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Abstract

In practical applications the sole reconstruction of signals by its samples
is sometimes not sufficient. Often, some processed version of the signal is of
interest and must be approximated by using only the samples of the signal.
In this paper, the possible reconstruction kernels are characterized. Then,
the convergence behavior of general approximation processes for transla-
tion invariant, linear, and bounded operators is analyzed for signals in the
Paley-Wiener space PW1

π
and these kernels. It is shown that the Hilbert

transform is a universal operator in the sense that the peak value of all
possible approximation processes diverges unboundedly for some signal in
PW1

π
, regardless of the oversampling factor and the kernel. Furthermore,

for all approximation processes and all points in time, there exists an op-
erator such that the approximation process diverges in this point. The
results are compared to the approximation behavior of the Hilbert trans-
form, operating on continuous-time signals. Moreover, a simple criterion
based on the exponential function as test signal is developed for answering
the question of whether or not an approximation process is convergent for
a given operator.
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1 Introduction

In many application areas the conversion of continuous-time signals to discrete-
time signals and vice versa plays an important role. This is due to the fact that
modern signal processing is done nearly always with digital processors while the
physical quantities of the real world are always analog, i.e., continuous in time.
Therefore, the conversion of the discrete-time signal back into a continuous-time
signal by some reconstruction process is essential. The Shannon sampling series
[26] is probably the most prominent example of a reconstruction process. It
has been widely used and plays an important role in many theoretical concepts.
In his “Lectures on Computation,” Richard Feynman discusses the problem of
transmitting a function of time and writes in this context: “Consideration of
such a problem will bring us on to consider the famous Sampling Theorem,
another baby of Claude Shannon” [10, p. 132].

The sampling theorem has a long history and many famous names like Whit-
taker [29], Kotel’nikov [15], and Raabe [23] are linked with its discovery. Shan-
non originally introduced the sampling theorem for signals with finite energy.
This special case is examined under various aspects in [28]. Many authors have
tried to extend the sampling theorem to a broader class of functions, e.g., to gen-
eralized bandlimited functions [30, 7, 19]. However, these extensions consider
only the pointwise convergence of the corresponding series. This means that for
a given order of the partial sum, the approximation error cannot be bounded
uniformly for all points in time, which complicates the use of these series in real
applications. Hence, we focus on convergence that is uniform and the signal
space PW1

π, which is the largest space in the scale of Paley-Wiener spaces.

Sampling series with more general kernels (bandlimited and non-bandlimited)
have been analyzed in numerous publications. [13] deals with finite-energy
bandlimited signals and gives an upper bound for the truncation error of the
Shannon sampling series with oversampling. The truncation error for non-
bandlimited, uniformly continuous and bounded signals is studied in [6]. Further
results can be found in [12, Chapter 6] and [4, 5, 9]. Sampling series with Gaus-
sian multipliers are another topic, which recently attracted attention. In [21]
an upper bound for the peak approximation error of the Shannon sampling se-
ries with Gaussian multiplier was derived for certain bandlimited signals with
finite energy. [25] extends the result by providing error bounds for larger signal
spaces, including non-bandlimited signals and entire functions. The convergence
behavior for more general kernels was analyzed in [22].

Further extensions and generalizations of the sampling theorem are treated
in the overview article [14], which contains numerous references itself, and in
[16, 17]. Recent developments in sampling theory can be found in [11, 12, 18].

Often, the interest is not in the signal itself but in some processed version of
it. This might be the derivative, the Hilbert transform, or the result of any other
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linear operator T . Thus, the goal is to approximate the desired transformation
Tf of a signal f by an approximation process, which uses only finitely many
samples of the signal, taken at or above Nyquist rate. Exactly as in the case
of signal reconstruction, the convergence behavior is important for practical
applications.

One possible application for this sampling-based signal processing approach
is in sensor networks. There, the signal of interest is some physical quantity, for
example, temperature or electric field intensity, and the task is to approximate
some transformation of this signal by using only the samples of the signal, which
are produced by the sensors.

2 Comparison: Analog and Digital Signal Processing

In order to continue, we need some notation and definitions. Let f̂ denote the
Fourier transform of a function f , where f̂ is to be understood in the distribu-
tional sense. Lp(R), 1 ≤ p < ∞, is the space of all the pth power Lebesgue
integrable functions on R, with the usual norm ‖ · ‖p, and L∞(R) the space of
all functions for which the essential supremum norm ‖ · ‖∞ is finite. C∞

0 [t1, t2]
denotes the space of all infinitely differentiable functions on R whose support is
in [t1, t2]. Furthermore, lp, 1 ≤ p < ∞, is the space of all sequences such that
the p-norm ‖ · ‖p is finite, and l∞ denotes the space of bounded sequences with
the supremum norm ‖ · ‖l∞ .

For σ > 0, let Bσ be the set of all entire functions f with the property that
for all ǫ > 0 there exists a constant C(ǫ) with |f(z)| ≤ C(ǫ) exp((σ + ǫ)|z|) for
all z ∈ C. The Bernstein space Bp

σ consists of all signals in Bσ, whose restriction
to the real line is in Lp(R), 1 ≤ p ≤ ∞. A signal in Bp

σ is called bandlimited
to σ. By the Paley-Wiener-Schwartz theorem, the Fourier transform of a signal
bandlimited to σ is supported in [−σ, σ]. For 1 ≤ p ≤ 2 the Fourier transform is
defined in the classical and for p > 2 in the distributional sense. It is well known
that Bp

σ ⊂ Bs
σ for 1 ≤ p ≤ s ≤ ∞. Hence, every signal f ∈ Bp

σ, 1 ≤ p ≤ ∞, is
bounded.

For σ > 0 and 1 ≤ p ≤ ∞, we denote by PWp
σ the Paley-Wiener space of

signals f with a representation f(z) = 1
2π

∫ σ
−σ g(ω) eizω dω, z ∈ C, for some

g ∈ Lp[−σ, σ]. If f ∈ PWp
σ then g(ω) = f̂(ω). The norm for PWp

σ, 1 ≤ p < ∞,
is given by ‖f‖PWp

σ
= ( 1

2π

∫ σ
−σ|f̂(ω)|p dω)1/p.

As a consequence of Parseval’s equality we have B2
π = PW2

π. Furthermore,
the Hausdorff-Young inequality leads to Bq

π ⊃ PWp
π for 1 < p ≤ 2, 1/p+1/q = 1,

and Hölder’s inequality to PWp
σ ⊃ PWs

σ for 1 ≤ p < s ≤ ∞. Moreover, it holds
that ‖f‖∞ ≤ ‖f‖PW1

π
.

Since it is desirable to have a stable reconstruction for as large a space of
signals as possible, we focus our analysis on the space PW1

π, because PW1
π is

the largest space in the scale of Paley-Wiener spaces with bandwidth π.
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Next, we discuss some basic properties of bandlimited signals that illustrate
the relationship between continuous-time and discrete-time signals and, thus,
the connection between analog and digital signal processing. The spaces Bp

π

and lp for 1 < p < ∞, for instance, can be used interchangeably because of
the isomorphism between them. This isomorphism is established by the linear
sampling operator Sπ : Bp

π → lp, f 7→ (f(k))k∈Z and the linear interpolation

operator Tπ : lp → Bp
π, (f(k))k∈Z 7→

∑∞
k=−∞ f(k) sin(π(t−k))

π(t−k) , which is given by
the Shannon sampling series.

A very useful tool in the convergence analysis of the Shannon sampling series
is the Plancherel-Pólya theorem [27, 20].

Plancherel-Pólya Theorem. Let 1 < p < ∞. There are two constants

C1(p) > 0 and C2(p) > 0, depending only on p, such that for all f ∈ Bp
π

C1(p)

(
∞∑

k=−∞

|f(k)|p

)1/p

≤

(∫ ∞

−∞
|f(t)|p dt

)1/p

≤ C2(p)

(
∞∑

k=−∞

|f(k)|p

)1/p

. (1)

Note, the first inequality of (1) also holds for p = 1 and p = ∞. It is known
in mathematical literature that the second inequality (1) cannot be valid for
p = 1 and p = ∞ (see corresponding remarks in [27, p. 11 and p. 22]).

For signals f ∈ Bp
π, 1 < p < ∞, the convergence of the Shannon sampling

series can be shown easily. Since

(SNf)(t) :=
N∑

k=−N

f(k)
sin(π(t − k))

π(t − k)

is a finite linear combination of sinc functions, for f ∈ Bp
π, 1 < p < ∞, f − SNf

is in Bp
π, too. Therefore,

‖f − SNf‖p ≤ C2(p)

(
∞∑

k=−∞

|f(k) − (SNf)(k)|p

)1/p

≤ C2(p)




∑

|k|>N

|f(k)|p




1/p

,

and consequently limN→∞‖f −SNf‖p = 0. Note that ‖f −SNf‖∞ ≤ C3(p)‖f −
SNf‖p, for some constant C3(p). Thus, for f ∈ Bp

π, 1 < p < ∞, the peak
error in the approximation supt∈R|f(t)−SNf(t)|, made by the truncation of the
Shannon sampling series to N summands, can be bounded above and goes to
zero for N → ∞. Since B1

π ⊂ B2
π, this result is also valid for p = 1.

Furthermore, we have the uniform convergence of the Shannon sampling
series for the for the Paley-Wiener spaces PWp

π, p > 1, because Bq
π ⊃ PWp

π for
1 < p ≤ 2, 1/p + 1/q = 1, and PWp

σ ⊂ PW2
σ for p > 2.

