complex plane.

Condition (G2):

The map E associated with |Ψ〉 via Equation 4.1 has a unique eigenvalue of magnitude

one.

The (two-dimensional) Lebesgue measure of the boundary of the unit disk is zero.

Hence, a randomly chosen spectrum satisfies condition (G2) with probability one.

Proposition 22 ((10, 11)). Let |Ψ〉 be a translationally invariant MPS with periodic

boundary conditions.

i) If condition (G1) holds for some L0 < N then there is only one block in the

canonical form of Theorem 21.

ii) If condition (G2) holds then there is only one block in the canonical form of

Theorem 21.

It follows from Proposition 22 and Theorem 21 that without loss of generality E

can be chosen to be CPU. Concerning the relation between (G1) and (G2) we have the

following.

Proposition 23 ((10),(82)). Let E be CPU. If (G1) holds for the Kraus operators of E,

then E has a unique eigenvalue of magnitude one (i.e. (G2) holds). If E has a unique

eigenvalue of magnitude one (i.e. (G2) holds) and the corresponding eigenvector of E†

is positive, then (G1) holds.

We do not provide a proof of this statement in this exposition but refer to (82,

Proposition 3), which contains a complete discussion. Proposition 23 is of conceptual
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importance as it provides a link between the (a priori unrelated) algebraic and spectral

structures of CP maps. Their interplay might be useful in the construction of an

effective functional calculus for CP maps.

4.5 Generic large scale behaviour of MPS

If a MPS complies with the conditions (G1) and (G2) this has important consequences

for the large scale behaviour of the state. From physical observation one expects that on

sufficiently large scale i.e. under the assumption that a sufficient number of quantum

particles is involved, the system behaves as if it was classical. To make this more

rigorous let us analyse the asymptotic behaviour of the map E in Theorem 21 under

the assumption (G2). Since the only eigenvalue of E of magnitude one is 1 we can

compute

lim
n→∞

En = E∞,

where E∞ denotes the part in the Jordan decomposition (83) of E corresponding to the

eigenvalue 1. If we call Λ to the fixed-point of E† corresponding to the fixed-point 1 of

E, it follows that E∞(X) = tr(ΛX)1. The following lemma summarizes the mentioned

points.

Lemma 24 ((11, 84)). Let E(X) =
∑

iAiXA
†
i be a CPU map such that 1 is the unique

eigenvalue of magnitude one and suppose that Λ = diag(λ1, ..., λD) with λi > 0 is the

corresponding fixed point of E†. Then the limit limn→∞ En = E∞ exists and we can write

E∞(X) =
∑D2

i=1A
(∞)
i X(A

(∞)
i )† with matrices A

(∞)
(pq) =

√
λq|p〉〈q| and p, q ∈ {1, ..., D}.

The proof is clear. To analyse the large-scale behaviour of a MPS |Ψ〉 we perform

a coarse-graining procedure. The latter consists of an iteration of the following two

steps. First, we merge a number of neighbouring cites in the spin chain into a new one.

This is reflected by a simple renaming of the corresponding matrices in the MPS:

|Ψ〉 =
d∑

i1,...,iN

tr(Ai1 · ... ·Aik · ... ·Aik+L︸ ︷︷ ︸
Âjk

·... ·AiN )|i1... ik....ik+L︸ ︷︷ ︸
jk

...iN 〉

=

dL+1∑
j1,...,jM

tr(Âj1 · ... · ÂjM )|j1 · ... · jM 〉
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Second, we perform a suitable unitary rotation of the new sites. The aim of this rotation

is to reduce the number of matrices at each site, see Lemma 25.

|Ψ′〉 = U⊗M |Ψ〉 =

dL+1∑
j1,...,jM

tr(Âj1 · ... · ÂjM )U⊗M |j1 · ... · jM 〉

=
∑

m1,...,mM

tr(A(L)
m1
· ... ·A(L)

mM
)|m1 · ... ·mM 〉

Picture 4.2 contains a depiction of the evolution of MPS under the coarse-graining

procedure.

Figure 4.2: Depiction of course-graining procedure. First line shows MPS, where the

rectangles group spins into blocks. A suitable unitary is applied in the second line. It

follows successive blocking and unitary transformation.

The following Lemma 25 is the result of (84). It summarizes the mathematical ob-

servations that constitute the fundamentals of the described coarse-graining procedure.

The formulation is taken from (85).

Lemma 25 ((84, 85)). Let {Ai}i=1,...,d be a set of D × D matrices and consider the

set {Ai1 · ... ·AiL}ij=1,...,d of all matrix products formed by matrices from {Ai}i=1,...,d.

There is a dL × dL unitary matrix U and matrices A
(L)
m with

d∑
i1,...,iL

Um(i1...iL)Ai1 · ... ·AiL = A(L)
m (4.3)

such that A
(L)
m = 0 for all m > min {D2, dL}. Moreover, it holds that EL = E(L), where

E(L) denotes the CP map with Kraus operators A
(L)
m .
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Proof of Lemma 25. We write (Ai1 · ... · AiL)α,β with α, β ∈ {1, ..., D} for the entry of

the matrix Ai1 · ... · AiL in row α and column β. Let Ã be the dL ×D2 matrix which

has the entry (Ai1 · ... ·AiL)α,β in its (i1...iL)-th row and (α, β)-th column. We perform

a singular value decomposition of Ã writing

Ã(i1...iL),(αβ) =

min (D2,dL)∑
l=1

(U †)(i1...iL),l ρl Vl,(αβ).

For the m-th row of UÃ, (UÃ)(m), then

(UÃ)(m) =

ρmV (m) ; m ≤ min {dL, D2}

0 ; m > min {dL, D2}

holds. The rows of the matrix UÃ now correspond to the matrices A
(L)
i and thus the

first assertion of the lemma follows.

For the second assertion simply observe that for any X the quantity

EL(X) =
d∑

ii,...,iL

Ai1 · ... ·AiLXA
†
iL
· ... ·A†i1

is invariant under unitary summations i.e.

EL(X) =
∑
m

A(L)
m X(A(L)

m )† = E(L)(X).

There are two core observations in this lemma. First, there is the assertion that

within the coarse-graining procedure the number of matrices at each site remains

bounded by D2. That is, once the dimension of the local sites has reached D2 it does

not have to be increased. In this sense a MPS carries only finite-range correlations.

Second, we observe that the description of coarse-graining via E is particularly simple.

Each coarse-graining step is reflected by taking an appropriate power of the map E.

Hence, the asymptotic behaviour of the described procedure is intrinsically connected

to the structure of E∞. The speed of convergence of EN towards E∞ is obviously expo-

nential. It follows that the same is true for the coarse-graining procedure. See (85) for

a rigorous discussion of the latter point. The matrix representation of Kraus operators

of E∞ given in Lemma 24 allows one to compute the state arising from coarse-graining

in the asymptotic regime. For this we assume that the number of sites in the chain is
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much larger than the number of iterations that are required to bring EN “close” to E∞.

The asymptotic state corresponding to K sites is given by

|Ψ(∞)〉 =

D2∑
i1,...,iK

tr(A
(∞)
i1
· ... ·A(∞)

iK
)|i1 · ... · iK〉

= (|ϕ〉)⊗K .

Here, the state |ϕ〉 =
∑D

i=1

√
λi|ii〉 is shared by neighbouring virtual sites corresponding

to different physical sites, see Picture 4.3. Thus, at the fixed point of the aforementioned

iteration, the “scale-invariant” state can be described in terms of two virtual spins at

each site. Note also that the state (|ϕ〉)⊗K is classical with respect to a basis of half-

shifted spins containing |ϕ〉 (see (12, 86)).

Figure 4.3: Depiction of asymptotic state after course-graining. Ovals depict physical

sites. Black circles depict virtual sites. Solid lines between virtual sites correspond to

entangled state |ϕ〉 =
∑D
i=1

√
λi|ii〉.

4.6 Frustration free Hamiltonians

A “frustration free” Hamiltonian describes a certain type of evolution of a quantum

spin chain due to local interaction. We fix a spin system Λ ⊂ Z and an interaction range

Λ0 ⊂ Λ. As before, it is convenient to identify the first and last sites of Λ. Consider

an interaction Hamiltonian hx acting (non-trivially) on HΛ0+x, where Λ0 + x denotes
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a translate of Λ0 by x ∈ Λ. The total Hamiltonian can be written as a formal sum

HΛ =
∑
x∈Λ

hx

where, hx is extended to HΛ by tensoring with an implicit identity on HΛ−Λ0 . This is

the typical set-up for the description of the evolution of a closed quantum spin system

with local interaction. What distinguishes a frustration free quantum spin system are

the following assumptions.

1. The operator hx is positive-semidefinite for any x.

2. We have dim(Kern(HΛ)) > 0 (if Λ is not empty).

If these assumptions are satisfied Kern(HΛ) is referred to as the ground-state sub-

space of HΛ and the ground-states are called frustration-free. We observe that since

all hx are positive-semidefinite,

Kern(HΛ) =
⋂
x∈Λ

Kern(hx).

This means that if |Ω〉Λ is a ground state of HΛ then it is also a ground-state of each

local interaction term, hx|Ω〉Λ = 0 for any x. We say that HΛ is gapped if it has a gap

γ > 0 above the ground state energy

HΛ|HΛ	|Ω〉Λ ≥ γ1.

Any gapped Hamiltonian can be approximated by frustration-free Hamiltonians if

one allows to increase the interaction range of the local terms to O(log(N)) (87). To

mention a few examples of frustration free systems, there are ferromagnetic systems:

the isotropic Heisenberg ferromagnet has a frustration free ground state as well as the

anisotropic XXZ ferromagnetic models. A frustration free antiferromagnetic model is

the AKLT model (88). It is of particular importance for the understanding of the role of

spin-dimension in antiferromagnetic chains. Haldane (76) conjectured that the isotropic

Heisenberg antiferromagnet has continuous excitations above the ground state energy

if the local spins are half-integer and an energy gap if the spins take integer values.

4.7 Parent Hamiltonians of MPS

We consider a translationally invariant state with periodic boundary conditions |Ψ〉 =∑
i1...iN

tr(Ai1 · ... · AiN )|i1...iN 〉 on a spin system Λ. For fixed L ∈ N we define GL ⊂
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(Cd)⊗L to be the subspace spanned by the vectors

|Ψ(X)〉 =
∑
i1...iL

tr(XAi1 · ... ·AiL)|i1...iL〉,

where X are complex D ×D matrices. Note that if condition (G1) holds Ai then for

L ≥ L0 the space spanned by |Ψ(X)〉 has dimension D2. We write hGL for the projector

onto the orthogonal complement of GL in (Cd)⊗L. The canonical parent Hamiltonian

for |Ψ〉 (and fixed L) is defined as the formal expression

HΛ =
N∑
i

τ i(hGL), (4.4)

where τ denotes the translation operation by one site (10, 11). It is clear from the

definition that HΛ|Ψ〉 = 0 and that HΛ is frustration free.

Proposition 26 ((10, 11)). Let |Ψ〉 be a translationally invariant MPS with periodic

boundary conditions such that condition (G1) is satisfied. Suppose that N ≥ 2L0 and

L > L0 and let HΛ be the canonical parent Hamiltonian for |ψ〉, see 4.4. Then |Ψ〉 is

the unique ground state of HΛ.

Proof. Suppose |Φ〉 is such that HΛ|Φ〉 = 0, we show that then |Ψ〉 = |Φ〉. The proof

is carried out in two steps. First, we show that |Φ〉 ∈ GN . Second, we use this fact

together with the cyclicity of HΛ to conclude our proof.

Clearly, HΛ|Φ〉 = 0 implies τ i(hGL)|Φ〉 = 0 for any i. We can compute for example

for i = 0

0 = (hGL ⊗ 1)|Φ〉 = (hGL ⊗ 1)
∑

i1,...,iN

ci1...iN |i1...iN 〉

=
∑

iL+1,...,iN

hGL

 ∑
i1,...,iL

ci1...iN |i1...iL〉

⊗ |iL+1...iN 〉.

Therefore ci1...iN = tr(XiL+1...iNAi1 · ... ·AiL). But we also have that (τ(hGL)⊗1)|Φ〉 = 0

and the same computation reveals that ci1...iN = tr(Xi1iL+2...iNAi2 · ... · AiL+1). By

assumption L > L0 such that condition (G1) entails

XiL+1...iNAi1 = AiL+1Xi1iL+2...iN .

We have without loss of generality (see Theorem 21)
∑

iAiA
†
i = 1, such thatXiL+1...iN =

AiL+1YiL+2...iN with YiL+2...iN =
∑

i1
Xi1iL+1...iNA

†
i1

. We conclude that

ci1...iN = tr(YiL+2...iNAi1 · ... ·AiLAiL+1).
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One can now use that for all i, τ i(hGL)|Φ〉 = 0 and repeat the depicted steps to find

that

|Φ〉 =
∑

i1,...,iN

tr(XAi1 · ... ·AiN )|i1...iN 〉.

This proves that |Φ〉 ∈ GN and concludes the first step. But we can also write

|Φ〉 =
∑

i1,...,iN

tr(Ai1 · ... ·AiL0
Y AiL0+1 · ... ·AiN )|i1...iN 〉

since HΛ is invariant under translation. Using the assumption N ≥ 2L0 it follows that

for every i1, ..., iL0 we have

XAi1 · ... ·AiL0
= Ai1 · ... ·AiL0

Y.

Since the products Ai1 · ... · AiL0
span the entire algebra, which in particular contains

1, it follows X = Y . The latter is a matrix, which commutes with any matrix in the

algebra, which by Schur’s Lemma yields X = c1 for some c ∈ C, which by normalization

must be 1.

More generally, under condition (G1) HΛ can be shown to have a spectral gap

γ > 0 above the ground state energy (10) even in the limit of an infinite chain. For us

it will also be important to study the spectral gap of a restriction of HΛ to a certain

subset Λ1 ⊂ Λ. Let Λ1 ⊂ Λ and let GΛ1 denote the projector onto the kernel of

HΛ1 =
∑

i:{i+1,...,i+L}⊂Λ1
τ i(hGL). Observe, that HΛ1 does not have periodic boundary

conditions. The local gap is defined to be the largest number γΛ1 such that

HΛ1 ≥ γΛ1 (1−GΛ1) .

The local gap does not depend on Λ but only on the number of sites in Λ1. The ”Local-

Gap condition” of (89) refers to the property that the spectral gap of a frustration-

free Hamiltonian decays at most polynomially in the number of lattice sites. In (90,

91) a constant lower bound on the local gap of a (one-dimensional) frustration-free

Hamiltonians is derived. In particular, parent Hamiltonians satisfy the Local-Gap

condition.
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2009. 6

[14] Alexander S. Holevo. The capacity of the quantum

channel with general signal states. IEEE Transac-

tions on Information Theory, 44:269–273, 1998. 6

[15] Benjamin Schumacher and M. D. Westmoreland. Sending

classical information via noisy quantum channels.

Physical Review A, 56:131–138, 1997. 6
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Spectral convergence bounds for classical and quantum
Markov processes

O. Szehr, D. Reeb and M. Wolf December 17, 2013

We introduce a new framework that yields spectral bounds on norms of functions of
transition maps of homogeneous Markov chains. The employed techniques work for
classical as well as for quantum Markov chains and we emphasize that our method is
new even to the extremely well developed classical theory. Our convergence estimates
improve significantly upon the known spectral bounds and are more general in the sense
that they do not require additional assumptions like detailed balance, irreducibility or
aperiodicity.

1 Spectrum and convergence

Convergence estimates for Markov chains are a classical field of research. Probably
the most basic insight in this area is a relation between the asymptotic behaviour of
a homogeneous Markov chain and the spectrum of the transition map. If T and T ∞
are the transition map and its asymptotic part, respectively, then

||T n − T n∞|| ≤ Kµn−knk,

after n time steps. Here µ is the largest in magnitude eigenvalue of T inside the open
unit disc and k+1 is the size of the largest corresponding Jordan block. K is constant
w.r.t. n, but it depends on T . Estimates of this type occur in innumerable introductory
books on Markov chains, see for instance [2, Thm. 1.2], [3, Chp. 3], [1, Fct. 3]. However,
the constantK is not specified in the literature such that the mentioned bound does not
fully illuminate the relation between spectrum and convergence. In fact, this estimate
is merely a qualitative statement about the asymptotic behaviour of the chain, which
is unsatisfactory.

2 The method

We consider the following basic task. Given an arbitrary norm ||·|| and a holomorphic
function f , obtain an upper bound for ||f(T )|| as a function of the spectrum of T . A
simple but crucial observation on this way is that transition maps are power bounded
operators, meaning that there is a C ∈ R so that for all T and n ∈ N we have ||T n|| ≤ C.
This property can be exploited in order shift our problem from spaces of operators to
function spaces, which offer a plethora of powerful tools to conduct the analysis. In
our context, it is natural to consider the Wiener algebra of absolutely convergent



holomorphic functions W :=
{
f =

∑
k≥0 f̂(k)zk | ||f ||W =

∑
k≥0 |f̂(k)| < ∞

}
, where

the f̂(k)’s are the Taylor coefficient of f . The reason is that for f ∈W we can bound

||f(T )|| ≤
∑
k≥0

|f̂(k)|
∣∣∣∣T k∣∣∣∣ ≤∑

k≥0

C|f̂(k)| = C ||f ||W . (1)

For any f, g ∈W andmT the minimal polynomial of T we have that ||(f +mT g)(T )|| =
||f(T ) +mT (T )g(T )|| = ||f(T )|| and an application of (1) reveals that for all g ∈ W
we have ||f(T )|| ≤ ||f +mT g||W .

Lemma 1. Classical and quantum Markovian maps obey a Wiener algebra functional
calculus: Let ||·|| be any norm such that for every transition map T ∈ T we have that
||T || ≤ C. Then for f ∈W it holds that

||f(T )|| ≤ C inf{||f +mT g||W | g ∈W}.

3 A purely spectral bound on the speed of convergence

We use the above observation in order to derive a spectral bound on ||T n − T n∞||.

Theorem 2. Let T ∈ T be the transition map of a classical or quantum Markov chain
and let T∞ be the map describing its limit behaviour. We write m = mT −T∞ for the
minimal polynomial, σ(T − T∞) = {λ1, ..., λD} for the spectrum and µ = |λD| for the
spectral radius of T − T∞. Finally, let ||·|| be any norm such that ||T || ≤ C for all
T ∈ T. Then for n > µ

1−µ we have

||T n − T n∞|| ≤ 4Ce2
√
|m|(|m|+ 1)

µn(
1− (1 + 1

n )µ
)3/2 B(m,n),

B(m,n) :=
∏

m/(z−λD)

1− (1 + 1
n )µ|λi|

µ− |λi|+ µ
n

.

Here, the product is taken over all i such that the corresponding linear factor (z − λi)
occurs in a prime factorization of m/(z − λD) respecting multiplicities.

In contrast to previous estimates Theorem 2 specifies the constant K in Section 1
and provides a quantitative statement. Theorem 2 is the strongest purely spectral
convergence estimate even for classical Markov chains.

4 Legal statement

The project was assigned by Michael Wolf. The novel method to obtain spectral
estimates for Markov processes as well as the derivation of Theorem 2 are the work of
the first author.
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We introduce a new framework that yields spectral bounds on norms of functions of tran-
sition maps for finite, homogeneous Markov chains. The techniques employed work for
bounded semigroups, in particular for classical as well as for quantum Markov chains and
they do not require additional assumptions like detailed balance, irreducibility or aperiod-
icity. We use the method in order to derive convergence bounds that improve significantly
upon known spectral bounds. The core technical observation is that power-boundedness of
transition maps of Markov chains enables a Wiener algebra functional calculus in order to
upper bound any norm of any holomorphic function of the transition map. Finally, we dis-
cuss how general detailed balance conditions for quantum Markov processes lead to spectral
convergence bounds.
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I. INTRODUCTION

Across scientific disciplines, Markov chains are ubiquitous in algorithms as well as in
models for time evolutions. In many cases one is interested in when their limit behavior is
setting in. For algorithms this is often necessary in order to extract the right information
and for time evolutions of physical systems this is the time scale on which relaxation
or equilibration takes place. Some of the most widespread tools for bounding this time
scale are based on the spectrum of the transition map. For time-homogeneous Markov
chains with finite state space, the transition map is a stochastic matrix in the context of
classical probability distributions and a completely positive trace-preserving map in the
quantum case. Since these maps have spectral radius equal to 1, it is somehow clear that
only eigenvalues of magnitude 1 survive the limit, that the largest subdominant eigenvalue
governs the speed of convergence, and that the rest of the spectrum only matters on shorter
time scales. Let T and T∞ be the transition map and its asymptotic part, respectively.
We seek convergence estimates of the form

||T n − T n∞|| ≤ Kµn (1)

after n time steps, where µ is the magnitude of the largest eigenvalue of T inside the
open unit disc and K depends on the spectrum of T , on n and on the dimension of the
underlying space. We demand that the dependence of K on n is not exponential, capturing
the intuition that the convergence is determined by an exponential decay as µn at larger
timescales, while for smaller n the whole spectral data is relevant. Such bounds are of
general interest for the theory of Markov chains, and they are especially important for
stochastic algorithms, which are widely used in statistics and computer science. They are
related to the sensitivity of the chain to perturbations [9, 10, 25], are used to study “cut-off”
phenomena [2] and random walks on groups [19].

Before describing our main innovation, we mention two traditional, linear algebraic,
approaches to bounding convergence times of classical Markov chains as in (1). A Jordan
decomposition of the difference T − T∞ yields a bound of the form Equation (1) with
K = k µ−dµ+1ndµ−1, where dµ is the size of the largest Jordan block corresponding to any
eigenvalue of magnitude µ and k is constant with respect to n but depends on T as it is
essentially the condition number of the similarity transformation to Jordan normal form.
Unfortunately, there is no a priori bound on this condition number. An alternative way is
to use Schur’s instead of Jordan’s normal form. This leads indeed to an expression as in
Equation (1) where K can be bounded independent of T , albeit not of n, and we obtain
roughly K ∼ µ−D+1(Dn)D, where D is the dimension of the underlying vector space. (See
Section III B for details.) Needless to say, this “constant” seems to be far from optimal,
especially it does not capture the (correct) asymptotic n-dependence of the Jordan bound.
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When proving bounds of the form of Equation (1), one typically employs additional
properties of the Markov chain such as detailed balance, irreducibility, aperiodicity, unique-
ness of the fixed point, Gibbs distribution of the stationary state, etc.. Clearly, these as-
sumptions are not always fulfilled—in particular in the quantum context detailed balance
seems to be a less natural assumption and, furthermore, especially in the area of dissipative
quantum computing [28] and dissipative state preparation [3, 6, 28], one aims at preparing
rank deficient states.

For classical Markov chains convergence estimates have been widely studied [7, 22] and
estimates based on the Jordan and Schur decompositions have been known for many years.
Although the latter are generally referred to as spectral convergence bounds, they do not
provide a satisfactory spectral desciption of the convergence of a Markov chain. While in
case of the Jordan bound it is not possible to compute K in terms of the eigenvalues of T ,
the Schur bound cannot provide the correct asympotic behavior and does not reflect the
full spectral structure of T . So far there is no a priori estimate as in Inequality (1) such
that K can simply be inferred from the localization of the eigenvalues of T and such that
one obtains the correct asymptotic behavior of the chain. One goal of the present work is
to close this gap and to understand what information the spectrum of the transition map
of a classical or quantum Markov chain carries about the speed at which it approaches its
stationary behavior, i.e., to determine K in terms of the spectrum of T .

Our primary interest lies in the study of classical and quantum Markovian evolutions.
However, to obtain a unified picture, in this article we will state our results more generally
for bounded semigroups of linear maps. Any endomorphism T of a vector space V naturally
generates a semigroup consisting of all n-fold concatenations T n, n ∈ N. In our analysis
we shall assume that the vector space of endomorphisms of V carries a norm and that the
map T is power-bounded with respect to that norm. That means there is a constant C such
that, for any n, ||T n|| is bounded by C. This is equivalent to saying that the semigroup
(T n)n≥0 generated by T is bounded. The framework of bounded semigroups naturally
incorporates both classical and quantum Markov chains (see Section II B).

We start our discussion by analyzing the asymptotic behavior of a bounded semigroup
(T n)n≥0. We discuss spectrum related properties of T that generate a bounded semigroup
and define the asymptotic part of the evolution T∞ in Section IIIA. In Section III B we
extend the known convergence estimates based on the Jordan and Schur decompositions
to cope with bounded semigroups. Implicitly, the analysis covers quantum Markov pro-
cesses, where we state new convergence estimates. Section IV contains our main result, a
convergence estimate with the form of Equation (1), where K is fully determined by n and
the spectrum of T . We start Section IV with a mathematical primer, Section IVA, con-
taining an introduction to an entirely new mathematical toolbox in the context of Markov
processes. We proceed by analyzing what information can be inferred from the spectrum
of T about the speed at which (T n)n≥0 approaches its asymptotic behavior, Section IVB.
The methods, which we employ, enable us in principle to derive spectral bounds on norms
of arbitrary functions of transition maps. When applied to power functions, we basically
obtain the sought convergence bounds. We discuss in Subsection IVC how our new bound
outperforms the convergence estimates based on the Jordan and Schur decompositions.

Nevertheless, it turns out that for many application, such as dissipative quantum com-
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putation and state preparation, the convergence estimates obtained still are insufficient to
prove the efficiency of a possible implementation. The problem is that the convergence
time grows with D, which in turn is exponential in the number of constituent particles
(Section IVC). We discuss aspects related to the optimality of our new estimate as well as
the convergence speed of contractive Hilbert space semigroups in Section IVD. We prove
that stronger estimates, i.e. estimates such that roughly log (D) time steps bring the chain
close to stationarity cannot rely on the spectrum of the transition map alone, the latter
simply does not contain sufficient information.

As an approach to better convergence estimates in Section V we extend the detailed
balance condition for classical Markov chains and define this property in the context of
bounded semigroups, which then includes quantum evolutions. The core theorem of this
section is an extension of a convergence estimate that is frequently used to prove cut-off
behavior for classical Markov chains (Section VB).

Our discussion focuses on general bounded semigroups but the corresponding statements
about classical and quantum Markov processes are implicit, and we will frequently use
these for illustration. In what follows one can think of T either as a quantum channel or
an ordinary stochastic matrix.

II. PRELIMINARIES

A. Bounded Semigroups

Throughout this paper V will be a real or complex vector space of finite dimension D.
The set of linear endomorphisms of V will be denoted by L(V), which shall be endowed
with a norm ||·||. For a given T ∈ L(V) we consider the semigroup (T n)n≥0 = {T n |n ∈ N}
of linear maps on V generated by T . Throughout, we assume that (T n)n≥0 is bounded,
i.e., there is a constant C > 0 such that supn≥0 ||T n|| ≤ C.

Our main approach applies for (T n)n≥0 with a general norm. Nevertheless, for certain
results concerning convergence of classical and quantumMarkov chains it will be convenient
to endow V with a scalar product 〈·|·〉. We will consider the induced Hilbert space norm
(shortly, 2-norm) ||v||2 =

√
〈v|v〉 and the operator norm (shortly,∞-norm) on L(V) defined

by ||T ||∞ = supv 6=0
||T (v)||2
||v||2 . In some of our examples (e.g., classical Markov chains) it is

useful to fix an orthonormal basis {ei}i=1,...,D for V. In this case we write T for the matrix
representation of T with respect to {ei}i, i.e., Tij = 〈ei|T (ej)〉. We will emphasize whether
or not V has such additional structure in the corresponding sections.

B. Classical and Quantum Markov chains

We briefly review the definitions of classical and quantum Markov chains and discuss
certain related concepts.

A classical, finite and time homogeneous Markov process is characterized by a semigroup
generated by a classical stochastic matrix T . More precisely, in this scenario V ∼= RD
equipped with the canonical basis {ei}i and standard scalar product. The assertion that
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T is stochastic is equivalent to Tij ≥ 0 and
∑

i Tij = 1. The latter is equivalent to saying
that the vector e =

∑D
i=1 ei ∈ V is fixed by the adjoint map, T ∗(e) = e. In the context of

classical Markov chains the 1-norm plays an exceptional role. For v ∈ V we write vi = 〈ei|v〉
and define ||v||1 =

∑D
i=1 |vi|. The induced norm on the set of matrices M acting on V is

called the 1-to-1 norm,

||M ||1→1 = sup
v 6=0

||Mv||1
||v||1

.

The 1-to-1 norm and the ∞-norm (i.e. the 2-to-2 norm) are equivalent with

D−1/2 ||M ||∞ ≤ ||M ||1→1 ≤ D
1/2 ||M ||∞ . (2)

It is easily seen that ||T ||1→1 = 1 for any stochastic matrix T . We note that if ||·|| is any
norm such that ||T || ≤ C holds for all stochastic matrices T , then ||Tn|| ≤ C ∀n ∈ N; that is
the Markov chain constitutes a bounded semigroup with constant C. Since we are working
in finite dimensions, such a semigroup is bounded with respect to any norm.

A time homogeneous quantumMarkov chain is also characterized by a semigroup. In the
context of quantum evolutions, however, the space V has different and additional structure.
In this article we think of V as the real vector space consisting of hermitian matrices acting
on a complex Hilbert space of dimension d, i.e., D = d2. A matrix ρ ∈ V that is positive
semidefinite (ρ ≥ 0) and has unit trace (tr[ρ] = 1) is referred to as a quantum state. An
element T ∈ L(V) is called positive iff X ≥ 0 implies T (X) ≥ 0 for any X ∈ V, and
trace-preserving iff tr[T (X)] = tr[X] ∀X ∈ V. T is trace-preserving iff the adjoint T ∗ of
T with respect to the Hilbert-Schmidt inner product 〈X|Y 〉 = tr(XY ) on V preserves the
identity matrix, T ∗(1) = 1. If T ⊗I, with I being the operator identity, acts as a positive
map on V ⊗V, then T is called completely positive [12, 16]. We denote by T the subset of
L(V) containing trace preserving and positive maps (TPPMs) and by T+ ⊂ T the set of
completely positive maps in T (TPCPMs). The latter describe the dynamics of a quantum
system, whenever the evolution of the system is independent of its history, and they are
called quantum channels in the realm of quantum information theory.

For X ∈ V we denote by ||X||1 the Schatten 1-norm of X. The induced distance
||ρ− σ||1 of two quantum states ρ and σ corresponds to the maximum probability to detect
a difference between ρ and σ in an experiment, i.e.

||ρ− σ||1 = sup
||O||∞≤1

|tr(O(ρ− σ))|,

where ||O||∞ stands for the largest singular value of O ∈ V. For linear mapsM∈ L(V) we
define1 the induced 1-to-1-norm via

||M||1→1 = sup
X 6=0

||M(X)||1
||X||1

.

1 Note that in this article we define the 1-to-1 norm with the supremum taken over Hermitian matrices.
Alternatively, the supremum could be taken over all matrices. The resulting norms are different, but
the latter can be upper bounded in terms of 2 times the former.
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The diamond norm is the “stabilized version” of the 1-to-1 norm,

||M||� = ||M⊗ I||1→1 ,

where I denotes the operator identity in L(V). It is the dual of the norm of complete
boundedness (CB-norm), i.e., we have ||M||� = ||M∗||CB. The diamond norm and the
1-to-1 norm are equivalent with [23]

||M||1→1 ≤ ||M||� ≤ D
1/2 ||M||1→1 . (3)

For any quantum channel T we have ||T ||1→1 = ||T ||� = 1 [16]. The distance ||E − T ||� of
two channels E , T measures how well these channels can be distinguished by any quantum
experiment. In the quantum context the 1-to-1 norm and the ∞-norm (i.e., the 2-to-2
norm) are equivalent with

D−1/4 ||T ||∞ ≤ ||T ||1→1 ≤ D
1/4 ||T ||∞ . (4)

Note that due to the different structure of the underlying space V in case of quantum
Markov chains, the above differs from the Inequalities (2).

