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a b s t r a c t

It is well-known that the Shannon sampling series is locally uniformly convergent for all

signals in the Paley–Wiener space PW1
p. An interesting question is how this good local

approximation behavior is affected if the samples are disturbed by the non-linear threshold

operator. This operator, which sets to zero all samples with absolute value smaller than

some threshold, arises in the modeling of many applications, e.g., in wireless sensor

networks. Moreover, it constitutes an essential part of a large class of quantizers, and

consequently is important for all digital signal processing applications that involve

conversion between analog and digital domains. In this paper, the approximation behavior

of the Shannon sampling series that only uses the samples with absolute value larger than

or equal to some threshold is analyzed. It is shown that there exists a signal in PW1
p such

that the local approximation error increases unboundedly as the threshold tends to zero.

Moreover, for a fixed threshold, the local approximation error can grow arbitrarily large on

the set of signals whose norm is bounded by one. With this, we generalize results of Butzer

et al. that were given in the paper ‘‘On quantization, truncation and jitter errors in the

sampling theorem and its generalizations,’’ Signal Processing (2) 1980 [1]. We conclude the

paper with a discussion about the differences in the reconstruction behavior between the

sampling series which is truncated in the domain of the sampled signal, i.e., time-domain

truncation, and the sampling series which is truncated in the range of the sampled signal.

& 2012 Published by Elsevier B.V.
1. Introduction

A well known fact [2–4] about the convergence beha-
vior of the Shannon sampling series for signals in PW1

p is
expressed by the following theorem.

Theorem 1 (Brown’s Theorem). For all f 2 PW1
p and T40

fixed we have

lim
N-1

max
t2½�T,T�

f ðtÞ�
XN

k ¼ �N

f ðkÞ
sinðpðt�kÞÞ

pðt�kÞ

�����
�����

 !
¼ 0:
Elsevier B.V.
This theorem plays a fundamental role in applications
because it establishes the uniform convergence on com-
pact subsets of R for a large class of signals, namely PW1

p,
which is the largest space within the scale of Paley–
Wiener spaces. Unfortunately, it is not possible to extend
the theorem in such a way that the uniform convergence
holds on all of R for the space PW1

p.
The reconstruction of bandlimited signals from their

samples is important for many practical and theoretical
applications. In digital signal processing, the Shannon
sampling theorem is the theoretical foundation which
creates the link between the continuous-time domain and
the discrete-time domain. The Shannon sampling series
has proven to be useful in other areas as well. In his
‘‘Lectures on Computation’’ [5], Richard Feynman dis-
cusses the theoretical foundations and concepts of
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classical and quantum computation and the Shannon
sampling theorem is one important step in his
argumentation.

The principle of digital signal processing relies on the
fact that certain bandlimited signals can be perfectly
reconstructed from their samples. However, this is only
true if the sample values are known exactly. For various
reasons this is not always the case in applications. For
example, in digital signal processing applications the
samples are not known exactly because the inevitable
quantization process in analog to digital conversion has
limited resolution only [6,7]. Due to its high practical
importance, the analysis of the quantization error has
gained a lot of attention in research [6]. A deterministic
analysis of the quantization process is difficult because of
the non-linear nature of the quantization operator. This
fact was recognized for example in [8], where the authors
write ‘‘Deceptively simple in its description and construc-
tion, the uniform quantizer has proved to be surprisingly
difficult to analyze, precisely because of its inherent non-
linearity.’’ This fact is also the reason why the quantization
error is often treated probabilistically, and modeled as
additive white noise [9,10]. However, it turned out that
this noise model is not always satisfactory, because it can
lead to false predictions [11,12]. In contrast, the determi-
nistic analysis is difficult, but reveals some properties of
the quantization process which cannot be analyzed with
the additive noise description of the quantization error.
Only a few papers conduct a deterministic analysis of the
quantization process [3,1,13].

In this paper, we provide for the space PW1
p the first

rigorous deterministic analysis of the pointwise behavior of
the Shannon sampling series, where the samples are dis-
turbed by the threshold operator, which sets to zero all
sample values with absolute value smaller than some
threshold d40. This operator constitutes an essential part
of many quantization schemes, and thus the results
obtained here are equally relevant for a large class of
quantization operators. Of course there are also applica-
tions where the threshold operator is important on its own.

Wireless sensor networks are one possible application
where the threshold operator is directly involved. In
wireless sensor networks the sensors sample some ban-
dlimited signal in space or time and then transmit the
samples to the receiver [14,15]. Then, using these sam-
ples, the receiver tries to reconstruct the signal perfectly,
or at least approximately if a perfect reconstruction is not
possible. In order to save energy, it is common to let the
sensors transmit only if the absolute value of the signal
exceeds some threshold d40. In this case, the receiver
has to reconstruct the signal by using only the samples
with absolute value larger than or equal to the threshold
d.

