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Abstract—In this paper, we present a novel class of iterative
gossip algorithms called nomographic gossiping that partly allow
to efficiently achieve a rapid global consensus among nodes/agents
in a clustered wireless network with respect to an arbitrary
function of the initial states. The algorithms are based on
the surprising fact that every real-valued multivariate function
has a nomographic representation, which is simply a function
of a superposition of a finite number of univariate functions.
Since superpositions can be effectively generated via the wireless
channel by letting nodes in a cluster transmit simultaneously their
pre-processed states to a cluster head, the convergence speed
can be significantly increased provided that some connectivity
condition between clusters is fulfilled.

I. INTRODUCTION

Efficiently reaching a rapid consensus among nodes or
agents in decentralized wireless networks constitutes one of
the fundamental problems in distributed signal processing and
optimization [1], [2], where efficiency refers to the economical
use of wireless resources (e.g., bandwidth, energy). A distinc-
tion is made between unconstrained consensus problems in
which the state of all nodes should asymptotically be the same,
and constrained consensus problems, where the nodes have to
achieve a global agreement with respect to some function f of
the initial states. Therefore, a constrained consensus problem
is often referred to as an f -consensus problem [1]. A popular
special case of this distributed computation problem is the
average consensus problem in which f is simply chosen to be
the arithmetic mean.

In this context, gossip algorithms have received a great deal
of attention in recent years because they allow nodes to dis-
tributively achieve a global consensus without any complicated
routing protocol by letting nodes locally exchange data with
their nearest neighbors (see [2]–[5] and references therein).
Consequently, each node has only a local view on the network
dynamics and therefore does not have any information about
the remaining nodes apart from its neighbors.

To enable gossip algorithms the operation in a fully dis-
tributed manner, randomized approaches are of particular
interest. For example, Boyd et al. presented in [4] an extensive
framework for the design and the analysis of randomized
gossip algorithms for average consensus in arbitrary connected
networks, where pairs of nodes are chosen randomly to
exchange their current states. Since then, the algorithms and

results of [4] are extended in many different ways to improve
the relatively moderate convergence rates. Aysal et al. realized
for example in this context in [6] that at a cost of a single
transmission, more than a single nearby node can benefit due
to the inherent broadcast nature of the wireless channel. On
the other hand, since averaging is in the core superposition,
Nazer at el. designed in [7] a randomized gossip algorithm
that exploits the superposition property of wireless multiple-
access channels to allow instantaneous averages over a larger
neighborhood, rather than between pairs of nodes. But what
if a consensus with respect to a nonlinear function is desired?

To solve the problem of efficiently reaching a global rapid
consensus with respect to an arbitrary function of the initial
states in a wireless network that is organized into overlapping
clusters, we introduce in this paper a novel class of iterative
gossip algorithms summarized as nomographic gossiping. The
algorithms rely on the fact that every real-valued multivariate
function has a nomographic representation (see Definition 6).
Since a nomographic representation is simply a function of a
superposition of a finite number of univariate functions, such
functions can be effectively computed exploiting the natural
superposition property of wireless multiple-access channels by
letting nodes in a cluster transmit simultaneously their pre-
processed initial states to a designated cluster head [8], [9].
This constitutes a kind of a paradigm shift, since in classical
communication theory channel collisions are generally avoided
by costly coordination.

Under the assumption of error-free local computations, to
focus in this paper on presenting the general idea of nomo-
graphic gossiping, the proposed class of algorithms consists
of randomized as well as of deterministic protocols. While
the described randomized algorithm, which is a generalization
of superposition gossiping [10] to any f -consensus problem,
requires infinitely many steps to converge to the function of
interest, at the cost of some coordination the deterministic
approach always converges to the exact consensus in a finite
number of iterations.

A. Related Work

To the best of our knowledge, the work of Kirti et al. [11]
and Nazer et al. [7] are the first in which the multiple-access
property of the physical layer in wireless networks is profitably
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be exploited to efficiently achieve a network-wide average
consensus. Besides the fact that the work in the present paper
is primarily focused on achieving a consensus with respect to
an arbitrary function by performing local analog computations
in the sense of [8], [9], the authors in [7] consider reliable
local averaging over a noisy multiple-access channel through
the use of structured computation codes.

Other publications in which the authors consider distributed
computations of nonlinear functions are for example [12] and
[13]. In [12], Aoyama and Shah propose an iterative distributed
algorithm for rapidly computing separable functions of the
initial states. Separable functions are multivariate functions
that can be represented as sums of univariate functions, why
the corresponding function space constitutes only a small
subset of the space of nomographic functions, considered in
this paper. In contrast, Sundaram and Hadjicostis use in [13]
a dynamical system approach to develop a linear iterative
strategy that enables nodes to compute arbitrary functions.

