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Abstract

The determination of the reliability value for technical systems whose components are
subjected to random failure possesses a wide range of applicability, e.g. in data communi-
cation networks, computer architectures, electrical power networks or fault-tolerant sys-
tems in general. The reliability of the respective system is computed by means of a stochas-
tic network which models the system’s inherent redundancy structure. This task is known
to be NP-hard even if independent component failures are assumed. Hence, efforts to
conceive efficient solutions on restricted classes of networks have been pursued since the
1960s, leading to many different approaches and techniques. In this thesis, the state of the
art in the field of exact reliability computation is reviewed and improved.
Substantial extensions or modifications are given to significantly improve the current fastest
approaches regarding runtime and the current minimal requirements for memory con-
sumption.
Due to the exponential nature of the problem, one must account for a prohibitive amount
of computation time for large-scale networks. For this purpose, an efficient exact algo-
rithm which gives fast converging bounds is investigated and extended for coping with
networks of larger size (consisting of at least 100 nodes). In case the computation cannot
be completed, one at least obtains lower bounds for the reliability.
With regard to modern applications it is not sufficient to assume independent component
failures because in fault tolerant systems components may fail due to common cause fail-
ures or fault propagation. In order to account for dependent component failures, the com-
binatorial model is extended for the dependent case and the treated efficient combinatorial
methods are given suitable modifications.
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1. Introduction

Network reliability analysis is generally understood to be the determination of the prob-
ability that a system, which consists of error-prone components, can perform its intended
function at a fixed instant in time. There are many real-world settings where network
reliability analysis finds its application: one of the earliest usages can be traced back to
the reliability assessment of relay circuits with unreliable contacts [52]. In this case, both
contacts and relays can be regarded as components which may fail. In order to ensure
current flow, certain contacts must be closed so that the circuit (network) is closed. Relia-
bility concerns are also directed towards communication networks. One is interested in
the probability that a sent message arrives at one designated, several intended or all net-
work participants under the assumption of communication link failure.
Colbourn et al. employed network reliability modelling techniques to analyse building
house damages resulting from fire spread [16]: under the assumption that a building com-
prises a particular number of critical components and that the fire is considered to spread
instantaneously, the probability that all critical components are rendered inoperative is
sought.
Network reliability analysis models also offer a remedy for assessing highly reliable fault-
tolerant systems1, since their testing is technically not feasible due to very rare occurences of
components failures. Further on, those reliability models can be used to conduct risk ana-
lysis on lifeline networks [68]: those types of networks are transmission systems for utility
services such as water, sewage, gas or power networks. Obviously, one is concerned with
the probability of the guaranteed supply of goods from distributor to recipients.
From the perspective of a system architect, network reliability analysis serves as a tool to fi-
gure out weak spots in reliable systems, to answer the question of whether a system meets
reliability acceptance criteria or just to see the effect of a change in probability of failure
of components. Based on these answers, the system architect may replace certain parts
of the system with more reliable parts in order to increase the overall system reliability.
However, we note that network reliability analysis does not directly provide the answer
to the modeler or system architect as to how to change system design for increasing the
system’s overall reliability but rather a quantitative value from which a statement can be
made about the reliability of the designed system.

1.1. Motivation

At this point we want to further illustrate the subject and point out different requirements
for network reliability modelling by means of an example. Figure 1.1 can be regarded as
a map which shows a gas supply network under earthquake hazard. The network par-

1A fault-tolerant system is a system that continues operating properly in the event of the failure of some
components. Hence, a fault-tolerant system tolerates a certain combination of component failures.
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1. Introduction

ticipants are one gas supplier S and four gas distributors D1-D4, each of them located at
different geographic points. The participants are physically connected by gas pipelines of
different length and diameter. To guarantee a sufficient gas supply between S and D4, at
least two out of three gas pipelines P1, P2 and P3 must be intact (2 out of 3 are good). The
reason therefore is that the pipelines P1, P2 and P3 have a smaller diameter compared to
the others. The gas network is further exposed to an earthquake whose seismic intensity
is strong enough to severely impair pipelines P5, P6, P7. Under these circumstances, a dis-
tributor would be concerned about an assured supply of gas. Otherwise, a supplier would
like to know the chance that the gas arrives at all predetermined distributors. This exam-
ple contains several important aspects that should be considered in a reliability evaluation
model. In general, a good model should take into account all relevant aspects to allow an
accurate assessment and at the same time be kept as simple as possible. Without the occur-
rence of the earthquake, the current state-of-the-art Boolean models for network reliability
consider the pipelines as system components that fail independently with a certain prob-
ability. In addition, the participants are assumed to be perfectly reliable. The gas flow
direction can also be taken into account: for this example, we assume that the pipelines
allow a bidirectional flow. Following this, the concern of a distributor corresponds to the
well-known terminal-pair reliability problem and the described interest of the supplier to the
k-terminal reliability problem. Despite the assumption of independent component failures
and perfectly reliable interconnection points (participants), we will see that these problems
are already NP-hard. Hence, the amount of computation time increases exponentially with
the size of the input. This had led to research attempts at finding polynomial time algo-
rithms for restricted classes of networks: the k-terminal problem for series-parallel [64]
and bounded treewidth networks [5] can be solved in time linear to the size of the net-
work. When all system component fail with the same probability, the all-terminal problem
on complete networks is solvable in polynomial time [30].
Even though we cannot expect to find polynomial time algorithms for arbitrary networks,
it is worth spending the effort in improving the current most efficient exponential time
algorithms. The hope is that the runtime of the improved algorithm, which has still ex-
ponential complexity, does not grow as fast as the original algorithm with the size of the
input: for instance, if we could find a way to reduce a complexity of 22n to 2n, n equals the
size of an input, we would be able to compute an input of double size in the same amount
of time.
The example in Figure 1.1 further shows that in the event of the illustrated earthquake,
the failures of pipelines P5, P6 and P7 are spatially correlated. Assuming independent
failures are therefore not realistic and may lead to overoptimistic results. This prompts us
to extend the current evaluation techniques for taking into account dependent component
failure events. The main contributions of this thesis are summarized in the following.

1.2. Contribution of this work

In this thesis, we first give a chronological overview of the most important exact ap-
proaches developed for solving the terminal reliability problems. The two state-of-the-art
methods, namely the Ku-Luo-Yeh method and the decomposition method, which proved
to be the currently most efficient methods for general networks, are significantly improved

4



1.3. Structure of the thesis

D2

D3
P1

P4
P7

P6
S - Supplier
D - Distributor
P - Pipeline
S <---> D4 if 2-oo-3:G

P5,P6 and P7 are spatially correlated

epicenter
of an earthquake

D1
P5

D4

S
P3

P2

Figure 1.1.: Gas supply network exposed to an earthquake.

with regard to runtime and the current memory requirements. Since the mentioned prob-
lem is of exponential nature, bounding approaches are indispensable alternatives towards
exact approaches. Therefore, we extend an efficient exact approach (Dotson-Gobien ap-
proach) which gives fast converging bounds, for coping with network sizes of higher scale.
To demonstrate the achieved improvements and identify the most suitable approach, the
implementations of all three approaches are compared to their state-of-the-art and against
each other in a large-scale measurement series comprising regular networks and a set of
randomized networks of different sizes. Finally, all three approaches are given an appro-
priate extension for considering dependent failure events.
Before presenting the structure of this thesis, we refer to Chapter 10 where the respective
abstraction (graph model) for the gas supply network is established.

1.3. Structure of the thesis

This thesis is divided into six parts with the following contents:

Part I: Introduction

CHAPTER 1: MOTIVATION

The first chapter lists several real-world applications and different types of networks where
fault-tolerance mechanisms may apply. It points to the necessity of dependent failure con-
sideration by means of an example: a gas supply network exposed to the risk of an earth-
quake.

CHAPTER 2: FOUNDATION

The second chapter presents the use of the probabilistic graph model for describing the
redundancy structure and independent component failures of any fault-tolerant system.
After introducing the relevant measures of network reliability (2-terminal, k-terminal and
all-terminal reliability), the complexity of their computation is discussed. Thereafter, an
important data structure which has left a large impact in the field of Network Reliability
Calculus is presented: the so-called BDD (Binary Decision Diagram).
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Part II: State of the Art

CHAPTER 3: TECHNIQUES FOR EXACT TWO-TERMINAL RELIABILITY COMPUTATION

This chapter presents the reliability-preserving graph transformations and reductions. De-
pending on the available graph structure, these operations may lead to a drastic simplifi-
cation of the network model and should therefore be incorporated into exact approaches
whenever possible. The advantages and disadvantages of different classes of efficient ex-
act approaches are discussed subsequently.

CHAPTER 4: BOUNDS ON NETWORK RELIABILITY

Since determining network reliability is an NP-complete task, we discuss numerous ef-
forts to find approximate solutions. They are briefly described for models with equal and
distinguished edge failure probability.

Part III: Improving KLY, Decomposition and Bounding Algorithm

CHAPTER 6: IMPROVING THE KUO-LU-YEH APPROACH

Implementational details are given for the representation of the combinatorial network
graph. The unambiguity of reliability isomorphic graphs is then inferred from the repre-
sentation. A contribution is made to speed up the Kuo-Lu-Yeh algorithm: by recognizing
redundant biconnected components, the subgraph sizes can be drastically reduced leading
to lower memory consumption and saving of redundant computations.

CHAPTER 6: IMPROVING THE DECOMPOSITION APPROACH

Another state-of-the art algorithm which has a completely different ansatz, but which also
applies BDD, is presented. For certain network structures this algorithm has polynomial
runtime restricted to the network’s treewidth. We describe a new heuristic for finding
a good variable ordering and empirically show that this ordering is to be preferred to
the current breadth-first-search variable ordering. As a consequence the algorithm is sig-
nificantly faster and consumes at the same time less memory for many sample networks.
Furthermore, implementational details for efficiently representing upcoming partitions are
worked out.

CHAPTER 7: IMPROVING THE DOTSON-GOBIEN ALGORITHM

An efficient approach by Dotson and Gobien is improved by introducing an own data
structure called delta-tree. Additionally, the memory is migrated to low-bandwidth high-
capacity storage.

Part IV: Measuring and Comparing

CHAPTER 8: REGULAR AND RANDOMIZED NETWORK STRUCTURES

Our theoretical modifications are put into practice for a wide variety of network structures
frequently used as benchmarks in the literature. To cover up the structure diversity we
test the improved algorithms on randomized networks. A pre-post comparison shows the
effects of the modifications.
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Part V: Dependent Component Failures

CHAPTER 9: CONSIDERING DEPENDENT FAILURES

In this chapter we show how to appropriately extend the three improved approaches to
the case of dependent component failures. As a result, the combinatorial model acts jointly
with a stochastic model in a hybrid context.

Part VI: Conclusion

CHAPTER 10: SUMMARY AND OUTLOOK

Finally, we point out the impacts of the contributions we have made for the field of relia-
bility evaluation. For the current state-of-the-art, we conclude the choice of appropriate
approaches for certain input networks.
An outlook is given to open and substantial issues which can be further explored for im-
proving and extending the state-of-the-art .
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2. Theoretical Background

This chapter provides the essential mathematical concepts for the assessment of network
reliability. The underlying system model that is assumed throughout this work is specified
after the introduction of Boolean expressions. This particular model represents a common
abstraction that is widely used in the literature. We further discuss some variations of
the stipulated model which allow to consider important issues in network reliability such
as failure of routers and directed communication link failures. Subsequently, we give an
overview over the different reliability measures along with the complexity of the under-
lying combinatorial problems. Finally, we explain the meaningful BDD (Binary Decision
Diagram) data structure which has become an integral part of modern reliability algo-
rithms.

2.1. Boolean Expressions

Boolean expressions are composed of Boolean variables x1, x2, . . . , xn (n ∈ N), constants
true ≡ 1 or false ≡ 0 which again can be combined by binary operators such as conjunction
∧, disjunction ∨ or the unary operator negation ¬. The priorities are, with the highest first:
¬, ∧, ∨. The Boolean variable can be assigned to either 0 or 1. Two Boolean expressions
b and b′ are equal if they yield the same constant value (0 or 1) for each assignment of the
variables. If the constant values are regarded as integers, the following calculation rules
hold:

x1 ∧ x2 = x1x2 = min(x1, x2),

x1 ∨ x2 = x1 + x2 − x1x2 = max(x1, x2),

¬x1 = 1− x1.

Table 2.2 and 2.1 shows the respective outcomes for each assignment of x1 and x2 with
respect to the basic operators.

Table 2.1.: Truth table for ¬x1

x1 ¬x1

1 0
0 1

For Boolean variables a, b, c, we list some basic calculation rules:

• identity: a ∨ 0 = a, a ∧ 1 = a,

• distributivity: a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c), a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c),

• complement: a ∨ ¬a = 1, a ∧ ¬a = 0,
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2. Theoretical Background

Table 2.2.: Truth table for x1 ∧ x2, x1 ∨ x2

x1 x2 x1 ∧ x2 x1 ∨ x2

1 1 1 1
1 0 0 1
0 1 0 1
0 0 0 0

• idempotence: a ∧ a = a, a ∨ a = a,

• De Morgan’s law: ¬(a ∧ b) = ¬a ∨ ¬b, ¬(a ∨ b) = ¬a ∧ ¬b.

A Boolean expression is in DNF (Disjunctive Normal Form) if it consists of a disjunction
of conjunctions of variables or negations of variables, i.e., if it is of the form

m∨
i=1

nj∧
j=1

xji = max
i=1,...,m

Ç
min

j=1,...,nj

Ä
xji
äå

. (2.1)

Similarly, a CNF (Conjunctive Normal Form) is an expression that is represented as

m∧
i=1

nj∨
j=1

xji = min
i=1,...,m

Ç
max

j=1,...,nj

Ä
xji
äå

. (2.2)

Each xji is either a variable or a negated variable. It follows that any Boolean expression is
equal to an expression in CNF and an expression in DNF. According to [3], the conversion
between CNF and DNF has exponential complexity.

2.2. The System Model

The system to be evaluated is a time-independent (static), binary-state system which con-
sists of binary-state components. The components are either failed or working. Once they
are failed, they remain in failed state since we assume that there is no repair. Depending on
the particular states of the components, the system itself is either up or down. Our goal is
to determine the overall probability of the successful operation of a system. Therefore, we
first state the abstraction for the system at hand. Afterwards the particular system model
is specified.