If we are given a norm such that ||T || ≤ C ∀T ∈ T (or ∀T ∈ T+) the quantum Markov
chain generated by T constitutes a semigroup bounded by C. Again, due to D <∞, this
implies that the semigroup is bounded with respect to any norm.

C. Spectral properties

To each linear mapM∈ L(V) we can assign a spectrum σ(M) via the usual eigenvalue
equation: we have λ ∈ σ(M) if and only if there is X 6= 0 with M(X) = λX. We
write mM for the minimal polynomial associated withM (i.e., the minimal degree, monic
polynomial that annihilatesM, mM(M) = 0) and |mM| for the number of linear factors
in mM. Another important object is the Blaschke product associated with mM,

B(z) =
∏
mM

z − λi
1− λ̄iz

, (5)

where the product is taken over all i such that the linear factor z−λi occurs inmM respect-
ing multiplicities. Thus, the numerator of B as defined here is exactly the corresponding
minimal polynomial, mM.

For convenience, we shall always assume that the eigenvalues in σ(M) are arranged
such that their magnitudes are non-decreasing. (This ordering is not unique when several
eigenvalues have the same magnitude. This ambiguity will, however, be irrelevant in the
following. Whenever the situation occurs that we pick an eigenvalue of a certain magnitude
|λ| we mean that we can take any eigenvalue that has this property.)

For any M ∈ L(V) the largest magnitude of all eigenvalues is the spectral radius,
which we denote as µ. It follows from Gelfand’s formula µ = limk→∞

∣∣∣∣Mk
∣∣∣∣1/k [4] that

the spectral radius of any element of a bounded semigroup is at most 1. For stochastic
matrices and TPPM it is clear that 1 is an eigenvalue of T .
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III. LIMITING BEHAVIOR AND CLASSICAL CONVERGENCE ESTIMATES

A. Limiting behavior of (T n)n≥0

In this section we begin our discussion of spectral convergence bounds for semigroups.
Based on a spectral decomposition of T ∈ (T n)n≥0 we introduce a map T∞ and show that
this map reflects the behavior of (T n)n≥0 for large n. In the following we extend known
spectral convergence bounds for classical Markov chains to the more general semigroup
setup. We consider the classical derivations based on the Jordan and Schur decomposition
(Section III B). For this reason in this section we assume that V carries a scalar product.

Our main result Theorem IV.3 will later outperform the bounds proven in this section
in terms of convergence speed even in the context of classical Markov chains. Moreover,
the techniques introduced there will allow us to consider general norms, which are not
induced by a scalar product.

To formalize our intuition that the spectrum of T determines the convergence properties
of (T n)n≥0 let us consider a Jordan decomposition of T ,

T =
∑
i

(λiPi +Ni) , with (6)

NiPi = PiNi = Ni, PiPj = δi,jPi ∀i, j. (7)

Here, the summation is taken over all distinct eigenvalues of T , the Pi are projectors whose
rank equals the algebraic multiplicity of λi and the Ni are the corresponding nilpotent
blocks. All contributions to T n that stem from eigenvalues of T with magnitude smaller
than 1 will vanish with increasing n. Hence, we expect the image of T n to converge to a
subspace of V spanned by all eigenvectors of T whose eigenvalues are of magnitude one.
We therefore define the linear map T∞ whose range is this subspace by

T∞ :=
∑
|λi|=1

λiPi, (8)

where the Pi are spectral projectors corresponding to the eigenvalues of T of magnitude 1.
In cases where the spectral radius of T is strictly smaller than 1, T∞ is simply zero. If T has
only one eigenvalue of magnitude one and this eigenvalue is equals 1, then the sequence T n
converges to T∞, which is the unique rank one projection onto the stationary eigenspace of
T . In the following lemma we shall prove that T∞ mirrors the limit behavior of (T n)n≥0

also in the more general case. More precisely, as n is increasing ||T n − T n∞|| approaches
0 and, for every k ∈ N, T k∞ indeed is an accumulation point of (T n)n≥0. The latter
assertion is relevant especially in the case of classical and quantum Markov chains: the set
of stochastic matrices (or quantum channels) constitutes a closed set in the corresponding
space, which implies that T∞ is again a bona fide stochastic matrix (or quantum channel).

Lemma III.1 (Limiting behavior of T n). Let (T n)n≥0 be a semigroup within L(V) such
that ||T n|| ≤ C ∀n ∈ N and let T∞ be as in Equation (8). Then we have that
i) all eigenvalues of T with magnitude 1 have trivial Jordan blocks (i.e., |λi| = 1⇒ Ni = 0),
ii) (T n − T n∞) = (T − T∞)n ∀ n ∈ N\{0},
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iii) limn→∞ ||T n − T n∞|| = 0,
iv) for any k ∈ N, T k∞ is contained in the closure of (T n)n≥0 in L(V),
v)
∣∣∣∣T k∞∣∣∣∣ ≤ C ∀k ∈ N.

Proof. i) We proceed by contradiction and consider ||T n||∞. Since (T n)n≥0 is bounded and
in finite dimensions all norms are equivalent there is 0 < K1 <∞ with ||T n||∞ ≤ K1. On
the other hand there is K2 > 0 with ||T n||∞ ≥ K2

∣∣∣∣∣∣∑j(λjPj +Nj)n
∣∣∣∣∣∣
∞
. If λi has a non-

trivial Jordan block the latter can be lower bounded by
∣∣∣∣∣∣∑j(λjPj +Nj)n

∣∣∣∣∣∣
∞
≥ |λi|n−1n. It

follows that if |λi| = 1 and λi has a non-trivial Jordan block then ||T n||∞ grows unboundedly
with n.2

ii) follows from the relations in (7) since T T∞ = T∞T = T 2
∞. For n > 2 the statement

follows by induction.
iii) By the previous assertion ||Tn − Tn∞|| = ||(T − T∞)n|| holds. The spectral radius µ
of the map T − T∞ is strictly smaller than 1. We have from Gelfand’s formula that
limn→∞ ||Tn − Tn∞||

1/n = µ < 1 and hence for all n sufficiently large ||Tn − Tn∞|| ≤
(

1+µ
2

)n
.

With increasing n the right hand side goes to 0 and the claim follows.
iv) We prove that for fixed k there is a subsequence (Tnl)l that converges to T k∞, that
is liml→∞

∣∣∣∣T nl − T k∞∣∣∣∣ = 0. To achieve this we subdivide V into the invariant subspace
of T corresponding to all eigenvalues of magnitude 1 and its complement. On the latter
subspace we can directly invoke iii). On the former subspace, it is sufficient to find, for
any ε > 0, a subsequence (Tnl)l with the property that |λnli − λki | ≤ ε simultaneously for
all i with |λi| = 1. The existence of such a subsequence follows from Dirichlet’s Theorem
on simultaneous Diophantine approximation, [21] Theorem 1B.
v) By iv) for any k ∈ N and any ε > 0 there is n such that

∣∣∣∣T n − T k∞∣∣∣∣ ≤ ε. This implies
that

∣∣∣∣T k∞∣∣∣∣ ≤ C + ε ∀ε > 0 and hence the claimed inequality.

B. Jordan and Schur convergence estimates

Our next aim is to understand qualitatively by how much for certain n the evolution
T n differs from its limit behavior, i.e., how small the quantity ||T n − T n∞||∞ = ||Tn − Tn∞||∞
is for any bounded semigroup. We shortly review two standard methods to obtain such
estimates. Both methods rely on the fact that T n − T n∞ = (T − T∞)n and perform a
transformation of T−T∞ to upper triangular form. While the first approach is to choose the
Jordan normal form for T −T∞, the second one is based on the Schur decomposition. Both
decompositions involve a similarity transformationA that brings T−T∞ to upper triangular
form, i.e., T − T∞ = A(Λ + N)A−1 with diagonal Λ and nilpotent N . While in case of
Jordan decomposition Λ + N has Jordan block structure, for the Schur decomposition A
is unitary.

Theorem III.2. Let (T n)n≥0 be a bounded semigroup in L(V), let T∞ be the map intro-
duced in (8) and let µ be the spectral radius of T −T∞. Then there are constants C1, C2 > 0

2 See also the derivation of the lower bound in Theorem III.2.
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such that, for all n ≥ 1,

C1µ
n−dµ+1ndµ−1 ≤ ||T n − T n∞||∞ ≤ C2µ

n−dµ+1ndµ−1,

where dµ is the size of the largest Jordan block corresponding to any eigenvalue of T − T∞
of magnitude µ.

Proof. We first state an upper bound on ||(Λ +N)n||∞ with diagonal Λ and nilpotent
upper-triangular N . We note that any monomial in N and Λ vanishes if the total degree
of N is larger than or equal to jD − 1. Using this together with the triangle inequality in
the binomial expansion and exploiting the sub-multiplicativity of the ∞-norm we find

||(Λ +N)n||∞ ≤
min {n,D−1}∑

k=0

(
n

k

)
||N ||k∞ ||Λ||

n−k
∞ . (9)

Let now J(λi) be a Jordan block with diagonal part λi1 and nilpotent part Ni. We
consider the Jordan decomposition T − T∞ = A

(⊕
i,ν Jν(λi)

)
A−1, where the summation

goes over i, which labels the different eigenvalues of T −T∞, and over ν, which enumerates
the Jordan blocks corresponding to an eigenvalue λi. We introduce the constant κ =
inf
(
||A||∞

∣∣∣∣A−1
∣∣∣∣
∞
)
where the infimum is taken over all A that bring T − T∞ to Jordan

form. It follows readily that

κ−1 ||Jn||∞ ≤ ||T
n − Tn∞||∞ ≤ κ ||J

n||∞ (10)

with J =
⊕

i,ν Jν(λi). For any Jν(λi) there is an n0 such that for all n ≥ n0 one has
||Jν(λi)

n||∞ ≤ ||Jmax(λmax)n||∞, where Jmax(λmax) denotes the largest Jordan block corre-
sponding to an eigenvalue λmax of modulus µ. Therefore, to find an upper bound on the
right hand side of (10) we can subdivide Jmax(λmax) in a nilpotent and a diagonal part
and use Inequality (9). We note that for k ≤ dµ− 1 we can bound

(
n
k

)
≤ ndµ−1 and taking

everything together we obtain for large enough n

||Tn − Tn∞||∞ ≤ κ
dµ−1∑
k=0

ndµ−1µn−dµ+1,

which proves the upper bound in Theorem III.2 since it can be extended to an upper bound
valid for any n ∈ N by a rescaling of C1. The lower bound is a consequence of the following
inequalities for n ≥ dµ − 1

µn−dµ+1

(
n

dµ − 1

)
≤ ||Jmax(λmax)n||∞ ≤ ||J

n||∞ .

One problem with the above proof is that n0 and thus C2 can get large if there is a
sub-dominant eigenvalue close to the spectral radius. Another issue is that one cannot a
priori bound κ for general T . Consequently, only little is known about C1 and C2. Most
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awkward, C1 and C2 depend on the given channel T , i.e. are not universal for all channels
of a given dimension. For this reason Theorem III.2 is a qualitative statement about the
asymptotic behavior of the semigroup. In contrast, the Schur decomposition allows us to
state an upper bound on the rate of convergence that only depends on n, D and µ. This
goes at the price of a rather pessimistic estimate.

Theorem III.3. Let (T n)n≥0 be a bounded semigroup in L(V) such that ||T n||∞ ≤ C ∀n ∈
N and let µ be the spectral radius of T − T∞. For any n ∈ N it holds that

||T n − T n∞||∞ ≤ 2µn−D+1nD−1(µ+ 2C)D−1.

Proof. As already mentioned, this will be proven based on the Schur decomposition T −
T∞ = U(Λ +N)U †, where U is unitary. As before we can rely on the binomial expansion
Inequality (9). We note that ||U ||∞ = 1 and that for n > 1

D−1∑
k=0

(
n

k

)
≤

D−1∑
k=0

nk ≤ 2nD−1.

Thus, using the sub multiplicativity of the ∞-norm it follows from (9) that

||Tn − Tn∞||∞ ≤ 2nD−1µn−D+1 max (1, ||N ||D−1
∞ ).

In addition we have that N = T − T∞ − Λ and therefore ||N ||∞ ≤ 2C + µ.

To obtain a convergence estimate for Markov chains in 1-to-1 norm we can rely on the
Inequalities (2). The corresponding statement of Theorem III.2 is immediate. Analogously,
Theorem III.2 can be used to estimate the speed of convergence of TPPMs in 1-to-1 and
diamond norm via the Inequalities (4), (3).

Due to the lower bound in (2) the singular values of stochastic matrices are bounded
by D1/2 from which we infer that C ≤ D1/2 in this case. For positive, trace preserving
maps the singular values are bounded by D1/4 ([17], or by the norm equivalence (4) and
the fact that ||T ||1→1 = 1). Thus, Theorem III.3 includes a convergence bound for both
classical stochastic matrices and TPPMs. For a more detailed discussion of the resulting
estimates in the quantum context see Subsection IVC.

IV. MAIN RESULT: SPECTRUM AND CONVERGENCE

The main contribution of this article is to introduce a new formalism that yields spectral
bounds on norm of functions of transition maps of Markov processes and to apply this
formalism to prove new estimates for the convergence of a such processes to stationarity.
The core technical innovation will be to employ a Wiener algebra functional calculus in
the context of bounded semigroups. To prove our estimates we will rely on the theory of
function algebras, functional calculi and model spaces. To our knowledge these concepts
have not found their way into the theory of classical or quantum Markov processes so far.
For this reason at first we briefly introduce the mathematical framework in Subsection IVA.
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A detailed introduction to the mathematics involved goes beyond the scope of this article
and we refer to [13–15] for this. In Subsection IVB we employ the mathematical machinery
to the context of bounded semigroups and derive the main theorem. In the subsequent
subsection we discuss our main result and compare it to the convergence estimates from
Jordan and Schur decompositions.

A. Function spaces and functional calculi

In this subsection we discuss the problem of bounding the norm of an operator acting on
a Hilbert or Banach space in general. In the purely mathematical literature this problem
is studied extensively [13, 15] and in this exposition we follow the theory developed in
[14]. The main idea is to consider certain spaces of functions and to relate the operator
under consideration with a certain function. The norm of the operator is then bounded by
bounding the norm of its “function representative’’.

We begin by defining the function spaces, which will be relevant in our discussion. The
space of analytic functions on the open unit disc D = {z ∈ C||z| < 1} is denoted by
Hol(D). We will be concerned with certain subspaces of Hol(D), an important class of
which constitute the Hardy spaces. For p > 0 those are defined as

Hp :=
{
f ∈ Hol(D)| ||f ||pHp := sup

0≤r<1

1

2π

∫ 2π

0
|f(reiφ)|pdφ <∞

}
,

and

H∞ :=
{
f ∈ Hol(D)| ||f ||H∞ := sup

z∈D
|f(z)| <∞

}
.

It is immediate from the definition that the spaces Hp are vector spaces, that the mapping
f 7→ ||f ||Hp is a norm for p ≥ 1 and that Hp ⊂ Hq for p ≥ q. In the special case p = 2 the
Hardy norm can be written using the Taylor coefficients of the analytic function f . More
precisely, we write f(z) =

∑
k≥0 f̂(k)zk and use Parseval’s identity to conclude that

sup
0≤r<1

1

2π

∫ 2π

0
|f(reiφ)|2dφ =

∑
k≥0

|f̂(k)|2.

Thus, f ∈ Hol(D) is in H2 if and only if
∑

k≥0 |f̂(k)|2 <∞ (see [15], p. 32). The Wiener
algebra is defined as the subset of Hol(D) of absolutely convergent Taylor series,

W := {f =
∑
k≥0

f̂(k)zk|
∑
k≥0

|f̂(k)| <∞}.

For a given class of operators (for instance Hilbert space contractions or power bounded
operators) the associated function algebra is a space of analytic functions that mirrors the
“boundedness properties” of those operators. A functional calculus is a map that associates
operators from the given class and elements of the function algebra and relates the norms
of an operator and its representative in the function algebra. More precisely we have the
following definitions [14]:
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Definition IV.1 (Function algebra). A unital Banach algebra A with elements in Hol(D)
will be called a function algebra, if

1. A contains all polynomials and limn→∞ ||zn||1/nA = 1.

2. (a ∈ A, λ ∈ D, a(λ) = 0)⇒ a
z−λ ∈ A.

Definition IV.2 (Functional calculus). Let X : B → B be an operator on a Banach space
B. A bounded algebra homomorphism from a function algebra A into the set of linear
operators on B,

JX : A→ L(B),

will be called a functional calculus for X, if it satisfies JX(z) = X and JX(1) = 1.

(In our case it is sufficient to assume that B has finite dimension.) Intuitively JX
captures the notion of “plugging an operator into a function”, that is for a ∈ A we have
a(X) = JX(a) and by the boundedness property there is a constant CX such that

||a(X)|| ≤ CX ||a||A .

Given a family Γ of operators we say that this family obeys a functional calculus with
constant C if eachX ∈ Γ admits a functional calculus with CX ≤ C. Thus, one approach to
the problem of bounding the norm ||a(X)|| forX ∈ Γ is by constructing a functional calculus
for the family Γ and then bounding the norm of a in the function algebra. For us, two
instances of functional calculi will be important. In the first example we consider power-
bounded Banach spaces operators, while the second one treats Hilbert space contractions.
i) Consider a family Γ = {X ∈ L(B)| ||Xn|| ≤ C ∀n ∈ N} of Banach space operators that
are power bounded by some constant C. This family admits a Wiener algebra functional
calculus since for any f ∈W and X ∈ Γ

||f(X)|| =

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
k≥0

f̂(k)Xk

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤

∑
k≥0

|f̂(k)|
∣∣∣∣∣∣Xk

∣∣∣∣∣∣ ≤ C∑
k≥0

|f̂(k)| = C ||f ||W (11)

holds.
ii) In Section IVD we discuss the semigroup of Hilbert space contractions Γ = {X ∈
L(H)| ||X||∞ ≤ 1}. This family allows for anH∞ functional calculus (with constant C = 1),
since by von Neumann’s inequality [16] we have for any f ∈ H∞ and X ∈ Γ

||f(X)||∞ ≤ ||f ||H∞ . (12)

At first glance, the outlined procedure seems to be of little use since the right hand sides
of (11), (12) do not depend on X anymore. To obtain a better bound one can rely on the
following insight. Recall that the minimal polynomial mX annihilates the corresponding
operator, i.e., mX(X) = 0. Instead of considering the function a directly, we add multiples
of m = mX (or any other annihilating polynomial) to this function and consider c =
a + mb, b ∈ A instead of a. It is immediate that ||a(X)|| = ||c(X)||. The following simple
but crucial lemma summarizes this point:



13

Lemma IV.1 ([14], Lemma 3.1). Let m 6= 0 be a polynomial and let Γ be a set of operators
that obey an A functional calculus with constant C and that satisfy m(X) = 0 ∀X ∈ Γ.
Then

||a(X)|| ≤ C ||a||A/mA , ∀X ∈ Γ,

where ||a||A/mA = inf {||c||A| c = f +mb, b ∈ A}.

Proof. For any b ∈ A we have that ||a(X)|| = ||(a+mb)(X)|| ≤ C ||a+mb||A.

B. Spectral bounds for the convergence of Markovian processes to stationarity

Crucial for the main result Theorem IV.3 is that classical stochastic matrices and
quantum channels both obey a power-boundedness condition. Given any norm ||·|| such
that every T ∈ T satisfies ||T || ≤ C, then for all n ≥ 0, ||T n|| ≤ C, i.e., T generates a
bounded semigroup (T n)n≥0. In view of Lemma IV.1 this entails that (T n)n≥0 obeys a
Wiener algebra functional calculus with ||f(T )|| ≤ C ||f ||W/mW . Although this observation
is simple, we state it in a separate theorem to emphasize its importance.

Theorem IV.2. Let (T n)n≥0 be a semigroup bounded with constant C and let m be the
minimal polynomial of T , m(T ) = 0. Then

||f(T )|| ≤ C ||f ||W/mW

holds for any function f ∈W .

Theorem IV.2 can be used to bound various functions of transition maps of Markovian
evolutions. For instance one might be interested in bounding the norm of the inverse
of a transition map (if it exists). In [14] an estimate of X−1 is derived for an algebraic
Banach space operator X by using Lemma IV.1 and bounding

∣∣∣∣z−1
∣∣∣∣
W/mW

. This estimate
immediately carries over to Markov transition maps. In this article we seek bounds for the
rate of convergence of a semigroup; we will use Theorem IV.2 to relate this problem to the
one of bounding ||zn||W/mW . In this way we obtain the following:

Theorem IV.3. Let (T n)n≥0 be a semigroup bounded by C, and let T∞ be its asymptotic
evolution introduced in (8). We write m = mT −T∞ for the minimal polynomial and µ for
the spectral radius of T −T∞ and B for the Blaschke product (5) associated with m. Then,
for n > µ

1−µ we have

||T n − T n∞|| ≤ µn+1 4Ce2
√
|m|(|m|+ 1)

n
(
1− (1 + 1

n)µ
)3/2 sup

|z|=µ(1+1/n)

∣∣∣∣ 1

B(z)

∣∣∣∣ .
Before we proceed to the proof of Theorem IV.3 let us discuss some immediate conse-

quences. First, note that the condition n > µ/(1 − µ) does not significantly restrict the
range of n, where the theorem applies. For n ≤ µ/(1− µ) it holds that the exponentially
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decaying factor µn ' e−µ is still of order 1. In this range bounds of the form (1) only yield
a trivial statement.

As compared to Theorem III.2 and Theorem III.3 the bound in Theorem IV.3 depends
more explicitly on the spectral properties of T − T∞. The Jordan block structure of
T − T∞ is reflected by the fact that the formula contains a certain factor for each factor
of mT −T∞ . In contrast to Theorems III.2, III.3, Theorem IV.3 clarifies in which way the
Jordan structure of T − T∞ influences the speed of convergence of a Markov process.

The upper bound in Theorem IV.3 can be made more explicit by taking the supre-
mum over all factors in the Blaschke product individually. It is not difficult to see (see
Appendix A) that for |λ| < µ(1 + 1/n) ≤ 1 one has

sup
|z|=µ(1+1/n)

∣∣∣∣1− λ̄zz − λ

∣∣∣∣ =
1− (1 + 1/n)µ|λ|
µ− |λ|+ µ/n

. (13)

This leads to the following corollary:

Corollary IV.4. Let σ(T − T∞) = {λ1, ..., λD} be the spectrum of T − T∞ so that the
magnitudes are ordered non-decreasingly and let µ = |λD| be the spectral radius of T −T∞.
Under the assumptions of Theorem IV.3 it holds that

||T n − T n∞|| ≤ µn
4Ce2

√
|m|(|m|+ 1)(

1− (1 + 1
n)µ
)3/2 ∏

m/(z−λD)

1− (1 + 1
n)µ|λi|

µ− |λi|+ µ
n

,

where the product is taken over all i such that the corresponding linear factor (z−λi) occurs
in a prime factorization of m/(z − λD), respecting multiplicities and λD stands for any
eigenvalue of magnitude µ.

Every eigenvalue of magnitude µ contributes one factor proportional to n/µ in Equa-
tion (13). Whereas Theorem IV.3 contains an inverse Blaschke factor for each linear factor
in the minimal polynomial m, in Corollary IV.4 we have canceled one of the factors corre-
sponding to the spectral radius µ by the µ/n prefactor in Theorem IV.3.

A detailed discussion of Theorem IV.3 and Corollary IV.4 follows in Section IVC. Here,
let us just mention some situations in which the above bound might be applied.

1. When T is the transition matrix of a classical time-homogenous Markov chain, Theo-
rem IV.3 can be used to estimate the distance of T n to stationarity. For the classical
1-to-1 norm it holds that ||T n||1→1 = 1 for any stochastic matrix and any natural
number n, such that Theorem IV.3 applies with C = 1.

2. For all T ∈ T+ and any n we have that ||T n||� = 1. Thus, Theorem IV.3 provides a
convergence bound for quantum Markov chains with C = 1.

3. Theorem IV.3 holds for general power bounded operators (in finite dimensions)
whose spectrum is contained in the unit disc. Therefore our result applies to cone-
and base-preserving maps with the corresponding norms, more general than transi-
tion matrices of classical Markov chains and TPPMs. An important class of such
operations constitute LOCC maps [18].
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4. In the context of classical and quantum Markov chains one is often interested in the
quantity ||T n(v)− T n∞(v)||1, where, depending on the context, v is either a probability
vector or a quantum state. If v is contained in an invariant subspace Vinv of T it is
clear that one can improve the bound in Theorem IV.3. We then have that

||T n(ρ)− T n∞(ρ)||1 ≤
4e2
√
|m|(|m|+ 1)µn+1

n
(
1− (1 + 1

n)µ
)3/2 sup

|z|=µ(1+1/n)

∣∣∣∣ 1

B(z)

∣∣∣∣
≤

4e2
√
|m|(|m|+ 1)µn(

1− (1 + 1
n)µ
)3/2 ∏

m/(z−λD)

1− (1 + 1
n)µ|λi|

µ− |λi|+ µ
n

,

where now B = B(T −T∞)inv is the Blaschke product corresponding to the minimal
polynomial m = m(T −T∞)inv of T − T∞ restricted to Vinv.

For the proof we present an upper bound on ||An|| for a general power bounded operator
A, whose spectrum is contained in D and we specialize to the case A = T − T∞ only at
the end. More precisely, we start with any A ∈ L(V) whose spectrum is contained in the
open unit disc and suppose that ||An|| ≤ C for all n ∈ N. For convenience we assume that
the eigenvalues {λ1, ..., λD} of A are ordered with non-decreasing magnitude.

In what follows we shall assume that the map A is diagonalizable, i.e., its minimal
polynomial decomposes into pairwise distinct linear factors. This assumption does not lead
to any difficulties when it comes to finding upper bounds of the type of Theorem IV.3.
To see this, assume that, for each fixed n, Theorem IV.3 holds true for any A such that
the minimal polynomial mA decomposes into pairwise distinct linear factors. To pass to
the case when A has non-trivial Jordan structure one slightly perturbs the spectrum of A
and obtains a diagonalizable map A+ ε. Note that for sufficiently small ε the spectrum of
A+ ε still is contained in the open unit disc, such that A+ ε is power bounded with some
constant Cε. In the limit of ε→ 0, Cε converges to C [14]. Thus, for each fixed n one can
apply the theorem for diagonalizable matrices and pass to the limit ε → 0 on both sides
of Theorem IV.3. By continuity of the norm this implies the claimed statement.

Proof of Theorem IV.3. We adapt techniques developed in [14] for general power bounded
operators (see Theorem 3.20) and invoke Lemma IV.1 to transfer the problem of estimating
||An|| to the one of bounding ||zn||W/mW . It follows from the definition of the function
algebra, that [14]

||zn||W/mW = inf{||g||W | g ∈W, g(λi) = λni }. (14)

This means that the problem of bounding ||zn||W/mW is equivalent to finding a minimal
norm function g that interpolates the data set (λ1, λ

n
1 ), ..., (λ|m|, λ

n
|m|) in the sense that

g(λi) = λni . (More generally, the problem of bounding a function f of a quantum channel
is related to an interpolation problem in the Wiener algebra by replacing λni by f(λi).) The
strategy of our proof will be to consider one specific representative function g in (14) and
bound its norm. To achieve this we employ the following method. Instead of considering
g directly we choose a “smoothing parameter” r and pass to a “stretched” interpolation
function.
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Given any function f ∈ H2 and r ∈ (0, 1), we write fr(z) := f(rz) =
∑

k≥0 f̂(k)rkzk and
observe that by the Cauchy-Schwarz Inequality

||fr||W ≤
√∑
k≥0

|f̂(k)|2
√

1

1− r2
≤ ||f ||H∞

√
1

1− r2
. (15)

This idea was used to obtain bounds to the inverse and resolvent of a power bounded
operator in [14].
We use the Blaschke products B(z) = Πi

z−λi
1−λ̄iz

and B̃(z) = Πi
z−rλi
1−rλ̄iz

, where in the latter
product the spectrum is stretched by a factor of r. (The products are taken over all prime
factors of mA, but to avoid cumbersome notation we do not write this explicitly.) Consider
now the function g with

g(z) =
∑
k

λnk
B(z)

z − λk
(1− |λk|2)

∏
j 6=k

1− λ̄jλk
λk − λj

.

g is analytic in the unit disc and g(λ) = λn for all λ ∈ σ(T ). To be able to use the
estimate (15) we perform the aforementioned smoothing. We define the modified function
g̃ by

g̃(z) =
∑
k

λnk
B̃(z)

z − rλk
(1− r2|λk|2)

∏
j 6=k

1− r2λ̄jλk
rλk − rλj

and observe that g̃r enjoys the same basic properties as g, i.e., g̃r is analytic in D and
g̃r(λ) = λn for any λ ∈ σ(T ). Thus, by Equation (14), we have that ||zn||W/mW ≤ ||g̃r||W
and it follows from Inequality (15) that

||g̃r||W ≤
√

1

1− r2
||g̃||H∞ .

By the Maximum Principle for analytic functions ||g̃||H∞ is attained on the unit circle,
that is ||g̃||H∞ = sup|z|=1 |g̃(z)|. Exploiting the fact that each elementary Blaschke factor
preserves the unit circle, we conclude that

||g̃||H∞ = sup
|z|=1

∣∣∣∣∣∣
∑
k

λnk
1− r2|λk|2

z − rλk

∏
j 6=k

1− r2λ̄jλk
rλk − rλj

∣∣∣∣∣∣.
To bound this quantity we perform a contour integration along the circle γ : φ 7→ seiφ,
where s < 1 is chosen in a way such that γ encircles all eigenvalues of A. By the Residue
Theorem (note that |z| = 1) we have that

∑
k

λnk
1− r2|λk|2

z − rλk

∏
j 6=k

1− r2λ̄jλk
rλk − rλj

=
1

2πi

∫
γ

λn

B̃r(λ)

1

z − rλ
dλ. (16)
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Integration by parts gives

1

2πi

∫
γ

λn

B̃r(λ)

1

z − rλ
dλ =− 1

2πi(n+ 1)

∫
γ
λn+1

[
1

B̃r(λ)(z − rλ)

]′
dλ (17)

and we arrive at

||g̃||H∞ ≤
sn+1

2π(n+ 1)
sup
|z|=1

∫
γ

∣∣∣∣[ 1

B̃r(λ)(z − rλ)

]′ ∣∣∣∣ |dλ|.
The right hand integral can be interpreted as the arc length of the image of γ under the
rational function 1

B̃r(λ)(z−rλ)
. For this quantity we have by Spijker’s Lemma ([24], Equation

(4)) ∫
γ

∣∣∣∣[ 1

B̃r(λ)(z − rλ)

]′ ∣∣∣∣ |dλ| ≤ 2π(|m|+ 1) sup
|λ|=s

∣∣∣∣ 1

B̃r(λ)(z − rλ)

∣∣∣∣
and conclude that for 0 < r < 1 and µ < s < 1 we have

||g̃||H∞ ≤ s
n+1 (|m|+ 1)

(n+ 1)

1

1− rs
sup
|λ|=s

∣∣∣∣∣∏
i

1− λ̄ir2λ

rλ− rλi

∣∣∣∣∣ .
In the above bound we choose s = (1 + 1/n)µ (where µ denotes the spectral radius of A)
and notice that

sn+1 = µn+1

(
1 +

1

n

)n+1

≤ e(1 + 1/n)µn+1,

which entails

||g̃||H∞ ≤
µn+1(|m|+ 1)e

nr|m|(1− r(1 + 1/n)µ)
sup
|λ|=

(1+1/n)µ

∣∣∣∣∣∏
i

1− λ̄ir2λ

λ− λi

∣∣∣∣∣
and

||zn||W/mW ≤
√

1

1− r2

µn+1(|m|+ 1)e

nr|m|(1− r(1 + 1/n)µ)
sup
|λ|=

(1+1/n)µ

∣∣∣∣∣∏
i

1− λ̄ir2λ

λ− λi

∣∣∣∣∣ .
Finally, we observe that

sup
|λ|=

(1+1/n)µ

∣∣∣∣∣∏
i

1− λ̄ir2λ

λ− λi

∣∣∣∣∣ = sup
|λ|=

(1+1/n)µ

∣∣∣∣ 1

B(λ)

∣∣∣∣ · ∏
i

∣∣∣∣1 +
λ̄iλ(1− r2)

1− λ̄iλ

∣∣∣∣
≤ sup

|λ|=
(1+1/n)µ

∣∣∣∣ 1

B(λ)

∣∣∣∣ · (1 +
1− r2

1− µ(1 + 1/n)

)|m|
.
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We can choose 1− r2 = 1−µ(1+1/n)
|m| and get

||zn||W/mW ≤
2e2µn+1

√
|m|(|m|+ 1)

n(1− (1 + 1/n)µ)3/2
sup
|λ|=

(1+1/n)µ

∣∣∣∣ 1

B(λ)

∣∣∣∣ ,
where we used the fact that (1 + 1/|m|)|m| ≤ e and that, by the Bernoulli inequality for

|m| > 1, r|m| ≥ (1− 1−µ(1+ 1
n

)

2 ) ≥ 1/2.
We now specialize the above derivation to the case when A = T − T∞. By assumption it
holds for any n and T ∈ T that ||T n|| ≤ C and it follows that

||(T − T∞)n|| = ||T n − T n∞|| ≤ ||T n|| + ||T n∞|| ≤ 2C.