For f ∈ PW1
π the situation is different. In [2] it has been shown for a

very general class of axiomatically defined reconstruction processes that a stable
reconstruction is not possible in general.
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2.1 Sampling-based Signal Processing

In this paper we analyze the question how signal processing operations, defined
for continuous-time signals, can be approximated by using only the samples of
the signal. In order to do this we need a reconstruction process, which generates
the continuous time-signal out of the samples. We approach this problem not
by considering one specific reconstruction process, e.g., the Shannon sampling
series, but by doing the investigation for a whole class of reconstruction pro-
cesses. The analyzed reconstruction processes Aa

N,φ, N ∈ N, are of the general
structure

(Aa
N,φf)(t) :=

N∑

k=−N

f

(
k

a

)
φ

(
t −

k

a

)
, (2)

where a ≥ 1 and φ ∈ B∞
aπ is such that Aa

N,φ has the M-property.

Definition 1. For given a ≥ 1 and φ ∈ B∞
aπ, we say a reconstruction process

Aa
N,φ has the M-property if

lim
N→∞

‖f − Aa
N,φf‖PW2

aπ
= 0

for all f ∈ PW2
π.

The M-property, where M stands for minimum requirement, is not a practical
restriction. It is a kind of minimum requirement, i.e., we require at least a
reconstruction for signals in PW2

π.

Example 1. If a > 1, many kernels φ ∈ B∞
aπ are possible. For example, kernels

φ with trapezoidal shape in the frequency domain, i.e.,

φ̂(ω) =






1
a |ω| ≤ π
|ω|−aπ
aπ(1−a) π < |ω| < aπ

0 |ω| ≥ aπ,

or kernels φ with a cosine roll-off characteristic in the frequency domain, i.e.,

φ̂(ω) =






1
a |ω| ≤ π
1
2a

(
1 − sin

[
π

a−1

(∣∣ω
π

∣∣− a+1
2

)])
π < |ω| < aπ

0 |ω| ≥ aπ,

can be used. If a = 1, the only possible kernel is the sinc kernel

φ(t) =
sin(πt)

πt
.

In Section 3 we will see that all kernels above belong to the class M(a), and that
all kernels in M(a) lead to reconstruction processes that have the M-property.
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Observation 1. Since for all a ≥ 1 and each finite N ∈ N there is a fN ∈
PW2

π such that fN (0) = 1 and fN (k/a) = 0, 1 ≤ |k| ≤ N , it follows for all
reconstruction processes that have the M-property that φ ∈ PW2

aπ.

Definition 2. W is the space of continuous signals f with the property that
f̂ ∈ L1(R) exists in the distributional sense and f(t) = 1

2π

∫∞
−∞ f̂(ω) eiωt dω.

The norm is given by ‖f‖W = 1
2π‖f̂‖1.

Definition 3. By L we denote the set of translation invariant, linear, and
bounded operators T : W → W, and by L(PWp

π), 1 ≤ p ≤ ∞, the set of
translation invariant, linear, and bounded operators T : PWp

π → PWp
π.

Observation 2. For every T ∈ L, there is exactly one function ĥT ∈ L∞(R) such
that

(Tf)(t) =
1

2π

∫ ∞

−∞
ĥT (ω)f̂(ω) eiωt dω (3)

for all f ∈ W, and the operator norm ‖T‖L := sup‖f‖W≤1
‖Tf‖W is given by

‖T‖L = ‖ĥT ‖∞.

Observation 2 allows us to identify the systems in L with functions in L∞(R)
and gives a representation in the form of the integral (3), which is valid for all
systems in L. For the sake of completeness, the proof of Observation 2 is given
in Appendix A. Conversely, every function ĥT ∈ L∞(R) defines an operator in
L. Thus, the space L is isometric isomorph to L∞(R).

Moreover, a look at the proof of Observation 2 reveals that every translation
invariant, linear, and bounded operator T : W → L∞(R) has the same repre-
sentation (3) with a unique function ĥT ∈ L∞(R), which implies that T ∈ L
and in particular, that the range of T is W. Furthermore, since ‖f‖∞ ≤ ‖f‖W ,
every operator T ∈ W is a translation invariant, linear, and bounded operator
T : W → L∞(R). This behavior is specific to the space W and does not neces-
sarily hold for other spaces. For example, the range of a translation invariant,
linear and bounded operator T : L2(R) → L∞(R) is not L2(R) in general.

Furthermore, it can be shown that every T ∈ L(PWp
π), 1 ≤ p ≤ 2, has the

representation

(Tf)(t) =
1

2π

∫ π

−π
ĥT (ω)f̂(ω) eiωt dω, (4)

with ĥT ∈ L∞[−π, π], and that the operator norm is given by ‖T‖L(PWp
π) =

‖ĥT ‖∞. Consequently, we do not need to distinguish between operators in
L(PW1

π) and, in L(PW2
π), because both can be identified with ĥ ∈ L∞[−π, π].

Example 2. The Hilbert transform H is an example for an operator in L. The
Hilbert transform f̃ of a signal f ∈ W is defined by

f̃(t) = (Hf)(t) =
1

2π

∫ ∞

−∞
(−i sgn(ω))f̂(ω) eiωt dω,
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where sgn denotes the signum function. Obviously, ‖H‖L = 1 and consequently
H ∈ L.

Example 3. An example for an operator in L(PW1
π) is the differential operator

D, which is defined by

(Df)(t) =
1

2π

∫ π

−π
iωf̂(ω) eiωt dω.

Remark 1. All preceding considerations have been made for the bandwidth π.
However, they can be easily adapted to general bandwidths σ > 0.

Of course, it is natural to look for a way to calculate Tf from the samples of
f . This is the key idea of sampling-based signal processing: the whole signal is
not used to calculate some transformation of the signal, but rather the samples of
the signal. Obviously, this corresponds to the natural situation in digital signal
processing, where only samples of the signal are available. Thus, the question
whether and how Tf can be calculated from the samples of f is of practical
importance. Sampling-based signal processing should be potentially possible
because f is, as a bandlimited signal, uniquely determined by its samples, i.e.,
the whole information about the signal is contained in the samples.

For f ∈ PW2
π the situation is simple: We have

(Tf)(t) =
∞∑

k=−∞

f(k)hT (t − k) (5)

due to the convergence of the Shannon sampling series in the PW2
π-norm and

the continuity and linearity of T ∈ L(PW2
π). The series in (5) converges in

the PW2
π-norm and consequently uniformly on R. Because of the convergence

behavior of the Shannon sampling series for f ∈ PW1
π, in particular because

the Shannon sampling series is not convergent in the PW1
π-norm for signals in

PW1
π in general [1], we cannot expect such a behavior for PW1

π.
By considering oversampling and a variety of kernels, we analyze the con-

vergence behavior for a whole class of approximation processes, not only the
Shannon sampling series. For T ∈ L we have

(T a
N,φf)(t) := (TAa

N,φf)(t) =
N∑

k=−N

f

(
k

a

)
(Tφ)

(
t −

k

a

)
(6)

by applying T on (2). The expression Tφ, and thus equation (6), is well defined,
because φ ∈ PW2

aπ ⊂ PW1
aπ ⊂ W by Observation 1. Note that if the samples

{f(k/a)}N
k=−N are known, then (6) is a linear method to calculate an approxi-

mation of Tf . For N → ∞ one could hope that T a
N,φf is close to Tf in some

suitable norm.
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In many situations, oversampling eliminates convergence problems, because
it creates an additional degree of freedom for the kernel choice (see Example 1).
In particular, it is possible to use kernels that have a better concentration in
the time domain and thus lead to a better convergence behavior of the sampling
series. However, as we show in Section 4, oversampling cannot improve the
convergence behavior of (6) in general, i.e., there are operators T ∈ L for which
oversampling is useless.

3 Characterization of Sampling Series Kernels for

PW2
π

In Section 2 we have introduced and motivated sampling-based signal process-
ing. Next, general reconstruction processes shall be analyzed. We start by
characterizing the kernels φ for which the reconstruction process

(Aa
N,φf)(t) =

N∑

k=−N

f

(
k

a

)
φ

(
t −

k

a

)
, (7)

a ≥ 1, fulfills the M-property, i.e., it converges to f in the PW2
π-norm for all

f ∈ PW2
π.

Definition 4. M(a), a > 1, is the set of functions φ ∈ B1
aπ with φ̂(ω) = 1/a for

|ω| ≤ π.

The functions in M(a), a > 1, are suitable kernels for the sampling series
(7) because for all f ∈ PW1

π and a > 1 we have limN→∞‖f − Aa
N,φf‖∞ = 0

if φ ∈ M(a). We do not prove this statement here because it follows from
Corollary 2 and Lemma 1. Furthermore, for all φ ∈ M(a), a > 1, and all
f ∈ PW2

π we have limN→∞‖f − Aa
N,φf‖PW2

aπ
= 0 [8].

Definition 5. M2(a), a ≥ 1, denotes the set of all φ ∈ PW2
aπ such that

limN→∞‖f − Aa
N,φf‖PW2

aπ
= 0 for all f ∈ PW2

π.

Remark 2. The set M2(1) contains only the sinc kernel sin(πt)/(πt). Further-
more, by Observation 1, φ ∈ M2(a), a ≥ 1, if and only if φ ∈ B∞

aπ and Aa
N,φ

fulfills the M-property.

Obviously, the sets M(a) and M2(a) are related to each other by the inclu-
sion M(a) ⊂ M2(a), a ≥ 1. This relation can be more precisely characterized
by the following two lemmas, Lemma 1 and Lemma 2.

Lemma 1. Let φ ∈ B1
aπ. Then there exists a constant C4 such that

∑∞
k=−∞|φ(t−

k/a)| ≤ C4 for all t ∈ R.
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Proof. For g with ĝ ∈ C∞
0 [−(a + 1)π, (a + 1)π] and ĝ(ω) = 1, |ω| ≤ aπ, we have

φ(t) =
∫∞
−∞ φ(τ)g(t − τ) dτ and

N∑

k=−N

∣∣∣∣φ
(

t −
k

a

)∣∣∣∣ ≤
∫ ∞

−∞
|φ(τ)|

N∑

k=−N

∣∣∣∣g
(

t −
k

a
− τ

)∣∣∣∣ dτ.

