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Abstract

An algorithm is presented for the synthesis of lumped element equivalent network
model for linear passive reciprocal multiports. The synthesized equivalent multiport
circuit contains only resistors, inductors and capacitors with positive values, and ideal
transformers. The algorithm is formulated for a positive real symmetric impedance or
admittance matrix, representing the muliport and is composed of rational functions.
The developed iterative algorithm exhibits seven cases distinguished by the location

of the poles and the zeros of the given matrix of functions in the complex frequency
plane and a stop criterion. In each iteration, a part of the matrix is extracted and a
corresponding subcircuit is synthesized according to the procedure associated with the
respective case. The extraction procedure associated with the seventh case is based on
the Tellegen’s extension of Brune’s method described for multiport impedance matrices.
Accordingly, a dual Brune’s method for admittance multiport circuits is established in
this work. The topology of the equivalent network for the subcircuit extracted from
impedance matrix during the Brune’s method is already established, according to Tel-
legen’s extension of Brune’s method. New equivalent topologies of partial circuits to
replace the extracted circuits from admittance matrix are introduced in this work.
Implementation of the algorithm is done in Matlab to generate SPICE netlist for the

equivalent circuit. Equivalent lumped element circuit models of microwave structures
are developed as examples to demonstrate the application of the algorithm.
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1 Introduction

The expanding market of modern electronic devices, especially that of the mobile com-
munication devices, requires fast and efficient designing of digital integrated circuits (IC).
Furthermore the requirement of fast, compact and multi-tasking electronic devices has
always raised the clock rates and the frequency bandwidth of digital IC’s, and pushed
their design domain from microwave to millimeter-wave region.

Distributed microwave and millimeter-wave circuits require full wave electromagnetic
analysis in order to account for the electromagnetic field propagation and to generate
precise response. Different from the network oriented description which is used at lower
frequencies, electromagnetic full wave analysis requires a computational effort which
is by order of magnitude higher than that required for topological network analysis.
Moreover, the design process usually requires iterative optimization which analyzes the
given structure many times, consequently slowing the design process and making it much
more difficult. To overcome the huge requirements of computational effort and to make
the design process efficient, hybridization of different computational techniques and full-
wave based modeling are applied. Network methods offer versatile and efficient way for
hybridization of different computational techniques [1], while equivalent lumped element
circuits provide compact models in the area of modeling [2–7].

Equivalent lumped element circuit models are used in design process in number of
ways. One of the ways is to directly integrate them in the full-wave analysis [2–4].
This facility is commonly provided in modern electromagnetic simulation softwares like
CadenceR©, SONNETR©, MEFiSTo, CST and Agilent ADS. The other most common use
of such models is in the computer-aided design (CAD) tools. Libraries of circuits models
provided in these tools allow the designer to choose the model, adjust few parameters
and use them in system level design. The wide use of circuit models is due to their com-
pactness, very small simulation time and due to preservation of physical properties of the
original structure like energy and power properties, passivity, stability and reciprocity.

The modeling of distributed microwave and millimeter-wave structures is evermore
required as new and sophisticated structures are emerging. The software libraries, how-
ever, cannot account for all types and kinds of structures. Moreover, a model designed
for microwave region may not work for millimeter-wave region. In order to find a suitable
model, usually the parameter adjustment of predefined topology of network is used. This
method cannot be regarded as a general method, because finding a suitable topology is
based on heuristic method and as the structure becomes more and more complicated the
topology becomes more and more difficult to find. This necessitates the need of a gen-
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1 Introduction

eral and systematic procedure starting from the tabular response (S, Z or Y-parameters)
obtained from full wave simulation or measurement of the given structure, following step
after step down to an equivalent lumped element circuit model.

The generalized procedure can be solved in two parts: first is to find the rational
function (or rational function matrix) for a given tabular data of impedance or admit-
tance which does not violate the physical conditions of passivity, stability and reciprocity
and, secondly, to devise general algorithm for synthesizing equivalent lumped element
circuit from the given matrix of rational functions. The first part is the problem of the
system identification and the second part is a synthesis problem. For the system iden-
tification, well established procedures like vector fitting (V.F.) method [8–10] or prony’s
method [11] can be used. This thesis is focused on synthesis part of the whole procedure,
i.e. to develop and implement an algorithm for synthesis of a multiport lumped element
equivalent circuit given a matrix of rational functions representing an impedance or an
admittance matrix of a linear, reciprocal passive multiport electromagnetic structure.

1.1 State of the Art

The research on network methods and modeling is versatile exhibiting variety of ways
of application. Some researchers have developed equivalent circuit models in connection
with electromagnetic fields (e.g. [12, pp. 276-279]), or in connection with certain elec-
tromagnetic method (e.g. [6, 7]). A brief survey of important works would be discussed
under.

A general and systematic method for linear, reciprocal and lossless structures based
on transmission line matrix (TLM) method is described in [6] and its extension to lossy
structures in [7]. The elegant procedure in [7] follows a certain topology (extendable
to any number of ports). Following a certain topology puts extra constrains on the
rational function matrices of admittance to be synthesized, apart from the constraints
put by physical properties such as passivity, stability and reciprocity. It limits the class
of the functions or matrices of the functions to be synthesized. An admittance matrix of
rational functions representing generally any passive and reciprocal multiport may not
be synthesized by this method if it does not fulfill topology constraints.

The earliest work on the application of circuit theory concepts on electromagnetic
fields was done by L. J. Chu in 1948 [13], [12, pp. 276-279]. In investigating the physical
limits of the antennas, he expanded the electric and magnetic fields on an imaginary
spherical surface embedding the antenna, into spherical modes and for each mode the
impedance was found. Due to the spherical modes, the impedance associated with every
mode have the Hankel function of second kind in their expressions. The mathematical
expansion of the impedance expressions through the use of the continued fraction makes
its possible to develop a equivalent lumped element network. The impedance expressions
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for TE and TM modes are given as [12, 14–16]:
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where η =
√

µ/ǫ is the wave impedance of the material surrounding the antenna with

permitivity ǫ and permeability µ, and H
(2)
n (kr) = krh

(2)
n (kr), where h

(2)
n (kr) is Hankel

function of second kind. The prime
′

denotes the derivative of H
(2)
n (kr) with respect

to kr (k = ω
√
µǫ). The continued fraction expansion of the impedance forms a ladder

network with reactive elements terminated by a resistance of value equal to the wave
impedance η. The circuit realizations for both TE and TM modes are shown in Fig. 1.1
(below). The advantage of this equivalent circuit is having direct connection between the
value of circuit elements with the dimension of the sphere and the material properties
surrounding the sphere. On the other hand the drawback of such approach is lack of
generality as the problem is only confined to radiating structures in infinite space. If
some reflecting surface is placed outside the imaginary sphere, the circuit becomes invalid
as it does not incorporate reaction of the reflecting surface.
Petr Lorenz used the Chu’s work in hybridization of circuit model and transmission

line matrix method (TLM) [15,16]. The radiating structures were simulated using TLM
with spherical boundary terminated by spherical modes circuit models. The choice of
TLM method for hybridization is excellent because the TLM cell has twelve ports (two
on each of the six faces) and the faces of the TLM cells at the boundary of the sphere can
easily be connected to the equivalent network of outer space. The concept of Lorenz’s
work is shown in Fig. 1.2 (below).
It is well known that in the case of distributed circuits generalized voltages and gener-

alized currents can be be introduced at the boundaries. Their description is based on the
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Figure 1.1: Circuit representation of the infinite free space outside imaginary sphere
around any radiating electromagnetic structure. Each spherical mode (TE
or TM) is represented by one of the ladder networks [13], [12, pp. 276-279].
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Figure 1.2: Hybridization of transmission line matrix method (TLM) and equivalent cir-
cuit [15, 16]; The structure inside the sphere is simulated using TLM and
outer space with equivalent circuit according to Chu’s work.
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Figure 1.3: Generalized hybridization of different electromagnetic computation meth-
ods [1]. Different regions (R1 and R2) of computational domain being solved
through different EM computation techniques can be connected through net-
work of transformers at the boundaries α and β.

definitions of impedance and power flow in the electromagnetic field [14, Ch. 8] [1, Ch. 3
§IV]. For any boundary in the lossless structure, with local coordinate system (u, v, n),
transverse electric field, Et, and transverse magnetic field, Ht, can be expanded into a
series of orthogonal modes (Transverse Electric (TE) and Transverse Magnetic (TM)
modes) and each mode can further be represented as a product of structure functions
e(u, v) and h(u, v) depending only on transverse coordinates (u and v) and scalar am-
plitudes V (n) and I(n) which are generalized voltages and currents respectively [14],
depending only on longitudinal coordinate (n):

Et(u, v, n) =
∑

p,q

[ETE
t,pq + ETM

t,pq ] =
∑

p,q

[V TE
pq (n)eTE

pq (u, v) + V TM
pq (n)eTM

pq (u, v)] ,

Ht(u, v, n) =
∑

p,q

[HTE
t,pq +HTM

t,pq ] =
∑

p,q

[ITE
pq (n)hTE

pq (u, v) + ITM
pq (n)hTM

pq (u, v)] .

Each pair of the generalized voltage, Vpq(n), and the generalized current, Ipq(n), be-
longing to one mode (p, q) can be used to define port voltage and port current. Their
ratio defines an impedance or an admittance which can be synthesized into an equivalent
lumped element circuit model.
Generalized hybridization of electromagnetic computation methods was presented by

Felsen, Mongiardo and Russer using circuit network techniques [1]. The Fig. 1.3 shows
the basic concept of hybridization. A computational domain can be sub divided into
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Figure 1.4: Generalized foster synthesis for impedance matrices and its possible circuits
representing one pole or conjugate pole pair. For lossy circuits it may give
elements with negative values.

different regions. Each region can be simulated using different techniques and the con-
nection over the mutual boundary would be provided by a network of transformers. Each
mode at the boundary of one region is connected to each mode of the other boundary.
The use of ideal transformers makes it possible to realize zero-volume region between
the mutual boundaries as well as preserve the energy and power properties.
Lumped element networks have advantage over digital filters of preserving energy and

power properties of the original structure, and can also be translated easily to wave-
digital filters [17, 18].
Apart from variety of ways network methods are used in electromagnetics, synthesis

problem has been addressed in the area of circuit theory extensively. Foster’s work [19] is
popularly regarded as the beginning of circuit synthesis. It results in a series or a parallel
connection of resonant sub-circuits, forming a network for pure reactive impedance or
admittance. Foster synthesis for lossless one-port circuits, can be generalized to multiport
lossless circuits by synthesizing each pole or conjugate pole pair separately, as done
in [14]. It can further be generalized for lossy multiport circuits by including resistances
as shown in Fig. 1.4. This simple and straight forward method does not guarantee
occurrence of only positive values of the elements, because some pole pairs along with
their residues may result in elements with negative values. Contrary to that, the Brune’s
algorithm only synthesizes equivalent circuits with positive element values, thus ensuring
stability and passivity at all frequencies.
Ladder networks involving only two elements (either RL or RC) were introduced by
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1.1 State of the Art

Table 1.1: Summary of Synthesis Procedures (adopted from [20])

Items Author Reference Ports Notes
1 Foster [19] 1 Lossless circuits
2 Cauer [21, 22] 1 Involves two elements
3 Brune [23] 1 First lossy synthesis
4 Darlington [24] 1 Lossy, only one resistance
5 Bott-Duffin [25] 1 Transformer-less
6 Gewertz [26] 2 Extension of [24]
7 Tellegen [27] n For Impedance Matrices
8 McMillan [28] n Realizability Theory
9 Baum [29–31] - Positive functions (PF)
10 Belevitch [32] 1 Brune’s alternative using PF
11 Belevitch [33] n Generalized for positive matrices
12 Oono [34] n
13 Oono [35, 36] n Synthesis from S-parameters

Cauer [21]. Although losses were considered in these networks but the question arose
that do they model all impedances or admittances, described as a function of complex
frequency, which was investigated by Brune.
Brune under the supervision of Guillemin defined the class of complex functions which

he named positive real functions and described the generalized procedure for synthesizing
a 1-port network from a positive real function [23]. Brune’s work has such a fundamental
importance that for almost next four decades the area of circuit synthesis was flourished
based on his work.

Brune’s work was extended by Tellegen [27] to n-ports. He defined the poles and
zeros for positive real symmetric matrices (chapter 2) and described Brune’s cycle for
generalized impedance matrices. Extention of the work of Tellegen from impedance
matrices to admittance matrices is presented in this work. Tellegen introduced a network
topology (referred to as Brune’s circuit of Type-I in this writing) which made it possible
to avoid negative value elements formed in extraction procedure. Analogous to Brune’s
circuit of Type-I, three new topologies (Type-II to Type-IV) are also introduced here for
admittance matrices.

Realizability theory by McMillan is an extensive mathematical treatment of theorems
and procedures related to circuit synthesis [28]. Details on the properties of the degree
of the positive real matrix and its operations are also described by Duffin in [37, 38]
Baum generalized the positive real function to positive function (PF) in which the

real part of the function on the imaginary axis of complex frequency s must be positive
but the condition of having real value of the function for real s is not required [29–31].
Positive functions can have complex coefficients unlike positive real functions in which
the coefficients must be real numbers. Thus PF form a super-set of the set of positive

7



1 Introduction

real functions. Belevitch then made use of PF in alternative derivation of Brunes process
for one-port in [33]. While describing the alternative process he made use of hypothetical
resistance with imaginary value.

Belevitch combined Tellegen’s and McMillan’s work together in [33]. In this work he
also extended the concept of positive function to positive matrix (PM). Positive matrices
describe all types of networks, lossy, lossless, reciprocal or non-reciprocal and even real
and imaginary networks. Not only the description of PM, Belevitch has also pointed
out useful procedures and theorems to synthesize positive matrices by introducing ideal
transformers with complex turns ratios.

Completely different from Brune’s approach, Darlington developed a technique which
results in a lossless two-port terminated at one-port by a resistance [24]. The detailed
discussion is given in [39, Ch. 9]. Darlington synthesis was extended to two port network
using two resistances by Gewertz [26].

Other works have been done by Bott, Duffin, Hazony and Oono. Synthesis of networks
through hybrid matrices is described in [40], transformer-less synthesis in [25] and [39, Ch.
10]. Oono has extended Brune’s work in [34,41]. It is also well mentioning and interesting
that Oono also developed a method for synthesizing passive reciprocal network from S-
parameters [35, 36]. His other work on synthesis is [42].

1.2 Contribution of this Work

This work develops a general algorithm for the equivalent circuit synthesis of linear,
passive and reciprocal multiports. Passivity and reciprocity properties of the multiport
impose conditions on the impedance and admittance matrices of complex functions repre-
senting the multiport, and these conditions are satisfied by a class of matrices of complex
functions called positive real symmetric matrices (PRSM). The algorithm takes a posi-
tive real symmetric impedance or admittance matrix of rational functions, representing
a multiport, and synthesizes an equivalent network containing resistors, capacitors, in-
ductors (with positive values, unlike generalized foster synthesis) and ideal transformers.

The developed algorithm is iterative and in each iteration a part of the positive real
symmetric matrix (PRSM) is extracted and synthesized into a canonical sub-circuit
leaving reduced positive real symmetric matrix of smaller order for the next iteration.
The iterations continue until a stop criterion is met. There are seven cases and a stop
criterion, distinguished according to the location of poles and zeros of PRSM on the
complex frequency plane and each case has an extraction procedure and a canonical
sub-circuit associated with it.

The extraction procedure associated with the seventh case is based on the multi-port
Brune method description by Tellegen [27]. As the Tellegen’s description is confined to
impedance matrices, a dual Brune method for the admittance matrices is established in
this work and included in the algorithm.
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1.2 Contribution of this Work

Brune’s method is a four step extraction procedure which ensures that positive real
character of the given positive real symmetric matrix is maintained during each step.
The reactive element (capacitor or inductor) involved in the second step is extracted
in a way that it always has a negative value. This is done to maintain positive real
character of PRSM. Moreover, the Brune procedure yields one of the four different sub-
circuit topologies (referred to as Extracted Brune’s circuits of Type-I to IV ) and for each
topology there exists a special relation between the parameters of the topology. To avoid
the obtained negative valued element, the extracted topologies have to be replaced by
an equivalent topologies (referred to as Equivalent Brune’s circuits of Type-I to IV ).
Tellegen in [27] has derived the relationship between the parameters of the extracted

Brune circuit of Type-I only and has given its equivalent circuit. A direct and straight
forward derivation of the relationships of the parameters of all four extracted sub-circuits
is described in this work. Moreover, three additional equivalent topologies (Extracted
Brune’s circuits of Type-II to IV ) are introduced and their equivalence is shown with
their corresponding extracted circuit topologies.
The implementation of the algorithm is done in Matlab using ”Symbolic toolbox”.

Some of the implementation issues are discussed along with the description of the al-
gorithm. Equivalent network models of passive microwave circuits are developed as an
example and presented.
In the following, chapter 2, ”Classes of Synthesizable Functions and Matrices”, lays the

mathematical foundation for the algorithm. Positive real symmetric matrices along with
their properties are discussed. Its super-class positive matrices(PM) is also discussed to
some extent in this chapter. Basic terms, for example the pole, the zero and the order
or the degree of a matrix of functions, used throughout the description of algorithm are
also defined.
Chapter 3, ”Brune Multiport Algorithm and its Implementation”, describes the al-

gorithm in detail. Description of all cases, associated extraction procedures, canonical
sub-circuits and some of the implementation issues are given in it.
Chapter 4, ”Parameter Relationships and Equivalence of Circuits”, derives the rela-

tionships between the parameters of the extracted Brune’s circuits and establishes their
equivalence with corresponding equivalent Brune’s circuits. Examples are presented in
chapter 5.
Appendix A, summarizes canonical circuits repeatedly appearing in Brune’s algorithm

and are given certain symbols. While reading Brune’s algorithm (chapter 3), referring
to flow diagram given in Fig. 3.2, table of the cases given in 3.1, and a demonstrative
example given in section 5.1 would be very helpful in understanding the algorithm itself.
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2 Classes of Synthesizable Functions

and Matrices

It is well known that an impedance or an admittance of a linear one-port circuit can
be represented as a function of complex frequency. For a linear multiport circuit, the
impedance or the admittance can be represented by a matrix of complex functions. As
far as voltage and current at the ports are concerned, these complex functions or matrix
of functions represent the complete behaviour of the circuit. Inherent physical properties
of the circuit must impose conditions and restrictions on the forms, these representing
complex functions can take.

The complex functions describing an impedance or an admittance of linear passive
one-port circuits belongs to the class of Positive Real (P.R.) functions [23]. For multi-
port linear passive reciprocal circuits the concept extends to the Positive Real Symmetric
Matrices (PRSM) [33]. Positive real symmetric matrices form a subset of even bigger
class of matrices called Positive Matrices (P.M.) which is the most general class of
matrices of functions in the area of synthesis and realizability theory [28, 33]. These
classes will be discussed briefly in this chapter.

The research for the class of synthesizable functions was initiated byWilhelm Cauer [43].
The necessary and sufficient conditions for the function to be positive real were provided
in 1931 by Otto Brune [23], [44, Ch. 9], [39, Ch. 1]. In 1958, Richard Baum introduced the
concept of the resistance with imaginary value and the concept of positive functions [30].
Later, in 1960, Vitold Belevitch introduced not only the concept of ideal transformers
with imaginary turns ratios but also used it to define the positive matrices [33].

