
Situation analysis and decision making for active
pedestrian protection using Bayesian networks

Christian Braeuchle
Chassis Systems Control

Robert Bosch GmbH
74232 Abstatt, Germany

Email: christian.braeuchle@de.bosch.com

Johannes Ruenz
and Folko Flehmig

Chassis Systems Control
Robert Bosch GmbH

74232 Abstatt, Germany

Wolfgang Rosenstiel
and Thomas Kropf

Wilhelm-Schickard-Institute
Eberhard Karls University Tuebingen

72076 Tuebingen, Germany

Abstract—One of the major challenges in advanced driver
assistance systems is the interpretation of available environment
information. It is the foundation for system activation strategies
and decision making. Often deterministic motion models are used
to predict pedestrian movements, which leads to constricted va-
lidity. Investigations have shown that uncertainty is not negligible
in pedestrian models due to their high dynamic range. Standard
concepts of decision making are not able to deal with uncertain
motion models. Decision making gets even more difficult if
different emergency maneuvers can be selected, i.e. emergency
braking, evasive steering or a combination of both. The benefit of
each of these maneuvers depends highly on the future position of
the pedestrian. An appropriate maneuver can hardly be selected
based on a deterministic pedestrian model. Here, a probabilistic
approach to situation analysis based on a pedestrian model with
uncertainty is suggested. An emergency maneuver is selected
considering the optimal injury risk reduction for the pedestrian.

I. INTRODUCTION

Advanced driver assistance systems are available in an
increasing amount of new vehicles. These systems are able
to increase driving comfort as well as safety [1], due to
recent surround view sensor systems and methods for situation
analysis. Typically such systems are designed in a hierarchical
structure, where a sensor provides information of the vehicle
environment. This data is further used to generate an environ-
mental model and extract situational knowledge, as stated in
[2], [3]. In particular, predicting future behaviour of the driver
and other road users is a challenging task for driver assistance
systems. For example, in [4] a collision avoidance system
using sensor data fusion of radar, video and laser sensors
is shown to increase the quality of the environment model.
Other systems focus on handling uncertain information for
more realistic situation interpretation [5], [6], [7].

The presented paper focuses on a driver assistance system
for pedestrian protection. Therefore it is focused on motion
modelling and prediction for vehicles and pedestrians in col-
lision scenarios. The special challenge of pedestrian motion
prediction is a high dynamic range of possible movements.
This leads to a highly uncertain predictability. The uncertainty
can be reduced by restricting pedestrian dynamic to physio-
logical possible limits [8] or corresponding to experimental
investigations as stated in [9]. Other systems further consider
uncertainty in pedestrian motion prediction, as stated in [10].

In [11] a method for determining the time-to-collision (TTC)
under uncertainty is introduced.

In the following, a method for a probabilistic situation
analysis will be presented. A hybrid Bayesian network will
be introduced for motion prediction of critical driving sce-
narios with pedestrians. Uncertainties of pedestrian behavior
models and measurements will be considered. The pedestrian
motion prediction is based on the experimental research of
[12]. Besides assessing a collision risk, the effect of possible
emergency maneuvers is evaluated. Since drivers are able to in-
fluence emergency maneuvers, in particular evasive maneuvers
with steering wheel intervention, the results of an according
end-user study [13] are considered. The output of the Bayesian
network is a mixture of multivariate Gaussian distributions
to describe the scenario as well as the effect of different
emergency maneuvers. To identify the driving maneuver with
the lowest injury risk probability for the pedestrian a maneuver
decision as stated in [14] is used.

II. SYSTEM DESIGN

A major task of an active pedestrian protection system is
the situation interpretation and resulting system activation.
Therefore it is necessary to predict the future motion of the
vehicle and the pedestrian. In the following, scenarios with
one vehicle and one pedestrian are considered. The initial
state sveh(t0) of the vehicle is basically measured by inertial
sensors and represented by its normally distributed velocity
vveh ∼ N (µv,veh,Σv,veh) defined in driving direction, as well
as the corresponding steering angle δveh ∼ N (µδ,veh,Σδ,veh)
and orientation ψveh ∼ N (µψ,veh,Σψ,veh). The vehicle state
sveh(t) is defined as:

sveh(t) = [xveh(t), yveh(t), vx,veh(t), vy,veh(t),

δveh(t), ψveh(t)]T
(1)

The pedestrian’s state sped(t) is equivalent to equation
(3) and contains for t=t0 values measured by a surround
view sensor. Additionally a multivariate density distribution
of pedestrian positions in x- and y-direction dped, as well as
the corresponding distribution of vehicle positions dveh are
defined. The origin of the underlying coordinate system is



defined at the center of the vehicle front for t=t0.