B. Contributions

The contributions of the paper are summarized as follows:
• We recap the notion and the basic properties of nomo-

graphic functions from [9] and explain why the structure
of these functions can be useful to efficiently solve
arbitrary f -consensus problems.

• Then, we propose a deterministic and a randomized
nomographic gossip algorithm for solving f -consensus
problems in wireless networks in which nodes are orga-
nized into overlapping clusters.

• Theorem 3 states that deterministic nomographic gossip-
ing always reaches a global consensus in a finite number
of iterations, where the consensus can be chosen to be
any multivariate function.

• Theorem 4 states that randomized nomographic gossip-
ing convergence almost surely to any continuous nomo-
graphic function (i.e., to nomographic functions that
consist of continuous components).

C. Notational Remarks

The k-times cartesian product A × · · · × A of a space A
is written as Ak. The natural, nonnegative integer and real
numbers are denoted by N, Z+, R = (−∞,∞), respectively,
and E := [0, 1] ⊂ R defines the closed unit interval. Let
Ak, k ∈ N, be a compact metric space, then C[Ak] denotes
with the infinity norm ‖ · ‖∞ the Banach space of real-
valued continuous functions of k ∈ N variables, defined
on Ak. Finally, F [Ak] denotes the space of any function
g : Ak ⊆ Rk → R.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. Network Model

Consider a wireless network (WN) consisting of N ∈ N
spatially distributed nodes that are organized into a finite set
C := {C1, . . . , C|C|} of time-invariant single-hop clusters,
where Ci denotes the set of nodes belonging to cluster i,
i = 1, . . . , |C|, and |Ci| = Ni ∈ N the corresponding number

C1

C4

cluster head 04 common nodes
C3

C2 C2C1

G

C3C4

Fig. 1. A qualitative example of a connected clustered wireless network, and
its associated graph G, consisting of |C| = 4 clusters and N = 25 nodes.

of nodes, respectively. The nodes in a cluster are arbitrarily
numbered such that Ci = {0i, . . . , Ni − 1}, with 0i the label
of the ith designated cluster head (see Fig. 1).

Definition 1 (Connected Clusters). Two clusters in a clustered
WN, say Ci and Cj , i, j = 1, 2, ..., |C| and i 6= j, are called
connected if Ci and Cj share at least one common node (i.e.,
Ci
⋂
Cj 6= ∅).

Definition 2 (Connected Clustered WN). A clustered WN is
called connected if for any two clusters Ci and Cj , i 6= j,
there exists a sequence of connected clusters from Ci to Cj .

Definition 3 (Associated Graph). We call the finite undirected
graph G = (C,E) with vertex set C (i.e., the set of clusters)
and edge set E as the graph associated to the clustered WN.
Clusters Ci and Cj are connected if and only if (i, j) ∈ E,
and if the clustered WN is connected, then G is connected.

Let the nodes possess any initial states xn(0) ∈ E, n =
1, . . . , N , such that the initial state of the network can be
summarized in the vector x(0) := [x1(0), . . . , xN (0)]T ∈
EN . Then, the intra-cluster communication can usually be
described by the standard affine model of a wireless multiple-
access channel (MAC) [14]. More precisely, if cluster Ci,
i = 1, . . . , |C|, is active at time t ∈ Z+, the real-valued signal
received by cluster head 0i can be written as

y0i(t) =
∑

n∈Ci\{0i}

hin(t)xn(t) + vi(t) , (1)

where hin ∈ R denotes a flat-fading coefficient between node
n and cluster head 0i and vi ∈ R is receiver noise at 0i,
respectively. If we ignore fading and noise, (1) reduces to an
ideal MAC

y0i(t) =
∑

n∈Ci\{0i}

xn(t) , (2)

which reveals that the natural mathematical operation of a
wireless MAC is simply superposition.

B. The f -Consensus Problem

Definition 4 (Desired Consensus). Any function f : EN →
R of the initial state (x1(0), . . . , xN (0)) ∈ EN , (i.e.,
f(x1(0), . . . , xN (0))), is called desired consensus.

Definition 5 (f -Consensus Problem). Let f be the desired
consensus. Then, the f -Consensus Problem is defined as the
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requirement that the states of all nodes in the network asymp-
totically become equal to f (i.e., ∀n ∈ C : limt→∞

∥∥xn(t) −
f(x1(0), . . . , xN (0))

∥∥ = 0, with ‖ · ‖ a certain distance).

A naive approach to solve any f -consensus problem is to
disseminate all initial states xn(0), n ∈ C, throughout the
entire network such that each node knows x(0). Since such a
flooding-like solution would be very inefficient regarding the
amount of interference avoiding coordination, we introduce in
the following section a class of gossip algorithms that exploit
the superposition property (2) as well as the broadcast property
of wireless channels to solve f -consensus problems much
more efficiently.