In total we can assert that

||T n − T n∞|| = ||(T − T∞)n|| ≤ 4Ce2|mT −T∞ |1/2(|mT −T∞ |+ 1) · µn+1

n
(
1− (1 + 1h

n )µ
)3/2 sup

|λ|=
(1+1/n)µ

∣∣∣∣ 1

B(λ)

∣∣∣∣
completing the proof of Theorem IV.3.

C. Comparison to the Schur and Jordan convergence bounds

Theorem IV.3 significantly improves upon both the Jordan and the Schur bounds,
Theorems III.3, III.2. In this subsection we shall illustrate this comparing the different
convergence estimates for a semigroup of quantum channels. Since for all T ∈ T+ we have
that ||T ||� = 1, Theorem IV.3 gives a bound for the diamond norm. With the notation of
Theorem IV.3 we have that

||T n − T n∞||� ≤
4e2
√
|m|(|m|+ 1) · µn+1

n
(
1− (1 + 1

n)µ
)3/2 sup

|z|=
µ(1+1/n)

∣∣∣∣ 1

B(z)

∣∣∣∣ (18)

≤
4e2
√
|m|(|m|+ 1) · µn(

1− (1 + 1
n)µ
)3/2 ∏

m/(z−λD)

1− (1 + 1
n)µ|λi|

µ− |λi|+ µ
n

. (19)

For the inverse Blaschke product in (19) we can establish lower and upper bounds. The
function 1−(1+1/n)µx

(1+1/n)µ−x is monotonically increasing with x ∈ [0, µ] and we have that

(
1

(1 + 1/n)µ

)|m|−1

≤
∏

m/(z−λD)

1− (1 + 1
n)µ|λi|

µ− |λi|+ µ
n

≤
(
n

µ
(1− µ2)

)|m|−1

. (20)

In the following we compare Inequalities (18), (19) to the corresponding bounds resulting
from the Jordan and Schur decompositions.
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Comparison with the Jordan bound. To establish a convergence bound for
quantum channels in diamond norm one can use Theorem III.2 together with the norm
equivalence relations (3), (4). But as Theorem III.2 has a qualitative character only (i.e.,
it does not specify C1, C2), the constants coming from the norm equivalence are of no
relevance. As expected, both Theorem III.2 and Inequality (19) include an exponential
factor µn. Suppose that the largest Jordan block for λD has size dµ and that there is no
other eigenvalue of T − T∞ of magnitude µ. Then the minimal polynomial of T − T∞
contains a factor (z − λD)dµ and in (19) there are dµ − 1 factors for this eigenvalue.
The denominator in Inequality (19) leads to a factor (n/µ)dµ−1 in this estimate, which
captures the same qualitative n-dependence as the upper bound of Theorem III.2. Due to
the lower bound in Theorem III.2 the factor (n/µ)dµ−1 is also necessary. But as compared
to Theorem III.2 Inequality (19) bears the obvious advantage that it specifies C2. On
the other hand if there are several distinct eigenvalues of magnitude µ, Inequality (19)
does not yield the correct asymptotic behavior from Theorem III.2, since any eigenvalue
of magnitude µ occurring in m contributes a factor n/µ. The reason for this lies in
the estimate (18), i.e., in bounding each Blaschke factor individually, which leads to
Corollary IV.4. Roughly speaking, if there are distinct eigenvalues of magnitude µ then,
for sufficiently large n, any z of magnitude µ(1 + 1/n) can be close at most to one of those
eigenvalues. It is not difficult to make this intuition precise and prove the upper bound
of Theorem III.2 based on Theorem IV.3 with the additional advantage of specifying
C2. Finally we note that the occurrence of the correct asymptotic n-dependence in
Theorem IV.3 is linked to the integration by parts in (17) and our application of Spijker’s
Lemma. This procedure yields the 1/n prefactor in Theorem IV.3, which is canceled by one
inverse Blaschke factor in Corollary IV.4. Had we bounded (16) directly by the supremum
of the integrand on the circle, we would have obtained an estimate where one factor in the
Blaschke product is proportional to n/µ even in case of only one eigenvalue of magnitude µ.

Comparison with the Schur bound. Taking into account the norm equivalence
relations (3), (4) the Schur bound entails

||T n − T n∞||� ≤ 2D3/4(µ+ 2D1/4)D−1nD−1µn−D+1.

If one assumes that λD is D-fold degenerate with maximal Jordan block this results in a
factor (n/µ)D−1 in Inequality (20). Hence, even in the case of the worst Jordan structure for
T − T∞, Theorem IV.3 improves upon bounds obtained from Theorem III.3 exponentially
in the D-dependend prefactor.

Finally, we discuss some implications of the lower bound in (20). We use that bound
to estimate how good the upper bound of Corollary IV.4 can possibly be. Note that
the left hand side of Inequality (20) contains a factor (1/µ)|m|−1. If all eigenvalues of T
are distinct this factor grows with the dimension of the system. That is, for “generic’’
T it needs D time steps until Corollary IV.4 can yield a nontrivial statement. This is
unfortunate from the point of view of applications, where one is looking for estimates such
that poly(log(D)) steps are sufficient. It is natural to ask whether or not Theorem IV.3
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is optimal and whether one might be able to dispense of the (1/µ)|m|−1 prefactor. The
following subsection discusses aspects related to the optimality of Theorem IV.3. Even full
information about the spectrum (alone) is never sufficient to prove poly(logD) convergence.
To overcome this issue one may use properties of the semigroup beyond its spectrum. One
important class of semigroups for which fast convergence can be proved under additional
assumptions are detailed balanced semigroups (Definition V.1). We discuss the convergence
of such semigroups in detail in Section V.

D. Semigroups of Hilbert space contractions

In this subsection we discuss semigroups of Hilbert space contractions. More precisely,
suppose we are given a semigroup (T n)n≥0 of linear operators acting on a finite-dimensional
Hilbert space such that ||T ||∞ ≤ 1. As before, our major interest lies in bounding the
quantity ||T n − T n∞||∞ in terms of the spectrum of T . Clearly, this setup is less general
than our main setup in Section IVB and one can expect better bounds. In what follows
we derive an analog of Theorem IV.3 for contractive semigroups and discuss the optimality
of the obtained bounds.

Let us adopt the notation from Theorem IV.3. As before we write σ(T − T∞) for the
spectrum and m = mT −T∞ for the minimal polynomial of T − T∞. B(z) =

∏
i
z−λi
1−λ̄iz

denotes the Blaschke product associated with m. To avoid cumbersome notation we shall
again assume that m has simple zeros. The extension to the more general case does not
result in any difficulties. Before we proceed with our main discussion we briefly introduce
some notation and standard concepts from spectral operator theory. We define the |m|-
dimensional model space

KB := H2 	BH2 := H2 ∩ (BH2)⊥,

where we employ the usual scalar product from the Hilbert space H2. The model operator
MB acts on KB as

MB : KB → KB

f 7→MB(f) = PB(zf),

where PB denotes the orthogonal projection onKB. In other words,MB is the compression
of the multiplication operation by z to the model spaceKB (see [13] for a detailed discussion
of model operators and spaces). As multiplication by z has operator norm 1 it is clear that
MB is a Hilbert space contraction. More precisely, for any φ ∈ H∞ the norm of φ(MB)
can be evaluated using Sarason’s lifting Theorem [15, 20] as

||φ(MB)||∞ = ||φ||H∞/mH∞ . (21)

We can also write ||φ(MB)||∞ as variational expression in the Hardy space H1. From [5]
we get that

||φ(MB)||∞ = sup
F∈H1

||F ||1≤1

∣∣∣∣∣ 1

2πi

∫
|z|=1

φ

B
F dz

∣∣∣∣∣ . (22)
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Note that this trivially implies∣∣∣∣∣ 1

2πi

∫
|z|=1

φ

B
dz

∣∣∣∣∣ ≤ ||φ(MB)||∞ ≤ sup
|z|=1

∣∣∣∣ φB
∣∣∣∣ .

It can be shown that the spectrum of the model operatorMB defined above is given by the
zeros of the corresponding Blaschke product B. In our case this means that T − T∞ and
MB have identical spectrum. Hence, to any T we can associate a (completely non-unitary
[11]) contraction MB having spectrum σ = σ(T − T∞).

Let us proceed by studying convergence estimates for the contractive semigroup of the
form of Inequality (1). To start with, we prove that if ||T ||∞ ≤ 1 then ||T − T∞||∞ ≤ 1, i.e.
the semigroup {(T − T∞)n}n≥0 is contractive, too.

Proposition IV.5. Let (T n)n≥0 be a contractive semigroup on a Hilbert space and let T∞
be as in Equation (8). Then
(i) the semigroup {(T − T∞)n}n≥0 is contractive, and
(ii) if T ∗(e) = λe with |λ| = 1, then T (e) = λ̄e.

Proof. Both follows from the fact that any contraction on a Hilbert space admits a unique
decomposition into an orthogonal direct sum of a unitary and a completely non-unitary
operation ([11], Theorem 3.2). In our case, T∞ corresponds exactly to the unitary part of T
and T −T∞ is a (completely non-unitary) contraction, hence (i). (ii) is then a consequence
of the normality of the unitary part.

The second part of Proposition IV.5 generalizes the fact that for classical as well as
for quantum Markov processes, contractivity implies that the transition map is doubly
stochastic. In fact, in those cases the converse implication holds as well [17].

From the first part of Proposition IV.5 and by Inequality (12) it follows that

||T n − T n∞||∞ = ||(T − T∞)n||∞ ≤ ||z
n||H∞ .

Our previous considerations from Section IVA, Lemma IV.1 furthermore imply

||T n − T n∞||∞ ≤ ||z
n||H∞/mH∞ . (23)

We conclude from Equation (21) that in order to upper bound (23) it is sufficient to
consider ||Mn

B||∞. This is in contrast to our discussion of bounded semigroups on Banach
spaces, where we had to rely on the Cauchy-Schwarz Inequality (15). In addition, we note
that ||φ||H∞/mH∞ = ||φ(MB)||∞ allows us to work with ||·||H∞/mH∞ directly and we do not
require an ad hoc function to upper bound (14).

In our study of bounded semigroups in Section IVC we have encountered a factor
(1/µ)|m|−1 in (20) that grows exponentially with the dimension of the space on which the
semigroup acts if all eigenvalues of the generator are distinct. The following proposition
shows that, if in a bound of the type (1) K only depends on the eigenvalue structure of
T and on n, then K must contain such a factor. We achieve this by showing that for any
contractive semigroup with generator T there is a contractive semigroup whose generator
has the same spectrum as T but which converges slowly if n is small.
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Proposition IV.6. Let (T n)n≥0 be a contractive semigroup acting on a D-dimensional
Hilbert space and let m = mT −T∞ denote the minimal polynomial of T − T∞ and B the
corresponding Blaschke product. Then there is a contractive semigroup (En)n≥0 such that
E has the same minimal polynomial as T and

||En − En∞||∞ = sup
F∈H1

||F ||1≤1

∣∣∣∣∣ 1

2πi

∫
|z|=1

zn

B
F dz

∣∣∣∣∣ .
In particular, for all n < |m| ≤ D it holds that

||En − En∞||∞ = 1.

The supremum in Proposition IV.6 is attained by a function F̃ = f2, where f is in
the unit ball of KB [5]. Hence, the optimization effectively goes over a finite-dimensional
vector space of rational functions with fixed poles and bounded degree (see [5] for details).
One can obtain simple lower bounds on the convergence speed of (En)n≥0 by choosing a
certain f ∈ KB and evaluating the integral with the Residue theorem.

The second assertion of Proposition IV.6 states that for any spectrum we can construct a
semigroup such that the distance of the evolution to its asymptotic behavior stays maximal
for at least |m|−1 time steps. Clearly this implies that one cannot prove that poly(log |m|)
time steps bring the semigroup close to its stationary behavior if only spectral data is given.

Note that if in a bound of the form ||T n − T n∞|| ≤ Kµn, with a bounded semigroup
(T n)n≥0, K only depends on the spectrum of T then by Proposition IV.6 we have 1 ≤
Kµ|m|−1. That is, in this case we obtain the lower bound K ≥ (1/µ)|m|−1.

Proof of Proposition IV.6. The first assertion is clear by choosing “E := T∞ ⊕MB’’ such
that E∞ = T∞ (on the unitary subspace) and E−E∞ = 0⊕MB. For the second we consider
the extremal problem Equation (22). Let ψ be any rational function with poles away from
the unit circle |z| = 1. Corollary 5 in [5] asserts that, we have

sup
F∈H1

||F ||1≤1

∣∣∣∣∣ 1

2πi

∫
|z|=1

ψF dz

∣∣∣∣∣ = sup
|z|=1
|ψ(z)|

if and only if ψ is a constant multiple of the quotient of two finite Blaschke products B1, B2

having no common zeros and such that the degree of B1 is strictly smaller than the degree
of B2 (|B1| < |B2|), i.e., ψ = cB1

B2
for some c ∈ C. Let B denote the Blaschke product

associated with m, it follows readily that

||Mn
B||∞ = sup

F∈H1

||F ||1≤1

∣∣∣∣∣ 1

2πi

∫
|z|=1

zn

B
F dz

∣∣∣∣∣ = 1

holds for n < |m|.
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To gain a better understanding of weather the derivation of Theorem IV.3 is optimal,
i.e. whether or not the obtained estimate is sharp, let us prove an analog of Theorem IV.3
for semigroups of Hilbert space contractions. The derivation is based on techniques similar
to those that led to Theorem IV.3, but in the case at hand we can take a more direct
approach based on the theory of model operators.

Proposition IV.7. Let (T n)n≥0 be a contractive semigroup on a D-dimensional Hilbert
space and let T∞ be the operator introduced in (8) (i.e., the unitary part of T ). We write
m = mT −T∞ for the minimal polynomial and µ for the spectral radius of T − T∞. B
denotes the Blaschke product associated with m. Then, for n > µ

1−µ we have

||T n − T n∞||∞ ≤ µ
n+1 2|m|e

n(1− (1 + 1/n)2µ2)
sup

|z|=µ(1+1/n)

∣∣∣∣ 1

B(z)

∣∣∣∣ .
As before, we can bound all terms in the Blaschke product individually (see Appendix A)

and find (compare Corollary IV.4)

||T n − T n∞||∞ ≤ µ
n 2|m|e

1− (1 + 1/n)2µ2

∏
i 6=|m|

1− |λi|µ(1 + 1/n)

µ(1 + 1/n)− λi
.

Proof of Proposition IV.7. The derivation proceeds along the lines of Theorem IV.3. We
use an H∞ functional calculus to bound ||T n − T n∞||∞ in terms of ||zn||H∞/mH∞ . The latter
expression can be rewritten using a contour integral similar to Equation (16), integrate by
parts, and finally apply Spijker’s Lemma. We have already mentioned that

||T n − T n∞||∞ ≤ ||z
n||H∞/mH∞ = ||Mn

B||∞ = sup
F∈H1

||F ||1≤1

∣∣∣∣∣ 1

2πi

∫
|z|=1

zn

B
F dz

∣∣∣∣∣
and that the supremum in this extremal problem is attained by some function F̃ = f2

with f ∈ KB [5]. Thus, F̃ /B is a rational function with 2|m| poles located at
(ξ1, ..., ξ|m|, ξ̄

−1
1 , ...., ξ̄−1

|m|), where ξi are the zeros of m. In the above integral we can change
the contour of integration and integrate along the circle γ : φ 7→ µ(1+1/n)eiφ. Integrating
by parts and and applying Spijker’s Lemma [24] we obtain∣∣∣∣ 1

2πi

∫
γ

zn

B
F̃ dz

∣∣∣∣ =
1

2π(n+ 1)

∣∣∣∣∣
∫
γ
zn+1

(
F̃

B

)′
dz

∣∣∣∣∣
≤ µn+1(1 + 1/n)n+1

2π(n+ 1)

∫
γ

∣∣∣∣∣
(
F̃

B

)′ ∣∣∣∣∣ |dz|
≤ 2|m|µn+1(1 + 1/n)n+1

n+ 1
sup

|z|=µ(1+1/n)

∣∣∣∣∣ F̃B
∣∣∣∣∣ .
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It is known that for F ∈ H1 and z ∈ D one can bound |F (z)| ≤ 1
1−|z|2 ||F ||H1 [8] and with

(1 + 1/n)n ≤ e we finally obtain

||T n − T n∞||∞ ≤
2|m|eµn+1

n(1− (1 + 1/n)2µ2)
sup

|z|=µ(1+1/n)

∣∣∣∣ 1

B

∣∣∣∣ .

E. Slow convergence for Markov chains

Proposition IV.6 provides an example of a slowly converging contractive semigroup with
arbitrarly given spectrum. One might wonder in how far the phenomenon extends to the
Markov chain setup. When T is the transition map of a classical or quantum Markov
chain, is it possible to prove (1) where, K should only depend on the spectrum of T and n
but such that the stationary behavior sets in after poly(log(D)) time steps? The following
example shows that this can not be the case.

We construct a classical stochastic D × D matrix T with real positive spectrum such
that ||Tn − T∞||1→1 = 2 for n ≤ D − 2. Let, as always, µ denote the spectral radius of
T − T∞. We write {ei}i=1,...,D for the canonical column vectors, i.e., (ei)j = δij and for
λi ∈ [0, 1), 1 ≤ i ≤ D − 1, we define

T :=



λ1

1− λ1 λ2

1− λ2 λ3

. . . . . .
λD−1

1− λD−1 1


.

T is a stochastic matrix with spectrum σ(T ) = {λ1, ..., λD−1, 1}. Since λi < 1 for large n
the image of Tn converges to an one-dimensional subspace corresponding to the eigenvalue
1. We have that T∞ = limn→∞ T

n and observe that T∞e1 = eD. It is not difficult to
see that for n ≤ D − 2 the D-th entry of the vector Tne1 is always zero, 〈eD|Tne1〉 = 0.
It follows that ||(Tn − T∞)e1||1 = 2 (where ||·||1 denotes the 1-norm, Section II B) and we
conclude that ||Tn − T∞||1→1 = 2 for n ≤ D − 2. As before, if K only depends on the
spectrum of T this implies that K ≥ (1/µ)D−2. Note that the above reasoning does
not depend on the exact values of the eigenvalues (as long as they are non-negative).
This suggests that generally the spectrum σ(T ) does not contain sufficient information to
prove poly(logD) fast convergence estimates. Since every classical stochastic matrix can
be embedded into a quantum channel, the lower bound on K is also true for quantum
channels.

V. CONVERGENCE BOUNDS FROM DETAILED BALANCE

Applications often rely on fast convergence in the sense that poly(logD) steps should
suffice for the asymptotic behavior to set in. In our previous discussion we have argued
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that such bounds cannot rely on spectral data alone. To obtain better convergence es-
timates one requires additional knowledge about the semigroup. In this section we will
derive convergence estimates for a general bounded semigroup under the condition that
its generator be related to a Hermitian map in a certain way – for classical and quantum
Markov processes this will correspond to the well-known detailed balance condition (see,
e.g., [1, 7, 26]). Throughout this section we require the state space V to be equipped with a
scalar product 〈·|·〉, which induces norms ||·||2 and ||·||∞ on V and L(V), respectively, and for
convenience we will sometimes assume an orthonormal basis in V to be fixed (cf. Subsection
IIA).

A. General bound

We start with a generalization of the well-known detailed balance condition for classical
Markov chains. This allows us to employ the corresponding property in the context of
bounded semigroups.

Definition V.1 (Detailed balance for linear maps). Let a linear map T ∈ L(V) be given.
If B ∈ L(V) is positive-definite (i.e., 〈v|B(v)〉 > 0 ∀v ∈ V \ {0}) and satisfies T B = BT ∗,
then we say that T satisfies the detailed balanced condition(with respect to B).

This definition is equivalent to saying that T is Hermitian with respect to some scalar
product on the space V, namely the scalar product 〈·|B−1(·)〉, but we choose the formulation
with given scalar product 〈·|·〉 (independent of T ) and explicit use of B. Note further that,
due to strict positive-definiteness, B in the above definition is in particular Hermitian and
invertible. In conventional formulations of the detailed balance condition the map B is not
required to be strictly positive-definite, but we do so here as the derived bounds become
trivial otherwise (see below).

The detailed balance condition for a linear map T gives

B−1/2T B1/2 = B1/2T ∗B−1/2 ,

which means that B−1/2T B1/2 is Hermitian, therefore has only real eigenvalues λi ∈ R
(i = 1, . . . , D), and is unitarily diagonalizable:

U∗B−1/2T B1/2U = Λ =

λ1

. . .
λD

 .

This equation implies that T is diagonalized by the similarity transformation S := B1/2U
(i.e. S−1T S = Λ). Note that T has spectrum {λi}i, too.

If T is now power-bounded, i.e., the generator of a bounded semigroup, the definition
in Equation (8) implies that T∞ is diagonalized by S as well,

U∗B−1/2T∞B1/2U = Λ∞,
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where Λ∞ is obtained from Λ by deleting all entries of magnitude smaller than 1. Λ−Λ∞
is thus diagonal with operator norm µ < 1, where µ is the spectral radius of T − T∞. We
thus arrive at the following convergence estimate:

||(T − T∞)n||∞ =
∣∣∣∣∣∣B1/2U(Λ− Λ∞)nU∗B−1/2

∣∣∣∣∣∣
∞

≤
∣∣∣∣∣∣B1/2

∣∣∣∣∣∣
∞
||U||∞ ||(Λ− Λ∞)n||∞ ||U

∗||∞
∣∣∣∣∣∣B−1/2

∣∣∣∣∣∣
∞

= µn
∣∣∣∣∣∣B1/2

∣∣∣∣∣∣
∞

∣∣∣∣∣∣B−1/2
∣∣∣∣∣∣
∞

.

(The latter two factors may be recognized as the condition number of B1/2.) We formulate
this as a theorem:

Theorem V.1. Let V be a (real or complex) vector space with scalar product, and T ∈ L(V)
be the generator of a bounded semigroup (T n)n≥0, which satisfies detailed balanced w.r.t. a
positive-definite B ∈ L(V). Denote by µ the spectral radius of T − T∞. Then, for any
n ∈ N,

||T n − T n∞||∞ ≤ µn
∣∣∣∣∣∣B1/2

∣∣∣∣∣∣
∞

∣∣∣∣∣∣B−1/2
∣∣∣∣∣∣
∞

,

where ||·||∞ denotes the operator norm on L(V).

We now discuss detailed balance more specifically for classical and quantum Markov
chains. First observe that, if e ∈ V is a fixed point of T ∗, i.e. T ∗(e) = e, then π := B(e)
satisfies

T (π) = T B(e) = BT ∗(e) = B(e) = π ,

i.e., π is fixed by the semigroup generator T . Conversely, if π is a fixed point of T , then
e := B−1(π) is left invariant by T ∗. For a classical Markov chain the generator satisfies
T ∗(e) = e with e =

∑D
i=1 ei = (1, ..., 1) and T ∗(1) = 1 holds for generators of quantum

Markov chains (see Section II B). Thus, for classical and quantum Markov chains the
detailed balance condition immediately yields a fixed point of the transition map.

In the theory of classical Markov chains, a stochastic matrix T ∈ Rd×d is usually
defined to be detailed balanced w.r.t. the probability distribution π ∈ Rd (i.e. πi ≥ 0 and∑

i πi = 1), if Tjiπi = Tijπj holds for all i, j (see, e.g., [1, 7]). Defining a diagonal matrix
B with entries Bii := πi, the latter condition can be written as TB = BT ∗. If furthermore
the fixed-point probability distribution π has full support (i.e. πi > 0 ∀i), then T is detailed
balanced w.r.t. B in the sense of our Definition V.1. (π = Be will necessarily be a fixed
point of T .) Due to normalization it holds that mini πi ≤ 1/d. Using this and the norm
equivalence (2), Theorem V.1 yields the following well-known convergence estimate [1, 7]
for the special case of a classical Markov chain that satisfies detailed balance w.r.t. the
distribution π:

||Tn − Tn∞||1−1 ≤ µn
√
d

√
maxi πi
mini πi

≤ µn

mini πi
. (24)
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This estimate may become trivial if detailed balance is defined without the full-support
condition on π as one may then have mini πi = 0. On the other hand, if one has a positive
lower bound on mini πi, Equation (24) may become a useful convergence estimate. This
technique is frequently used for detailed balanced chains that have a (unique) full-rank
probability distribution as fixed point, and where one can find a “good” lower bound on
mini πi [1, 2, 7]. Often the situation arises that the chain converges to a Gibbs state
πi = e−βHi/Z at finite inverse temperature β ∈ [0,∞) with Z :=

∑
i e
−βHi . An important

class of Markov chains that obey the detailed balance condition are Metropolis Hastings
Markov Chains [7].

There are different generalizations of the detailed balance condition to quantum Markov
chains [26], which we, however, all capture by Definition V.1. Let us specialize to the quan-
tum detailed balance condition that most immediately generalizes the classical condition
from the previous paragraph to the non-commutative case in a symmetric way and that
has been employed for proving convergence of quantum Markov chains before (e.g. [27]).
Namely, given a positive trace-preserving map T ∈ T acting on the setMd of d × d ma-
trices, we consider the detailed balance condition induced by the map Bσ(X) :=

√
σX
√
σ,

where σ ∈Md is a density matrix of full rank. Again, due to trace-preservation, it is easy
to see that if T is detailed balanced w.r.t. Bσ, then σ = Bσ(1) is a fixed point of T . This
leads to the following convergence result for the quantum case:

Corollary V.2. Let T :Md →Md be a positive trace-preserving map, and σ ∈Md be a
full-rank density matrix such that

√
σT ∗(X)

√
σ = T (

√
σX
√
σ) ∀X ∈Md .

Denote by µ the spectral radius of T − T∞. Then, for any n ∈ N,

||T n − T n∞||1−1 ≤ µn
√
d

√
λmax(σ)

λmin(σ)
≤ µn

λmin(σ)
,

where λmin(σ) and λmax(σ) denote the minimal and maximal eigenvalues of σ, respectively.
If, in addition, σ = e−βH/tr(e−βH) is the Gibbs state at inverse temperature β ∈ [0,∞) of
a bounded Hamiltonian H ∈Md, then

||T n − T n∞||1−1 ≤ µn d e2β||H||∞ .

Proof of Corollary V.2. The conditions on T imply that it is detailed balanced w.r.t. the
map Bσ defined above. Computing

∣∣∣∣∣∣B1/2
σ

∣∣∣∣∣∣
∞

=
√
λmax(σ) and

∣∣∣∣∣∣B−1/2
σ

∣∣∣∣∣∣
∞

= 1/
√
λmin(σ)

and considering the norm equivalence (4) and bounding λmin(σ) ≤ 1/d and λmax(σ) ≤ 1,
we get the first assertion from Theorem V.1. In case of a thermal state, the second assertion
follows from

λmin

(
e−βH

tr(e−βH)

)
≥ e−β||H||∞

tr(eβ||H||∞1d)
=

e−2β||H||∞

d
.
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This Corollary provides a possible way for proving that a state preparation or algorithm
is efficient in the sense of computational complexity [12]. More concretely, for each N ,
consider a system of N particles (spins), each with finite Hilbert space dimension s <∞,
and a Hamiltonian HN on each system. In many physical situations the Hamiltonian will
be bounded by some polynomial of the particle number, ||HN ||∞ ≤ cHN

k; this occurs for
example if HN =

∑
iHN,i is a sum of k-local terms that are uniformly bounded by cH .

Assume further that the thermal state σN = e−βHN /tr(e−βHN ) at inverse temperature
β ∈ [0,∞) is a fixed point of the positive trace-preserving map TN , and that TN satisfies
detailed balanced w.r.t. BσN . This assumption may be fulfilled, e.g., by Gibbs dynamics in
a Markov Chain Monte Carlo Algorithm [27]. Lastly, assume that the spectral gap of TN is
asymptotically lower bounded by an inverse polynomial cµ/Nα of N (where cµ > 0), i.e.,
the eigenvalue 1 corresponding to σN is the only eigenvalue of TN with modulus 1 whereas
|λi| ≤ 1 − cµ/Nα for all other eigenvalues. Among these assumptions, when they apply,
the latter one is usually the hardest one to prove in a given situation.

Under these presuppositions, the evolution operator TN prepares the final state σN
efficiently in the system size N . More precisely, for any initial state ρN of the system, the
time-evolved state T nN (ρN ) after n steps will be ε-close in trace-norm to the thermal state
σN (i.e. ||T nN (ρN )− σN ||1 ≤ ε) if

n ≥ Nα

cµ

(
2βcHN

k +N log s+ log
1

ε

)
. (25)

This means that the runtime to ε-convergence scales at most polynomially in the particle
number N and polylogarithmically in the desired accuracy ε ∈ (0, 1], which proves efficient
state preparation.

For a proof of the runtime bound Inequality (25), note that the dimension of the N -
partite system is dN = sN and that, due to the spectral gap condition, (TN )∞(ρN ) = σN
for any state ρN , which implies ||T nN (ρN )− σN ||1 ≤ ||T

n
N − (TN )n∞||1−1. Finally, we use

µ ≤ 1− cµ
Nα

≤ e−cµ/N
α

in the Gibbs state bound from Corollary V.2 and requiring the latter to be at most ε shows
that the condition in Inequality (25) is sufficient for ε-convergence.

If one wants to bound the diamond norm ||T n − T n∞||� between the actual and the
asymptotic evolution in Corollary V.2 instead of the trace-norm, then by Inequality (3)
one incurs another factor d (or 1/λmin(σ)) in the upper bounds. This however does not
affect the efficiency statement just obtained, as the asymptotic dynamics (TN )∞ is still
reached, up to ε, in polynomial time.