By Ad we denote the operator that maps the signal f 2

PW1
p to the approximation Adf of f, which is obtained by

the Shannon sampling series that uses only the samples
with an absolute value larger than or equal to the thresh-
old d. A precise definition of Ad will be given in Section 3.

In this paper we analyze the behavior of Adf in two
ways. The first one is to analyze Adf for fixed threshold d
and vary f 2 PW1

p. In order to get meaningful results, we
must additionally restrict the norm of the signals. We
choose signals f with norm Jf JPW1

p
r1. The second way is

to analyze Adf for fixed f 2 PW1
p as the threshold d tends

to zero. Intuitively one would expect that the approxima-
tion error is reduced if the threshold is decreased. How-
ever, as we will see in Section 4, this is not true generally.
The threshold operator destroys the good local approx-
imation behavior of the Shannon sampling series for PW1

p.
There are signals in PW1

p such that ðAdf ÞðtÞ diverges for all
t 2 R\Z as d-0. Hence, for fixed t 2 R\Z, the approxima-
tion error 9f ðtÞ�ðAdf ÞðtÞ9 can grow arbitrarily large. This
result improves a result which was recently obtained for
the global behavior of Adf [16].

2. Notation

In order to continue, we need some notation. Let f̂

denote the Fourier transform of a function f, where f̂ is to
be understood in the distributional sense. Lp

ðRÞ,
1rpo1, is the space of all to the pth power Lebesgue
integrable functions on R, with the usual norm J � Jp, and
L1ðRÞ the space of all functions for which the essential
supremum norm J � J1 is finite. For 1rpr1, PWp

p
denotes the Paley–Wiener space of signals f with a
representation f ðzÞ ¼ 1=ð2pÞ

R p
�p gðoÞeizo do, z 2 C, for

some g 2 Lp
½�p,p�. If f 2 PWp

p then gðoÞ ¼ f̂ ðoÞ. The norm
for PWp

p, 1rpo1, is given by Jf JPWp
p
¼ ð1=ð2pÞ

R p
�p

9f̂ ðoÞ9p
doÞ1=p. Moreover, we have Jf J1rJf JPW1

p
, i.e.,

every signal in PW1
p is bounded on the real line.

3. Motivation and contribution of the paper

Before we state the main results, we introduce the
threshold operator, discuss some of its basic properties,
and substantiate the analyzed problem.

For complex numbers z 2 C, the threshold operator kd,
d40, is defined by

kdz¼
z, 9z9Zd,

0, 9z9od:

(

Furthermore, for continuous functions f : R-C, we
define the threshold operator Yd, d40, pointwise, i.e.,
ðYdf ÞðtÞ ¼ kdf ðtÞ, t 2 R.

In this paper, the threshold operator kd is applied on
the samples ff ðkÞgk2Z of signals f 2 PW1

p, which gives the
disturbed samples fkdf ðkÞgk2Z. This is, of course, equiva-
lent to applying the threshold operator Yd on the signal f

itself and then taking the samples, i.e., fðYdf ÞðkÞgk2Z. Then,
the resulting samples fðYdf ÞðkÞgk2Z are used to build an
approximation

ðAdf ÞðtÞ :¼
X

k¼�1

9f ðkÞ9Zd

f ðkÞ
sinðpðt�kÞÞ

pðt�kÞ
¼

X1
k ¼ �1

ðYdf ÞðkÞ
sinðpðt�kÞÞ

pðt�kÞ

ð1Þ

of the original signal f. By Ad we denote the operator that
maps f 2 PW1

p to Adf according to (1). For f 2 PW1
p we

have lim9t9-1f ðtÞ ¼ 0 by the Riemann–Lebesgue lemma
[17, p. 105], and it follows that the series in (1) has only
finitely many summands, which implies that
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Adf 2 PW2
p � PW1

p. In general, Adf is only an approxima-
tion of f, and we want the signal Adf to be close to f if d is
sufficiently small. The peak value of the approximation
error Jf�Adf J1 is one possible way to measure this
closeness, another is the pointwise approximation error
9f ðtÞ�ðAdf ÞðtÞ9, t 2 R. Since the series in (1) uses all
‘‘important’’ samples of the signal, i.e., all samples that
are larger than or equal to d, one could expect Adf to have
an approximation behavior similar to the Shannon sam-
pling series. But, as we will see, Adf exhibits a significantly
different behavior.

Some properties of Ad which complicate the analysis of
the threshold operator are as follows:
1.
 For each d40 fixed, Ad is a non-linear operator.

2.
 For each d40 fixed, the operator Ad : ðPW1

p,J � JPW1
p
Þ-

ðPW1
p,J � J1Þ is discontinuous, i.e., there exist a func-

tion f 2 PW1
p and a constant C1 such that for every

E40 there exists a function g 2 PW1
p satisfying

Jf�gJPW1
p
oE such that JAdf�AdgJ1ZC1. This implies

that Ad : ðPW1
p,J � JPW1

p
Þ-ðPW1

p,J � JPW1
p
Þ is discontinuous.
3.
 For some f 2 PW1
p, the operator Ad is also discontin-

uous with respect to d, i.e., there exist a function f 2

PW1
p and a t 2 R such that limh-0ðAdþhf ÞðtÞaðAdf ÞðtÞ.

