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Abstract—Current developments in the field of Car2X com-
munication deal with the communication between vehicles as
well as between vehicles and the infrastructure. Vulnerable road
users, like pedestrians or bicyclists, are not yet regarded in these
developments. We present an approach for integrating vulnerable
road users into Car2X communication by using smartphones as
sensor devices and for the communication. Since the position
information is of crucial importance in Car2X communication
systems, we developed a method to improve the position data that
is gathered from the GPS sensor of the smartphones. A motion
recognition is combined with walking speed estimation to develop
a dead reckoning algorithm for pedestrians that takes their
current movement state into account. The results of our algorithm
are compared to a stand-alone GPS positioning solution of the
smartphone to show the improvements that can be achieved with
our solution.

I. INTRODUCTION

According to the “White Paper on transport”, the European
Commission aims at reducing the number of fatalities in
road transport to nearly zero by 2050. Therefore road safety
technologies, like driver assistance systems, eCall and cooper-
ative systems shall be deployed [1]. Regarding the cooperative
systems, the communication between the road users becomes
necessary, as it is the basis for cooperative behaviour in coop-
erative systems. The technology for exchanging information
by communication between vehicles and their environment is
called Car2X communication.

Current developments in the field of Car2X technology are
engaged in the communication between vehicles as well as
the communication between vehicles and the infrastructure.
However, VRUs (Vulnerable Road Users) are involved in a
quarter of all fatal traffic accidents in Germany [2]. Therefore
this group of traffic participants has to be included in the
development of cooperative safety systems.

In this paper, we present an approach for integrating VRUs
into cooperative safety systems by using smartphones. This
approach is named Car2Pedestrian communication in the fol-
lowing. This paper is organized as follows: In the next section,
the Car2Pedestrian communication system is presented, which
uses smartphones as sensor devices and for communicating the
gathered information to vehicles. Since the position data of the

VRU, that is determined by GPS, is a crucial information in
our proposed system, in the third section results for improving
the positioning solution for pedestrians by a combination
of motion recognition, walking speed estimation and dead
reckoning for pedestrians using smartphones are presented.
Section four concludes the approaches of this paper.

II. CAR2PEDESTRIAN COMMUNICATION WITH
SMARTPHONES

In this section our basic system concept for Car2Pedestrian
communication is presented. This is necessary to understand
the need for further examinations regarding the GPS position-
ing of smartphones. The concept is shown in Fig. 1. It consists
of two modules, which are implemented on the smartphone
and the vehicle, respectively.

The smartphone is carried by the pedestrian and is used
to determine the position, speed and walking direction by
the GPS sensor. The position coordinates are transformed
into an Euclidean coordinate system by applying an UTM
(Universal Transverse Mercator) projection. Afterwards the
position, speed and direction data are transmitted to the vehicle
via WLAN. Since the automotive WLAN 802.11p is not yet
available in off-the-shelf smartphones, WLAN 802.11 b/g is
used to transmit the data to a router which is installed in the
vehicle.

In the vehicle, the position and driving direction are deter-
mined by a GPS receiver. The position coordinates are also
transformed into Euclidean coordinates by an UTM projection.
Further movement data like the speed or acceleration of
the vehicle are readout from the CAN bus (Controller Area
Network). Afterwards the future positions and movements of
the pedestrian and the vehicle are predicted using a CV model
(Constant Velocity) and a CA model (Constant Acceleration),
respectively.

The equation for predicting the position and movement data
of the pedestrian from time step k − 1 to k is shown in Eq.
1, where n and e denote the position of the pedestrian in
UTM coordinates, v the walking speed and ϕ the walking
direction. Note that the north-component is predicted by the
sinus ratio of the direction angle, the east-component by the
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Fig. 1. Basic system concept for Car2Pedestrian communication using
smartphones. Based on [3].

cosine ratio of the direction angle, since the geographical, not
the mathematical angle is used.
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The equation for predicting the position and movement data
of the vehicle from time step k − 1 to k is shown in Eq. 2,
where n and e denote the position of the vehicle in UTM
coordinates, vn the driving speed in northern direction and ve
the driving speed in eastern direction. The accelerations in the
northern and eastern direction are denoted by an and ae.
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If the predictions of Eq. 1 and 2 indicate that the positions of
the pedestrian and the vehicle intersect in the near future and
little time for braking is left in the vehicle, a warning is given
to the driver. Furthermore a warning is sent to the smartphone.
Therefore also the pedestrian is warned, who can react to
the critical situation by raising his attention or changing his
movement.