Since
∑N

k=−N |g(t−k/a− τ)| ≤ C5, we obtain
∑∞

k=−∞ |φ (t − k/a)| ≤ C5‖φ‖B1
aπ

,
which completes the proof.

Lemma 2. φ ∈ M(a) if and only if φ ∈ M2(a) and there exists a positive

constant C4 such that
∑∞

k=−∞|φ(t − k/a)| ≤ C4 for all t ∈ R.

Proof. “⇒”: Since, M(a) ⊂ M2(a), a ≥ 1, it remains to show that there exists
a positive constant C4 such that

∑∞
k=−∞|φ(t−k/a)| ≤ C4 for all t ∈ R. However,

this is exactly the statement of Lemma 1.

“⇐”: By assumption a
∫ 1/a
0

∑∞
k=−∞ |φ (t − k/a)| dt ≤ C4, and since

a

∫ 1/a

0

∞∑

k=−∞

∣∣∣∣φ
(

t −
k

a

)∣∣∣∣ dt = a
∞∑

k=−∞

∫ (1−k)/a

−k/a
|φ(t)| dt = a

∫ ∞

−∞
|φ(t)| dt

by the monotone convergence theorem, we have a‖φ‖B1
aπ

≤ C4.

Remark 3. Lemma 2 shows that the class of kernels M2(a) is very large. This
is important in order not to impose too large a restriction on the permissible
kernels.

The set M2(a) can be explicitly characterized on the basis of Theorem 1, in
which the functional C2 : PW2

π → R,

C2(φ) = sup
N∈N



 sup
‖f‖

PW2
π
≤1

(
1

2π

∫

π≤|ω|≤aπ
|a(F a

N f̂)(ω)|2|φ̂(ω)|2 dω

) 1
2



 ,

with

(F a
N f̂)(ω) =

1

a

N∑

k=−N

f

(
k

a

)
e−iωk/a

plays an important role.

Theorem 1. Let a ≥ 1. Then φ ∈ M2(a) if and only if φ ∈ PW2
aπ and

1. φ̂(ω) = 1/a a.e. for |ω| ≤ π; and

2. C2(φ) < ∞.
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Remark 4. The conditions 1 and 2 of Theorem 1 have a descriptive interpreta-
tion. Condition 1 basically says that φ̂ should be constant in the passband, and
C2(φ) in condition 2 describes the weighted out-of-band energy of φ.

Proof. First part, “⇒”: Let a ≥ 1 and φ ∈ M2(a) be arbitrary but fixed. For
each N ∈ N we have

‖Aa
N,φf‖PW2

aπ
≤ ‖f‖∞

N∑

k=−N

‖φ‖PW2
π
≤ ‖f‖PW2

π
(2N + 1)‖φ‖PW2

π
,

which shows that Aa
N,φ : PW2

π → PW2
π is a bounded linear operator. Moreover,

since φ ∈ M2(a), we have, according to Definition 5, limN→∞‖Aa
N,φf‖PW2

aπ
=

‖f‖PW2
aπ

, and consequently supN∈N‖A
a
N,φf‖PW2

aπ
< ∞ for all f ∈ PW2

π. Thus,
it follows by the Banach-Steinhaus theorem [24, p. 98] that there exists a con-
stant C6 such that ‖Aa

N,φf‖PW2
aπ

≤ C6‖f‖PW2
π

for all f ∈ PW2
π and all N ∈ N.

Since

‖Aa
N,φf‖2

PW2
aπ

=
1

2π

∫ aπ

−aπ

∣∣∣∣∣

N∑

k=−N

f

(
k

a

)
φ̂(ω) e−iωk/a

∣∣∣∣∣

2

dω

=
1

2π

∫ π

−π
|a(F a

N f̂)(ω)|2|φ̂(ω)|2 dω +
1

2π

∫

π≤|ω|≤aπ

|a(F a
N f̂)(ω)|2|φ̂(ω)|2 dω (8)

≥
1

2π

∫ π

−π
|a(F a

N f̂)(ω)|2|φ̂(ω)|2 dω,

we obtain (
1

2π

∫ π

−π
|a(F a

N f̂)(ω)|2|φ̂(ω)|2 dω

) 1
2

≤ C6‖f‖PW2
π

for all f ∈ PW2
π and all N ∈ N.

Furthermore, for all f ∈ PW2
π with ‖f‖PW2

π
≤ 1 and f̂ ∈ C∞

0 [−π, π], we

have limN→∞ maxω∈[−π,π]|f̂(ω)−(F a
N f̂)(ω)| = 0 [31, p. 57] and since φ ∈ PW2

aπ,
it follows

(
1

2π

∫ π

−π
|f̂(ω)|2|φ̂(ω)|2 dω

) 1
2

=

(
1

2π

∫ π

−π
|f̂(ω) − (F a

N f̂)(ω) + (F a
N f̂)(ω)|2|φ̂(ω)|2 dω

) 1
2

≤

(
1

2π

∫ π

−π
|f̂(ω) − (F a

N f̂)(ω)|2|φ̂(ω)|2 dω

)1
2

+

(
1

2π

∫ π

−π
|(F a

N f̂)(ω)|2|φ̂(ω)|2 dω

)1
2

≤

(
max

ω∈[−π,π]
|f̂(ω) − (F a

N f̂)(ω)|2
) 1

2

‖φ‖PW2
π

+
1

a2
C6‖f‖PW2

π
,
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i.e.,
1

2π

∫ π

−π
|f̂(ω)|2|φ̂(ω)|2 dω ≤ C7.

Hence, ess supω∈[−π,π]|φ̂(ω)| < ∞, i.e, φ̂ restricted to [−π, π] is in L∞. Moreover,

(
1

2π

∫ π

−π
|f̂(ω)|2|1 − aφ̂(ω)|2 dω

) 1
2

=

(
1

2π

∫ π

−π
|f̂(ω) − a(F a

N f̂)(ω)φ̂(ω) + a(F a
N f̂)(ω)φ̂(ω) − af̂(ω)φ̂(ω)|2 dω

) 1
2

≤

(
1

2π

∫ π

−π
|f̂(ω) − a(F a

N f̂)(ω)φ̂(ω)|2 dω

) 1
2

+

(
1

2π

∫ π

−π
a2|(F a

N f̂)(ω) − f̂(ω)|2|φ̂(ω)|2 dω

) 1
2

≤

(
1

2π

∫ π

−π
|f̂(ω) − a(F a

N f̂)(ω)φ̂(ω)|2 dω

) 1
2

+ ess sup
ω∈[−π,π]

|φ̂(ω)|

(
1

2π

∫ π

−π
a2|(F a

N f̂)(ω) − f̂(ω)|2 dω

) 1
2

. (9)

Since limN→∞‖f − Aa
N,φf‖PW2

aπ
= 0 and

‖f − Aa
N,φf‖2

PW2
aπ

≥
1

2π

∫ π

−π
|f̂(ω) − a(F a

N f̂)(ω)φ̂(ω)|2 dω

by the same steps as in (8), it follows that

lim
N→∞

1

2π

∫ π

−π
|f̂(ω) − a(F a

N f̂)(ω)φ̂(ω)|2 dω = 0

for all f ∈ PW2
π. Consequently, for N → ∞ the right-hand side of (9) tends to

zero and we obtain

1

2π

∫ π

−π
|f̂(ω)|2|1 − aφ̂(ω)|2 dω = 0

for all f ∈ PW2
π. Hence, φ̂(ω) = 1/a a.e. for |ω| ≤ π.

Obviously, by the same calculation as in (8),

‖Aa
N,φf‖2

PW2
aπ

≥
1

2π

∫

π≤|ω|≤aπ
|a(F a

N f̂)(ω)|2|φ̂(ω)|2 dω,

and since sup‖f‖
PW2

π
≤1‖A

a
N,φf‖PW2

aπ
< C6, for all N ∈ N we have C2(φ) < ∞.
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Second part, “⇐”: Let conditions (1) and (2) of Theorem 1 be true. For all
f ∈ PW2

π and all ǫ > 0 there exists a g ∈ PW2
π with ĝ ∈ C∞

0 [−π, π] such that
‖f − g‖PW2

π
< ǫ. Moreover,

‖f − Aa
N,φf‖PW2

aπ
= ‖f − g + g − Aa

N,φg + Aa
N,φ(g − f)‖PW2

aπ

≤ ‖f − g‖PW2
aπ

+ ‖g − Aa
N,φg‖PW2

aπ
+ ‖Aa

N,φ(g − f)‖PW2
aπ

. (10)

The first term in (10) is bounded above by ‖f − g‖PW2
aπ

= ‖f − g‖PW2
π

< ǫ.

For the second term in (10) we obtain

‖g − Aa
N,φg‖2

PW2
aπ

=
1

2π

∫ π

−π
|ĝ(ω) − (F a

N ĝ)(ω)|2 dω

+
1

2π

∫

π≤|ω|≤aπ
|a(F a

N ĝ)(ω)|2|φ̂(ω)|2 dω.

Since g ∈ C∞
0 [−π, π], we have limN→∞ maxω∈[−π,π]|ĝ(ω) − (F a

N ĝ)(ω)|2 = 0 and
limN→∞ maxπ≤|ω|≤aπ|(F

a
N ĝ)(ω)|2 = 0. Thus, for all ǫ > 0 there exists a N0 =

N0(ǫ) such that

1

2π

∫ π

−π
|ĝ(ω) − (F a

N ĝ)(ω)|2 dω <
ǫ2

2

and
1

2π

∫

π≤|ω|≤aπ
|a(F a

N ĝ)(ω)|2|φ̂(ω)|2 dω <
ǫ2

2
,

and consequently ‖g − Aa
N,φg‖2

PW2
aπ

< ǫ2 for all N ≥ N0.