Remark 1. Note that a linear operator is continuous if
and only if it is bounded. Since Ad is a non-linear operator,
continuity and boundedness are no longer equivalent.
However, in Theorem 2 we will see that, for 0odo1=3,
Ad is also an unbounded operator.

The fact that Adf has only finitely many samples can be
interpreted as a truncation of the Shannon sampling
series

X1
k ¼ �1

f ðkÞ
sinðpðt�kÞÞ

pðt�kÞ
:

This truncation is controlled in the range of the signal,
because only the samples f(k), k 2 Z, with absolute value
larger than or equal to some threshold d40 are taken into
account. As d tends to zero, more and more samples are
used for the approximation. Normally, the Shannon sam-
pling series is truncated in the domain of the signal by
considering only the samples f(k), k¼�N, . . . ,N. For this
kind of truncation we have, according to Brown’s theo-
rem, the uniform convergence of

ðSNf ÞðtÞ :¼
XN

k ¼ �N

f ðkÞ
sinðpðt�kÞÞ

pðt�kÞ
ð2Þ

on compact subsets of R for all f 2 PW1
p as N goes to

infinity. It follows that supN2N9ðSNf ÞðtÞ9o1 for all
t 2 ½�T ,T�, which in turn implies, using the Banach–
Steinhaus Theorem [18, p. 98], that there exists a constant
C2 such that

sup
Jf JPW1

p
r1

sup
N2N

9ðSNf ÞðtÞ9rC2

for all t 2 ½�T ,T�.
In contrast, the behavior of Adf is completely different.

The following results about the global approximation
behavior of Adf , which are stated in Theorems 2 and 3,
were recently obtained in [16].

Theorem 2. For all 0odo1=3 we have

sup
Jf JPW1

p
r1

JAdf J1 ¼1:

Theorem 2 shows that, for 0odo1=3, Ad : ðPW1
p, J � JPW1

p
Þ

-ðPW1
p,J � J1Þ is an unbounded operator. Thus, for any level

K40 we can find a signal f 2 PW1
p with norm Jf JPW1

p
r1

such that JAdf J1 exceeds K. Furthermore, Theorem 2 implies
that

sup
Jf JPW1

p
r1

Jf�Adf J1 ¼1, ð3Þ

for every 0odo1=3, i.e., the peak approximation error can
grow arbitrarily large.

Remark 2. Since the supremum in Theorem 2 is taken
over signals with norm Jf JPW1

p
r1, and Jf J1rJf JPW1

p
, it is

clear that the threshold d must be less than or equal to
one, because otherwise Adf � 0. The specific requirement
in Theorem 2 that 0odo1=3 is due to technical reasons
in the proof of the theorem.

Theorem 3. There exists a signal f 1 2 PW1
p such that

lim sup
d-0

JAdf 1J1 ¼1:

Theorem 3 shows that there exists a signal f 1 2 PW1
p

such that JAdf 1J1, i.e., the peak value of the approxima-
tion Adf 1, increases unboundedly as the threshold d tends
to zero.

Both, Theorems 2 and 3, are concerned with the
divergence of the supremum over R of the approximation
Adf . However, in certain applications a good local beha-
vior of Adf on bounded intervals is sufficient and the
global behavior is not relevant. This is the reason why we
analyze the local behavior of Adf in this paper.

Remark 3. There is a seeming difference between the
theorems in [16] and Theorems 2 and 3, because the
results in [16] were stated for the case where the samples
of the Shannon sampling series are disturbed by a
quantization operator, performing a midtread quantiza-
tion, and in this paper the threshold operator is used.
However, the results are directly transferable because the
key property of the quantization operator that was
important for the proof in [16] is that all samples with
absolute value less than the quantization threshold are set
to zero, and this property equally holds for the threshold
operator.

At the Strobl’11 conference, where we presented the
results of this paper, we became aware that a closely
related topic, which has recently been studied in the
mathematical literature, is greedy approximation
[19,20]. There, the approximation behavior of series likeX
9f ðkÞ9Zd

f ðkÞe�iok, o 2 ½�p,p�, ð4Þ

where only the ‘‘important’’ Fourier coefficients are
included, is analyzed, and the convergence of the series
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(4) is measured in the norm of the considered signal
space. The results show that there exists a signal f 1 2

PW1
p such that

lim sup
d-0

Z p

�p

X
9f ðkÞ9Zd

f 1ðkÞe
�iok

������
������do¼1: ð5Þ

For practical applications the examination of the L1-norm
of (4), as is done in (5), is too restricting. For example, it
can be shown that for every 0obo1 there exists a signal
f 1 2 PW1

bp for which, on the one hand, we have the
divergence (5), but, on the other hand, we have the
practically relevant uniform convergence

lim
d-0

max
t2R

f ðtÞ�
X

9f ðkÞ9Zd

f 1ðkÞfðt�kÞ

������
������¼ 0,

where f is a suitable chosen reconstruction function. In
this paper we analyze the case without oversampling.