B. An `2 bound

In this Subsection, again based on the detailed balance condition, we derive a sharper
convergence bound than in Subsection VA, taking into account all eigenvalues and eigen-
vectors of the transition map T . The special case of this bound for classical Markov
processes has been used to prove so-called cutoff dynamics [1, 2, 7]. After describing the
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approach for general bounded semigroups obeying detailed balance, we will specialize to
quantum Markov chains.

Recall from above that, if T ∈ L(V) is detailed balanced w.r.t. B, its eigenvalues λi
are real. Furthermore, as R := B−1/2T B1/2 is a Hermitian operator, it has a complete
orthonormal eigenbasis {xi}i, i.e. R(xi) = λixi. From this we can define an eigensystem
of the adjoint T ∗, which will play a prominent role in the bound:

yi := B−1/2(xi) , which implies T ∗(yi) = λiyi .

{yi}i could alternatively be chosen as any eigensystem of T ∗ that is orthonormal w.r.t. the
weighted scalar product 〈·|B(·)〉.

The spectral decomposition R(v) =
∑

i λi〈xi|v〉xi now gives:

B−1/2T n(v) = RnB−1/2(v)

=
D∑
i=1

λni 〈xi|B−1/2(v)〉xi

=
D∑
i=1

λni 〈B−1/2(xi)|v〉xi =
D∑
i=1

λni 〈yi|v〉xi .

Recognizing that B1/2(xi) is the right-eigenvector of T corresponding to yi, the terms with
|λi| = 1 in the last expression (which we assume to be i = r + 1, . . . , n) correspond to the
asymptotic evolution T n∞. We can thus write

B−1/2(T n − T n∞)(v) =

r∑
i=1

λni 〈yi|v〉xi ,

which, together with the fact that {xi} is an orthonormal system, gives by squaring:

||(T n − T n∞)(v)||22,B−1 := 〈(T n − T n∞)(v)|B−1 (T n − T n∞) (v)〉 =

r∑
i=1

λ2n
i |〈yi|v〉|2 . (26)

This equality relates the eigensystem corresponding to the eigenvalues with modulus
smaller than 1 to the convergence in a suitably modified Hilbert norm. By itself this
relation does not seem very useful, although one can derive Theorem V.1 from it by rescal-
ing the modified scalar product back to the originally given one.

When specializing to the quantum case, however, we can make a connection to the
induced trace-norm, and thereby strengthen Corollary V.2:

Proposition V.3. Let T :Md →Md be a positive trace-preserving map, and σ ∈Md be
a full-rank density matrix (i.e. tr(σ) = 1, σ > 0) such that the detailed balance condition

√
σT ∗(X)

√
σ = T (

√
σX
√
σ) ∀X ∈Md

holds. Let {λi}ri=1 be the part of the spectrum of T in the open interval (−1, 1), and Yi
be the corresponding eigenvectors of the adjoint map T ∗, orthonormal in the sense that
tr(Y ∗i σ

1/2Yjσ
1/2) = δij. Then, for every Z ∈Md (e.g. a quantum state):

||(T n − T n∞)(Z)||21 ≤
r∑
i=1

|tr(Y ∗i Z)|2 λ2n
i . (27)
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Proof. One can apply the preceding general steps to the map Bσ(X) :=
√
σX
√
σ and the

inner product 〈Y |X〉 := tr(Y ∗X). Then it remains to show that, for A := (T n − T n∞)(Z),

||A||21 ≤ 〈A|B
−1
σ (A)〉 = tr(A∗σ−1/2Aσ−1/2) .

To see this inequality holds in fact for all A ∈Md, use the polar decomposition and let
U ∈ Md be a unitary such that UA is positive-semidefinite. Then cyclicity of the trace
and two applications of the Cauchy-Schwarz inequality give:

||A||21 = |tr [UA]|2 =
∣∣∣tr [(σ1/4Uσ1/4)(σ−1/4Aσ−1/4)

]∣∣∣2
≤ tr

[
σ1/4Uσ1/2U∗σ1/4

]
tr
[
σ−1/4A∗σ−1/2Aσ−1/4

]
= tr

[
Uσ1/2U∗σ1/2

]
tr
[
A∗σ−1/2Aσ−1/2

]
≤
√

tr [UσU∗] tr
[
σ1/2UU∗σ1/2

]
tr
[
A∗σ−1/2Aσ−1/2

]
= tr(σ) tr

[
A∗σ−1/2Aσ−1/2

]
= tr

[
A∗σ−1/2Aσ−1/2

]
.

Detailed balance of a quantum map T w.r.t. certain other maps (B = Ωk
σ)−1 has been

defined in [26] so that the family (Ωk
σ)−1 includes the map Bσ from above. These detailed

balance conditions also result in bounds that look essentially like Equation (27), except that
in this more general case the Yi should be orthonormal in the sense that tr(Y ∗i B(Yj)) = δij .
For a proof, note that Equation (26) holds generally, and the proof of Lemma 5 in [26]
shows ||(T n − T n∞)(Z)||21 ≤ ||(T n − T n∞)(v)||22,B−1 (the right-hand-side of the last inequality
is a χ2-divergence as considered in [26] only if T has merely one eigenvalue of modulus 1,
however).

For classical detailed balanced Markov chains the analog of the convergence bound
Inequality (27), which looks very similar in this setting [7], is often used for demonstrating
the upper bound in cutoff results (cf. [1, 2] for an over overview and references). In
this setting, most commonly the evolution T leads to a unique fixed point σ (often the
maximally mixed state), so that the asymptotic evolution would simply be the “projection
onto the fixed point”, i.e. T n∞(X) = σ tr(X) for n ≥ 1. Of course, for Proposition V.3 to
be useful one also needs knowledge about the normalized eigenvectors Yi.

Acknowledgments

We acknowledge financial support by the Elite Network of Bavaria (ENB) project
QCCC, the CHIST-ERA/BMBF project CQC, the Marie-Curie project QUINTYL and



31

the Alfried Krupp von Bohlen und Halbach-Stiftung

[1] P. Diaconis. Group representations in probability and statistics. IMS Lecture Notes, Mono-
graph Series, 1988.

[2] P. Diaconis. The cutoff phenomenon in finite markov chains. Proc. Natl. Acad. Sci., 93:1659–
1664, 1996.

[3] S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. Büchler, and P. Zoller. Quantum states and
phases in driven open quantum systems with cold atoms. Nature Physics, 4:878–883, 2008.

[4] D. Evans. Spectral properties of positive maps on c*-algebras. J. of London Math. Soc.,
17(2):345–355, 1978.

[5] S. R. Garcia and W. T. Ross. A nonlinear extremal problem on the Hardy space. Computa-
tional methods and function theory, 2009.

[6] B. Kraus, H. P. Büchler, S. Diehl, A. Kantian, A. Micheli, and P. Zoller. Preparation of
entangled states by quantum Markov processes. Phys. Rev. A, 78:042307, Oct 2008.

[7] D. A. Levin, Y. Peres, and E. L. Wilmer. Markov chains and mixing times. Am. Math. Soc.,
2009.

[8] A. D. Macintyre and W. W. Rogosinski. Extremum problems in the theory of analytic func-
tions. Acta Math., 82:275–325, 1950.

[9] A. Mitrophanv. Stability and exponential convergence of continuous-time markov chains. J.
Appl. Prob., 40:970–979, 2003.

[10] A. Mitrophanv. Sensitivity and convergence of uniformly ergodic markov chains. J. Appl.
Prob., 42:1003–1014, 2005.

[11] S. B. Nagy, C. Foias, H. Bercovici, and L. Kerchy. Harmonic analysis of operators on Hilbert
spaces. Springer, 2010.

[12] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cam-
bridge University Press, 2000.

[13] N. Nikolski. Treatise on the Shift Operator. Springer: Grundlehren der mathematischen
Wissenschaft, 1986.

[14] N. Nikolski. Condition numbers of large matrices and analytic capacities. St. Petersburg
Math. J., 17:641–682, 2006.

[15] N. Nikolski. Operators, Functions and Systems: An Easy Reading. AMS: Mathematical
Surveys and Monographs: 93, 2009.

[16] V. I. Paulsen. Completely bounded maps and operator algebras. Cambridge University Press,
2002.

[17] D. Perez-Garcia, M. Wolf, D. Petz, and M. Ruskai. Contractivity of positive and trace
preserving maps under lp norms. J. Math. Phys., 47, 2006. ArXiv: 0601063v1.

[18] D. Reeb, M. J. Kastoryano, and M. M. Wolf. Hilbert’s projective metric in quantum infor-
mation theory. Journal of Math. Phys., 52, 2011. ArXiv: 1102.5170.

[19] J. Rosenthal. Convergence rates of Markov chains. SIAM, 37(1995):387–405, 1995.
[20] D. Sarason. Generalized interpolation in H∞ . Trans. Amer. Math. Soc., 127:289–299, 1967.
[21] W. M. Schmidt. Diophantine approximation. Springer: Lect. Not. in Math., 1980.
[22] E. Seneta. Non-negative matrices and Markov chains. Springer Ser. in Stat., 2006.
[23] R. R. Smith. Completely bounded maps between C*-algebras. J. London Math. Soc., 27:157–

166, 1983.
[24] M. Spijker. On a conjecture by leveque and trefethen related to the kreiss matrix theorem.

BIT, 31:551–555, 1991.
[25] O. Szehr and M. Wolf. Perturbation bounds for quantum Markov processes and their fixed



32

points . 2011. arXiv: 1210.1171.
[26] K. Temme, M. J. Kastoryano, M. B. Ruskai, M. M. Wolf, and F. Verstraete. The χ2-divergence

and mixing times of quantum Markov processes. Journal of Math. Phys., 51:12, 2010.
[27] K. Temme, T. J. Osborne, K. G. Vollbrecht, D. Poulin, and F. Verstraete. Quantum Metropo-

lis sampling. Nature, 471:87-90, 2011.
[28] F. Versraete, M. Wolf, and I. Cirac. Quantum computation and quantum-state engineering

driven by dissipation. Nat. Phys., 5 No.9:633–636, 2009.

Appendix A: An upper bound on a single Blaschke factor

For completeness we prove the following short lemma.

Lemma A.1. Let |λ| < c ≤ 1 then

sup
|z|=c

∣∣∣∣1− λ̄zz − λ

∣∣∣∣ =
1− |λ|c
c− |λ|

.

Proof. We rewrite the absolute value on the left hand side using the fact that |a|2 = aā
for all a ∈ C. This gives∣∣∣∣1− λ̄zz − λ

∣∣∣∣2 =
(1− |λ|c)2 + 2|λ|c− 2<(λz̄)

(c− |λ|)2 + 2|λ|c− 2<(λz̄)
.

Note now that for 0 < β < α and 0 ≤ x we have

α+ x

β + x
≤ α

β
.

Hence,

(1− |λ|c)2 + 2|λ|c− 2<(λz̄)

(c− |λ|)2 + 2|λ|c− 2<(λz̄)
≤ (1− |λ|c)2

(c− |λ|)2
.

Finally, we note that the supremum is attained for z = c
|λ|λ.



Perturbation bounds for quantum Markov processes and
their fixed points

O. Szehr and M. Wolf May 22, 2014

We investigate the stability of Markov processes with respect to perturbations of their
transition maps. While this appears to be a well studied subject for classical Markov
chains [1, 3, 2], it is essentially untouched for their quantum counterparts. Guided by
the stability theory for classical Markov chains we prove inequalities of the form

‖ρ− ρ̃‖ ≤ κ‖T − T̃ ‖.

The above relates the distance between two stationary states ρ and ρ̃ that arise from
two quantum channels T and T̃ as fixed points ρ = T (ρ), ρ̃ = T̃ (ρ̃). Commonly, T
is considered the evolution of interest, while T̃ is a small perturbation thereof. The
condition number κ measure the sensitivity of the evolution to perturbation.

Quantum Markov processes model the behaviour of open quantum systems. It is
important to study their sensitivity for at least the following two reasons. First,
can there be a phase-transition in the steady states of a dissipative system due to
perturbation of the generator of the evolution? Second, in the context of dissipative
quantum computation the asymptotic state carries the outcome of the computation.
From an engineering point of view it is inevitable to ask about the level of error in the
steady states given that T cannot be realized ideally.

1 Sensitivity analysis

We will follow two approaches to sensitivity analysis. In the first we bound the con-
dition number for asymptotic states using novel resolvent estimates, which provides a
statement about the robustness of the asymptotic evolution [3].

Theorem 1. Let T be a trace-preserving, positive linear map on Md(C) and Λ :=
spec[T ]\{1} the set of its non-unit eigenvalues. Then

1

minλ∈Λ |1− λ|
≤ κ ≤ 2(5π/3 + 2

√
2)d3

minλ∈Λ |1− λ|
.

The second approach yields perturbation bounds at finite times, but we must assume
in addition that the Markov processes has a unique stationary state [2].

Theorem 2. Let ρn := T n(ρ0) and σn := T̃ n(σ0) be the evolution of two density
matrices with respect to two positive and trace-preserving linear maps T , T̃ . If T has
a unique stationary state and ||T n − T ∞||1→1 ≤ Kµn for K ≥ 0, µ < 1, then for

n > n̂ :=
⌈

log(1/K)
log(µ)

⌉
we have

||ρn − σn||1 ≤ Kµ
n ||ρ0 − σ0||1 +

(
n̂+K

µn̂ − µn

1− µ

) ∣∣∣∣∣∣T − T̃ ∣∣∣∣∣∣
1→1

.



In order to apply the theorem we must provide a priori estimates on ||T n − T ∞||1→1,
which is achieved in Article I). For any µ such that |λi| < µ < 1 ∀i, where λi denote
the eigenvalues of T − T ∞ it holds that

||T n − T ∞||1→1 ≤
4e
√
|m|

(1− µ)
3/2

sup
|z|=µ

∣∣∣∣∣∏
i∈m

1− λ̄iz
z − λi

∣∣∣∣∣ µn+1

Here, m denotes the minimal polynomial of T − T ∞ and |m| is the number of linear
factors in m. The product is taken over all i such that the corresponding factor (z−λi)
occurs in the prime factorization of m. Plugging this estimate into Theorem 2 yields
significant improvement on known stability estimates for classical Markov chains and
a strong stability result in the quantum context. The core conceptual insight is that
the (pseudo-hyperbolic) distance of the subdominant eigenvalues of T to the spectral
radius of T − T ∞ determines the sensitivity of the chain to perturbation. This is
in contrast to previous work [2, Thm. 4.1], where corresponding estimates involved
(inverse) distances |λi − λj |−1. The latter, however, diverge when degeneracy occurs
in the spectrum making the estimate trivial.
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We investigate the stability of quantum Markov processes with respect to perturba-
tions of their transition maps. In the first part, we introduce a condition number that
measures the sensitivity of fixed points of a quantum channel to perturbations. We
establish upper and lower bounds on this condition number in terms of subdominant
eigenvalues of the transition map. In the second part, we consider quantum Markov
processes that converge to a unique stationary state and we analyze the stability of
the evolution at finite times. In this way we obtain a linear relation between the
mixing time of a quantum Markov process and the sensitivity of its fixed point with
respect to perturbations of the transition map. C© 2013 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4795112]

I. INTRODUCTION

Quantum Markov processes naturally occur in various directions of quantum physics such as
quantum statistical physics, quantum optics, or quantum information theory. Whenever the time
evolution of some quantum system does not depend on its history, it can be appropriately described
as a quantum Markov process. Here we have in particular in mind evolutions of open quantum
systems which eventually converge to a set of stationary states.

Such evolutions either arise naturally from relaxation or equilibration, or they may be engi-
neered for instance for the purpose of dissipative quantum computation,18 dissipative quantum state
preparation3, 5, 18 or quantum Metropolis sampling.17 In those cases, the quantum Markov chain is
designed so that it drives any initial state towards a sought target—preferably as rapid as possible.

The present work is devoted to the question how sensitive stationary states are to perturbations
of the transition map of the corresponding Markov chain. While this appears to be a well studied
subject for classical Markov chains, 2, 6, 7, 13, 14 it is, to the best of our knowledge, essentially untouched
territory for their quantum counterparts. Guided by the classical theory we will follow two alternative
approaches, both of which result in an inequality of the form

‖ρ1 − ρ2‖ ≤ κ‖T1 − T2‖. (1)

Equation (1) relates the distance between two stationary states ρ1 and ρ2 to the distance between
two quantum channels T1 and T2 from which those states arise as fixed points ρi = Ti (ρi ). A little
thought reveals that such an inequality cannot hold in general if κ is a constant merely depending
on the chosen norm and possibly the dimension of the underlying space: let the Ti ’s for instance
be random dissipative perturbations of a unitary evolution. Then, irrespective of the size of the
perturbation, there will generically not be any relation between the corresponding stationary states.
So their distance cannot be bounded in terms of the perturbation of the transition map, unless κ

depends on additional properties of at least one of the channels, e.g., κ = κ(T1). A property which
suggests itself in this context is the rate of convergence: intuitively, if the Markov chain generated
by T1 converges rapidly towards ρ1, one expects that the fixed point is rather robust with respect to
perturbations of the transition map T1. Conversely, if the mixing time is very long, i.e., if there are
other states which are almost stationary already and converge to ρ1 only on a very large time scale,
one expects a small perturbation to be sufficient in order to change the stationary state significantly.

0022-2488/2013/54(3)/032203/10/$30.00 C©2013 American Institute of Physics54, 032203-1
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We will follow two approaches which make this intuition rigorous. In Sec. III we will directly
derive an inequality of the form in Eq. (1) where κ is expressed in terms of a particular condition
number which we will relate to spectral properties of the transition map in Sec. III B. Alternatively,
in Sec. IV we will derive perturbation bounds for finite times for discrete as well as for continuous
time quantum Markov processes with unique stationary state. Those bounds will be expressed in
terms of an assumed exponential convergence bound. Hence, they are applicable whenever such a
convergence bound can be obtained via one of the various existing tools such as logarithmic Sobolev
inequalities,4 χ2-divergence,16 Hilbert’s projective metric,10 or spectral theory.15 If by any of those
tools a time scale is identified on which convergence is guaranteed, then the results in Sec. IV
essentially provide a linear bound on the sensitivity coefficient in terms of that mixing time bound.

II. PRELIMINARIES

A. Quantum states and quantum evolutions

We begin with fixing the notation and terminology. We will throughout consider finite-
dimensional Hilbert spaces isomorphic to Cd for some d ∈ N. The notion of a state refers to a
density matrix, i.e., a positive semidefinite matrix ρ ∈ Md (C), ρ ≥ 0 with unit trace tr[ρ] = 1.
Here, Md (C) denotes the space of complex valued d × d matrices. The objects of interest in
this work are linear maps on Md (C) for which we reserve the letters T , E , and L. For each
such map T the dual map T ∗ : Md (C) → Md (C) is defined by imposing that ∀A, B ∈ Md (C) :
tr[T ∗(A)B] = tr[AT (B)]. T is called Hermiticity preserving iff ∀A ∈ Md (C) : T (A)† = T (A†),
positive iff A ≥ 0 ⇒ T (A) ≥ 0 and trace-preserving iff ∀A ∈ Md (C) : tr[T (A)] = tr[A]. The lat-
ter is equivalent to the fact that the dual map preserves the identity matrix 1 = T ∗(1). The identity
map on Md (C) will be denoted by id.

Our primary interest lies in quantum channels, i.e., completely positive and trace-preserving
linear maps, which describe the time evolution of quantum systems for a single time step. We will,
however, state all our results for maps which are positive but not necessary completely positive since
the proofs do not require the stronger assumption of complete positivity.

Let now T be any linear, trace-preserving and positive map on Md (C). The spectrum
spec[T ] := {λ ∈ C|∃X : T (X ) = λX} then contains 1, is closed with respect to complex conju-
gation and is contained in the unit disc. That is, λ ∈ spec[T ] ⇒ λ̄ ∈ spec[T ] and the spectral radius
�(T ) := max{|λ|∣∣λ ∈ spec[T ]} satisfies �(T ) = 1 ∈ spec[T ].

A state which satisfies ρ = T (ρ) will be called a stationary state. The set of stationary states
is always non-empty and in fact spans the space of all fixed points of T . The projection onto this
space will be denoted by T ∞ and it can be expressed as a Cesàro mean via

T ∞ = lim
n→∞

1

n

n∑
k=1

T k,

where T k = T ◦ . . . ◦ T stands for the k-fold composition of T . Clearly, if 1 is the only eigenvalue
of T of modulus one, then this simplifies to T ∞ = limn→∞ T n . Note that the spectral properties of
T and T ∞ guarantee that the map

Z(T ) := (
id − (T − T ∞)

)−1
, (2)

always exists. For more details on spectral properties of (completely) positive maps we refer to
Ref. 19.

When applied to an initial state, the sequence {T n}n∈N can be regarded as a finite and ho-
mogeneous quantum Markov chain with T as its transition map. The classical case described by
a stochastic matrix S ∈ Md (R+) can be embedded into this framework by fixing an orthonormal
basis {|i〉}d

i=1 and setting T (·) = ∑d
i, j=1 Si j 〈i | · |i〉 | j〉〈 j |.
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B. Norms and contraction coefficients

For any X ∈ Md (C) we denote by ||X ||1 := tr
[√

X† X
]

the Schatten 1-norm or trace norm of
X. When applied to quantum states, the induced metric (ρ1, ρ2) �→ ‖ρ1 − ρ2‖1 quantifies how well
the two states can be distinguished in an optimally chosen statistical experiment.

For any linear map L : Md (C) → Md (C) the induced 1-to-1-norm is defined as

||L||1→1 := sup
X �=0

||L(X )||1
||X ||1 , X ∈ Md (C).

By Gelfand’s formula we can express the spectral radius of L in terms of this norm as1

�(L) = lim
n→∞

∣∣∣∣Ln
∣∣∣∣1/n

1→1 . (3)

If T is trace-preserving and positive, then ‖T ‖1→1 = 1.
We will frequently use the so called coefficient of ergodicity or trace norm contraction coefficient

which is defined as

τ (L) := sup
σ †=σ �=0
tr(σ )=0

||L(σ )||1
||σ ||1

.

This quantity can equivalently be obtained via an optimization over orthogonal pure states,11

τ (L) = 1

2
sup
ϕ⊥ψ

||L(|ϕ〉〈ϕ|) − L(|ψ〉〈ψ |)||1 . (4)

Here the supremum is taken over all pairs of orthogonal unit vectors. For linear maps which are
Hermiticity preserving and trace-preserving it follows readily from the definition of τ that

τ (L1 ◦ L2) ≤ τ (L1)τ (L2), and so τ (Ln) ≤ τ (L)n (5)

for all n ∈ N. Finally, note that 0 ≤ τ (T ) ≤ 1 if T is positive and trace-preserving.

III. STABILITY OF FIXED POINTS

A. The main inequality

One of the first sensitivity analyses for fixed points of classical Markov chains was provided
by Schweitzer12 in terms of the so called fundamental matrix of a classical Markov chain. Here, we
generalize his approach to the quantum setting. The immediate analogue of Schweitzer’s fundamental
matrix is the map Z(T ) : Md (C) → Md (C) defined in Eq. (2). This leads to the main inequality:

Theorem 1. Let T1, T2 : Md (C) → Md (C) be trace-preserving, positive linear maps. For every
stationary state ρ2 of T2 the stationary state ρ1 := T ∞

1 (ρ2) of T1 satisfies

||ρ1 − ρ2||1 ≤ κ ||T1 − T2||1→1 wi th κ = τ
(
Z(T1)

)
. (6)

Proof. For all such pairs ρ1, ρ2 it holds that

Z(T1)−1(ρ1 − ρ2) = (
id − (T1 − T ∞

1 )
)
(ρ1 − ρ2) (7)

= T1(ρ2) − ρ2 = (T1 − T2)(ρ2), (8)

which leads to the identity

(ρ1 − ρ2) = Z(T1) ◦ (T1 − T2)(ρ2). (9)

Taking the Schatten 1-norm on both sides and abbreviating σ := (T1 − T2)(ρ2) we can write

‖ρ1 − ρ2‖1 = ‖Z(T1)(σ )‖1

‖σ‖1

‖(T1 − T2)(ρ2)‖1

‖ρ2‖1
, (10)
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from which we obtain the claimed inequality by taking the supremum over all ρ2 ∈ Md (C) and
over all traceless Hermitian σ . �

Evidently, the identity in Eq. (9) can be used to derive a plethora of different norm bounds (cf.
Ref. 2 for an overview on different approaches for classical Markov chains). Here we focus on the
trace norm since this seems to be the most natural choice in the quantum context. In addition, the
trace norm dominates all other unitarily invariant norms on Md (C)1 and makes the obtained bounds
in this sense the strongest possible ones.

In the following proposition we bound the condition number of Theorem 1 in terms of a better
studied object10, 11, 16 with an operational meaning, namely the trace-norm contraction coefficient of
the quantum channel:

Proposition 2. Let T be a trace-preserving, positive linear map on Md (C) with a unique
stationary state. Then

τ
(
Z(T )

) ≤ (
1 − τ (T )

)−1
. (11)

Proof. We express Z(T ) via its von Neumann series expansion Z = ∑∞
k=0 (T − T ∞)k and get

that

τ (Z) = sup
σ †=σ

tr(σ )=0

∣∣∣∣∑∞
k=0 (T − T ∞)k (σ )

∣∣∣∣
1

||σ ||1

≤
∞∑

k=0

sup
σ †=σ

tr(σ )=0

∣∣∣∣(T − T ∞)k (σ )
∣∣∣∣

1

||σ ||1
=

∞∑
k=0

τ (T k) (12)

≤
∞∑

k=0

[τ (T )]k = 1

1 − τ (T )
, if τ (T ) < 1.

To obtain Eq. (12) we used that (T − T ∞)k = T k − T ∞ if k > 0 and that tr(σ ) = 0 implies
T ∞(σ ) = 0 since uniqueness of the fixed point means that T ∞ acts as X �→ tr[X ]ρ. �

Note that τ (T ) has an operational meaning. Since τ (T ) = 1
2 supϕ⊥ψ ||T (|ϕ〉〈ϕ|) − T (|ψ〉〈ψ |)||1

by Eq. (4), it is directly related to the maximum probability with which two orthogonal inputs can
be distinguished at the output of T .

B. Spectral bounds on τ (Z)

In this subsection we prove that the sensitivity of the set of stationary states of a quantum
Markov chain to perturbations is related to the closeness of the subdominant eigenvalues to 1. More
precisely, we show that if there exists a subdominant eigenvalue of T close to 1, then the chain is ill
conditioned in the sense that τ (Z) is large. On the other hand if all eigenvalues are well separated
from 1, the process is well conditioned. The following theorem quantifies this observation. We note
that the relevant spectral quantity is not equal to the spectral gap min{1 − |λ|∣∣λ ∈ spec[T ] \ {1}}
which also appears frequently in convergence analyses.

Theorem 3. Let T be a trace-preserving, positive linear map on Md (C) and � := spec[T ]\{1}
the set of its non-unit eigenvalues. Then

1

minλ∈� |1 − λ| ≤ τ
(
Z(T )

) ≤ 2(5π/3 + 2
√

2)d3

minλ∈� |1 − λ| . (13)

Proof. We begin with proving the left hand inequality—guided by the techniques developed for
classical Markov chains in Ref. 13. We abbreviate Z := Z(T ) and note that Z is trace-preserving,
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since Z−1 is trace-preserving and therefore tr[Z(X )] = tr[Z−1 ◦ Z(X )] = tr[X ]. Consequently,
Z∗(1) = 1. We write P for the projection onto the invariant subspace of Md (C) corresponding to
the eigenvalue 1 of Z . Note that this implies that

(Z − P)k = Zk ◦ (id − P).

Using the fact that any matrix σ can be expressed as a sum of a Hermitian matrix
σ + := (σ + σ †)/2 and a skew-Hermitian matrix iσ − := (σ − σ †)/2, i.e., σ = σ + + iσ − , we
can bound ∣∣∣∣(Z − P)k

∣∣∣∣
1→1 = ∣∣∣∣Zk ◦ (id − P)

∣∣∣∣
1→1

= sup
σ=σ++iσ−

∣∣∣∣Zk ◦ (id − P)(σ+ + iσ−)
∣∣∣∣

1

||σ+ + iσ−||1

≤ sup
σ+,σ−

∣∣∣∣Zk ◦ (id − P)(σ+)
∣∣∣∣

1

||σ+||1
+

∣∣∣∣Zk ◦ (id − P)(σ−)
∣∣∣∣

1

||σ−||1
(14)

≤ 2 sup
σ †=σ

tr(σ )=0

∣∣∣∣Zk(σ )
∣∣∣∣

1

||σ ||1
||id − P||1→1 (15)

= 2τ (Zk) ||id − P||1→1

≤ 2τ (Z)k ||id − P||1→1 . (16)

To obtain Eq. (14) we apply the triangle inequality in the numerator and note that again by the
triangle inequality ||σ i||1 ≤ ||σ ||1, i ∈ {+ , − } holds to bound the denominator. Inequality (15)
exhibits the fact that both σ + and σ − are Hermitian and that (id − P)(σ ) is traceless for all σ . To
obtain Eq. (16) we used Eq. (5). Taking the kth root and the limit k → ∞ on both sides of the above
derivation, we conclude with Eq. (3) that

�(Z − P) ≤ τ (Z). (17)

That is, τ (Z) provides an upper bound on the modulus of all non-unit eigenvalues of Z . Finally,
note that the spectrum of Z is given by spec[Z] = {1} ∪ { 1

1−λ
}λ∈� from which the lower bound in

the theorem follows.
For the upper bound we use known results from non-classical spectral theory. The core obser-

vation is that the map 
 := T − T ∞ is power bounded since∣∣∣∣
n
∣∣∣∣

1→1 = ∣∣∣∣T n − T ∞∣∣∣∣
1→1

≤ ∣∣∣∣T n
∣∣∣∣

1→1 + ∣∣∣∣T ∞∣∣∣∣
1→1 = 2.

In Ref. 20 it has been shown that the resolvent of a general power bounded operator 
, which
acts on a complex D-dimensional Banach space and whose spectrum is contained in the open unit
disc, satisfies

∣∣∣∣(μ id − 
)−1
∣∣∣∣ ≤

C
(

5π
3 + 2

√
2
)

D3/2

minλ∈spec[
] |μ − λ| , (18)

for all |μ| ≥ 1 and C := supn ||
n||, where ‖ · ‖ denotes the usual operator norm induced by
the norm of the Banach space. The core observation in Ref. 20 is that one can bound the norm
‖(μ id − 
)− 1‖ by employing a Wiener algebra functional calculus and bounding || 1

μ−z ||W/mW

:= inf{|| 1
μ−z + mg||W | g ∈ W }, where ||·||W denotes the Wiener norm and m �= 0 is the minimal

degree polynomial annihilating 
, i.e., m(
) = 0. For more details concerning the techniques
employed see Refs. 8, 15, and 20, and references therein.
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Suppose for now that the only eigenvalue of T of magnitude one is 1. Then, all eigenvalues
of 
 are contained in the open unit disc. Setting D = d2, μ = 1, observing that spec[
] = � and
bounding C ≤ 2, Eq. (18) specializes to the upper bound claimed in the theorem.