Some researchers described the properties of the positive matrices and worked for
their proofs. The degree of a positive matrix is discussed in detail by R. Duffin and D.
Hazony [37] and by B. McMillan [28]. The definitions of poles and zeros of these matrices
are given by Tellegen [27].

This chapter describes the classification and properties of positive matrices briefly. The
proofs of theorems and properties of positive matrices are out of the scope of this thesis.
The interested reader is encouraged to read the referenced literature. As the Brune’s
algorithm is only applied to positive real symmetric matrices, most of the discussion
would be according to the conditions and properties of positive real symmetric matrices.

11



2 Classes of Synthesizable Functions and Matrices

2.1 Positive Matrices and their Classification

An impedance or an admittance of a passive and stable multiport can be represented by
a positive matrix. It can describe both reciprocal as well as non-reciprocal multiports.
On top of that, positive matrices also allow functions with imaginary coefficients, thus
making it possible to include imaginary components, like imaginary resistance and trans-
formers with imaginary turns ratios, in the network [33]. A comprehensive description
of positive matrices is given in [33] and of positive function (PF) in [30], which is only
for one-port circuits.
A square matrix W(s) of functions of complex variable s is positive matrix if the real

part of the matrix ℜ[W(s)], calculated as:

ℜ[W(s)] =
1

2
[W(s) +W†(s)] , (2.1)

where W†(s) is the hermitian of W(s); is positive semi-definite in right half plane of
complex variable plane. The test for positive semi-definiteness is given in [39, 45]. The
condition of positive semi-definiteness includes the stability criterion that there is no
pole in right half of the complex variable plane [39, 46]. The positiveness in right half
plane ensures positiveness at the boundary (i.e. imaginary axis in s-plane), according to
the maximum modulus principle of analytic functions [47, Ch. 20], [45, Ch. 6].
Generally, positive matrices may have irrational functions as well as rational functions.

An impedance or admittance matrix which is also positive matrix and having irrational
functions, as is in the case of transmission line impedance matrix, is of little interest from
synthesis point of view. This is because the irrational functions require suitable series
expansion to be synthesized as a network. Therefore, the following discussions would be
confined to the positive matrices with rational functions.

2.1.1 Classification of Positive Matrices

The classification of the positive matrices is based on three independent features of the
matrices or of the functions of these matrices:

• Type of coefficients in the functions of the matrix: The coefficients can
be either pure real or complex [33]. If the coefficients are real then the poles
occur in conjugate pairs with conjugate residues and the poles on axis have real
residues [39, Ch. 1]. On the other hand the complex coefficients indicate that
either the poles do not occur as conjugate pairs or if the poles are conjugate pairs
then their residues are not conjugate of each other. The impedance or admittance
represented by a positive matrix with real coefficient in the rational functions
would be physically realizable and if the coefficients of the rational functions are
complex then the synthesized model (with imaginary resistances and transformers
with complex turns ratios) would not be a physical model .

12



2.1 Positive Matrices and their Classification

Real Imaginary

Symmetric

Non-
Symmetric

lossless

lossy

PISM
(Lossy)

PRSM
(Lossy)

PRnSM
(Lossy)

PInSM
(Lossy)

Figure 2.1: Classification of positive matrices on three properties. ’P’ stands for positive,
’R’ and ’I’ for real and imaginary, and ’S’ for symmetric [33].

• Symmetry of matrix: The impedance or admittance represented by a positive
matrix can either be symmetric or non-symmetric. Consequently, the correspond-
ing equivalent circuit would either be reciprocal or a non-reciprocal network re-
spectively [14, §10.5], [48].

• Types of poles: The poles of the impedance or the admittance represented by a
positive matrix can either be pure imaginary axis poles (with positive real coeffi-
cients) or can be located in left half plane of the complex frequency. If all poles are
located on the imaginary axis the corresponding network would be loss-less and
if any of the poles is located on left half plane then the corresponding network is
lossy network [33].

Above properties classify the positive matrices into eight different sub-classes described
in Fig. 2.1. Positive real symmetric matrices (PRSM) and positive real non-symmetrical
matrices (PRnSM) are physically realizable into an equivalent network while others are
non-physical models. As the Brune algorithm (chapter 3) is described for positive real
symmetric matrices, following discussion would be confined to the conditions and the
properties of it PRSM.
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2 Classes of Synthesizable Functions and Matrices

2.2 Positive Real Symmetric Matrices

Positive real symmetric matrices (PRSM) are a sub-class of positive matrices satisfying
the first two conditions of classification (i.e. real coefficients and symmetry). The term
’positive real’ was first used by Brune for the functions of a complex variable s with
certain properties [39, Ch. 1]. A complex rational function with real coefficients is
positive real if:

• The real part of the function is positive in the right half plane of variable s. This
property enforces analyticity of the function in right half plane.

• The function is real on the real axis of variable s. This property is the difference
between real and imaginary functions.

The term was later adopted by Belevitch [33] with the addition of term ’symmetric’ to
emphasize the reciprocity of circuits.

2.2.1 Conditions of Positive Real functions

A function in complex variable s, which is real for real values of s is positive real if and
only if following conditions are fulfilled [39, Ch. 1, §3]:

• Stability: No pole of the function is located on right half plane of complex variable,
i.e. analytic in right half plane.

• Passivity-I: The real part of the function is not negative on imaginary axis of
complex frequency s. As imaginary axis is also the boundary of the right half plane,
maximum and minimum values should lie on it (maximum modulus principle). This
way it can be make sure that the real part is also non-negative in right half plane.

• Passivity-II: Any imaginary axis pole of the function must be simple and with
positive real residue.

2.2.2 Conditions for PRSM

Apart from a rigorous derivation of the conditions for positive real symmetric matri-
ces, Guillemin has also given a physical and elegant interpretation of the conditions [39,
Ch. 1, §2] using a physical passive network. Consider an N-port network represented
with impedance matrix Z(s), connected with ideal transformers having turns ratios
p1, p2, p3, · · · , pn as shown in Fig. 2.2, then it can be derived that the impedance function
Z(s) is:

Z(s) = pTZ(s)p,
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2.2 Positive Real Symmetric Matrices

Z(s)

1

p1

1 1

port 1 port 2 port N

p2 pN

Z(s)

V

I

I1 I2 INV1 V2 VN

Figure 2.2: Physical interpretation of PRSM conditions; adopted from [39, Ch.1]

where p is a vector containing all turns ratios i.e.

p = [p1, p2, p3, · · · , pN ]T .

The impedance Z(s) has to be positive real for all real combinations of the values of
transformer turns ratios pi’s. This is the basis for the set of necessary and sufficient con-
ditions which an impedance or admittance matrix has to satisfy to be able to synthesize
into passive lumped element network [27, §2] and [39, Ch. 1, §6]. The conditions for
positive real symmetric matrix are analogous to the conditions described for positive real
functions described above. A matrix of rational functions in complex variable s, which
is real for real values of s, is positive real symmetric matrix if following conditions are
fulfilled:

1. Stability: No pole of the matrix functions is located on right half plane of complex
variable s.

2. Passivity-I: The real part of the matrix at imaginary axis of the complex vari-
able plane is positive semi-definite. Let A(s) be the real part of the positive real
symmetric matrix,

A(s) = ℜ{W(s)}

=











A11(s) A12(s) · · · A1N(s)
A12(s) A22(s) · · · A2N(s)

...
...

. . .
...

A1N(s) A2N (s) · · · ANN(s)











,

then A(s = jω) is positive semi-definite. The matrix A(s = jω) is positive semi-
definite if Aii(s = jω) ≥ 0 for all i = 1, 2, · · · , N and all principal minors and the
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2 Classes of Synthesizable Functions and Matrices

determinant of A(s = jω) are positive. It should be noted that off-diagonal entries
can be negative.

3. Passivity-II: If there are poles on imaginary axis then for each such pole ωp the
corresponding matrix of residues,

Kωp =











k
ωp

11 k
ωp

12 · · · k
ωp

1N

k
ωp

12 k
ωp

22 · · · k
ωp

2N
...

...
. . .

...
k
ωp

1N k
ωp

2N · · · k
ωp

NN











,

has real elements and the matrix Kωp is positive semi-definite. Again, diagonal
elements in the matrix Kωp as well as the principal minors and the determinant
are positive or equal to zero.

2.3 Order of Positive Real Symmetric Matrix

The order or the degree of the given N × N positive real symmetric matrix of rational
functions W(s), denoted as O(W), is the degree of the rational function formed by the
determinant

|W(s) +A| ,

where A is an N ×N constant real symmetric matrix [27]. As the degree of the rational
function developed by the above determinant is dependent on the choice of the matrix
A, the degree of the positive real symmetric matrix is taken to be the maximum degree
of the rational function (developed by the determinant) for all possible choices of matrix
A [37].
The order O(W), is zero if the matrix W is a constant matrix otherwise it depends

on the degree of the rational functions in W(s) and their dependency on each other.
If positive real symmetric matrix W(s) is realized into an equivalent multiport circuit,
the minimum number of reactive elements (capacitors or inductors) required are equal
to the order of the matrix, O(W) [27]. The most comprehensive discussion on the order
or degree of matrix of functions and its properties are given in [37] and in [28].
The above definition of the order of the matrix is analogous to the definition of the

degree of the polynomial in one variable. Consider a polynomial in one variable s:

P (s) = ans
n + an−1s

n−1 + an−2s
n−2 + · · ·+ a1s+ a0 ,

where the coefficients an, an−1, · · · , a1, a0 are complex numbers. If an is non-zero, then
fundamental theorem of algebra [49] ensures that the equation

P (s) = c ;
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2.4 Poles and Zeros

where c is also a complex number; has n solutions and n would be the degree of polyno-
mial P (s) [49].
Physically the order of a positive real symmetric matrix can be interpreted as follows:

If W(s) is a representing an impedance or an admittance matrix of an N -port network,
then the matrixA can be considered as anN -port resistance network, connected port-by-
port to the original network. After perturbation of the network, the maximum number
of free-oscillations obtained in this closed system is the order of the network [27].

2.3.1 Properties of Order of Positive Real Symmetric Matrix

Some properties of the order of the positive real symmetric matrix O(.) would be dis-
cussed here. The proofs of the properties can be found in the referred literature.

• For any given matrix W(s), the order of the inverse of the matrix (if exists) is
same as the order of the matrix itself [27, 28, 37]:

O(W) = O(W−1) .

As impedance and admittance matrix representations represent the same network,
both should have same order.

• If two matrices W1 and W2 have no pole in common, then

O(W1 +W2) = O(W1) +O(W2) .

If they have some poles in common, then the combined order would be less. Thus
it can also be written as [28, 37]

O(W1 +W2) ≤ O(W1) +O(W2) .

• For matrices of form W = Cw(s), where C is a constant matrix and w(s) is a
function in s, the degree of the whole matrix W is the product of the degree of
the function w(s) and the rank of the matrix C [28]. This property is elaborated
in sections A.2 and A.3

2.4 Poles and Zeros

Pole and zero of a complex function of single variable are well defined in literature [47],
but the poles and zeros of a matrix of complex functions are not discussed in detail. Along
with their definitions there is also a concept of rank of pole or zero of matrix [27, 28].
The pole of any element of the matrix is also the pole of that matrix. The rank of

the pole of the matrix is the rank of the matrix of residues associated with that pole in
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2 Classes of Synthesizable Functions and Matrices

original given matrix [27, 28]. It must be noted that a pole in off-diagonal elements can
only exist if it is also present in the corresponding diagonal elements [39, Ch. 1].
A zero of the matrix is the zero of the determinant of that matrix [27, 28]. Zeros of a

matrix is the pole of its inverse. The rank of a zero is the rank of the matrix of residues
associated with the corresponding pole in inverse matrix [27,28]. A matrix is singular if
it is singular for all values of complex variable s.
Above definitions fit well for matrices of rational functions. In such case, even the

poles of the determinant are also the poles of the matrix, and the multiplicity of the pole
in determinant is the rank of the pole in matrix. The only exception to the definitions is
in two port transmission line. The admittance and impedance matrices of a transmission
line are given in 2.2 and 2.3. It can be easily verified that the determinants are 1/Z2

0

and Z2
0 respectively. So both are sharing same number of poles but there are no zeros

according to above definitions.

YTL =
1

Z0

(

coth γl − 1
sinh γl

− 1
sinh γl

coth γl

)

, (2.2)

ZTL = Z0

(

coth γl 1
sinh γl

1
sinhγl

coth γl

)

. (2.3)
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3 Brune Multiport Algorithm and its

Implementation

Otto Brune (1901- 1982) gave a groundbreaking contribution to the theory of positive
real functions. In 1931, he presented an algorithm for equivalent one-port passive circuit
synthesis from an impedance represented as positive real function of complex frequency.
The synthesized circuit consist of positive resistors, capacitors and inductors as the circuit
elements and ideal transformers as connection elements [23, 39]. Tellegen [27] presented
an extension of Brune’s method for multiports whose impedance is represented as positive
real symmetric matrix. Other well known extensions are done by McMillan [28] and
Belevitch [33].
This chapter presents a general algorithm (referred as Brune’s multiport algorithm)for

equivalent lumped element circuit synthesis and discusses implementation issues inMat-

lab. The algorithm takes an impedance or an admittance matrix represented by a pos-
itive real symmetric matrix of rational functions and synthesizes an equivalent passive
multiport network. The main contribution of this work are:

• Division of positive real symmetric matrices into seven cases according to the lo-
cation of poles and zeros on complex frequency plane, description of extraction
procedure for each case addressing the implementation issues and minimizing the
numerical errors, and describing canonical sub-circuits for each case.

• Description of the dual Brune’s method for the admittance matrices represented
as positive real symmetric matrices.

• Description of new equivalent sub-circuit topologies to replace the extracted sub-
circuit topologies during the Brune’s process in order to avoid negative valued
elements.

3.1 Overview of the Algorithm

Brune’s algorithm is an iterative algorithm. In each iteration a part of the given positive
real symmetric matrix of rational functions W(s), is extracted and synthesized into a
canonical sub-circuit, leaving a reduced matrix W

′

(s) of smaller order (section 2.3).
The number of iterations depends on the order of W(s). Generalized output of Brune’s
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3 Brune Multiport Algorithm and its Implementation

Direction of synthesis

Extracted
 circuit 1

Extracted
 circuit 2

Last
Extracted

 circuit

port 1

port 2

port N

Figure 3.1: General out-put of the Brune’s algorithm comprises cascaded sub-circuits.
In each Iteration a sub-circuit is extracted leaving behind a reduced matrix
to be synthesized.

algorithm is given in Fig. 3.1. It consists of cascaded sub-circuits. The last sub-circuit
is usually a resistance multi-port circuit.

There are seven cases (Cases 1 to 7) of a positive real symmetric matrix (W(s)),
including a stop criterion (Case 0) distinguished according to the location of poles and
zeros of the matrix on complex frequency plane. These are analogous to the cases given
for one-port impedance positive real functions in [50]. For each case the extraction and
the synthesis procedures are different. In each iteration, the case of W(s) is determined
and the corresponding extraction procedure is applied. A small extracted part forms a
canonical sub-circuit and the rest of the matrix is another reduced positive real symmetric
matrix. Fig. 3.2 shows the flow diagram of the Brune’s algorithm and table 3.1 represents
all cases for quick reference.

Canonical sub-circuits formed during the iterations are mostly of the form W(s) =
Cw(s), where C is a constant symmetric matrix and w(s) is a function of complex
frequency s. Sub-circuits of this kind are synthesized in cases 1 to 6. Case 7 sub-circuits
are different and would be discussed during the description of case 7. Appendix A details
the synthesis of the sub-circuits (of matrix form W(s) = Cw(s)) and their corresponding
symbols. The symbols would be used through out the description of the algorithm.
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3.1 Overview of the Algorithm
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  Find wmin (Eq. 3.19),
  Remove real part corresponding to wmin from selected port
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Type I/ III;
Use (Eqs. 3.28)

Sec.: 3.2.8.2 (Step 2)
Fig. 3.10, 3.11

Type II/ IV;
Use (Eqs. 3.31)

Sec. : 3.2.8.2 (Step 2)
Fig. 3.10, 3.11

Use (Eqs. 3.33 a, c)
Sec. : 3.2.8.3 (Step 3)

Fig. 3.10, 3.11

Use (Eqs. 3.33 b, d)
Sec. : 3.2.8.3 (Step 3)

Fig. 3.10, 3.11

Use (Eqs. 3.34 a, c)
Sec. : 3.2.8.4 (Step 4)

Fig. 3.10, 3.11

Use (Eqs. 3.34 b, d)
Sec. : 3.2.8.4 (Step 4)

Fig. 3.10, 3.11

 Conversion to Equiv. circuits
Sec. 3.29

Eqs. 3.35--3.38
Figs. 3.12--3.15

Figure 3.2: Flow Diagram of Brune’s Algorithm
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Table 3.1: Cases of Brune’s Algorithm and their Realizations

Cases Effect Circuit

0 Pure resistive/conductive
W = Z, Fig. 3.3(a)

W = Y, Fig. 3.3(b)

1 lim
s→∞

Wij = ∞ Pole at s = ∞ W = Z, Fig. 3.4(a)

W = Y, Fig. 3.4(b)

2 lim
s→∞

|W| = 0 Zero at s = ∞ W = Z, Fig. 3.5(a)

W = Y, Fig. 3.5(b)

3 lim
s→0

Wij = ∞ Pole at s = 0
W = Z, Fig. 3.6(a)

W = Y, Fig. 3.6(b)

4 lim
s→0

|W| = 0 Zero at s = 0
W = Z, Fig. 3.7(a)

W = Y, Fig. 3.7(b)

5 lim
s→±jωp

Wij = ∞ Poles at ±jωp

W = Z, Fig. 3.8(a)

W = Y, Fig. 3.8(b)

6 lim
s→±jωp

|W| = 0 Zeros at ±jωp

W = Z, Fig. 3.9(a)

W = Y, Fig. 3.9(g)

7

Situation 1 ωmin = ∞, Case 2 would follow

W = Z, Fig. 3.10

(Only Step 1)

W = Y, Fig. 3.11

(Only Step 1)

Situation 2 ωmin = 0, Case 4 would follow

W = Z, Fig. 3.10

(Only Step 1)

W = Y, Fig. 3.11

(Only Step 1)

Situation 3

Type I ωmin 6= 0 & finite, α = −1
W = Z, Fig. 3.10

(All Steps)

Type II ωmin 6= 0 & finite, α = +1
W = Z, Fig. 3.10

(All Steps)

Type III ωmin 6= 0 & finite, α = −1
W = Y, Fig. 3.11

(All Steps)

Type IV ωmin 6= 0 & finite, α = +1
W = Y, Fig. 3.11

(All Steps)
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3.2 Cases of Brune’s Algorithm

3.2 Cases of Brune’s Algorithm

The cases of the algorithm are divided according to the location of the poles or zeros
of the given positive real symmetric matrix. The extraction procedure for each case is
also different. The stop criterion (Case 0) is reached when, after the iterative reduction,
the matrix is reduced to frequency independent real matrix. Such matrix can be readily
synthesized to a pure resistance network.
The cases are not all mutually exclusive, meaning that certain cases may combine in

one matrix simultaneously. This combination of cases does not effect the algorithm. In
consecutive iterations, cases combined in one matrix can be processed. The sequence in
which the cases are placed has some significance from theoretical point of view but for
implementation side it gives an advantage. For example case 7 can only occur when all
other cases are not present, thus forming a default case. In cases 1 to 4, the extraction
procedures are easier than those in cases 5 and 6. If two cases (say 1 and 5) occur
simultaneously, then processing case 5 would be easier if case 1 is done first as case 5
would have a less complex matrix to handle.
The processes involved in the determination of cases and the corresponding extraction

procedures are numerical and cannot differentiate if the given matrix is an impedance
or an admittance matrix. Similarly the differentiation that the extracted values are
representing a resistance, conductance, capacitance or inductance are immaterial to these
procedures. Thus for the sake of brevity and to avoid confusions, common symbols would
be used. For impedance matrix Z(s) and admittance matrix Y(s) a common symbol
W(s) would be used. For resistance R and conductance G, symbol A is taken. Lastly,
for capacitance C and inductance L, symbol D is chosen. Capital bold-face letters, for
example A, would represent a matrix, while italic letters (capital or small) represent
scalar quantity. Small bold face letters, for example β, are specific for column vectors.
For real and imaginary part of W(s), symbols A(s) and I(s) are used. The table 3.2
shows the common symbols used in the following text. Reader may also refer to the list
of symbols given in table B.