Remark 4. Since

ðSNf ÞðtÞ ¼
1

2p

Z p

�p

XN

k ¼ �N

f ðkÞe�iok

 !
eiot do,

where SN is defined as in (2), it follows that

9ðSNf ÞðtÞ9r
1

2p

Z p

�p

XN

k ¼ �N

f ðkÞe�iok

�����
�����do:

That is, the divergence of the Shannon sampling series
ðSNf ÞðtÞ for some t 2 R implies the divergence of the L1-
norm of

XN

k ¼ �N

f ðkÞe�iok: ð6Þ

However, the converse is not true. There exist signals f 2

PW1
p such that the L1-norm of (6) diverges but—as

Brown’s theorem (Theorem 1) shows—the Shannon sam-
pling series ðSNf ÞðtÞ converges for all t 2 R. This shows
that the bad behavior of (6) has no immediate conse-
quence for the convergence behavior of the Shannon
sampling series. In view of this, we cannot conclude the
bad behavior of ðAdf ÞðtÞ from the diverges of the L1-norm
of (4). However, we will see that there is a difference to
the Shannon sampling series, because ðAdf ÞðtÞ indeed
diverges for some f 2 PW1

p and all t 2 R\Z as d tends
to zero.

4. Unboundedness of the threshold operator

We have seen that the threshold operator leads to a
bad global reconstruction behavior of the Shannon sam-
pling series. In this section we analyze whether this bad
behavior is limited to the global behavior of the recon-
struction or whether it is also locally present.

The next theorem is the analog theorem to Theorem 2,
and shows that the unboundedness of Adf on the set ff 2
PW1

p : Jf JPW1
p
r1g is not only with respect to the supre-

mum norm but also pointwise for every t 2 R\Z.
Theorem 4. For all 0odo1=3 and all t 2 R\Z we have

sup
Jf JPW1

p
r1

9ðAdf ÞðtÞ9¼1:

Although we have stated Theorem 4 for the threshold
operator, the proof reveals that Theorem 4 is also true for
all quantization operators that set all signal values below
a certain threshold to zero, i.e., all quantization operators
that behave like the threshold operator for small signal
values. The uniform midtread quantization, for example,
is a quantization operator that has this behavior.

The next theorem concerns the local behavior of Adf as
the threshold d tends to zero. It shows that ðAdf ÞðtÞ,
t 2 R\Z, diverges as d-0 for some signal in PW1

p.

Theorem 5. There exists a signal f 1 2 PW1
p such that for all

t 2 R\Z we have

lim sup
d-0

9ðAdf 1ÞðtÞ9¼1: ð7Þ

Theorems 4 and 5 improve Theorems 2 and 3,
respectively.

Remark 5. The divergence of ðAdf ÞðtÞ between the inte-
gers is remarkable because the approximation behavior
on the integer grid is best possible. For all t 2 Z, f 2 PW1

p,
and d40 we have 9f ðtÞ�ðAdf ÞðtÞ9od.

It is not immediately clear how to prove Theorem 5 for
the quantization operator that was discussed above,
instead of the threshold operator. Nevertheless, we con-
jecture that the theorem is also true for the quantization
operator.

We first prove Theorem 5 because the proof of
Theorem 4 is simple, once we have the results from the
first proof.

Proof of Theorem 5. The fact that the operator Ad is
discontinuous complicates the proof of Theorem 5. In the
proof we iteratively construct a sequence of PW1

p-signals,
which converges in the PW1

p-norm to a signal f 1 2 PW1
p

that has the property (7).
For 0oZo1 and N 2 N, consider the function

f ðt,Z,NÞ :¼
X2N�1

k ¼ �2Nþ1

f ðk,Z,NÞ
sinðpðt�kÞÞ

pðt�kÞ
, ð8Þ

where

f ðk,Z,NÞ ¼

ð�1Þk 2ð1�ZÞþ1�Z
N

k

� �
, �2Noko�N,

ð�1Þkð1�ZÞ, �Nrko0,

ð�1Þk, 0rkrN,

ð�1Þk 2�
1

N
k

� �
, Noko2N:

8>>>>>>>>><
>>>>>>>>>:

Additionally, for 0oZo1, N 2 N, and M 2 N [ f0g, MoN,
the function

gðt,Z,N,MÞ :¼ f ðt,Z,NÞ�
X�1

k ¼ �M

ð1�ZÞ ð�1Þk sinðpðt�kÞÞ

pðt�kÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼ :u1ðtÞ
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�
XM
k ¼ 0