To incorporate the case when T has eigenvalues of magnitude one other than 1, i.e., when the
spectrum of 
 is merely contained in the closed unit disc, we employ an argument based on continuity.
We consider a map Tε whose spectrum differs from the one of T in that the peripheral eigenvalues
other than 1 of T are shifted “by ε” radially towards the center of the unit disc. More precisely,
we define Tε := T − ε(Tφ − T ∞), where Tφ denotes the part of the spectral decomposition of T
which belongs to all eigenvalues of magnitude one, i.e., if T = ∑

k λkPk then Tφ = ∑
k:|λk |=1 λkPk .

Exploiting the relations between T , T ∞, and Tφ we can show that


n
ε := (

Tε − T ∞)n

= T n − (1 − ε)nT ∞ + [(1 − ε)n − 1]T n
φ .

Since the involved maps are all positive and trace-preserving, and thus have unit norm, this implies
that 
ε is power bounded with

∣∣∣∣
n
ε

∣∣∣∣
1→1 ≤ 2 as before. Thus, for μ = 1 and any (small enough)

ε > 0 the above assertion (18) holds for 
ε . Then by continuity the statement stays true even for
ε = 0.

IV. FINITE TIME PERTURBATION BOUNDS

So far, we have analysed the stability of the fixed point of a quantum channel and in this sense
the robustness of the asymptotic time evolution of the corresponding quantum Markov chain. In this
section we will extend the analysis to finite times, first for discrete and then for continuous time
evolutions. A second point in which the following approach differs from the previous one is that it
uses the assumption of an exponential convergence bound as an additional ingredient.

A. Evolution in discrete time

Theorem 4. For n ∈ N0 let ρn := T n(ρ0) and σn := En(σ0) be the evolution of two density
matrices with respect to two positive and trace-preserving linear maps T , E : Md (C) → Md (C).
If T has a unique stationary state and ||T n − T ∞||1→1 ≤ K · μn for K ≥ 0, μ < 1 and all n ∈ N0,
then we can bound the distance between the evolved states by

||ρn − σn||1 ≤⎧⎨
⎩

||ρ0 − σ0||1 + n ||E − T ||1→1 for n ≤ n̂

Kμn ||ρ0 − σ0||1 +
(

n̂ + K μn̂−μn

1−μ

)
||E − T ||1→1 for n > n̂,

where n̂ :=
⌈

log(1/K )
log(μ)

⌉
.

Remark. Before we prove this statement, let us mention known pairs (K, μ) to which the theorem
might be applied. For definitions and further details we refer to the references:

(i) For K = 1 one can choose μ = tanh (
/4), where 
 is the projective diameter of the map T ,
measured in terms of Hilbert’s projective metric.10

(ii) For K = supρ

[
χ2

k (ρ, σ )
]1/2

a particular χ2-divergence and σ the stationary state of T , we can
choose μ to be the second largest singular value of � := [�k

σ ]1/2 ◦ T ◦ [�k
σ ]−1/2 where �k

σ is
a map on which the chosen χ2-divergence is based on Ref. 16.
If λmin is the smallest eigenvalue of σ , a particular choice results in K = (λ−1

min − 1)1/2 and
�(X ) = σ−1/4T

(
σ 1/4 Xσ 1/4

)
σ−1/4.

(iii) If λmin is the smallest eigenvalue of the stationary state of T , we can choose K = √−2 log λmin

and μ determined by a logarithmic Sobolev inequality.4 Strictly speaking, those bounds apply
to the continuous time case, which we discuss in Theorem 6 below.
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(iv) If there is a similarity transformation such that S ◦ T ◦ S−1 is a normal operator on Md (C), we
can choose μ := max{|λ|∣∣λ ∈ spec[T ] \ {1}} and K = √

2dκT , where κT := ‖S ⊗ S−1‖2→2.

The latter can be upper bounded by κT ≤ λ
−1/2
min if T satisfies detailed balance with respect to

its stationary state.
(v) Finally, we note that the assumption that ||T n − T ∞||1→1 ≤ K · μn for K ≥ 0, μ < 1 of

Theorem 4 implies that all non-unit eigenvalues of T are contained in the open unit disc. In this
situation more elaborate bounds, which only depend on the spectrum of T can be given. In Ref.
15 a Wiener algebra functional calculus is employed to obtain spectral convergence bounds for
classical and quantum Markov chains. The techniques of Ref. 15 are new even to the theory of
classical Markov chains and do not rely on additional assumptions such as detailed balance.
The derivation of Corollary IV.4 of Ref. 15 yields that for any μ such that |λi| < μ < 1 ∀i,
where (λi )i=1,...,d2 denote the eigenvalues of T − T ∞ it holds that

∣∣∣∣T n − T ∞∣∣∣∣
1→1 ≤ 4e

√|m|
(1 − μ)3/2 sup

|z|=μ

∣∣∣∣ ∏
i∈m

1 − λ̄i z

z − λi

∣∣∣∣ μn+1

≤ 4e
√|m|

(1 − μ)3/2

∏
i∈m

1 − μ|λi |
μ − |λi | μn+1. (19)

Here, m denotes the minimal polynomial of T − T ∞ and |m| is the number of linear factors in
m. The product in Eq. (19) is taken over all i such that the corresponding factor (z − λi) occurs
in the prime factorization of m.

Theorem 4 together with Eq. (19) provides a purely spectral bound on the sensitivity of a Markov
chain under perturbations. Even compared to the results for classical Markov chains in Ref. 7 (on
which our derivation of Theorem 4 builds), bounds based on (19) yield a significant improvement
(compare, Theorem 4.1 of Ref. 7). Our bound proves that the distance of the subdominant eigenvalues
of T to the spectral radius of T − T ∞ determines the sensitivity of the chain to perturbation, while
their mutual distances, i.e., the quantities |λi − λj| for general i, j are not relevant (compare,
Theorem 4.1 of Ref. 7). We refer to Ref. 15 for a discussion of Eq. (19) and related results.

It is also possible to use Corollary IV.4 of Ref. 15 directly to derive stability estimates. Note,
however, that if in ||T n − T ∞||1→1 ≤ K · μn we allow that μ equals the spectral radius of T − T ∞

then the prefactor will depend on n. More precisely, Theorem III.2 of Ref. 15 yields that in this case
K = K (n) = Cndμ−1, where C does not depend on n and dμ denotes the size of the largest Jordan
block of any eigenvalue of magnitude μ. It is not difficult to extend the derivation of Theorem 4 to
the situation, where μ is the spectral radius of T − T ∞ and K (n) = Cndμ−1.

Proof of Theorem 4. The proof is guided by techniques used in Ref. 7 for classical Markov
processes. First we note that in general for linear maps T , E,

En = T n +
n−1∑
i=0

T n−i−1 ◦ (E − T ) ◦ E i n ≥ 1

holds, which can easily be shown by induction. Applying the above to the state σ 0 and subtracting
ρn from both sides gives

σn − ρn = T n(σ0 − ρ0) +
n−1∑
i=0

T n−i−1 ◦ (E − T )(σi )

from which we conclude that

||σn − ρn||1 ≤ (20)

∣∣∣∣T n(σ0 − ρ0)
∣∣∣∣

1 +
n−1∑
i=0

∣∣∣∣T n−i−1 ◦ (E − T )(σi )
∣∣∣∣

1 .
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We now find upper bounds for the norm terms appearing on the right-hand side of Eq. (20). The fact
that E(σi ) − T (σi ) is Hermitian and traceless implies that∣∣∣∣T n−i−1 ◦ (E − T )(σ i )

∣∣∣∣
1 ≤ τ (T n−i−1) ||E − T ||1→1 ,

and
∣∣∣∣T n(σ0 − ρ0)

∣∣∣∣
1 ≤ τ (T n) ||ρ0 − σ0||1 .

Thus, from Eq. (20) we conclude that

||ρn − σn||1 ≤ τ (T n) ||ρ0 − σ0||1 + ||E − T ||1→1

n−1∑
i=0

τ (T i ). (21)

The term τ (T n) can in turn be bounded using Eq. (4) and the assumed convergence properties of T
by

τ (T n) = sup
σ †=σ

tr(σ )=0

||T n(σ )||1
||σ ||1

= 1

2
sup

|φ〉,|ψ〉

∣∣∣∣T n(φ) − T n(ψ)
∣∣∣∣

1

≤ sup
|φ〉

∣∣∣∣T n(φ) − T ∞(φ)
∣∣∣∣

1 ≤ K · μn.

Note that the first inequality requires uniqueness of the stationary state, i.e., that T ∞(φ) = T ∞(ψ).
Alternatively, we can use that T n is trace-preserving and positive, so that in total

τ (T n) ≤
{

1 for n < n̂

K · μn for n ≥ n̂.

We now find a suitable upper bound on
∑

i τ (T i ) by always choosing the better of the two bounds
for τ (T i ). In this way we obtain

n−1∑
i=0

τ (T i ) ≤ n̂ +
n−1∑
i=n̂

τ (T i ) ≤ n̂ + K · μn̂
n−n̂−1∑

i=0

μi

= n̂ + K · μn̂ 1 − μn−n̂

1 − μ
. (22)

Plugging this expression into Eq. (21) and again choosing the better bound for τ (T n) concludes the
proof of the theorem. �

If we take the limit n → ∞ in Theorem 4 and use that K · μn̂ ≤ 1 is by definition of n̂ basically
an equality, we obtain a perturbation bound for the asymptotic states:

Corollary 5. Under the conditions of Theorem 4

lim sup
n→∞

||ρn − σn||1 ≤
(

n̂ + 1

1 − μ

)
||E − T ||1→1 . (23)

B. Evolution in continuous time

The following is the quantum counterpart of the results on classical Markov chains in Ref. 6:

Theorem 6. Let T t = etLT and E t = etLE with t ∈ R+ be two one-parameter semi groups of
positive and trace-preserving linear maps on Md (C). Write ρ(t) := T t (ρ0) and σ (t) := E t (σ0) for
the evolution of two density matrices and assume that T t has a unique stationary state and that
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∀t > 0 :
∣∣∣∣T t − T ∞∣∣∣∣

1→1 ≤ K e−ν t for some K, ν > 0. Then

||ρ(t) − σ (t)||1 ≤⎧⎪⎪⎨
⎪⎪⎩

||ρ0 − σ0||1 + t ||LE − LT ||1→1 , for t < t̂

K e−νt ||ρ0 − σ0||1 + log(K )+1−K e−νt

ν
||LE − LT ||1→1

for t ≥ t̂

,

where t̂ := log(K )
ν

.

Proof. The proof goes along the lines of the proof of Theorem 4. The difference between two
dynamical semi-groups can be expressed using their generators as9

Et = Tt +
∫ t

0
Tt−s ◦ (LE − LT ) ◦ Es ds.

Following the derivation of Theorem 4 and using that ∀X : tr[(LE − LT )(X )] = 0, we obtain the
continuous time analogue of Eq. (21),

||ρ(t) − σ (t)||1 ≤

τ (Tt ) ||ρ0 − σ0||1 + ||LE − LT ||1→1

∫ t

0
τ (Tu) du.

Again, it is possible to state upper bounds for τ (Tt ) for small and large t, respectively. We have that

τ (Tt ) ≤
{

1 for t ≤ t̂

K · e−νt for t > t̂,

where t̂ := log(K )
ν

. The proof is then concluded following exactly the same lines as in the proof of
Theorem 4. �

Again we can consider the limit t → ∞ and thereby obtain a perturbation bound for the
asymptotic evolution in terms of the distance between the generators and as a function of the
convergence rate ν:

Corollary 7 Under the conditions of Theorem 6

lim sup
t→∞

||ρ(t) − σ (t)||1 ≤ log(K ) + 1

ν
||LE − LT ||1→1 .

V. OUTLOOK

We have established general perturbation bounds for fixed points of quantum Markov chains.
The results focus on the trace norm, but it is clear from their derivation, that analogous bounds can be
obtained for essentially any norm. For practical purposes and large systems, the derived bounds may
be weaker than desired—owing to the fact that we do not impose and exploit any additional structure
of transition map and perturbation. Investigating bounds in more structured frameworks, where for
instance Liouvillians as well as perturbations are geometrically local, seems to be a worthwhile
direction for future studies.

We have also seen that perturbation bounds are linked to convergence bounds so that stronger
perturbation bounds can be obtained from better convergence bounds. A detailed analysis of the
latter, leading to bounds of the form in Eq. (19), will be given.15

Clearly, one may also exploit the relation in the other direction and use the derived perturbation
bounds in order to obtain lower bounds on mixing times for quantum Markov processes.
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Eigenvalue estimates for the resolvent of a non-normal
matrix

O. Szehr December 17, 2013

We investigate the relation between the spectrum of a non-normal matrix and the norm
of its resolvent. This relation plays an important role in various situations in pure and
applied mathematics. For example in operator theory, when constructing a functional
calculus [2]; in the theory of random orthogonal polynomials when localizing their
zeroes [1] and in computational linear algebra when one is concerned about numeric
stability of solutions of linear equations.

1 Resolvent estimates

We provide the strongest known resolvent estimates for two classes of matrices. The-
orem 1 treats matrices with operator norm ||A||∞ ≤ 1 and is optimal. Theorem 2 only
requires that for any norm supk≥0

∣∣∣∣Ak∣∣∣∣ ≤ C < ∞. Our results improve on previous
contributions by E.B. Davies and B. Simon [1] as well as N. Nikolski [2].

Theorem 1. Let A be an n × n matrix with spectrum σ(A) and ||A||∞ ≤ 1. If m =∏|m|
i=1(z − λi) is the minimal polynomial of A and ζ ∈ C− σ(A) then it holds that∣∣∣∣(ζ −A)−1

∣∣∣∣
∞ ≤

∣∣∣∣(ζ −MB)−1
∣∣∣∣
∞

and

(
(ζ −MB)−1

)
ij

=


0 if i < j
1

ζ−λi if i = j
(1−|λi|2)1/2

ζ−λi
(1−|λj |2)1/2

ζ−λj
∏i−1
µ=j+1

(
1−λ̄µζ
ζ−λµ

)
if i > j

.

The assertion of the theorem is surprising. In order to estimate the resolvent of a
given matrix A it is sufficient to consider a certain matrix MB , whose resolvent has
largest operator norm among all (normalized) matrices. The optimality of the estimate
is trivial. We provide the entries of

(
(ζ −MB)−1

)
ij

, which makes it possible to simply

bound
∣∣∣∣(ζ −MB)−1

∣∣∣∣
∞. The second observation treats power-bounded matrices. We

state the theorem for ζ ∈ ∂D − σ(A) as this most clearly demonstrates its strength.
(The statement for ζ ∈ ∂D− σ(A) can be found is the contributed article.)

Theorem 2. Let A be an n× n matrix with minimal polynomial m of degree |m| and
let ||·|| be any norm with supk≥0 ||Ak|| = C <∞. For any ζ ∈ ∂D− σ(A) it holds that

∣∣∣∣(ζ −A)−1
∣∣∣∣ ≤ √

16e− 4 |m|C
minλi∈σ(A) |ζ − λi|

.



The core conceptual insight is that the resolvent of a power-bounded operator grows
linearly with the number of factors in the minimal polynomial. Previous results could
only establish estimates involving |m|3/2 [3]. As compared to (optimal) bounds for A
with ||A||∞ ≤ 1 (resulting from Theorem 1), Theorem 2 is weaker only by a constant
prefactor of about 5.

2 Legal statement

The content of the article is the exclusive work of the author.
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I. INTRODUCTION

The contribution of this article is to provide new estimates on the norm of the resolvent
of a matrix A and to prove their optimality under certain conditions. We derive bounds
of the form ∣∣∣∣(ζ −A)−1

∣∣∣∣ ≤ Φ(ζ, n, σ(A)), (1)

where Φ is a function of ζ ∈ C, the dimension n and the spectrum σ(A) of A. In the first
part of the article, (cf. Section III) we assume that the largest singular value (the spectral
norm) of A is bounded by 1 i.e. ||A||∞ ≤ 1. Note that this can always be achieved by a
suitable normalization. Under this assumption we obtain optimal bounds for ζ ∈ C−σ(A)
and present explicit matrices that establish equality in (1). Thus we identify the relation
between the localization of the spectrum of A and the norm of its resolvent. In the second
part (cf. Section IV) we study (1) under the assumption that each power of A can be
bounded with respect to any given norm by the same constant, supk≥0

∣∣∣∣Ak∣∣∣∣ ≤ C. In this
case we derive the strongest estimates so far.

The problem of finding good functions Φ in (1) was studied extensively in the litera-
ture [5, 6, 17, 29]. We contribute to the topic by strengthening the results of the cited
publications. Our approach is based on the theory of certain (Hilbert/ Banach) function
spaces. We associate to a given class of matrices Γ a certain Banach algebra A of functions
and instead of working with matrices directly we estimate the norm of a representative
function in the function algebra. A key role is played by inequalities of the type

||f(A)|| ≤ C ||f ||A , (2)

which relate for a given A ∈ Γ the norm ||f(A)|| to the norm of f in A. At first glance
this appears to be of little use since the right hand side no longer depends on A. However,
it is possible to exploit spectral properties of A to significantly strengthen the inequality
in (2). Let mA be the minimal polynomial of A. For any f, g ∈ A we have then that
||(f +mAg)(A)||A = ||f(A)||A and an application of (2) reveals that for all g ∈ A we have
||f(A)|| ≤ C ||f +mAg||A. This reduces the problem of bounding ||f(A)|| to the problem of
finding the least norm function f + mAg in A, which is equivalent to a Nevanlinna-Pick
interpolation problem in A [17]. If ||A||∞ ≤ 1 the resulting interpolation problem can be
solved using an operator theoretic approach pioneered by D. Sarason [1, 22]. This approach
is intrinsically connected to the theory of compressed shift operators on Hardy space. We
contribute to this theory by providing a framework that allows us to compute explicit
matrix representations for functions of model operators. In case that A is power-bounded
we choose a rational approximation function in A and bound its norm to achieve our result.

Bounds on the norm of a resolvent are required in various situations in pure and applied
mathematics. For example in operator theory, when constructing a functional calculus

f 7→ f(X) =
1

2πi

∫
γ
f(ζ)(ζ −X)−1dζ

one needs to bound the norm of the resolvent in terms of distance of ζ to the spectrum of
X [17]. In the theory of orthogonal polynomials resolvent estimates are used to study the
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location of zeros of a random orthogonal polynomials on the unit circle [6]. In computa-
tional linear algebra the following are classical problems that can be approached through
appropriate estimates for

∣∣∣∣(ζ −A)−1
∣∣∣∣.

1. To analyze the stability of solutions x of the matrix equation Ax − ζx = b under
perturbations in b and A, see [5].

2. To study whether an approximate eigenvalue ζ of A (in the sense that ||Ax− ζx|| ≤
ε||x|| for some vector x) is close to an actual eigenvalue of A, see [5, 19, 28].

3. To estimate the distance of the spectrum of a matrix B to the spectrum of a matrix
A in terms of B −A, see [2, 19, 21].

Our resolvent bounds are stronger than the ones used for example in [21] to obtain estimates
on the spectral variation of non-normal matrices. In Section V we apply our resolvent
estimate for power-bounded matrices to study the sensitivity of stationary states of a
classical or quantum Markov chain under perturbations of the transition matrix. We
recover known stability results for classical Markov chains and prove new estimates in
the quantum case. A similar approach, based on the power-boundedness of the transition
matrix, was previously applied in [26] to investigate spectral convergence properties of
classical and quantum Markov chains.

II. PRELIMINARIES

We will take a function space based approach to the problem of bounding the norm of
the resolvent of a certain matrix. This section lays down the required definitions and basic
results.

A. Notation

We denote by Mn the set of n × n matrices with complex entries. For A ∈ Mn we
denote by σ(A) its spectrum and bym its minimal polynomial. We write |m| for the degree
of m. To the minimal polynomial m we associate the Blaschke product

B(z) :=
∏
i

z − λi
1− λ̄iz

.

The product is taken over all i such that (respecting multiplicities) the corresponding linear
factor z − λi occurs in the minimal polynomial m. Thus, the numerator of B as defined
here is exactly the associated minimal polynomial.

We denote by ||A|| any particular norm of A while the ∞-norm is defined by

||A||∞ = sup
||v||2=1

||Av||2 ,
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where ||v||22 =
∑

i |vi|2 is the usual Euclidean norm. That means ||A||∞ simply denotes the
largest singular value of A. We will slightly abuse nomenclature and call matrices with

||A||∞ ≤ 1

Hilbert space contractions, although of course the underlying space always has finite di-
mension. Similarly, the class of A ∈Mn with

sup
k≥0
||Ak|| ≤ C <∞

will be called Banach space power-bounded operators with respect to ||·|| and constant C.
(Note that here the norm is general.)

To achieve our estimates we rely on the theory of certain function spaces. Let D = {z ∈
C | |z| < 1} denote the open unit disk in the complex plane and D̄ its closure. The space
of analytic functions on D is denoted by Hol(D). The Hardy spaces considered here are

H2 :=
{
f ∈ Hol(D)| ||f ||2H2

:= sup
0≤r<1

1

2π

∫ 2π

0
|f(reiφ)|2dφ <∞

}
,

and

H∞ :=
{
f ∈ Hol(D)| ||f ||H∞ := sup

z∈D
|f(z)| <∞

}
.

The H2-norm can be written in terms of the Taylor coefficients of the analytic function f .
We write f(z) =

∑
k≥0 f̂(k)zk and use Plancherel’s identity to conclude that

sup
0≤r<1

1

2π

∫ 2π

0
|f(reiφ)|2dφ =

∑
k≥0

|f̂(k)|2.

Thus, f ∈ Hol(D) is in H2 if and only if
∑

k≥0 |f̂(k)|2 <∞. The Wiener algebra is defined
as the subset of Hol(D) of absolutely convergent Taylor series,

W := {f =
∑
k≥0

f̂(k)zk| ||f ||W :=
∑
k≥0

|f̂(k)| <∞}.

B. Model spaces and operators

Let A ∈ Mn with σ(A) ⊂ D and let B be the Blaschke product associated to the
minimal polynomial of A. We define the |m|-dimensional model space

KB := H2 	BH2 := H2 ∩ (BH2)⊥,

where we employ the usual scalar product from the Hilbert space L2(∂D),

〈f |g〉 :=

∫
∂D
f(z)g(z)

|dz|
2π

.
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If the zeros {λi}i=1,...,|m| of B are distinct (that is A can be diagonalized) it is not
difficult to verify that KB is spanned by the Cauchy kernels

KB = span

{
1

1− λ̄iz

}
i=1,...,|m|

.

Thus KB is a space of rational functions f of the form

f(z) =
p(z)∏

i(1− λ̄iz)
,

where p(z) is a polynomial of degree at most |m| − 1. If the zeros of B are not distinct the
above remains valid but the Cauchy kernels have to be replaced by

zk−1

(1− λ̄iz)k
, 1 ≤ k ≤ ki,

where ki denotes the multiplicity of λi. In our consecutive proofs, however, we omit
this case and assume that A is diagonalizable. This does not result in any difficulties
since upper bounds obtained in the special case extend by continuity to bounds for non-
diagonalizable matrices. The assumption that A can be diagonalized is not principal;
virtually all computations in the manuscript can be carried out in the more general case.
We avoid non-diagonalizable A and rely on continuity only for notational convenience.

One natural orthonormal basis for KB is the Malmquist-Walsh basis {ek}k=1,...,|m| with
([16], page 117)

ek(z) :=
(1− |λk|2)1/2

1− λ̄kz

k−1∏
i=1

z − λi
1− λ̄iz

,

where, as it will remain throughout the manuscript, the empty product is defined to be 1
i.e.

e1(z) =
(1− |λ1|2)1/2

1− λ̄1z
.

The model operator MB acts on KB as

MB : KB → KB

f 7→MB(f) := PB(zf),

where PB denotes the orthogonal projection onKB. In other words,MB is the compression
of the multiplication operation by z to the model spaceKB (see [16] for a detailed discussion
of model operators and spaces). As multiplication by z has operator norm 1 it is clear that
MB is a Hilbert space contraction. Moreover, it is not hard to show that the eigenvalues
of MB are exactly the zeros of the corresponding Blaschke product (see [18], page 228 and
Proposition III.5 in the article at hand).
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C. Spectral bounds on the norm of a function of a matrix

This subsection contains a brief outline of methods to obtain spectral bounds on a
function of a matrix. For a more detailed account see [16–18] and the references therein.
Suppose that f is holomorphic on a domain containing all eigenvalues of A and let γ be a
smooth curve in this domain that encloses the eigenvalues. The matrix f(A) is defined by
the Dunford-Taylor integral [9]

f(A) =
1

2πi

∫
γ
f(ζ)(ζ −A)−1dζ.

It is easily seen that if f(z) =
∑n

k=0 akz
k is a polynomial then f(A) =

∑n
k=0 akA

k

and that the correspondence f 7→ f(T ) is an algebra homomorphism from the algebra of
holomorphic functions (on the given domain) to Mn i.e (f + g)(T ) = f(T ) + g(T ) and
(fg)(T ) = f(T )g(T ) (see [9], Chapter I.6). A unital Banach algebra A with elements in
Hol(D) will be called a function algebra if

i) A contains all polynomials and limn→∞ ||zn||1/nA = 1 and
ii) (f ∈ A, λ ∈ D, f(λ) = 0) implies that f

z−λ ∈ A.
Following the conventions of [17] we say that a set of matrices Γ obeys an A functional
calculus with constant C if

||f(A)|| ≤ C ||f ||A ,

holds for any A ∈ Γ and f ∈ A. Here ||f ||A denotes the norm of f in A. Clearly, this
is only possible if all eigenvalues of A are contained in D̄. For us, two instances of such
inequalities will be important. In the first example we consider Hilbert space contractions,
while the second one treats power-bounded Banach space operators.

i) The family of Hilbert space contractions Γ = {A ∈ Mn| ||A||∞ ≤ 1} is related to an
H∞ functional calculus, since by von Neumann’s inequality [5, 14] we have for any f in
the disk algebra H∞ ∩ C(D̄) (the set of bounded holomorphic functions on D that admit a
continuous extension to the boundary) and A ∈ Γ with σ(A) ⊂ D

||f(A)||∞ ≤ ||f ||H∞ .

ii) Consider a family Γ = {A ∈ Mn|
∣∣∣∣Ak∣∣∣∣ ≤ C ∀k ∈ N} of Banach space operators

that are power bounded by some constant C < ∞. This family admits a Wiener algebra
functional calculus since for any f ∈W and A ∈ Γ

||f(A)|| =

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
k≥0

f̂(k)Ak

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤

∑
k≥0

|f̂(k)|
∣∣∣∣∣∣Ak∣∣∣∣∣∣ ≤ C∑

k≥0

|f̂(k)| = C ||f ||W

holds.

At first glance, the inequalities of i) and ii) seem to be of little use when it comes
to finding spectral bounds on ||f(A)|| since the obtained upper bounds do not depend on
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A anymore. To obtain better estimates one can rely on the following insight. Instead
of considering the function f directly, we add multiples of m (or any other annihilating
polynomial) to this function and consider h = f +mg, g ∈ A instead of f . It is immediate
that ||f(X)|| = ||h(X)||. The following simple but crucial lemma summarizes this point:

Lemma II.1 ([17] Lemma 3.1). Let m 6= 0 be a polynomial and let Γ be a set of matrices
that obey an A functional calculus with constant C and that satisfy m(A) = 0 ∀A ∈ Γ.
Then

||f(A)|| ≤ C ||f ||A/mA , ∀A ∈ Γ,

where ||f ||A/mA = inf {||h||A| h = f +mg, g ∈ A}.

Proof. For any g ∈ A we have that ||f(A)|| = ||(f +mg)(A)|| ≤ C ||f +mg||A.

If σ(A) ⊂ D (and A can be diagonalized) it follows directly from the definition of the
function algebra (see also [17], Section 3.1 (iii) or [30], Section 1.2 P4) that

||f ||A/mA = inf{||g||A | g ∈ A, g(λi) = f(λi) ∀λi ∈ σ(A)},

which is a Nevanlinna-Pick type interpolation problem in A. If the eigenvalue λi carries
a multiplicity ki > 1 in m the above remains valid but at λi the first ki − 1 derivatives of
f and g must coincide. Since for σ(A) ⊂ D the Blaschke product is holomorphic on a set
containing D̄ we can define ||f ||A/BA as in Lemma II.1 and note ([30], Lemma 3.1) that as
before

||f ||A/BA = inf{||g||A | g ∈ A, g(λi) = f(λi) ∀λi ∈ σ(A)}.

In the special case A = H∞ it is possible to evaluate ||f ||H∞/BH∞ using Sarason’s approach
to the Nevanlinna-Pick problem [1, 22] or the Commutant lifting theorem of B. Sz.-Nagy
and C. Foiaş [1, 8, 13].

Lemma II.2 ([17] Theorem 3.12, [18] Theorem 3.1.11). For any f ∈ H∞ it holds that

||f ||H∞/BH∞ = ||f(MB)||∞ .

III. HILBERT SPACE CONTRACTIONS

Spectral bounds on the resolvent of a Hilbert space contraction were derived in [6]. The
authors provide an upper bound in terms of a certain Toeplitz matrix, compute the norm
of this matrix and present a sequence of matrices that approaches their upper bound. The
following theorem summarizes the basic three assertions from the discussion of Hilbert
spaces contractions in [6].

Theorem III.1 ([5, 6]).
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1. Let A be an n× n matrix with ||A||∞ ≤ 1 and 1 /∈ σ(A). Then

∣∣∣∣(1−A)−1
∣∣∣∣
∞ ≤

||Mn||∞
minλi∈σ(A) |1− λi|

,

with the n× n matrix

Mn :=


1 0 . . . 0

2 1
. . .

...
...
. . . . . . 0

2 . . . 2 1

 .

2. It holds that ||Mn||∞ = cot ( π4n).

3. For any a ∈ (0, 1) there are n×n matrices An(a) with ||An(a)||∞ ≤ 1 and σ(A) = {a}
such that

lim
a→1

(1− a)(1−An(a))−1 = Mn.

In this paper we present generalizations of all three assertions of the theorem. We
recover the statements 1 and 3 using a unified approach based on the techniques developed
in [17]. Here, our strategy is to directly compute and bound the entries of the model
operator in Malmquist-Walsh basis. Our approach has the advantage that it yields spectral
bounds for any ζ ∈ C−σ(A) and that the optimality statement 3 is automatic. Concerning
the second point of the theorem we present a technique going back to [7] in order to compute
the norm of Toeplitz matrices of the form

Mn(β) :=


1 0 . . . 0

β 1
. . .

...
...

. . . . . . 0
β . . . β 1

 , β ∈ [0, 2]. (3)

Theorem III.2. Let A be an n × n matrix with ||A||∞ ≤ 1 and minimal polynomial
m =

∏|m|
i=1(z − λi) with σ(A) ⊂ D. Then for any ζ ∈ C− σ(A) it holds that∣∣∣∣(ζ −A)−1

∣∣∣∣
∞ ≤

∣∣∣∣(ζ −MB)−1
∣∣∣∣
∞

and

(
(ζ −MB)−1

)
ij

=


0 if i < j
1

ζ−λi if i = j
(1−|λi|2)1/2

ζ−λi
(1−|λj |2)1/2

ζ−λj
∏i−1
µ=j+1

(
1−λ̄µζ
ζ−λµ

)
if i > j

with respect to the Malmquist-Walsh basis. (The empty product is defined to be 1.)
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To compare our new result Theorem III.2 to Theorem III.1 we note that for any n× n
matrices A = (aij) and B = (bij), the condition |aij | ≤ bij ∀i, j implies that ||A||∞ ≤ ||B||∞.
Suppose for instance that |ζ| ≤ 1. Then we can estimate the off-diagonal components of
(ζ −MB)−1 by∣∣∣∣∣∣(1− |λi|

2)1/2

1− λ̄iζ
(1− |λj |2)1/2

1− λ̄jζ

i∏
µ=j

(
1− λ̄µζ
ζ − λµ

)∣∣∣∣∣∣ ≤ max
i

1− |λi|2

|1− λ̄iζ|2

|m|∏
µ=1

∣∣∣∣1− λ̄µζζ − λµ

∣∣∣∣
≤ max

i

1

|1− λ̄iζ|
max
i

1− |λi|2

|1− λ̄iζ|

|m|∏
µ=1

∣∣∣∣1− λ̄µζζ − λµ

∣∣∣∣ ≤ max
i

2

|1− λ̄iζ|

|m|∏
µ=1

∣∣∣∣1− λ̄µζζ − λµ

∣∣∣∣ ,
which yields the component-wise estimate

∣∣∣((ζ −MB)−1
)
ij

∣∣∣ ≤ 1

minλk∈σ(A) |1− λ̄kζ|

|m|∏
µ=1

∣∣∣∣1− λ̄µζζ − λµ

∣∣∣∣ ·


0 if i < j

1 if i = j

2 if i > j

.