The third term in (10) can be further simplified according to

‖Aa
N,φ(g − f)‖2

PW2
aπ

=
1

2π

∫ π

−π
|(F a

N (ĝ − f̂))(ω)|2 dω

+
1

2π

∫

π≤|ω|≤aπ
|a(F a

N (ĝ − f̂))(ω)|2|φ̂(ω)|2 dω.

First of all,

1

2π

∫ π

−π
|(F a

N (ĝ − f̂))(ω)|2 dω

≤
1

2π

∫ aπ

−aπ
|(F a

N (ĝ − f̂))(ω)|2 dω =
1

a

N∑

k=−N

∣∣∣∣g
(

k

a

)
− f

(
k

a

)∣∣∣∣
2

≤
1

a

∞∑

k=−∞

∣∣∣∣g
(

k

a

)
− f

(
k

a

)∣∣∣∣
2

= ‖g − f‖2
PW2

π
< ǫ2
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by using Parseval’s theorem twice. Next, consider the operator defined by

(Ra
N,φf)(t) =

∫ ∞

−∞

N∑

k=−N

f

(
k

a

)
φ

(
t − τ −

k

a

)
sin(aπτ) − sin(πτ)

πτ
dτ,

which is nothing but the convolution of Aa
N,φf with the impulse response of the

ideal band-pass filter with band limits π and aπ. Then it follows that

‖Ra
N,φf‖PW2

aπ
=

(
1

2π

∫

π≤|ω|≤aπ
|a(F a

N f̂)(ω)|2|φ̂(ω)|2 dω

) 1
2

.

Let f ∈ PW2
π be an arbitrary signal; then f1 = f/‖f‖PW2

π
has the norm

‖f1‖PW2
π

= 1.

By assumption ‖Ra
N,φf1‖PW2

aπ
≤ C2(φ) and consequently

‖Ra
N,φf‖PW2

aπ
≤ C2(φ)‖f‖PW2

π
.

Thus, ‖Aa
N,φ(g − f)‖2

PW2
aπ

< ǫ2 + (C2(φ)ǫ)2.

Inserting all partial results into (10), we obtain ‖f − Aa
N,φf‖PW2

aπ
< ǫ(3 +

C2(φ)) for all N ≥ N0. Since ǫ was arbitrary, the proof is complete.

4 General Approximation Behavior

Our analysis up to this point in the paper addresses reconstruction processes of
the shape (7), which are a special case of the general approximation processes

(T a
N,φf)(t) := (TAa

N,φf)(t) =
N∑

k=−N

f

(
k

a

)
(Tφ)

(
t −

k

a

)
, (11)

because (7) is obtained from (11) with T = Id, where Id is the identity operator.
In [3] it has been shown that for every approximation process there exists

an operator T ∈ L and a function f1 ∈ PW1
π such that the peak value of the

approximation error ‖Tf1 − T a
N,φf1‖∞, N ∈ N, cannot be bounded.

Theorem 2. Let φ ∈ M2(a), a ≥ 1. Then there exists an operator T ∈ L and

signal f1 ∈ PW1
π such that

lim sup
N→∞

(
sup
t∈R

|(Tf1)(t) − (T a
N,φf1)(t)|

)
= ∞.

It is even possible to state a stronger result, showing that there is a universal
operator for all φ ∈ M2(a), namely the Hilbert transform, that fulfills Theorem
2 [3].
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Consistently with (11), we introduce the abbreviation

(Ha
N,φf)(t) :=

N∑

k=−N

f

(
k

a

)
φ̃

(
t −

k

a

)

for the Hilbert transform H.

Theorem 3. Let φ ∈ M2(a), a ≥ 1. Then there exists a signal f1 ∈ PW1
π such

that

lim sup
N→∞

(
sup
t∈R

|(Hf1)(t) − (Ha
N,φf1)(t)|

)
= ∞. (12)

In order to prove Theorem 3, we need Lemma 3.

Lemma 3. For all a > 1 and N ∈ N we have
∣∣∣∣∣

N∑

k=1

cos
(

π
ak
)

k

∣∣∣∣∣ ≤
1

sin
(

π
2a

) .

Proof. Obviously,

∣∣∣∣∣

N∑

k=1

cos
(

π
ak
)

k

∣∣∣∣∣ ≤
1

2

∣∣∣∣∣

N∑

k=1

eiπk/a

︸ ︷︷ ︸
=ck

1

k︸︷︷︸
=dk

∣∣∣∣∣+
1

2

∣∣∣∣∣

N∑

k=1

e−iπk/a 1

k

∣∣∣∣∣. (13)

For the first sum on the right-hand side of (13) we have

Ck =
k∑

l=1

cl =
k∑

l=1

eiπl/a =
1 − eiπk/a

1 − eiπ/a
eiπ/a

and

|Ck| ≤
1

sin
(

π
2a

) .

Summation by parts gives

∣∣∣∣∣

N∑

k=1

ckdk

∣∣∣∣∣ ≤ |CNdN | +
N−1∑

k=1

|Ck(dk − dk+1)|

≤
1

sin
(

π
2a

)
(

1

N
+

N−1∑

k=1

(
1

k
−

1

k + 1

))
. (14)

The right-hand side of (14) can be further simplified by evaluating the telescop-
ing series

N−1∑

k=1

(
1

k
−

1

k + 1

)
= 1 −

1

N
.
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Thus, ∣∣∣∣∣

N∑

k=1

eiπk/a 1

k

∣∣∣∣∣ ≤
1

sin
(

π
2a

)

for all a > 1 and N ∈ N. The second sum on the right-hand side of (13) can be
upper bounded in the same way.

Proof of Theorem 3. Let φ ∈ M2(a) be arbitrary but fixed. Thus, by Theo-
rem 1, φ̂(ω) = 1/a a.e. for |ω| ≤ π. Next, we analyze

(Ha
N,φf)(t) =

N∑

k=−N

f

(
k

a

)
φ̃

(
t −

k

a

)
=

1

2π

∫ π

−π
f̂(ω)

N∑

k=−N

eiωk/a φ̃

(
t −

k

a

)
dω.

For the functions fL, L ∈ N, defined by

f̂L(ω) =

{
Lπ |ω| ≤ 1

L

0 |ω| > 1
L ,

we obviously have ‖fL‖PW1
π

= 1 for all L ∈ N. Since

lim
L→∞

∣∣∣∣∣
1

2π

∫ π

−π
f̂L(ω)

N∑

k=−N

eiωk/a φ̃

(
t −

k

a

)
dω

∣∣∣∣∣

= lim
L→∞

∣∣∣∣∣

N∑

k=−N

φ̃

(
t −

k

a

)
L

2

∫ 1/L

−1/L

eiωk/a dω

∣∣∣∣∣

= lim
L→∞

∣∣∣∣∣

N∑

k=−N

φ̃

(
t −

k

a

)(
aL

k

)
sin

(
k

aL

)∣∣∣∣∣ =
∣∣∣∣∣

N∑

k=−N

φ̃

(
t −

k

a

)∣∣∣∣∣ ,

it follows that

sup
‖f‖

PW1
π
≤1

∣∣∣∣∣

N∑

k=−N

f

(
k

a

)
φ̃

(
t −

k

a

)∣∣∣∣∣ ≥
∣∣∣∣∣

N∑

k=−N

φ̃

(
t −

k

a

)∣∣∣∣∣ .

Moreover,

φ̃(t) =
1

2π

∫ aπ

−aπ

(
−i sgn(ω)

)
φ̂(ω) eiωt dω

=
1

2πa

∫ π

−π

(
−i sgn(ω)

)
eiωt dω +

1

2π

∫

π≤|ω|≤aπ

(
−i sgn(ω)

)
φ̂(ω) eiωt dω

︸ ︷︷ ︸
=q(t)

=
1

aπ

∫ π

0
sin(ωt) dω + q(t) =

1 − cos(πt)

aπt
+ q(t).
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Note, q(t) ≡ 0 for a = 1. For tN = N+1
a we obtain

∣∣∣∣∣

N∑

k=−N

φ̃

(
tN −

k

a

)∣∣∣∣∣ ≥
∣∣∣∣∣
1

π

N∑

k=−N

1 − cos
(
π
(

N+1
a − k

a

))

a
(

N+1
a − k

a

)

︸ ︷︷ ︸
=LN (a)

∣∣∣∣∣−
∣∣∣∣∣

N∑

k=−N

q

(
tN −

k

a

)∣∣∣∣∣ .

(15)

Next the right-hand side of (15) is further analyzed. The first term gives

LN (a) =
N∑

k=−N

1 − cos
(
π
(

N+1
a − k

a

))

a
(

N+1
a − k

a

) =
2N+1∑

k=1

1 − cos
(

π
ak
)

k
.

For a = 1 this immediately simplifies to

LN (1) =
2N+1∑

k=1

1 − cos(πk)

k
=

N∑

k=0

2

2k + 1
≥

N∑

k=0

∫ k+1

k

1

τ + 1
2

dτ = log(2N + 3).

(16)
For a > 1 a little calculation is needed:

LN (a) =
2N+1∑

k=1

1

k
−

2N+1∑

k=1

cos
(

π
ak
)

k
≥ log(2N + 2) −

2N+1∑

k=1

cos
(

π
ak
)

k
, (17)

by the same calculation as in (16). Thus,

|LN (a)| ≥ log(2N + 2) −

∣∣∣∣∣

2N+1∑

k=1

cos
(

π
ak
)

k

∣∣∣∣∣ ≥ log(2N + 2) −
1

sin
(

π
2a

)

by Lemma 3.

The second term of (15) gives for a > 1

N∑

k=−N

q

(
tN −

k

a

)
=

1

2π

∫

π≤|ω|≤aπ
(−i sgn(ω))φ̂(ω)

N∑

k=−N

eiω(tN−k/a) dω

=
1

2π

∫

π≤|ω|≤aπ
(−i sgn(ω))φ̂(ω) eiωtN

N∑

k=−N

eiωk/a dω.