2.2.1. Monotonous system

After Kohlas [35] the structure of a binary-state system can be defined as follows:

Definition 2.1. LetB be a finite set and S a collection (or family) of subsets ofB with the following
properties:

1. B ∈ S and ∅ /∈ S.

2. If A ∈ S and A ⊂ A′, then also A′ ∈ S,

then (B,S) is called a monotonous system.
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For this general case, the subsets in S are regarded as connections. Assuming that the
elements of B may fail, we are particularly interested in those cases where the functioning
elements still form a connected structure. The monotonicity property (2) then assures that
a functioning system cannot turn into a failed state due to a repair of one of its elements.
Oppositely, a failed system will not turn into a functioning state if another component fails.

2.2.2. Probabilistic Graph Model

At this point the abstract model is specified with regard to the terminal-pair problem which
is used throughout this work. It is called the probabilistic graph model. We refer to [62]
for similar representations, such as RBD (reliability block diagrams) and fault-trees, that
are frequently used in the field of reliability.
The redundancy structure of a system to be evaluated is modelled by an undirected con-
nected graph1 G := (V,E) with no loops (a node is connected with itself by an edge),
where V stands for a set of vertices or nodes and E ⊂ V × V a set of unordered pairs
of vertices, called edges with |V | = n, |E| = m. We define two not necessarily injective
maps: f : E → C assigns the edges to the set of system components C, with |C| = q, and
g : E → V × V assigns each edge to a pair of nodes. This definition allows the multiple
occurrence of a system component. So there may be several edges that are mapped to the
same component. Defining

Ei := {e ∈ E : f(e) = ei}, 1 ≤ i ≤ q

to be the set of edges that are mapped to the same component ei ∈ C. Then all edges in
Ei have each the same edge label ei. If f was injective, each edge e ∈ E would stand for
a distinct system component. Thus, |Ei| = 1, ∀i and q = m. For instance, f is injective
for the series or parallel structure and surjective for the 2-out-of-3 structure in Figure 2.1.
Since each component is subject to failure, each edge e can be in two states: either failed
or working. The probability of failure qe := 1 − pe is given for each e ∈ E, where pe
is the probability for edge e working. We assume that the components fail independently.
Furthermore, all nodes are considered to be perfect. InGwe specify two nodes s and t that
are called terminal nodes. The system’s terminal-pair reliability, Rs,t(G), is the probability
that the two specified terminal nodes are connected by at least one path2 consisting of
only edges associated with working components. Such a path P describes one possible
component setting which leads to system operation. P is a set of working components
which forms a subgraph G′ = (V,E′) of G, where E′ := {e ∈ E : f(e) ∈ P}.
The system state is therefore determined by the particular states of the components and is
represented by a binary-state vector ~x ∈ {0, 1}q. The i-th content xi of ~x is a Boolean variable
which keeps track of the state of component ei, whereas xi = 1/0 for ei working/failed.
The state vector ~x is also called elementary event of the binary system. The system’s structure

1A graph is undirected if its edges have no orientation. The edge (u, v) is identical to the edge (v, u), i.e., they
are not ordered pairs. An undirected graph is said to be connected if every pair of vertices in the graph
is connected by at least one path. Note that the monotonous property implies a connected graph as valid
input.

2An s, t-path in G is any sequence s = v0, e1, v1, . . . , vk−1, ek, vk = t of nodes vi ∈ V and edges ej =
(vj−1, vj) ∈ E, j = 1, . . . , k.
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function with respect to G:
XG : ~x ∈ {0, 1}q → {0, 1} (2.3)

describes a binary function mapping a binary-state vector ~x to value 0/1 when the system
is in failed/working state. XG also stands for the set of all possible elementary events with
cardinality 2q. Hence, XG represents a Boolean function with the following properties:

• XG is monotonous, since XG(a1, a2, . . . , aq) ≤ XG(b1, b2, . . . , bq)
if ai ≤ bi, ∀i = 1, 2, . . . , q with ai, bi ∈ {0, 1}.

• XG(1, 1, . . . , 1) = 1 and XG(0, 0, . . . , 0) = 0.

To relate the Boolean function XG to the definition of a monotonous system, we set S to
be the set of all subgraphs of G where s and t are connected by working edges, meaning
that the system is working. Note that the subgraph of G only consists of working edges
(edges that are mapped to working components). Denote B to be the finite set where
all components c ∈ C are working. Let A ⊂ B be a set of working components which
corresponds to a subgraph of G where s and t are connected. A also stands for an s-
t-path. Since property (2) of Definition 2.1 is fulfilled, (C, S) is a monotonous system.
Furthermore, it holds that XG(~xA) = 1, where xAi = 1 if ei ∈ A and xAi = 0 for ei /∈ A.
Because of the monotonous property of the Boolean function XG, we can follow that also
(XG, S) is a monotonous system.
Since the failures are independent, the probability for an elementary event ~x is defined as

P(~x) =
q∏
i=1

((1− xi) · qi + xi · pi). (2.4)

Ultimately, the terminal-pair reliability, Rs,t, is expressed in terms of the sum of probabili-
ties of elementary events implying system operation:

Rs,t(G) :=
∑

XG(~x)=1

P(~x). (2.5)

A naive approach to compute the reliability polynomial would be to enumerate all possible
subgraphs and sum up the probabilities of those where the terminal nodes are connected.
Unfortunately, this method is of exponential complexity, since there are 2q possibilities.
Therefore, more efficient techniques are presented in Chapter 3.

2.2.3. k-terminal reliability, node failures and directed edges

By restricting the model to perfect nodes, undirected edges and two terminals, we do not
want to withhold important reliability aspects such as failures of routers, directed commu-
nication link failures or communication of several stations: these aspects can be extended
in a simple way for some of the approaches presented in the following chapters. The intro-
duced model forms the intersection of the models postulated in many effective terminal-
pair approaches. Thus, it offers primarily a good basis for comparison.
In general, the cardinality of the set of terminal nodes K can range between 2 ≤ |K| ≤ |V |.
As we will see in some of the exact approaches treated in Chapter 3, the solution for the
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all-terminal (|K| = |V |) and the k-terminal (2 ≤ |K| ≤ |V |) reliability can either be directly
inferred from the solution of the two terminal problem (|K| = 2) or their determination
only require some slight modification of the terminal-pair approach.
The undirected graph model is merely a special case of the more general directed graph
model, since each undirected edge can be replaced by two oppositely directing edges.
To consider node failures, Ball [7] suggested to transform the network with unreliable
nodes to a network with perfectly reliable nodes and perform the computation on the
transformed network.

We do not follow this idea, since this transformation unfortunately highly increases the
number of unreliable edges which in turn increases the magnitude of the problem. Instead,
node failures can be considered with just a linear overhead after having solved the model
with perfect nodes [36, 73, 74, 26].

2.2.4. k-out-of-n, series and parallel systems

In practice, k-out-of-n redundancy structures are very common. For a system consisting of
n components, at least k components must be working for a successful system operation.
By allowing multiple edges assigned to the same component, the redundancy structure of
such a system can be considered by our model. On the left of Figure 2.1, the appropriate
graph is illustrated for a 2-out-of-3 system. The terminal nodes s and t are marked in black.
In general, we have

(n
k

)
minimal s-t-connections (or paths) of length k. They are minimal,

since s and t are disconnected in any of their subsets.
For a series system (in the centre), there is exactly one minimal s-t-connection consisting
of all edges. And for a parallel system (on the right), each edge is itself a minimal s-t-
connection. Unlike the k-out-of-n systems, each of the edges in a series or parallel system
represents a different component.

.

.

.

. . .

e1 e2
e1

e1

e2
e2en

en

e1

e2 e3

e3

parallelseries2-out-of-3

Figure 2.1.: Common redundancy structures.

2.3. Dependability

In our model we assess the dependability of non-repairable systems for a fixed point of
time t. The dependability of a system is a probability measure which is understood as
both system reliability and system availability. Only t needs to be fixed in the probability
distribution function of these two probability measures in order to obtain the probability
of failure for each system component. These two frequently used probability measures are
defined in the following subsections.
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2.3.1. Reliability

Consider a set of several homogenous components which are put into service for a long
time period. By observing their failure frequency over time, we would be able to statisti-
cally infer the component’s lifetime that is defined as the time period [0, T ]. Starting with
time zero when the component is put into service, under the assumption that it correctly
functions. The component fails at time T , whereas T is a random variable with distribution
function F (t) = P(T ≤ t). Let Xt, t ≥ 0 be a function that records the component’s state at
each point of time. Xt is a stochastic process with Xt = 1 if the component is working and
Xt = 0 if the component is failed at time t. By definition Xt = 1, 0 ≤ t < T .
The reliability R(t) of a component equals its probability of surviving which is at the same
time the complementary probability of F (t):

R(t) = 1− P(T ≤ t) = P(T > t) = P(Xt = 1). (2.6)

Assume that f(t) is the density function of lifetime T with f(t) = dF (t)
dt , then the MTTF

(mean time to failure) is defined as the expected value of lifetime T :

MTTF := E(T ) =

∫ ∞
0

xf(x)dx =

∫ ∞
0

R(x)dx. (2.7)

The second equality of Equation 2.7 follows from partial integration. Another characteris-
tic measure used to describe the components’ vulnerability to failure after a time t, is the
failure rate r(t):

r(t) = lim
h→+0

F (t+ h)− F (t)

h ·R(t)
= −

d
dtR(t)

R(t)
= − d

dt
(lnR(t)) . (2.8)

Denote P(T > t+ h|T > t) = P(T>t+h)
P(T>t) = R(t+h)

R(t) to be the component’s conditional surviv-
ing probability. The first term of the Equation 2.8 is then derived from the complementary
probability P(T ≤ t + h|T > t) = P(t<T≤t+h)

P(T>t) = F (t+h)−F (t)
R(t) - meaning that a component

fails within time h after having survived t amount of time. By integrating Equation 2.8
and considering the boundary condition lnR(0) = ln 1 = 0, the reliability R(t) can also be
expressed as:

R(t) = exp

Ç
−
∫ t

0
r(x)dx

å
. (2.9)

For reliability modelling, it is very common to assume the negative exponential distribu-
tion function F (t) = 1 − exp (−λt) with failure rate λ > 0. In doing so, R(t) = exp (−λt)
and MTTF = 1

λ .

2.3.2. Availability

While the reliability, R(t), is a measure for an interval of time, the availability, A(t), is a
measure for a point of time: A(t) is the probability that a component works correctly at
time t and by definition, R(0) = A(0) = 1. The reliability and availability of components
are equal for all t ≥ 0 if no component repair is allowed. However, we omit further
details for the availability involving component repair, since the above definitions suffice

14



2.4. The Complexity of Network Reliability Computation

our purpose of determining the dependability of a non-repairable system: We only need
to fix a point of time t and set probabilities pi = Ri(t) or pi = Ai(t) for each component i of
the system. Nevertheless, we remark that for the case where components can be repaired,
the component states alternate between the failed and available state while operating. In
contrast to R(t), A(t) does not tend to zero for t → ∞, but to a positive value less than or
equal to one (see [69]) which is the component’s steady state availability.

2.4. The Complexity of Network Reliability Computation

For the purpose of a better understanding, we first present some fundamental definitions
from complexity theory3 before discussing the complexity of network reliability measures.

2.4.1. Complexity classes P, NP and #P

In general, we are faced with the task of computing a function whose inputs and outputs
are typically restricted to finite strings of bits. For any integer n ∈ N, the set of length-n
strings of bits is denoted as {0, 1}n. We then define {0, 1}∗ :=

⋃
k≥0 {0, 1}k to be the set of

all finite strings of bits. For a function f : {0, 1}∗ → {0, 1} and Lf := {x : f(x) = 1}, the
computational problem of deciding whether x ∈ Lf is called decision problem. Lf is also
called language.

Definition 2.2. A language L ⊂ {0, 1}∗ is in complexity class P if and only if there exists a
deterministic Turing machine DTM, such that DTM runs for polynomial time on all inputs x and
decides on Lf :

∀x ∈ Lf DTM outputs 1, ∀x /∈ Lf DTM outputs 0.

In principle, it can be said that P corresponds to a class of problems that can be efficiently
solved on a computer (polynomially decidable).

A language L ⊆ {0, 1}∗ can also be defined by a relation R ⊆ {0, 1}∗ × {0, 1}∗, such that
LR = {x : ∃y, (x, y) ∈ R}. For an instance x, we search for some y such that the relation
R is fulfilled, meaning that (x, y) ∈ R. We call this search problem. For the following
class of problems, a provided solution y to a search problem can be efficiently verified
(polynomially verifiable), but it may take exponential time to compute a solution.

Definition 2.3. LR is in complexity class NP (which is equivalent to that R is an NP-relation), if
there exists a polynomial p : N → N and a polynomial-time deterministic Turing machine DTM
(called the verifier for LR) such that ∀x ∈ {0, 1}∗,

x ∈ LR ⇔ ∃
Ä
y ∈ {0, 1}p(|x|) so that DTM(x, y) = 1.

ä
In this case, y is called certificate for x with respect to the language LR. Furthermore, |x|

denotes the length of an instance x and the length of y is polynomially bounded by the
length of x. It holds that P ⊆NP since the polynomial p(|x|) can be zero, meaning that y is
an empty string.

3The respective definitions are in compliance with [6].
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There are well-known and widely studied combinatorial problems which are catego-
rized into certain complexity classes such as P, NP or NP-Complete. These classes con-
tain decision problems (e.g. Boolean satisfiability problem - deciding whether there exists
an assigment for the arguments so that a given Boolean function evaluates to true) or op-
timization problems (e.g. finding a minimum cost traveling salesman tour). For counting
problems, #P and #P-Complete are the correspondent classes to NP and NP-Complete. The
complexity class #P is defined as follows:

Definition 2.4. A function f : {0, 1}∗ → N is in #P if there exists a polynomial p : N→ N and a
polynomial-time deterministic Turing machine DTM such that for every x ∈ {0, 1}∗:

f(x) =
∣∣∣¶y ∈ {0, 1}p(|x|) : DTM(x, y) = 1

©∣∣∣ .
It follows that every counting problem is at least as hard as its search problem.

In general, we are interested in showing that a language L′ is at least as hard as some other
language L. According to [6], the following definition of a reduction serves this purpose.

Definition 2.5. A language L ⊆ {0, 1}∗ is polynomial-time reducible to a language L′ ⊆ {0, 1}∗,
denoted by L ≤p L′, if there is a polynomial-time computable function f : {0, 1}∗ → {0, 1}∗ such
that for every x ∈ {0, 1}∗, x ∈ L if and only if f(x) ∈ L′.
We say that L′ is NP-hard if L ≤p L′ for every L ∈ NP. We say that L′ is NP-Complete if L′ is
NP-hard and L′ ∈ NP.

For two given algorithms L,L′ with L ≤p L′, we could compute the output L(x), where
x is any valid input forL, by using algorithmL′ and a polynomial-time input-transforming
function f such that L(x) = L′(f(x)). It holds that if L′ ∈ P then L ∈ P and L′ is at least
as hard as L.