Corollary III.3. Under the assumptions of Theorem III.2 suppose that |ζ| ≤ 1. It follows∣∣∣∣(ζ −A)−1
∣∣∣∣
∞ ≤

∣∣∣∣M|m|∣∣∣∣∞
minλk∈σ(A) |1− λ̄kζ|

1

|B(ζ)|
,

where B(ζ) =
∏|m|
i=1

ζ−λi
1−λ̄iζ

is the Blaschke product associated with m.

We can pass to the general case σ(A) ⊂ D by continuous extension. Setting ζ = 1
Corollary III.3 is the first assertion of Theorem III.1 with the bonus that on the right
hand side the norm of an |m| × |m| matrix occurs (compare [6] Section 6 B). However, if
maxi

1−|λi|2
|1−λi| = β is given we have (with the same computation as above) for ζ = 1

∣∣∣((1−MB)−1
)
ij

∣∣∣ ≤ 1

minλk∈σ(A) |1− λk|
·


0 if i < j

1 if i = j

β if i > j

and we can improve the bound in Theorem III.1 if we can compute ||Mn(β)||∞ (see (3)).
The following theorem generalizes the discussion of Toeplitz matrices in [6]. It establishes
an indirect possibility to compute ||Mn(β)||∞.

Proposition III.4. Let Mn(β) with β ∈ (0, 2] be the n × n Toeplitz matrix introduced
in (3). Then the equation

β cot (nθ) + (2− β) cot (θ/2) = 0, θ ∈ R (4)

has a unique solution θ∗ ∈ [2n−1
2n π, π) and

||Mn(β)||∞ =
1

2

√
(β − 2)2 +

β2

cot2 (θ∗/2)
.

In particular it holds that ||Mn(0)||∞ = 1 and ||Mn(1)||∞ = 1
2 sin( π

4n+2
) and ||Mn(2)||∞ =

cot ( π4n).
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It is possible to expand cot(nθ) in Equation (4) in terms of cot(θ/2), which yields
a polynomial equation in cot(θ/2). Since ||Mn(β)||∞ only depends on cot(θ/2) (and β)
computing ||Mn(β)||∞ is equivalent to finding the unique zero of the resulting polynomial
in the interval (0, cot

(
2n−1

4n π
)
] as a function of β.

Finally, statement 3 of Theorem III.1 can be recovered from Theorem III.2 with the
choice of a minimal polynomial m = (z − a)n, a ∈ (0, 1) and setting An(a) = MB. In this
case we have for 1 ≤ i, j ≤ n that

∣∣∣((1−MB)−1
)
ij

∣∣∣ =
1

1− a
·


0 if i < j

1 if i = j

1 + a if i > j.

Letting a→ 1 proves item 3 of Theorem III.1. In the following Subsection IIIA we compute
the entries of MB with respect to the Malmquist-Walsh basis. This yields a simple form
for matrices that achieve equality in Theorem III.2 i.e. for A with largest

∣∣∣∣(ζ −A)−1
∣∣∣∣
∞

for a given spectrum.

Proposition III.5. The components of the model operator MB with respect to Malmquist-
Walsh basis are given by

(MB)ij =


0 if i < j

λi if i = j

(1− |λi|2)1/2(1− |λj |2)1/2
∏i−1
µ=j+1

(
−λ̄µ

)
if i > j.

Hence, an explicit form of the matrices An(a) in Theorem III.1 is

An(a) :=



a 0 . . . . . . 0

1− a2 a
. . .

...

−a(1− a2) 1− a2 a
. . .

...
...

. . . . . . . . . 0

(−1)na(n−2)(1− a2) . . . −a(1− a2) 1− a2 a


.

Finally, we note that Theorem III.2 is stronger than Theorem III.1 in that it holds for
general ζ and yields an optimal bound for general spectra.

The rest of this section is organized in two subsections. The first, Subsection IIIA,
contains a proof of Theorem III.2 and Proposition III.5 while in Subsection III B we prove
Proposition III.4.

A. A model operator approach to resolvent bounds

As mentioned before our approach is to bound a function of a matrix in terms of the
norm of a representative function. A key role is played by Lemma II.1, which however
requires that f ∈ A. In order to derive upper bounds for rational functions such as the
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resolvent we need to extend Lemma II.1. The following is based on the techniques of [17],
Lemma 3.2 for the discussion of inverses. Here, we present an extension, which is adapted
to our purposes.

Lemma III.6. Let A be an n× n matrix with σ(A) ⊂ D and let ψ be a rational function
with poles (ξi)i=1,...,k such that

⋃
i{ξi} ∩ σ(A) = ∅.

1. If A obeys an A-functional calculus with constant C then ||ψ(A)|| ≤ C inf{||g||A | g ∈
A, g(λi) = ψ(λi) i = 1, ..., n}.

2. If ||A||∞ ≤ 1 holds then ||ψ(A)||∞ ≤ ||ψ(MB)||∞.

Proof. We extend Lemma II.1 to the situation, when ψ is rational. Define ϕ := ψ ·∏k
j=1

(
m(ξj)−m
m(ξj)

)kj
, where kj denotes the multiplicity of the pole at ξj and note that ϕ is

polynomial and that ψ(A) = ϕ(A). It follows using Lemma II.1 that

||ψ(A)|| = ||ϕ(A)|| ≤ C ||ϕ||A/mA = C inf{||g||A | g ∈ A, g(λi) = ϕ(λi) i = 1, ..., n}

= C inf{||g||A | g ∈ A, g(λi) = ψ(λi) i = 1, ..., n},

which proves the first assertion. For the second one we consider the same ϕ as above and
note that

||ψ(A)||∞ = ||ϕ(A)||∞ ≤ ||ϕ||H∞/BH∞ = ||ϕ(MB)||∞ ,

where we applied Lemma II.2 in the last step. But as m(MB) = 0 it follows that ϕ(MB) =
ψ(MB).

Let us remark that Lemma III.6 remains valid if the eigenvalue λi carries degeneracy ki
in m. The point here is to replace the inf on the right hand side of 1 with inf{||g||A | g ∈
A, g(k)(λi) = ψ(k)(λi) , 0 ≤ k < ki}, where the superscript k denotes the k-th derivative.

Lemma III.7. Let {λi}i=1,...,n ⊂ D and let ζ ∈ C− {λi}i=1,...,n and j < i then

i∑
µ=j

1

ζ − λµ

∏
ν:ν 6=i,ν 6=j(1− λ̄νλµ)∏
ν:ν 6=µ(λµ − λν)

=
1

(1− λ̄iζ)(1− λ̄jζ)

i∏
µ=j

(
1− λ̄µζ
ζ − λµ

)
.

Proof of Lemma III.7. We present two proofs for this lemma. The first one arises naturally
in the context of H2 spaces (see the proof of Theorem III.2), while the second one is
more direct and simple. We define t(z) := z

ζ−z
1

(1−λ̄iz)(1−λ̄jz)
and the (truncated) Blaschke

product Bji(z) :=
∏i
µ=j

z−λµ
1−λ̄µz

and compute the L2(∂D) scalar product. Suppose for now
that |ζ| > 1 then

〈t|Bji〉 =

∫ 2π

0
t(z)Bji(z)

∣∣∣
z=eiφ

dφ
2π

=

∫ 2π

0
t(z)

∏
µ

1− λ̄µz
z − λµ

∣∣∣
z=eiφ

dφ
2π

=
1

2πi

∫
∂D

1

(ζ − z)(1− λ̄iz)(1− λ̄jz)
∏
µ

1− λ̄µz
z − λµ

dz =
i∑

µ=j

1

ζ − λµ

∏
ν:ν 6=i,ν 6=j(1− λ̄νλµ)∏
ν:ν 6=µ(λµ − λν)

,
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where in the last step we applied the Residue theorem and made use of the assumption
|ζ| > 1. On the other hand

〈Bji|t〉 =

∫ 2π

0
Bji(z)t(z)

∣∣∣
z=eiφ

dφ
2π

=
1

2πi

∫
∂D

∏
µ

z − λµ
1− λ̄µz

1

ζ̄z − 1

z

(z − λi)(z − λj)
dz

=
1

(1− λiζ̄)(1− λj ζ̄)

∏
µ

1− λµζ̄
ζ̄ − λ̄µ

.

Clearly, 〈t|Bji〉 = 〈Bji|t〉 from which the lemma follows for |ζ| > 1. In case that |ζ| < 1
we compute similarly

〈t|Bji〉 =
1

2πi

∫
∂D

1

(ζ − z)(1− λ̄iz)(1− λ̄jz)
∏
µ

1− λ̄µz
z − λµ

dz

=
i∑

µ=j

1

ζ − λµ

∏
ν:ν 6=i,ν 6=j(1− λ̄νλµ)∏
ν:ν 6=µ(λµ − λν)

− 1

(1− λ̄iζ)(1− λ̄jζ)

∏
µ

1− λ̄µζ
ζ − λµ

and

〈Bji|t〉 = 0.

The case |ζ| = 1 follows by continuity. For the second proof we multiply both sides of the
lemma with

∏i
µ=j(ζ − λµ) to obtain a polynomial equation in ζ

i∑
µ=j

∏
ν:ν 6=µ

(ζ − λν)

∏
ν:ν 6=i,ν 6=j(1− λ̄νλµ)∏
ν:ν 6=µ(λµ − λν)

=
∏

µ:µ 6=i,µ 6=j
(1− λ̄µζ).

The polynomial on the left hand side has degree at most i − j and the degree of the
polynomial on the right hand side is i − j − 1. Two polynomials of a certain degree n
are the same if and only if they coincide at n + 1 nodes. We choose the i − j + 1 values
{λα}j≤α≤i and verify that for this choice equality indeed holds:

i∑
µ=j

∏
ν:ν 6=µ

(ζ − λν)

∏
ν:ν 6=i,ν 6=j(1− λ̄νλµ)∏
ν:ν 6=µ(λµ − λν)

∣∣∣∣∣
ζ=λα

=
∏
ν:ν 6=α

(λα − λν)

∏
ν:ν 6=i,ν 6=j(1− λ̄νλα)∏
ν:ν 6=α(λα − λν)

=
∏

ν:ν 6=i,ν 6=j
(1− λ̄νλα).

We are now ready to present a proof of Theorem III.2.

Proof of Theorem III.2. The first assertion follows directly from Lemma III.6. To compute
the matrix entries of (ζ −MB)−1 with respect to Malmquist-Walsh basis we recall that

(ζ −MB)−1 = ϕ(MB),
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where ϕ(z) := 1
ζ−z

m(ζ)−m(z)
m(ζ) is a polynomial. We have that

((ζ −MB)−1)ij = 〈ϕ(MB)ej |ei〉 = 〈PB(ϕ ej)|ei〉 = 〈ϕ ej |ei〉 =

∫ 2π

0
ϕ(z)ej(z)ei(z)

∣∣∣
z=eiφ

dφ
2π

=
((1− |λi|2)(1− |λj |2))1/2

2πi

∫
∂D
ϕ(z)

1

(1− λ̄iz)(1− λ̄jz)

j−1∏
µ=1

z − λµ
1− λ̄µz

i∏
ν=1

1− λ̄νz
z − λν

dz. (5)

In case that j > i the integrand is holomorphic on D. Hence, the integral in (5) is zero. If
j = i we have that

(1− |λi|2)

2πi

∫
∂D

1

ζ − z
m(ζ)−m(z)

m(ζ)

1

(1− λ̄iz)(z − λi)
dz =

1

ζ − λi
.

Finally if j < i then (5) becomes

((1− |λi|2)(1− |λj |2))1/2

2πi

∫
∂D

1

ζ − z
m(ζ)−m(z)

m(ζ)

1

(1− λ̄iz)(1− λ̄jz)

i∏
ν=j

1− λ̄νz
z − λν

dz

= ((1− |λi|2)(1− |λj |2))1/2
i∑

µ=j

1

ζ − λµ

∏
ν:ν 6=i,ν 6=j(1− λ̄νλµ)∏
ν:ν 6=µ(λµ − λν)

.

An application of Lemma III.7 concludes the proof of Theorem III.2.

Proposition III.5 is verified via a direct calculation.

Proof of Proposition III.5. We proceed as in the derivation of Theorem III.2 and conclude

(MB)ij = ((1− |λi|2)(1− |λj |2))1/2

∫ 2π

0

z2

(1− λ̄iz)(1− λ̄jz)

j−1∏
µ=1

z − λµ
1− λ̄µz

i∏
ν=1

1− λ̄νz
z − λν

∣∣∣∣∣
z=eiφ

dφ
2π
.

If j > i the Residue theorem reveals that the integral is zero. Similarly, if i = j the integral
is given by λi. Finally if i > j we compute

∫ 2π

0

z2

(1− λ̄iz)(1− λ̄jz)

i∏
µ=j

1− λ̄µz
z − λµ

∣∣∣∣∣
z=eiφ

dφ
2π

=

∫ 2π

0

1

(z − λi)(z − λj)

i∏
µ=j

z − λµ
1− λ̄µz

∣∣∣∣∣
z=eiφ

dφ
2π

=
1

2πi

∫
∂D

1

z(z − λi)(z − λj)

i∏
µ=j

z − λµ
1− λ̄µz

dz =
i−1∏

µ=j+1

(−λµ),

where the last step again uses the Residue theorem.
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B. Computing the norm of certain Toeplitz matrices

In this subsection we prove Proposition III.4 with a direct computation of ||Mn(β)||∞.
Our approach is guided by the techniques developed in [7]. The quantities ||Mn(1)||∞ and
||Mn(2)||∞ are computed in [6] and [5] (Lemma 9.6.5) following a different approach.

Proof of Proposition III.4. Instead of working with

Mn(β) =


1 0 . . . 0

β 1
. . .

...
...

. . . . . . 0
β . . . β 1


directly, we consider the matrix

M̃n(β) :=


β . . . β 1
...

... 1 0

β
... ...

...
1 0 . . . 0


and note that

||Mn(β)||∞ =
∣∣∣∣∣∣M̃n(β)

∣∣∣∣∣∣
∞
.

As M̃n(β) is Hermitian all its eigenvalues are real and its ∞-norm is simply the largest in
magnitude eigenvalue. The eigenvalues of M̃n(β)2 are the eigenvalues of M̃n(β) squared.
Hence, we are looking for the largest λ2 such that

0 = det (M̃n(β)2 − λ21) = det (M̃n(β)− λ1)(M̃n(β) + λ1).

Direct computation reveals that

(M̃n(β)− λ1)(M̃n(β) + λ1) =



β − λ β β . . . β 1
β β − λ 1 0
β 0
...

...
β 1 −λ 0
1 0 0 . . . 0 −λ


·



β + λ β β . . . β 1
β β + λ 1 0
β 0
...

...
β 1 λ 0
1 0 0 . . . 0 λ



=



(n− 1)β2 − λ2 + 1 (n− 2)β2 + β (n− 3)β2 + β . . . β2 + β β
(n− 2)β2 + β (n− 2)β2 − λ2 + 1 (n− 3)β2 + β . . . β2 + β β
(n− 3)β2 + β (n− 3)β2 + β β

...
...

...
β2 + β β2 + β β2 − λ2 + 1 β
β β β . . . β −λ2 + 1


.
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We rearrange the resulting determinant by subtracting successively the second column
from the first, the third from the second, the n-th from the n − 1-th and leave the n-th
unchanged. This yields

det (M̃n(β)2 − λ21) =

det



β2 − β − λ2 + 1 β2 β2 . . . β2 β
β + λ2 − 1 β2 − β − λ2 + 1 β2 . . . β2 β

0 β + λ2 − 1 β
...

...
...

0 0 β2 − β − λ2 + 1 β
0 0 0 . . . β + λ2 − 1 −λ2 + 1


.

Similarly, we subtract the second row from the first, the third from the second, the n-th
from the n− 1-th and leave the n-th unchanged. We conclude

det (M̃n(β)2 − λ21) =

det



β2 − 2β − 2λ2 + 2 β + λ2 − 1 0 . . . 0 0
β + λ2 − 1 β2 − 2β − 2λ2 + 2 β + λ2 − 1 0 . . . 0

0 β + λ2 − 1 0
... 0

...

0
... β2 − 2β − 2λ2 + 2 β + λ2 − 1

0 0 0 . . . β + λ2 − 1 −λ2 + 1


=

det



β2 − 2β − 2λ2 + 2 β + λ2 − 1 0 . . . 0 0
β + λ2 − 1 β2 − 2β − 2λ2 + 2 . . . 0

0 β + λ2 − 1 0
... 0

...

0
... β2 − 2β − 2λ2 + 2 β + λ2 − 1

0 0 0 . . . β + λ2 − 1 β2 − 2β − 2λ2 + 2



+ det



β2 − 2β − 2λ2 + 2 β + λ2 − 1 0 . . . 0 0
β + λ2 − 1 β2 − 2β − 2λ2 + 2 . . . 0

0 β + λ2 − 1 0
... 0

...

0
... β2 − 2β − 2λ2 + 2 0

0 0 0 . . . β + λ2 − 1 λ2 − (β − 1)2


, (6)

where the last equality is a consequence of the linearity of det in the last column. The
following is a classical formula for the determinant of an n × n tri-diagonal Toeplitz ma-
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trix [7, 20]

det



x 1 0 . . . 0

1 x 1
. . .

...

0 1
. . . . . . 0

...
. . . . . . x 1

0 . . . 0 1 x


=

sin(n+ 1)θ

sin θ
, x = 2 cos θ. (7)

To apply this result we exclude the trivial case β = 0 and note that we can always assume
that λ2 ≥ 1 such that β+λ2−1 > 0 and β2

β+λ2−1
∈ (0, β]. Hence, we can divide all columns

of both determinants of (6) by β + λ2 − 1. We then expand the second determinant along
its last column and apply (7) to both terms resulting from (6). We find

det (M̃n(β)2 − λ21) = (β + λ2 − 1)n
(

sin(n+ 1)θ

sin θ
+
λ2 − (β − 1)2

λ2 + (β − 1)

sinnθ

sin θ

)
(8)

with

2 cos θ =
β2 − 2β − 2λ2 + 2

λ2 + β − 1
=

β2

λ2 + β − 1
− 2.

Solving the latter for λ2 gives

λ2 =
1

4

(
(β − 2)2 + β2 tan2(θ/2)

)
,

where β 6= 0 implies that θ is such that the tangent is well defined. This enables us to
eliminate λ2 from (8) as

λ2 − (β − 1)2

λ2 + (β − 1)
=

1

β
(−β + 2− 2β cos θ + 2 cos θ).

It follows that (8) is zero if and only if

0 = β
sin(n+ 1)θ

sin θ
+ (−β + 2− 2β cos θ + 2 cos θ)

sinnθ

sin θ

= β cosnθ + (2− β) (1 + cos θ)
sinnθ

sin θ
,

which in turn is equivalent to

cotnθ =
β − 2

β
cot(θ/2). (9)

In total, we are looking for the solution θ∗ of (9) such that λ2 is maximal i.e. cot2(θ∗/2)
is minimal. Since for any θ ∈ [2n−1

2n π, π) we have β−2
β cot(θ/2) ≤ 0 with cot(π/2) = 0

and limθ↑π cotnθ → −∞ and cot 2n−1
2 π = 0, it follows that there is a unique solution
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θ∗ ∈ [2n−1
2n π, π) of Equation (9). Moreover, by the same fact, cot(π/2) = 0, this solution

maximizes λ2 as desired.
Sometimes it is possible to obtain a solution for Equation (9) in closed form. Suppose

β = 2, then cotnθ∗ = 0 and θ∗ = 2n−1
2n π. It follows

||Mn(2)||2∞ = tan2

(
2n− 1

4n
π

)
= cot2(π/4n)

as in [6]. If β = 1 we have

λ2 =
1

4 cos2(θ/2)

and

sin(2n+ 1)θ/2 = 0

such that θ∗ = 2nπ
2n+1 . It follows

||Mn(1)||2∞ =
1

4 cos2( nπ
2n+1)

=
1

4 sin2( π
4n+2)

as in [7]. The trivial fact ||Mn(0)||∞ = 1 can be recovered by continuous extension as
β → 0.

IV. POWER-BOUNDED OPERATORS

It is natural to ask if power-boundedness of A is sufficient to obtain estimates on∣∣∣∣(ζ −A)−1
∣∣∣∣ qualitatively similar to the results of Theorem III.1, III.2 and Corollary III.3.

In this section we prove that this is indeed the case and present a new bound on the norm
of the resolvent of a power-bounded operator.

Theorem IV.1. Let A be an n× n matrix with minimal polynomial m of degree |m| and
let ||·|| be an arbitrary matrix norm with supk≥0 ||Ak|| = C < ∞. For any ζ ∈ D − σ(A) it
holds that∣∣∣∣(ζ −A)−1

∣∣∣∣
≤ 2|m|C

minλi∈σ(A) |1− ζ̄λi|1/2(2|m| − 2|m||ζ|2 + |ζ|2 minλi∈σ(A) |1− ζ̄λi|)1/2

(
4e

|B(ζ)|2
− 1

)1/2

,

where B(ζ) =
∏|m|
i=1

ζ−λi
1−λ̄iζ

is the Blaschke product associated with m. For |ζ| > 1, we have
the obvious estimate

∣∣∣∣(ζ −A)−1
∣∣∣∣ ≤ C

|ζ|−1 .

Theorem IV.1 is the analogue of Corollary III.3 for power-bounded operators. Spectral
bounds on the norm of the resolvent of a power-bounded operator are well studied in
the literature. Theorem 6.4 of [6] treats the same problem in the special case that A is
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power-bounded with respect to operator norm ||·||∞. In [17, Theorem 3.24] the behavior
of
∣∣∣∣(ζ −A)−1

∣∣∣∣ is studied for |ζ| < 1 and in [29] an upper bound is derived for |ζ| ≥ 1.
Theorem IV.1 unifies the mentioned results and yields a quantitatively better bound in
each case. To compare suppose that |ζ| < 1 and note that in this case

1− |ζ|2 +
1

2|m|
|ζ|2 min

λi∈σ(A)
|1− ζ̄λi| ≥ (1− |ζ|)2

and of course minλi∈σ(A) |1− ζ̄λi| ≥ 1− |ζ|. Hence, it follows

∣∣∣∣(ζ −A)−1
∣∣∣∣ ≤ √

8e|m|C
(1− |ζ|)3/2

1

|B(ζ)|
,

which is qualitatively the same as Theorem 3.24 in [17] but has a better numerical prefactor.
If we choose |ζ| = 1 it follows |B(ζ)| = 1 and therefore

∣∣∣∣(ζ −A)−1
∣∣∣∣ ≤ √

16e− 4 |m|C
minλi∈σ(A) |ζ − λi|

. (10)

This bound improves on the result in [29] (which in turn is stronger than [6, Theorem
6.4]) as the new bound only grows linearly with |m| as opposed to |m|3/2 in [29]. That for
power-bounded A ∈Mn the correct asymptotic growth order for an upper bound is O(n)
was already suspected in [6] and [31]. The bound obtained almost reaches the optimal
estimate of Theorem III.1 for Hilbert-space contractions. In the latter case we have that
cot( π4n)/n ≤ 4

π , while the prefactor of (10) is
√

16e− 4 ≈ 6.28. However, as is clear from
the derivation, Inequality (10) is not optimal. We will use Inequality (10) to study the
sensitivity of a classical or quantum Markov chain to perturbations in Section V.

To prove Theorem IV.1 we take a similar approach as to Theorem III.2. We note that
power-bounded operators admit a Wiener algebra functional calculus. Thus an application
of Lemma III.6 reveals that∣∣∣∣(ζ −A)−1

∣∣∣∣ ≤ C inf{||g||W | g ∈W, g(λi) =
1

ζ − λi
}. (11)

The strategy of our proof will be to consider one specific representative function g in
(11) and to bound its norm. To achieve this we employ the following method. Instead
of considering g directly we choose a “smoothing parameter” r and pass to a “stretched”
interpolation function.
Given any function f ∈ H2 and r ∈ (0, 1), we write fr(z) := f(rz) =

∑
k≥0 f̂(k)rkzk and

observe that by the Cauchy-Schwarz inequality and the Plancherel identity

||fr||W ≤
√∑
k≥0

|f̂(k)|2
√

1

1− r2
= ||f ||H2

√
1

1− r2
. (12)

This idea was used to obtain bounds on the inverse and resolvent of a power-bounded
operator in [17] and to study spectral convergence bounds for bounded semigroups in [27].
We use the Blaschke products B(z) =

∏
i
z−λi
1−λ̄iz

and B̃(z) =
∏
i
z−rλi
1−rλ̄iz

, where in the latter
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product the spectrum is stretched by a factor of r. (The products are taken over all prime
factors of m, but to avoid cumbersome notation we do not write this explicitly.) Consider
now the function g with

g(z) =
∑
k

(
1

ζ − λk

∏
j(1− λ̄jλk)∏
j 6=k(λk − λj)

)
B(z)

z − λk
.

Note that g is analytic in the unit disc and g(λi) = 1
ζ−λi for all λi ∈ σ(A). In order to

use the estimate (12) we perform the aforementioned smoothing. We define the modified
function g̃ by

g̃(z) =
∑
k

(
1

ζ − λk

∏
j(1− r2λ̄jλk)∏
j 6=k(rλk − rλj)

)
B̃(z)

z − rλk

and observe that g̃r enjoys the same basic properties as g i.e. g̃r is analytic in D and
g̃r(λi) = 1

ζ−λi for any λi ∈ σ(A). Thus, by Inequality (11), we have that
∣∣∣∣(ζ −A)−1

∣∣∣∣ ≤
C ||g̃r||W and it follows from Inequality (12) that

||g̃r||W ≤
√

1

1− r2
||g̃||H2

.

It turns out that one can directly compute ||g̃||H2
. The computation relies on two combi-

natorial observations similar to Lemma III.7, which we shall prove before we proceed with
our discussion of ||g̃||H2

.

Lemma IV.2. Let |m| ∈ N − {0} and {λi}i=1,...,|m| ⊂ D. Furthermore, let ζ ∈ C −
{λi}i=1,...,|m| and r ∈ (0, 1). It follows that

1.

|m|∑
i=1

1

ζ − λi

∏
j:j 6=l(1− r2λ̄jλi)∏
j:j 6=i(rλi − rλj)

=
r

1− r2λ̄lζ

|m|∏
i=1

1− r2λ̄iζ

rζ − rλi
,

2.

|m|∑
i=1

1

ζ − λi
1

1− r2ζ̄λi

∏
j(1− r2λ̄jλi)∏
j:j 6=i(rλi − rλj)

=
r

1− r2|ζ|2

 |m|∏
i=1

1− r2λ̄iζ

rζ − rλi
−
|m|∏
i=1

rζ̄ − rλ̄i
1− r2λiζ̄

 ,

3.

||g̃||2H2
=

r2

1− r2|ζ|2

 |m|∏
i=1

∣∣∣∣1− r2λ̄iζ

rζ − rλi

∣∣∣∣2 − 1

 .

Our proof is based on the Residue theorem. (It is also possible to prove the lemma with
the second technique outlined in the proof of Lemma III.7. However, the approach via the
Residue theorem is more convenient for the second assertion.)
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Proof. For the first assertion set t1(z) := rz
rζ−z

1
1−rλ̄lz

and suppose for now that r|ζ| < 1.
We have that

〈t1|B̃〉 =

∫ 2π

0

rz

rζ − z
1

1− rλ̄lz
∏
i

1− rλ̄iz
z − rλi

∣∣∣
z=eiφ

dφ
2π

=
1

2πi

∫
∂D

r

rζ − z
1

1− rλ̄lz
∏
i

1− rλ̄iz
z − rλi

dz

=
∑
i

1

ζ − λi

∏
j:j 6=l(1− r2λ̄jλi)∏
j:j 6=i(rλi − rλj)

− r

1− r2λ̄lζ

∏
i

1− r2λ̄iζ

rζ − rλi

and that

〈B̃|t1〉 =

∫ 2π

0

∏
i

z − rλi
1− rλ̄iz

r

rζ̄z − 1

z

z − rλl

∣∣∣
z=eiφ

dφ
2π

=
1

2πi

∫
∂D

∏
i

z − rλi
1− rλ̄iz

r

rζ̄z − 1

1

z − rλl
dz = 0.

Hence, for r|ζ| < 1

∑
i

1

ζ − λi

∏
j:j 6=l(1− r2λ̄jλi)∏
j:j 6=i(rλi − rλj)

=
r

1− r2λ̄lζ

∏
i

1− r2λ̄iζ

rζ − rλi

as claimed. An identical computation reveals that the above remains correct if r|ζ| > 1
and the case r|ζ| = 1 follows by continuity. For the second assertion suppose again that
r|ζ| < 1 and set t2(z) := rz

rζ−z
1

1−rζ̄z and compute

〈t2|B̃〉 =

∫ 2π

0

rz

rζ − z
1

1− rζ̄z
∏
i

1− rλ̄iz
z − rλi

∣∣∣
z=eiφ

dφ
2π

=
1

2πi

∫
∂D

r

rζ − z
1

1− rζ̄z
∏
i

1− rλ̄iz
z − rλi

dz

=
∑
i

1

ζ − λi
1

1− r2ζ̄λi

∏
j(1− r2λ̄jλi)∏
j:j 6=i(rλi − rλj)

− r

1− r2|ζ|2
∏
i

1− r2λ̄iζ

rζ − rλi
.

Similarly,

〈B̃|t2〉 =
1

2πi

∫
∂D

∏
i

z − rλi
1− rλ̄iz

r

rζ̄z − 1

1

z − rζ
dz =

r

r2|ζ|2 − 1

∏
i

rζ − rλi
1− r2λ̄iζ

.