dped ∼ N (µd,ped,Σd,ped)

with µd,ped = (µx, µy)T
(2)

sped(t) = [xped(t), yped(t), vx,ped(t), vy,ped(t),

ψped(t)]T
(3)

To perform a motion prediction based on the above men-
tioned states sped(t0) and sveh(t0), prediction models for
pedestrian and vehicle are required. Section II-A describes
appropriate prediction models. Further section II-B introduces
a method to model relations and dependencies by using a
hybrid Bayesian network. The output of the Bayesian network
represents the distribution of the pedestrian position and
velocity relative to the vehicle within a defined prediction
time. This distribution is used in section II-D to obtain the
corresponding collision risk within τ using the contour models
for the pedestrian and vehicle as introduced in section II-C.
Decision making and maneuver selection will finally be shown
in section II-E.

A. Motion prediction

Since pedestrians are able to perform high dynamic move-
ments, adequate models are required to restrict the possi-
ble dynamic into realistic assumptions. In the following the
motion model stated in [12] will be used. It is based on
an experimental study to identify maximum acceleration and
deceleration potential relating to an initial velocity and motion
direction. Besides the pedestrians dynamic range, a probability
distribution within this dynamic range is required. As an
initial assumption the distribution will be defined as uniformly
distributed. To simplify the following calculation steps, it
will be approximated by a weighted mixture of Gaussian
distributions. This approach further allows to consider other
probability distributions, like motion transitions as stated in
[15] or motion prediction based on movement detection from
specific body parts as introduced in [7].

Motion prediction for the vehicle is divided in different
possible maneuvers j. As a reference maneuver j=0 the actual
vehicle motion is predicted using a CA model, which assumes
a constant acceleration and a constant steering angle within the
prediction horizon. In addition, different emergency maneuvers
are defined. This paper will concentrate on a emergency
braking maneuver j=1, as well as a combined braking and
steering maneuver j=2. The emergency braking maneuver is
modeled using realistic braking performance of a prototype
vehicle with ESC as a hydraulic actuator. The combined
braking and steering maneuver considered here uses an electric
power steering for lateral system intervention. Since the driver
is able to overrule or amplify such a steering intervention,
this effect has to be considered in the corresponding motion
model. The results of the end-user study, as published in
[13], are used to quantify the drivers’ influence and adapt the
motion model using appropriate assumptions. The longitudinal
braking performance of the combined maneuver is slightly
reduced compared to an emergency brake.

sped(t0) Mped Mveh sveh(t0)

Aped j

sped(t) sveh(t)

ssit(t)

Figure 1. Bayesian network for motion prediction

B. Bayesian network

The representation of relations between measurement data
and model assumptions is realized using a Bayesian network
as shown in figure 1. It allows to visualize dependencies in
a comprehensible structure. Nodes of the Bayesian network
represent random variables with positions, velocities and cor-
responding prediction variables. The nodes are structured in
a directed acyclic graph, where edges represent conditioned
dependencies. Measured data will be used as evidence (light
gray) for the top layer nodes, which are drawn as circles
for continuous data and rectangles for discrete probability
variables. The output (black) of the Bayesian network is a
mixture of multivariate Gaussian distributions containing the
relative position and velocity of the pedestrian regarding the
vehicle for a specific prediction time τ .

In [16] and [17] methods for belief propagation in continu-
ous and hybrid Bayesian networks are introduced. Regarding
to the fixed structure and evidence only influencing nodes
without parents of the proposed network, the inference can
be computed top down.

The left part of the network in figure 1 describes the motion
prediction for the pedestrian. The node sped(t0) represents the
measured state of the pedestrian. Regarding to the used motion
model of [12], the initial pedestrian velocity is classified into
its most probable state:

Aped ∈ {Standing, Walking, Jogging, Running} (4)

The continuous node Mped represents the future dynamic of
the pedestrian and is conditioned by the state of Aped. Since
[12] defines a range of possible accelerations for each initial
state, this range is represented as an approximating mixture of
Gaussian distributions. The linear dependency of the predicted
state sped(t) is given by physical relations of the initial state
sped(t0) and the used motion model Mped.

In a similar way the future motion of the vehicle is predicted
assuming a specific driving maneuver and its corresponding
motion model Mveh including longitudinal and lateral dynam-
ics. The predicted, continuous state of the vehicle is sveh(t).



t = t
3

t = t
2

t = t
1

t = t
0

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15
dsit(t)

x in m

y
in

m

Figure 2. Output for different prediction times

Finally the results of the motion models are combined in a
state representing the predicted situation ssit(t). In particular,
the position dsit is defined by

dsit(t) = dped(t)− dveh(t) ∼ N (µsit(t),Σsit(t)) (5)

Figure 2 shows the output node for different prediction times
of the same initial state, containing mixtures of multivariate
density functions for the relative position dsit(t).