Table 3.2: Common used in the description of Algorithm cases

Common symbol Used for Description

W(s) Z(s), Y(s) impedance or admittance matrix

A/ A R, G/ R, G
resistance or conductance matrix /s-
calar

D L, C inductance or capacitance

A(s)/ A(s) ℜ[W](s)/ ℜ[W ](s) real part of given matrix/ function

CW
r , CZ

r , C
Y
r

real symmetric matrix of rank r, repre-
senting the connection network of ideal
transformers (section A.2 and A.3)
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3.2.1 Case 0: Stop Criterion

When the given positive real symmetric impedance or admittance matrix W is indepen-
dent of complex frequency, the last stage would be reached. Such matrix represents a
pure resistance or conductance circuit network. The order of the network would be zero:

O(W) = 0 .

The synthesis of such network is straight forward and described in sections A.2 and
A.3. Let the matrix W be of rank r, then after spectral decomposition [51, §5.5], it can
be written as

W =

r
∑

i=1

CW
1,iA , (3.1)

where CW
1,i are rank-one real symmetric matrices. Depending on the given positive real

symmetric matrix W representing an impedance or an admittance matrix the equations
would be

Z =

r
∑

i=1

CZ
1,iR , Y =

r
∑

i=1

CY
1,iG . (3.2)

Fig. 3.3 (a) and (b) shows circuit realizations for impedance and admittance matrices in
case 0, respectively.

GR

Cr
Z

Cr
Y

Z Y

(a) (b)

Figure 3.3: Sub-circuit realization networks of case 0; (a) for impedance matrix, and
(b) for admittance matrix, corresponding to Eqs. 3.2. The symbol used are
explained in Figs. A.2 and A.4. As these are the last stages, there are no
reduced matrices after them.
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3.2.2 Case 1

If any element of the given matrix W(s) has a pole at infinity then W(s) is in case
1. In rational functions, if the numerator is one degree higher than the denominator,
then it shows the presence of a pole at infinity. It must be noted that, the off diagonal
elements can have a certain pole only if corresponding diagonal elements have that pole
(section 2.4). Thus it would suffice to check the degrees of the numerators and the
denominators of the rational functions in the diagonal of the given matrix in order to
identify the presence of the pole at infinity. Mathematically, if:

lim
s→∞

Wii(s) = ∞ , ∀ i = 1, 2, · · ·N ,

where N is number of ports, then the given matrix is in case 1.
The extraction procedure involves separation of the pole and its residue from each

element of the matrix where it is present. The best way to separate the pole and its
residue from the rational function is through polynomial long division. The problem with
long division is that it accumulates numerical errors over each step of division, especially
in the division of polynomials of very high degree. This problem is of least concern in
given scenario because the numerator is only one degree higher than the denominator
and only one step of division is required. Moreover, in modern computer algebra systems
(like Symbolic toolbox of Matlab, Maxim etc) variable precision arithmetic (VPA) is
supported where user can specify very large number of digits in the numbers. Speci-
fying sufficient number of digits greatly reduce the errors caused by very high degree
polynomials. The Matlab function ’quorem’ is a useful function available in symbolic
toolbox. This function can handle VPA. Usually the available functions try to make
the rational function a proper rational function i.e. making the degree of the numerator
smaller than that of the denominator. This functionality is not required, rather after the
separation of the pole and its residue (first step of division), the function should stop.
To make the polynomial division stop after first step, one can multiply and divide each
rational function of the matrix by the complex frequency variable s [52]. Let W (s) be
any rational function of the positive real symmetric matrix having a pole at infinity:

W (s) =
ans

n + an−1s
n−1 + an−2s

n−2 + · · ·+ a0
bn−1sn−1 + bn−2sn−2 + · · ·+ b0

= s

[

ans
n + an−1s

n−1 + an−2s
n−2 + · · ·+ a0

bn−1sn + bn−2sn−1 + · · ·+ b0s

]

= s

[

a′n−1s
n−1 + a′n−2s

n−2 + · · ·+ a′0
bn−1sn + bn−2sn−1 + · · ·+ b0s

+
an
bn−1

]

=
a′n−1s

n−1 + a′n−2s
n−2 + · · ·+ a′0

bn−1sn−1 + bn−2sn−2 + · · ·+ b0
+Ds

= W ′(s) +Ds ,

where D = an
bn−1

.
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For whole matrix it can be written as

W(s) = CW
r Ds+W

′

(s) , (3.3)

and for impedance and admittance matrix representations, as:

Z(s) = CZ
r Ls+ Z

′

(s) , Y(s) = CY
r Cs+Y

′

(s) . (3.4)

Fig. 3.4 (a) and (b) show the extracted sub-circuits for impedance and admittance
matrices after extracted procedure of case 1, respectively.

L

Cr
Z

C

Cr
Y

Z Z´ Y Y´

(a) (b)

Figure 3.4: Sub-circuit realization of case 1; (a) for impedance matrix and (b) for ad-
mittance matrix; the symbol used are explained in Figs. A.2 and A.4. Z and
Y are given matrices while Z

′

and Y
′

are corresponding reduced matrices;
according to Eqs. 3.4

3.2.3 Case 2

Case 2 is complementary to case 1 discussed above. Instead of a pole, this case occurs
when there is a zero at infinity in the given positive real symmetric matrix. According
to the definition of zero of matrix (section 2.4), the condition for this case is

lim
s→∞

|W(s)| = 0 .

If the determinant |W(s)| is a rational function, then the degree of its numerator would
be less than the degree of its denominator. As a consequence, the inverse matrix W−1(s)
must have a pole at infinity. Either by checking the determinant of the matrix for the
degree of the numerator less than the degree of the denominator, or the elements of the
inverse matrix for a pole at infinity, the existence of the case 2 can be determined.
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L

Cr
Z

Y´

(a) (b)

Y

C

Cr
Y

Z Z´

Figure 3.5: Sub-circuit realizations of case 2; (a) for impedance matrix and (b) for ad-
mittance matrix; the symbol used are explained in Figs. A.2 and A.4. The
figures correspond to the Eqs. 3.6

The extraction procedure for the zero at infinity, is application of long division on the
elements of inverse matrix as discussed in case 1 above.

W(s) =
[

CW
r Ds+W

′−1
(s)
]−1

. (3.5)

For impedance and admittance matrix representations, it would be

Z(s) =
[

CY
r Cs+ Z

′−1
(s)
]−1

, Y(s) =
[

CZ
r Ls+Y

′−1
(s)
]−1

. (3.6)

Fig. 3.5 (a) and (b) show the extracted sub-circuits for impedance and admittance,
respectively, after the case 2 extraction procedure is applied.

3.2.4 Case 3

Positive real symmetric matrix is in case 3 if it has a pole at s = 0:

lim
s→0

Wij(s) = ∞ , ∀ i, j = 1, 2, · · ·N ,

where N is number of ports. The constant term in the denominator polynomial of the
rational function is zero in this case. As cases 1 and 2 precede this case and any possible
pole or zero at infinity would be extracted before, thus all polynomials in the matrix
would be of same degree.
This pole can be extracted from individual element through long division. For that

the transformation of variable from s to s̃ = 1/s is necessary, before applying the long
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L

Cr
Y

Y´

(a) (b)

Y

C

Cr
Z

Z Z´

Figure 3.6: Sub-circuit realizations of case 3; (a) for impedance matrix and (b) for ad-
mittance matrix, corresponding to Eqs. 3.8; the symbol used are explained
in Figs. A.2 and A.4.

division. After the transformation of the variable, the function turns into a function
similar to the functions in case 1. After long division, the transformation can again be
applied. The steps for one rational function W (s) of the matrix are given as [52]:

W (s) =
ans

n + an−1s
n−1 + · · ·+ a0

bnsn + bn−1sn−1 + · · ·+ b1s

W

(

s =
1

s̃

)

=
an + an−1s̃+ · · ·+ a0s̃

n

bn + bn−1s̃+ · · ·+ b1s̃n−1

=
a′n + a′n−1s̃+ · · ·+ a′1s̃

n−1

bn + bn−1s̃+ · · ·+ b1s̃n−1
+

a0
b1
s̃

W (s) =
a′ns

n−1 + a′n−1s
n−2 + · · ·+ a′1

bnsn−1 + bn−1sn−2 + · · ·+ b1
+

1

Ds
,

where D = b1
a0
. For whole matrix it can be written as

W(s) = CW
r

1

Ds
+W

′

(s) , (3.7)

and individually for impedance and admittance matrices

Z(s) = CZ
r

1

Cs
+ Z

′

(s) , Y(s) = CY
r

1

Ls
+Y

′

(s) . (3.8)

The elements C and L will have value D i.e. reciprocal of the residue of the pole.
Figs. 3.6 (a) and (b) show the sub-circuits after case 3 extraction from impedance and
admittance matrices respectively.
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L

Cr
Y

Z´

(a) (b)

Z

C

Cr
Z

Y Y´

Figure 3.7: Sub-circuit realizations of case 4; (a) for impedance matrix and (b) for ad-
mittance matrix, corresponding to Eqs. 3.10; the symbol used are explained
in Figs. A.2 and A.4.

3.2.5 Case 4

Case 4 is complementary to case 3. Instead of a pole, if the given positive real symmetric
matrix has a zero at s = 0:

lim
s→0

|W(s)| = 0 ,

then it is in case 3. In the numerator of the determinant, the constant term would be
equal to zero and the inverse matrix W−1(s) would have a pole.
The extraction procedures are same as discussed in case 3 but are applied to the

elements of inverse matrix. The general extraction equation is

W(s) =

[

CW
r

1

Ds
+W

′−1
(s)

]−1

, (3.9)

and for impedance and admittance PRSM,

Z(s) =

[

CY
r

1

Ls
+ Z

′−1
(s)

]−1

, Y(s) =

[

CZ
r

1

Cs
+Y

′−1
(s)

]−1

. (3.10)

Figs. 3.7 (a) and (b) show the sub-circuits after the extraction procedures are applied
for impedance and admittance matrices respectively.

3.2.6 Case 5

A given positive real symmetric matrix lies in the case 5 if it has a pole pair at finite
frequency on imaginary axis. Positive real character of the matrix makes sure that the
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L

Cr
Z

Z´

(a) (b)

Z

C

Cr
Y

Y Y´

C

L

Figure 3.8: Sub-circuit realizations of case 5; (a) for impedance matrix and (b) for ad-
mittance matrix, according to Eqs. 3.15; the symbol used are explained in
Figs. A.2 and A.4.

poles always occur in complex conjugate pairs (section 2.2.2). For this case the condition
would be

lim
s→±jωp

Wii(s) → ∞ , ∀ i = 1, 2, · · ·N ,

where N is number of ports. Checking the denominators of diagonal elements for
quadratic factors of form s2 + ω2

p is sufficient for determining the presence of the pole
pair on imaginary axis.
The pole pair can be separated from the individual elements of the matrix . A rational

function W (s) having an imaginary pole pair at ±jωp, can be written as

W (s) =
1

s2 + ω2
p

P

Q
. (3.11)

Let the residue of one of the poles be k, then after removing the pole pair from W (s),
the remaining matrix is:

W ′(s) =
1

s2 + ω2
p

P

Q
− 2ks

s2 + ω2
p

=
1

s2 + ω2
p

[

P − 2kQs

Q

]

. (3.12)

The value of residue k is calculated such that the polynomial P − 2kQs has the factor
s2 + ω2

p, thus canceling it out in the remainder function W ′(s). Long division can be
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applied with P − 2kQs as dividend and s2 + ω2
p as divisor. The remainder would be a

function of the residue k which can be found by equating the remainder to zero. The
quotient P ′ would remain as the numerator of the remaining function W ′(s),

W ′(s) =
1

s2 + ω2
p

[

P ′(s2 + ω2
p)

Q

]

=
P ′

Q

= W (s)− 1

s
2k

+
ω2
p

2ks

= W (s)− 1

D1s+
1

D2s

. (3.13)

After extracting the pole pair from every element in which the pole is present, the general
form of equation is:

W(s) = CW
r

2ks

s2 + ω2
p

+W
′

(s) = CW
r

1

D1s+
1

D2s

+W
′

(s) . (3.14)

Extracting this pole pair does not effect the positive real character of the remaining
matrix, according to condition 3 of positive real symmetric matrices (section 2.2.2). For
impedance and admittance matrices the above equation can be written as

Z(s) = CZ
r

1

Cs+ 1
Ls

+ Z
′

(s) , Y(s) = CY
r

1

Ls + 1
Cs

+Y
′

(s) . (3.15)

Figs. 3.8 (a) and (b) show the sub-circuits extracted from impedance and admittance
matrices in case 5, respectively.

3.2.7 Case 6

This case is dual to the case 5. Instead of having a pole pair, a zero pair at ±jωp is
present in given positive real symmetric matrix. The corresponding condition can be
written as:

lim
s→±jω

|W(s)| = 0 .

These zeros would appear as poles in the inverse matrix from where they can be separated
with same procedure discussed in case 5 above. The general equation for extracted and
remaining matrix is

W(s) =

[

CW
r

2ks

s2 + ω2
p

+W
′−1

(s)

]−1

=

[

CW
r

1

D1s+
1

D2s

+W
′−1

(s)

]−1

, (3.16)

which for impedance and admittance matrices is written as

Z(s) =

[

CY
r

1

Ls + 1
Cs

+ Z
′−1

(s)

]−1

, Y(s) =

[

CZ
r

1

Cs+ 1
Ls

+Y
′−1

(s)

]−1

.(3.17)

Fig. 3.9 (a) and (b) show the sub-circuits corresponding to Eqs. 3.17 for impedance and
admittance matrices, respectively.
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L

Cr
Z

Y´

(a) (b)

Y

C

C

Cr
Y

Z Z´

L

Figure 3.9: Sub-circuit realizations of case 6; (a) for impedance matrix and (b) for ad-
mittance matrix, according to Eqs. 3.17; the symbol used are explained in
Figs. A.2 and A.4.

3.2.8 Case 7: Brune’s Process

Cases 1 to 6 are related to poles or zeros of positive real symmetric matrices (PRSM)
located on the imaginary axis of the complex frequency plane s, while case 7, which is
also named as the Brune’s process, deals with those PRSM whose poles and zeros are
strictly in the left half plane of the complex frequency. Let W(s) be a PRSM with no
pole or zero on the imaginary axis of s-plane, then

|W(s)|s=jω 6= 0 ∀ ω ∈ ℜ : −∞ < ω < ∞ .

Brune’s process strives to produce a zero, numerically, on the imaginary axis while pre-
serving the positive real character of the remaining matrix. The location of the zero,
s = jωmin, is determined during the process and, theoretically, there are many ways of
determining it. Each different way yields a different value of ωmin and hence a different
circuit realization. McMillan [28] has proposed the most general way, which forms an
optimization problem [33] and requires additional information for incorporation in the
algorithm. Due to its complexity the McMillan’s approach is not taken in the algorithm.
In contrast, Tellegen [27] has pointed out a specific yet a simple approach, which will be
discussed in due coarse.

There are four steps involved in the Brune’s process. The detailed discussion of each
step is given below under specified heading, while a brief overview of each step in con-
nection with flow diagram in Fig. 3.2 is as follows.
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The first step of the process determines the frequency (i.e. s = jωmin) where the zero
is to be produced and removes a real quantity from one of the diagonal elements of the
given PRSM (which is realized in the equivalent circuit as a series resistance or parallel
conductance). The value of ωmin forms three situations as shown in Fig. 3.2. If situation
1 (ωmin = ∞) or situation 2 (ωmin = 0) occurs, then the process ends prematurely and
next three steps do not follow. But if ωmin has some finite value other than 0 (situation
3), then next three steps would be required to complete the process. The second step
adds a pole either at infinity or at s = 0 in such a way that it preserves the positive
real character of the matrix yet canceling the imaginary value of the determinant of the
matrix at ωmin. This steps ends with a true zero-pair at s = ±jωmin. Depending on the
value of parameter α (discussed below), it yields two types of circuits. The third step is
removal of the zero pair at s = ±jωmin which were formed in the previous step. Fourth
and last step involves removal of a pole either at infinity or at s = 0, depending on the
circuit type determined in second step.

3.2.8.1 Step 1: Determination of ωmin and removal of resistance or conductance

’A’

In this step the main idea is to remove a series resistor or parallel conductance, A,
from one of the ports in such a manner that the real part of the given PRSM matrix
W(s) (impedance or admittance respectively) becomes rank deficient at s = jωmin while
maintaining P.R. character. In [27] the extraction is done only for the first port, but it
can be generalized to any port. The choice of the port is arbitrary and doesn’t effect the
algorithm itself. Matlab implementation is done using the first port only.
Let the ith port is chosen for the removal of the resistance or conductance A, and let

A(ω) = ℜ[W(s)]|s=jω , I(ω) = ℑ[W(s)]|s=jω ,

then to decrease the rank of A(ω), the value of A has to be chosen such that

∣

∣

∣
A

′

(ω)
∣

∣

∣
=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

A11(ω) · · · A1i(ω) · · · A1N (ω)
...

. . .
...

. . .
...

A1i(ω) · · · Aii(ω)− A · · · AiN(ω)
...

. . .
...

. . .
...

A1N (ω) · · · AiN (ω) · · · ANN (ω)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 .

As determinant is a linear function of each row or column [45, §4] and [51, §5.1], one can
expand the ith column in the above determinant as

∣

∣

∣
A

′

(ω)
∣

∣

∣
= |A(ω)|−

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

A11(ω) · · · 0 · · · A1N(ω)
...

. . .
...

. . .
...

A1i(ω) · · · A · · · AiN (ω)
...

. . .
...

. . .
...