Since
N∑

k=−N

eiωk/a =
e−iNω/a − ei(N+1)ω/a

1 − eiω/a
, (18)



SAMPLING-TYPE REPRESENTATIONS OF SIGNALS AND SYSTEMS 135

we obtain
∣∣∣∣∣

N∑

k=−N

q

(
tN −

k

a

)∣∣∣∣∣ ≤
1

2π

∫

π≤|ω|≤aπ
|φ̂(ω)| ·

∣∣∣∣∣
e−iNω/a − ei(N+1)ω/a

1 − eiω/a

∣∣∣∣∣ dω

≤ C8

‖φ‖PW1
π∣∣1 − eiπ/a
∣∣ .

Therefore, for each N ∈ N and a ≥ 1

sup
‖f‖

PW1
π
≤1

∣∣∣∣∣

N∑

k=−N

f

(
k

a

)
φ̃

(
tN −

k

a

)∣∣∣∣∣ ≥
1

π
log(2N) − C9.

Hence, by the Banach-Steinhaus theorem there exists a f1 ∈ PW1
π such that

lim sup
N→∞

(
max
t∈R

∣∣∣∣∣

N∑

k=−N

f1

(
k

a

)
φ̃

(
t −

k

a

)∣∣∣∣∣

)
= ∞.

Theorem 3 shows that it is possible to find for all a ≥ 1 and φ ∈ M2(a) a
signal f1 ∈ PW1

π, which depends on φ and a, such that the peak value of Ha
N,φf1

diverges unboundedly. Immediately the question arises: is there a universal
signal f1 ∈ PW1

π such that equation (12) of Theorem 3 holds for all φ ∈ M2(a),
a ≥ 1? We will show for a smaller class of approximation processes, namely,
all approximation process with φ ∈ M(a), a > 1, that it is possible to find a
universal signal that creates divergence for all approximation processes.

Theorem 4. There exists a signal f1 ∈ PW1
π such that for all a > 1 and all

φ ∈ M(a) we have

lim sup
N→∞

(
sup
t∈R

|(Hf1)(t) − (Ha
N,φf1)(t)|

)
= ∞.

Remark 5. Note that Theorem 4 is more general than Theorems 2 and 3 in
the sense that we have one universal signal such that divergence appears for all
approximation processes, whereas in Theorems 2 and 3 the signal can be selected
according to the approximation process. However, Theorem 4 does not imply
Theorems 2 and 3 because in Theorem 4 the set of permissible approximation
processes is smaller: We require φ ∈ M(a) ⊂ M2(a).

Remark 6. We want to emphasize that the Hilbert transform is only an example
operator, and that there are other translation invariant, linear, and bounded
operators—even operators T with continuous ĥT —for which we have divergence.
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Proof of Theorem 4. Let a > 1 be arbitrary but fixed and φ ∈ M(a). The func-
tion φ̂ can be divided into two parts, φ̂1 and φ̂2, by setting φ̂1(ω) = φ̂(ω)ŵ1(ω)
and φ̂2(ω) = φ̂(ω)ŵ2(ω), where ŵ1(ω) = ξπ/2,π(ω), ŵ2(ω) = ξaπ,aπ+π/2(ω) −
ξπ/2,π(ω), and

ξa,b(ω) =






1 |ω| ≤ a
|ω|−a
a−b + 1 a < |ω| < b

0 |ω| ≥ b.

Obviously, w1, w2 ∈ L1, ŵ1(ω) + ŵ2(ω) = 1 for |ω| ≤ aπ and φ̂ = φ̂1 + φ̂2. Since
φ2(t) =

∫∞
−∞ φ(τ)w2(t − τ) dτ and

‖φ2‖1 ≤

∫ ∞

−∞

∫ ∞

−∞
|φ(τ)||w2(t − τ)| dτ dt

=

∫ ∞

−∞
|φ(τ)| dτ

∫ ∞

−∞
|w2(τ)| dτ = ‖φ‖1‖w2‖1 < ∞

by Fubini’s theorem, we see that φ2 ∈ B1
aπ.

Moreover, from −i sgn(ω)φ̂(ω) = −i sgn(ω)φ̂1(ω)− i sgn(ω)φ̂2(ω), we obtain
φ̃(t) = φ̃1(t) + φ̃2(t) and φ̃2 ∈ B1

aπ. Consequently,

∣∣∣∣∣

N∑

k=−N

f

(
k

a

)
φ̃2

(
t −

k

a

)∣∣∣∣∣ ≤
N∑

k=−N

∣∣∣∣f
(

k

a

)∣∣∣∣ ·
∣∣∣∣φ̃2

(
t −

k

a

)∣∣∣∣

≤ ‖f‖PW1
π

N∑

k=−N

∣∣∣∣φ̃2

(
t −

k

a

)∣∣∣∣ ≤ C10‖f‖PW1
π
‖φ̃2‖B1

aπ
,

which implies that

∣∣∣∣∣

N∑

k=−N

f

(
k

a

)
φ̃

(
t −

k

a

)∣∣∣∣∣ ≥
∣∣∣∣∣

N∑

k=−N

f

(
k

a

)
φ̃1

(
t −

k

a

)∣∣∣∣∣− C10‖f‖PW1
π
‖φ̃2‖B1

aπ
.

It remains to show that there is a f1 ∈ PW1
π such that

lim sup
N→∞

(
sup
t∈R

∣∣∣∣∣

N∑

k=−N

f1

(
k

a

)
φ̃1

(
t −

k

a

)∣∣∣∣∣

)
= ∞.

First, we need the Hilbert transform φ̃1, which can be obtained by evaluating
φ̃1(t) = 1/(2π)

∫∞
−∞−i sgn(ω)φ̂1(ω) eiωt dω. A short calculation gives

φ̃1(t) =
1

aπt
+

2

aπ2t2

(
sin
(π

2
t
)
− sin(πt)

)
. (19)
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The function φ̃1 has a removable singularity at t = 0. By setting φ̃1(0) = 0, it
extends to a continuous functions on R. Furthermore,

∣∣∣sin
(π

2
t
)
− sin(πt)

∣∣∣ =
∣∣∣∣2 cos

(
3π

4
t

)
sin
(
−

π

4
t
)∣∣∣∣ ≤

∣∣∣2 sin
(
−

π

4
t
)∣∣∣ <

π

2
t,

and therefore
φ̃1(t) > 0 for t > 0. (20)

Next, consider the functions

gN (t) =
sin
(

tπ
N

)

tπ
N

.

Since

ĝN (ω) =

{
N |ω| ≤ π

N

0 |ω| > π
N ,

we have ‖gN‖PW1
π

= 1 for all N ∈ N. The functions gN are the building blocks of
the universal signal f1. We further need a sequence (Mk)k∈N with the property
Mk > 2(k3) and M2

k−1 log(Mk)/Mk < 1, k ∈ N, and define

f1(t) =
∞∑

l=1

1

l2
gMl

(t).

Since ‖f1‖PW1
π

≤
∑∞

l=1(1/l2)‖gMl
‖PW1

π
=
∑∞

l=1 1/l2 = π2/6, we have f1 ∈

PW1
π.
We divide the expression to be analyzed into three parts, as follows:

(HMr,φ1f1)(tMr
) =

r−1∑

l=1

1

l2
(HMr,φ1gMl

)(tMr
)

︸ ︷︷ ︸
=α(r)

+
1

r2
(HMr,φ1gMr

)(tMr
)

︸ ︷︷ ︸
=β(r)

+
∞∑

l=r+1

1

l2
(HMr,φ1gMl

)(tMr
)

︸ ︷︷ ︸
=γ(r)

,

where r ≥ 1 and tN = (N + 1)/a, and treat all parts separately.
Part 3: It can be easily seen that

γ(r) =
∞∑

l=r+1

1

l2

Mr∑

k=−Mr

sin
(

kπ
aMl

)

kπ
aMl

φ̃1

(
Mr + 1 − k

a

)
≥ 0,

because of sin(x)/x ≥ 0 for |x| ≤ π and equation (20).
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Part 2: Next, we analyze

β(r) =
1

r2

Mr∑

k=−Mr

sin
(

kπ
aMr

)

kπ
aMr

φ̃1

(
Mr + 1 − k

a

)
.

By the same argumentation as in Part 3, we have β(r) > 0. Moreover,

β(r) =
1

r2

Mr∑

k=−Mr

sin
(

kπ
aMr

)

kπ
aMr



 1

aπ
(

Mr+1−k
a

) +
2
(
sin
(

π(Mr+1−k)
2a

)
− sin

(
π(Mr+1−k)

a

))

aπ2
(

Mr+1−k
a

)2





≥
1

r2

sin
(

π
a

)

π
a

2Mr+1∑

k=1

[
1

πk
+

2a
(
sin
(

πk
2a

)
− sin

(
πk
a

))

π2k2

]
,

which can be further simplified by using

2Mr+1∑

k=1

1

πk
>

1

π
log(Mr + 1) >

r3

π
log(2)

and ∣∣∣∣∣

2Mr+1∑

k=1

2a
(
sin
(

πk
2a

)
− sin

(
πk
a

))

π2k2

∣∣∣∣∣ ≤ C11

to

β(r) > r
sin
(

π
a

)
log(2)

π
aπ

−
1

r2

sin
(

π
a

)

π
a

C11.

Obviously,

lim
r→∞

β(r) = ∞. (21)

Part 1: It can be shown that

lim
r→∞

|α(r)| ≤ C12 (22)

with some constant C12 < ∞. Since the proof of this is rather technical, we put
it in the Appendix B.

We have |(HMr,φ1f1)(tMr
)| = |α(r)+β(r)+γ(r)| ≥ |β(r)+γ(r)|−|α(r)|, and

since β(r) ≥ 0 and γ(r) ≥ 0 this simplifies to |(HMr,φ1f1)(tMr
)| ≥ β(r)− |α(r)|.