It follows that

∑
i

1

ζ − λi
1

1− r2ζ̄λi

∏
j(1− r2λ̄jλi)∏
j:j 6=i(rλi − rλj)

=
r

1− r2|ζ|2

(∏
i

1− r2λ̄iζ

rζ − rλi
−
∏
i

rζ̄ − rλ̄i
1− r2λiζ̄

)
.
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The same computations prove the validity of this statement for r|ζ| > 1. One can make
sense of the formula in case that r|ζ| = 1 by continuous extension. Using these observations
one can compute

||g̃||2H2
=

∫ 2π

0
g̃(z)g̃(z)

∣∣∣
z=eiφ

dφ
2π

=
1

2πi

∑
k,l

1

ζ − λk

∏
µ(1− r2λ̄µλk)∏
µ 6=k(rλk − rλµ)

1

ζ − λl

∏
ν(1− r2λ̄νλl)∏
ν 6=l(rλl − rλν)

∫
∂D

1

z − rλk
1

1− rλ̄lz
dz

=
∑
l

(
1

ζ − λl

∏
ν(1− r2λ̄νλl)∏
ν 6=l(rλl − rλν)

∑
k

(
1

ζ − λk
1

1− r2λ̄lλk

∏
µ(1− r2λ̄µλk)∏
µ 6=k(rλk − rλµ)

))

=
∏
i

1− r2λ̄iζ

rζ − rλi

(∑
l

1

ζ − λl
r

1− r2λlζ̄

∏
ν(1− r2λ̄νλl)∏
ν 6=l(rλl − rλν)

)
(13)

=
r2

1− r2|ζ|2
∏
i

1− r2λ̄iζ

rζ − rλi

(∏
i

1− r2λ̄iζ

rζ − rλi
−
∏
i

rζ̄ − rλ̄i
1− r2λiζ̄

)
(14)

=
r2

1− r2|ζ|2

(∏
i

∣∣∣∣1− r2λ̄iζ

rζ − rλi

∣∣∣∣2 − 1

)
,

where we used the first assertion of the lemma for (13) and the second assertion for (14).
Note that for all ζ ∈ C− σ(A) and r ∈ (0, 1) the final quantity is real and positive.

With this preparatory work done a proof of Theorem IV.1 is simple.

Proof of Theorem IV.1. We assume that σ(A) ⊂ D. From Equations (11), (12) and
Lemma IV.2 we have that for any ζ ∈ C− σ(A)

∣∣∣∣(ζ −A)−1
∣∣∣∣ ≤ C√ 1

1− r2
||g̃||H2

= C

√
1

1− r2

√√√√√ r2

1− r2|ζ|2

 |m|∏
i=1

∣∣∣∣1− r2λ̄iζ

rζ − rλi

∣∣∣∣2 − 1

. (15)

Clearly,

|m|∏
i=1

∣∣∣∣1− r2λ̄iζ

rζ − rλi

∣∣∣∣2 =
1

r2|m|
1

|B(ζ)|2

|m|∏
i=1

∣∣∣∣1 + λ̄iζ
1− r2

1− λ̄iζ

∣∣∣∣2 .
To obtain an upper bound we assume that ζ ∈ D− σ(A) and choose r ∈ (0, 1) such that

1− r2 =
mini |1− ζ̄λi|

2|m|
.

It follows that
|m|∏
i=1

∣∣∣∣1 + λ̄iζ
1− r2

1− λ̄iζ

∣∣∣∣2 ≤ (1 +
1

2|m|

)2|m|
≤ e
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and that (for |m| ≥ 2)

r2|m| =

(
1− mini |1− ζ̄λi|

2|m|

)|m|
≥ (1− 1/2)2 = 1/4.

We conclude that

∣∣∣∣(ζ −A)−1
∣∣∣∣ ≤ C ( 2|m|

mini |1− ζ̄λi|

)1/2
 1

1− |ζ|2
(

1− mini |1−ζ̄λi|
2|m|

)
1/2(

4e

|B(ζ)|2
− 1

)1/2

,

which is claimed in the theorem. As always the general case σ(A) ⊂ D follows by continuous
extension. Finally, we note that for |ζ| > 1 one can choose r =

√
1
|ζ| in (15) and recover

the obvious estimate

∣∣∣∣(ζ −A)−1
∣∣∣∣ ≤ C 1

|ζ| − 1

1−
|m|∏
i=1

∣∣∣∣∣ |ζ| − λ̄iζ√
|ζ|ζ −

√
|ζ|λi

∣∣∣∣∣
2
1/2

≤ C 1

|ζ| − 1
.

V. STABILITY OF MARKOV CHAINS

If T is a classical stochastic matrix or a quantum channel (a trace-preserving and
completely positive map, see [15]) the sequence {Tn}n≥0 can be regarded as a finite and
homogenous classical or quantum Markov chain with transition map T . In this section we
apply Theorem IV.1 to study the stability of the stationary states of a Markov chain to
perturbations in the transition map. A core observation is that the transition matrix of
the Markov chain is power-bounded with respect to the 1-to-1 norm and constant 1, i.e.
the Markov chain constitutes a bounded semigroup, see [27]. A similar approach based on
this observation was taken in [26] to prove spectral convergence estimates for classical and
quantum Markov chains. We begin by recalling the basic framework of sensitivity analysis
of Markov chains. A detailed introduction, however, is beyond the scope of this article.
We refer to [4] and the references therein for an overview of the existing perturbation
bounds for classical Markov chains and to [27] for an introduction to the stability theory
of quantum Markov chains.

Let T, T̃ denote two classical stochastic matrices or two quantum channels. The in-
equality

||ρ− ρ̃|| ≤ κ
∣∣∣∣∣∣T − T̃ ∣∣∣∣∣∣

relates the distance between two stationary states ρ and ρ̃ arising from T and T̃ ,
ρ = T (ρ), ρ̃ = T̃ (ρ̃), to the distance between T and T̃ . Commonly T is considered to
be the transition matrix of the Markov chain of interest while T̃ is a small perturbation
thereof. The condition number κ measures the relative sensitivity of the stationary states
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to perturbations. If T has a unique stationary state the above inequality quantifies the
stability of the asymptotic behavior of {Tn}n≥0 with respect to perturbations in the tran-
sition matrix. Elementary linear algebra shows that if T has a unique stationary state one
can choose (see [23–25]) the condition number

κcl = sup
δ∈Rn

(1,...,1)·δ=0

||Z(δ)||1
||δ||1

, Z := (1− T + T∞)−1

in the classical case and similarly (see [27])

κqu = sup
σ=σ†∈Mn

tr(σ)=0

||Z(σ)||1
||σ||1

, Z := (1− T + T∞)−1

in the quantum setup. Here, T∞ denotes the projection onto the stationary state of T
and ||·||1 denotes the absolute entry sum in the classical and the Schatten 1-norm in the
quantum case. In either case the spectral properties of T and T∞ guarantee that the map
Z exists.

If the transition matrix has a unique stationary state and a subdominant eigenvalue of
this matrix is close to 1 it is clear that the chain is ill conditioned in the sense that the
stationary state is sensitive to perturbations in the transition map. It is a well-studied
question (see [10–12, 25, 27]) whether the reverse conclusion also holds, i.e. whether the
closeness of the sub-dominant eigenvalues of T to 1 provides complete information about
the sensitivity of {Tn}n≥0. It was established that this is indeed the case by deriving
spectral lower and upper bounds for certain choices of κ. In particular, as shown in [25] it
holds that

1

minλi∈σ(T−T∞) |1− λi|
≤ κcl ≤

n

minλi∈σ(T−T∞) |1− λi|
.

A similar quantum bound occurs in [27].
The techniques developed in this article yield a direct approach to spectral stability

estimates in both the classical and quantum case. The core observation is that if T is a
stochastic matrix or a quantum channel the map T − T∞ is power bounded with (see [26]
Lemma III.1)

||(T − T∞)n||1→1 = ||Tn − (T∞)n||1→1 ≤ ||T
n||1→1 + ||(T∞)n||1→1 ≤ 2,

where ||A||1→1 = supv
||Av||1
||v||1

. With an application of Inequality (10) we conclude that

κcl ≤ ||Z||1→1 ≤
2
√

16e− 4n

minλi∈σ(T−T∞) |1− λi|
,

which is qualitatively the same as the estimate in [25] but has a worse numerical prefactor
(2
√

16e− 4 instead of 1). However, the bound in [25] uses the additional properties a
classical stochastic matrix has as well as the fact that the supremum in the definition of
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κcl is taken over vectors with 0 column sum. Our bound proves that in this case power-
boundedness alone is sufficient and the additional assumptions on T and κcl are basically
superfluous. Other spectral stability estimates for classical Markov chains such as [10] are
weaker than (10). In the quantum context we can use Inequality (10) to improve on the
spectral stability estimates of [27].

Theorem V.1. Let T be a trace-preserving, positive linear map onMn and Λ := σ(T )−
{1} the set of its non-unit eigenvalues. Then

1

minλi∈Λ |1− λi|
≤ κqu ≤

2
√

16e− 4n2

minλi∈Λ |1− λi|
.

The proof of the theorem is identical as in [27] up to an application of (10) instead of
the theorem in [29].
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Perturbation Theory for Parent Hamiltonians of Matrix
Product States

O. Szehr and M. Wolf December 17, 2013

The parent Hamiltonian model is one of the most important models in rigorous solid-
state theory. Almost all Hamiltonian descriptions of quantum spin chains studied in
the literature fall into this class (see for example [2, 1, 3]). This article investigates the
stability of the ground state of a parent Hamiltonian of a generic Matrix product state
against local perturbations. We prove that the spectral gap of a parent Hamiltonian
remains stable under weak local perturbations even in the thermodynamic limit, where
the entire perturbation is not bounded. This is important for the following reasons:
First, the contrary prediction that arbitrarily small perturbations of a physical system
lead to a phase transition of the system would be in conflict with physical observation.
This would be a strong point against the reasonableness of the model. Second, as
any model, the parent Hamiltonian model is an idealization. In the sense of the
description of a physical system it is more natural to consider “near-by” models as
descriptions of a messy experimental reality and study their sensitivity with respect
to local interactions.

1 Stability under weak local perturbation

Let |Ψ〉 be a translationally invariant MPS with periodic boundary conditions on a
chain Λ. We suppose that |Ψ〉 is generic (in the sense of condition (G1)). The canonical
parent Hamiltonian HΛ is frustration-free and has a positive spectral gap above the
ground state energy. Due to the aforementioned reasons a key question is what happens
to the ground state of HΛ if the system is perturbed with small local interaction terms.
We study perturbations of the form ΦΛ =

∑
x∈Λ φx that are weak in the sense that

||φx||∞ ≤ β

holds for sufficiently small β. Observe that although each local term is small, in
the limit of a large Λ the entire perturbation ΦΛ needs not remain bounded. We
present a heuristic statement of our theorem in this overview. A rigorous formulation
is contained in the attached article.

Theorem 1. Let |Ψ〉 be a generic MPS, which is translationally invariant and has
periodic boundary conditions. For sufficiently weak local perturbations ΦΛ the following
conclusions hold for the perturbed parent Hamiltonian H̃Λ = HΛ + ΦΛ.

1. H̃Λ has a non-degenerate ground state with positive spectral gap.

2. There exists a thermodynamic limit of the ground state as the length of the chain
grows to infinity.



3. There is exponential decay of correlations in the infinite volume ground state
ω: If A1, A2 are observables that are supported on disjoint subsets Λ1,Λ2 of the
chain then

|ω(A1A2)− ω(A1)ω(A2)| ≤ Cεdist(Λ1,Λ2)

for some constant C and ε < 1.

4. If in a certain parameter range the local perturbations change smoothly, then the
infinite volume ground state changes smoothly.

Our theorem generalizes known stability results for particular Hamiltonians, such
as classical models or the AKLT model [3] as these Hamiltonians can be interpreted
as parent Hamiltonians.

2 Legal statement

The project was assigned by M. Wolf. The elaboration of the topic and the derivation
of stability estimates is the work of the first author.
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This article investigates the stability of the ground state subspace of a canonical parent
Hamiltonian of a Matrix product state against local perturbations. We prove that the
spectral gap of such a Hamiltonian remains stable under weak local perturbations even in the
thermodynamic limit, where the entire perturbation might not be bounded. Our discussion is
based on preceding work by D.A. Yarotsky that develops a perturbation theory for relatively
bounded quantum perturbations of classical Hamiltonians. We exploit a renormalization
procedure, which on large scale transforms the parent Hamiltonian of a Matrix product state
into a classical Hamiltonian plus some perturbation. We can thus extend D.A. Yarotsky’s
results to provide a perturbation theory for parent Hamiltonians of Matrix product states
and recover some of the findings of the independent contributions [4, 9].

Contents

I. Introduction 1

II. Preliminaries 2
A. Notation 2
B. Matrix Product States 3
C. Canonical Parent Hamiltonians 4
D. Stability of the spectral gap under quantum Perturbations of classical Hamiltonians 5

III. Stability of the spectral gap of a canonical parent Hamiltonian 6

IV. Proof of Stability 6
A. Outline of the proof 7
B. Some Lemmas 7
C. The core argument 11
D. Proof of Theorem 2 and Corollary 3 16

Acknowledgments 17

References 17

I. INTRODUCTION

The purpose of this article is to investigate the low energy sector of certain models of many-
body quantum systems with local interaction. We are interested in the stability of quantum phases
when small perturbations act on the system. In particular, we aim at understanding the conditions
under which certain physical properties of the ground state change smoothly when an interaction
is added to the model Hamiltonian. While for general models this question is intractably hard, in

∗Electronic address: oleg.szehr@posteo.de
†Electronic address: wolf@ma.tum.de
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this article we focus our eyesight on a restricted class, namely on parent Hamiltonians of Matrix
product states.

Matrix product states (MPS) have been an extremely useful tool in the study of the ground
state physics of many-body quantum systems. With their local structure MPS provide an efficient
description of states arising from local interactions and constitute a natural framework for the
analysis of local gapped Hamiltonians in 1D. In fact, the matrix product state representation lies
at the heart of the very successful density matrix renormalization group method [19, 20]. To any
MPS a local frustration-free and gapped Hamiltonian having this MPS as a unique ground state
can be associated. A canonical choice of such Hamiltonians was introduced in [5] and is referred
to as parent Hamiltonian of the MPS. On the one hand the local structure of the MPS endows the
canonical parent Hamiltonian with the structure necessary for a rigorous analysis. On the other
hand canonical parent Hamiltonians constitute a wide class of local Hamiltonians and include many
important special cases such as the AKLT-Hamiltonian [1].

We are interested in how the parent Hamiltonian model behaves under small perturbations,
as this allows one to use the idealization to predict the behaviour of actual physical systems. It
seems generally expected that if a ground state of a quantum many-body system is in a non-critical
regime characterized by the presence of a local spectral gap and exponential decay of correlations,
then the system remains in this phase under sufficiently weak perturbations. We prove that for
translationally invariant parent Hamiltonians of generic MPS this is indeed the case i.e. we show
that the spectral gap of such a Hamiltonian is stable under arbitrary local perturbations even in
the thermodynamic limit. This result itself is not new. It was shown in [9] that local Hamiltonians
that satisfy the Local Topological Quantum Order (LTQO) condition and that are locally gapped
are stable under local perturbations. It was also claimed in [9] and shown in [4] that parent
Hamiltonians of MPS have LTQO. (However, in spin systems of higher dimension the presence of
LTQO is hard to verify.) The fact that parent Hamiltonians are locally gapped was already known
from [10]. Hence, the stability of the spectral gap against sufficiently weak perturbations follows.

The contribution at hand contains a new proof of this result. Our derivation is based on
the observation that with increasing system scale a matrix product state “looks more and more
classical” [16]. We exploit a renormalization group flow on parent Hamiltonians to prove that on
sufficiently large scale a (generic) parent Hamiltonian can be seen as a perturbation of a classical
system. Hence, any sufficiently small quantum perturbation of a parent Hamiltonian is equivalent
to a relatively bounded perturbation of a classical model. We then draw on the theory for ground
states in quantum perturbations of classical lattice systems by D.A. Yarotsky [23] to conclude our
proof.

The results presented in this article were achieved independently of the contributions [4, 9] as
a part of the doctoral thesis of the first author in the summer of 2011, before the publication of
[4, 9].

II. PRELIMINARIES

As mentioned in the introduction, this article investigates how the ground state subspace of an
MPS parent Hamiltonian behaves under small perturbations. This section reviews the required
definitions and basic results.

A. Notation

We model quantum spin chains as connected subsets Λ ⊂ Z, where each site x ∈ Λ is equipped
with a d-dimensional, complex Hilbert space Hx. The total Hilbert space associated with a finite
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subset Λ ⊂ Z will be denoted by HΛ =
⊗

x∈ΛHx. The interactions on the spin chain are given by a
translationally invariant (TI) Hamiltonian with some fixed interaction range Λ0. Such Hamiltonians
can formally be written as

HΛ =
∑
x∈Λ

hx,

where hx is a positive semi-definite operator acting (non-trivially) on HΛ0+x and Λ0 + x is a
translate of Λ0 by x. We will assume that HΛ has a non-degenerate ground state |Ω〉Λ and that
HΛ has a spectral gap γ > 0 above the ground state energy

HΛ

∣∣
HΛ	|Ω〉Λ

≥ γ 1.

Moreover, the Hamiltonians considered in this article will be frustration free, that is each inter-
action term hx minimizes the global ground state energy: for all x we have hx|Ω〉Λ = 0. We analyse
how the spectral gap behaves if the Hamiltonian is perturbed with local interactions. Formally, we
add a perturbation

ΦΛ =
∑
x∈Λ

φx,

where each of the terms φx acts locally on a finite subset of Λ. Often, we will find it convenient to
identify the first and last site of Λ to impose periodic boundary conditions (PBC) on the system.

To distinguish particular Hilbert subspaces of HΛ we will add Latin subscripts, for example HA
and HB. For any operator X acting on a finite subset of the chain we denote by ||X||p the Schatten
p-norm of X. If X acts on an infinite subsets we will only employ the || · ||∞-norm, which coincides
with the usual operator norm.

As mentioned before we will consider a renormalization group flow that transforms the MPS
parent Hamiltonian into a classical Hamiltonian. This flow will be modeled using a consecutive
application of a linear map T acting on matrices X. More precisely, we define the map T by
T (X) :=

∑
iAiXA

†
i , where the summation goes over a set of so-called Kraus operators {Ai}i.

Maps with this structure are completely positive (CP). For each such map the dual map T ∗ is

defined by T ∗(X) :=
∑

iA
†
iXAi. T ∗ is simply the adjoint of T with respect to the Hilbert-

Schmidt inner product 〈X|Y 〉 = tr(X†Y ). T is called unital (CPU) iff it preserves the identity
operator T (1) = 1 and T is called trace-preserving (CPTP) iff T ∗(1) = 1.

B. Matrix Product States

We consider a finite subset Λ ⊂ Z consisting of N sites, whose Hilbert spaces are each of
dimension d. Every pure state of the spin system of Λ can be written as

|Ψ〉 =
d∑

i1,...,iN

tr(A
[1]
i1
·A[2]

i2
· ... ·A[N ]

iN
)|i1...iN 〉

with site dependent Dk × Dk+1 matrices A
[k]
ik

[12, 17]. States of this structure are called Matrix
product states. In the case of periodic boundary conditions and translational invariance of the
MPS it is possible to show [12] that the matrices can be chosen in a site-independent way, i. e.

|Ψ〉 =
d∑

i1,...,iN

tr(Ai1 ·Ai2 · ... ·AiN )|i1...iN 〉
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with D × D matrices {Ai}i=1,...d. In our consecutive discussion a special class of MPS will be of
particular importance. This class is characterized by the following generic condition.

Condition (G1):
There is a finite number L0 such that for all L ≥ L0 the list of matrices

{Ai1 · ... ·AiL}ij∈{1...d}
spans the entire algebra of D ×D matrices.

Condition (G1) is generic in the sense that d matrices chosen randomly according to some
reasonable measure comply with this condition with probability one. It is not hard to see that
(G1) holds iff the map

ΓL : X 7→
d∑

i1,...,iL

tr(XAi1Ai2 ...AiL)|i1...iL〉

is injective for L ≥ L0. The correspondence between sets {Ai}i=1,...d and MPS is not bijective;
for example the set {XAiX−1}i=1,...d with invertible X belongs to the same state. It is shown in
[12], Chapter 3 that the matrices of any MPS satisfying (G1) can be chosen to constitute a CPU

map T . More precisely, we can choose {Ai}i=1,...d such that the map T (X) =
∑

iAiXA
†
i satisfies

T (1) = 1 and T ∗(Ξ) = Ξ for some diagonal and strictly positive matrix Ξ. In addition, 1 is the
only fixed point of T . For a more detailed discussion of MPS we refer to [12].

C. Canonical Parent Hamiltonians

We consider a TI state |Ψ〉 =
∑

i1...iN
tr(Ai1 · ... · AiN )|i1...iN 〉 of a spin system with PBC

on a chain Λ. For fixed L ∈ N we define GL ⊂ (Cd)⊗L to be the subspace spanned by the
vectors |Ψ(X)〉 =

∑
i1...iL

tr(XAi1 · ... · AiL)|i1...iL〉, where X are complex D ×D matrices. Note
that if condition (G1) holds for the matrices Ai then for L ≥ L0 the space spanned by |Ψ(X)〉
has dimension D2. We write hGL for the projector onto the orthogonal complement of GL in
(Cd)⊗L. The canonical parent Hamiltonian for |Ψ〉 (and fixed L) is defined as the formal expression
HΛ =

∑N
i τ

i(hGL) where τ denotes the translation operation by one site [5, 12]. For a parent
Hamiltonian with nearest neighbour interaction (L=2) we will write HΛ =

∑
k hk,k+1 to emphasize

this fact. It is clear from the definition that HΛ|Ψ〉 = 0 and that HΛ is frustration free. Moreover,
as a result of condition (G1) |Ψ〉 is the unique ground state of HΛ if L > L0 and N ≥ 2L0, [12,
Theorem 10]. More generally, under (G1) HΛ can be shown to have a spectral gap γ > 0 above the
ground state energy [5, 12] even in the limit of an infinite chain. Let Λ1 ⊂ Λ and let GΛ1 denote
the projector onto the kernel of HΛ1 =

∑
i:{i+1,...,i+L}⊂Λ1

τ i(hGL). The local gap is defined to be
the largest number γΛ1 such that

HΛ1 ≥ γΛ1 (1−GΛ1) .

The local gap does not depend on Λ but only on the number of sites in Λ1. The ”Local-Gap
condition” of [9] refers to the property of a general frustration-free Hamiltonian that the local gap
decays at most polynomially in the number of lattice sites. It is one core assumption for the stability
proof for frustration-free Hamiltonians (the other one being LTQO). In [10, 14] a constant lower
bound on the local gap of one-dimensional, frustration-free Hamiltonians is derived. In particular,
this implies that parent Hamiltonians satisfy the Local-Gap condition and we will naturally make
use of this in our derivation. A more detailed discussions of parent Hamiltonians for MPS can be
found in [12].
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D. Stability of the spectral gap under quantum Perturbations of classical Hamiltonians

In this section we recall a fundamental result by D.A. Yarotsky [23] that asserts the stability of
the spectral gap of a classical Hamiltonian under certain local perturbations. The effect of small
quantum perturbations to classical Hamiltonians was discussed for example in [2, 7, 21, 22]. In
[6, 23] this was extended to perturbations that need not necessarily be small but are required
to consist of a small bounded part and a term that is bounded relatively to the unperturbed
Hamiltonian. In the following we describe rigorously this perturbation theory.

We start with a chain Λ ⊂ Z with PBC and we consider a TI frustration-free Hamiltonian
HΛ =

∑
x∈Λ hx. We will call HΛ classical if in each space Hx there is a preferred vector |Ω〉x and

an orthogonal basis containing that vector such that the product basis in HΛ0+x diagonalizes hx.
Furthermore we assume that HΛ has non-degenerate ground state |Ω〉Λ =

⊗
x∈Λ |Ω〉x and strictly

positive spectral gap above |Ω〉Λ. We consider perturbations ΦΛ =
∑

x∈Λ φx whose local terms act

on finite subchains and that can be split into a purely bounded part φ
(b)
x and a relatively bounded

part φ
(r)
x as

φx = φ(r)
x + φ(b)

x . (1)

The bounded part is characterized by

||φ(b)
x ||∞ ≤ β. (2)

For the relatively bounded part we suppose that for any |ψ〉 and any I ⊂ Λ∣∣∣∣∣∑
x∈I
〈ψ|φ(r)

x |ψ〉

∣∣∣∣∣ ≤ α〈ψ|HΛ|ψ〉. (3)

Theorem 1 ([23, Theorem 2]). Let HΛ =
∑

x hx be a classical Hamiltonian on a chain Λ with PBC

and non-degenerate gapped ground state |Ω〉Λ. Consider the perturbed Hamiltonian H̃Λ = HΛ + Φ,
where Φ =

∑
x φx is a perturbation that satisfies (1)-(3). For any κ > 1 there is δ(κ) > 0 such that

for any α ∈ (0, 1) and β = δ(1− α)2κ the following conclusions hold:

1. H̃Λ has a non-degenerate gapped ground state |Ω̃〉Λ:

H̃Λ|Ω̃〉Λ = ẼΛ|Ω̃〉Λ

and for some γ > 0 that does not depend on Λ

H̃Λ|HΛ	|Ω̃〉Λ ≥ (ẼΛ + γ) 1.

2. There exists a thermodynamic weak∗-limit of the ground states |Ω̃〉Λ: For Λ → Z one has
that

〈AΩ̃Λ|Ω̃Λ〉 → ω(A), A ∈
⋃
|Λ|<∞

B(HΛ),

where B(HΛ) denotes the bounded operators on HΛ.

3. There is an exponential decay of correlations in the infinite volume ground state ω: for some
positive c and ε < 1

|ω(A1A2)− ω(A1)ω(A2)| ≤ c|Λ1|+|Λ2|εdist(Λ1,Λ2)||A1||∞||A2||∞, Ai ∈ B(HΛi).
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4. If within the allowed range of perturbations the term φx depends analytically on some pa-
rameters, then the ground state ω is also weakly∗-analytic in these parameters.

Theorem 1 establishes that the spectral gap of a classical Hamiltonian is stable under pertur-
bations that comply with the above assumptions. We will use this result to prove that parent
Hamiltonians of MPS have a spectral gap that is stable under sufficiently weak bounded pertur-
bations. To achieve this we will view the MPS parent Hamiltonian as a perturbation of a classical
Hamiltonian, which is within a parameter range where Theorem 1 applies. The bounded part of
this perturbation will decay faster under scaling of the system size than δ(1−α)2κ. For sufficiently
large systems this implies that under a small bounded perturbation φ′x the parent Hamiltonian
remains a perturbation of a classical Hamiltonian such that Theorem 1 applies. This provides us
with the desired perturbation result.

III. STABILITY OF THE SPECTRAL GAP OF A CANONICAL PARENT
HAMILTONIAN

In this section we state our main theorem. We consider a MPS that satisfies the generic
condition (G1) and prove that the spectral gap of the corresponding parent Hamiltonian is stable
under sufficiently weak perturbations. In the following corollary we extend this result and show
that our discussion includes D.A. Yarotsky’s perturbation theory for the AKLT model [23] as an
important special case.

Theorem 2. Let |Ψ〉 be a TI MPS on a finite ring Λ with PBC and suppose that for the matrices
of |Ψ〉 condition (G1) holds. Suppose N ≥ 2L0 and choose L > L0 and let HΛ =

∑
i τ

i(hGL
) be the

canonical parent Hamiltonian for |Ψ〉. Furthermore let ΦΛ =
∑

k φk be any finite range interaction
with ||φk||∞ ≤ β for a sufficiently small β depending on the range of Φ. Then all conclusions of
Theorem 1 hold for the perturbed parent Hamiltonian H̃Λ = HΛ + ΦΛ.

Note that the above does not apply to important special cases as the AKLT model. There one
considers a Hamiltonian with local nearest neighbour interaction but the matrices at each site do
not span the whole algebra. The following simple corollary is to remedy this issue.

Corollary 3. Let HΛ =
∑

i τ
i(hGL

) be a canonical parent Hamiltonian such that Theorem 2

applies. Consider a Hamiltonian ĤΛ =
∑

i hi,i+1 and suppose that there are positive constants c1

and c2 such that

c1 hGL
≤

L−1∑
j=1

hj,j+1 ≤ c2 hGL
.

Then all conclusions of Theorem 1 also hold for Ĥ.

The ground states of the AKLT model are MPS with {Ai} = {σz,
√

2σ+,−
√

2σ−} [1, 12], where
the σ’s are the Pauli matrices. If we choose Ĥ to be he AKLT Hamiltonian Corollary 3 applies
with L = 3 and implies the stability of the spectral gap of the AKLT model.

IV. PROOF OF STABILITY

We start this section with an outline of the proof of Theorem 2. In Section IV B we prove some
lemmas from the theory of quantum channels and MPS. The following Subsection IV C contains
a proof of Theorem 2 under the stronger assumption that the matrices {Ai}i=1,...,d at each site of
the chain span the whole algebra of D × D matrices. However, this assumption is not principal
and in Section IV D we extend the previous discussion to prove stability under (G1).
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A. Outline of the proof

For the readers convenience, before we proceed with the derivation of Theorem 2, we start with
an exposition of core observations that will provide us with the proof.

1. We are given a MPS parent Hamiltonian HΛ. We divide Λ into subchains Λk and we consider
local sub-Hamiltonians HΛk∪Λk+1

of HΛ acting on Λk∪Λk+1. We analyze the behavior of the
ground state subspace of HΛk∪Λk+1

under scaling of Λk. To this end we introduce density
matrices ρΛk∪Λk+1

whose image subspace is exactly the kernel of HΛk∪Λk+1
.

2. Using a renormalization group flow we construct local unitaries WΛk
such that on sufficiently

large scale the image of WΛk
⊗WΛk+1

ρΛk∪Λk+1
W †Λk

⊗W †Λk+1
has particularly simple structure.

It turns out that in the asymptotic limit of large system size this image corresponds to the
ground state subspace of a classical Hamiltonian.

3. We use convergence estimates from the theory of quantum Markov chains to show that

the projectors GΛk∪Λk+1
onto the kernel of HΛk∪Λk+1

and G
(∞)
Λk∪Λk+1

onto the kernel of
the asymptotic classical Hamiltonian can be made exponentially close. We prove that

||WΛk
⊗WΛk+1

GΛk∪Λk+1
W †Λk

⊗W †Λk+1
−G(∞)

Λk∪Λk+1
||∞ ≤ O(|λ2|L/2).

4. We provide an explicit perturbation consisting of a bounded part
∑

k φ
(b)
k and a relatively

bounded part
∑

k φ
(r)
k that transform the classical Hamiltonian into

⊗
kWΛk

HΛ
⊗

kW
†
Λk

.
Using the estimate from 3. we show that these perturbations are in accordance with the

conditions of Theorem 2. When adding a sufficiently small bounded perturbation to
∑

k φ
(b)
k

the total perturbation remains in the range where Theorem 2 applies. Hence, the ground
state subspace of HΛ is stable.

B. Some Lemmas

We already mentioned (Section II B) that to any TI MPS we can associate a certain CPU map
T . To better keep track of the kernel of the canonical parent Hamiltonian it will be useful to
introduce the operator ρEE′ = 1

D

∑d
i1,i2,j1,j2

tr(Ai1Ai2A
†
j2
A†j1)|i1〉〈j1|E ⊗ |i2〉〈j2|E′ , which is defined

via the Kraus operators of T . The subscripts E and E′ have no physical significance but are
introduced to more conveniently distinguish the systems involved. The following lemma shows
that if two CPU maps T and T̃ are close, then the corresponding operators ρEE′ and ρ̃EE′ can be
made close using a local unitary transformation.

Lemma 4. Let T (X) =
∑d

i AiXAi
† and T̃ (X) =

∑d
i ÃiXÃ

†
i be CPU maps. Con-

sider the operators ρEE′ := 1
D

∑d
i1,i2,j1,j2

tr(Ai1Ai2A
†
j2
A†j1)|i1〉〈j1|E ⊗ |i2〉〈j2|E′ and ρ̃EE′ :=

1
D

∑d
i1,i2,j1,j2

tr(Ãi1Ãi2Ã
†
j2
Ã†j1)|i1〉〈j1|E ⊗ |i2〉〈j2|E′. The following conclusions hold:

1. The operators ρEE′ and ρ̃EE′ are positive semidefinite and tr (ρEE′) = tr (ρ̃EE′) = 1 (i.e. they
are density operators).