A1N (ω) · · · 0 · · · ANN(ω)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= |A(ω)|−AMii(ω) = 0 , (3.18)
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where Mii(ω) is the minor of element Aii(ω) in A(ω). From Eq. 3.18 the value of A can
be calculated for any given value of ω. The question is that which value of ω should
be used? The answer lies in the fact that the matrix A

′

(ω) must remain positive semi-
definite to preserve the P.R. character of the remaining matrix. For that the value of
A should be equal to the value of the global minima and the frequency at that global
minima would be the required frequency ωmin. Thus

A = min

( |A(ω)|
Mii(ω)

)

=
|A(ωmin)|
Mii(ωmin)

. (3.19)

Finding the global minima is a simple optimization problem. As the degrees of the
polynomials in W(s) increases, it becomes more complex and less accurate to find the
minima.
Summarizing the above discussion, one can proceed with following steps:

1. Choose the port i from which the resistance/ conductance is to be extracted.

2. Calculate the function

|A(ω)|
Mii(ω)

=

∣

∣

∣
ℜ[W(s)]|s=jω

∣

∣

∣

Mii(ω)
,

where Mii(ω) is the minor of Aii(ω) in A(ω)

3. Find the global minima of above function, yielding the value of ωmin and A.

The constant A would represent a series resistance to be extracted from ith port in case
the given PRSM is impedance (Fig. 3.10 (Step 1)), otherwise it would be a parallel
conductance at the same port for admittance matrix (Fig. 3.11 (Step 1)).
The given PRSM W(s) at imaginary axis of complex frequency plane s can be written

as

W(s = jω) = ℜ[W(s = jω)] + jℑ[W(s = jω)] = A(ω) + jI(ω) . (3.20)

After the subtraction of above calculated value of A from the corresponding port, the
remaining matrix would be

W
′

(s = jω) = A
′

(ω) + jI(ω) . (3.21)

The matrix I(ω) would remain unchanged (theorem B.4). At ωmin it would become

W
′

(s = jωmin) = A
′

(ωmin) + jI(ωmin) . (3.22)

The matrix A
′

(ωmin) is a real symmetric yet rank deficient matrix as discussed above.
Depending on the value of ωmin, there will be three situations.
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Situation 1: ωmin → ∞
As limω→∞ I(ω) = 0, the matrix W

′

(s = jωmin) is already rank deficient and a zero has
already been created at s = ∞ by removing real value A. The Brune’s process would
terminate here and in next iteration of the algorithm case 2 would follow.
Situation 2: ωmin = 0

In this situation, limω→0 I(ω) = 0, and a zero has already been created by removing real
value A. The Brune’s process would again terminate here and case 4 would follow in
next iteration of algorithm.
Situation 3: ωmin = some finite value

Generally I(ωmin) 6= 0 and is not rank deficient matrix. This makes W
′

(s = jωmin) full
rank matrix. To complete the Brune’s process and to form true zero at s = ±jωmin,
further steps would be required.

3.2.8.2 Step 2: Determination of α and Addition of a Pole

This step makes the matrix I(ωmin) in Eq. 3.22 rank deficient, so that the whole matrix
W

′

(ωmin) become rank deficient. Let

β = [β1, β2, · · · , βN ]
T

be the null vector of A
′

(ωmin):

A
′

(ωmin)β = 0. (3.23)

And let H has to be extracted to make matrix I(ωmin) rank deficient, then the matrix
H should be chosen such that

(I(ωmin)−H)β = 0,

i.e. matrices A
′

(ωmin) and (I(ωmin)−H) share same null vector β (theorem B.1). As
matrix H is rank one matrix, it can be written as [27]:

H = α











h2
1 h1h2 · · · h1hn

h1h2 h2
2 · · · h2hn

...
...

. . .
...

h1hn h2hn · · · h2
n











= αhhT

where hi for i ∈ {1, 2, 3, · · · , N} are real, α ∈ {+1,−1} and

h = [h1, h2, · · · , hn]
T .

Determination of α: The value of α will be required to select the Brune’s circuit type.
Following calculation shows the determination of the value of α:

(I(ωmin)−H)β = 0
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I(ωmin)β = Hβ

I(ωmin)β = αhhTβ (3.24)

βT I(ωmin)β = αβThhTβ

βT I(ωmin)β = α (β.h)2

⇒ α = sgn
(

βT I(ωmin)β
)

(3.25)

As (β.h)2 is positive, the value of α is the sign of βT I(ωmin)β .

Determination of h: After the determination of α, the system of equations formed in
Eq. 3.24 can solved simultaneously to determine the values of hi’s in the vector h.

Determination of Brune Circuit Types: Considering two possible values of α and the
given PRSM to be either impedance or admittance, there are four Brune circuit types.
Table 3.3 shows the suitable Brune circuit type for the corresponding values of α and
given PRSM.

Table 3.3: Suitable Brune’s circuit types for corresponding values of α and type of PRSM

Type of given PRSM α = −1 α = +1

Impedance Type-I Type-II
Admittance Type-III Type-IV

Type-I and Type-III corresponding to the value of α = −1 have same mathematical
procedure and the same goes for Type-II and Type-IV, thus they would be discussed in
groups as follows:

Type I/III: α = −1

When α is negative, the diagonal values of the matrix H are also negative. From this
matrix, a circuit is intended to be calculated to fulfill two conditions. One one hand it
should be equal to the matrix H at s = jωmin and on other hand it should be subtracted
from the matrix W

′

(s) so that the PRSM character is not disturbed. As the matrix H

has to be subtracted from the imaginary part of W
′

(s), corresponding circuit would be
reactive. To fulfill all requirements, let

jH = jαhhT = jωminD1pp
T

=
[

sD1pp
T
]∣

∣

s=jωmin
, (3.26)

where value of D1 is negative to incorporate the negativity of α, thus the matrix ppT

would have positive diagonal elements. The negativity of D1 would be dealt with equiv-
alent circuit representation.

Subtracting sD1pp
T from W

′

(s) gives

W
′′

(s) = W
′

(s)− sD1pp
T = W

′

(s) + s(−D1)pp
T . (3.27)
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Because −D1 is positive, thus adding a pole at infinity with positive residue to a positive
real symmetric matrix would also result in positive real symmetric matrix. Note that in
actual circuit, the value of D1 would be used rather than −D1.

For impedance PRSM, D1 is an inductance L1 (Fig. 3.10, Type-I, Step 2) and for
admittance PRSM D1 is a capacitance C1 (Fig. 3.11, Type-III, Step 2):

Z
′′

(s) = Z
′

(s)− sL1pp
T (Type-I) (3.28a)

Y
′′

(s) = Y
′

(s)− sC1pp
T (Type-III) (3.28b)

Type II/IV: α = +1

If α is positive, the diagonal elements of the matrix H are also positive. Although this
matrix can be used to synthesize a reactive circuit as given above, but on subtraction
from of W

′

(s) it would not guarantee preservation of positive real character of remaining
matrix. To overcome this difficulty let

jH = jαhhT =
−1

jωminD1

ppT

=

[

1

s(−D1)
ppT

]∣

∣

∣

∣

s=jωmin

, (3.29)

where D1 has positive value, and the value used in the circuit would be −D1. This value
can be avoided by using equivalent circuit as discussed later.

Subtracting 1
s(−D1)

ppT from W
′

(s) gives

W
′′

(s) = W
′

(s)− 1

s(−D1)
ppT

= W
′

(s) +
1

sD1

ppT . (3.30)

Because D1 is positive, thus adding a pole at s = 0 with positive residue to a positive
real symmetric matrix would also result in positive real symmetric matrix (PRSM).

For impedance PRSM, −D1 would be a capacitance C1 (Fig. 3.10, Type-II, Step 2)
while for admittance PRSM, −D1 would be an inductance L1 (Fig. 3.11, Type-IV,
Step 2).

Z
′′

(s) = Z
′

(s)− 1

sC1
ppT (Type-II) (3.31a)

Y
′′

(s) = Y
′

(s)− 1

sL1
ppT (Type-IV) (3.31b)

The addition of a pole to W
′

(s) in all four types, forms a zero-pair in W
′′

(s) at
s = ±jωmin, which would be removed in next step.
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Figure 3.10: Case 7 networks; Extracted Brune’s circuits of Type-I and Type-II
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3 Brune Multiport Algorithm and its Implementation

3.2.8.3 Step 3: Removal of Zero Pair at s = ±jωmin

This step is similar to Case 6 described above. The matrix W
′′

(s) could be inverted
and the pole pair can be removed from its inverse. Procedures describe in section 3.2.6
can be followed. In this step, Type-I and Type-II circuits would have similar circuits
(Fig. 3.10, Step 3), and Type-III and Type-IV would have similar circuits (Fig. 3.11,
Step 3). Removal of these zero pair from W

′′

(s) can be written as:

W
′′′

(s) =

[

[W
′′

(s)]−1 − 2ks

s2 + ω2
min

nnT

]−1

=

[

[W
′′

(s)]−1 − 1

s
2k

+
ω2

min

2ks

nnT

]−1

. (3.32)

The equations corresponding to each type of circuit are:

Z
′′′

(s) =

[

[Z
′′

(s)]−1 − 1

L2s+
1
Cs

nnT

]−1

(Type-I) (3.33a)

Z
′′′

(s) =

[

[Z
′′

(s)]−1 − 1

Ls + 1
C2s

nnT

]−1

(Type-II) (3.33b)

Y
′′′

(s) =

[

[Y
′′

(s)]−1 − 1

C2s+
1
Ls

nnT

]−1

(Type-III) (3.33c)

Y
′′′

(s) =

[

[Y
′′

(s)]−1 − 1

Cs+ 1
L2s

nnT

]−1

(Type-IV) (3.33d)

The remaining matrix W
′′′

(s) would still be positive real symmetric matrix and the
extracted sub-circuit is realizable with positive values of inductance and capacitance.
The reason being that the given matrix W

′′

(s) is positive real symmetric matrix and
containing zero-pair on imaginary axis. According to the third condition of positive real
symmetric matrices the residue matrix (2knnT ) of the corresponding poles in inverted
matrix is positive definite (section 2.2.2).

3.2.8.4 Step 4: Removal of pole

After removal of a zero pair from the matrix W
′′

(s), the remaining matrix W
′′′

(s) would
again have pole either at infinity (for Type-I and Type-III) or at s = 0 (for Type-II and
Type-IV). The detailed proof of its existence is shown in section 4.1 below. This pole
and its residue matrix would be highly dependent on the values extracted in previous
steps (steps 2 and 3). The circuit topology and the elements would be same as those of
Step 2. Only the value of the circuit element would be different; the turns ratios would
be same as in step 2 (section 4.1).
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3.2 Cases of Brune’s Algorithm

After the removal of the pole, the equations can be written as:

Z
′′′′

(s) = Z
′′′

(s)− sL3pp
T (Type-I) (3.34a)

Z
′′′′

(s) = Z
′′′

(s)− 1

sC3

ppT (Type-II) (3.34b)

Y
′′′′

(s) = Y
′′′

(s)− sC3pp
T (Type-III) (3.34c)

Y
′′′′

(s) = Y
′′′

(s)− 1

sL3
ppT . (Type-IV) (3.34d)

The parameters L3 and C3 in each type of circuit are dependent on parameters
L1, L2, C1 and C2, and transformer turns ratios vectors p and n (derived in steps 2
and 3, according to Eqs. 4.11, 4.21, 4.12 and 4.22 derived in next chapter). The corre-
sponding sub-circuits are shown in Figs. 3.10 and 3.11.

The Brune extraction procedure ends here. The remaining matrix W
′′′′

(s) would
be a positive real symmetric matrix as in every step of Brune’s process the positive
real character of the remaining matrix is preserved (section 4.3.1 and [28, §XVI]). The
remaining problem is to remove the negative value elements, L1 and C1. Replacement
of the part of Brune’s extracted circuits with their equivalent ones, for this purpose, is
described in next section.

3.2.9 Equivalent Brune’s Circuit Types

Brune’s equivalent circuits are required to avoid the negative elements formed during
step 2 of the Brune’s process (section 3.2.8.2). It also replaces four reactive elements
(appearing in extracted circuit) by two elements. This is due to the fact that after every
complete Brune’s process the degree of the positive real symmetric matrix decreases by
2 [27]. The equivalent circuits make use of strong relation existing between the extracted
parameters (section 4.1 in next chapter). The equivalent circuits and the corresponding
relations are given below in brief. Detailed proof of equivalence is given in section 4.2
in next chapter. In the following, the extracted parameters L1, L2, L3, C1, C2, C3 and
the transformer turns ratios vectors p and n, are already known from the extraction
procedures described above. Equivalent parameters, L and C, and new turns ratios m
are calculated accordingly. Some parameters and turns ratios are same in both extracted
and equivalent circuits.

The equivalent sub-circuit topology for extracted Brune sub-circuit of Type-I was given
by Tellegen [27]. Other three topologies are new contribution in this work. Equivalent
sub-circuit topology for Type-II is similar to Type-I with only replacement of elements,
while sub-circuit topologies of Type-III and Type-IV are different.
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3.2.9.1 Equivalent Brune’s Circuit of Type-I

1

mi1 m11
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1

n2
1   C
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port i

L = (p.n)2 L1 + L2 (3.35a)

m1 =
A (p.n)L1 + L2

L
(3.35b)

mk = −(p.n)n1L1pk
L

(3.35c)

for k = 2, 3, · · · , N
and it is valid if

L3 = −L1L2

L
(3.35d)

where A =
∑N

k=2 pknk

Figure 3.12: Equivalent Brune’s circuit of Type-I

3.2.9.2 Equivalent Brune’s circuit of Type-II
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L
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1   C
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C =
C1C2

(p.n)2C2 + C1

(3.36a)

m1 =
A (p.n)C2 + C1

(p.n)2C2 + C1

(3.36b)

mk = − (p.n)C2n1pk

(p.n)2C2 + C1

(3.36c)

for k = 2, 3, · · · , N
with validity if

C3 = −C1C2

C
(3.36d)

where A =
∑N

k=2 pknk

Figure 3.13: Equivalent Brune’s circuit of Type-II
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3.2 Cases of Brune’s Algorithm

3.2.9.3 Equivalent Brune’s circuit of Type-III
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for k = 2, 3, · · · , N
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C3 = −C1C2

C
(3.37d)

where A =
∑N

k=2 pknk

Figure 3.14: Equivalent Brune’s circuit of Type-III

3.2.9.4 Equivalent Brune’s circuit of Type-IV
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Figure 3.15: Equivalent Brune’s circuit of Type-IV
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3.3 Remarks on Stability and Time Complexity of

Algorithm

The stability of the Brune multiport algorithm is can be defined as its ability to reduce
the order of positive real symmetric matrix W(s) in each iteration. If at any iteration
the order of the matrix (O[W(s)]) increases instead of decreasing then the algorithm
becomes unstable. This situation arises when the numeric implementation fails to cancel
common factors arising in the numerator and denominator of the determinant of W(s).
Numeric errors, due to use of less number of digits in calculation and not discarding
these errors actively, causes instability.
Time complexity increases with the increase of the degree of the given matrix. The

main time consuming step is Step 1 of Brune’s process(section 3.2.8.1) in which the
Eq. 3.18 is a numeric optimization problem for finding the global minima of the function.
For the matrix of order 40, first few iterations may take upto 45 minutes each (on machine
with 2GB RAM and dual core processor of 2 GHz each). As the matrix reduces, the
time per iteration also reduces.

3.4 Number of Elements of Circuit

There has been an interest to find the number of elements required to synthesize a
circuit in any particular algorithm. Brune in [23] has shown that the minimum number
of elements required in one cycle of Brune’s process during the synthesis of one-port
circuit are only four. This is true if the process doesn’t terminate prematurely (situation
1 and situation 2), in which case it would require only two elements.
Similarly Tellegen [27] has shown that for N-port circuit of order O(W) can be synthe-

sized in O(W)(N + 1) + 1
2
N(N + 1) elements. This expression is derived for the matrix

which remains in case 7 and other cases(1 to 6) never occur.
The number of reactive elements in the circuit are equal to the order of the matrix

given and the total number of elements required are equal to the number of independent
parameters in the matrix [27].
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4 Parameter Relationships and

Equivalence of Circuits

In the Brune multiport algorithm, each of the seven cases and the stop criterion has a
sub-circuit associated with it. The sub-circuit of a particular case is synthesized while
the extraction procedure of that case is applied. The algorithm ensures that the re-
sistors, capacitors and inductors of all sub-circuits have positive values, while the ideal
transformers may assume negative turns ratios.
For the case 7, all four types of the extracted sub-circuit have an element with negative

value. Moreover, there exists a special relationship between their parameters (i.e. values
of reactive elements and ideal transformer turns ratios). This special relationship allows
a part of the extracted sub-circuit to be replaced by an equivalent sub-circuit with all
elements having positive values.
In this chapter, the relationship between the parameters of the extracted sub-circuits

(of case 7) would be derived. Based on the relationships the equivalence between the
extracted and the equivalent sub-circuits would be established. In the end the positive
values of the elements of all sub-circuits of all cases would be discussed.

4.1 Parameters Relationships: Brune’s Extracted

Circuits

In the case 7 of Brune’s multiport algorithm there are in general four steps (section 3.2.8).
As described in section 3.2.8.4, the parameters extracted in step 4 are dependent on the
parameters extracted in step 2 and step 3 (sections 3.2.8.2 and 3.2.8.3). The element ex-
tracted in step 1 (resistance or conductance) does not contribute in the relationship. The
derivation of the relationship of these parameters will be carried out in detail. Because of
the similarity, the derivations of the relationships for extracted Brune’s circuit of Type-I
and Type-III is done together, using the common symbols of table 3.2 . Similarly the
derivations of the relationships for Brune’s circuit of Type-II and Type-IV are grouped
in one section.
Tellegen in [27] has derived the relationship for extracted Brune’s circuit of Type-I.

The derivation given here are more direct and in modern matrix notation. During the
derivation, Sherman-Morrison Formula ( [53, §2.7.1] and [54, §3.3.4]) for the calculation
of inverses is used. Given an invertible square matrix A of order N and column vectors
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u and v also of size N , and if (1 + vTA−1u) 6= 0, then

(

A+ uvT
)−1

= A−1 − A−1uvTA−1

1 + vTA−1u
(4.1)

Note that the denominator (1 + vTA−1u) is a scalar quantity.