Due to its modular structure, the introduced method allows
to include further knowledge of pedestrian motion or driver
interaction. The discrete nodes Aped and j are expandable to
a partial network of discrete nodes modelling more detailed
dependencies. The partial networks can be solved as stated in
[18] thereby Aped and j will be used as interface nodes to the
continuous part of the Bayesian network.

C. Geometric modeling

In order to estimate the collision risk it is necessary to define
a formal condition for a collision. For this reason geometric
models for the pedestrian and the vehicle are introduced.
The function gveh(x, y, sveh(t)) describes the geometry of the
vehicle and is 1, if a point with coordinates x and y is
inside the vehicle contour at time t and 0 otherwise. In figure
3 the vehicle model gveh is displayed in gray for time t0.
Accordingly, gped(x, y, sped(t)) is 1 if x, y is inside the contour
of the pedestrian at time t (see figure 3). The functions gveh
and gped consider the actual shape of the vehicle and pedestrian
for t = t0. For t 6= t0, a shift in the position, as well as a
rotation according to the predicted states sveh(t) and sped(t)
are considered.

The collision risk estimation, as introduced in section II-D,
is based on the relative distance dsit, achieved by the motion
prediction from section II-B. For this reason a combined
geometric model gsit(sveh(t), sped(t)) is defined as 1, if the
corresponding pedestrian model has any intersection with the
vehicle model. the combined model is displayed in figure 4.

The resulting time-variant geometric model gsit(t) therefore
represents the combined contour of the vehicle and pedestrian
for each prediction time.
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Figure 3. Exemplary situation
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Figure 4. Combined situation

D. Collision risk estimation

To detect an imminent collision of the vehicle with
a pedestrian within the specified prediction period T =
{t|t ∈ [t0, t0 + τ ]}, it is necessary to estimate the collision risk
pcoll within this period. In this section a method for collision
risk estimation is introduced. The method is based on the
predicted position dsit(t) for all t ∈ T as described in section
II-B. Further the geometric models, in particular the combined
geometric model gsit from section II-C are used.

Figure 3 shows one situation as an example. The vehicle
is assumed to drive straight ahead. A pedestrian crosses the
vehicle’s driving corridor from the right side. The predicted
trajectories of the vehicle and pedestrian are shown. In par-
ticular, the solid lines in figure 3 show the means of the
predicted trajectories. Exemplarily, the standard deviations of
the predictions are indicated by ellipses for two timestamps t1
and t2. Figure 4 shows the situation with the combined models
assuming ψveh(t) = ψped(t) = 0 for all t ∈ T .

It can be seen, that the geometric model of the vehicle is
extended by the pedestrian geometric model. The combined
state ssit(t) can be interpreted as the motion observed in the
driving vehicle. In general, the probability of the pedestrian
position being inside certain limits can be obtained by solving
the integral over the density function dsit(t) for a specific time
t.
P (x1 ≤ x ≤ x2, y1 ≤ y ≤ y2) =∫ x2

x1

∫ y2

y1

1

2π|Σsit(t)|
1
2

exp
{
− 1

2ΘTΣsit(t)
−1Θ)

}
dxdy

(6)

with

Θ = ([x, y]T − dsit(t)) (7)
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Figure 5. Normalized situation

For criticallity assessment the collision risk pcoll is calcu-
lated by solution of this integral for all t ∈ T and using the
corresponding geometric model gsit(t) as integration limits.
Since dsit(t) and gsit(t) depend on a specific prediction time,
the integration over different density functions with different
integration limits would be necessary and lead to a challenge
in calculating the resulting collision probability. However, a
practical approach is to normalize dsit(t) to a standard normal
distribution where the symmetric covariance matrix Σsit is
decomposed by a singular value decomposition as follows:

Σsit = U

[
σ2
1 0

0 σ2
2

]
UT (8)

To normalize the density function dsit(t) is substituted by z:

z = U

[
σ1 0
0 σ2

]
UT (dsit − µsit) (9)

To calculate pcoll the integral is computed over the area A.
A is defined as the area enveloped by gsit(t) for all t ∈ T ,
as marked in gray in figure 5. Finally the collision probability
pcoll can be calculated as

pcoll =

∫∫
A

fz(z)d
2z (10)

with

fz(z) =
1

2π
exp
{
− 1

2z
T z
}

(11)

In figure 5, the standard normal distribution of dsit(t), as
well as an analogously transformed geometric model gsit(t)
for time stamps t0, t1 and t2 are illustrated. For example,
the collision risk for prediction time t=t3 of figure 2, is
pcoll=0.8. The validation of this method was done performing
Monte Carlo experiments for the same motion prediction.
The collision risk can then be obtained by calculating the
percentage of trajectories crossing the geometric model.