Remark 1. Although practical gossip algorithms suffer from
fading, receiver noise, synchronization issues, we focus in this
paper on the principal of nomographic gossiping and consider
therefore ideal superpositions (2) only. Extensions to realistic
MACs (1) will be part of future work.

Remark 2. Note that considering initial states that are drawn
from the canonical unit interval E generates no loss in gener-
ality since all results in this paper are also valid if states are
from an arbitrary compact metric space.

III. NOMOGRAPHIC GOSSIPING

As already mentioned, most of the work on gossip algo-
rithms are focused on the average consensus problem, which
means with respect to Definition 5 that the desired consensus
is chosen to be f(x1(0), . . . , xN (0)) = 1

N

∑N
n=1 xn(0). Let

{ϕn}Nn=1 be certain pre-processing functions ϕn : E → R,
n = 1, . . . , N , operating on the initial states (i.e., ϕn(xn(0))).
Then, it is obvious that gossip algorithms that are proven to
achieve an average consensus can also be used to distributively
solve every f -consensus problem with f chosen from the
function space

S[EN ] :=

{
f ∈ F [EN ]

∣∣∣∣∃(ϕ1, . . . , ϕN ) ∈ F [E]× · · ·

· · · × F [E] : f(x1, . . . , xN ) =

N∑
n=1

ϕn(xn)

}
. (3)

Elements of S[EN ] are often referred to as separable functions
(or sum separable functions) [12] and although S[EN ] contains
many functions of high practical relevance [2], to the best
of our knowledge, a rigorous characterization of (3) is still
missing in gossiping literature.1 However, (3) is merely a
subset of the space of so called nomographic functions, defined
as follows.

Definition 6 (Nomographic Functions). Let Ak, k ≥ 2, be a
metric space. Then, every f ∈ F [Ak] for which a representa-
tion

f(x1, . . . , xk) = ψ

(
k∑

n=1

ϕn(xn)

)
(4)

1A rigorous characterization would answer the question which multivariate
functions are sum separable and thus which f -consensus problems are
solvable by algorithms designed for achieving an average consensus.

exists, with ψ ∈ F [R] and ϕn ∈ F [A], for all n = 1, . . . , k, is
called nomographic function and we denote the corresponding
function space as N [Ak].

Example 1. (i) Arithmetic Mean: f(x1, . . . , xN ) = 1
N

∑
n xn,

with ϕn(x) = x, for all n = 1, . . . , N , and ψ(y) = y/N .
(ii) Euclidean Norm: f(x1, . . . , xN ) =

√
x2

1 + · · ·+ x2
N , with

ϕn(x) = x2, for all n = 1, . . . , N , and ψ(y) =
√
y. (iii)

Number of Active Nodes: f(x1, . . . , xN ) = N , with ϕn(x) =
1, for all x ∈ E and n = 1, . . . , N , and ψ(y) = y.

Remark 3. Nomographic functions owe their name from
nomographs, which are graphical representations often used
in engineering to solve certain types of equations [15].

The following surprising theorem provides a complete char-
acterization of the space of nomographic functions and intro-
duces the meaning of universal pre-processing functions (i.e.,
pre-processing functions which are independent of f ).

Theorem 1 (Buck’79 [16]). Every f ∈ F [Ek], k ≥ 2, is
nomographic (i.e., N [Ek] ≡ F [Ek]), and the pre-processing
functions {ϕn}Nn=1 can be chosen to be independent of f .

Since nomographic functions are in the core superpositions
of univariate functions, the basic idea behind nomographic
gossiping is to exploit besides Theorem 1 the analog super-
position property (2) of the wireless channel in each cluster
to significantly improve the efficiency compared to standard
interference avoiding protocols (e.g., time-division multiple
access (TDMA)). This approach merges the processes of local
computation and communication (i.e., within clusters) such
that for nomographic gossiping, the nodes belonging to an
active cluster transmit simultaneously their current states to
the cluster head, which subsequently broadcasts the received
superposition back to update the entire cluster. In other words,
a network-wide rapid consensus with respect to an f ∈ F [EN ]
can be achieved by a certain number of superposition and
broadcast phases as long as the clustered network is connected
according to Definition 2. Finally, if the state of all nodes
converged to

∑N
n=1 ϕn(xn(0)), the application of the so called

post-processing function ψ results in the desired consensus.
In what follows, we interpret and denote a single superpo-

sition in combination with the subsequent broadcast phase as
an elementary step.

It should be emphasized that the universality of pre-
processing functions (see Theorem 1) is one of the great ad-
vantages of nomographic gossiping. Precisely, the universality
property means that there exist (ϕ1, . . . , ϕN ) ∈ F [E]× · · · ×
F [E] such that for every f ∈ F [EN ] there is a ψ ∈ F [R] with
f(x1(0), . . . , xN (0)) = ψ

(∑
n∈C ϕn(xn(0))

)
. Consequently,

an update of the pre-processing functions {ϕn}Nn=1 is not
necessary if f changes due to for example a change of the
application.