4.1.1 Brune’s Extracted Circuits: Type-I and Type-III

Extracted Brune’s circuits of Type-I and Type-III are for impedance and admittance
matrices respectively. But because the form of the equations is same, common symbols
(as given in the list of symbols) would be used to do the derivation and in the end
separate results would be written.
The impedance or admittance matrix is in case 7 when neither of its poles nor any

of its zeros is located on the imaginary axis of complex frequency plane. In step 1 of
the extraction procedure of case 7, a resistance or a conductance is subtracted form the
given impedance or admittance matrix and the matrix W

′

(s) remains. The extraction
of the resistance or conductance is such that the W

′

(s) is still positive real symmetric
matrix. In step 2, a pole at s = ∞ is added and it can be written as

W
′′

(s) = W
′

(s)− sD1pp
T (From Eq. 3.27) (4.2)

where the element D1 is negative valued. In step 3, a zero-pair formed in step 2 (sec-
tion 3.2.8.2) would be removed. The equation for that is

W
′′′

(s) =







[

W
′′

(s)
]−1

−







nnT

sD2 +
1

sD













−1

(From Eq. 3.32) (4.3)

As mentioned in section 3.2.8.4, a pole at ∞ would be formed after Step 3. Along with
the formation of this pole, its matrix of residues would also be derived. This would give
the dependency of parameter D3 of Step 4 on the parameters D2 and D1 of Step 3 and
Step 2, respectively ({L3, L2, L1} and {C3, C2, C1} for Type-I and Type-III respectively).
The derivation would start with Eq. 4.3 of Step 3. For the sake of brevity symbol the
variable dependency (s) is removed from the matrix symbols. Using Sherman-Morrison
Formula of Eq. 4.1 on Eq. 4.3:

W
′′′

= W
′′

+

W
′′







nnT

sD2 +
1

sD






W

′′

1−







nTW
′′

n

sD2 +
1

sD







(4.4)
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Using Eq. 4.2 to replace W
′′

and rearranging:

W
′′′

=
[

W
′ − sD1pp

T
]

+

[

W
′ − sD1pp

T
]

nnT
[

W
′ − sD1pp

T
]

sD2 +
1

sD
− nT

[

W
′ − sD1pp

T
]

n

(4.5)

=

sD2W
′

+ 1
sD

W
′ − (nTW

′

n)W
′

+ sD1(n
TppTn)W

′

−s2D1D2pp
T − D1

D
ppT + sD1(n

TW
′

n)ppT −W
′

nnTW
′

−s2D2
1(n

TppTn)ppT − sD1pp
TnnTW

′

−sD1W
′

nnTppT + s2D2
1pp

TnnTppT

sD2 +
1

sD
− nTW

′

n+ sD1n
TppTn

(4.6)

Here one can easily verify that nTppTn = pTnnTp = (p.n)2 thus canceling ninth and
twelfth term in the numerator. Further dividing both numerator and denominator by s:

W
′′′

=

−s[D1D2pp
T ] +

1

s2

[

1

D
W

′

]

+
[

D1(n
TppTn)W

′

+D2W
′

+D1(n
TW

′

n)ppT

−D1W
′

nnTppT −D1pp
TnnTW

′
]

− 1

s

[

W
′

nnTW
′

+ (nTW
′

n)W
′

+
D1

D
ppT

]

[D2 +D1nTppTn]− 1

s
[nTW

′

n] +
1

s2D

(4.7)

The matrix W
′

(s) was formed by removal of a real value from one of the diagonal
elements of matrix W(s) (section 3.2.8.1). And by recalling the fact that the matrix
W(s) is in case 7 of Brune’s algorithm, which has no pole or zero on imaginary axis, it
can easily be deduced that

lim
s→∞

W
′

(s) = A (4.8)

where A is a real matrix.
From Eqs. 4.8 and 4.7 one can easily deduce that there exist a pole at ∞ in W

′′′

(s)
with residue matrix

Ress→∞W
′′′

(s) =
−D1D2

D2 +D1nTppTn
ppT (4.9)

=
−D1D2

D2 +D1(p.n)2
ppT (4.10)

This pole is extracted in Step 4 of case 7 (section 3.2.8.4). Comparing them with
Eqs. 3.34a and 3.34c, values of L3 and C3 are

L3 =
−L1L2

L2 + L1(p.n)2
(For Type-I) (4.11)

C3 =
−C1C2

C2 + C1(p.n)2
(For Type-III) (4.12)
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4.1.2 Brune’s Extracted Circuits: Type-II and Type-IV

For extracted Brune circuits of Type-II (for impedance) and of Type-IV (for admittance),
step 2 adds a pole at s = 0:

W
′′

= W
′

+
ppT

sD1

. (From Eq. 3.30) (4.13)

Step 3 removes a zero pair formed on the imaginary axis of complex frequency plane:

W
′′′

(s) =







[

W
′′

(s)
]−1

−







nnT

sD2 +
1

sD













−1

(From Eq. 3.32) (4.14)

The formation of a pole at s = 0 in Step 3 of case 7 of Brune’s algorithm (section 3.2.8.4)
for Type-II and Type-IV Brune’s circuits is derived in the following. The corresponding
residue matrix would also be derived. Again for the sake of brevity symbol W would be
used instead of W(s) which shows its dependency on s. It is to be noted that for the
consistency in equations, the symbol D1 is used as before and the corresponding circuit
values C1 and L1 in actual circuit realizations would still have value of −D1. Using
Sherman-Morrison formula of Eq. 4.1 on Eq.4.14:

W
′′′

= W
′′

+

W
′′







nnT

sD +
1

sD2






W

′′

1−







nTW
′′

n

sD +
1

sD2







(4.15)

Using Eq. 4.13 to replace W
′′

and rearranging

W
′′′

=

[

W
′

+
ppT

sD1

]

+

[

W
′

+
ppT

sD1

]

nnT

[

W
′

+
ppT

sD1

]

sD +
1

sD2

− nT

[

W
′

+
ppT

sD1

]

n

(4.16)

=

sDW
′

+
1

sD2

W
′ − (nTW

′

n)W
′ − 1

sD1

(nTppTn)W
′

+
D

D1
ppT +

ppT

s2D1D2
− 1

sD1
(nTW

′

n)ppT − (nTppTn)ppT

s2D2
1

+W
′

nnTW
′

+
1

sD1
ppTnnTW

′

+
1

sD1

W
′

nnTppT +
ppTnnTppT

s2D2
1

sD +
1

sD2
− nTW

′

n− 1

sD1
nTppTn

(4.17)
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The eighth and twelfth terms in the numerator would cancel for the same reason that
nTppTn = pTnnTp = (p.n)2. Further multiplying both numerator and denominator
by s and rearranging:

W
′′′

=

ppT

sD1D2

+
1

D2

W
′ − 1

D1

(nTppTn)W
′ − 1

D1

(nTW
′

n)ppT

+
1

D1

ppTnnTW
′

+
1

D1

W
′

nnTppT

−s(nTW
′

n)W
′

+ sW
′

nnTW
′

+ s
D

D1
ppT

+ s2DW
′

[

1

D2
− 1

D1
nTppTn

]

− snTW
′

n+ s2D

(4.18)

Following the argument given in the above section 4.1.1 the matrix W
′

(s) would be a
constant at s = 0 and that there is a pole at s = 0 in W

′′′

(s) having residue matrix

Ress→0W
′′′

(s) = lim
s→0

(sW
′′′

(s))

=
ppT

D1 −D2nTppTn
(4.19)

=
ppT

D1 −D2(p.n)2
(4.20)

This pole is extracted in Step 4 of case 7 (section 3.2.8.4). Comparing the residue
calculated in Eq. 4.20 with residues of poles extracted in Eqs. 3.34b and 3.34d, values of
C3 and L3 for Type-II and Type-IV, respectively, are

C3 = −C1 − C2(p.n)
2 (For Type-II) (4.21)

L3 = −L1 − L2(p.n)
2 (For Type-IV) (4.22)

4.2 Parameters Relationships: Brune’s Extracted and

Equivalent Circuits

Brune’s equivalent circuits are required to avoid the negative elements appearing in
Brune’s extracted circuits (section 3.2.9). The equivalence between each extracted type
(step 2 to step 4) of circuit with corresponding equivalent circuit would be shown in this
section. Because of the similarities, only equivalence between Type-I circuits is shown
step by step and a brief outline is given for other types.
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4.2 Parameters Relationships: Brune’s Extracted and Equivalent Circuits

4.2.1 Brune Circuit Type-I

The extracted Brune’s circuit of Type-I, shown in Fig. 4.1, is equivalent to the circuit
shown in Fig. 4.2 if the relation in Eq. 4.11 is satisfied by parameters in extracted
circuit. The relations between the parameters of these two circuits are derived here.
Similar derivation is given in [27], taking n1 = −1 and p1 = 1. This derivation will
generalize it by not specifying any value.
The total number of the ports of original circuit is N . As this circuit lies in the middle

of the total synthesized circuit and we only want the equivalent of this circuit, the circuit
is of 2N ports. In these figures the first port and any other ith port is shown. The values
L1, L2, L3, C, p’s and n’s in Fig. 4.1 are the parameters of the circuit available from
the extraction procedure (section 3.2.8), while the parameters L and m’s of Fig. 4.2 are
dependent on extracted parameters. The value of the capacitor in both circuits would
be same as will be obvious from the equations. In the derivation the values I1, I

′

1, I
′

i and
Vi will be treated as independent variables and V1, V

′

1 , V
′

i and Ii as dependent variables.

From Fig. 4.2

V1 = s
L

n2
1

(

I1 +m1I
′

1 +

N
∑

k=2

mkI
′

k

)

+
1

sn2
1C

(

I1 + I
′

1

)

−
N
∑

k=2

nk

n1
Vk (4.23a)

V
′

1 = s
L

n2
1

(

I1 +m1I
′

1 +

N
∑

k=2

mkI
′

k

)

m1 +
1

sn2
1C

(

I1 + I
′

1

)

−
N
∑

k=2

nk

n1
Vk (4.23b)

V
′

i = s
L

n2
1

(

I1 +m1I
′

1 +
N
∑

k=2

mkI
′

k

)

mi + Vi (4.23c)

Ii =
ni

n1

(

I1 + I
′

1

)

− I
′

i (4.23d)

From Fig. 4.1:

V1 = sL1

(

p1I1 +

N
∑

k=2

pkIk

)

p1 + V10 (4.24a)

V
′

1 = sL3

(

p1I
′

1 +

N
∑

k=2

pkI
′

k

)

p1 + V10 (4.24b)

V
′

i = sL3

(

p1I
′

1 +
N
∑

k=2

pkI
′

k

)

pi + Vi0 (4.24c)

Vi = sL1

(

p1I1 +

N
∑

k=2

pkIk

)

pi + Vi0 (4.24d)

Ii = Ii0 − I
′

i =
ni

n1
I10 − I

′

i =
ni

n1

(

I1 + I
′

1

)

− I
′

i (4.24e)
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V10 = s
L2

n2
1

(

I1 + I
′

1

)

+
1

sn2
1C

(

I1 + I
′

1

)

−
N
∑

k=2

nk

n1
Vk0 (4.24f)

The current Ii relations in two sets of equations are already same (compare Eqs. 4.24e
and 4.23d). Putting the value of V10 from Eq. 4.24f into the Eqs. 4.24a and 4.24b and
rearranging:

V1 = s

(

p21L1 +
L2

n2
1

)

I1 + s
L2

n2
1

I
′

1 + sp1L1

N
∑

k=2

pkIk +

(

I1 + I
′

1

)

sn2
1C

−
N
∑

k=2

nk

n1

Vk0 (4.25a)

V
′

1 = s
L2

n2
1

I1 + s

(

L2

n2
1

+ p21L3

)

I
′

1 + sp1L3

N
∑

k=2

pkI
′

k +

(

I1 + I
′

1

)

sn2
1C

−
N
∑

k=2

nk

n1
Vk0 (4.25b)

V
′

i = sp1L3piI
′

1 + sL3pi

N
∑

k=2

pkI
′

k + Vi0 (4.25c)

Vi0 = −sp1L1piI1 − sL1pi

N
∑

k=2

pkIk + Vi (4.25d)

Now putting the value of Ii from Eq. 4.24e into Eqs. 4.25a and 4.25d we get:

V1 = s

(

p21L1 +
L2

n2
1

)

I1 + s
L2

n2
1

I
′

1 + sp1L1

N
∑

k=2

pk

(

nk

n1
I1 +

nk

n1
I

′

1 − I
′

k

)

+
1

sn2
1C

(

I1 + I
′

1

)

−
N
∑

k=2

nk

n1
Vk0 (4.26a)

V
′

1 (Same as above) (4.26b)

V
′

i (Same as above) (4.26c)

Vi0 = −sp1L1piI1 − sL1pi

N
∑

k=2

pk

(

nk

n1
I1 +

nk

n1
I

′

1 − I
′

k

)

+ Vi (4.26d)

Rearranging the terms in equations

V1 = s

(

p21L1 +
p1
n1

L1

N
∑

k=2

pknk +
L2

n2
1

)

I1 + s

(

p1
n1

L1

N
∑

k=2

pknk +
L2

n2
1

)

I
′

1

− sp1L1

N
∑

k=2

pkI
′

k +
1

sn2
1C

(

I1 + I
′

1

)

−
N
∑

k=2

nk

n1
Vk0 (4.27a)

Vi0 = s

(

−p1L1pi −
L1pi
n1

N
∑

k=2

pknk

)

I1 −
sL1pi
n1

N
∑

k=2

pknkI
′

1 + sL1pi

N
∑

k=2

pkI
′

k

+ Vi (4.27b)
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In Eq. 4.27b change the subscripts k to l, then i to k and then sum nk

n1

Vk0 over k from

2 to N . Subtitute
∑N

k=2 pknk by A.

V1 = s

(

p21L1 +
p1
n1

L1A+
L2

n2
1

)

I1 + s

(

p1
n1

L1A+
L2

n2
1

)

I
′

1 − sp1L1

N
∑

k=2

pkI
′

k

+
1

sn2
1C

(

I1 + I
′

1

)

−
N
∑

k=2

nk

n1
Vk0 (4.28a)

N
∑

k=2

nk

n1

Vk0 = s

(

−p1
n1

L1A− L1

n2
1

A2

)

I1 − s
L1

n2
1

A2I
′

1 + s
L1

n1

A
N
∑

l=2

plI
′

l +
N
∑

k=2

nk

n1

Vk(4.28b)

Subtitute
∑N

k=2 nkVk0 in Eqs. 4.28a and 4.25b by Eq. 4.28b and Vi0 in Eq. 4.25c by
Eq. 4.27b

V1 = s

((

A2

n2
1

+ 2
A

n1
p1 + p21

)

L1 +
L2

n2
1

)

I1 + s

((

A2

n2
1

+
A

n1
p1

)

L1 +
L2

n2
1

)

I
′

1

− s

(

A

n1

+ p1

)

L1

N
∑

k=2

pkI
′

k +
1

sn2
1C

(

I1 + I
′

1

)

−
N
∑

k=2

nk

n1

Vk (4.29)

V
′

1 = s

((

A2

n2
1

+
A

n1
p1

)

L1 +
L2

n2
1

)

I1 + s

(

A2

n2
1

L1 +
L2

n2
1

+ p21L3

)

I
′

1

+ s

(

− A

n1

L1 + p1L3

) N
∑

k=2

pkI
′

k +
1

sn2
1C

(

I1 + I
′

1

)

−
N
∑

k=2

nk

n1

Vk (4.30)

V
′

i = s

(

− A

n1

− p1

)

L1piI1 + s

(

− A

n1

L1 + p1L3

)

piI
′

1

+ s (L1 + L3) pi

N
∑

k=2

pkI
′

k + Vi (4.31)

Comparing Eq. 4.29 with Eq. 4.23a, Eq. 4.30 with Eq. 4.23b and Eq. 4.31 with Eq.
4.23c, we get

L = (A+ p1n1)
2 L1 + L2 = (p.n)2L1 + L2 = −L1L2

L3
(4.32)

m1 =
(A2 + Ap1n1)L1 + L2

L
=

A (p.n)L1 + L2

(p.n)2 L1 + L2

(4.33)

mk = −(A + p1n1)n1L1pk
L

= − (p.n)n1L1pk

(p.n)2 L1 + L2

for k = 2, 3, · · · , N (4.34)

and it is valid if L3 = −L1L2

L
= − L1L2

(p.n)2L1+L2

where A =
∑N

k=2 pknk, p = [p1, p2, · · · , pN ]T
and n = [n1, n2, · · · , nN ]

T . This condition is already fulfilled by the Brune’s extracted
circuit of Type-I (Eq. 4.11)
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4.2.2 Brune Circuits Type-II

The Brune circuit of type-II shown in Fig. 4.2.2 is equivalent to the circuit shown in
Fig. 4.3. The relations between the parameters of these two circuits are derived here.
As with previous circuit, the total number of the ports of original circuit is N , and in
these figures the first port and any other ith port is shown. The values C1, C2, C3, L,
p’s and n’s in Fig. 4.2.2 are the parameters of the circuit available from the extraction
procedure (section 3.2.8), while the parameters C and m’s of Fig. 4.3 are dependent on
the extracted parameters. T he value of the inductance in both circuits would be same
as will be obvious from the equations. In the derivation the values I1, I

′

1, I
′

i and Vi will
be treated as independent variables and V1, V

′

1 , V
′

i and Ii as dependent variables.
The derivation equations for Type-II circuit are very similar to the equations for Type-I

circuit in previous section. One can obtain all the equations by replacing sLi with 1/sCi

and sC with 1/sL. This simple change is due to the fact that the difference in the two
types are only the change of the circuit elements with topology being the same.
The resulting relations connecting the two circuits are

C =
C1C2

(A+ p1n1)
2C2 + C1

=
C1C2

(p.n)2C2 + C1

(4.35)

m1 = C

(

A (A+ p1n1)C2 + C1

C1C2

)

=
A (p.n)C2 + C1

(p.n)2C2 + C1

(4.36)

mk = −(A+ p1n1)Cn1pk
C1

= − (p.n)C2n1pk

(p.n)2 C2 + C1

(4.37)

for k = 2, 3, · · · , N

with validity if

C3 = −C1C2

C
= −

(

(p.n)2C2 + C1

)

(4.38)

where A =
∑N

k=2 pknk, p = [p1, p2, · · · , pN ]T and n = [n1, n2, · · · , nN ]
T .

This condition is already fulfilled by the Brune’s extracted circuit of Type-II (sec-
tion 4.1.2, and Eq. 4.21)
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4 Parameter Relationships and Equivalence of Circuits

4.2.3 Brune Circuit Type-III

The extracted Brune circuit of type-III is shown in Fig. 4.5 and its equivalent circuit in
Fig. 4.6. The relations between the parameters of these two circuits are derived here.
As with previous circuit, the total number of the ports of original circuit is N , and in
these figures the first port and any other ith port is shown. The values C1, C2, C3, L,
p’s and n’s in Fig. 4.5 are the parameters of the circuit available from the extraction
procedure (section 3.2.8), while the parameters C and m’s of Fig. 4.6 are dependent on
the extracted parameters. The value of the inductance in both circuits would be same
as will be obvious from the equations.
Due to duality, the derivation is same as in section 4.2.1. By replacing every voltage

Vi with corresponding current Ii and vice versa, and replacing every capacitance Ci with
corresponding inductance Li and vice versa, one can easily find the resulting relations.
In the derivation the values V1, V

′

1 , V
′

i and Ii will be treated as independent variables and
I1, I

′

1, I
′

i and Vi as dependent variables. It must be noted that the above replacement
of voltages, currents, capacitance and inductance in equations of section 4.2.1 is valid
if the sign conventions shown in Figs. 4.5 and 4.6 are followed. The resulting relations
connecting the two circuits are

C = (A+ p1n1)
2C1 + C2 = (p.n)2C1 + C2 (4.39)

m1 =
(A2 + Ap1n1)C1 + C2

C
=

A (p.n)C1 + C2

(p.n)2C1 + C2

(4.40)

mk = −(p.n)n1C1pk
C

= − (p.n)n1C1pk

(p.n)2C1 + C2

(4.41)

for k = 2, 3, · · · , N (4.42)

and it is valid if

C3 = −C1C2

C
= − C1C2

(p.n)2C1 + C2

(4.43)

where A =
∑N

k=2 pknk, p = [p1, p2, · · · , pN ]T and n = [n1, n2, · · · , nN ]
T .