ð�1Þk sinðpðt�kÞÞ

pðt�kÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼ :u2ðtÞ

ð9Þ

is needed. Note that, for M¼0, the first sum in (9) is
empty and thus u1 � 0. We have

Jgð�,Z,N,MÞJPW1
p
rJf ð�,Z,NÞJPW1

p
þJu1JPW1

p
þJu2JPW1

p
: ð10Þ

The norm Ju1JPW1
p

is bounded above by

Ju1JPW1
p
o

p
2
þ logðMþ1Þ, ð11Þ

because Ju1JPW1
p
¼ 0 for M¼0, and

Ju1JPW1
p
¼
ð1�ZÞ

2p

Z p

�p

X�1

k ¼ �M

e�iokð�1Þk
�����

�����do
¼
ð1�ZÞ

2p

Z p

�p

1�eioM

1�eio

����
����do

o
1

p

Z p

0

sin
M

2
o

� �
sin

o
2

� �
��������

��������do

r
Z p

0

sin
M

2
o

� �����
����

o
do

¼

Z M

0

sin
p
2
o

� ���� ���
o do

r
Z 1

0

sin
p
2
o

� �
o doþ

Z M

1

1

o do

o
p
2
þ logðMÞ

for M40. A similar calculation shows that

Ju2JPW1
p
o

p
2
þ logðMþ1Þ: ð12Þ

In addition, we have

Jf ð�,0,NÞJPW1
p
o3, ð13Þ

and

lim
Z-0

Jf ð�,Z,NÞ�f ð�,0,NÞJPW1
p
¼ 0:

Eq. (13) follows from the Appendix of [16], by observing
that it is also possible to write a strict inequality in the
last line of the last equation in [16]. Therefore, for every
N 2 N, there exists an Z0 ¼ Z0ðNÞ40 such that

Jf ð�,Z,NÞJPW1
p
o3 for all ZrZ0: ð14Þ

By ZðNÞ we denote the largest Z0 such that (14) is true.
Combining (10)–(12) and (14), it follows that

Jgð�,Z,N,MÞJPW1
p
o3þpþ2 logðMþ1Þ ð15Þ

for all N 2 N, M 2 N [ f0g, MoN, and ZrZðNÞ.
Moreover, for N 2 N, M 2 N [ f0g, MoN, 0oZo1, and
all d satisfying maxð1�Z,1�1=NÞodo1, we have

ðAdgð�,Z,N,MÞÞ �
1

2

� �
¼

XN

k ¼ Mþ1

ð�1Þk sinðpð� 1
2�kÞÞ

pð� 1
2�kÞ

4
1

p
XN

k ¼ Mþ1

1

1þk

4
1

p
XN

k ¼ Mþ1

Z kþ1

k

1

1þt
dt

¼
1

p

Z Nþ1

Mþ1

1

1þt dt

¼
1

p log
Nþ2

Mþ2

� �
: ð16Þ

The function

hðt,Z,N,MÞ :¼
1

3þpþ2 logðMþ1Þ
gðt,Z,N,MÞ

will be a central building block of the desired function f1.
Due to (15), we have

Jhð�,Z,N,MÞJPW1
p
r1 ð17Þ

for all ZrZðNÞ.
Let K40 and M 2 N [ f0g be arbitrary and choose N

according to

N ¼NðM,KÞ ¼ ðMþ2ÞepKð3þpþ2 logðMþ1ÞÞ�2,

which implies that

1

p log
Nþ2

Mþ2

� �
¼ K 3þpþ2 logðMþ1Þð Þ:

Thus, for all NZN , 0oZo1, and d satisfying

max
1�Z

3þpþ2 logðMþ1Þ
,

1�
1

N
3þpþ2 logðMþ1Þ

0
B@

1
CAodo1

it follows by (16) that

ðAdhð�,Z,N,MÞÞ �
1

2

� �
4

1

3þpþ2 logðMþ1Þ

1

p log
Nþ2

Mþ2

� �
ZK :

Now, we construct the function f1 iteratively. Let E1 ¼ 1,
M1 ¼ 0, and choose N1 ¼ dNðM1,21þ1=E1Þe, where dte
denotes the smallest integer that is larger than or equal
to t. Then, for Z1 ¼ ZðN1Þ and whenever d1 is chosen such
that

max
1�Z1

3þp ,
1�

1

N1

3þp

0
BB@

1
CCAod1o

1

3þp ,

we have, using the abbreviation f1ðtÞ ¼ hðt,Z1,N1,M1Þ, that

Jf1JPW1
p
r1, ð18Þ

which follows from (17), and

ðAd1
f1Þ �

1

2

� �
4

21þ1

E1
¼ 21þ1:

Since only finitely many samples of f1 are different
from zero, it follows that f1 2 PW2

p. In [21, Theorem 5] it
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was shown that limd-0JAdf�f J1 ¼ 0 for all f 2 PW2
p.