This universality is not shared by algorithms that solve
f -consensus problems with f ∈ S[EN ] since in this case,
{ϕn}Nn=1 can not be universally chosen. Efficiently coordi-
nating updates of {ϕn}Nn=1 if f changes would indeed be a
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problem in itself for corresponding algorithms.
So far, no demands on the properties of pre- and post-

processing functions were posed, such that they could be
chosen arbitrarily. Since continuity is a property that can be
beneficial for practical implementations, we denote in the
following in contrast to N [EN ] the space of nomographic
functions with continuous pre- and post-processing functions
by N0[EN ]. The next theorem makes immediately clear how
this property affects the statement of Theorem 1.

Theorem 2 (Buck’82 [17]). The space of nomographic func-
tions is nowhere dense in the space of continuous functions
(i.e., N0[EN ] nowhere dense in C[EN ]).

Even if, according to Theorem 2, continuity reduces the
amount of functions representable in the form (4), there are
some nomographic approximations to functions of practical
relevance that are not in the space N0[EN ]. Here, a nomo-
graphic approximation to a function f ∈ C[EN ], with regard
to the infinity norm, means that there exist continuous pre-
and post-processing functions such that [9]∥∥∥f − ψ(∑

n

ϕn(xn)
)∥∥∥
∞
≤ ε . (5)

Example 2. Let ε > 0 be arbitrary but fixed and let p0(ε) be
chosen such that (5) is fulfilled for all p ≥ p0(ε). (i) Geometric
Mean: f(x1, . . . , xN ) =

(∏
n xn

)1/N ≈ ψ
(∑

n ϕn(xn)
)
,

with ϕn(x) = loge(x + 1/p0(ε)), for all n = 1, . . . , N , and
ψ(y) = exp(y/N). (ii) Maximum Value: f(x1, . . . , xN ) =
max1≤n≤N{xn} ≈ ψ

(∑
n ϕn(xn)

)
, with ϕn(x) = xp0(ε), for

all n = 1, . . . , N , and ψ(y) = y
1

p0(ε) . (iii) Minimum Value:
f(x1, . . . , xN ) = min1≤n≤N{xn} ≈ ψ

(∑
n ϕn(xn)

)
, with

ϕn(x) = 1
xp0(ε) , for all n = 1, . . . , N , and ψ(y) = y

− 1
p0(ε) .

After we discussed some preliminaries on nomographic
functions, we develop in the next two subsections concrete
nomographic gossip algorithms that essentially differ in the
way clusters are activated (e.g., deterministic or random).

A. Deterministic Nomographic Gossiping

1) Algorithm: Let there any connected clustered WN be
given and let f ∈ N [EN ] be the desired consensus with
(ϕ1, . . . , ϕN , ψ) ∈ F [E] × · · · × F [E] × F [R] such that
f(x1(0), . . . , xN (0)) = ψ(

∑
n∈C ϕn(xn(0))) (Theorem 1

ensures the existence). For deterministic nomographic gos-
siping, we assume that there is a fixed activation sequence
π(t) ∈ {1, . . . , |C|} be given that uniquely determines which
cluster has to be active at time t ∈ Z+ and we suppose that
π(t) defines a repeated closed walk on the associated graph
G.2 In what follows, the length of the closed walk measured
in the number of elementary steps is denoted by Π ∈ N such
that π(kΠ + 1) = π((k + 1)Π), for all k ∈ Z+.

Each node in the network is equipped with a transmission
counter cn(t), n = 1, . . . , N , which is set to zero prior to

2Activation of a cluster at time t ∈ Z+ means for instance that cluster
head 0π(t) becomes active and wakes up all remaining nodes in Cπ(t).

C2

z2(0)

z4(0)

C1

z1(0) z5(0)

z6(0)

z3(0)

C3

C1 C2

G

C3

Fig. 2. A simple example of a connected clustered network and the associated
graph.

running the algorithm (i.e., ∀n ∈ C : cn(0) = 0). If for
example the ith node transmits at t ∈ Z+, the corresponding
transmission counter increases by one such that ci(t) = ci(t−
1) + 1. Furthermore, all nodes in the network know if they
are common nodes or not (see Fig. 1) and we assume that
common nodes belonging to clusters Cπ(t−1) and Cπ(t) are
aware of the cardinalities |Cπ(t−1) ∩ Cπ(t)|, for all t ∈ Z+.
Having these assumptions in mind, the corresponding iterative
deterministic gossiping procedure is described in Algorithm 1.

Remark 4. Note that in Algorithm 1, all standard nodes (i.e.,
nodes that never belong to more than one cluster) transmit only
once. This means, if the transmission counter of a standard
node indicates 1, the node does not participates in any further
simultaneous transmission, which can be beneficial in terms
of energy consumption.