This condition is already fulfilled by the Brune’s extracted circuit of Type-III (sec-
tion 4.1.1, and Eq. 4.12)
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4 Parameter Relationships and Equivalence of Circuits

4.2.4 Brune Circuits Type-IV

Type-IV circuits are similar to Type-III circuits topologically but they are dual to Type-
II circuits. The extracted and equivalent circuits are shown in Figs. 4.2.4 and 4.7,
respectively.
These circuits are for given admittance matrices. Unlike Type-III circuit there are

three inductance elements. The inductance L1 is negative as derived in section 3.2.8.
The equivalent circuit would replace L1, L2 and L3 with one positive inductance L.
The derivation is very similar to the procedure given in section 4.2.1, with following

changes:

1. Replace every voltage Vi with corresponding current Ii.

2. Replace every current Ii with corresponding voltage Vi.

3. Replace sLi with 1/sLi.

4. Replace sC with 1/sC.

The convention used would be as shown in Figs. 4.2.4 and 4.7, otherwise the above
replacement is invalid.
The resulting relations are:

L =
L1L2

(A+ p1n1)
2 L2 + L1

=
L1L2

(p.n)2 L2 + L1

(4.44)

m1 = L

(

(A2 + Ap1n1)L2 + L1

L1L2

)

=
A (p.n)L2 + L1

(p.n)2 L2 + L1

(4.45)

mk = −(A+ p1n1)Ln1pk
L1

= − (p.n)L2n1pk

(p.n)2 L2 + L1

(4.46)

for k = 2, 3, · · · , N

with validity if

L3 = −L1L2

L
= −

(

(p.n)2 L2 + L1

)

(4.47)

where A =
∑N

k=2 pknk, p = [p1, p2, · · · , pN ]T and n = [n1, n2, · · · , nN ]
T .

This condition is already fulfilled by the Brune’s extracted circuit of Type-IV (sec-
tion 4.1.2, and Eq. 4.22).
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4 Parameter Relationships and Equivalence of Circuits

4.3 Positivity of Elements

The values of the circuit elements in Brune’s synthesis procedures are always positive.
In cases 1 to 6, the elements are extracted with positive values. But in case 7 one of the
extracted values is negative which can be avoided by using equivalent circuits.

4.3.1 Extracted Parameters

4.3.1.1 Cases 1 to 6

Given a PRSM in which there is a pole or zero on imaginary axis of complex frequency,
the subtraction of this pole or zero would again result in PRSM [28, §XVI]. The pole
(and zero which is a pole in inverse PRSM), would have residue matrix Kωp which is
positive definite 2.2.2. Thus every extracted element would have positive value. The
transformer turns ratios can however be negative.

4.3.1.2 Case 7: Step 1

The element extracted in step 1 is either a resistance or a conductance. During the
extraction process it is made sure that it remains positive. As the given matrix is
positive real symmetric matrix, its real part on the imaginary axis is positive definite
matrix for all frequencies. The positive real character is maintained while extracting the
real value (synthesized as a resistance or a conductance).

4.3.1.3 Case 7: Step 2

The elements extracted in this step are made negative to preserve the positive real
character of the remaining matrix. The subtraction of negative elements is actually
addition of a pole with positive residue. The addition of two PRSM is again a PRSM [28,
p. 544]. In Brune’s circuits Type-I and Type-III, the elements are themselves negative
and subtraction of these elements is actually addition of a pole with positive residue at
∞. However, in Type-II and Type-IV circuits the elements are made negative to make
it addition of a pole at s = 0.

The negativity of the elements, formed in this step is dealt in the equivalent circuit.

4.3.1.4 Case 7: Step 3

The resultant matrix obtained from step 2, would be PRSM and would have zero pair
on imaginary axis s = jω. The removal of this zero pair would again result in PRSM
and a circuit (resulting from zero-pair) with positive values.
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4.3 Positivity of Elements

4.3.1.5 Case 7: Step 4

The resultant matrix obtained from step 3 is PRSM with a pole at ∞ or 0. Again, the
poles is with positive definite residue matrix; thus the elements would be positive. After
removal of the pole, the matrix is still PRSM [28, §XVI].

4.3.2 Equivalent Parameters

The equivalent circuits replace three circuit elements with one element. In Type-I and
Type-IV, three inductance L1, L2 and L3 are replaced by one inductance L, while in Type-
II and Type-III circuits three capacitance C1, C2 and C3 are replaced by one capacitance
C. In all cases first element (L1 or C1) is negative and other two elements (L2, L3 or
C2, C3) are positive, as discussed above. From Eqs. 4.32, 4.38, 4.43 and 4.47 it can be
deduced that the equivalent elements (L or C) are positive.
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5 Examples

The working of an algorithm is best understood through an example in which the algo-
rithm is discussed step by step. The need of such demonstrative example becomes more
important for an algorithm which is as complicated as Brune’s algorithm. This need
is first addressed in this chapter. An example demonstrating step by step working of
Brune’s algorithm is discussed.

Application of Brune’s algorithm in modeling variety of microwave circuits are also
presented. The purpose is to compare the accuracy of model response. As a raw tabular
data from measurement or simulation is used, steps of data pre-processing and system
identification are also involved. The second section is dedicated for discussion on the
general procedure involved in developing these examples.

The step-by-step working of algorithm would not be shown in application examples.
This is because the equivalent network models have very high orders and thus very
complicated. A number of other examples can be found in [50, 52, 55–66]

5.1 Demonstration Example

This example is presented to elaborate the working of the Brune’s algorithm. A positive
real symmetric admittance matrix given in Eq. 5.1 is an input to the algorithm and the
resulting output network is shown in Fig. 5.1.

Through inspection one can identify that the network contains only four basic circuit
elements i.e. inductance, capacitance, conductance and ideal transformer. The success
of the algorithm lies in the fact that except for the transformer turns ratios (which can
be negative), all other elements have positive values. The number of reactive elements
(inductance and capacitance) is 12 which is also the order of the equivalent circuit
(section 2.3).

The exact coefficients in the terms of the polynomials are given. This format is adopted
to avoid any numerical errors in this example as the purpose of this example is only to
elaborate the working of the algorithm. The symbols used have extra index in the
subscript which indicates the number of iteration of the algorithm.

An effort has been made to keep the network as small as possible yet containing
all cases of the algorithm. Moreover to introduce un-symmetry in the network, the
transformer turn-ratios are slightly different. The order of polynomials in Eq. 5.1 in-
dicates that even for simple networks the use of numerical computational programs is
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un-avoidable. It is advisable for the reader to use Mathematica or Matlab for solving
the example to have deeper understanding of the algorithm.
The input to the algorithm is an admittance matrix given as

Y1(s) =
1

D1

[

N11,1 N12,1

N21,1 N22,1

]

(5.1)

where

D1 =







s(s2 + 4)(2396000s8 + 35460405s7 + 166883979s6

+527995538s5 + 805283399s4 + 669903011s3

+307683728s2 + 88471572s+ 12038400)
(5.1a)

N11,1 =















3450240s12 + 55317983.2s11 + 297238199.76s10 + 1217090834.62s9

+3210391182.78s8 + 6993939410.68s7 + 10463825754.14s6

+10954997468.66s5 + 8063875103.04s4 + 4429859554.96s3

+1620135968s2 + 396683088s+ 48153600

(5.1b)

N12,1 = N21,1 =















2875200s12 + 43982486s11 + 220929224.8s10 + 869845504.1s9

+1992985209.1s8 + 3762374473.8s7 + 4279550537.1s6

+1202948201.5s5 − 2648302205.2s4 − 3204123096.8s3

−1627284425.6s2 − 482516174.4s− 62599680

(5.1c)

N22,1 =















2396000s12 + 36560405s11 + 193063719s10 + 840620052.45s9

+2222788657.51s8 + 5249151236.02s7 + 8116866564.35s6

+9449883963.47s5 + 8415735445.56s4 + 5584236343.04s3

+2298366097.28s2 + 625024626.72s+ 81379584

(5.1d)

Preliminaries

First observation is that all four rational functions have common denominator, which
generally may not be the case. In such situations one can make the denominator common
by adding poles with zero residues to the rational functions in which they are not present.
Before actually starting the algorithm, the matrix has to be checked for its positive

real character. Three conditions given in Section 2.2.2 are to be verified. First condition
can be verified by factorizing the denominator D1. As the numerators N11,1, N12,1, N22,1

are a degree higher than the denominator, there is a pole at infinity. Other marginal
poles are located at s = 0 and s = ±j2 (as seen in D1). For the verification of second
condition one has to verify that [N11,1/D1]|s=jω ≥ 0 and |Y1|s=jω ≥ 0. The easiest way
is to plot the functions in frequency band which is double of the highest frequency pole
(in this case 0 ≤ ω < 10), and verify by inspection. Other methods of verification are
given in [39, Ch. 1]. The third condition for positive real character is related to the
poles located on jω-axis. For each pole s = 0, s → ∞ and s = ±j2 one can extract the
residues from each rational function and form matrix of residues K0, K∞ and K±j2. All
matrices of residues can seen to be positive definite, thus fulfilling the third condition.
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Figure 5.1: Brune’s network diagram for admittance matrix given in Eq. 5.1
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5 Examples

Iteration: 1

It is advisable to keep the flow-diagram given in Fig. 3.2 under consideration with the
discussion of each iteration. At the start of each iteration the stop criterion has to be
checked. If this criterion is not met then case 1 has to be checked and if that fails the next
case is checked. This process is repeated until either some case is identified successfully
or the default case 7 is reached.

Stop criterion (Case 0) occurs if the matrix in iteration is frequency independent real
symmetric matrix. As Y1 has functions of s, stop criterion is not met. The algorithm
will move on to checking for case 1. The given matrix lies in case 1 if any element of
the matrix has a pole at infinity. A simple test is to see if the numerator polynomial
is one degree higher than the denominator polynomial. As it is obvious from Eqs. 5.1a,
5.1b, 5.1c and 5.1d that all four numerator polynomials are one degree higher than the
denominator polynomial, all four elements have a pole at infinity. Further cases would
not be analyzed and after extraction of this pole the iteration would complete. These
poles can be removed by long division (Section 3.2.2). One can write

Y1(s) = s

[

1.44 1.2
1.2 1

]

+
1

D2

[

N11,2 N12,2

N21,2 N22,2

]

= s

[

(1.2)2 (1.2)(1)
(1.2)(1) (1)2

]

+Y2(s) (5.2)

where polynomials D2, N11,2, N12,2, N21,2 and N22,2 are given in next iteration under
Eqs. 5.3. The remaining reduced matrix Y2 would still be positive real symmetric matrix
(Section 4.3.1). The extracted pole has associated residue matrix of rank one and would
form a network in which a capacitance of 1F would be connect to port 1 and port 2
through transformers of turns ratios 1.2 and 1 respectively (Sections 3.2.2 and A.3).
After extraction and network formation the remaining reduced matrix Y2 will continue
for new iteration.

Iteration: 2

For this iteration the polynomials of Y2 are

D2 =







s(s2 + 4)(2396000s8 + 35460405s7 + 166883979s6 + 527995538s5

+805283399s4 + 669903011s3 + 307683728s2

+88471572s+ 12038400)
(5.3a)

N11,2 =















4255000s11 + 43124310s10 + 252525327.1s9

+1089531369.18s8 + 2988024775.96s7 + 5382328807.58s6

+6968957061.62s5 + 6274281533.76s4 + 3920263300.24s3

+1550794784s2 + 396683088s+ 48153600

(5.3b)
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5.1 Demonstration Example

N12,2 = N21,2 =















1430000s11 + 9167650s10 + 66040914.5s9

+225602031.1s8 + 424112278.2s7 + 44969748.3s6

−2118752137.7s5 − 4139630179.6s4 − 3628786642.4s3

−1685068745.6s2 − 482516174.4s− 62599680

(5.3c)

N22,2 =















1100000s11 + 16595740s10 + 170782894.45s9 + 749969342.51s8

+2467266073.02s7 + 4588049240.35s6 + 6681800347.47s5

+7172962133.56s4 + 5230350055.04s3 + 2250212497.28s2

+625024626.72s+ 81379584

(5.3d)

New iteration would start with checking for stop criterion and case 1 (as described
above); one after the other and it would turn out that Y2 neither lies in case 0 nor in
case 1. For case 2 (zero at infinity) one has to take the determinant of Y2. A zero is
defined through the determinant. Again it would turn out that the numerator and the
denominator of the determinant |Y2| are of same degree i.e. no zero at infinity.
After failure of case 2 check, case 3 (pole at s = 0) would be checked. The denominator

D2 has a factor s which indicates that there is a pole at s = 0. Removing the pole as
described in Section 3.2.4 one can write

Y2(s) =
1

s

[

1 −1.3
−1.3 1.69

]

+
1

D3

[

N11,3 N12,3

N21,3 N22,3

]

=
1

s

[

(1)2 (1)(−1.3)
(1)(−1.3) (−1.3)2

]

+Y3(s) (5.4)

Again Y3 is positive real symmetric matrix (Section 4.3.1) and its polynomials are given
in Eqs. 5.5. The extracted pole can be synthesized by parallel network with an inductance
of 1H and turns ratios 1 and −1.3 (Sections 3.2.4 and A.3). Fig. 5.1 shows the network.
Y3 will continue to next iteration.

Iteration: 3

The polynomials for Y3 are as under:

D3 =







(s2 + 4)(2396000s8 + 35460405s7 + 166883979s6

+527995538s5 + 805283399s4 + 669903011s3

+307683728s2 + 88471572s+ 12038400) ,
(5.5a)

N11,3 =







4255000s10 + 40728310s9 + 217064922.1s8 + 913063390.18s7

+2318187617.96s6 + 3909509492.58s5 + 4187071898.62s4

+2745464209.76s3 + 1152179684.24s2 + 308021472s+ 42796800 ,
(5.5b)

N12,3 = N21,3 =















1430000s10 + 12282450s9 + 112139441s8

+455010403.8s7 + 1294900583.6s6 + 1959634857.8s5

+1497698574.2s4 + 447832341.6s3 − 30277941.6s2

−69463440s− 22464000 ,

(5.5c)
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N22 =







1100000s10 + 12546500s9 + 110854810s8 + 451738458s7

+1335241276s6 + 2098984598s5 + 1980414422s4

+1209260856s3 + 552288744s2 + 149925600s+ 26956800 .
(5.5d)

Again case 0 to case 4 would be checked and they would fail (description of case 4 would
come later). Case 5 occurs when the matrix has a pole pair at some finite frequency on
jω-axis. Noticing that there is a factor (s2 + 4) in D3, there is a pole pair at s = ±j2.
The pole pair can be removed from Y3 through partial fractions or by applying the

procedure described in Section 3.2.6 on each element of the matrix. One can again write

Y3(s) =
2s

s2 + 4

[

1.21 1.1
1.1 1

]

+
1

D4

[

N11,4 N12,4

N21,4 N22,4

]

=
1

s
2
+ 1

s/2

[

(1.1)2 (1.1)(1)
(1.1)(1) (1)2

]

+Y4(s) (5.6)

The extracted parameters are synthesized as shown in Fig. 5.1. A series connection of
inductance (0.5 H) and capacitance (0.5 F) connected to port 1 and port 2 through
transformers with 1.1 and 1 turn-ratios respectively (Sections 3.2.6 and A.3).

Iteration: 4

The polynomials of Y4, remaining from previous iteration are

D4 =

{

2396000s8 + 35460405s7 + 166883979s6 + 527995538s5 + 805283399s4

+669903011s3 + 307683728s2 + 88471572s+ 12038400 ,
(5.7a)

N11,4 =

{

4255000s8 + 34929990s7 + 114230742s6 + 369484201s5 + 583515448s4

+482786863s3 + 231844820s2 + 69722136s+ 10699200 ,
(5.7b)

N12,4 = N21,4 =







1430000s8 + 7011250s7 + 28406550s6 + 59820650s5

+19684200s4 − 51271220s3 − 54824850s2

−23986980s− 5616000 ,
(5.7c)

N22,4 =

{

1100000s8 + 7754500s7 + 35534000s6 + 86952500s5 + 137114200s4

+140607800s3 + 92151600s2 + 31462200s+ 6739200 ;
(5.7d)

and its determinant is

|Y4| =
100(s2 + 9)(11000s6 + 51585s5 + 113105s4

+ 120890s3 + 69541s2 + 22055s+ 3744)

2396000s8 + 35460405s7 + 166883979s6 + 527995538s5 + 805283399s4

+669903011s3 + 307683728s2 + 88471572s+ 12038400

(5.8)

In this iteration, after failing stop criterion and first five cases, the determinant of Y4

shows a factor (s2 + 9) in its numerator. This indicates a zero pair at s = ±j3. It can
be extracted by inverting the matrix and extract the corresponding pole pair from each
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element (every zero of matrix is a pole in the inverse matrix); and then inverting back
the remaining matrix. The extraction equation would be

[Y4]
−1 =

(

1

D5

[

N11,5 N12,5

N21,5 N22,5

])−1

+
3s

s2 + 9

[

1 −1.1
−1.1 1.21

]

= (Y5)
−1 +

1
s
3
+ 1

1

3
s

[

(1)2 (1)(−1.1)
(1)(−1.1) (−1.1)2

]

, (5.9)

where the polynomials N11,5, N12,5, N21,5, N22,5 andD5 are given in Eqs. 5.10. As the zero
pair is extracted as a pole from the inverse matrix, it would be treated as an impedance
matrix, in which an inductance (1/3H) parallel with a capacitance (1/3F) is connected
to ports through transformers of turns ratios 1 and −1.1 (Sections 3.2.7 and A.2). The
network is shown in Fig. 5.1 under ’Case 6’.

Iteration: 5

The remaining matrix from iteration 4, Y5, has following polynomials

D5 =

{

2396000s6 + 28140405s5 + 58655424s4 + 56414477s3

+28091690s2 + 8674292s+ 1337600
, (5.10a)

N11,5 =

{

4255000s6 + 30936990s5 + 57210387s4 + 49994176s3

+24738895s2 + 7595896s+ 1188800
, (5.10b)

N12,5 = N21,5 =

{

1430000s6 + 3381250s5 − 1486500s4

−7935250s3 − 6831000s2 − 2802500s− 624000
, (5.10c)

N22,5 =

{

1100000s6 + 4454500s5 + 10158500s4 + 12930500s3

+9420700s2 + 3371000s+ 748800
; (5.10d)

and its determinant is

|Y5| =

1100000s6 + 5158500s5 + 11310500s4 + 12089000s3

+6954100s2 + 2205500s+ 374400

2396000s6 + 28140405s5 + 58655424s4 + 56414477s3

+28091690s2 + 8674292s+ 1337600

. (5.11)

Through the inspection of polynomials and the determinant, it is obvious that the stop
criterion is not met and first six cases of the algorithm are not found. So the procedures
of case 7 would be applied.