2. There is a local unitary UE such that

||UE ⊗ UE′ ρEE′ U †E ⊗ U
†
E′ − ρ̃EE′ ||1 ≤ 4d2 ||T − T̃ ||1/2CB,

where by ||·||CB we denote the norm of complete boundedness [11, 18].
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Proof. The first assertion of the lemma follows by straightforward computations. For the second
assertion we extend the CPU maps T and T̃ using Stinespring representations V :=

∑d
i A
†
i ⊗ |i〉E

and Ṽ :=
∑d

i Ã
†
i ⊗ |i〉E , respectively. Since

T (ρ) = V †(ρ⊗ 1E)V ∀ρ,

V is indeed a Stinespring extension of T with dilation space HE . By assumption T is unital and
thus V is an isometry, i. e. V †V = 1. Moreover, it is not hard to verify that the operator ρEE′ can
be rewritten as

ρEE′ =

(
1

D
trCD ((V ⊗ 1E)V V †(V † ⊗ 1E))

)T
,

where (·)T denotes transposition with respect to the computational basis. The corresponding
statements hold for the operators T̃ , Ṽ and ρ̃EE′ . To shorten the notation we introduce the
isometry W := (1⊗ (UE)T )V , where UE denotes a unitary acting on the E subsystem. Using the
above expression for ρEE′ and the monotonicity of the Schatten 1-norm under the partial trace,
we conclude that

||U †E ⊗ U
†
E′ (ρEE′) UE ⊗ UE′ − ρ̃EE′ ||1

= ||(UE ⊗ UE′)T (ρEE′)
T (U †E ⊗ U

†
E′)

T − (ρ̃EE′)
T ||1

≤ 1

D

∣∣∣∣∣∣(W ⊗ 1E)WW †(W † ⊗ 1E)− (Ṽ ⊗ 1E)Ṽ Ṽ †(Ṽ † ⊗ 1E)
∣∣∣∣∣∣

1

≤ d2
∣∣∣∣∣∣(W ⊗ 1E)WW †(W † ⊗ 1E)− (Ṽ ⊗ 1E)Ṽ Ṽ †(Ṽ † ⊗ 1E)

∣∣∣∣∣∣
∞

≤ 4d2
∣∣∣∣∣∣W − Ṽ ∣∣∣∣∣∣

∞

It follows from the continuity of the Stinespring extension (see [8, Theorem 1]) that the unitary
(UE)T acting on the dilation space can be chosen such that

||W − Ṽ ||2∞ = ||(1⊗ (UE)T )V − Ṽ ||2∞ ≤ ||T − T̃ ||CB.

As mentioned before the operators ρEE′ will help us to keep track of the behaviour of the kernels
of local parent Hamiltonians under scaling. The images of ρEE′ will correspond to the kernels of
the Hamiltonians. We write PEE′ and P̃EE′ for the projectors onto the images of ρEE′ and ρ̃EE′ .
In the following we shall obtain conditions under which the distance of these projectors is small,
i.e. the kernels of the parent Hamiltonians are almost the same.

Lemma 5. Let ρ and ρ̃ be two Hermitian operators and let ρ−1 and ρ̃−1 be their (Moore-Penrose-)
pseudo inverses. Let P = ρρ−1 and P̃ = ρ̃ρ̃−1 denote the projectors onto the images of ρ and ρ̃.
Then for any Schatten p-norm || · ||p we have that

||P − P̃ ||p ≤ ||ρ− ρ̃||p
(
||ρ−1||∞ + ||ρ−2||∞ + ||ρ̃−2||∞ + ||ρ−1||∞||ρ̃−1||∞

)
.

Proof. We rewrite the projectors P and P̃ using ρ−1 and ρ̃−1 to conclude that

||P − P̃ ||p = ||ρρ−1 − ρ̃ρ̃−1 − ρ̃ρ−1 + ρ̃ρ−1||p
≤ ||ρ−1||∞||ρ− ρ̃||p + ||ρ̃||∞||ρ−1 − ρ̃−1||p.
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The distance ||ρ−1 − ρ̃−1||p can be bounded using the fact that

ρ−1 − ρ̃−1 = ρ−2(ρ− ρ̃)(1− P̃ ) + (1− P )(ρ− ρ̃)ρ̃−2 − ρ−1(ρ− ρ̃)ρ̃−1.

Applying the triangle inequality and the Hölder Inequality yields

||ρ−1 − ρ̃−1||p ≤ ||ρ− ρ̃||p
(
||ρ−2||∞ + ||ρ̃−2||∞ + ||ρ−1||∞||ρ̃−1||∞

)
which implies that

||P − P̃ ||p ≤ ||ρ− ρ̃||p
(
||ρ−1||∞ + ||ρ−2||∞ + ||ρ̃−2||∞ + ||ρ−1||∞||ρ̃−1||∞

)
.

In our main derivation we will encounter the situation, where ρ̃ is fixed whereas ρ depends on
an integer, ρ = ρ(L), and approaches ρ̃ as L goes to infinity. All operators ρ(L) as well as the
asymptotic operator ρ̃ will be density operators of the same rank. We write µ = µ(L) for the
smallest non-zero eigenvalue of ρ(L) and accordingly µ̃ for smallest non-zero eigenvalue of ρ̃. By
Lemma 5 the convergence behaviour of the projectors P = P (L) towards P̃ is governed by the
distance ||ρ − ρ̃||p and the largest eigenvalues 1/µ and 1/µ̃ of ρ−1 and ρ̃−1. The upper bound for
the distance between the projectors P and P̃ obtained from Lemma 5 depends explicitly on 1/µ.
However, when ||ρ− ρ̃||∞ is small enough it follows from the continuity of eigenvalues that one can
replace the dependence on 1/µ by 1/µ̃.

Lemma 6. Let ρ and ρ̃ be two density matrices of the same rank and let µ̃ be the smallest positive
eigenvalue of ρ̃. If ||ρ− ρ̃||∞ < µ̃ then

||P − P̃ ||∞ ≤
4||ρ− ρ̃||∞

(µ̃− ||ρ− ρ̃||∞)2
.

Proof. An application of Weyl’s Perturbation Theorem [3] under exploitation of the fact that ρ
and ρ̃ have the same rank shows that |µ − µ̃| ≤ ||ρ − ρ̃||∞. This yields an upper bound on the
operator norm of ρ−1:

||ρ−1||∞ =
1

µ
≤ 1

µ̃− ||ρ− ρ̃||∞
.

We use Lemma 5 to conclude that

||P − P̃ ||∞ ≤ ||ρ− ρ̃||∞
(

1

µ̃− ||ρ− ρ̃||∞
+

1

(µ̃− ||ρ− ρ̃||∞)2
+

1

µ̃2
+

1

µ̃(µ̃− ||ρ− ρ̃||∞)

)
≤ 4||ρ− ρ̃||∞

(µ̃− ||ρ− ρ̃||∞)2
.

The proof of Theorem 2 relies on a renormalization group technique as introduced in [16]. We
define local Hamiltonians acting on subchains of Λ. We then group the sites upon which these
Hamiltonians act to blocks. The core observation is that the number of matrices required for the
representation of the MPS will not increase from a certain point on. On the other hand with each
grouping the blocked Hamiltonians “look more and more classical”. The following lemma is taken
from [16] and describes this blocking procedure more precisely. The consecutive application of this
result to larger and larger subchains of Λ will be referred to as the renormalization group flow.
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Lemma 7. Let {Ai}i=1,...,d be a set of D×D matrices and consider the set {Ai1 · ... ·AiL}ij=1,...,d

of all matrix products formed by matrices from {Ai}i=1,...,d. There is a dL × dL unitary matrix U

and matrices A
(L)
m with

d∑
i1,...,iL

Um(i1...iL)Ai1 · ... ·AiL = A(L)
m (4)

such that A
(L)
m = 0 for all m > min {D2, dL}. Moreover, it holds that T L = T (L), where T (L)

denotes the CP map with Kraus operators A
(L)
m .

Proof. We write (Ai1 · ... · AiL)α,β with α, β ∈ {1, ..., D} for the entry of the matrix Ai1 · ... · AiL
in row α and column β. Let Ã be the dL ×D2 matrix which has the entry (Ai1 · ... ·AiL)α,β in its
(i1...iL)-th row and (α, β)-th column. We perform a singular value decomposition of Ã writing

Ã(i1...iL),(αβ) =

min (D2,dL)∑
l=1

(U †)(i1...iL),l ρl Vl,(αβ).

For the m-th row of UÃ, (UÃ)(m), then

(UÃ)(m) =

{
ρmV

(m) ; m ≤ min {dL, D2}
0 ; m > min {dL, D2}

holds. The rows of the matrix UÃ now correspond to the matrices A
(L)
i and thus the first assertion

of the lemma follows.
For the second assertion simply observe that for any X the quantity

T L(X) =
d∑

ii,...,iL

Ai1 · ... ·AiLXA
†
iL
· ... ·A†i1

is invariant under unitary summations i.e.

T L(X) =
∑
m

A(L)
m X(A(L)

m )† = T (L)(X).

In the following lemma we analyse the asymptotic behaviour of the renormalization group flow
and show that at large scale a generic TI MPS “looks classical”. To achieve this, we consider large
powers of the CPU map associated to the MPS and prove that the corresponding Kraus operators
have a certain structure. It is well known that condition (G1) implies that the peripheral spectrum
of T is trivial i.e. 1 is the only eigenvalue of T whose magnitude is one [5, 12, 13].

Lemma 8. Let T (X) =
∑

iAiXA
†
i be a CPU map such that 1 is the unique eigenvalue of magni-

tude one and suppose that Ξ = diag(ξ1, ..., ξn) with ξi > 0 is the corresponding fixed point of T ∗.
Then the following conclusions hold:

1. The limit T ∞ := limn→∞ T n exists and we can write T ∞(X) =
∑D2

i=1A
(∞)
i X(A

(∞)
i )† with

matrices A
(∞)
(pq) =

√
ξq|p〉〈q| and p, q ∈ {1, ..., D}.
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2. The projector P
(∞)
EE′ onto the image of

ρ
(∞)
EE′ :=

1

D

D2∑
i1,i2,j1,j2

tr

(
A

(∞)
i1

A
(∞)
i2

(
A

(∞)
j2

)† (
A

(∞)
j1

)†)
|i1〉〈j1|E ⊗ |i2〉〈j2|E′

can be written as

P
(∞)
EE′ = 1A ⊗ |ϕ〉〈ϕ|BC ⊗ 1D,

where |ϕ〉 =
∑

i

√
ξi|ii〉, each of the subsystems A,B,C,D is isomorphic to CD, and E = AB,

E′ = CD.

Proof. All eigenvalues of a CPU map are contained in the closed unit disc in the complex plane. By
assumption T has only one eigenvalue on the boundary and this eigenvalue is 1. Those eigenvalues
of T n, which are contained in the open unit disc decay with increasing n, while 1 is an eigenvalue
of T n for any n. Hence, limn→∞ T n simply converges to the projector onto the eigenvector 1

corresponding to the eigenvalue 1 of T . The fact that A
(∞)
(pq) =

√
ξq|p〉〈q| is then straight forward

since the dual map (T ∗)∞ acts as (T ∗)∞(X) = tr(X)Ξ.

It follows from the first assertion of the lemma and the fact that {A(∞)
i }i=1,...,D2 span the entire

matrix algebra that the vectors |µ(∞)(X)〉 =
∑D2

i1i2
tr(XA

(∞)
i1

A
(∞)
i2

)|i1i2〉 span the image of ρ
(∞)
EE′ .

Furthermore they can be written as

|µ(∞)(X)〉 = (1⊗
√

ΞX)AD|ω〉AD|ϕ〉BC ,

where |ω〉AD =
∑

i |ii〉AD. Observe that P
(∞)
EE′ as defined in the lemma has rank D2 and

P
(∞)
EE′ |µ

(∞)(X)〉 = |µ(∞)(X)〉. Therefore P
(∞)
EE′ projects onto the image of ρ

(∞)
EE′ .

C. The core argument

In this subsection we consider the stability of the spectral gap of a parent Hamiltonian with
nearest neighbour interaction HΛ =

∑
k hk,k+1. We prove that the spectral gap is stable under the

assumption that at each site {Ai}i=1,...,d span the entire algebra of D×D matrices. In the following
subsections we extend this argument to show that stability holds more generally for generic MPS
in the sense of (G1).

Proof of stability (Theorem 2) under strong assumptions. We show that at large scale the parent
Hamiltonian HΛ is a perturbation of a classical model and apply Theorem 1 to obtain the per-
turbation result. For this we divide Λ into blocks Λk of length L and block the terms of HΛ into
Hamiltonians HΛk∪Λk+1

:=
∑

j:{j,j+1}⊂Λk∪Λk+1
hj,j+1 acting locally on HΛk∪Λk+1

such that

HΛ =
1

2

∑
k

(
HΛk∪Λk+1

+ hkL,kL+1

)
.

For notational convenience we shall abbreviate Hk,k+1 := 1
2

(
HΛk∪Λk+1

+ hkL,kL+1

)
. Clearly it

holds that

KernHk,k+1 = KernHΛk∪Λk+1
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and that

Hk,k+1 ≥
1

2
HΛk∪Λk+1

.

We introduce the density matrix

ρΛk∪Λk+1
:=

1

D

d∑
i1....i2L
j1...j2L

tr(Ai1 · ... ·Ai2LA
†
j2L
· ... ·A†j1)|i1...i2L〉〈j1...j2L|.

By assumption the matrices {Ai}i=1,...,d span the entire matrix algebra. Hence, for any L the image
of ρΛk∪Λk+1

is spanned by the D2-dimensional manifold of vectors

|µ(X)〉 =
d∑

i1...i2L

tr(XAi1 · ... ·Ai2L)|i1....i2L〉,

where X is a D × D matrix with complex entries (see Section II B). On the other hand these
vectors exactly span the kernel of HΛk∪Λk+1

(see Section II C and [12]) and we obtain

Im ρΛk∪Λk+1
= KernHΛk∪Λk+1

.

The local Hamiltonians HΛk∪Λk+1
have a positive spectral gap (see Section II C). Let GΛk∪Λk+1

denote the projector onto Kern HΛk∪Λk+1
then there is a γ > 0 that does not depend on L such

that

HΛk∪Λk+1
≥ γ(1−GΛk∪Λk+1

). (5)

An application of Lemma 7 shows that there is a unitary UΛk
acting non-trivially on HΛk

only,
with the property that

UΛk
⊗ UΛk+1

ρΛk∪Λk+1
U †Λk
⊗ U †Λk+1

=

(
ρ

(L)
EE′ 0

0 0

)
, (6)

where

ρ
(L)
EE′ :=

1

D

min {D2,dL}∑
i1i2
j1j2

tr
(
A

(L)
i1
A

(L)
i2

(A
(L)
j2

)†(A
(L)
j1

)†
)
|i1〉〈j1|E ⊗ |i2〉〈j2|E′

and the matrices A
(L)
ij

are as in Lemma 7. The matrix UΛk
⊗UΛk+1

ρΛk∪Λk+1
U †Λk
⊗U †Λk+1

acts on a

space that is isomorphic to (Cd)⊗L⊗ (Cd)⊗L but only the action on a
(
min {D2, dL}

)2
dimensional

subspace is non-zero. In the sequel we shall assume that L is chosen large such that ρ
(L)
EE′ acts on

a (D2)2 dimensional space. For any given L we fix this space and define the matrix ρ
(∞)
Λk∪Λk+1

by

replacing ρ
(L)
EE′ in that space by ρ

(∞)
EE′ i.e.

ρ
(∞)
Λk∪Λk+1

=

(
ρ

(∞)
EE′ 0

0 0

)
.

We denote by G
(∞)
Λk∪Λk+1

the projector onto the image of ρ
(∞)
Λk∪Λk+1

. Note that since the orientation

of the (D2)2 dimensional subspace in (Cd)⊗L ⊗ (Cd)⊗L can depend on L it follows that ρ
(∞)
Λk∪Λk+1
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and G
(∞)
Λk∪Λk+1

can depend on L.

We will now discuss the asymptotic properties of the matrices ρ
(L)
Λk∪Λk+1

. We will prove that
with a suitable unitary transformation acting locally on the spaces HΛk

and with L chosen large

the operators ρ
(L)
Λk∪Λk+1

and ρ
(∞)
Λk∪Λk+1

can be made arbitrarily close. This will provide us with

an explicit unitary acting locally on (sufficiently large) spaces HΛk
that transforms the kernel of

HΛk∪Λk+1
into a shape determined by ρ

(∞)
Λk∪Λk+1

.

Let us consider the CPU map T associated with the MPS |Ψ〉 and let λ2 denote its largest in
magnitude subdominant eigenvalue. We note that supk≥0

∣∣∣∣T k∣∣∣∣
CB

= 1 i.e. T is power-bounded
with respect to the CB-norm and constant 1. Hence, the discussion in [15] applies and yields that
there is C that does not depend on L such that

||T L − T ∞||CB ≤ C|λ2|L.

By Lemma 7 this is equivalent to

||T (L) − T (∞)||CB ≤ C|λ2|L,

where the maps T (L) are defined as in the lemma. We apply Lemma 4 to conclude that there is a
unitary VE such that

||VE ⊗ VE′ ρ
(L)
EE′ V

†
E ⊗ V

†
E′ − ρ

(∞)
EE′ ||∞ ≤ 4D4

√
C|λ2|L/2.

By Lemma 6 it holds for L chosen sufficiently large that

||VE ⊗ VE′ P
(L)
EE′ V

†
E ⊗ V

†
E′ − P

(∞)
EE′ ||∞ ≤

16D4
√
C|λ2|L/2

(µ− 4D4
√
C|λ2|L/2)2

, (7)

where µ is the smallest non-zero eigenvalue of ρ
(∞)
EE′ . A straight forward computation shows that

in fact µ equals the smallest eigenvalue of the fixed point matrix Λ.
Taken together, the inequalities (7) and (6) imply that the projectors onto the images of ρΛk∪Λk+1

and ρ
(∞)
Λk∪Λk+1

can be made exponentially close with a local unitary operation: There is a unitary
WΛk

such that

||WΛk
⊗WΛk+1

GΛk∪Λk+1
W †Λk

⊗W †Λk+1
−G(∞)

Λk∪Λk+1
||∞ ≤

16D4
√
C|λ2|L/2

(µ− 4D4
√
C|λ2|L/2)2

(8)

In terms of the Hamiltonians HΛk∪Λk+1
this means that we have achieved to construct a unitary

acting locally on spaces HΛk
that on sufficiently large scale transforms the ground state space of

HΛk∪Λk+1
into a a certain subspace determined by G

(∞)
Λk∪Λk+1

. In the next step we a construct a
classical Hamiltonian with this ground state subspace. For each L the structure of the operators

G
(∞)
Λk∪Λk+1

is known from Lemma 8. We have that

G
(∞)
Λk∪Λk+1

=

(
1A ⊗ |ϕ〉〈ϕ|BC ⊗ 1D 0

0 0

)

with |ϕ〉 =
∑

i

√
ξi|ii〉. ThusG

(∞)
Λk∪Λk+1

induces a natural decomposition ofHΛk∪Λk+1
into a subspace

HX on which G
(∞)
Λk∪Λk+1

acts as the zero operator and a subspace which is isomorphic to CD2⊗CD2
.
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The latter can further be decomposed according to the structure of G
(∞)
Λk∪Λk+1

into CD2 ⊗ CD2 ∼=
CDA ⊗CDB ⊗CDC ⊗CDD. By an additional decomposition of HX and choosing L even we achieve the
decomposition

HΛk∪Λk+1
∼= (CDA ⊕HXA

)⊗ (CDB ⊕HXB
)⊗ (CDC ⊕HXC

)⊗ (CDD ⊕HXD
).

Here the spaces HXA
, ...,HXD

are chosen to have dimension dL/2 − D. In the decomposition of
HΛk∪Λk+1

we identify the “half-shifted” spaces HHS
Λk∪Λk+1

:= (CDB ⊕HXB
)⊗ (CDC ⊕HXC

). Note that

HHS
Λk∪Λk+1

∼= HΛk
and that the following inclusions hold:

HHS
Λk∪Λk+1

⊂ HΛk∪Λk+1
⊂ HHS

Λk−1∪Λk
⊗HHS

Λk∪Λk+1
⊗HHS

Λk+1∪Λk+2
.

Let HHS
Λk∪Λk+1

denote the projector in HHS
Λk∪Λk+1

onto the orthogonal complement of |ϕ〉. The above
inclusions translate into the estimates

HHS
Λk∪Λk+1

≤ 1−G(∞)
Λk∪Λk+1

≤ HHS
Λk−1∪Λk

+HHS
Λk∪Λk+1

+HHS
Λk+1∪Λk+2

. (9)

Consider the operator

HCL
Λ := 3L

∑
k

HHS
Λk∪Λk+1

.

This operator is classical in the sense of Theorem 1 with respect to the half-shifted spaces HHS
Λk∪Λk+1

.

We claim that for L chosen large enough (
⊗

kWΛk
)HΛ(

⊗
kWΛk

)† is a perturbation of HCL
Λ sat-

isfying the assumptions of Theorem 1. We construct this perturbation explicitly. It consists of a
bounded part

φ
(b)
k,k+1 :=WΛk

⊗WΛk+1
(1−GΛk∪Λk+1

)Hk,k+1(1−GΛk∪Λk+1
)W †Λk

⊗W †Λk+1

− (1−G(∞)
Λk∪Λk+1

)WΛk
⊗WΛk+1

Hk,k+1W
†
Λk
⊗W †Λk+1

(1−G(∞)
Λk∪Λk+1

)

and a relatively bounded part

φ
(r)
k,k+1 :=(1−G(∞)

Λk∪Λk+1
)WΛk

⊗WΛk+1
Hk,k+1W

†
Λk
⊗W †Λk+1

(1−G(∞)
Λk∪Λk+1

)

− L (HHS
Λk−1∪Λk

+HHS
Λk∪Λk+1

+HHS
Λk+1∪Λk+2

).

Taking both together yields

(
⊗
k

WΛk
)HΛ(

⊗
k

WΛk
)† = HCL

Λ +
∑
k

φ
(b)
k,k+1 +

∑
k

φ
(r)
k,k+1.

First we estimate

||φ(b)
k,k+1||∞ =

∣∣∣∣∣∣WΛk
⊗WΛk+1

(1−GΛk∪Λk+1
)Hk,k+1(1−GΛk∪Λk+1

)W †Λk
⊗W †Λk+1

− (1−G(∞)
Λk∪Λk+1

)WΛk
⊗WΛk+1

Hk,k+1W
†
Λk
⊗W †Λk+1

(1−G(∞)
Λk∪Λk+1

)
∣∣∣∣∣∣
∞

≤
∣∣∣∣∣∣Hk,k+1(1−GΛk∪Λk+1

)W †Λk
⊗W †Λk+1

−Hk,k+1W
†
Λk
⊗W †Λk+1

(1−G(∞)
Λk∪Λk+1

)
∣∣∣∣∣∣
∞

+
∣∣∣∣∣∣WΛk

⊗WΛk+1
(1−GΛk∪Λk+1

)Hk,k+1 − (1−G(∞)
Λk∪Λk+1

)WΛk
⊗WΛk+1

Hk,k+1

∣∣∣∣∣∣
∞

≤ 2
∣∣∣∣∣∣W ⊗WGΛk∪Λk+1

W † ⊗W † −G(∞)
Λk∪Λk+1

∣∣∣∣∣∣
∞
||Hk,k+1||∞

≤ 32LD4
√
C|λ2|L/2

(µ− 4D4
√
C|λ2|L/2)2

.
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The last inequality makes use of (8) and the fact that ||Hk,k+1||∞ ≤ L. Thus we have shown that

the norm of φ
(b)
k,k+1 decays exponentially fast with increasing size of the blocks Λk.

To verify that φ
(r)
x is in accordance with the conditions of Theorem 1 we need to estimate |

∑
x∈I φ

(r)
x |

for any I ⊂ {1, ..., N/L}. The maximum is attained when I = Λ since

φ
(r)
k,k+1 ≤ L (1−G(∞)

Λk∪Λk+1
)− L (HSUB

Λk−1∪Λk
+HSUB

Λk∪Λk+1
+HSUB

Λk+1∪Λk+2
)

≤ 0,

where the second inequality makes use of (9). A lower bound on φ
(r)
k,k+1 follows from the gappedness

of Hk,k+1 (5):

(1−G(∞)
Λk∪Λk+1

)WΛk
⊗WΛk+1

Hk,k+1W
†
Λk
⊗W †Λk+1

(1−G(∞)
Λk∪Λk+1

) ≥
γ

2
(1−G(∞)

Λk∪Λk+1
)WΛk

⊗WΛk+1
(1−GΛk∪Λk+1

)W †Λk
⊗W †Λk+1

(1−G(∞)
Λk∪Λk+1

) ≥

γ

2

(
1−G(∞)

Λk∪Λk+1

)(
1−G(∞)

Λk∪Λk+1
− 16D4

√
C|λ2|L/2

(µ− 4D4
√
C|λ2|L/2)2

· 1

)(
1−G(∞)

Λk∪Λk+1

)
≥

γ

2

(
1− 16D4

√
C|λ2|L/2

(µ− 4D4
√
C|λ2|L/2)2

) (
1−G(∞)

Λk∪Λk+1

)
≥ γ

2

(
1− 16D4

√
C|λ2|L/2

(µ− 4D4
√
C|λ2|L/2)2

)
HHS

Λk∪Λk+1
.

We sum the terms φ
(r)
k,k+1 to conclude that∑

k,k+1

φ
(r)
k,k+1 ≥

∑
k,k+1

(
γ

2

(
1− 16D4

√
C|λ2|L/2

(µ− 4D4
√
C|λ2|L/2)2

)
HHS

Λk∪Λk+1
− L (HHS

Λk−1∪Λk
+HHS

Λk∪Λk+1
+HHS

Λk+1∪Λk+2
)

)

=

(
−1 +

γ

6L
− 8γD4

√
C|λ2|L/2

3L(µ− 4D4
√
C|λ2|L/2)2

)
HCL

Λ .

Thus for Theorem 1 we have that∣∣∣∣∣∣
∑
k,k+1

〈ψ|φ(r)
k,k+1|ψ〉

∣∣∣∣∣∣ ≤ α 〈ψ|HCL
Λ |ψ〉

with α = (1− γ
6L +O(|λ2|

L
2 )) and β = δ ( γ

6L−O(|λ2|
L
2 ))2κ, where the constants δ and κ still have to

be chosen appropriately. As long as γ decays sub-exponentially fast with L, for L sufficiently large

||φ(b)
k,k+1||∞ ≤ β holds. For parent Hamiltonians, which have a constant local gap this is certainly

the case.
Applying Theorem 1 we could recover the well-known fact that HΛ has a gapped ground state.

However, the conditions of Theorem 1 are “open” in the sense that adding sufficiently small bounded

perturbation to φ
(b)
k,k+1 still results in a total perturbation, which is within the range where The-

orem 1 can be applied. This provides us with a perturbation result for Hamiltonians in the
neighbourhood of HΛ. More precisely, let Φ′ :=

∑
k,k+1 φ

′
k,k+1 be a finite range interaction with

||φ′k,k+1||∞ ≤ β′ and β′ > 0 small enough. We analyse the spectral gap of H ′Λ = HΛ + Φ′. Suppose
for the moment that φ′k,k+1 acts exactly on HΛk∪Λk+1

and let

φ′′k,k+1 := WΛk
⊗WΛk+1

φ′k,k+1W
†
Λk
⊗W †Λk+1

.
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Consider the Hamiltonian

(
⊗
k

WΛk
)HΛ(

⊗
k

WΛk
)† +

∑
k

φ′′k,k+1 = (
⊗
k

WΛk
)(HΛ + Φ′)(

⊗
k

WΛk
)†.

If β′ > 0 is chosen sufficiently small Theorem 1 applies and proves the stability of the spectral gap
of HΛ + Φ′. In general, though, we want to allow an arbitrary (finite) interaction range for φk,k+1.
If φk,k+1 acts nontrivially on a subchain of Λk ∪Λk+1 only it is possible to group the φk,k+1 terms
in such a way that in total one gets a finite range interaction on Λk ∪Λk+1. Choosing β′ we make
sure that the grouped perturbation is sufficiently small for an application of Theorem 1. On the
other hand if the perturbation has interaction range exceeding the subchain Λk ∪Λk+1 one simply
chooses L larger and the previous discussion applies to the larger subchains.

D. Proof of Theorem 2 and Corollary 3

Proof of Theorem 2. The proof is a simple upgrade of the restricted discussion of the previous
subsection. By condition (G1) there is finite P0 such that the matrices {Ai1 · ... · AiP0

} span the

whole algebra of D × D matrices. Hence, HΛ =
∑

i τ
i(hGP

) has a unique ground state for any
P > P0, see Section II C. We proceed as in the proof of the theorem and divide Λ into chains Λk of
length L. In addition we assume that the chains are sufficiently large to support hGP i. e. L ≥ P .
We define the operators

HΛk∪Λk+1
:=

∑
i:{i+1,...,i+P}⊂Λk∪Λk+1

τ i(hGP ),

which are sums of all the translates of hGP that act locally on Λk ∪ Λk+1. There are P − 1 terms
in the above Hamiltonian that partially act on block Λk and partially on Λk+1. We define the
operators Hk,k+1 by adding these terms to HΛk∪Λk+1

. Formally

Hk,k+1 =
1

2
HΛk∪Λk+1

+
1

2

∑
i:(i+1∈Λk ∧ i+P∈Λk+1)

τ i(hGP ).

As before, we have the properties

Hk,k+1 ≥ HΛk∪Λk+1
,

Kern(Hk,k+1) = Kern(HΛk∪Λk+1
)

and

HΛ =
∑
k

Hk,k+1.

The kernel of HΛk∪Λk+1
is given by the image (see also [12, Section 4.1.1]) of

ρΛk∪Λk+1
=

d∑
i1....i2L
j1...j2L

tr(Ai1 · ... ·Ai2LA
†
j2L
· ... ·A†j1)|i1...i2L〉〈j1...j2L|.

As before, the spectral gap of HΛk∪Λk+1
can be lower bounded by some constant. With GΛk∪Λk+1

and G
(∞)
Λk∪Λk+1

defined as in Subsection IV C the derivation follows the same lines as before. Hence,

stability follows under condition (G1), which completes the proof of Theorem 2.
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Proof of Corollary 3. As before we choose L ≥ P and divide Λ into subchains of length L. The
restrictions of ĤΛ =

∑
j hj,j+1 and HΛ =

∑
i τ

i(hGP
) to Λk ∪ Λk+1 are given by ĤΛk∪Λk+1

=∑
{j,j+1}⊂Λk∪Λk+1

hj,j+1 and HΛk∪Λk+1
=
∑

i:{i+1,...,i+P}⊂Λk∪Λk+1
τ i(hGP ). The condition c1 hGP

≤∑P−1
j=1 hj,j+1 ≤ c2 hGP

implies that

c1 HΛk∪Λk+1
≤

∑
i:{i+1,...,i+P}⊂Λk∪Λk+1

τ i

P−1∑
j=1

hj,j+1

 ≤ c2 HΛk∪Λk+1
.

It follows that
∑

i:{i+1,...,i+P}⊂Λk∪Λk+1
τ i
(∑P−1

j=1 hj,j+1

)
has the same kernel as HΛk∪Λk+1

. Thus

the kernels of HΛk∪Λk+1
and ĤΛk∪Λk+1

are identical and Corollary 3 follows from the derivation of
Theorem 2.
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