Following (21) and (22) we obtain limr→∞|(HMr,φ1f1)(tMr
)| = ∞, which finishes

the proof.
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Theorem 4, where φ ∈ M(a), a > 1, shows that the global uniform conver-
gence of the Shannon sampling series is destroyed by the linear and bounded
operator H in general. In this case, oversampling and a special kernel design do
not help to improve the convergence behavior.

Up to this point we have discussed the approximation behavior concerning
the supremum norm. We have seen that for the Hilbert transform the approxi-
mation process does not converge uniformly on R, even if the original sampling
series is uniformly convergent on R. Next, arbitrary operators T ∈ L are con-
sidered, and it is shown that for all t1 ∈ R there exists an operator T ∈ L and
a signal f2 ∈ PW1

π such that the corresponding approximation process diverges
for t1.

Theorem 5. Let t1 ∈ R and φ ∈ M2(a), a ≥ 1. Then there exists an operator

T ∈ L and a signal f2 ∈ PW1
π such that

lim sup
N→∞

|(Tf2)(t1) − (T a
N,φf2)(t1)| = ∞.

For the proof of Theorem 5 we need Lemma 4.

Lemma 4. For a > 1 and N ∈ N, N ≥ (2a − 1)/2, we have

∫ π/a

0

sin2
((

N + 1
2

)
ω
)

sin
(

ω
2

) dω > log

(
2N + 1

2a
− 1

)
.

Proof. Let LN,a be the largest natural number such that
2LN,aπ
2N+1 ≤ π

a , which

implies LN,a ≤ 2N+1
2a . Then we obtain

∫ π/a

0

sin2
((

N + 1
2

)
ω
)

sin
(

ω
2

) dω ≥

LN,a−1∑

k=0

∫ 2(k+1)π
2N+1

2kπ
2N+1

sin2
((

N + 1
2

)
ω
)

sin
(

ω
2

) dω

>

LN,a−1∑

k=0

1

sin
(

(k+1)π
2N+1

)
∫ 2(k+1)π

2N+1

2kπ
2N+1

sin2

((
N +

1

2

)
ω

)
dω

=
2

2N + 1

∫ π

0
sin2 ω dω

LN,a−1∑

k=0

1

sin
(

(k+1)π
2N+1

) >

LN,a−1∑

k=0

1

k + 1
,

where we used sin x < x for all x > 0 in the last inequality. But

LN,a−1∑

k=0

1

k + 1
≥ log(LN,a) > log

(
2N + 1

2a
− 1

)
,

which completes the proof.
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Proof of Theorem 5. Due to the translation invariance of T ∈ L, we can assume
t1 = 0 without loss of generality. Clearly,

(T a
N,φf)(0) =

1

2π

∫ π

−π
f̂(ω)

N∑

k=−N

eiωk/a (Tφ)

(
−

k

a

)
dω.

Since Tφ has the representation (Tφ)(t) = 1
2π

∫ aπ
−aπ φ̂(ω)ĥT (ω) eiωt dω, with

some ĥT (ω) ∈ L∞[−aπ, aπ], we obtain

N∑

k=−N

(Tφ)

(
−

k

a

)
=

1

2πa

∫ π

−π
ĥT (ω)

N∑

k=−N

eiωk/a dω

+
1

2π

∫

π≤|ω|≤aπ
ĥT (ω)φ̂(ω)

N∑

k=−N

eiωk/a dω

︸ ︷︷ ︸
=:RN

=
1

2πa

∫ π

−π
ĥT (ω)

sin
((

N + 1
2

)
ω
a

)

sin
(

ω
2a

) dω + RN ,

where we identified
∑N

k=−N eiωk/a as the Dirichlet kernel. Using (18), the mod-
ulus of RN can be bounded above independently of N by

|RN | ≤ C13
‖φ̂‖∞‖ĥT ‖∞

|1 − eiπ/a|
.

We use the test function

ĝN (ω) = sin

((
N +

1

2

)
ω

a

)
ĝ(ω),

where ĝ is an even, continuous function with ĝ(ω) = 1, 0 ≤ |ω| ≤ π and ĝ(ω) = 0,
|ω| ≥ aπ. Then, using Lemma 4, we obtain

1

2πa

∫ π

−π
ĝN (ω)

sin
((

N + 1
2

)
ω
a

)

sin
(

ω
2a

) dω =
1

πa

∫ π

0

sin2
((

N + 1
2

)
ω
a

)

sin
(

ω
2a

) dω

=
1

π

∫ π/a

0

sin2
((

N + 1
2

)
ω
)

sin
(

ω
2

) dω >
1

π
log

(
2N + 1

2a
− 1

)

for N ≥ (2a − 1)/2. By the Banach-Steinhaus theorem there exists a function
ĥT such that

lim sup
N→∞

∣∣∣∣∣
1

2πa

∫ π

−π
ĥT (ω)

sin
((

N + 1
2

)
ω
a

)

sin
(

ω
2a

) dω

∣∣∣∣∣ = ∞.
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Since

lim sup
N→∞

sup
‖f‖

PW1
π
≤1
|(T a

N,φf)(0)| ≥ lim sup
N→∞

∣∣∣∣∣

N∑

k=−N

(Tφ)

(
−

k

a

)∣∣∣∣∣ = ∞,

we can again apply the Banach-Steinhaus theorem, which states the existence
of a signal f2 ∈ PW1

π such that lim supN→∞|(T a
N,φf2)(0)| = ∞.

We have seen that it is not possible to stably approximate the Hilbert trans-
form on the basis of the samples {f(k/a)}k∈Z, a ≥ 1 in general. The size of
a is irrelevant, i.e., the result is valid for all a ≥ 1. This shows that a stable
sampling-based signal approximation cannot be realized in general.

However, this does not mean that a stable computation of f̃ from the signal
values {f(t)}t∈R is impossible. Consider

(Hǫf)(t) =
1

π

∫

ǫ≤|τ |≤ 1
ǫ

1

τ
f(t + τ) dτ.

Theorem 6. For all f ∈ PW1
π we have limǫ→0‖f̃ − Hǫf‖∞ = 0.

Proof. Let f ∈ PW1
π and δ > 0 arbitrary but fixed. Then we have

|f̃(t) − (Hǫf)(t)| =

∣∣∣∣∣
1

2π

∫ π

−π
f̂(ω) eiωt

(
−i sgn(ω) +

1

π

∫

ǫ≤|τ |≤ 1
ǫ

1

τ
eiωτ dτ

)
dω

∣∣∣∣∣

≤
1

2π

∫ π

−π
|f̂(ω)|

∣∣∣∣∣sgn(ω) −
2

π

∫ 1/ǫ

ǫ

sin(ωτ)

τ
dτ

∣∣∣∣∣ dω

and ∣∣∣∣∣
2

π

∫ 1/ǫ

ǫ

sin(ωτ)

τ
dτ

∣∣∣∣∣ ≤
∣∣∣∣
2

π

∫ 1

0

sin(τ)

τ
dτ

∣∣∣∣ ≤ C14

for all ǫ > 0 and ω ∈ R. There exists a ω0 = ω0(δ) < π such that

1

2π

∫ ω0

−ω0

|f̂(ω)| dω < δ

and
1

2π

∫ ω0

−ω0

|f̂(ω)|

∣∣∣∣∣sgn(ω) −
2

π

∫ 1/ǫ

ǫ

sin(ωτ)

τ
dτ

∣∣∣∣∣ dω < δ(1 + C14)

for all ǫ > 0. Moreover, there exists a ǫ0 = ǫ0(δ) such that

∣∣∣∣∣1 −
2

π

∫ 1/ǫ

ǫ

sin(ωτ)

τ
dτ

∣∣∣∣∣ <
δ

2
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for all 0 < ǫ ≤ ǫ0 and ω ∈ [ω0, π]. Consequently, for all 0 < ǫ ≤ ǫ0

|f̃(t) − (Hǫf)(t)| ≤
1

2π

∫ ω0

−ω0

|f̂(ω)|

∣∣∣∣∣sgn(ω) −
2

π

∫ 1/ǫ

ǫ

sin(ωτ)

τ
dτ

∣∣∣∣∣ dω

+
1

2π

∫

ω0≤|ω|≤π
|f̂(ω)|

∣∣∣∣∣sgn(ω) −
2

π

∫ 1/ǫ

ǫ

sin(ωτ)

τ
dτ

∣∣∣∣∣ dω

≤δ(1 + C14) + δ
1

2π

∫

ω0≤|ω|≤π
|f̂(ω)| dω ≤ δ(1 + C14) + δ‖f‖PW1

π
.

Since δ was arbitrary, the proof is complete.

5 Test Signals

The results in Section 4 reveal the very intricate convergence behavior of the
approximation processes. We have shown that there is no universal approxima-
tion process of the shape (11) that is convergent for all operators T ∈ L and all
signals f ∈ PW1

π. Furthermore, we have seen that the Hilbert transform H ∈ L
is a universal operator in the sense that for every kernel φ ∈ M2(a) there exist
a signal f1 ∈ PW1

π such that

lim sup
N→∞

(
sup
t∈R

∣∣(Ha
N,φf1)(t)

∣∣
)

= ∞.

In other words, there is no uniformly convergent approximation process for the
Hilbert transform. However, for other operators a uniformly convergent approx-
imation process can exist. It would be useful to have a simple criterion whether
an approximation process is convergent for a given operator or not. In this sec-
tion we will provide a simple test for convergence, which uses the exponential
function, namely, f test

ω (t) = eiωt, −π ≤ ω ≤ π, as test signal. Note the simple
structure of the test signals: They are scaled versions of one basic function eit.
Obviously, the set of test signals is neither dense in PW1

π nor does it form a
linear space.