Step: 1 In this step a conductance would be extracted from any one-port in a manner
that positive real character is not disturbed and a zero for real part of Y5 is formed on
jω-axis. For this we choose port 1 (arbitrary choice). Calculating the real part of Y5 on
jω-axis through the formula:

A5(ω) =
1

2
[Y5(s) +Y5(−s)]|s=jω ; (5.12)
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and one can calculate the function

|A5(ω)|
M11,5

=

26356000000ω12 + 347550459925ω10 + 345931214400ω8

+125627522941ω6 + 101699127006ω4

−20675737300ω2 + 5007974400

26356000000ω12 + 364907016725ω10 + 341561862550ω8

+217582632757ω6 + 198164404012ω4

−43951474600ω2 + 10015948800

. (5.13)

The only minima of above function is at ω = 0 with the value of 0.5 and the value of
function at ω → ∞ is 1. Because the minimum value is given by ω = 0, we shall take
ωmin = 0. Extracting 0.5S conductance from port 1:

Y6 = Y5 −
[

0.5 0
0 0

]

; (5.14)

where the polynomials of Y6 are given in Eqs. 5.15. Had we taken ωmin → ∞ and
extracted 1S conductance from the port the real part would have become negative at
ωmin = 0. As ωmin = 0, the imaginary part is already rank deficient at ωmin and a zero
has already been formed at s = 0 for the matrix Y6. The Brune’s process terminates
prematurely (Case7, Situation: 2). This iteration ends here. The resulting circuit is
shown in Fig. 3.3.

Iteration: 6

The remaining polynomials (pertaining to Y6) from previous iteration are:

D6 =

{

2396000s6 + 28140405s5 + 58655424s4

+56414477s3 + 28091690s2 + 8674292s+ 1337600
, (5.15a)

N11,6 =

{

3057000s6 + 16866787.5s5 + 27882675s4

+21786937.5s3 + 10693050s2 + 3258750s+ 520000
, (5.15b)

N12,6 = N21,6 =

{

1430000s6 + 3381250s5 − 1486500s4

−7935250s3 − 6831000s2 − 2802500s− 624000
, (5.15c)

N22,6 =

{

1100000s6 + 4454500s5 + 10158500s4

+12930500s3 + 9420700s2 + 3371000s+ 748800
; (5.15d)

The determinant |Y6| shows a zero at s = 0 and it was expected from the outcome of
previous iteration. The matrix Y6 is in case 4 (Section 3.2.5). The pole can be extracted
by taking the inverse of the matrix and through partial fraction separating the pole from
each element. The result is

[Y7]
−1 = [Y6]

−1 − 1

s

[

1.44 1.2
1.2 1

]

,= [Y6]
−1 − 1

s

[

(1.2)2 (1.2)(1)
(1.2)(1) (1)2

]

; (5.16)

where the polynomials of Y7 are given in Eq. 5.17. The extracted zero can be realized
as shown in Fig. 5.1 (section labelled with ’Case 4’).
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Iteration: 7

The remaining polynomials (pertaining to Y7) from previous iteration are:

D7 = 95840s5 + 768253s4 + 871910s3 + 386901s2 + 113304s+ 10000 , (5.17a)

N11,7 = 122280s5 + 652671.5s4 + 998057s3 + 622227.5s2 + 202772s+ 40600(5.17b)

N12,7 = N21,7 = 57200s5 + 161650s4 + 81240s3 − 18310s2 − 3300s− 4400 , (5.17c)

N22,7 = 44000s5 + 146500s4 + 237500s3 + 158300s2 + 52900s+ 5600 ; (5.17d)

and its determinant is

|Y7| =
22000s5 + 117250s4 + 249250s3 + 224950s2 + 89750s+ 20800

95840s5 + 768253s4 + 871910s3 + 386901s2 + 113304s+ 10000
. (5.18)

Again through the inspection of polynomials and the determinant, it is obvious that
the stop criterion is not met and first six cases of the algorithm are not found. So the
procedures of case 7 would be applied.

Step: 1 In this step a conductance would be extracted from any one-port in a manner
that positive real character is not disturbed and a zero for real part of Y7 is formed on
jω-axis. For this we choose port 1 (arbitrary choice). Calculating the real part of Y7 on
jω-axis through the formula:

A7(ω) =
1

2
[Y7(s) +Y7(−s)]|s=jω ; (5.19)

and calculation the function

|A7(ω)|
M11,7

=

42169600ω10 + 528310245ω8 + 560480906ω6

+53875861ω4 + 8374160ω2 + 4160000

84339200ω10 + 1028460490ω8 + 776769812ω6

−120401878ω4 + 44882720ω2 + 1120000

(5.20)

The only minima of above function is at ω = 0 with the value of 3.7143 and the value
of function at ω → ∞ is 0.5. Because the minimum value is given by ω → ∞, we shall
take ωmin → ∞. Extracting 0.5S conductance from port 1:

Y8 = Y7 −
[

0.5 0
0 0

]

; (5.21)

where the polynomials of Y8 are given in Eqs. 5.22. The imaginary part is already rank
deficient at ωmin and a zero has already been formed at s → ∞ in the matrix Y8. This
iteration ends here (Case7, Situation: 1). The resulting circuit is shown in Fig. 3.3.
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Iteration: 8

The remaining polynomials (pertaining to Y8) from previous iteration are:

D8 = 95840s5 + 768253s4 + 871910s3 + 386901s2 + 113304s+ 10000 , (5.22a)

N11,8 = 74360s5 + 268545s4 + 562102s3 + 428777s2 + 146120s+ 35600 , (5.22b)

N12,8 = N21,8 = 57200s5 + 161650s4 + 81240s3 − 18310s2 − 3300s− 4400 , (5.22c)

N22,8 = 44000s5 + 146500s4 + 237500s3 + 158300s2 + 52900s+ 5600 ; (5.22d)

The determinant |Y8| shows a zero at s → ∞ and it was expected from the outcome
of previous iteration. The matrix Y8 is in case 2 (Section 3.2.3). To extract the pole,
take the inverse of the matrix and through long division separating the pole from each
element. The result is

[Y9]
−1 = [Y8]

−1 − 1

s

[

1 −1.3
−1.3 1.69

]

= [Y8]
−1 − 1

s

[

(1)2 (1)(−1.3)
(1)(−1.3) (−1.3)2

]

;(5.23)

where the polynomials of Y9 are given in Eq. 5.24. The extracted zero can be realized
as shown in Fig. 5.1 (section labelled with ’Case 2’).

Iteration: 9

The remaining polynomials (pertaining to Y9) from previous iteration are:

D9 = 160s4 + 1280s3 + 1428s2 + 568s+ 100 , (5.24a)

N11,9 = 480s4 + 3157s3 + 3218s2 + 1157s+ 356 , (5.24b)

N12,9 = N21,9 = −80s4 − 1083s3 − 1006s2 − 267s− 44 , (5.24c)

N22,9 = 160s4 + 917s3 + 950s2 + 349s+ 56 . (5.24d)

Inspection through polynomials and the determinant |Y9| shows that Y9 is in case 7.
On the onset it is worth mentioning that this case have extracted circuit with an element
having negative value. The extracted circuit can then be converted to equivalent circuit
as shown in the Fig. 5.1.

Step: 1 This step involves extracting a conductance from either port so that positive
real character is not disturbed and a zero is formed on jω-axis. For this we chose port
1 arbitrarily and calculate the real part of Y9 on jω-axis:

A9(ω) =
1

2
[Y9(s) +Y9(−s)]|s=jω ,

and from the real part the function to calculate the minimum conductance and its
corresponding frequency (Section 3.2.8.1):

|A9(ω)|
M11,9

=
4400ω8 + 53780ω6 + 35649ω4 − 4396ω2 + 1125

1600ω8 + 49580ω6 + 25874ω4 + 1454ω2 + 350
; (5.25)
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For the above function the minima occurs at ω = 0 and ω = ±0.5 with values 3.2143
and 1 respectively. As the minimum value of 1 is given by ω = 0.5, we take ωmin = 0.5.
Subtracting the value from first element of Y9:

Y
′

9 = Y9 −
[

1 0
0 0

]

(5.26)

It would form a conductance at port 1 (Fig. 5.1 under Extracted Type-III). This extrac-
tion makes the real part of Y

′

9 rank-deficient at s = ±jωmin = ±j0.5. As ωmin is neither
0 nor ∞ (Situation: 3, Section 3.2.8.1), the Brune’s process would continue to step 2.

Step: 2 First the value of Y
′

9 would be found at s = jωmin = j0.5

Y
′

9(s = j0.5) =

[

0.6518 −0.6518
−0.6518 0.6518

]

+ j

[

0.0848 −0.3348
−0.3348 0.0848

]

= A
′

9(s = j0.5) + jI9(s = j0.5) (5.27)

The null vector of A
′

9(s = j0.5) is β = [1/
√
2, 1/

√
2]T . To make the whole matrix

Y
′

9(s = j0.5) rank deficient, the matrix I9(s = j0.5) should also have the same null
vector β (Sections 3.2.8.2 and B.1). For this a matrix H = αhhT , where h = [h1, h2], is
to be subtracted from I9(s = j0.5). The value of α can be calculated using Eq. 3.25:

α = sgn(βT I9(s = j0.5)β) = −1 . (5.28)

Calculating the matrix H using Eq. 3.24: I9(s = j0.5)β = αhhTβ , and solving
simultaneous equations we have h1 = h2 = 1/

√
8.

As α = −1 and it is an admittance matrix, Type-III Brune’s circuit would be chosen.
As the matrix H would be subtracted from the imaginary part I9(s = j0.5), it should be
translated to such reactive circuit which gives its values at appropriate frequency. For
this let

jH = j(−1)
1

8

[

1 1
1 1

]

= j
1

2

(−1

4

)[

(1)(1) (1)(1)
(1)(1) (1)(1)

]

=

∣

∣

∣

∣

sC1

[

p21 p1p2
p1p2 p22

]∣

∣

∣

∣

s=j0.5

.(5.29)

With C1 = −1/4F and p = [p1, p2]
T = [1, 1]T , subtracting sC1pp

T from Y
′

9:

Y
′′

9 = Y
′

9 − s

(−1

4

)[

1 1
1 1

]

(5.30)

It should be noted that the degrees of the polynomials in the numerator has increased.
Subtracting a pole with negative residue effectively is adding a pole with positive residue
and it preserves the positive real character of Y

′′

9 . Second part of extracted Type-III
circuit in Fig. 5.1 shows addition of a pole. The whole process also made a zero pair at
s = ±j0.5, which would be removed in next step.
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Step: 3 The determinant of Y
′′

9 shows a zero pair at s = ±j0.5:
∣

∣

∣
Y

′′

9

∣

∣

∣
=

(4s2 + 1)(10s3 + 95s2 + 96s+ 31)

40s4 + 320s3 + 357s2 + 142s+ 25
. (5.31)

Removing the zero by inverting the matrix (as is done in case 6)

Y
′′′

9 =

(

[

Y
′′

9

]−1

− 2s

4s2 + 1

[

1 1
1 1

])−1

=

(

[

Y
′′

9

]−1

− 1

2s+ 1
2s

[

1 1
1 1

])−1

=

[

5s3 + 70s2 + 183s+ 128 5s3 + 40s2 + 3s− 22
5s3 + 40s2 + 3s− 22 5s3 + 50s2 + 63s+ 28

]

10s2 + 60s+ 50
(5.32)

The removed zero pair would form the third part of the extracted Type-III network
shown in Fig. 5.1.

Step: 4 Note that in remaining matrix Y
′′′

9 , the numerator polynomials have a degree
higher than the denominator. This always occur after the third step of Brune’s process
(Section 4.1.1). It can be removed by long division.

Y10 = Y
′′′′

9 = Y
′′′

9 − s

(

1

2

)[

1 1
1 1

]

=

[

20s2 + 79s+ 64 5s2 − 11s− 11
5s2 − 11s− 11 10s2 + 19s+ 14

]

5s2 + 30s+ 25
(5.33)

The last part would make fourth part of the extracted Type-III network shown in Fig.5.1.

Conversion to Equivalent Circuit: The extracted Type-III network has one element
which is negative. It can be avoided by converting the whole network into an equivalent
network. The relationship between the three capacitances is fulfilled as given in Eq. 4.43.
Using the equations given in Section 4.2.3 one can find the parameters of equivalent
circuit of Type-III shown in Fig. 5.1.

Iteration: 10

The remaining matrix Y9 from previous iteration is

Y10 =

[

20s2 + 79s+ 64 5s2 − 11s− 11
5s2 − 11s− 11 10s2 + 19s+ 14

]

5s2 + 30s+ 25
. (5.34)

Inspection through polynomials and the determinant |Y10| shows that Y10 is in case 7.
On the onset it is worth mentioning that this case have extracted circuit with an element
having negative value. The extracted circuit can then be converted to equivalent circuit
as given in the Fig. 5.1.
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Step: 1 This step involves extracting a conductance from either port so that positive
real character is not disturbed and a zero is formed on jω-axis. For this we chose port
1 arbitrarily and calculate the real part of Y10 on jω-axis:

A10(ω) =
1

2
[Y10(s) +Y10(−s)]|s=jω (5.35)

and from the real part the function to calculate the minimum conductance and its
corresponding frequency (Section 3.2.8.1):

|A10(ω)|
M11,10

=
7ω4 + 14ω2 + 31

2ω4 + 10ω2 + 14
(5.36)

For the above function the minima occurs at ω = 0 and ω = ±1 with values 2.2143 and
2 respectively. As the minimum value of 2 is given by ω = 1, we take ωmin = 1.
Subtracting the value from first element of Y10:

Y
′

10 = Y10 −
[

2 0
0 0

]

=
1

5s2 + 30s+ 25

[

10s2 + 19s+ 14 5s2 − 11s− 11
5s2 − 11s− 11 10s2 + 19s+ 14

]

(5.37)

It would form a conductance at port 1 (Fig. 5.1 under Extracted Type-IV). This extrac-
tion makes the real part of Y

′

10 rank-deficient at s = ±jωmin = ±j1. As ωmin is neither
0 nor ∞ (Situation: 3, Section 3.2.8.1), the Brune’s process would continue to step 2.

Step: 2 First the value of Y
′

10 would be found at s = jωmin = j1

Y
′

10(s = j1) =

[

1
2

−1
2

−1
2

1
2

]

+ j

[

1
5

1
5

1
5

1
5

]

= A
′

10(s = j1) + jI10(s = j1) (5.38)

The null vector of A
′

10(s = j1) is β = [1/
√
2, 1/

√
2]T . To make the whole matrix

Y
′

10(s = j1) rank deficient, the matrix I10(s = j1) should also have the same null vector
β (Sections 3.2.8.2 and B.1). For this a matrix H = αhhT , where h = [h1, h2], is to be
subtracted from I10(s = j1). The value of α as shown in Eq. 3.25 is

α = sgn(βT I10(s = j1)β) = +1 (5.39)

Calculating the matrix H using Eq. 3.24: I10(s = j1)β = αhhTβ , and solving simul-
taneous equations we have h1 = h2 = 1/

√
5.

As α = +1 and it is admittance matrix, Type-IV Brune’s circuit would be chosen. As
the matrix H would be subtracted from the imaginary part I10(s = j1), it should be
translated to such reactive circuit which gives its values at appropriate frequency. For
this let

jH = j
1

5

[

1 1
1 1

]

=
1

j(1)(−5)

[

1 1
1 1

]

=

∣

∣

∣

∣

1

s(L1)

[

p21 p1p2
p1p2 p22

]∣

∣

∣

∣

s=j1

(5.40)
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With L1 = −5F and p = [p1, p2]
T = [1, 1]T , subtracting 1

sL1

ppT from Y
′

10:

Y
′′

10 = Y
′

10 −
1

s(−5)

[

1 1
1 1

]

=

(

2s3+4s2+4s+1
s3+6s2+5s

s3−2s2−s+1
s3+6s2+5s

s3−2s2−1s+1
s3+6s2+5s

2s3+4s2+4s+1
s3+6s2+5s

)

(5.41)

It should be noted that the degrees of the polynomials in the numerator and denominator
has increased. Subtracting a pole with negative residue effectively is adding a pole with
positive residue and it preserves the positive real character of Y

′′

10. Second part of
extracted Type-IV circuit in Fig. 5.1 shows addition of a pole. The whole process also
made a zero pair at s = ±j1, which would be removed in next step.

Step: 3 The determinant of Y
′′

10 shows a zero pair at s = ±j1:

∣

∣

∣Y
′′

10

∣

∣

∣ =
(3s+ 2)(s2 + 1)

s(s+ 5)(s+ 1)
. (5.42)

Removing the zero by inverting the matrix (as is done in case 6)

Y
′′′

10 =

(

[

Y
′′

10

]−1

− s

s2 + 1

[

1 1
1 1

])−1

=

(

[

Y
′′

10

]−1

− 1

s+ 1
s

[

1 1
1 1

])−1

=

[

2 + 1/s 1 + 1/s
1 + 1/s 2 + 1/s

]

(5.43)

The removed zero pair would form the third part of the extracted Type-IV network
shown in Fig. 5.1.

Step: 4 Note that in remaining matrix Y
′′′

10, has a pole at s = 0. This always occur
after the third step of Brune’s process (section 4.1.2). which can be removed.

Y11 = Y
′′′′

10 = Y
′′′

10 −
1

s

[

1 1
1 1

]

=

[

2 1
1 2

]

(5.44)

The last part would make fourth part of the extracted Type-IV network shown in Fig. 5.1.

Conversion to Equivalent Circuit The extracted Type-IV network has one element
which is negative. It can be avoided by converting the whole network into an equivalent
network. The relationship between the three inductances is as given in Eq. 4.47. Using
the equations given in Section 4.2.4 one can find the parameters of equivalent circuit of
Type-III shown in Fig. 5.1.
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Iteration: 11

The remaining matrix, Y11, for this iteration is

Y11 =

[

2 1
1 2

]

. (5.45)

As this matrix is complex frequency independent, the stop criterion is met and it would
make the last stage of the whole network. The matrix is full rank matrix and to decom-
pose it into one-rank matrices, spectral decomposition can be done. With eigen-values
1 and 3 with corresponding eigen-vectors [ 1√

2
,− 1√

2
]T and [ 1√

2
, 1√

2
]T one can write (using

diagonalization formula, section A.3 and A.2)

Y11 =

[

2 1
1 2

]

=
1

2

[

1 1
−1 1

] [

1 0
0 3

] [

1 −1
1 1

]

=
1

2

[

1 1
−1 1

] [

1 0
0 0

] [

1 −1
1 1

]

+
1

2

[

1 1
−1 1

] [

0 0
0 3

] [

1 −1
1 1

]

=
1

2

[

(1)2 (1)(−1)
(1)(−1) (−1)2

]

+
3

2

[

(1)2 (1)(1)
(1)(1) (1)2

]

(5.46)

Each of one-rank matrices on the right hand side of above equation represent one network
similar to one in Fig. A.3. The first one has conductance of 0.5S connected with the ports
through transformers of turn-ratios 1 and −1. Similarly the second one has conductance
of 1.5S and turn-ratios 1 and 1. Last stage in Fig. 5.1 shows the circuits.