As it can be seen, the GPS data are the only informa-
tion source for the movement prediction of the pedestrian.
Therefore it is of major importance that this information is
reliable. However, with off-the-shelf smartphones the position
accuracy might have an error of approx. 10 m [4]. In bad
environmental situations like urban canyons, where multipath

and shadowing influence the accuracy of the positioning, the
error might increase. In the following section, our approach
for improving the GPS data by a combination of motion
recognition, walking speed estimation and dead reckoning for
pedestrians is presented.

III. METHODS FOR IMPROVING THE GPS POSITIONING
WITH SMARTPHONES

Our approach for improving the GPS positioning of smart-
phones for pedestrians is split into three parts. At first,
the current motion status of the pedestrian is estimated and
grouped into the categories stop, walk, run or bike1. After the
current motion state has been determined, the walking speed
of the pedestrian is estimated in the case the state equals
walk or run. In the last step, the pedestrian dead reckoning
(PDR) is executed based on the different motion states and the
walking speed. The results of the PDR algorithm are improved
data regarding the position, speed and walking direction of
the pedestrian. The different steps are explained in the next
subsections.

A. Motion recognition with smartphones

The motion recognition is used to distinguish between
different motion states that influence the choice of movement
models in the PDR algorithm. Motion recognition by the
evaluation of accelerometer data has been first described in [5],
where multiple sensors were placed on the test subjects body
to gather the information. However, the approach presented in
this paper is more realistic because only a smartphone is used.
Hence the pedestrian is not restrained in the mobility. Using
smartphones for motion recognition is also known from [6], [7]
and [8]. In contrast to those works, we use the smartphone not
only for recording the data, but we also implement the motion
recognition on the device. Therefore a real-time evaluation of
the current activity is possible.

For the motion recognition, the data of the acceleration
sensor and the gyroscope in the x-, y- and z-axis are captured
with a sample rate of 40 Hz. A windowing is applied to the
data to calculate different features of each data window. The
windows contain 128 data samples, resulting in a window
length of 3.2 seconds. The motion recognition is triggered
every 800 ms, which results in a window overleap rate of 75 %.
The following features are extracted from these windows for
the classification:

• standard deviation and spectral entropy of acceleration
(x-, y- and z-axis)

• standard deviation of angular speed (x-axis)
• spectral entropy of angular speed (x-, y- and z-axis)

This results in a feature vector containing 10 elements for
each data window. As classification algorithms, a k-nearest-
neighbour (kNN) and a decision tree (DT) were used. For
the training phase, 12 test persons (six females, six males)
performed each of the four activities for two minutes. The
test persons differed in height and weight and wore different

1In this paper, only the algorithms for pedestrians are explained.



Fig. 2. Correct classification rate for different activities using a k-nearest
neighbour algorithm and a decision tree.

clothing and shoes. Each record was labeled and used to train
both classifiers. In all test runs, the position of the smartphone
had to be restricted to achieve unambiguous sensor signals.
Therefore, the smartphone was placed in the right trouser
pocket with the display showing forwards.

To evaluate the classification accuracy, the leave-one-out
strategy was used for all 12 test persons. The classifiers were
trained with data of 11 test persons, while the data of the
last person were used as the test set. All 12 combinations of
training data vs. test data were evaluated to estimate the overall
accuracy. The results are shown in Fig. 2, where the average
correct classification rate for each motion is illustrated for both
classifiers. The vertical bars indicate the range from lowest to
the highest classification rate of all 12 test combinations.

The confusion matrices of both classification algorithms are
shown in Tab. I and II. With both classifiers, misclassifications
between walk and run occurred. This is due to the similar
motion patterns of both activities. The misclassifications of
the motion status bike can be attributed to the results of one
test person, whose motion differed from the other test persons
during this activity due to his clothing.

Both classifiers show similar results with a correct classifi-
cation rate greater than 90 % for each motion state. In overall,
with a correct classification rate of 98 %, the kNN algorithm
outperforms the DT with a classification rate of 96 %. Even
with a small training data set of 11 test persons, a very good
accuracy could be achieved. However, one has to point out
that these results could only be achieved because the position
of the smartphone was restricted and only four activities had
to be distinguished.

Based on the results, we decided to implement the DT
algorithm on the smartphone. Therefore another DT was
trained using all 12 test persons. Even if the classification
rate is slightly worse, the computational effort is reduced if
a DT is used. The if-else-structure of the DT can easily be
implemented on the smartphone after it has been created in
the training phase. On the contrary, a more complex data

Motion Classified as Classification rate
stop walk run bike true false

stop 837 0 0 1 99,88 % 0,12 %

walk 0 898 20 5 97,29 % 2,71 %

run 0 5 794 0 99,37 % 0,63 %

bike 20 9 1 756 96,18 % 3,82 %

TABLE I
CONFUSION MATRIX OF THE K-NEAREST NEIGHBOUR ALGORITHM.