2.4.2. Reliability Polynomial

To relate the k-terminal reliability problem to known combinatorial problems which have
already been classified into the mentioned complexity classes, we can write RK(G) (K
denoting the set of terminal nodes) in terms of a polynomial in p (the reliability polynomial
[7]), where we set pi = p, for all components i ∈ {1, . . . , q}:

RpK(G) =
q∑
i=1

Nip
i(1− p)q−i, (2.10)

where Ni := |{M : |M | = i, M ∈ S}| denotes the cardinality of the set of all subsets with i
working components connecting all nodes in K. For the two-terminal problem K = {s, t},
the set of subgraphs corresponds to the set of paths connecting the terminal nodes.
In this formulation we have i working components and q − i failed components. For
instance, the two-terminal reliability in a k-out-of-n system, where all components operate
with the same probability p, equals

∑q
i=k

(q
i

)
pi(1− p)q−i.

Another commonly used formulation for the reliability polynomial is with regard to the
complements of pathsets:

RpK(G) =
q∑
i=0

Fip
q−i(1− p)i, (2.11)
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2.4. The Complexity of Network Reliability Computation

where Fi := Nq−i and hence Fi := |{M : |M | = i, E \M ∈ S}|.
This means that the set of working edges E \M of cardinality q − i form a subgraph con-
necting the terminal nodes K.
Define a minimal cardinality cut to be a minimal set of components whose failure implies
the system failure, more specifically, the deletion of the correspondent minimal set of edges
disconnects any terminal node in K. Following this, a minimal cardinality pathset is a min-
imal set of working components which connects the terminal nodes and thus implying
system operation. The following relations hold for Fi and Ni:

0 ≤ Fi ≤
Ç
q

i

å
, 0 ≤ Ni ≤

Ç
q

i

å
, for i = 0, 1, . . . , q,

Fi =

Ç
q

i

å
, for i < c , Ni =

Ç
q

i

å
, for i > q − c,

Fi = 0, for i > q − l , Ni = 0, for i < l,

Nq−c = Fc =

Ç
q

c

å
− nc,

Nl = Fq−l = nl.

Here c = cardinality of a minimal cardinality cutset, nc = number of minimal cardinality
cutsets, l = cardinality of a minimal cardinality pathset and nl = number of minimal
cardinality pathsets.
Determining each of the Fi corresponds to a counting problem. If all coefficients Fi can be
computed, the exact reliability will be obtained.
According to Ball [7], this problem is called the functional reliability analysis problem f-Rel
and the corresponding original problem, where each component has its own probability
of failure 1− pi, is called the rational reliability analysis problem r-Rel.
f-Rel takes a probabilistic graph and a value p as inputs and returns all coefficients Fi.
Instead r-Rel takes takes a probability vector ~p as second argument. Each entry pi of ~p
corresponds to the reliability of component i. The output of r-Rel is a pair of integers a, b
with a

b corresponding to the system reliability.

Two- and all-terminal complexities The minimum cardinality pathset and cutset search
problems with respect to the two-terminal measure correspond to the shortest path and
the minimal cut problems respectively. Although efficient algorithms exist for this [38, 51],
the minimal cardinality cutset counting problem is however #P hard [56] implying the
#P hardness of the two-terminal problem. For the all-terminal reliability problem, the
corresponding minimal cardinality pathset and cutset problems are the minimal cardi-
nality spanning tree4 and minimal cardinality network cut problems5. Provan and Ball
[56] showed that both two- and all-terminal reliability problems belong to the class of #P-
Complete problems. They achieved this result by establishing a sequence of polynomial

4A tree is a connected undirected graph with no cycles. It is a spanning tree of a graph G if it spans G (that
is, it includes every vertex of G) and is a subgraph of G (every edge in the tree belongs to G). A spanning
tree of a connected graph G can also be defined as a minimal set of edges connecting all vertices.

5A network cut in G is any set of edges that disconnects a node s ∈ V from any node in V \ {s}.
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2. Theoretical Background

time reductions starting with a #P complete counting problem and leading further to the
problem of counting minimal cardinality s-t-cuts6 and network cuts. By a similar reduc-
tion technique, f-Rel can be reduced in polynomial time to the corresponding r-Rel [7]. In
other words, if a particular functional reliability analysis problem is NP-hard then the cor-
responding rational reliability analysis problem is NP-hard.
Furthermore, Provan and Ball [56] showed that both undirected and directed reliability
analysis problems are NP-hard. The undirected terminal-pair reliability problem even re-
mains NP-hard for planar networks with node degrees bounded by three (see Provan [57]).

k-terminal complexity As one would expect, the k-terminal reliability problem which
consists of computing all subgraphs connecting every pair of vertices of K, was proven by
Valiant [76] to be NP-hard. The search for a minimal cardinality pathset with respect to
K corresponds to the problem of computing a minimal cardinality Steiner tree7. Since the
corresponding search problem is already NP-hard for both directed and undirected net-
works [33], the associated f-Rel and r-Rel are NP-hard. Apart from series-parallel graphs8,
where k-terminal reliability can be determined in linear time [64], the unpromising results
leave us with the conclusion that even polynomial time algorithms for solving reliability
problems are very unlikely to exist for other restricted classes of networks. However, this
should not be a reason for us to cease in our efforts in finding further improvements for
the state-of-the-art exact solution techniques (see Chapter 5, 6 and 7). Although it is to be
expected that even the most efficient algorithms have exponential complexity, it is how-
ever worth to find ways for reducing complexity. Even if the reduction is only of small
magnitude, it may yet bring along significant improvements in runtime and memory con-
sumption. Consequently, a higher number of input arguments could be processed.

2.5. Binary Decision Diagrams

A BDD (Binary Decision Diagram) is a data structure which corresponds to an n-dimensional
Boolean function f : {0, 1}n → {0, 1}. This data structure stores all Boolean variable
assignments along with their respective constant outcomes in a compressed form. Any
Boolean function can be represented by a BDD which is a directed acyclic rooted graph
having a set of decision nodes N and two leafs labeled with 0 (false) and 1 (true).
There is one internal vertex, called the root, which has no incoming edge. Each decision
node v ∈ N is labeled by a Boolean variable b := var(v) and has two outgoing edges con-
nected to two child nodes, called low and high child. Edges pointing to a low/high child
are represented as dashed/solid lines. The low/high child is reached when b is assigned
to 0/1.
We denote fbi to be the restriction of f when some argument bi, 1 ≤ i ≤ n is replaced by a

6An s, t-cut in G is any minimal set of edges that intersects every s, t-path.
7Given an undirected connected graph G = (V,E) and a set of terminals K ⊆ V , a Steiner tree TG is a

minimal cardinality set of edges connecting all nodes in K, whereas nodes from V \ K may belong to
TG. The nodes in V \ K are called ”Steiner nodes” and furthermore the tree TG is an acyclic, connected
subgraph of G.

8A series-parallel graph can be reduced by standard series, parallel and degree-2 reduction (an extension of
the series reduction for problems with |K| > 2) to a single edge (see Section 3.2).
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2.5. Binary Decision Diagrams

constant c ∈ {0, 1}:

fbi=c(b1, . . . , bn) = f(b1, . . . , bi−1, c, bi+1, . . . , bn).

Each BDD node, v, is itself a Boolean function f which can be decomposed in terms of the
associated Boolean variable b (Shannon decomposition of f with respect to b):

fb = b · fb=1 + b · fb=0, (2.12)

where high(v) := fb=1/low(v) := fb=0 is the high/low child of v.
The size of a BDD representing a Boolean function equals the number of decision nodes
and highly depends on the variable ordering. A BDD with respect to a certain fixed vari-
able order is called OBDD (Ordered Binary Decision Diagram) and it is called ROBDD
(Reduced Ordered Binary Decision Diagram) if it is reduced implying the two following
properties:

• uniqueness: no two distinct nodes u and v have the same label, low and high child,
i.e., var(u) = var(v), low(u) = low(v), high(u) = high(v) implies u = v (left side of
Figure 2.2), and

• no redundant nodes: no internal node u has identical low- und high child, i.e. low(u) 6=
high(u) (right side of Figure 2.2).

u u u

vwv

Figure 2.2.: Reducedness conditions.

The representation of a Boolean function in terms of a ROBDD is canonical [11]:

Lemma 2.6. (Canonicity Lemma)
For any Boolean function f : {0, 1}n → {0, 1} and a given variable ordering there is exactly one

ROBDD denoting f , any other OBDD denoting f contains more vertices.

It follows that two Boolean functions are equivalent if their ROBDDs are isomorphic.

2.5.1. Operations

Without any decompression, operations or manipulations can directly be performed on
a BDD graph. Many useful elementary operations (such as AND, OR, negation, testing
for satisfiability, testing for equivalence of two functions) can be efficiently performed on
this representation. Therefore Bryant [11] suggested efficient algorithms which have time
complexities proportional to the size of the BDD graphs being manipulated. With Gf ,
denoting the BDD graph for a Boolean function f , the time complexities are listed in Table
2.3 for two BDD operations that are later used in this thesis, namely Reduce and Apply
(there are more fundamental BDD operations which can be found in [11]). The Reduce
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algorithm transforms an OBDD graph into a ROBDD graph denoting the same Boolean
function. It is based on the idea of the isomorphy test for trees (see Aho et al. [2]). We
note, that the reduction complexity ofO(|Gf | · log|Gf |) established by Bryant, was brought
down to linear time by Wegener [65].

Table 2.3.: Time complexities for BDD manipulation operations

Operation Input Output Time complexity
Reduce OBDD f ROBDD f O(|Gf |)
Apply ROBDD f, g ROBDD f ◦ g O(|Gf | · |Gg |)

Apply The Apply operation takes two ROBDDs representing functions f, g and produces
the ROBDD for f ◦ g, whereas ◦ can be any binary Boolean operation, such as AND or OR
operation. This operation can also be used to test for implication (compare f1∨f2 to 1) or to
complement a function. The Apply algorithm is derived from the Shannon expansion with
regard to the input functions. They can be recursively composed in terms of a Boolean
variable b:

f ◦ g = b · (fb=1 ◦ gb=1) + b · (fb=0 ◦ gb=0).

The algorithm takes two ROBDD root nodes rf , rg of the argument graphs Gf , Gg. Pro-
ceeding downwards the argument graphs, vertices are created for the result graph Gf◦g at
the branching points of the two argument graphs. For this there are several cases to distin-
guish. If rf , rg are leafs, the result graph consist of a leaf with value value(rf ) ◦ value(rg).
Without loss of generality we impose the variable order x1 < x2 < . . . < xn for the result
BDD. Suppose at least one of the two root nodes is not a leaf. If var(rf ) = var(rg) = xi,
we create a vertex u with xi = var(u) and apply the algorithm recursively on low(rf ) and
low(rg) to obtain the subgraph whose root becomes low(u), and on high(rf ) and high(rg)
to create the subgraph with root high(u). Otherwise, suppose that var(rf ) = xi and either
rg is a leaf or var(rg) > xi, which means that the function represented by the graph with
root rg is independent of xi. Then a node uwith var(u) = xi is created and the algorithm is
recursively applied to low(rf ) and rg to generate the subgraph with root node low(u), and
on high(rf ) and rg to generate the subgraph with root node high(u). To cover all cases,
exchange the roles of the two argument root nodes.
The complexity of this operation can possibly be decreased by maintaining a table which
stores the result node u for each application of the algorithm on root nodes rf , rg. Each
time the algorithm is applied, we first have to check for the existence of the pair of root
nodes inside the table. If these exist, we directly return the result node u. Otherwise, we
proceed as described before and add a new entry to the table. For further implementa-
tional details we refer to [3]. The application of the Apply method on two small ROBDDs
is exemplified in Figure 2.3.

Complexity of finding an optimal variable ordering The complexity of BDD manipu-
lation algorithms heavily depends on the size of the BDD input graphs. Thus, the BDD
size should preferably be minimal under the optimal variable ordering. Unfortunately,
the problem of finding the optimal variable ordering is NP-complete [21]. There are n!

20



2.5. Binary Decision Diagrams

x1

x2 x2

x3 x3

x4

1 0

x1

x3

1 0

x2

x4

1 0

OR =

x1 AND x3 x2 AND x4

Figure 2.3.: Example of Apply, variable ordering: x1 < x2 < x3 < x4

possible variable orderings for a function of n variables. The best known algorithm for
determining the optimal variable ordering has complexity O(n23n) [21].
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3. Techniques for exact k-terminal reliability
computation

There exists an extensive literature treating the exact computation of the two-terminal,
k-terminal and all-terminal reliability. In this chapter, we give an overview of the most im-
portant techniques that have evolved over time, listed in accordance with their efficiency -
starting with the least efficient path and cut enumeration technique. For some techniques,
we first explain the two-terminal case since the k-terminal case works in a similar way or
can be easily deduced from the two-terminal version.

3.1. Path and Cut Enumeration

The k-terminal reliability can be computed by first enumerating minimal paths (minpath)
or minimal cuts (mincuts)1 which gives the system’s structure function in terms of a Boolean
expression. In the second step the probability of the obtained Boolean expression is deter-
mined by either applying the inclusion-exclusion method or the sum of disjoint products
technique. The second step is needed, since minimal paths or cuts are not necessarily
mutually disjoint.

3.1.1. Enumerating minimal paths

Denote P to be the set of all minimal paths of a graph G and let |P| = h. A minimal
path Pi, 1 ≤ i ≤ h corresponds to a conjunction term TPi that consists of Boolean variables
representing working edges in Pi. For a minimal path comprisingN different components,
the respective conjunction term TPi is as follows:

(x1 ∧ x2 ∧ . . . ∧ xN ).

The structure function X is then expressed as:

XG =
h∨
i=1

TPi .

For obtaining the k-terminal reliability, we need to compute:

RK(G) := P(XG = 1) = P
(

h∨
i=1

TPi

)
.

1 The subtle difference with regard to the definitions given in Section 2.4.2 is the unfixed cardinality of the
respective set of edges causing system operation/failure. The paths/cuts are called minimal, since none of
their subsets is also a path/cut.
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3. Techniques for exact k-terminal reliability computation

We refer to [58] for the computation of all minpaths with regard to the two-terminal relia-
bility2. For the k-terminal reliability, Steiner trees are computed by using the method in
[50].

3.1.2. Enumerating minimal cuts

Analogously, denote C to be the set of all minimal cuts and let |C| = g. Each minimal
cut Ci, 1 ≤ i ≤ g corresponds to a conjunction term TCi which is composed of Boolean
variables representing failed edges in Ci. We say that a minimal cut Ci fails if all compo-
nents in Ci fail, implying system failure. The conjunction term TCi of a minimal cut with
N different components is then

(x1 ∧ x2 ∧ . . . ∧ xN ).