5.1.1 Demonstration Example as Impedance Matrix

The matrix given in Eq. 5.1 can be treated as an impedance matrix. The cases and
the extraction procedures would be exactly same but the circuit topologies would be
completely different. Fig. 5.2 shows the complete network of the matrix treated as
an impedance matrix. Notice that with the exception of topology the values of the
elements are same. Capacitances are converted to inductances and vice versa. Similarly,
conductances have been changed to resistances. The network in Fig. 5.2 is dual to the
network in Fig. 5.1.
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Figure 5.2: Brune’s network diagram for impedance matrix given in Eq. 5.1
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5.2 General Procedure

5.2 General Procedure

The general procedure of developing a circuit model from a microwave structure involves
much more steps on the top of circuit synthesis. The steps can be divided into groups
described below. Not all steps are required for each and every example. Some steps can
be skipped and some times some special steps (like using Bartlett’s bisection theorem
for symmetrical structures) are also used. In the end the comparison of the responses is
done. The flow of the steps are shown in Fig. 5.2.

Tabular Data

 Frequency Range Selection

(Windowing)

Interpolation/ Decimation

 Noise removal

Vector Fitting Procedure

Brune�s Synthesis

SPICE Simulations

Comparision

 Weightage

Pre-processing

System Identification

Circuit synthesis

Data Acquisition

Number
of poles

Rational functions matrix

SPICE file

Figure 5.3: General steps followed in development of examples

5.2.1 Data Acquisition

Tabular data can be acquired from microwave structure either through measurement or
through full wave simulation. There are some considerations and precautions required.

• In measurement, it is important to have both magnitude and phase of s-parameters
by using vector analyzer. It is important for system identification procedures used
in later stages of the whole procedure.
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• Simulation results can be non-passive due to many reasons. Use of coarse mesh
in the simulation or in case of time-domain simulations, simulating for not enough
time can cause this problem. Experience has been that λ/20 mesh size, where
lambda being the wavelength of highest frequency of simulation, does not cause
any problem while λ/10 mesh size sometimes causes the data to be non-passive at
many point throughout the frequency range.

• The tabular data must be checked for passivity at each frequency point. The
real part of the given matrix must be positive definite at at each frequency point
(section 2.2.2).

5.2.2 Data Pre-processing

Pre-processing of tabular data is usually required for system identification procedure.
Selection of frequency range and interpolation/ decimation are minor steps but for the
smoothness of curves, which is required for good fitting, special care must be taken.
While smoothing, distortion of data may occur. Gaussian window proves to be helpful
for smoothing the curves.

5.2.3 System Identification

Converting a tabular data into a matrix of rational functions can be termed both as
System Identification [67] and as Curve fitting. Prony’s method [11] and Vector Fitting
(V.F.) procedure [8–10] are good examples. In developing of the examples, vector fitting
procedure was used.

In vector fitting, a matrix of rational functions of the form

W(s) = Ds+A+

n
∑

i=1

Ki

s− pi
; (5.47)

where D and A are real matrices and Ki is a residue matrix of pole pi, is determined.
The poles pi appear in conjugate pairs and so does the corresponding residue matrices.

5.2.4 Circuit Synthesis, SPICE Simulations and Comparisons

Once a matrix of rational functions in complex frequency s is found, the Brune’s al-
gorithm can be applied to synthesize a circuit. Implementation of the algorithm has
been done in Matlab. The code can also automatically write a SPICE file for the
network. Once a SPICE file is obtained, SPICE simulator can be invoked to simulate it
and generate the data for comparison.
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5.3 Integrated Antenna Example

On-chip antenna are designed for inter-chip or intra-chip communication and to avoid
the interconnects and buses. The communication link is characterized by near field
communication and high coupling [56]. The network model is used for co-simulation
with other circuitry behind the antennas.

Integrated antenna used as an example is shown in Fig. 5.4. The generalized Foster
network model was developed in [56]. This model includes negative values for resistances
which may cause instabilities. Brune’s model was synthesized in [57] and results are
presented here.

The S-parameters of the antenna link were measured for the frequency range upto
80 GHz. The data was converted to Z-parameters taking one frequency sample at a
time. A few sample points violated the passivity condition (Section 2.2.2) and were
removed. System identification is done through Vector-fitting procedure using 8 poles.
A study on the determination of number of poles (complexity of model) is given in [68].
In the outcome of vector-fitting procedure the parameters (coefficients of polynomials)
are mutually independent, eight poles in 2× 2 matrix forms an order of 16.

The matrix of rational functions obtained is of form

Z(s) = R+

8
∑

i=1

Ki

s− pi
, (5.48)

where Ki are residue matrix corresponding to pole pi (occurring as conjugate pairs) and
R is a real symmetric matrix.

Comparison of S-parameters from measurement data and from SPICE simulations is
shown in Fig. 5.5

Figure 5.4: Layout of On-Chip antenna [56, 57]
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Figure 5.5: S-parameters comparison between measured data (Meas) and SPICE simu-
lation of equivalent circuit (EQC) [57]
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5.4 Filter Structure Example: Use of Symmetry

5.4 Filter Structure Example: Use of Symmetry

The symmetry of electromagnetic structure can be employed to decompose 2-port struc-
ture into equivalent network of one-port circuits, using Bartlett’s bisection theorem [39,
Ch. 6]. For a symmetric reciprocal two-port, two out of four parameters are independent
i.e. Z11 = Z22 and Z12 = Z21. Bartlett’s theorem defines two parameters Zoc and Zsc as

Zoc = Z11 + Z12

Zsc = Z11 − Z12

The equivalent circuit corresponding to Zoc and Zsc can be synthesized through Brune’s
algorithm and then connected in a lattice structure (shown in Fig. 5.6) to generate the
response required.

Zsc

Zoc

Zsc

Zoc

Figure 5.6: Lattice structure decomposition for symmetric two-port circuit [50]

The layout of 11th order Chebyshev band-pass filter serves as an example to demon-
strate the use of symmetry and is shown in Fig. 5.7. Z-parameter data was obtained
from full wave simulation of the structure. Zoc and Zsc were obtained by applying the
above equations to each data point. Vector-fitting procedure applied separately to each
data set of Zoc and Zsc required 12 poles each. Brune’s synthesis was done and SPICE
simulations followed to give comparison results given in Figs. 5.8 and 5.9.

Figure 5.7: Layout of filter structure [50]
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Figure 5.8: Comparison of the magnitude of Z11 and Z12 [50]
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Figure 5.9: Comparison of the phase of Z11 and Z12 [50]
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6 Conclusion and Outlook

The algorithm presented in this work synthesizes an equivalent and finite passive circuit
from an impedance or an admittance represented as positive real symmetric matrix
of rational functions. The resultant equivalent circuit is a cascaded circuit of fixed
sub-circuit topologies. There are seven cases and a stop criterion each having a fixed
extraction procedure and each having fix sub-circuit topology. In each iteration of the
algorithm one of the cases is selected, depending on the location of poles and zeros; the
corresponding extraction procedure is applied to extract a small part and parameter
values of the corresponding sub-circuit topology are determined. The algorithm verifies
the realizability theorem by McMillan [28] that there exists a finite passive network whose
impedance or admittance is positive real symmetric matrix of rational functions.
An equivalent lumped element circuit model can be synthesized for the microwave or

millimeter-wave circuits in a finite frequency band, if a proper rational function fitting
forming a positive real symmetric matrix, from the tabular response data can be found.
The equivalent circuit established in this manner would be a fixed model valid only in
a frequency band. As all elements in the model have positive values it would remain
stable at all frequencies.
The work can be extended in number of possible ways. One way is to develop the

algorithm using most general approach used by McMillan for the Brune method (sec-
tion 3.2.8, [28]). Contrary to Tellegen’s approach in which only one resistor is extracted
at one of the ports (Step 1 of Brune method), McMillan extracts a resistive multiport
containing many resistors and ideal transformers. The approach forms an optimization
problem and requires relatively more computational effort. Nevertheless it would lead
to different forms of equivalent circuit models.
The algorithm may have applications in other physical systems for which a one to

one analogy between different elements can be found. Analogous systems are frequently
found in the area of control systems [69]. For example, in a translational mechanical
system a spring mass system is analogous to capacitor-inductor system and force and
displacement are analogous to current and voltage. Broadening the algorithm to include
whole class of positive matrices (section 2.1) is also interesting. It would include non-
reciprocal circuits as well. This, however, requires development of circuit simulators like
Spice which can handle such circuits.
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A SPICE Implementations

A.1 Ideal Transformer & its implementation in SPICE3

The Fig. A.1 shows the standard symbol for an ideal transformer along with two imple-
mentations in SPICE3. Note that according to dot-convention [70, §2.4] if the primary
current enters the dot-labeled terminal, the secondary current leaves the dot-labeled
terminal on the other side and the polarity of voltage at the dot-labeled terminals is
also same. This convention is not to be mixed with the standard convention of network
theory in which all currents are taken to be entering the ports. The dot-convention for
the transformers is followed through out this thesis. The ideal transformer equation is

I1
I2

=
V2

V1
=

n2

n1
= n (A.1)

n2n1

I1 I2

V1 V2

Vi=0

o1

o2

o3

o4

I1 I2

V1 V2

o5 o1

o2

o3

o4

I1 I2

V1 V2

o5

Vi=0

Figure A.1: Ideal Transformer with dot convention and two SPICE3 implementations;
o’s indicate the terminals used for SPICE lines

The SPICE3 model is adopted from [71]. It consists of two controlled sources i.e.
voltage controlled voltage source (VCVS ) and current controlled current source (CCCS )
and an additional independent voltage source (Vi) in series with the VCVS. Vi is used for
current sensing only and has zero voltage. One of the controlled sources is used on the
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primary and the other on the secondary side. This makes two possible implementations
in SPICE3.
The symbols for VCVS, CCCS and independent voltage source in SPICE3 are E, F

and V respectively [72]. The SPICE3 lines are as given as:

* n = n2/n1

* For First Type

F1 o1 o2 Vi n

E2 o3 o4 o1 o2 n

Vi o3 o5 DC 0 AC 0

* For Second Type

E1 o1 o2 o3 o4 1/n

F2 o4 o3 Vi 1/n

Vi o5 o1 DC 0 AC 0

A.2 Realization of Impedance of form Z(s) = CZ
r z(s)

Synthesis of an N ×N impedance matrix, Z(s), which can be represented as a multipli-
cation of frequency dependent function, z(s), and a real matrix, CZ

r , is considered here.
The real matrix CZ

r is symmetric (due to reciprocity [14, Ch. 10] of circuit) and is of
rank r where 1 ≤ r ≤ N . The elements in the matrix would give the values of the turns
ratios of the ideal transformers connecting network which connects impedance z(s) with
N -ports of the circuit.
Due to spectral theorem, any real symmetric matrix is diagonalizable by an orthogonal

matrix [51, §5.5]:
CZ

r = QΛQT (A.2)

where Q is an orthogonal matrix consisting of eigenvectors of CZ
r and Λ is a diagonal

matrix consisting of eigenvalues of CZ
r . We can write

Λ =











λ1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0











+











0 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · 0











+ · · ·











0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · λr











=
r
∑

i=1

Λi (A.3)

where Λi is a diagonal matrix consisting of ith non-zero eigenvalue λi. Combining
Eqs. A.2 and A.3

Z(s) = CZ
r z(s)
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A.2 Realization of Impedance of form Z(s) = CZ
r z(s)

p2
1                 z(s)

port 1

port 2

port N

p2
p1

pN
p1

p2
1                 z(s)

port 1

port 2

port N

p2
p1

1

1

pN
p1

z(s)

p1

1

port 1

port 2

port N

p2

1

pN

1

Figure A.2: Implementation of impedance matrix of form CZ
1 z(s): (a) & (b) shows two

circuit realizations and (c) shows Spice implementation

(p1,1)
2
 z(s)

port 1

port 2

port N

p2,1
p1,1

1

1

pN,1
p1,1

p2,2
p1,2

1

1

pN,2
p1,2

p2,r
p1,r

1

1

pN,r
p1,r

(p1,2)
2
 z(s) (p1,r)

2
 z(s)

z(s)

Cr
Z

Figure A.3: Implementation of impedance matrix of form CZ
r z(s), with its symbol. Note

that connection matrix CZ
r is of rank r.
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= QΛQTz(s) =

r
∑

i=1

QΛiQ
Tz(s)

=
r
∑

i=1

CZ
1,iz(s) (A.4)

The matrix CZ
1 is rank one matrix and can be written in following form [51, §2.4, p. 99]:

CZ
1 = ppT =











p21 p1p2 · · · p1pN
p1p2 p22 · · · p2pN
...

...
. . .

...
p1pN p2pN · · · p2N











, (A.5)

where

p = [p1, p2, · · · , pN ]T . (A.6)

It can be readily verify that the circuit for CZ
1 z(s) is realized by the circuits given in

Fig. A.2 and that p contains transformer turns ratios. Fig. A.2 also shows the SPICE3
realization. For complete matrix CZ

r z(s), the realization is given in Fig. A.2.

A.3 Realization of Admittance of form Y(s) = CY
r y(s)

Analogous to n-port impedance as treated above, one can write for n-port admittance

Y(s) = CY
r y(s)

=
r
∑

i=1

CY
1,iy(s) (A.7)

The circuit for CY
1 y(s) is Fig. A.3 and for CY

r y(s) it is Fig. A.4.
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A.3 Realization of Admittance of form Y(s) = CY
r y(s)

y(s)

1 pn

1

1

p2

p1
port 1
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port N
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2
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1
p2
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port 1

port 2

port N
pn
p1

(p1)
2
y(s)

p2
p1

port 1

port 2

port N
pn
p1

Figure A.4: Implementation of admittance matrix of form CY
1 y(s): (a) & (b) shows two

circuit realizations and (c) shows Spice implementation
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2
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2
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Y

Figure A.5: Implementation of admittance matrix of formCY
r y(s), with its symbol. Note

that connection matrix CY
r is of rank r.
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B Proofs of Theorems

Theorem B.1. Given a square matrix of complex numbers; if the nullity of its real and
imaginary parts is one, then the complex matrix can only be rank deficient if and only
if the null vector of the imaginary part is equal to the null vector of the real part or vice
versa.

Proof. Let W be a square matrix with complex number entries; an let A and I be its
real and imaginary parts with nullity one and null vectors βA and βI , respectively. Let

βA 6= βI ,

then, because nullity is one for both matrices A and I, βI is not the null vector of A
and βA is not the null vector of I i.e.

IβA 6= 0 , AβI 6= 0 . (B.1)

This leads to

WβA = [A+ jI]βA = jIβA 6=0 , (B.2)

WβI = [A+ jI]βI = AβI 6=0 . (B.3)

Neither βA nor βI is the null vector of W (i.e. W is full rank matrix). The only way
they can be null vector of W is when

βA = βI = β .

Conversely, a vector β has to make both matrices A and I equal to 0 to be the null
vector of W.

Corollary B.2. If the nullity of the real and imaginary parts is other than one and is
not even equal, then the nullity of complex matrix is equal to the number of common null
vectors between the real and imaginary parts.

Corollary B.3. The concept is extendable to matrices of quaternions and polynomials.
Each part of the matrix must share the same null vector to make it the null vector of
whole matrix.

Theorem B.4. Given a complex rational function of single complex variable s, with real
coefficients; if a real number is subtracted from the function, then
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1. on the real and imaginary axis of the complex variable, only the real part of the
function would change and the imaginary part would remain unchanged.

2. both real and imaginary parts of the function would change on all the plane of the
complex variable except at the real and imaginary axis of complex variable.

Proof. Let the given function be F (s) of a complex variable s = σ + jω, and let the
subtracted real number be R then

F (s)− R =
A

B
− R =

A− RB

B
(B.4)

where A and B are polynomials in s with real coefficients. We can separate the even
and odd degree terms of numerator and denominator

F (s)− R =
m1 + n1

m2 + n2

=
m1m2 − n1n2 +m2n1 −m1n2

m2
2 − n2

2

, (B.5)

where

m1 = Ae −RBe , (even degree terms in numerator)

n1 = Ao − RBo , (odd degree terms in numerator)

m2 = Be , (even degree terms in denominator)

n2 = Bo , (odd degree terms in denominator)

where Ae and Be are even terms polynomials and Ao and Bo are odd terms polynomials,
in polynomials A and B, respectively. From this we can calculate

m1m2 − n1n2 = AeBe − RB2
e +RB2

o −AoBo , (B.6)

m2n1 −m1n2 = AoBe −AeBo . (B.7)

Note that (m1m2 − n1n2) contains only even degree terms and (m2n1 −m1n2) contains
only odd degree terms and is independent of R. The denominator (m2

2 − n2
2) is contains

only even degree terms and is independent of R.

1. For s = σ (real axis), the function F (s) is real because of real coefficients, and
it would change with value of R. There is no question of imaginary part. For
s = jω (imaginary axis), the polynomials (m1m2 − n1n2) and (m2

2 − n2
2) are real

because of even degree terms and would form a the real part which is dependent
on R; while the polynomial (m2n1 −m1n2) would be pure imaginary due to odd
degree terms and, with real denominator, would form imaginary part which would
be independent of R.

2. For s = σ + jω (whole plane except the axis), every term in A − RB would be
complex and both real and imaginary parts would be dependent on R.

Corollary B.5. Subtraction of a real matrix from the matrix of complex functions with
real coefficients would change only real part of the matrix of functions on both axes of
complex plane.
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List of Symbols and Abbreviations

0 Matrix or vector having zero as all of its elements
s Complex frequency
ℜ[.] Real part of
ℑ[.] Imaginary part of
σ = ℜ[s] Real part of complex frequency
ω = ℑ[s] Imaginary part of complex frequency
P.R. Positive Real
P.M. Positive M atrix
PRSM Positive Real Symmetric M atrix
PISM Positive Imaginary Symmetric M atrix
PRnSM Positive Real non-Symmetric M atrix
PInSM Positive Pmaginary non-Symmetric M atrix
P.F. Positive Function
Z Impedance matrix
Y Admittance matrix
W, W Symbol for positive matrix/ function; in case of PRSM/ P.R.

function, represents both impedance Z and admittanceY ma-
trices

WT , βT Transpose of given matrix or vector
W†, β† Hermitian (complex conjugate transpose)of given matrix or

vector
W−1 Inverse of the given matrix
R Resistance
R real symmetric matrix representing resistance network
G Conductance
G real symmetric matrix representing conductance network
A Common symbol for both resistance and conductance
A, real symmetric matrix representing resistance network, also

used for real part of W
I, Imaginary part of W
∀ for all
k, Kωp residue or matrix of residues of the pole at ωp

N number of ports
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List of Symbols

(O)(, ) Degree or Order of
β, p, n, h column vectors
hhT Matrix multiplication of matrices and/ or column vector
p.n dot product of two vectors
CW

r , CZ
r , C

Y
r symmetric real matrix of rank r and type Z(impedance),

Y (admittance) or W (common); it represents a transformer
network connecting circuits to ports in particular configura-
tion.

R
Circuit symbol for Resistance

L
Circuit symbol for Inductance

C
Circuit symbol for Capacitance

Circuit symbol for Transformer

VCVS V oltage C ontrolled V oltage Source; the symbol used in
Spice is E

CCCS Current C ontrolled Current Source; the symbol used in
Spice is F

Circuit symbol for CCCS, arrow-head in the branch shows the
direction of flow of current.

Circuit symbol for VCVS, arrow-head is from positive to neg-
ative terminal.

Circuit symbol for independent voltage source, arrow-head is
from positive to negative terminal.
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