2) A Simple Example: To illustrate the functioning of deter-
ministic nomographic gossiping, we describe in the following
Algorithm 1 by using the simple network example depicted in
Fig. 2. Therefore, let f ∈ F [E6] be the desired consensus
and let (ϕ1, . . . , ϕ6, ψ) ∈ F [E] × · · · × F [E] × F [R] be
such that f

(
x1(0), . . . , x6(0)

)
= ψ

(
z1(0)+ · · ·+z6(0)

)
, with

zn(0) := ϕn
(
xn(0)

)
the pre-processed initial state stored at

node n, n = 1, . . . , 6.
Suppose that the activation sequence is given to be

(π(1), π(2), . . . ) = (1, 2, 3, 1, 2, 3, 1, 2, 3, . . . ), forming a re-
peated closed walk on the associated graph with Π = 3.
Then, at t = 1, cluster Cπ(1) = C1 is activated and since
any transmission counter is still zero, all nodes belonging
to C1 transmit simultaneously to cluster head 01, resulting
in the receive signal y0π(1)

(1) = ϕ1

(
x1(0)

)
+ ϕ2

(
x2(0)

)
+

ϕ3

(
x3(0)

)
. The subsequent broadcast updates all states in C1

to z1(1) = z2(1) = z3(1) = y0π(1)
(1). Finally, all nodes

belonging to C1 increase their transmission counter by 1.
At t = 2, cluster Cπ(2) = C2 is activated and it is

obvious that C1 and C2 share |C1 ∩ C2| = 2 common nodes,
both with current state y0π(1)

(1). In order not to falsify the
forthcoming superposition, they have to appropriately weight
their current states. Hence, the simultaneous transmission of
all nodes in the cluster leads to receive signal y0π(2)

(2) =
1

|C1∩C2| [z2(1) + z3(1)] + z4(0) + z5(0) =
∑5
n=1 ϕn

(
xn(0)

)
,

and the subsequent broadcast to the updated states zn(2) =
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Algorithm 1 Deterministic Nomographic Gossiping
1: Initialization: Let t = 0 and let x(0) ∈ EN be any initial

state of the network. Then, all nodes set their transmission
counter to zero (i.e., ∀n ∈ C : cn(0) = 0) and pre-
process their initial states such that z(0) := [z1(0) =
ϕ1(x1(0)), . . . , zN (0) = ϕN (xN (0))]T ∈ RN is the
initial state of the algorithm.

2: while t ≤ 2Π− 3 do
3: Cluster head 0π(t) wakes up all nodes in cluster Cπ(t)

4: if t = 1 then
5: All nodes n ∈ Cπ(1) simultaneously transmit their

initial states zn(0) to cluster head 0π(1), resulting in
receive signal

y0π(1)
(1) =

∑
n∈Cπ(1)

zn(0) (6)

6: else
7: Prior to transmission, each node n ∈ Cπ(t−1)∩Cπ(t)

weights their current state by 1
|Cπ(t−1)∩Cπ(t)|

8: All nodes n ∈ Cπ(t−1) ∩ Cπ(t), as well as all
remaining nodes in cluster Cπ(t) for which cn(t) = 0
holds, simultaneously transmit their current state to
cluster head 0π(t), resulting in receive signal

y0π(t)
(t) = 1

|Cπ(t−1)∩Cπ(t)|

∑
n∈Cπ(t−1)∩Cπ(t)

zn(t− 1)

+
∑

n∈Cπ(t)\Cπ(t−1)∩Cπ(t):cn(t)=0

zn(t− 1)(7)

9: end if
10: cn(t) = cn(t−1)+1, for all n ∈ Cπ(t) that contributed

to (6) or (7)
11: if t < Π− 1 then
12: Cluster head 0π(t) broadcasts receive signal (6) or

(7), resulting in state updates

zn(t) =

{
y0π(t)

(t) , n ∈ Cπ(t)

zn(t− 1) , n /∈ Cπ(t)

(8)

13: else
14: Cluster head 0π(t) applies the post-processing func-

tion to receive-signal (7) and broadcasts the result
such that

zn(t) =

{
ψ
(
y0π(t)

(t)
)

= f
(
x(0)

)
, n ∈ Cπ(t)

zn(t− 1) , n /∈ Cπ(t)

(9)
15: end if
16: t = t+ 1
17: end while

y0π(2)
(2), for all n ∈ C2.