In order to achieve system operation, no mincuts are allowed to fail. Thus, the k-terminal
reliability is the complementary probability that at least one minimal cut fails:

RK(G) := 1− P(XG = 1) = 1− P
( g∨
i=1

TCi

)
,

here XG is the negated structure function of the system (as explained in [45]). In terms of
the two-terminal reliability, one possible method for computing all mincuts can be found
in [32].

3.1.3. Inclusion-exclusion method

Poincaré’s theorem can be used to compute the probability of the Boolean expression XG

(analogously for XG):

P
(

h∨
i=1

TPi

)
=

h∑
i=1

P(TPi)−
∑

1≤i1<i2≤h
P(TPi1

· TPi2
) + . . .+ (−1)h−1 · P

(
h∏
i=1

TPi

)
. (3.1)

The inefficiency of this method is rooted in the doubly-exponential complexity: the num-
ber of minpaths, h, might be exponential in |C| and so 2h − 1 terms are generated in Equa-
tion 3.1. Thus, in practice one reverts to other, more efficient, methods for the exact compu-
tation. However, the inclusion-exclusion method can be used for obtaining lower and up-
per bounds of the reliability by only accounting the first terms of the sum. A lower/upper
bound is obtained by interrupting the computation after a negative/positive term.

3.1.4. Sum of disjoint products

A more efficient way is to first disjoint the conjunction terms, TPi , by using the SDP (sum
of disjoint products) and sum up the probabilities of the disjoint terms afterwards. The

2Here the minpaths correspond to s-t-paths.
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SDP is based on the Shannon decomposition and has the following representation when
applied to the DNF of XG:

h∨
i=1

TPi = TP1 +
h∑
i=2

TPi ·
i−1∏
j=1

TPj . (3.2)

Hereafter, the probability for each term can be easily derived. Finally, they are summed up
to obtain the reliability value:

P
(

h∨
i=1

TPi

)
= P(TP1) +

h∑
i=2

P

Ñ
TPi ·

i−1∏
j=1

TPj

é
. (3.3)

We note that Equation 3.2 is again applied to TPj =
Ä∨N

k=1 x
j
k

ä
to obtain the following

simplified expression:
N∨
i=1

xjk = xj1 +
N∑
i=2

xji ·
i−1∏
k=1

xjk.

There are several different strategies for computing the SDP. For instance one can use the
Abraham method [1]. Though this method exhibits better performance than the inclusion-
exclusion method for many practical examples, its worst case complexity is exponential,
since the number of conjunction terms (minimal cuts or paths) may exponentially grow
with the number of system components. In addition, there is no known polynomial bound
for the length of the simplified Boolean expression (left side of Equation 3.3) in terms of
the number of minpaths or mincuts [7].

3.1.5. Summary of this section

Instead of enumerating all 2|C| states, minimal cutsets and pathset are enumerated. One
hopes to explore a smaller number of system states by enumerating either pathsets or
cutsets. As mentioned in Section 2.4.2, the enumeration of all minimal cutsets and pathsets
is #P hard [76, 57] . Hence, in the worst case this technique requires exponential time. Later
in Section 3.3, we will outline an approach which explores only the relevant states and is
hence more efficient than the path and cut enumeration method.

3.2. Reduction techniques

The exponential complexity of the reliability problem (see Section 2.4) gave rise to the
focus of research on developing reduction techniques for certain graph structures which
aim to significantly reduce the graph size or its structural complexity. It is hoped that
reduction will take at most polynomial time to obtain an exponential improvement. In
fact, in many of the cases only local knowledge (e.g. node degrees) is needed in order to
detect reducible structures. A reduction is defined with respect to an input graph G, its
terminal nodes K and the given edge failure probabilities. Let G be a graph with at least
two terminal nodes. Reducing G involves replacing or deleting edges and nodes to form
a new graph G′ which has adapted edge probabilities and a new terminal set K ′ such that
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3. Techniques for exact k-terminal reliability computation

RK(G) = ΩRK′(G
′), whereas Ω is a constant factor. Basically, a reduction changes the

graph structure while preserving reliability. In the following, we highlight three major
types of reductions: series-parallel reductions, polygon-to-chain reductions and deletion
of irrelevant components (see Wood [37, 82]).

3.2.1. Series-parallel and degree-2 reductions

According to Wood [37], a series reduction replaces two edges ea = (u, v) and eb = (v, w),
such that u 6= w, deg(v) = 2, v /∈ K, with a single edge ec = (u,w) and it follows that
pc = papb, K

′ = K, Ω = 1. A parallel reduction replaces a pair of edges ea = (u, v) and
eb = (u, v) with a single edge ec = (u, v) and pc = pa + pb − papb, K ′ = K, Ω = 1. Now
suppose that ea = (u, v), eb = (v, w) and u 6= w, deg(v) = 2, {u, v, w} ⊆ K, then a degree-2
reduction replaces ea and eb with a single edge ec = (u,w) and Ω = pa + pb − papb, pc =
papb

Ω , K ′ = K \ {v}.
Without any special distinction of terminal and non-terminal nodes, a series-parallel graph
is a graph that can be reduced to a tree by successive series and parallel replacements.
If a series-parallel graph is biconnected3, then the tree consists of only one edge. Wood
[37] further defines a graph G to be irreducible series-parallel if G cannot be completely
reduced to a single edge using simple reductions. In combination with the following im-
portant type of reductions (polygon-to-chain reductions), the k-terminal reliability of a
series-parallel graph can be computed in linear time [64].

3.2.2. Polygon-to-chain reductions

As the name states, polygon structures consisting of at most six edges are reduced to chains
of at most length three. In fact, those polygon structures can be found in linear time by
triconnected decomposition [27]. In general, polygon-to-chain reductions always reduce
|V | + |E| by at least one. A chain χ is defined as an alternating sequence of distinct nodes
and edges, v1, e1, v2, e2, . . . , vk−1, ek−1, vk, ek, vk+1, where ei = (vi, vi+1), internal nodes
vi, i = 2, . . . , k are of degree two and border nodes v1, vk+1 can have degree more than two.
For two chains χ1, χ2 with length l1, l2 and common border nodes v1, vk+1, the resulting
polygon ∆ = χ1∪χ2 is of length l1+l2. Since (i) every degree-2 node ofG is a terminal node,
(ii) a chain cannot have more than two terminal nodes, and (iii) the length of a chain is at
most three, the polygons in G - if they exist - can only be one of the seven types shown by
Satyanarayana and Wood [64] (see also Lucet and Manouvrier [49]). For the two-terminal
case, there are only five types and no such reduction is possible for the all-terminal case.
Wood used conditional probability and distinguished between possible configurations of
subgraph (G \∆) ∪ ({v1} ∪ {vk+1}) to conclude K ′, Ω and the new edge probabilities for
the resulting chains. For a detailed derivation, we refer to Satyanarayana and Wood [64].

3.2.3. Removal of irrelevant components

According to Wood [82], any connected componentG0 = (V 0, E0) ofGwhich is connected
to (G \V 0)∪{vc} by an articulation vertex vc is irrelevant and hence can be removed, only
ifK∩(V 0\{vc}) = ∅. Consequently,G′ = (G\V 0)∪{vc},K ′ = K and Ω = 1. Furthermore,

3A connected graph G is biconnected if at least two nodes must be deleted to disconnect G.

28



3.3. Factoring with reductions

any self-loop is irrelevant.
The recognition of those irrelevant components can be efficiently done in linear time (see
Hopcroft and Tarjan [28]). We will later make use of this removal for significantly improv-
ing a state-of-the-art exact approach (see Chapter 5).

3.3. Factoring with reductions

When an undirected graph G does not further allow any reductions, the reliability of G
can be decomposed by applying conditional probability with respect to an edge e that is
known as the keystone edge. By factoring on e, we obtain for the reliability of G (Factoring
theorem [52]):

RK(G) = pe ·RK′(G ∗ e) + (1− pe) ·RK(G− e). (3.4)

where G ∗ e is G with edge e = (u, v) contracted and G − e is G with e deleted. K ′ = K
if u, v /∈ K or K ′ = (K \ {u, v}) ∪ ({u} ∪ {v}) if u ∈ K or v ∈ K. So G ∗ e represents
the subgraph with e working and G − e the subraph with e failed. The reductions can
then again be applied to either of the subgraphs. The factoring recursion ends when the
terminals are either disconnected or merged into one single node. In general, the recursion
depth is limited by the number of components.

3.3.1. Choice of the keystone edge

In Figure 3.1, we have applied the factoring with series-parallel reductions on a small size
grid network. After two series reductions, we choose edge e3 for factoring. This results
in two subgraphs that can be reduced to a single edge by alternating series and parallel
reductions. The respective recursion graph consisting of three nodes is depicted on the
right upper corner of Figure 3.1. Ls,t(G) is the number of leafs - which is two - of the re-
cursion graph. The number of leafs in the factoring recursion tree is used as a measure
of the complexity of a factoring algorithm and defined as Ls,t(G) =

Ns,t(G)+1
2 [63], where

Ns,t(G) is the total number of nodes in the recursion tree. Apparently, the target is to ob-
tain a minimal number of leafs. The minimal number of leafs can be attained by an optimal
edge-selection strategy for factoring with respect to the used reductions. Therefore, Satya-
narayana and Chang [63] gave an optimal strategy for the choice of the keystone edge
with respect to series-parallel reductions, such that G ∗ e and G − e remain coherent4 after
factoring. In general, if we arbitrarily choose an edge for factoring, irrelevant components
may evolve in the course of a factoring procedure. Hence, redundant computation will
be carried out if one does not delete irrelevant components. In our example, the choice of
edge e3 complies with the optimal strategy, since the resulting subgraphs are biconnected
and contain no irrelevant components.

4A graph G is coherent if the cardinality of the terminal set is at least two and G contains no irrelevant edges
or vertices [82].
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Figure 3.1.: Factoring with series-parallel reductions.

3.3.2. Incorporating triconnected decomposition in a factoring with reductions
algorithm

Wood suggested to add triconnected decomposition to the factoring with reductions al-
gorithm and worked out conditions for the two- and all-terminal case which ensures that
factoring with triconnected decomposition and reductions is at least as good as a pure fac-
toring algorithm [83]. To be precise, the generated number of recursion-tree leafs for fac-
toring with triconnected decomposition and reductions is never more than the number of
leafs for a pure factoring algorithm. Unfortunately, the conditions are rather restrictive for
the k-terminal case. By triconnected decomposition, a graph G can be decomposed along
its separating node-pair {u, v} such that G = G̃∪G+, Ṽ ∩V + = {u, v}, Ẽ ∩E+ = ∅, |Ẽ| ≥
2 and |E+| ≥ 2. Using the same argumentation for deriving polygon-to-chain reductions,
Wood shows that G+ may be replaced by a chain χ of at most three edges between u and
v such that RK(G) = ΩRK̃′(G̃ ∪ χ). Therefore one has to only solve one, two, three, or
four k-terminal reliability problems defined on G+. The discussed technique is briefly il-
lustrated in Figure 3.2. Note that we have not distinguished between non-terminal and
terminal nodes. For a detailed insight, we refer to [83]. Pertaining the polygon-to-chain
reductions, G+ corresponds to certain polygon structures derived in [64].
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solve at most four k-terminal reliability problems
for G⁺ by factoring with t-decomposition 
and reductions to obtain either:

Figure 3.2.: Triconnected decomposition and chain replacements.
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3.3.3. Considering node failures

The failure of nodes can be taken into account by factoring on nodes like on edges. Unfor-
tunately, this exponentially increases the complexity with the number of nodes. To avoid
this, Carlier and Theologou modified the factoring with reductions algorithm in a way that
imperfect nodes can be considered with only small additional cost: factoring is still con-
ducted on edges and after each factoring step the node failure probabilities are adapted for
the induced graphs. The factoring with reductions algorithm is practically left unchanged
except that polygon-to-chain reductions can no longer be used. Though this restriction can
significantly increase the complexity, it is still more efficient than factoring on nodes. For
details and respective performance measurements on sample networks, we refer to [73].

3.3.4. Bottom line

The efforts to find clever ways to reduce the combinatorial complexity of reliability com-
putation resulted in several efficient reduction techniques. The best results that could be
achieved by appropriately applying the discussed reductions in conjunction with the fac-
toring technique are:

1. Determination of the k-terminal reliability for series-parallel graphs in linear time
(Satyanarayana and Wood [64]).

2. Significantly reducing the complexity of a pure factoring algorithm in terms of two-
and all-terminal reliability for general graphs (Wood [83]).

Additionally, Chang and Satyanarayana showed that factoring with reductions [63] is
more efficient than cut or path enumeration. Nevertheless, the best factoring with re-
ductions algorithm has exponential complexity and care should be taken to the exhaustive
memory needed for storing subgraphs evolving in the course of factoring. Hence, not only
the time factor poses a limitation to the reliability computation but also the high memory
requirements. Apart from this, the major disadvantage of applying reductions is that nu-
merical adaptations to edge reliability prevent the creation of the more desired symbolic
representation of the combinatorial graph structure: in this case the reliability computation
does not need to be conducted another time if certain edge probabilities have changed.
Facing this direction and turning away from the reductions, we will present in the next
two sections the two state-of-the art approaches which efficiently extract and symbolically
store the combinatorial structure of the reliability graph. In addition, redundant computa-
tions are avoided by dynamic programming5 and elegant representations for subgraphs or
subproblems are defined to keep the memory consumption moderate.

3.4. Kuo-Lu-Yeh approach

Among all efficient algorithms solving the terminal-pair problem, the KLY approach is
currently the most efficient approach besides the decomposition approach (see Section
3.5). No one, however, has opposed the performance of these two approaches in a fair

5Dynamic programming is a method for solving complex problems by breaking them down into simpler
subproblems. When two subproblems overlap, the solution of the already solved subproblem is reused.
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3. Techniques for exact k-terminal reliability computation

manner. We refer to Section 8.2 for an extensive evaluation and comparison of these two
approaches.
The central ideas making the KLY approach so efficient, are the clever use of OBDDs and
the recognition of reliability isomorphic subgraphs. The results from KLY [85] reveal a vast
improvement in computation time when compared with efficient approaches which do not
make use of OBDDs. Since the efficiency of the KLY approach highly depends on the size
of OBDDs that represent Boolean functions coming up in the course of the algorithm, the
goal must be to keep their size as small as possible to allow efficient OBDD manipulations.
As described in Section 2.5, two Boolean functions f and g can be recursively composed
by basic Boolean operations such as AND, OR =: ◦ in terms of a Boolean variable b:

f ◦ g = b · (fb=1 ◦ gb=1) + b · (fb=0 ◦ gb=0).