Therefore, there exists a d240 such that

9ðAdf1Þð�
1
2 Þ�f1ð�

1
2Þ9o1 ð19Þ

for all drd2. Next, let 0oE2ominðE1=2,d2Þ, M2 ¼ 2N1,
N2 ¼ dNðM2,22þ1=E2Þe, Z2 ¼ ZðN2Þ, and define the function
f2ðtÞ ¼f1ðtÞþE2hðt,Z2,N2,M2Þ. Then we have, for all d2

with

max
ð1�Z2ÞE2

3þpþ2 logðM2þ1Þ
,

1�
1

N2

� �
E2

3þpþ2 logðM2þ1Þ

0
BB@

1
CCAod2

o
E2

3þpþ2 logðM2þ1Þ
,

that

ðAd2
f2Þ �

1

2

� �
¼

X2N1�1

k ¼ �2N1þ1

ðYd2
f2ÞðkÞ

sinðpð� 1
2�kÞÞ

pð� 1
2�kÞ

þ
XN2

k ¼ M2þ1

ðYd2
f2ÞðkÞ

sinðpð� 1
2�kÞÞ

pð� 1
2�kÞ

¼ ðAd2
f1Þ �

1

2

� �
þ

E2

3þpþ2 logðM2þ1Þ

�
XN2

k ¼ M2þ1

ð�1Þksinðpð� 1
2�kÞÞ

pð� 1
2�kÞ

:

Since d2od2, it follows by (19) that

9ðAd2
f1Þð�

1
2 Þ�f1ð�

1
2Þ9o1

and consequently

ðAd2
f2Þ �

1

2

� �
4

E2

3þpþ2 logðM2þ1Þ

�
XN2

k ¼ M2þ1

ð�1Þksinðpð� 1
2�kÞÞ

pð� 1
2�kÞ

� f1 �
1

2

� �����
�����1

Z
E2

3þpþ2 logðM2þ1Þ
ð3þpþ2 logðM2þ1ÞÞ

8

E2
�2

¼ 22þ1
�2,

where we used (17), which implies that Jf1J1r
Jf1JPW1

p
r1.

Again, there exists a d340 such that

9ðAdf2Þð�
1
2 Þ�f2ð�

1
2Þ9r1 ð20Þ

for all dod3. Next, let 0oE3ominðE2=2,d3Þ, M3 ¼ 2N2,
N3 ¼ dNðM3,23þ1=E3Þe, Z3 ¼ ZðN3Þ, and define f3ðtÞ ¼

f2ðtÞþE3hðt,Z3,N3,M3Þ. Then we have, for all d3 with

max
ð1�Z3ÞE3

3þpþ2 logðM3þ1Þ
,

1�
1

N3

� �
E3

3þpþ2 logðM3þ1Þ

0
BB@

1
CCAod3

o
E3

3þpþ2 logðM3þ1Þ
,

that

ðAd3
f3Þ �

1

2

� �
¼

X2N2�1

k ¼ �2N2þ1

ðYd3
f3ÞðkÞ

sinðpð� 1
2�kÞÞ

pð� 1
2�kÞ

þ
XN3

k ¼ M3þ1

ðYd3
f3ÞðkÞ

sinðpð� 1
2�kÞÞ

pð� 1
2�kÞ
¼ ðAd3
f2Þ �

1

2

� �
þ

E3

3þpþ2 logðM3þ1Þ

�
XN3

k ¼ M3þ1

ð�1Þksinðpð� 1
2�kÞÞ

pð� 1
2�kÞ

:

Since d3od3 it follows by (20) that

9ðAd3
f2Þð�

1
2 Þ�f2ð�

1
2Þ9o1

and consequently

ðAd3
f3Þ �

1

2

� �
Z

E3

3þpþ2 logðM3þ1Þ

�
XN3

k ¼ M3þ1

ð�1Þksinðpð� 1
2�kÞÞ

pð� 1
2�kÞ

� f2 �
1

2

� �����
�����1:

Furthermore, using (18), we have that

Jf2JPW1
p
rJf1JPW1

p
þE2Jhð�,Z2,N2,M2ÞJPW1

p
o1þ1

2

and

Jf3JPW1
p
rJf2JPW1

p
þE3Jhð�,Z3,N3,M3ÞJPW1

p
o1þ

1

2
þ

1

4

o
X1
k ¼ 0

1

2k
¼ 2,

which leads to

ðAd3
f3Þð�

1
2Þ423þ1

�3:

Now, using the same procedure again and again, we can
iteratively construct the sequence of functions f4,f5, . . .,
and, by induction, we find that

fkðtÞ ¼
Xk

l ¼ 1

Elhðt,Zl,Nl,MlÞ, k 2 N:

Since our choice of El, l 2 N, ensures that ffkgk2N is a
Cauchy sequence in PW1

p it follows that there is a function
f 1 2 PW1

p with

lim
k-1

Jf 1�fkJPW1
p
¼ 0

and Jf 1JPW1
p
r2. Note that ðAdr

f 1ÞðtÞ ¼ ðAdr
frÞðtÞ by the

special construction of fr . Using induction again leads to

ðAdr
f 1Þð�

1
2Þ42rþ1

�3, r 2 N,

which implies that

lim sup
d-0

ðAdf 1Þð�
1
2Þ ¼1: ð21Þ

In the last step of the proof we show that (21) implies
the assertion of the theorem. Let t1,t2 2 R\Z be arbitrary.
Then we have

1

sinðpt1Þ
ðAdf 1Þðt1Þ�

1

sinðpt2Þ
ðAdf 1Þðt2Þ

����
����

¼
X1

k ¼ �1

ðYdf 1ÞðkÞ
ð�1Þk

pðt1�kÞ
�
X1

k ¼ �1

ðYdf 1ÞðkÞ
ð�1Þk

pðt2�kÞ

�����
�����

¼
X1

k ¼ �1

ðYdf 1ÞðkÞ
ð�1Þkðt2�t1Þ

pðt1�kÞðt2�kÞ

�����
�����

r
X1

k ¼ �1

9ðYdf 1ÞðkÞ9
9t2�t19

p9t1�k99t2�k9
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rJf 1JPW1
p

9t2�t19
p

X1
k ¼ �1

1

9t1�k99t2�k9

¼ Jf 1JPW1
p

9t2�t19
p C3ðt1,t2Þ,

where C3ðt1,t2Þo1 is a constant that depends only on t1

and t2. Choosing t1 ¼�1=2 and t¼ t2 2 R\Z arbitrary and
using (21), we obtain

lim sup
d-0

9ðAdf 1ÞðtÞ9¼1,

which completes the proof. &

Proof of Theorem 4. Let 0odo1=3 be arbitrary but
fixed. Moreover, for N 2N, NZ2, we know from the
proof of Theorem 5 that there exits an ZN 40 such that
Jf ð�,ZN ,NÞJPW1

p
o3, where f is the function that was

defined in (8). Next, choose some EN that satisfies EN 4d,
EN r1=3, and maxfENð1�ZNÞ,ENð1�1=NÞgod. Then the
norm of

uNðtÞ :¼ ENf ðt,ZN ,NÞ

satisfies

JuNJPW1
p
¼ 9EN9Jf ð�,ZN ,NÞJPW1

p
r1:

Furthermore, we have

ðAduNÞ �
1

2

� �
¼ EN

XN

k ¼ 0

ð�1Þk
sinðpð� 1

2�kÞÞ

pð� 1
2�kÞ

Z
EN

p
XN

k ¼ 0

1

k

4
d
p logðNþ2Þ:

Since N 2N, NZ2, was arbitrary, it follows that

sup
Jf JPW1

p
r1
ðAdf Þ �

1

2

� �
¼1

for all 0odo1=3. The assertion for arbitrary t 2 R\Z can
be obtained by using the same arguments that were used
at the end of the proof of Theorem 5. &

5. Discussion

Truncation is a very important operator, not because it
is an integral part in the quantization process. In Section 3
we have briefly given the interpretation of

ðAdf ÞðtÞ ¼
X1

k¼�1

9f ðkÞ9Zd

f ðkÞ
sinðpðt�kÞÞ

pðt�kÞ
, ð22Þ

as a truncation of the Shannon sampling seriesX1
k ¼ �1

f ðkÞ
sinðpðt�kÞÞ

pðt�kÞ
,

which is controlled in the range of the signal, because
only the samples f(k), k 2 Z, with absolute value larger
than or equal to the threshold d40 are taken into
account. This is in contrast to the usual truncation of
the Shannon sampling series which is done in the domain
of the signal, by considering only the samples f(k),
k¼�N, . . . ,N. This kind of truncation leads to the finite
sampling series

ðSNf ÞðtÞ ¼
XN

k ¼ �N

f ðkÞ
sinðpðt�kÞÞ

pðt�kÞ
,

which is relevant for practical applications, where only a
finite number of samples can be considered in the
reconstruction.

In the following discussion we will compare the
reconstruction behavior of the Shannon sampling series
for both types of truncation and point out the differences.
First, we contrast the global behavior of SNf and Adf . For
the truncation in the domain of the signal, we have the
well-known result [22] that

JSNf J1rC4 logðNÞJf JPW1
p
, ð23Þ

i.e., for fixed N, the peak value of SNf is bounded above,
and it follows that

sup
Jf JPW1

p
r1

JSNf J1rC4logðNÞ:

For the truncation controlled in the range we do not have
such a behavior. As was shown in [16], for all 0odo1=3,
we have

sup
Jf JPW1

p
r1

JAdf J1 ¼1: ð24Þ

Hence, for fixed threshold d, 0odo1=3, the peak value of
Adf can grow arbitrarily large, i.e., for every C540 there
exists a signal f 1 2 PW1

p with Jf 1JPW1
p
r1, such that

JAdf 1J14C5.
Next, we discuss the local reconstruction behavior. For

the truncation in the domain of the signal, we have
Brown’s Theorem (Theorem 1) which states the local
uniform convergence of SNf for all signals f 2 PW1

p, as
more and more samples of the signal are used in the
reconstruction, i.e., as N goes to infinity. In contrast,
Theorem 5 shows that the reconstruction process Adf ,
which is controlled by a truncation in the range of the
sampled signal, does not possess this good reconstruction
behavior. For fixed t 2 R\Z, we have lim supd-09
ðAdf 1ÞðtÞ9¼1 for some signal f 1 2 PW1

p. Thus, 9ðAdf 1ÞðtÞ9
grows arbitrarily large as more and more samples of the
signal are used in the reconstruction, i.e., as the threshold
d is reduced to zero.

Remark 6. For the truncation in the domain of the
sampled signal, the peak value of the difference of the
truncated sampling series for two signals can be con-
trolled, in the sense that for all E40 and all f 1,f 2 2 PW1

p,
we have JSNf 1�SNf 2J1rC4 logðNÞE if Jf 1�f 2JPW1

p
oE. This

follows directly from (23). For the truncation that is
controlled in the range of the sampled signal, the same
result cannot hold, as the following counterexample
shows. Choose E¼ 1, f 1 � 0, and 0odo1=3. Then, accord-
ing to (24), for every C640, we can find a signal f 2 2 PW1

p
with Jf 2JPW1

p
r1 such that JAdf 1�Adf 2J1 ¼ JAdf 2J14C6,

although Jf 1�f 2JPW1
p
¼ Jf 2JPW1

p
r1.

Next, we will discuss the asymptotic speed of diver-
gence. From (23) it follows, using some additional argu-
ments, involving the Banach–Steinhaus Theorem and
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density arguments, that

lim
N-1

JSNf J1
logðNÞ

¼ 0

for all f 2 PW1
p, which shows that the peak value of SNf

does asymptotically grow slower than logðNÞ. It is natural
to ask whether a similar result is also true for the
truncation that is controlled in the range of the sampled
signal.

Question 1. Does there exist a monotonically decreasing

function f1 with limd-0f1ðdÞ ¼1 such that

lim sup
d-0

JAdf J1
f1ðdÞ

¼ 0

for all f 2 PW1
p?

The answer to this question is open.
From a practical point of view, the mere signal recon-

struction is often not enough and the interest is rather in
the output of a stable linear time-invariant (LTI) system.
In [21] the approximation of stable LTI systems by
sampling series with samples that are disturbed by the
threshold operator was analyzed. It was shown that if T :
PW1

p-PW1
p is a stable LTI system, 0odo1=3, and t 2 R,

then we have

sup
Jf JPW1

p
r1

9ðTAdf ÞðtÞ9o1

if and only ifX1
k ¼ �1

9hT ðt�kÞ9o1, ð25Þ

where hT ¼ T sinc is the impulse response of the stable LTI
system T. For a precise definition of a stable LTI system,
see for example [21]. From this result, the following
question arises.

Question 2. If (25) is not fulfilled, does there exist a signal

f 1 2 PW1
p such that lim supd-09ðTAdf 1ÞðtÞ9¼1?

Theorem 5, which gives a positive answer to this
question for the special case where the system T is the
ideal low-pass filter, may be an indication that this
question can be answered in the affirmative for general
stable LTI systems.

The analysis of thresholding and quantization is diffi-
cult because of the non-linear nature of both operations.
This is why stochastic approaches are often used to
linearize the problem. The proofs in this paper show that
the findings could not have been derived with a stochastic
model. In the proof of Theorem 5, we furthermore gave an
explicit procedure for the construction of a divergence
creating signal f1. This leads to the following question.

Question 3. Is it true that, in a topological sense, almost all

signals in PW1
p have the same problematic behavior?

In this paper we treated the problems for signals in
PW1

p, i.e., deterministic signals. For certain applications it
is desirable to have results for stochastic processes also. In
[23], the mean-square convergence behavior of the Shan-
non sampling series was analyzed for bandlimited con-
tinuous-time wide-sense stationary stochastic processes.
It would be interesting to study the approximation
of such stochastic processes if the samples are addition-
ally disturbed by the threshold operator. In this
analysis the threshold operator would still be treated
deterministically.

Finally, we come to the question if we can further
strengthen the divergence statements. For the global
behavior of the Shannon sampling series without thresh-
olding we have the following result. There exists a signal
f 1 2 PW1

p such that lim supN-1JSNf 1J1 ¼1 [22]. In this
statement we have a ‘‘lim sup’’, just like in Theorems 3
and 5.

Question 4. Do the results still hold if the ‘‘lim sup’’ is

replaced by ‘‘lim’’?

For stochastic processes, a divergence result was given
in [23], where a ‘‘lim’’ is used.
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