At t = 3 = Π − 1, because of the corresponding super-
imposed signal y0π(3)

(3) = 1
|C2∩C3| [z3(2) + z4(2)] + z6(0) =∑6

i=1 ϕn
(
xn(0)

)
, the application of the post-processing func-

tion ψ at cluster head 03 in conjunction with the subsequent
broadcast results in state updates zn(3) = ψ

(
y0π(3)

(3)
)

=

f
(
x1(0), . . . , x6(0)

)
, n ∈ C3. Hence, the nodes in cluster C3

already reached the desired consensus.
Now, the common nodes spread the information back to

the remaining clusters by the receive signals y0π(4)
(4) =

1
|C1∩C3|z3(3) = z3(3) = f

(
x1(0), . . . , x6(0)

)
for t = 4 and

y0π(5)
(5) = 1

|C1∩C2| [z2(4) + z3(4)] = f
(
x1(0), . . . , x6(0)

)
for t = 5, respectively. The final broadcast leads then to
the global f -consensus zn(5) = f

(
x1(0), . . . , x6(0)

)
, for all

n ∈ C, in merely 2Π− 3 = 5 elementary steps.

Remark 5. Algorithm 1 can be varied in different ways. For
example, with respect to saving energy, common nodes can be
prioritized in the sense that in each overlap Cπ(t−1)∩Cπ(t), t ∈
Z+, a unique node n? is declared the leader that participates
in (7) while the other common nodes are silent. In this case,
(7) has the form

y0π(t)
(t) = zn?(t−1)+

∑
n∈Cπ(t)\Cπ(t−1)∩Cπ(t):cn(t)=0

zn(t−1).

B. Randomized Nomographic Gossiping

As for deterministic nomographic gossiping, let there any
connected clustered WN be given and let f ∈ N [EN ] be
the desired consensus with pre- and post-processing functions
such that f(x1(0), . . . , xN (0)) = ψ(

∑
n∈C ϕn(xn(0))). We

assume that each cluster head has a clock that ticks inde-
pendently (over time and across clusters) at a rate µi ∈ R+

Poisson process, i = 1, . . . , |C|. The µi are chosen such that
in a sufficiently small time interval and with high probability
two cluster heads do not wake up simultaneously [10].

Prior to running the algorithm, all nodes compute their
initial pre-processed state zn(0) = ϕn(xn(0)), n = 1, . . . , N .
Then, if cluster Ci, i ∈ {1, . . . , |C|}, randomly wakes up at
time t, the corresponding nodes transmit simultaneously their
current state values to the cluster head, which subsequently
computes the local average by dividing the receive signal
by Ni − 1. Finally, the broadcast of this intermediate result
updates the entire cluster. If the state at each node converged
to ϕ̄ := 1

N

∑N
k=1 ϕk(xk(0)), applying ψ(Nϕ̄) results in the

desired global consensus f .
A formal description of the iterative nomographic gossiping

procedure is given in Algorithm 2.

IV. CONVERGENCE ANALYSIS

In this section we study the convergence properties of
Algorithms 1 and 2 for connected clustered wireless networks
and discuss some advantages and disadvantages.

A. Deterministic Nomographic Gossiping

Intuitively, the rate of convergence of nomographic gossip
algorithms will significantly depend on the clustering (i.e., on
the properties of the associated graph). Therefore, to obtain
explicit convergence results for deterministic nomographic
gossiping, which would be valid for arbitrary connected as-
sociated graphs, is difficult. In order to still make a useful
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Algorithm 2 Randomized Nomographic Gossiping
1: Initialization: Let t = 0, ε > 0 be a desired accu-

racy and let x(0) ∈ EN be any initial state of the
network. Let f ∈ N [EN ] be the desired consensus and
let (ϕ1, . . . , ϕN , ψ) ∈ C[E]× · · · × C[E]×C[R] such that
f
(
x(0)

)
= ψ

(∑
n∈C ϕn(xn(0))

)
. Then, all nodes pre-

process their initial states such that z(0) := [z1(0) =
ϕ1(x1(0)), . . . , zN (0) = ϕN (xN (0))]T ∈ RN is the
initial state of the algorithm.

2: while ∃n ∈ C : ‖ψ(Nzn(t))− ψ(Nzn(t− 1))‖ ≥ ε do
3: The clock of cluster head i ∈ {1, . . . , |C|} ticks at

random
4: Cluster head 0i wakes up all nodes in cluster Ci ∈ C
5: Nodes 1i, . . . , Ni of Ci transmit their pre-processed cur-

rent states simultaneously to cluster head 0i, resulting
in receive signal

y0i(t) =
∑

n∈Ci\{0i}

zn(t− 1) (10)

6: Cluster head 0i computes the local average

z0i(t) =
1

Ni − 1
y0i(t) (11)

7: Cluster head 0i broadcasts the local average z0i(t),
resulting in state updates

zn(t) =

{
z0i(t) , n ∈ Ci
zn(t− 1) , n /∈ Ci

, (12)

n = 1, . . . , N
8: t = t+ 1
9: end while

statement, we consider connected clustered networks with
associated graphs that have a Hamilton cycle, defined as
follows [18].

Definition 7 (Hamilton Cycle). A cycle in a graph is called
Hamilton cycle if it visits each vertex exactly once.

Definition 8 (Hamilton Graph). A graph is called Hamilton
graph, if it has a Hamilton cycle.