Motion Classified as Classification rate
stop walk run bike true false

stop 834 0 0 4 99,52 % 0,48 %

walk 0 902 21 0 97,72 % 2,28 %

run 0 35 747 17 93,49 % 6,51 %

bike 15 17 11 743 94,53 % 5,47 %

TABLE II
CONFUSION MATRIX OF THE DECISION TREE.

structure has to be implemented on the smartphone if a kNN
algorithm is used, to accelerate the search process of the k
nearest neighbours. The initialization of this data structure
needs some time every time the smartphone module is started.
To prevent this delay, the DT was chosen.

B. Estimation of walking speed

In this section the approach for estimating the walking speed
of the pedestrian presented. This information is used in the
dead reckoning algorithm to predict the further movement of
the pedestrian in the fusion process.

For the estimation of the walking speed, the step fre-
quency f of the pedestrian is determined at first. Therefore
the frequency of the gyroscope data of the smartphone is
analyzed. Since the frequency of the gyroscope data was
already calculated for the motion recognition, no additional
calculations are necessary. Afterwards the frequency value f
is applied to a cubic function:

v(f) = a · f3 + b · f2 + c · f + d (3)

To determine the parameters a to d, several test runs were
carried through where four test persons walked beside a
vehicle that dictated the speed the test persons had to walk.
The frequencies of each test person at a given vehicle reference
speed was analyzed and the median of each frequency cluster
was calculated. The result is shown in Fig. 3. Finally, the
medians have been approximated by a cubic function to
determine the parameters a to d.

The test persons had a similar height and age, therefore the
results could be applied well to our data. For a more general
approximation, different characteristics of the test persons,
e.g. the age and gender, should be varied to obtain different
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Fig. 3. Step frequencies at given walking speeds of the test persons. The red
markers indicate the median value of each frequency cluster.

approximation curves. In the application phase, the best-
suiting approximation function for the individual pedestrian
would have to be chosen.

A simple step detection was not used in the walking
speed estimation, because this would imply the necessity of
a given step length. As a consequence, a linear dependency
between the step frequency and the walking speed would
occur. However, as one can see in Fig. 3, this dependency
is non-linear. This also has been shown in [9].

In the next subsection, we explain how the motion recog-
nition and walking speed estimation are used to implement a
dead reckoning algorithm for pedestrians, in order to improve
the GPS positioning accuracy of smartphones.

C. Dead reckoning for pedestrians

Pedestrian dead reckoning systems are well-known from
the literature. In [10], [11], [12] and [13] for example, shoe-
mounted sensors are used to detect steps of the test subjects
by an accelerometer and their walking direction by a compass
or a gyroscope. However, the use of dedicated sensors that
are mounted at the shoe increase the hardware effort. In [14]
smartphones are used to implement a dead reckoning by step
length estimation, heading estimation and map matching. In
contrast to our approach, a correction by GPS measurements
is not incorporated. A Kalman filter approach for PDR is
also described in [15]. Similar to the method described in
this paper, step detection is used to determine the travelled
distance [16] and the combination of a gyroscope and a
magnetic compass delivers the walking direction [17]. Our
approach differs from [15], since we have chosen a more
realistic approach by just using smartphones, whereas several
sensors were placed over the test subjects body in [15]. Beyond
that, the extension with motion recognition to enhance the
data fusion process has not been examined in detail yet in
the authors opinion. Like the motion recognition, our PDR
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Fig. 4. Comparison of the heading information gathered from the GPS sensor
of the smartphone, the ublox GPS sensor and the compass of the smartphone
(a). Comparison of the speed information gathered from the GPS sensor of
the smartphone, the ublox GPS sensor and the walking speed estimation (b).

module is implemented on the smartphone to enable a real-
time positioning solution without offline post-processing.

A data fusion algorithm was developed that fuses the sensor
data of the acceleration sensor, the gyroscope and the digital
magnetic compass with the position and movement data that
are delivered by the GPS sensor of the smartphone. The first
three smartphone sensors are named inertial sensors in the
following. Two requirements have been in the focus for the
improvement:

1) Increase the sample rate of the GPS position data.
2) Enable a fast detection of position changes which are

caused by abrupt movement changes of the pedestrian.
The first requirement is due to the fact that the default

sample rate of modern smartphone GPS sensors is at 1 Hz.
For an automotive pedestrian safety application this data rate
is too low.