These compositions are applied iteratively to construct the OBDD path function during the
KLY algorithm. However, the size of an OBDD notably depends on the variable ordering.
As we already stated in Section 2.5, the problem of finding an optimal variable ordering is
NP-complete [21]. Hence, Kuo, Lu and Yeh propose the bfs (breadth-first-search) variable
order to be a good alternative for the terminal-pair reliability problem. They empirically
obtained the best results with bfs.
Since the essential success of the KLY approach lies on the recognition of reliability iso-
morphic subgraphs, we therefore give a definition at this point.

Definition 3.1. Two coherent terminal-pair networks are reliability isomorphic if they coincide
topologically and each of their edges and nodes represent the same component.

By recognizing reliability isomorphic subgraphs, the reliability computation of several
reliability isomorphic subgraphs can hence be reduced to just one of these subgraphs. It is
therefore a matter of concern to compactly store and rapidly retrieve subgraphs in order to
keep the overhead as low as possible. In Chapter 5, we explain our way of implementing
this.

3.4.1. The approach

We now recapitulate the original approach [85] (see Algorithm 2). Instead of explicitly
enumerating all s-t-paths of a given network, they are efficiently stored in an OBDD by
conducting the following recursion: starting with s, all its adjacent edges in the initial
graph G are visited (in dfs order). This is done by deleting the node where s is originally
located along with all its adjacent edges. Thereafter, s is relocated to one of the adjacent
nodes which was chosen to be visited over edge e. This operation is called contraction
of G with e: G ∗ e (see line 10 of Algorithm 2). A new subgraph, subG, emerges from
this graph manipulation step. Redundant nodes which are not part of any s-t-path, are
removed from subG (line 11). Those are nodes unequal s or t with degree one. Then subG
is again processed as described. According to [85], each recursive call stands for a Gnode.
Each Gnode has outgoing edges to its child Gnode whereas each edge is labeled with the
Boolean variable of the visited edge. Such a recursion graph is called an Edge Expansion
Diagram (EED) which is a directed acyclic graph. The above recursive step is repeated
until s has reached t. The first time we return from the recursion, the OBDD is created
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for a Boolean variable B labeling the last visited edge e between s and t. Then the just-
constructed OBDD is put into a global hashmap with the subgraph consisting of one edge
e as the hashmap key. The central idea is to avoid redundant computations by detecting
reliability isomorphic subgraphs (see below). This is done by incrementally building a
hashmap from the computed subgraphs with their corresponding OBDD value. At each
recursion, the subgraph to be computed is looked up in the global hashmap and if there is
a match (or hit), the appropriate OBDD will be returned (see line 5-6).
The returned OBDD is composed with other returned OBDDs coming from the adjacent
branches - if they exist - of the current Gnode by the OR operation to a new OBDD which
is returned to the parent Gnode (see line 14). The final OBDD, representing the structure
functionXG with respect to graphG, is obtained as soon as all recursions return to the root
of the EED. According to [85], the structure function is expressed as follows:

XG =
k∑
i=1

Bi ·XG∗ei ,

where k stands for the number of s-adjacent edges und Bi is the Boolean variable for edge
ei. The number of Gnode in the EED equals the number of hashmap entries, where each
hashmap entry value is a reference to the BDD root node of a Boolean function. Since all
paths from the root to the terminals of the OBDD are mutually disjoint, the probability
of the implied Boolean function, equal to the reliability value, can be easily evaluated
by Algorithm 3 (suggested by KLY [85]). The whole algorithm is subsumed in the Main
Algorithm 1.

Algorithm 1: KLYMain

Require: Graph G, source s, sink t
1: find a variable ordering for G according to bfs
2: bddresult =PathConstruct(G, s)
3: Reliability = Prob(bddresult)

3.4.2. Case study

By means of a 2x3 ladder network G, we briefly demonstrate the workings of the KLY
approach. The left side of Figure 3.3 shows the respective EED. It consists of eight Gnode
where the Gnode are numbered according to a possible processing order. They are shown
together with their respective Boolean expressions. In the course of the KLY method, BDD-
apply operations are conducted many times. The first time the BDD-apply operation is
carried out in this example is at Gnode G5: e2 AND true. The resulting OBDD is then
hashed together with the underlying subgraph, serving as its key. In Gnode G6 and G7, the
redundant edges e4, e2, highlighted with dotted lines, are recognized and removed. Only
one hit (one isomorphic graph) occurs in this example: at Gnode G5, since more than one
EED-edge points to it. Finally, the resulting ROBDD (depicted on the right side of Figure
3.3) is returned at Gnode G0. Algorithm 3 traverses the ROBDD in dfs order. Each ROBDD
node is labeled with the respective variable and in addition the computed probabilities are
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Algorithm 2: PathConstruct

Require: Graph G, currentsource s
1: BDD bddnode, bddresult
2: if currentsource == t then
3: return bddtrue
4: end if
5: if (bddresult = hashmap.find(G, s)) is a hit then
6: return bddresult
7: end if
8: bddresult = bddfalse
9: for all s-adjacent-edges e do

10: subG = G ∗ e
11: removeRedundantNodes(subG)
12: bddnode =PathConstruct(subG, sourcesubG)
13: bddnode = BDD.apply(bbd(e), bddnode,AND)
14: bddresult = BDD.apply(bddresult, bddnode,OR)
15: end for
16: hashmap.put(G, s, bddresult)
17: return bddresult

Algorithm 3: Prob

Require: BDD bddnode
1: //p is the reliability of the component represented by the bddnode variable
2: if bddnodeisbddtrue then
3: return 1
4: end if
5: if bddnodeisbddfalse then
6: return 0
7: end if
8: if (result = hashmap.find(bddnode)) 6= NULL then
9: return result

10: else
11: result = p· Prob(bddnode.high) + (1− p)· Prob(bddnode.low)
12: hashmap.put(bddnode, result)
13: end if
14: return result
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attached. Here we assume that all components fail with the same probability of 0.1. In the
end the seeked reliability R value is returned at the root node e0.
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Figure 3.3.: Left: Edge Expansion Diagram, Right: Resulting ROBDD.

3.4.3. Complexity discussion

Though the KLY approach has exponential complexity with the number of components
in the worst case, it turns out that for many different network structures a much better
performance is attained, as empirically shown in Section 8.2.
According to [85], in the best case the expansion of the OBDD terminates in h steps, where
h equals the length of the shortest path. This is the case when the topology of the input
network results in identical isomorphic subgraphs during each expansion iteration.
In the worst case, a very large expansion is generated if there are no isomorphic subgraphs.
The generated number of Gnode has exponential complexity, O((dm)k), where dm is the
maximal out-degree among all nodes and k the maximal s-t-path length.

3.4.4. Extension for k-terminal case

For the undirected k-terminal case, Yeh et. al [84] defined a feasible set to be a node set
where all nodes in K are covered by |K| − 1 terminal-pairs. Then the k-terminal reliability
can be obtained by applying the Boolean AND operation to all the structure functions of
the k − 1 two-terminal networks. Thus, the resulting structure function is expressed as

XG =

|K|−1∏
l=1

XG(nls, n
l
t), (3.5)
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where XG(nls, n
l
t) is the structure function with respect to terminals nls, nlt and nls, n

l
t ∈

K,nls 6= nlt for all l. Since the terminal set K is covered by a feasible set, it holds that

|K|−1⋃
l=1

Ä
nls ∪ nlt

ä
= K. (3.6)

To avoid redundant computation, the selected nodes nls, nlt must be marked and treated as
terminal nodes during the path construction algorithm. Their path constructing process
can be terminated earlier when multiple terminals exist.

3.4.5. Accounting for node failures

With little overhead, imperfect nodes can be considered by incident edge substitution: for
the undirected case, the Boolean variable Bi of an edge ei = (nia, n

i
b), is simply replaced

with nia ∧ Bi ∧ nib, where nia and nib represent the Boolean variables of the two respective
end nodes of edge ei. Following this, the structure function is represented as

XG =
k∑
i=1

(s ∧Bi ∧ nib) ∧XG∗ei . (3.7)

On a whole, the KLY approach is carried out for the original graph G as if all nodes are
perfect. Subsequently, the composition operation is used to recursively incorporate the in-
cident edge substitution on the resulting BDD, BDD(G). With regard to a predetermined
variable order s < e1 < n1

b < n2
a < e2 < n2

b < . . . < nma < em < t, the appropriate
composition operation is expressed in terms of the following Boolean expression:

BDD(G) =
Ä
(s ∧B1 ∧ n1

b) ∧BDD(G)|B1=1

ä
∨
Ä
(s ∧B1 ∧ n1

b) ∧BDD(G)|B1=0

ä
. (3.8)

Here, BDD(G)|Bk=1 and BDD(G)|Bk=0 are the high and low BDD child nodes of Boolean
variable Bk respectively. In addition, the Boolean variable for terminal t must be returned,
instead of bddtrue. Finally, the reliability value is computed by traversing the result BDD
with Algorithm 3. Implementational details, extensions for the directed case and results
for the additional overhead can be found in [36].

3.5. Decomposition method

As mentioned in Section 3.4, the decomposition approach is on the one hand along with
the KLY approach the currently most efficient approach for exact terminal-pair computa-
tion and on the other hand competing with the KLY approach only with regard to undi-
rected networks. Unlike the KLY approach, the decomposition approach does not record
directed path information, so that its application is restricted to undirected networks. We
remark that it has not yet been established to make the decomposition method applicable
for directed networks. Its great strength however is the unsurpassed effective calculation
of regular undirected network structures. It is based on factoring and consists of three
parts: first, determine a suitable edge ordering. Then, all edges are consecutively factored
according to the stipulated ordering. Concurrently, a result BDD is iteratively created until
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all edges have been factored. Finally, the created result BDD is traversed by Function 3 to
obtain the reliability value. In what follows, we reveal the details of the decomposition
approach. Its main idea can be attributed to Rosenthal [61] who suggested to classify the
different network states by means of a set of frontier nodes (boundary set) Fk.

3.5.1. Boundary set and partitions

Suppose, that the initial ordering is e1 < e2 < . . . < ek < . . . < em. At factoring-level k,
we have Ek := {e1, e2, . . . , ek} and Ek := {ek+1, . . . , em}. The already factored edges are
in the set Ek and have a fixed state (either working or failed). The edges that still have
to be factored are contained in Ek. For a graph G = (V,E), let A = (Vk, Ek) and B =
(Vk, Ek) be two subgraphs of G with Ek, Ek ⊆ E and Ek ∪ Ek = E,Ek ∩ Ek = ∅, Vk, Vk ⊆
V and Vk ∪ Vk = V . Furthermore, Fk := Vk ∩ Vk is called the k-th frontier set. The
maximal size of the frontier sets is defined as |Fmax| := max

i=1,2,...,m−1
|Fi|. Thus, we have

Vk :=
⋃k
i=1 Fi and Vk := (V \ Vk) ∪ Fk. Subgraph A and its complement B are depicted

in Figure 3.4. On the right side of Figure 3.4 |Fk| ≥ 2, whereas on the left side Fk consist
of only one vertex, called the articulation vertex. In this case, the reliability of G can be

A B A BFk

Figure 3.4.: Left: Articulation vertex, Right: Frontier set Fk.

computed as R(G) = R(A) · R(B). Rosenthal defined an equivalence relation for Fk [61]:
vertices from Fk are arranged into one block, if there is a connecting path in A connecting
them. The equivalence classes are uniquely represented by partitions consisting of at least
one block. All vertices in a block can be seen as being grouped into a single vertex. So Fk
are the vertices needed to encode the current network state in the k-th level. The partitions
describe the connections between the frontier vertices and also record whether each vertex
in Fk is also connected to any of the terminals K.

3.5.2. Number of partitions

The order of the partitions stems from the Stirling numbers of the second kind and has the
following recursive formula:

Ai,j = j ·Ai−1,j +Ai−1,j−1, if 1 < j ≤ i with Ai,1 = 1 and Ai,j = 0 if 0 < i < j

Ai,j is the number of partitions of j blocks made of i nodes. In Table 3.1 we have explicitly
computed for 2 ≤ |F | ≤ 13 the number of partitions consisting of i blocks, with 1 ≤ i ≤ |F |.
The total number of partitions B|F | is known as the Bell number and defined as (see [23]):

B|F | =

|F |∑
j=1

A|F |,j . (3.9)
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B|F | grows exponentially with the size of F . In the third column of Table 3.2, B|F | is ex-
plicitly determined for the all-terminal case. The maximal number of partitions for the
two-terminal reliability case6 is shown in the second column and after Hardy et al. [23], it
can be deduced from

|F |∑
j=1

Ñ
A|F |,j

min (2,j)∑
k=0

Ç
j

k

åé
. (3.10)

Table 3.1.: # Partitions according to |Fk| and # blocks

|F | # Partitions consisting of |1|2| . . . ||F || blocks
2 |1|1|
3 |1|3|1|
4 |1|7|6|1|
5 |1|15|25|10|1|
6 |1|31|90|65|15|1|
7 |1|63|301|350|140|21|1|
8 |1|127|966|1, 701|1, 050|266|28|1|
9 |1|255|3, 025|7, 770|6, 951|2, 646|462|36|1|
10 |1|511|9, 330|34, 105|42, 525|22, 827|5, 880|750|45|1|
11 |1|1, 023|28, 501|145, 750|246, 730|179, 487|63, 987|11, 880|1, 155|55|1|
12 |1|2, 047|86, 526|611, 501|1, 379, 400|1, 323, 652|627, 396|159, 027|22, 275|1705|66|1|
13 |1|4, 095|261, 625|2, 532, 530|7, 508, 501|9, 321, 312|5, 715, 424|1, 899, 612|359, 502|39, 325|2, 431|78|1|

Table 3.2.: Total # Partitions for two- and all-terminal case

|F | |K| = 2 K = V
2 6 2
3 18 5
4 58 15
5 206 52
6 810 203
7 3,506 877
8 16,558 4,140
9 84,586 21,147
10 463,898 115,975
11 2,714,278 678,570
12 16,854,386 4,213,597
13 110,577,746 27,644,437

3.5.3. Application example

In the following, we want to illustrate the workings of this approach by means of a small
example. The two-terminal reliability with respect to the terminals s and t is computed for
the 2x3-ladder network depicted on the right of Figure 3.5. First we conduct a bfs-traversal
from s to obtain a possible variable ordering: e0 < e3 < e4 < e1 < e5 < e6 < e2. Then e0
is taken for factorization. The first frontier set F1 consists of the end nodes of e0. Factoring
on edge e0, we obtain partition [0 1]∗ and [0]∗[1] for e0 working and failed respectively
(see Figure 3.5).7 The blocks that contain terminal nodes are marked by an asterisk. The
first/second partition has one/two block(s). In fact, there can be six different partitions:

6This number is larger than in the all-terminal case since we additionally have to differentiate between un-
marked and marked blocks (blocks that contain terminal nodes).