Theorem 3. Consider any connected clustered wireless net-
work consisting of |C| < ∞ clusters and let f ∈ F [EN ] be
any desired consensus. Then, Algorithm 1 always converges to
the exact desired consensus in a finite number of elementary
steps. If the associated graph G is a Hamilton graph, then the
convergence can be achieved in at most 2|C| − 1 elementary
steps.

Proof: Since any connected clustered WN with |C| <∞
has a finite connected associated graph, there exists at least
one closed walk on G that is finite as well. Hence, let the
activation sequence π be chosen such that it describes such
closed walk on G and let Π denote the corresponding finite
length (i.e., the number of elementary steps) of the walk in
the sense that Cπ(1) = Cπ(Π), with Cπ(1) the starting vertex.

Then, from the description of Algorithm 1 it is easy to see that
deterministic nomographic gossiping converges to the desired
consensus in at most 2(Π−1)−1 <∞ elementary steps. If the
associated graph is hamiltonian, it has a Hamilton cycle and
the length of a Hamilton cycle in a Hamilton graph is equal to
the number of vertices such that we conclude Π−1 = |C| and
2|C|−1 for the number of elementary steps until convergence.

Remark 6. The example of a chain of |C| connected clusters
shows that the hamiltonian property of the associated graph is
sufficient to achieve convergence in at most 2|C| − 1 elemen-
tary steps but not necessary. It is well known that determining
whether or not a given graph with |C| ≥ 3 is hamiltonian
constitutes a serious problem. However, there exist several
sufficient conditions for the existence of a Hamilton cycle [18],
which can be helpful for designing a clustering that enables
convergence in 2|C| − 1 elementary steps. The associated
graphs depicted in Figures 1 and 2 are Hamilton graphs,
possessing multiple Hamilton cycles.

Remark 7. It should be emphasized, that the rate of conver-
gence in Theorem 3 is independent of the chosen desired
consensus (i.e., independent of f ).

The convergence of deterministic nomographic gossiping
to the exact desired consensus in a finite number of iterations
comes at the cost of the fact that all nodes in the network
require a certain amount of knowledge about the network
topology, the clustering and the activation sequence. In prac-
tice, a system designer has therefore to trade off between rate
of convergence and amount of coordination.

B. Randomized Nomographic Gossiping

In Algorithm 2, clusters randomly wake up due to an asyn-
chronous time model so that in contrast to the deterministic
case, a coordinated activation procedure is superfluous. On
the other hand, the resulting distributed nature of randomized
nomographic gossiping implies that statements regarding con-
vergence can only be made in some probabilistic sense so that
the distance in Definition 5 has to be chosen appropriately.

Theorem 4. Let f be any desired consensus from N0[EN ].
Then, for any connected clustered wireless network, Algorithm
2 converges to the desired consensus almost surely.

Proof: Let z(0) ∈ RN be the vector of pre-
processed initial states zn(0) := ϕn(xn(0)) and let z̄ :=
1
N

∑N
n=1 ϕn(xn(0)) be the corresponding average. Then, with

(ϕ1, . . . , ϕN ) ∈ C[E]× · · · × C[E] we can conclude from [10,
Theorem 2] that z(t) converges to z̄1N almost surely as t
tends to infinity (i.e., P(limt→∞ z(t) = z̄1N ) = 1). Now, if
ψ is continuous on R, we have with the Mann-Wald Theorem
[19] that z(t)

a.s.→ z̄1N ⇒
(
ψ(Nz1(t)), . . . , ψ(NzN (t))

) a.s.→
ψ
(∑

n∈C ϕn(xn(0))
)
1N = f(x1(0), . . . , xN (0))1N , which

proves the result.

Remark 8. Note that compared with Theorem 3, the con-
vergence of randomized nomographic gossiping essentially
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Fig. 3. The mean state evolutions (averaged over 103 independent real-
izations) zn(t), n = 1, . . . , 25, of the network depicted in Fig. 1 using
randomized nomographic gossiping. The desired consensus is chosen to be
the “Euclidean norm” of the initial state x(0), where x(0) uniformly drawn
from EN .

requires continuous pre- and post-processing functions, which
means a significant limitation according to Theorem 2 even if
there are some nomographic approximations of functions that
are not in N0[EN ] (see Example 2).

V. NUMERICAL EXAMPLES

In the following, we present some numerical examples to
demonstrate the huge potential of nomographic gossiping.
Starting with an f -consensus example that illustrates the
convergence behavior of Algorithms 1 and 2, we subsequently
compare the algorithms with the well established pairwise gos-
siping from [4] and the broadcast gossiping protocol proposed
in [6], respectively.