1) Example: The following example shows a simplification
of the above described method, assuming only collisions with
the vehicle front and without rotation of the geometric model
ψveh(t) = 0 for all t ∈ T . The geometric model for the vehicle
is therefore only defined by a line in y-direction from −wveh

2
to wveh

2 , with wveh as the length of the vehicle’s front. The
pedestrian’s geometric model will be reduced to a point at

its own origin. Assuming that z from equation (9) is strictly
monotonic increasing in x-dimension the collision risk pcoll
can be determined by solving the integral

pcoll =

∫∫
A

fz(z)d
2z (12)

=

∫ χ(t0+τ)

χ(t0)

∫ φ(χ−1(x))+
wveh
2

φ(χ−1(x))−wveh
2

fz(z)d
2z (13)

whereby the functions χ(t) and φ(t) are defined as[
χ(t) φ(t)

]T
= z(t) (14)

and χ−1 is the inverse function of the invertible function χ.
Further it is possible to write pcoll dependent from t, φ(t), χ(t)
and its derivative χ′(t):

pcoll =

∫ t0+τ

t0

∫ φ(t)+
wveh
2

φ(t)−wveh
2

fd(χ(t), y)χ′(t)dydt (15)

with

fd(x, y) = fz(z) (16)

Then an analytical solution for the collision probability can be
calculated from equation (12).

E. Maneuver decision

The final task of the introduced pedestrian protection system
contains decision making. If a sufficiently high collision risk
(see section II-D) is estimated, each of the prediction maneu-
vers j (see section II-A) will be rated regarding their effect.
In particular, the reduction of the pedestrian’s injury risk is
used to determine the benefit ξ of each emergency maneuver
regarding the reference maneuver as introduced in [14]. If
there is an emergency maneuver jopt resulting in an injury
risk lower than all other maneuvers, especially the reference
maneuver j=0, jopt will be executed by the system.

III. SYSTEM VALIDATION

An end-user study with 23 test person was carried out for
system validation. The test person were instructed to drive on
a track with parking vehicles on the ride side. During one
test run with 50kph a pedestrian dummy appears surprisingly
for the test person and enters the drive lane, as shown in
figure 6. The timing is chosen, that a normal driver is not
able to avoid the collision by an emergency braking maneuver,
however steering can lead to collision avoidance. Overall 35
valid test runs are recorded for system validation. In 8 of these
tests the driver was able to initiate an emergency maneuver,
before the system detected a sufficiently high collision risk.
This leads to an amount of 27 evaluable data sets. In 20 test
runs (set-up 1) the pedestrian dummy was entering the road
0.5m, in 7 further tests (set-up 2) the dummy was moved
1m inside the driving lane. The video data and additional
driver inputs like steering and pedal interactions are used to
perform a subsequent simulation. In set-up 1 the expected
system behaviour is a high collision risk estimation and a
maneuver decision favoring an combined braking an steering



Figure 6. Video data of end-user study

Figure 7. Example for system activation

maneuver. In set-up 2 the collision risk and maneuver decision
should lead to an emergency braking maneuver.

The results of set-up 1 show, that in 13 of 20 test runs
the proposed system directly selected the combined braking
and steering maneuver. In 7 data sets, an emergency braking
maneuver was chosen due to the predicted collision.

In test set-up 2 an emergency braking maneuver was trig-
gered in 4 of 7 data sets. For 3 situations a combined braking
and steering maneuver was selected, two of them regarding to
a steering interaction started by the driver shortly before the
actual system activation.

Finally, figure 7 shows an example situation at the time
of system activation. The pedestrian is detected besides the
drive lane by the surround view sensor. Due to the vehicle
speed of 12.87ms and a measured pedestrian lateral velocity
of 1.58ms the motion models predict a high collision risk and
an emergency maneuver for collision avoidance is triggered.

IV. CONCLUSIONS

The paper introduced a method to combine the motion
prediction of pedestrians and vehicles. The approach allows
different types of motion models for vehicles and pedestrians,
even for complex driving maneuvers. In particular, emergency
maneuvers like emergency braking or evasive maneuvers in-
cluding the driver influence are modeled. The motion predic-
tion produces a multivariate mixture of Gaussian distributions
describing the relative position of the pedestrian relating to the
vehicle. Further, the collision risk within a defined prediction
time is obtained based on the prediction output. The system
design is implemented to perform subsequent simulations of
recorded video data and vehicle data including driver interac-
tions. A first validation is done by using data of an end-user
study with naı̈ve drivers. The validation shows comprehensible
results, even in maneuver decision for emergency braking and
evasive maneuvers.

The modular system design allows to combine the motion
prediction with further situational knowledge, for example
due to more detailed classification methods, object tracking
or prediction of driver interaction. Therefore enhancements in
motion modeling support an increased robustness in situation
analysis and constitutive decision making.
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