7[0 1]∗/[0]∗[1] is the high/low child of OBDD-root node G.
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Figure 3.5.: OBDD for G, variable order: e0 < e3 < e4 < e1 < e5 < e6 < e2

[0 1], [0 1]∗, [0][1], [0]∗[1], [0][1]∗, [0]∗[1]∗. In contrast to the factoring algorithm, the reliability
subgraphs of G are now represented by partitions. This comes along with great advan-
tages with regard to space and time requirements. The total number of partitions in the
k-th level depends on the cardinality of Fk. In particular, it grows exponentially with the
size of Fk (see [23]). Any partition that has no marked blocks is failed which means that
at least one of the terminals is disconnected from the frontier set: in the example, the low
child of [0]∗[1] is [1][2] and hence false.
Recognizing reliability isomorphic subgraphs8 is further simplified by representing relia-
bility subgraphs as partitions: two subgraphs G1 and G2 are reliability isomorphic if their
associated partitions are identical with regard to the same edge ordering. In the fourth
level of the depicted OBDD, partition [2 3]∗ is recognized three times. This recognition
avoids redundant computations and contributes to a higher efficiency of the algorithm. If
all terminals are connected in one block of a partition, a working configuration is found:
the high child of [4]∗[5]∗ is [4 5]∗ and hence we have to link to the true-leaf. In total, the
result OBDD consist of 16 nodes and only six partitions are held in memory at a time.
By dropping the four redundant nodes which have the same low and high child, the size
of this OBDD shrinks to 12. Since the representation of a Boolean function in terms of a
ROBDD is canonical (see canonicity Lemma 2.6) with regard to a certain variable ordering,
one can verify that we obtain the same ROBDD as on the right hand side of Figure 3.3 after
applying OBDD reductions. The maximal width of the OBDD depends on |Fmax|. Here,
|Fmax| = 2 and the maximal width equals three which also remains constant for larger
sizes of this ladder type. So we can expect that the memory consumption is restricted to
grow with adherence to the depth of the OBDD. Additionally, the runtime increases lin-

8In general, two subgraphs are reliability equivalent if they represent the same Boolean function w.r.t. a
stipulated reliability measure. Thus, the reliability isomorphic property captures a subset of reliability
equivalent graphs.
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early with the size of the ladder length. The decomposition approach performs well for
networks having regular structure. More precisely, its performance highly depends on the
size of the maximal boundary set Fmax (see Section 3.5.5).

3.5.4. Details of the decomposition approach

The decomposition approach is given as pseudo code in Procedure 4. According to Hardy
et al. [23], the partitions can be uniquely represented by a natural number. However, we
have omitted the partition-number-transforming functions (Part→ Number and
Number → Part [23]) since the overhead for transforming partitions into numbers and
numbers to partitions becomes a serious issue for large |Fk| 9. Instead, the partitions are
directly hashed according to the conventions proposed by Hermann [25]: for example,
partition [1 2][3]∗[4]∗ can be hashed by two vectors. The first vector part = [1, 1, 2, 3] states
that nodes 1, 2 are in the first block, node 3 in the second and node 4 in the third block. The
second vector consists of Boolean entries b = [0, 1, 1] recording the block marking. Natu-
rally, the size of b equals the number of blocks.
So each partition node pk is attached with an integer vector and a Boolean vector. In ad-
dition to that, the appropriate BDD node which can be retrieved by the function getbdd(),
is stored. After having determined an ordering by bfs, the initial step in Procedure 4 is to
link the root node of the BDD to two new child nodes p0 and p1. They are put into the list
prevLevel in order to be further processed. The BDD emerges level by level whereas at
each level k boundary set Fk has to be updated. The workloads or partition nodes are pro-
cessed until prevLevel is empty. The number of workloads held in prevLevel corresponds
to the width of level k in the BDD. By processing the partition nodes from prevLevel, new
partition nodes are created and added to the nextLevel. At most, there are two levels of
partition nodes held in memory at once.
We have found that Hardy’s approach lacks the possibility of creating a BDD false-leaf
when merging an edge during factoring. This fact was also revealed by [25] and is con-
sidered in lines 12-14 of Procedure 4. In Section 6.1.1 we give an example, where this case
might occur.
The derivation of new partitions part1 by merging and part0 by deleting the edge variable
from pk, is not an obvious task. Hence, we refer to Section 6.1 for details.

3.5.5. Runtime complexity

The complexity for the two-terminal reliability equals O
Ä
|E| · |Fmax|3 ·B|Fmax|

ä
. Notably,

the complexity is O
Ä
|E| · |Fmax| ·B|Fmax|

ä
and

O
Ä
|E| · |Fmax| ·B|Fmax| · 2|Fmax|

ä
for the all-terminal and k-terminal case respectively (see

[23]). So this approach allows for computing the reliability of networks with bounded
|Fmax| in time linear to the number of edges. The experimental results from the literature
show that for regular network structures with small and bounded Fmax, the decomposition

9According to Hermann [25], the disadvantage of using partition numbering is that such numbers quickly
grow to be larger than can be stored in the standard data types of programming languages. This requires
the use of adequate libraries for dealing with numbers of arbitrary size and greatly slows down the pro-
cessing speed of the approach. In addition, he also claimed the unnecessary overhead for transforming the
partitions to numbers and backwards.
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Algorithm 4: BDDPartition

Require: Graph G = (V,E), set of terminal nodes K
1: Determine an edge ordering by bfs heuristic
2: Initialize F1 = {u, v}with e = (u, v) being the first edge

in the variable order, initialize root node BDDroot

3: root.high = p1.getbdd(), root.low = p0.getbdd()
4: Add the first two partitions p0, p1 to prevLevel
5: for k = 2 to |E| do
6: compute Fk

7: while prevLevel 6= ∅ do
8: pk = prevLevel.pop()
9: Derive part1 from pk

10: if all K-vertices are merged into the same block in part1 then
11: pk.getbdd().high = true
12: else if one K-vertex is disconnected in part1 then
13: //This case is missing in Hardy’s approach
14: pk.getbdd().high = false
15: else
16: if part1 is not in hash table then
17: nextLevel.add(part1)
18: insert part1 in hash table
19: end if
20: pk.getbdd().high = part1.getbdd()
21: end if
22: Derive part0 from pk
23: if one K-vertex is disconnected in part0 then
24: pk.getbdd().low = false
25: else
26: if part0 is not in hash table then
27: nextLevel.add(part0)
28: insert part0 in hash table
29: end if
30: pk.getbdd().low = part0.getbdd()
31: end if
32: end while
33: prevLevel = nextLevel, nextLevel.clear()
34: end for
35: return root
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approach has the edge over the KLY-approach (see [23, 25]). However, for networks with
unregular structure such as randomized networks, a fair comparison was not provided. In
Section 8.2 we will show that the decomposition method is not in general more efficient
(with regard to runtime and memory consumption) than the KLY-approach, especially for
unregular network structures.

3.5.6. Sorting of blocks

Hardy’s approach lacks the description of distinctly arranging the blocks within the par-
titions. This is vital for correctly assigning and identifying the block numbers. Hence, we
briefly propose a distinct arrangement scheme at this point: first, the blocks are sorted with
respect to their cardinality. Subsequently, the blocks with the same cardinality are sorted
according to the lowest vertex number. Since the vertex numbers are unique and appear
only once in some block, we obtain an unambiguous block arrangement convention. Sup-
pose, we have the following partition p = [5][3 4][0 1 2][2 8][6], then after sorting we obtain
p = [5][6][2 8][3 4][0 1 2].

3.5.7. Considering node failures

According to Hermann [26], imperfect nodes can be considered by factoring on each node
in turn, and immediately afterwards factoring on all edges adjacent to the just factored
nodes. In this manner, the variable ordering for the example from Figure 3.5 would be
0 < e0 < e3 < 1 < e4 < 2 < e1 < e5 < 3 < e6 < 4 < e2 < 5. Then one constructs the
result BDD according to this ordering. The time complexity for the two-terminal reliability
problem then increases to O

Ä
(|V |+ |E|) · |Fmax|3 ·B|Fmax|

ä
10.

10See [26] for a more detailed explanation.
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4. Bounds on Network Reliability

The computation of network reliability is in general a difficult task which is known to
be #P-Complete. In order to be of practical use, many efforts have been devoted to de-
vise algorithms which deliver accurate bounds in polynomial time. Two main reliability
bounding directions can be found in the literature. The first one uses simulation which
delivers an approximate value and a confidence interval [20]. However, the simulations
cannot provide absolute certainty that the actual reliability value will fall into this inter-
val. The second direction applies analytic methods to obtain lower and upper bounds. In
this case it is guaranteed that the actual reliability value will fall between the bounds. In
this chapter we outline some established methods for the second direction. We distinguish
between models which allow arbitrary component failure probabilities and equal compo-
nent failure probabilities. The only drawback of polynomial time bounding algorithms
is their lack of accuracy: for certain networks, lower and upper bounds are so far apart
that they turn out to be worthless. As an alternative, we illustrate a state-of-the-art exact
terminal-pair approach (the Dotson-Gobien method [18]) which has exponential complex-
ity but gives fast-converging bounds.

4.1. Bounds for networks with equal edge failure probabilities

The reliability polynomial RpK (see Equation 2.10) forms the starting point for deducing
bounds. With regard to equal edge operation probability, p, polynomial time bounding
algorithms were mainly devoloped for the all-terminal reliability (K = V ). Two effec-
tive strategies were considered for achieving good bounds. The first one uses enumera-
tion techniques for counting operational subnetworks and the second one exploits graph-
theoretical properties of the input network. Starting with the first one, we look at the
reliability polynomial

RpV =
q∑
i=1

Nip
i(1− p)q−i,

For the all-terminal reliability problem, spanning trees need to be counted. According to
[24], at least |V | − 1 edges are needed to connect all nodes V . Hence for i < |V | − 1,
Ni = 0 and N|V |−1 is the number of spanning trees which can be efficiently computed [19].
Furthermore Ni =

(q
i

)
, for i > q − c, and Nq−c =

(q
c

)
− nc (see Section 2.4.2), where the

cardinality of a minimal cardinality cutset c and the number of minimal cardinality cutsets
nc can be efficiently determined by [8]. Unfortunately, no efficient algorithms are known
for computingNi, |V | ≤ i < q−c. Thus, efforts were made to find lower and upper bounds
for each of those Ni.
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4. Bounds on Network Reliability

4.1.1. Simple bounds

Using the trivial bounds 0 ≤ Ni ≤
(q
i

)
leads to the first set of bounds, the Jacobs bounds [31]

which were improved by Van Slyke and Frank [67], who expressed them in the following
form:

RpV ≤ N|V |−1p
|V |−1(1− p)q−|V |+1 +

q∑
i=|V |

Ç
q

i

å
pi(1− p)q−i and

RpV ≥ N|V |−1p
|V |−1(1− p)q−|V |+1 +Nq−cp

q−c(1− p)c +
q∑

i=q−c+1

Ç
q

i

å
pi(1− p)q−i

Each unknown Ni is approximated by zero in the lower bound and by
(q
i

)
in the upper

bound.
The parameter p has a crucial effect on the reliability value: Kel’mans [34] found out that
for two different networks G1 and G2, one can find certain values for p where RpV (G1) <
RpV (G2), or whereRpV (G1) > RpV (G2). Thus, reliability depends on both the random failure
probabilities and the inherent graph structures. Kel’mans further established the following
bounds for all p:

N|V |−1p
|V |−1(1− p)q−|V |+1 ≤ RpV ≤ 1− ncpq−c(1− p)c.

Furthermore he observed that RpV tends more to the lower bound for very small p and to
the upper bound for very large p.
To obtain two-terminal bounds, we only need to substitute |V | − 1 with l (cardinality of a
minimal cardinality pathset). These bounds are useful only if p is very near zero or one. In
general, they are extremely weak bounds [24].

4.1.2. Ball-Provan bounds

In order to find a remedy to the inaccuracy of these bounds, Ball and Provan developed
bounds based on the second representation of the reliability polynomial (see Equation
2.11):

RpV =
q∑
i=0

Fip
q−i(1− p)i.

Factoring out the nonzero terms p|V |−1 and rewriting [15], yields:

RpV = p|V |−1
q∑
i=0

Hi(1− p)i, where Hi =
i∑

k=0

(−1)i−k
Ç
q − |V |+ 1− k

i− k

å
Fk.

According to [15], Ball and Provan then use a theorem of Stanley to obtain lower and
upper bounds on the coefficients Hi which in turn bound the Fi. They also conceived a
polynomial time implementation of these bounds in [9]. The importance of these bounds
is that they embody linear constraints on the Fi with Fi ≥ Fi and Fi ≤ Fi. By bounding
the coefficients in this way, we obtain the Ball-Provan bounds for the all-terminal reliability:

q∑
i=0

Fip
q−i(1− p)i ≤ RpV ≤

q∑
i=0

Fip
q−i(1− p)i. (4.1)
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4.2. Bounds for networks with arbitrary edge failure probabilities

4.1.3. Lomonosov-Polesskii bounds

Unlike Ball and Provan, Polesskii [55] used a completely different strategy. He devel-
oped lower bounds based on a general graph theoretical result from Tutte [75] and Nash-
Williams [53] which states that each graph has at least b c2c

1 edge-disjoint spanning trees.
Additionally, Polesskii noted that the network failure probability cannot be larger than the
product of probabilities that each member of any set of edge-disjoint spanning trees fails.
So each of the edge disjoint spanning trees must fail before the network fails. From those
facts Polesskii deduced the lower bound

RpV ≥ 1− (1− p|V |−1)b
c
2
c (4.2)

which was further improved by Lomonosov and Polesskii [46] to obtain the lower all-
terminal reliability bound

RpV ≥ |V |
Ä
1− (1− p)b

c
2
c
ä|V |−1 − (|V | − 1)

Ä
1− (1− p)b

c
2
c
ä|V |

. (4.3)

Lomonosov and Polesskii [47] also developed an upper bound. For that purpose, they de-
fined a cut basis of a network graph as a set of |V |−1 minimal edge cutsets {L1, L2, . . . , L|V |−1}
which means that every two nodes of the graph are disconnected by one of the edge cut-
sets Lk, k ∈ {1, 2, . . . , |V | − 1}. After Gomory and Hu [22], a cut basis of a graph can be
found in polynomial time. For the network graph to operate, at least one of the edges in
every cut Lk must be working.
Since P(”At least one edge from Lk is working”) = 1−P(”All edges from Lk are failed”), we ob-
tain the following upper bound

RpV ≤
|V |−1∏
k=1

Ä
1− (1− p)|Lk|

ä
. (4.4)

Although the construction of the Lomonosov-Polesskii bounds seems to be less sophisti-
cated than this of the Ball-Provan bounds, the Lomonosov-Polesskii bounds however oc-
casionally improve on the Ball-Provan bounds. In fact, for varying network samples and
p-values these two different bounds improve on each other [15]. Colbourn and Harms [15]
further combined the Lomonosov-Polesskii and Ball-Provan bounds by linear program-
ming in order to obtain some improvements on the reliability bounds.