The second requirement is closely linked to the first one,
because also sudden changes in the movement of the pedestri-
ans must be detected. The data of the GPS sensors of different
smartphones in multiple scenarios were analyzed to motivate
the second requirement. Fig. 4(a) shows the walking direction
of a pedestrian for an exemplary scenario. The test person
carried a Samsung Galaxy S II smartphone and a ublox 6T
GPS receiver to compare the results of both sensors. The
pedestrian made an abrupt change in the walking direction
of 90◦ in this scenario. We compared the GPS heading
information of the smartphone with the heading information
of a ublox 6T GPS receiver and the data of the compass of the
smartphone. Compared to the other sensors, the GPS receiver
of the smartphone reacts delayed to the direction change.
Fig. 4(b) shows similar results for the walking speed while
the pedestrian changes from standing to walking in another
scenario. Compared to the speed that is delivered by the ublox
sensor or our walking speed estimation, the speed delivered by
the smartphone GPS sensor reacts delayed at the beginning.

The developed fusion architecture is shown in Fig. 5. The
original system concept of Fig. 1 was enhanced by the inte-
gration of the inertial sensors. At first, the current motion state
of the pedestrian is determined by the recognition algorithm
mentioned in section III-A. Afterwards this information is used
in the PDR algorithm to choose the process model for the
fusion process. Furthermore the estimated walking speed of
the pedestrian is used for the prediction process in our fusion
algorithm.
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reckoning for improved GPS positioning.

We use a Kalman filter to fuse the inertial sensors as well
as the GPS sensor and to implement the PDR algorithm. The
state vector equals to

x =


n
e
v
ϕ

 , (4)

where n and e denote the position of the pedestrian, v the
walking speed and ϕ the walking direction. The observation
matrix H is an identity matrix. The covariance matrices Q

and R of the process noise as well as the measurement
noise are diagonal matrices whose values have been estimated
heuristically.

The state vector x is predicted every 100 ms to obtain new
position and movement values at 10 Hz. The update step of
the Kalman filter is executed every time new GPS data arrive,
hence every 1000 ms. The results of the motion recognition
and the walking speed estimation are used to influence the
prediction and the update step of the Kalman algorithm: If a
motion change of the pedestrian is detected, the GPS data are
not incorporated in the update step for a certain time. This
is due to the results that can be seen in Fig. 4(b), where
the data of the smartphone GPS sensor react delayed to the
motion change. A turning detection based on the data of the
gyroscope was also developed: If the data of the gyroscope
exceed a certain threshold, the data of the GPS sensor are
also not incorporated in the update step. This is because of
the results that can be seen in Fig. 4(a).

In the default case, if the pedestrian is walking and no
change in the motion or turning is detected, the following
process model is used in the prediction steps:

xk = A · xk−1, (5)

where

A =


1 0 cos(ϕk−1) · dt 0
0 1 sin(ϕk−1) · dt 0
0 0 1 0
0 0 0 1

 (6)

During the prediction steps, the walking direction ϕ is
assumed to be constant. The data of the compass or the
gyroscope are not incorporated during these steps. Fig. 4(a)
shows an oscillation of the compass data that is caused by the
movement of the leg during walking. This oscillation would
led to a zigzag course of the pedestrian during the prediction.
The walking speed v is also assumed to be constant. However,
in the update step, the speeds delivered by GPS and by the
walking speed estimation are fused. Likewise, the positions
delivered by GPS and by the prediction as well as the walking
direction delivered by GPS and by the compass are fused in
the update step.

Since the process model of Eq. 5 is very restrictive regarding
the movement of the pedestrian, the model is changed if a
turning of the pedestrian is detected by the gyroscope data:

xk = A · xk−1 + B1 ·w1,k−1, (7)

where

B1 =


0
0
0

180/(π · dt)

 (8)

and

w1,k−1 = ωk−1 (9)



In this case, during the prediction steps the walking direction
ϕ is influenced by the yaw rate ωk−1 that is delivered by the
gyroscope. In the update step, the data of the GPS sensor are
not incorporated. This is due to the delayed behaviour of the
GPS sensor in turning scenario. This means, if the pedestrian is
turning, the position and movement data are solely calculated
based on the inertial sensors of the smartphone for a certain
time span. Afterwards the constant movement of Eq. 5 is
assumed again, if no further turning or motion change is
detected.