Consider the connected clustered network from Fig. 1,
consisting of N = 25 nodes and |C| = 4 clusters. Ac-
cording to Definitions 7 and 8 we conclude that the de-
picted associated graph is hamiltonian, possessing multiple
Hamilton cycles. Corresponding examples of activation se-
quences that form repeated Hamilton cycles of length Π = 5
on G are π1(t) = 1, 2, 3, 4, 1, 2, 3, 4, 1, . . . and π2(t) =
1, 3, 2, 4, 1, 3, 2, 4, 1, . . . , respectively. In what follows, we
choose without loss in generality π1(t), t ∈ Z+, for deter-
ministic nomographic gossiping.

Now, consider an arbitrary but fixed initial state x(0) ∈ EN .
Fig. 3 shows the corresponding mean state evolutions of all
nodes in the network (averaged over 103 independent realiza-
tions), with the desired consensus chosen to be the “Euclidean
norm” from Example 1 (ii). Even after 20 iterations/elementary
steps, all states are on average within ±0.03 of the actual
Euclidean norm ‖x(0)‖22 = 3.5774.

Fig. 4 depicts a comparison of the mean square error
performance of deterministic nomographic gossiping and ran-
domized nomographic gossiping, where in contrast to the
previous example, the desired consensus is now chosen to be
the “geometric mean” from Example 2 (i) with an arbitrary
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Fig. 4. Mean square error over number of iterations (i.e., elementary steps)
for deterministic and randomized nomographic gossiping, using the network
example depicted in Fig. 1. The desired consensus is chosen to be “geometric
mean” and the initial states are independent and uniformly drawn from (0, 1].

but fixed initial state x(0) ∈ (0, 1]N . From Theorem 3 we
conclude a convergence to the exact desired consensus in
2|C|−1 = 7 elementary steps, which is confirmed by the solid
plot. Even if the convergence of randomized nomographic
gossiping requires infinitely many steps to achieve the exact
desired consensus, the mean square error is in the depicted
example significantly smaller within iterations 2− 6.

Remark 9. Note that the choice of the activation sequence
does not impact the convergence speed as long as the se-
quence describes a repeated closed walk on the associated
graph. However, the choice may impact the magnitude of the
mean square error during state evolutions such that given a
connected clustered WN, the Algorithm could be optimized
over all existing activation sequences that form repeated closed
walks on G.

As mentioned at the beginning of this section, we finally
compare Algorithms 1 and 2 with the standard benchmarks
from [4] and [6]. The corresponding numerical data is depicted
in Fig. 5, where the desired consensus is chosen to be the
arithmetic mean from Example 1 (i). The plots show the huge
improvements concerning the convergence rate.

VI. CONCLUSIONS

In this paper we presented a class of iterative gossip
algorithms for achieving a network-wide consensus in a
clustered wireless network with respect to functions of the
initial state values. The algorithms rely on the fact that
every real-valued multivariate function has a nomographic
representation, which is simply a function of a superposition
of univariate functions. Since the natural mathematical oper-
ation of a wireless multiple-access channel is superposition,
nomographic functions can be efficiently computed in each
cluster in merely a single step by letting nodes simultaneously
transmit pre-processed analog state values to a cluster head
that appropriately post-processes the receive signal. Analog
systems become again more important for specific applications
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Fig. 5. Performance comparisons of nomographic gossiping, pairwise
gossiping (Boyd et al. [4]) and broadcast gossiping (Aysal et al. [6]), using
the network Fig. 1 and “arithmetic mean” as the desired consensus.

since recently it has been shown that digital signal processing
has several fundamental limits, some of which can not be
overcome by oversampling [20], [21].

The class of proposed nomographic gossip algorithms con-
sists of deterministic as well as randomized approaches that
differ in the way clusters are activated. The described deter-
ministic algorithm activates clusters due to a fixed activation
sequence, while in the randomized counterpart clusters wake
up randomly, leading to a distributed gossip procedure.

At the cost of some coordination, we have shown that
using deterministic nomographic gossiping, all states in the
network converge to the exact desired consensus (i.e., an
arbitrary function of the states) in a finite number of itera-
tions. On the other hand, randomized nomographic gossiping
converges almost surely to the desired consensus as long
as the consensus function consists of continuous component
functions. A numerical comparison of the algorithms with
standard approaches known from the literature demonstrates
that huge performance gains are possible with respect to the
speed of convergence.

Finally, we mention some further useful properties of nomo-
graphic gossiping. The pre-processing functions, operating on
the initial states, can be chosen to be universal in the sense
that they are independent of the desired consensus. An update
of the post-processing at nodes is therefore superfluous if the
desired consensus changes. The universality is even preserved
if clusters change due to nodes that drop out or due to
additional nodes that join a cluster [22].

Part of our future work will be an extension of the proposed
nomographic gossip algorithms to a more realistic intra-
cluster communication (i.e., using model (1) instead of (2)) by
exploiting the analog computation scheme published in [8].

ACKNOWLEDGMENT

The work of M. Goldenbaum and S. Stańczak was supported
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