Theorem 7. For all a ≥ 1, φ ∈ M2(a), t ∈ R and T ∈ L(PW1
aπ) we have:

lim
N→∞

(T a
N,φf)(t) = (Tf)(t) (23)

for all f ∈ PW1
π if and only if there exists a constant C15 = C15(t) such that

max
|ω|≤π

∣∣∣∣∣

N∑

k=−N

eiωk/a(Tφ)

(
t −

k

a

)∣∣∣∣∣ ≤ C15(t)

for all N ∈ N.
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Proof. First part, “⇒”: Let t ∈ R be arbitrary but fixed. Then, by as-
sumption, limN→∞|(Tf)(t) − (T a

N,φf)(t)| = 0 for all f ∈ PW1
π, which implies

supN∈N sup‖f‖
PW1

π
≤1|(T

a
N,φf)(t)| < ∞. This together with

sup
‖f‖

PW1
π
≤1
|(T a

N,φf)(t)| = max
|ω|≤π

∣∣∣∣∣

N∑

k=−N

eiωk/a(Tφ)

(
t −

k

a

)∣∣∣∣∣

completes the first part.
Second part, “⇐”: Let t ∈ R be arbitrary but fixed. For each ǫ > 0 there

exists a g ∈ PW2
π such that ‖f − g‖PW1

π
< ǫ and consequently |(Tf)(t) −

(Tg)(t)| < ǫ‖T‖L(PW1
aπ). Obviously, we have

|(Tf)(t) − (T a
N,φf)(t)|

= |(Tf)(t) − (Tg)(t) + (Tg)(t) − (T a
N,φg)(t) + (T a

N,φ(g − f))(t)|

≤ |(Tf)(t) − (Tg)(t)| + |(Tg)(t) − (T a
N,φg)(t)| + |(T a

N,φ(g − f))(t)|.

Furthermore,

|(T a
N,φ(g − f))(t)| =

∣∣∣∣∣
1

2π

∫ π

−π

(
ĝ(ω) − f̂(ω)

) N∑

k=−N

eiωk/a(Tφ)

(
t −

k

a

)
dω

∣∣∣∣∣

≤
1

2π

∫ π

−π
|ĝ(ω) − f̂(ω)|

∣∣∣∣∣

N∑

k=−N

eiωk/a(Tφ)

(
t −

k

a

)∣∣∣∣∣ dω

≤ max
|ω|≤π

∣∣∣∣∣

N∑

k=−N

eiωk/a(Tφ)

(
t −

k

a

)∣∣∣∣∣ ‖g − f‖PW1
π

≤ C15(t)ǫ,

where we used the assumption in the last inequality. Moreover, there exists a
N0 = N0(ǫ) such that |(Tg)(t) − (T a

N,φg)(t)| < ǫ for all N ≥ N0. Therefore,
|(Tf)(t) − (T a

N,φf)(t)| < (1 + ‖T‖L(PW1
aπ) + C15(t))ǫ for all N ≥ N0 and the

proof is complete because ǫ was arbitrary.

Theorem 8. For all a ≥ 1, φ ∈ M2(a) and T ∈ L(PW1
aπ) we have:

lim
N→∞

‖Tf − T a
N,φf‖∞ = 0 (24)

for all f ∈ PW1
π if and only if there exists a constant C16, independently of t,

such that

sup
t∈R

max
|ω|≤π

∣∣∣∣∣

N∑

k=−N

eiωk/a(Tφ)

(
t −

k

a

)∣∣∣∣∣ ≤ C16

for all N ∈ N and t ∈ R.
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Proof. Analogously to the proof of Theorem 7.

Corollary 1. For all a ≥ 1, φ ∈ M2(a) and t ∈ R we have:

lim
N→∞

(Aa
N,φf)(t) = f(t)

for all f ∈ PW1
π if and only if for all t ∈ R there exists a constant C17 = C17(t)

such that

max
|ω|≤π

∣∣∣∣∣

N∑

k=−N

eiωk/a φ

(
t −

k

a

)∣∣∣∣∣ ≤ C17(t) (25)

for all N ∈ N.

Proof. Corollary 1 is a special case of Theorem 7 with T = Id.

The next corollary is similar to Corollary 1 but makes a statement about the
uniform convergence of Aa

N,φf .

Corollary 2. For all a ≥ 1 and φ ∈ M2(a) we have:

lim
N→∞

‖f − Aa
N,φf‖∞ = 0 (26)

for all f ∈ PW1
π if and only if there exists a constant C18, independently of t,

such that

sup
t∈R

max
|ω|≤π

∣∣∣∣∣

N∑

k=−N

eiωk/a φ

(
t −

k

a

)∣∣∣∣∣ ≤ C18

for all N ∈ N and t ∈ R.

Proof. Corollary 2 is a special case of Theorem 8 with T = Id.

The equations (23), (24), (25), and (26) have a pleasant interpretation. The
exponential function

f test
ω (t) = eiωt

can be thought of as a test signal, where the parameter ω ranges from −π to π.
Thus, if for all t ∈ R and N ∈ N

max
|ω|≤π

∣∣∣∣∣

N∑

k=−N

f test
ω

(
k

a

)
φ

(
t −

k

a

)∣∣∣∣∣ ≤ C17(t),

then the sampling series Aa
N,φf(t) converges to f(t) for all f ∈ PW1

π and t ∈ R.
However the converse statement might be more practicable: If we find one

test signal f test
ω1

with some ω1 ∈ [−π, π] such that

lim
N→∞

sup
t∈R

∣∣∣∣∣

N∑

k=−N

f test
ω1

(
k

a

)
φ

(
t −

k

a

)∣∣∣∣∣ = ∞,
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it follows by Corollary 2 that there is a signal f1 ∈ PW1
π such that Aa

N,φf1 does
not converge uniformly.

We can illustrate the preceding corollaries, i.e., the case T = Id, by applying
them on the well-known Shannon sampling series.

Example 4. The sampling series Aa
N,φf with a = 1 and

φ(t) =
sin(πt)

πt

is nothing but the Shannon sampling series. For t ∈ R fixed we have

∣∣∣∣∣

N∑

k=−N

f test
ω (k)

sin(π(t − k))

π(t − k)

∣∣∣∣∣ ≤ C17(t)

for all ω ≤ π. Thus, by Corollary 1, the Shannon sampling series converges
pointwise to f for all f ∈ PW1

π.
On the other hand we have

∣∣∣∣∣

N∑

k=−N

f test
π (k)

sin(π(tN − k))

π(tN − k)

∣∣∣∣∣ ≥ C19 log N

for tN = N +1/2, which shows that the Shannon sampling series is not uniformly
convergent on R for f ∈ PW1

π in general.

Remark 7. From the proof of Theorem 7 and Example 4 it can be seen that the
Shannon sampling series is uniformly convergent on all intervals [−T, T ], T > 0,
because

sup
[−T,T ]

∣∣∣∣∣

N∑

k=−N

f test
ω (k)

sin(π(t − k))

π(t − k)

∣∣∣∣∣ ≤ C20

for all N ∈ N. Thus, Brown’s theorem, namely, the uniform convergence of the
Shannon sampling series on all intervals [−T, T ], T > 0, can be derived from
test signal criterion.

Example 5. Another example is the Shannon sampling series with oversam-
pling, i.e., Aa

N,φf with a > 1 and

φ(t) =
sin
(
aπ
(
t − k

a

))

aπ
(
t − k

a

) .

Here we have, after a short calculation, for all |ω| ≤ π and t ∈ R the upper
bound ∣∣∣∣∣

N∑

k=−N

f test
ω

(
k

a

)
sin
(
aπ
(
t − k

a

))

aπ
(
t − k

a

)
∣∣∣∣∣ ≤ 2

(
1 +

2

cos
(

π
2a

)
)

,
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which implies, according to Corollary 2, that the Shannon sampling series with
oversampling is uniformly convergent on R for all f ∈ PW1

π.

This example gives a nice interpretation for the mechanisms of oversampling
for the Shannon sampling series. If oversampling with a > 1 is applied, the
critical Nyquist frequency is no more π but aπ. Thus, the test signals f test

ω ,
|ω| ≤ π, do not lead to a divergent series.

Next, we have a look on general approximation processes.

Example 6. For a ≥ 1 and φ ∈ M(a) we have

∣∣∣∣∣

N∑

k=−N

f test
ω

(
k

a

)
φ

(
t −

k

a

)∣∣∣∣∣ ≤ ‖f test
ω ‖∞

N∑

k=−N

∣∣∣∣φ
(

t −
k

a

)∣∣∣∣ ≤ C4,

because of Lemma 1 and ‖f test
ω ‖∞ = 1.

Thus, the uniform convergence of the corresponding sampling series follows
immediately by Corollary 2.

Example 7. Finally, we investigate the convergence behavior of the approxi-
mation process T a

N,φf with T = D, where D is the differential operator, and

φ ∈ M2(a).

Fist, we analyze the case a = 1. Then the only possible φ is φ1(t) =
sin(πt)/(πt) and we obtain

(Dφ1)(t) =
π2t cos(πt) − π sin(πt)

(πt)2

and

(D1
N,φ1

f)(N + 1) =
N∑

k=−N

f(k)
cos(π(N + 1 − k))

N + 1 − k

=
N∑

k=−N

f(k)
(−1)N+1−k

N + 1 − k
.

For the test signal f test
π we have f test

π (k) = (−1)k and

|(D1
N,φ1

f test
π )(N + 1)| =

N∑

k=−N

1

N + 1 − k
≥ log(2N + 2).