A similar approach is chosen if a change in the motion is
detected. If the pedestrian changes in between the states stop,
walk or run, the following process model is used during the
prediction steps:

xk = A · xk−1 + B2 ·w2,k−1, (10)

where

B2 =


0
0
1
0

 (11)

and

w2,k−1 = v(f)k−1 (12)

If the pedestrian changes its motion in between the three
categories, an abrupt change of the walking speed v will occur.
Therefore, the result of the walking speed estimation v(f)k−1

is incorporated in each prediction step. The speed information
delivered by GPS is not incorporated in the update step for a
certain time, because it reacts delayed to the change. Hence the
change in the walking speed during accelerating or stopping
can be represented well. If the motion changes from standing
to walking or running, also the direction information by GPS
is not incorporated in the update step for a certain time. This is
due to the fact that no direction information can be delivered
by GPS without a movement. If the direction by the compass
would be fused with the GPS direction, the result would be
erroneous. Therefore, the GPS direction is disregarded in this
case.

In the case the pedestrian is standing the following process
model is used:

xk = A · xk−1 + B3 ·w3,k−1, (13)

where

B3 =


0
0
0
1

 (14)

and

w3,k−1 = ∆ϕcompass,k−1 (15)

The walking speed v is set to 0, therefore the pedestrian is
not changing its position during the prediction steps. However,
the direction changes ∆ϕcompass,k−1 of the compass influence
the direction information ϕ. Therefore the correct direction
is known if the pedestrian starts to walk again. The compass
instead of the gyro is used, because longer standing times
and the necessary integration of the angular speed could lead
to erroneous direction information if the gyroscope suffers
from an offset. In the update step, the position data of the
GPS are incorporated, to allow a convergence to the GPS
position, which is assumed to be dependable in longer static
measurements. The walking speed v is set to 0, the direction
information ϕ is directly taken from the compass signal.

Fig. 6 shows the results of the PDR algorithm in a scenario
where the pedestrian starts to walk and executes a right
turn after a while. The red triangles indicate the position
information by the smartphone GPS, the gray circles the
dead reckoning positions and the light gray line shows the
comparable ublox trace. The black connection lines illustrate
the corresponding positions of the smartphone GPS and the
dead reckoning algorithm during the update step.

In the beginning phase, the positions of the PDR algorithm
indicate a faster change since the speed of the pedestrian
is directly based on the walking speed estimation. On the
contrary, the smartphone positions react delayed during this
phase. A similar behaviour can be seen during the turning
phase. It takes some steps, until the smartphone positions
converge to the dead reckoning and ublox positions.

All in all, the requirements regarding the increased sample
rate and the detection of abrupt movement changes can be
fulfilled with the PDR algorithm. However, if the absolute
positions of the smartphone GPS sensor are erroneous over
a longer time period but similar to the calculated position
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based on the inertial sensors, no improvement by the algorithm
can be achieved. This can be seen in the phase between the
beginning and the turning. Both position traces are parallel
with the dead reckoning trace slowly converging to the GPS
trace. This is due to the fact, that another reference is missing
in this case. Therefore, short-term corrections are possible with
the algorithm, but no long-term corrections.

D. Computing time on smartphones

In this subsection the necessary execution times of our algo-
rithm are analyzed. Further test runs under the same conditions
as in section III-C were executed, where the PDR algorithm
was executed on the smartphone while the test person was
walking outside and the data were transmitted. A Samsung
Galaxy S II and a HTC Sensation were used in our tests. In
the test runs, the GPS was captured with a sample rate of
1 Hz. The algorithm was executed with a frequency of 10 Hz,
hence delivering position data every 100 ms. Fig. 7 shows the
execution times for the PDR algorithm in an exemplary test run
with both smartphones. For both smartphones the execution
times are in the range of 2 ms or less with some outliers due
to internal processes of the smartphones. Evaluating all of our
test runs, we could ascertain that 95 % of all executed dead
reckoning tasks were completed within 2 ms. With a position
update every 100 ms the realtime requirement is fulfilled,
allowing even higher position update rates.

IV. CONCLUSION

We presented an approach for improving the GPS data that
are delivered by off-the-shelve smartphones by applying a
dead reckoning algorithm for pedestrians. The results show
that an improved position accuracy is possible in special
scenarios like turnings or sudden motion changes. However,
the approach suffers from some restrictions at this point of
time. To unambiguously evaluate the sensor signals of the
smartphone, its position had to be restricted. Further research
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Fig. 7. The necessary execution times for the algorithm implemented on two
smartphones show that the realtime requirement is fulfilled.

is necessary to determine the motion state of the pedestrian
if the smartphone is placed in another way, e.g. inside of
a handbag. Moreover, a more differentiated walking speed
estimation is necessary which takes the pedestrians individual
walking behaviour into account. However, we could show that
all necessary calculations for the PDR can be executed on
the smartphone in realtime. This shows that the approach
of using smartphones is promising for the development of
Car2Pedestrian communication systems for vulnerable road
users.
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