4.2. Bounds for networks with arbitrary edge failure probabilities

The reliability polynomial is no longer applicable when edges operate with different prob-
abilities. In order to obtain bounds, a major technique called edge packing was followed.

4.2.1. Edge-packing

Given a graph G = (V,E), G is partitioned into k partial graphs2 G1 = (V,E1), . . . , Gk =
(V,Ek), where E1, . . . , Ek are pairwise disjoint. Gi operates independently from Gj for

1c := cardinality of a minimal cardinality cutset.
2A partial graph of G := (V,E) is a graph G′ := (V,E′) with E′ ⊆ E.
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4. Bounds on Network Reliability

i 6= j. Since there are operational states of G where no Gi is operational, we obtain the
following lower bound:

RK(G) ≥ 1−
k∏
i=1

(1−RK(Gi)). (4.5)

For obtaining all-terminal bounds, Polesskii [55] suggested to edge-pack G with minpaths.
In this case a maximal cardinality set of edge-disjoint spanning trees can be efficiently
found by Edmonds’s matroid partition algorithm [19]. The result for Equation 4.2 can
then be similarly extended for arbitrary edge failures in order to obtain lower bounds. Ed-
monds’s matroid partition algorithm does not necessarily deliver the best edge-packing
bound by minpaths. In fact, the complexity of finding the best edge packing for all-
terminal case remains open.
Brecht and Colbourn [71] established edge-packing lower bounds for the two-terminal
reliability. Since Menger’s theorem states that the maximum number of edge-disjoint s-t-
paths equals the cardinality of a minimum s-t-cut, flow techniques [38] are used to find a
maximum edge packing. However, finding the best edge-packing by s-t-paths is NP-hard
(see Raman [59]). The situation looks similar for the k-terminal problem, since determining
the maximum number of Steiner trees in an edge-packing is NP-hard [14]. Unfortunately,
no good heuristics are known for finding a good edge packing for the k-terminal case.
Turning to upper bounds, G can be edge-packed by cutsets C1, . . . , Ck. The failure of G is
caused by a failure of any cutset and since G can fail, even if no cutset in the packing is
failed, the following inequality holds:

RK(G) ≤
k∏
i=1

Ñ
1−

∏
e∈Ci

(1− pe)

é
. (4.6)

For bounding the two-terminal reliability, a maximal number of edge-disjoint s-t-cutsets
must be found. This is at the same time the dual to Menger’s theorem (The maximal
number of edge-disjoint s-t-cuts equals the length of a shortest s-t-path) and can be per-
formed efficiently in polynomial time [78]. However, for the all- and k-terminal case, find-
ing a maximum packing by mincuts is NP-hard [14]. Colbourn [14] compared the edge-
packing strategy with the Lomonosov-Polesskii and Ball-Provan bounds for the two- and
all-terminal case with equal edge failure. He found that for the two-terminal case, edge
packing clearly affords better results. However, turning to the all-terminal case, the edge
packing bound is very poor in comparison to the other two stategies.

4.3. The Dotson-Gobien algorithm

The results above reveal that the polynomial time bounding methods still do not yield
bounds which satisfy the prescribed accuracy in the field of reliability engineering - it is
quite common to assume a relative accuracy in the order of magnitude of 10−1. According
to Ball [7], finding reliability bounds is a time/accuracy trade-off and hence it is very un-
likely that such polynomial time algorithms exist. To achieve more accurate bounds, we
have to resort to approaches with exponential complexity. In this section, we present the
workings of the DG (Dotson-Gobien) method [18]. It exactly computes the two-terminal
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4.3. The Dotson-Gobien algorithm

reliability and in case of premature interruption, we obtain at least some lower and upper
bounds. The efficiency of this method was empirically shown in a comparison with three
other algorithms by Yoo and Deo [86]. The DG is based on set theoretical partition of the
sample space {0, 1}q into disjoint sets - in case of equal edge failure probabilities, the sets
obtained in the first partitioning steps are the most probable ones. Yoo and Deo also empir-
ically found that the number of subproblems processed is only a small fraction of the total
number of subproblems possible. In addition to that, the DG bounds converge fast, since
the most probable path- and cutsets appear at the beginning - assuming that all edges fail
with equal probability. Hence, in practice we can obtain good bounds after a fraction of
the required computation time. At this point we give two different ways to derive the DG
approach: the first way is set-theoretically based and the second is based on the factoring
method.

4.3.1. Derivation

Dotson and Gobien defined an elementary event to be a state vector ~x ∈ {0, 1}q which indi-
cates the state of each system component. A full event is recursively defined as either an
elementary event or the union of two events that differ only in the status of exactly one
system component. So a full event is composed of a union of elementary events. The in-
tersection of two full events A and B equals the set of elementary events that are both in
A or in B.
Let P be a path P = [e1, e2, . . . , er] of length r (r ∈ N) in a network graph G from s to t and
ei ∈ E for 1 ≤ i ≤ r. P is a full event and can be expressed as the intersection of full events
ei (component ci ∈ C is working), where ei is itself a union of 2q−1 elementary events

P =
r⋂
i=1

ei.

The complement of P is obtained by De Morgan’s law

P =
r⋃
i=1

ei.

By applying the SDP equation (Equation 3.3), the complement of P can be expressed as a
union of mutually disjoint sets or full events

P = {e1} ∪ {e1 ∩ e2} ∪ . . . ∪ {e1 ∩ e2 ∩ e3 . . . ∩ er}. (4.7)

Each of the r subproblems can be further partitioned in the same way by searching for
s-t-paths. For each subproblem we have to look for the topologically shortest path to keep
the number of subproblems low. This is done by breadth-first-search since all edges have
length one.
Alternatively, a similar representation of Equation 4.7 can be derived by recursively ap-
plying the factoring theorem for each of the r edges in path P (see Deo and Medidi [17]).
Choosing the first keystone edge e1 ∈ P and define the failure probability of component
ei to be qi := 1− pi, i = 1 ≤ i ≤ r, we have:

Rs,t(G) = p1 ·Rs,t(G ∗ e1) + q1 ·Rs,t(G− e1),
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4. Bounds on Network Reliability

where ∗/− stands for a contraction/deletion of all edges e1. Then the term Rs,t(G ∗ e1)
will again be expanded by factoring on edges e2 which is analogously defined. Overall it
follows that:

Rs,t(G) = q1 ·Rs,t(G− e1) (4.8)
+ p1q2 ·Rs,t(G ∗ e1 − e2)

+ . . .

+ p1p2 · · · pr−1qr ·Rs,t(G ∗ e1 ∗ e2 ∗ . . . ∗ er−1 − er)

+
r∏

k=1

pk

So we have r subproblems or subgraphs deduced from path P .
Again, for each subproblem this equation can be recursively applied. In each subgraph,
reliability preserving reductions (Section 3.2) can be performed if possible [17]. The above
Equation 4.8 can be illustrated by a recursion tree, where the tree nodes correspond to the
subproblems and the tree edges are labeled with the edges to be contracted or deleted.
Suppose S to be a disjoint exhaustive success collection of success events Si, 1 ≤ i ≤ |S|
(i-th s-t connecting subgraph) such that if an elementary event connects s and t, then it is
contained in some Si ∈ S. The terminal-pair reliability of G is then represented by

Rs,t(G) =

|S|∑
i=1

P(Si).

The last addend of equation 4.8 is the probability of the first success event S1, thus P(S1) =∏r
k=1 pk. All the other P(Si), 2 ≤ i ≤ |S| are the probabilities of the remaining s-t paths

found in the subgraphs multiplied with their appropriate probability terms. Analogously
it holds for the disjoint exhaustive failure collection C := {Ci, 1 ≤ i ≤ |C|}

Rs,t(G) = 1−
|C|∑
i=1

P(Ci),

where the P(Ci) terms are the probabilities for the s-t cuts. For u < |S|, v < |C| and u, v ∈ N
the lower and upper bounds for the reliability are

u∑
i=1

P(Si) ≤ Rs,t(G) ≤ 1−
v∑
i=1

P(Ci).

Following this inequation, the lower bound increases everytime a new s-t path has been
found and the upper bound respectively decreases for every additional s-t cut. It becomes
an equation as soon as all s-t cuts and paths are found.

4.3.2. The approach

At this point, we give a brief description of the DG method with reductions. First we try to
reduce the input graph as far as possible. Then we look for the shortest s-t path of length
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4.3. The Dotson-Gobien algorithm

l. In case no s-t path can be found, we subtract the probability of the cut3 from the current
upper bound and return from the recursion afterwards. The recursion also ends, when
s and t are merged into one single vertex. Otherwise, the found s-t path contributes to
the lower bound and we can further derive l subproblems by factoring on the edges - as
shown above - contained in the shortest s-t path. Each of the subproblems is then again
processed as described.

4.3.3. Example

To illustrate the workings of the DG method in conjunction with series-parallel reductions,
we performed this calculation on the 2x3 grid network (see Figure 3.5).
We start by trying to reduce the grid network G: two series reduction are conducted on
edges e5, e2 and e0, e4 resulting in edges er1 and er2 respectively. Since no further series
or parallel reductions can be performed, we look for a shortest s-t path. One shortest s-t
path is for example e3, er1 . As a result, we obtain two subproblems: G1 := G − e3 and
G2 := G ∗ e3 − er1 . The lower bound obtained after the first iteration equals pe3per1 and
the upper bound equals one, since there are no cuts. The computation ends after series
and parallel reductions have been performed on the two subgraphs G1 and G2. Assume
that the two subgraphs have been reduced to one single edge er3 and er4 respectively. The
resulting two-terminal reliability is then expressed as

Rs,t = pe3per1 + qe3per3 + pe3qer1per4 .

We note that in the course of the DG method, subgraphs with redundant edges may occur.
These edges do not need to be removed, as we look for the topologically shortest s-t path
at each recursive function call, and hence redundant edges cannot lie on the shortest path.
So we would never factor on an irrelevant or redundant edge.

4.3.4. Required data structures

In the original DG approach [18], the subgraphs are iteratively constructed with the help
of an event queue. The event queue contains the respective sequences of edges after which
the original graph is partitioned. Hence, the size of the accumulated event queue de-
pends on the number of upcoming subproblems. To reduce their number, Deo and Medidi
[17] incorporated reductions and instead of event queues, they directly store the emer-
ging subgraphs as adjacency matrices. In either case, there is an overdemand for memory:
the event queues contain redundant information by sharing the same sequence of prece-
dent edges. Furthermore, storing all subgraphs can lead to a dramatic increase in memory
consumption which could be expected as this algorithm is of exponential complexity. In
other words, the accuracy of the computed bounds is restricted by the size of the available
memory. Hence, in Chapter 7 we will address the task of optimally storing the essential
information without significantly deteriorating the computation time.

3The cut-term obtained at a recursion step is a sequence of edges to be contracted or removed. This sequence
is composed of edges that were contracted or removed in the previous recursion steps. Thus, following
the path upwards to the root of the recursion tree one obtains the sought sequence.
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4. Bounds on Network Reliability

4.3.5. Considering node failures

Torrieri developed a method that accounts for node failures [74]. This method can be em-
bedded in the DG approach or any approach that generates symbolic path or cut terms.
The additional cost for considering node failures is only linear in the number of edges. First
an undirected network with unreliable nodes is transformed into a directed network with
perfect nodes by replacing each undirected edge with two anti-parallel directed edges.
Then the DG approach is performed on the transformed network with perfect nodes to
yield cut and path terms. Each of those terms are appropriately manipulated during the
computation. For detailed information, we refer to [74].
Unfortunately, Torrieri’s method yields incorrect results for some undirected networks.
However, this error has been identified and rectified by Chen et.al. [13]: instead of assign-
ing the same label to two anti-parallel edges, they must be unambiguously assigned to
distinct labels.
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Improvements
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5. Improving the Kuo-Lu-Yeh Approach

One of the key ideas making the KLY method so efficient is the fast identification of
reliability-isomorphic subgraphs. However, the details for uniquely representing and recog-
nising the reliability graphs are concealed. In the following, we will explain our new data
structure for uniquely describing the graph model. From this we can derive the needed cri-
teria to unambiguously identify reliability isomorphic subgraphs. Furthermore, we show
how the KLY method can be significantly improved by removing redundant biconnected
components.

Representation of the stochastic graph

The initial network graph is stored as a Boolean adjacency matrix M , with number of
columns/rows equal to the number of nodes. Each edge in the initial graph is a Boolean
variable indexed by a unique i ∈ N. A pair of nodes is unambiguously assigned to an edge
in a global hashmap n1n2edge. We exploit the symmetric property of M , representing an
undirected graph with N nodes, by only storing the entries of the lower or upper triangle
part in a Boolean vector vBool of length N(N−1)

2 . vBool has full lengthN2 for directed graphs.
Initially we set the node index equal to the column/row index. This index mapping is
captured by an array col2n (column index→ node index) from which the reverse mapping
n2col can be deduced. In the course of the algorithm, nodes and their adjacent edges
are deleted so that according to their deletion the mapping has to be adapted as follows:
Assuming the node with index i ∈ N is deleted, column and row of M with index j :=
n2col[i] are therefore removed. col2n must be reshifted according to the following rule:
∀k ≥ i : col2n[k] = col2n[k + 1]. Thereupon the last entry of col2n is deleted and n2col
respectively adapted.

Recognition of reliability isomorphic graphs

Two subgraphs G and G′ are reliability isomorphic with respect to the two-terminal mea-
sure if:

• the position of terminal node s is equal (t remains fixed) and

• vBool is equal and

• col2n is equal.

These three criteria serve as key values for the above mentioned global hashmap.