Thus,

lim
N→∞

sup
t∈R

max
|ω|≤π

|(D1
N,φ1

f test
ω )(t)| = ∞,
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and Theorem 8 shows that there exists a signal in f1 ∈ PW1
π such that D1

N,φ1
f1

does not converge uniformly on R to Df1. Hence, for a = 1 there exists no
approximation process that converges uniformly on R to Df for all f ∈ PW1

π.
On the other hand for a > 1 and φ ∈ M(a), we have Dφ ∈ B1

aπ and

(Da
N,φf test

ω )(t) =

∣∣∣∣∣

N∑

k=−N

f test
ω

(
k

a

)
(Dφ)

(
t −

k

a

)∣∣∣∣∣

≤ ‖f test
ω ‖∞

N∑

k=−N

∣∣∣∣(Dφ)

(
t −

k

a

)∣∣∣∣

≤ C4,

by Lemma 1 and ‖f test
ω ‖∞ = 1. Thus,

sup
t∈R

max
|ω|≤π

|(Da
N,φf test

ω )(t)| ≤ C4

for all N ∈ N and Theorem 8 shows that Da
N,φf converges uniformly on R to

Df for a > 1 and φ ∈ M(a). Since M(a) ⊂ M2(a), a > 1, there exists an
approximation process that converges uniformly on R to Df for all f ∈ PW1

π.
This example demonstrates that oversampling combined with the choice of a

suitable kernel is eligible to improve the convergence behavior for the differential
operator.

6 Conclusions

We have shown that there is no universal approximation process of the shape (11)
that is convergent for all operators T ∈ L and all signals f ∈ PW1

π. Furthermore,
we have seen that the Hilbert transform H ∈ L is a universal operator in the
sense that for every kernel φ ∈ M2(a) there exist a signal f1 ∈ PW1

π such that

lim sup
N→∞

(
sup
t∈R

∣∣(Ha
N,φf1)(t)

∣∣
)

= ∞.

In other words, there is no uniformly convergent approximation process for the
Hilbert transform. In general, it is not possible to approximate an operator,
acting on continuous-time bandlimited functions, by an approximation process
that uses only the samples of the function, and even oversampling does not lead
to a better convergence behavior. In fact, the convergence has to be checked
from case to case. In order to be able to decide whether an approximation
process is convergent for a given operator, we derived a simple criterion, which
uses the exponential function as test signal.
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APPENDIX

A Proof of Observation 2

Let T ∈ L be arbitrary but fixed.
We first prove the existence of such a function. Since Tf ∈ W for all f ∈ W,

we have

|(Tf)(0)| ≤
1

2π

∫ ∞

−∞
|(T̂ f)(ω)| dω = ‖Tf‖W ≤ ‖T‖L‖f‖W =

1

2π
‖T‖L‖f̂‖L1(R)

for all f ∈ W. Thus, Ψ : L1(R) → C, f̂ 7→ (Tf)(0) is a bounded linear
functional. It follows that there exists a function ĥ ∈ L∞(R) such that

(Tf)(0) =
1

2π

∫ ∞

−∞
f̂(ω)ĥ(ω) dω

for all f̂ ∈ L1(R) and, hence, for all f ∈ W. Let ft(τ) = f(τ − t). Then we have

(Tf)(t) = (Tf−t)(0) =
1

2π

∫ ∞

−∞
f̂−t(ω)ĥ(ω) dω =

1

2π

∫ ∞

−∞
f̂(ω) eiωt ĥ(ω) dω

for all f ∈ W. Thus, ĥ is the desired function ĥT .
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Next, we show the uniqueness of the function. Suppose that there are two
functions ĥ1 ∈ L∞(R) and ĥ2 ∈ L∞(R) such that (3) is true for all f ∈ W. Then
we have

1

2π

∫ ∞

−∞
ĥ1(ω)f̂(ω) eiωt dω =

1

2π

∫ ∞

−∞
ĥ2(ω)f̂(ω) eiωt dω

and consequently

sup
‖f̂‖1≤1

∫ ∞

−∞
(ĥ1(ω) − ĥ2(ω))f̂(ω) eiωt dω = 0

for all f ∈ W. Since

sup
‖f̂‖1≤1

∫ ∞

−∞
(ĥ1(ω) − ĥ2(ω))f̂(ω) eiωt dω = ‖ĥ1 − ĥ2‖∞,

we have ‖ĥ1 − ĥ2‖∞ = 0, which implies that ĥ1 = ĥ2.

B Supplement to the Proof of Theorem 4

Part 1:

α(r) =
r−1∑

l=1

1

l2

Mr∑

k=−Mr

sin
(

kπ
aMl

)

kπ
aMl

φ̃1

(
Mr + 1 − k

a

)
, (27)

The second sum in (27) can be split into the two parts

Mr∑

k=−Mr

sin
(

kπ
aMl

)

kπ
aMl

1

aπ
(

Mr+1−k
a

) (28)

and

Mr∑

k=−Mr

sin
(

kπ
aMl

)

kπ
aMl

2
(
sin
(

π(Mr+1−k)
2a

)
− sin

(
π(Mr+1−k)

a

))

aπ2
(

Mr+1−k
a

)2 (29)

after (19) is inserted. Obviously, the modulus of (29) can be bounded above by

4a

π2

Mr∑

k=−Mr

1

(Mr + 1 − k)2
=

4a

π2

2Mr+1∑

k=1

1

k2
<

2a

3
. (30)
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In order to upper bound the modulus of (28) we rearrange the expression

∣∣∣∣∣∣

Mr∑

k=−Mr

sin
(

kπ
aMl

)

kπ
aMl

1

aπ
(

Mr+1−k
a

)

∣∣∣∣∣∣

=
1

π(Mr + 1)
+

aMl

π2

∣∣∣∣∣∣

Mr∑

k=1

sin

(
kπ

aMl

)

︸ ︷︷ ︸
=ck

1

k (Mr + 1 − k)︸ ︷︷ ︸
=d−

k

+

Mr∑

k=1

sin

(
kπ

aMl

)

︸ ︷︷ ︸
=ck

1

k (Mr + 1 + k)︸ ︷︷ ︸
=d+

k

∣∣∣∣∣∣

and do summation by parts. Let Ck =
∑k

n=1 cl, |k| ≤ Mr. Then

|Ck| =

∣∣∣∣∣

k∑

n=1

sin

(
nπ

aMl

)∣∣∣∣∣ =
1

2

∣∣∣∣∣

k∑

n=1

einπ/(aMl) − e−inπ/(aMl)

∣∣∣∣∣

≤
1

2

∣∣∣∣∣
eiπ(k+1)/(aMl) − e−iπ/(aMl)

eiπ/(aMl) −1

∣∣∣∣∣+
1

2

∣∣∣∣∣
e−iπ(k+1)/(aMl) − eiπ/(aMl)

e−iπ/(aMl) −1

∣∣∣∣∣

≤
1∣∣eiπ/(aMl) −1

∣∣ +
1∣∣e−iπ/(aMl) −1

∣∣ =
1

sin
(

π
2aMl

)

and

∣∣∣∣∣

Mr∑

k=1

ckdk

∣∣∣∣∣ ≤ |CMr
dMr

| +

Mr−1∑

k=1

|Ck||dk − dk+1|

≤
1

sin
(

π
2aMl

)
(

dMr
+

Mr−1∑

k=1

|dk| +

Mr−1∑

k=1

|dk+1|

)
.

Since

Mr−1∑

k=1

|d−k | =

Mr−1∑

k=1

1

k(Mr + 1 − k)
=

1

Mr + 1

Mr−1∑

k=1

1

k
+

1

Mr + 1 − k

=
1

Mr + 1

(
1 +

Mr−1∑

k=2

1

k
+

Mr∑

k=2

1

k

)

<
1

Mr + 1
(1 + log(Mr − 1) + log(Mr)) <

1 + 2 log(Mr)

Mr
,
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Mr−1∑

k=1

|d−k+1| =

Mr−1∑

k=1

1

(k + 1)(Mr − k)
=

1

Mr + 1

Mr−1∑

k=1

1

k + 1
+

1

Mr − k

=
1

Mr + 1

(
1 +

Mr−1∑

k=2

1

k
+

Mr∑

k=2

1

k

)

<
1

Mr + 1
(1 + log(Mr − 1) + log(Mr)) <

1 + 2 log(Mr)

Mr
,

Mr−1∑

k=1

|d+
k | =

Mr−1∑

k=1

1

k(Mr + 1 + k)
=

1

Mr + 1

Mr−1∑

k=1

1

k
−

1

Mr + 1 + k

<
1

Mr + 1
(1 + log(Mr − 1)) <

1 + log(Mr)

Mr
,

and

Mr−1∑

k=1

|d+
k+1| =

Mr−1∑

k=1

1

(k + 1)(Mr + 2 + k)
=

1

Mr + 1

Mr−1∑

k=1

1

k + 1
−

1

Mr + 2 + k

<
1

Mr + 1
log(Mr) <

1 + log(Mr)

Mr
,

we obtain
∣∣∣∣∣∣

Mr∑

k=−Mr

sin
(

kπ
aMl

)

kπ
aMl

1

aπ
(

Mr+1−k
a

)

∣∣∣∣∣∣

<
1

π(Mr + 1)
+

aMl

π2 sin
(

π
2aMl

)
(

5 + 6 log(Mr)

Mr
+

1

Mr(2Mr + 1)

)

<
π(Mr + 1)

+
a2M2

l

π2

(
5 + 6 log(Mr)

Mr
+

1

Mr(2Mr + 1)

)
, (31)

because sin(x) ≥ 2x/π for all 0 ≤ x ≤ π/2.
Inserting (30) and (31) into (27) gives

|α(r)| ≤
r−1∑

l=1

1

l2

(
2a

3
+

1

π(Mr + 1)
+

a2M2
l

π2Mr

(
5 + 6 log(Mr) +

1

2Mr + 1

))

≤

(
2a

3
+

1

π(Mr + 1)
+

a2M2
r−1

π2Mr

(
5 + 6 log(Mr) +

1

2Mr + 1

))
π2

6
.

Moreover, by the construction of the sequence (Mr)r∈Z we have:

M2
r−1 log(Mr)/Mr < 1,

and therefore limr→∞|α(r)| ≤ C12 with some constant C12 < ∞.