53



5. Improving the Kuo-Lu-Yeh Approach

5.1. Recognition and deletion of redundant biconnected
components

A biconnected undirected graph is a connected graph that is not broken into disconnected
pieces by deleting any single vertex. This means that a biconnected graph has no articula-
tion vertices. An articulation vertex is defined as a vertex whose removal splits a connected
graph into two connected subgraphs (see [28]). This property prevents the graph’s discon-
nection upon removal of any single edge and can be regarded as a two-fold redundancy.
So at least two edges must be removed to disconnect the graph. As mentioned in Section
3.4, only redundant nodes unequal s, twith degree one are removed in the KLY algorithm.
By recognising and removing redundant biconnected components, the size of subgraphs
can shrink immensely. In summary: less time is needed for hashing the subgraphs. In
addition to that, fewer subproblems, Gnode, will evolve leading to a lower memory con-
sumption since there will be fewer entries for the global hashmap. Nevertheless, this re-
quires the occurence of such redundant structures. In case they do not occur, the overhead
spent is only linear in the size of the graph [28]. In our experiments we will show that
these redundant structures often occur for many network examples and that their deletion
generally leads to a lower memory consumption and for large graphs, depending on their
structure, to a noticeable speedup. In the following section we will illustrate the removal
of redundant biconnected components with respect to the terminal nodes.

5.1.1. Transformation to the biconnected component tree

Figure 5.1 shows an example reliability graph G having nine biconnected components 1

and five articulation vertices (a1 − a5). With Hopcroft’s and Tarjan’s algorithm imple-
mented in function articpointDFS(vertex), these components can be found in linear time
by traversing G in depth-first-search order. For articpointDFS(s) we obtain for each ar-
ticulation vertex a its appropriate biconnected components c returned as bcmap (in Algo-
rithm 5): (a1 : c1, c2), (a2 : c3), (a3 : c4, c5, c6), (a4 : c7), (a5 : c9, c8). The assignment
of components to their articulation node depends on the order the articulation nodes are
visited. Components which were already assigned to an articulation node are no longer
assigned to another articulation node which shares the same biconnected component. In
ci, 1 ≤ i ≤ 9, all the corresponding nodes ofG are stored. In order to identify and delete the
redundant components, we need to transform G to a biconnected component tree (bctree),
TG , created by Algorithm 6. At line 1, bctree is initialised with the number of nodes it
will consist of. The source node and each of the biconnected components are nodes of the
bctree. Starting with the source node (index set to 0), edge connections are built to its ad-
jacent components. In each of the components we search for nodes which are articulation
points. If there exists an articulation point a in component c then edges are bridged from
node c to all components belonging to a. The tree is hence established in depth-first-search
manner by Algorithm 7. After the bctree has been constructed from the original graph
and the location of terminal t has been determined in the tree (line 5-6 of Algorithm 5),
we remove redundant nodes - unequal s, t and with degree one - from the bctree. The re-
dundant components are collected in list comps2delete and finally all nodes belonging to

1A single edge is regarded as biconnected.
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the collected components are deleted from the original graph G. Graph G is disposed of 6
components (see bottom of Figure 5.1).

s=a1 t=a4

a2 a3

a5

c1

c2 c3
c4

c5

c6

c7

c8

c1

c2 c3

c4

c5

c6

c7

c8transform

G and its biconnected
components

biconnected component 
tree of G

s

s=a1 t=a4

a2 a3c2 c3 c6

G after deletion of redundant
biconnected components

c9

c9

TG -

Figure 5.1.: Deletion of redundant biconnected components.

5.1.2. A case study

The pseudo code for the path constructing function is listed in Algorithm 2. In compari-
son to [85], merely the line for removing redundant nodes, line 11 of Algorithm 2, must be
substituted by removeRedundantBicomp (Algorithm 5).
Since redundant nodes with degree one are also biconnected components, they are implic-
itly considered for removal. The KLY algorithm is applied with our proposed extension
to the example graph G0 in Figure 5.2 which shows the obtained EED. There are eight
Gnode which are numbered according to the order they have been visited in the course
of the algorithm. Without the proposed extension we would have obtained sixteen Gnode
(hashmap entries or subproblems). We have five hits at EED node G3 since there are six
incoming edges. The removal of the biconnected components is indicated by dotted lines.
As one can observe from this example, the removal of biconnected components leads to a
dramatic decrease of the size of the subgraphs and at the same time the number of sub-
problems. The number of hits for isomorphic graphs are fewer compared to the original
approach. However, the hit ratio - defined as Hit

|Gnode|+Hit - of the extended approach is 5
percent higher. Adhering to the breadth-first-search variable ordering, we obtain 30 nodes
for the resulting OBDD. Finally, this OBDD is evaluated by the Prob function [85] to obtain
the reliability value. The results for G0 can be found in Table 8.5 Nw.1 for edges assumed
to fail with probability of 0.1.

55



5. Improving the Kuo-Lu-Yeh Approach

Algorithm 5: removeRedundantBicomp

Require: currentsource
1: Map bcmap = articpointDFS[currentsource]
2: if noOfcomps == 1 then
3: return //graph is biconnected
4: end if
5: Graph bctree = transform(bcmap, currentsource)
6: Determine the location of terminal t in the bctree
7: repeat
8: H := {c ∈ bctree|c /∈ {s, t} ∧ deg(c) == 1}
9: for all node c ∈ H do

10: remove c from bctree
11: comps2delete.add(c) //Collect c in a list
12: end for
13: until H = ∅
14: for all node c ∈ comps2delete do
15: for all node n ∈ c do
16: G.removeNode(n)
17: end for
18: end for

Algorithm 6: transform

Require: bcmap, currentsource
1: Graph bctree(noOfcomps+ 1)
2: Map m = bcmap[currentsource]
3: for all component c ∈ m do
4: bctree.addEdge(0, c) //currentsource := 0
5: List ls = m[c] //set of all nodes in c
6: for all node n ∈ ls do
7: if !bcmap[n].empty() then
8: dfs(bctree, bcmap, n, c)
9: end if

10: end for
11: end for
12: return bctree
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5.1. Recognition and deletion of redundant biconnected components

Algorithm 7: dfs

Require: bctree, bcmap, articpoint, cprevious
1: Map m = bcmap[articpoint]
2: for all component c ∈ m do
3: bctree.addEdge(cprevious, c)
4: List ls = m[articpoint]
5: for all node n ∈ ls do
6: if !bcmap[n].empty() then
7: dfs(bctree, n, c)
8: end if
9: end for

10: end for
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Figure 5.2.: Edge Expansion Diagram for Nw.1.
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6. Improving the Decomposition Approach

We have outlined in Section 3.5 that the complexity of the decomposition approach notably
depends on the size of the maximal boundary set Fmax. Since |Fmax| results from the
process of variable ordering, we must focus on conceiving variable ordering techniques
which preferably lead to low |Fmax|. Finding a graph decomposition which leads to the
smallest |Fmax| corresponds to the path- or tree-width problem, also called partial k-tree
problem: given a graph G, find a tree decomposition for G of minimal tree-width.

Definition 6.1. According to [60], a tree decomposition of a graph G = (V,E) is a family (Xi :
i ∈ I) of subsets of V , together with a tree T = (I, F ) whose node set corresponds to I and F is
the edge set of T , such that

1.
⋃
i∈I Xi = V,

2. ∀(v, w) ∈ E,∃i ∈ I with v, w ∈ Xi (i ∈ I),

3. ∀i, j, k ∈ I, if j is on the path in T from i to k then Xi ∩Xk ⊆ Xj .

The tree-width of a tree decomposition T is defined as W (T ) := maxi∈I |Xi| − 1. The tree-width is
defined such that there is no more thanW (T ) common vertices betweenXi andXj , with (i, j) ∈ F ,
unless Xi = Xj . The tree-width of a graph, TW (G), is the smallest tree-width over all its tree
decompositions: TW (G) = minT is a tree decomposition of GW (T ).

The problem of finding a tree decomposition of smallest tree-width is motivated by the
fact that once a tree decomposition for a graph G with bounded tree-width k ∈ N has been
determined, many NP-hard problems for general graphs G can be solved in time linear to
the size of G but exponential in k or |Fmax|. Unfortunately, finding a tree decomposition
with smallest tree-width is an NP-complete problem [4]. A lot of research has been done
on finding tree-decompositions with minimal tree-width. A noteworthy result is due to
Bodlaender [10]: for fixed k, he found a linear time algorithm which decides whether a
graph G has bounded tree-width of at most k, and if so, it finds a tree-decomposition of
G with tree-width at most k. However, the constant factor k of the algorithm is very large
- much too large for practical purposes. In addition, the algorithm in its present form is
probably not practical.
Thus, Carlier, Hardy and Hermann [12, 23, 25] suggested the bfs-ordering as a good alter-
native variable ordering for the decomposition method. Apart from this, Lucet proposed
in her PhD thesis [48] some other heuristics for obtaining low |Fmax| values. However,
these heuristics have not yet been shown to deliver better results than the bfs heuristic.
In this chapter, we propose another heuristic which yields lower |Fmax| values for a large
variety of different graph structures. The new heuristic has a worst case complexity of
O
Ä
|V | · |E| · |Fmax| · Nmax

ä
, where N(Fk) := {v /∈ Fk : (u, v) ∈ Ek, u ∈ Fk}1 is the set of

1Ek is the complementary edge set in the k-th level, defined in Section 3.5.4.
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6. Improving the Decomposition Approach

nodes adjacent to frontier set Fk and Nmax := maxk |N(Fk)| is the maximal neighborhood
among all frontier sets. In order to conceivably improve performance, it can also be ap-
plied to other BDD-based methods, such as the KLY method.
The experiments in Section 8.1 show that the new heuristic finds for many example net-
works - especially unregular networks - edge orderings with much lower |Fmax| than the
currently used bfs-heuristic. To get a better understanding of the evolvement of the new
heuristic, we first explain the derivation of new partitions during the decomposition proce-
dure. This non-trivial derivation was omitted by [23]. As stated in Section 3.5, we provide
an example where a false-leaf is created when an edge is merged during factoring. At the
end of this chapter the new heuristic is compared to the current bfs-heuristic by means of
three sample networks.

6.1. Derivation of new partitions

Based on an available partition, two new partitions are derived by edge-contraction or
edge-deletion.
Let e1, e2, . . . , eq be an ordering of edges for a graph G. We say that this edge ordering has
a connected property if for each k ∈ {1, 2, . . . , q}, the edge set Ek is connected, whereas
Ek := {e1, e2, . . . , ek−1} and Ek := {ek, . . . , eq}. Since the bfs and the new heuristic have
an edge ordering with connected property, we obtain at most one new node which is added
to the previous boundary set Fk−1 at each factoring step. So we are confronted with two
cases when factoring on edge e := (n1, n2): Case I. where a new node n2 ∈ Fk is added
to Fk−1 and Case II. where no new nodes are added to Fk−1. For Case I., there are two
sub-cases and for case II. there are four sub-cases to distinguish. They are listed in Table
6.1. For example, Sub-case a) means that n1 leaves the previous frontier set Fk−1 in the
next iteration k.
The four sub-cases a) to d) lead to ten elementary cases for each contraction and deletion
operation (see Tables 6.2, 6.3, 6.4, 6.5). For Tables 6.3, 6.5 we have omitted Sub-case d)
which is analog to a) when interchanging the roles of n1 and n2.
Starting with the edge-contraction accompanied by Case I.a, we have to delete node n1

from the block of the current partition. The block wherein n1 is contained is named b(n1).
Subsequently, n2 is added to b(n1) which may cause a change in the block order. To finally
obtain the new partition, the block is, if required, rearranged inside the current partition
according to the sorting defined in Section 3.5.6. The proceeding for Case I.b is similar, ex-
cept that the blocksize of b(n1) increases by one. Consequently, the position of b(n1) either
remains or is shifted to the right within its current partition.
Facing Case II., we have to distinguish whether n1, n2 are in the same block or in different
blocks. For the latter case, the different blocks are merged into one block which is then
placed into the current partition according to the defined sorting. By deleting nodes n1 or
n2 from the blocks, we must account for the case that the respective blocks may be empty
- or decay - after node removal. In this case, we do not need to merge the blocks (possibly
merge blocks for II.a and II.c). We note that if a decaying block is a marked block, then the
child of the current BDD-partition-node must be a BDD false-leaf.
For the deletion operation with regard to Case I. (see Table 6.4), we have to create a new
block for node n2 and appropriately place the new block into the current partition. Other-
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6.1. Derivation of new partitions

wise, all other partition manipulating operations are similar to those for contraction.

Table 6.1.: Case-by-case analysis for deduction of new partitions

I. New frontier node n2: II. No new frontier node:
n1 ∈ Fk−1, n2 ∈ Fk n1, n2 ∈ Fk−1

a) n1 /∈ Fk, n2 ∈ Fk relevant relevant
b) n1, n2 ∈ Fk relevant relevant
c) n1, n2 /∈ Fk irrelevant relevant
d) n1 ∈ Fk, n2 /∈ Fk irrelevant relevant

Table 6.2.: Contract I.

a) delete n1, add n2 to b(n1) & rearrange b(n1)
b) add n2 to b(n1) & rearrange b(n1)

Table 6.3.: Contract II.

n1, n2 are in the same block n1, n2 are in different blocks
a) delete n1 & check if b(n1) decays, delete n1 & check if b(n1) decays,

sort blocks possibly merge blocks & sort blocks
b) return current partition merge blocks & sort blocks
c) delete n1, n2 & check if b(n1/2) decays, delete n1, n2 & check if b(n1) or b(n2) decay,

sort blocks possibly merge blocks & sort blocks

Table 6.4.: Delete I.

a) delete n1 & check if b(n1) decays & create new block b(n2) & sort blocks
b) create new block b(n2) & sort blocks

Table 6.5.: Delete II.

n1, n2 are in the same block n1, n2 are in different blocks
a) delete n1 & check if b(n1) decays, delete n1 & check if b(n1) decays,

sort blocks sort blocks
b) return current partition return current partition
c) delete n1, n2 & check if b(n1/2) decays, delete n1, n2 & check if b(n1) or b(n2) decay,

sort blocks sort blocks

6.1.1. False-leaf when contracting

Now we have accumulated enough insight in order to explain by means of an example in
Figure 6.1 the possible occurence of a BDD false-leaf when contracting an edge. For the
terminals 0 and 5, the factoring order is e0, e1, e2, e3, e4, e5. At level three of the BDD, the
frontier set equals {2, 3, 4}. A possible setup of a partition could be [23]∗[4]. Contraction
of edge e4 results in the decay of the marked block [23]∗. Consequently, terminal node 0 is
disconnected from the boundary set and we have to link the current BDD-node of partition
[23]∗[4] to a false-leaf.

61



6. Improving the Decomposition Approach

e0e1
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e5e3
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4 53
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0 F3={2,3,4}
F4={4}

Figure 6.1.: Example for false-leaf when contracting edge.

6.2. A new heuristic for finding a good variable order

We have stated that the problem of finding the tree or path decomposition with the small-
est tree- or pathwidth is NP-hard for an arbitrary graph [4]. Hence, one must resort to
heuristics. To obtain a substantial improvement of the approach, our goal is to find a bet-
ter heuristic than the currently proposed breadth-first-search variable ordering. For all
kinds of graph structures, the new heuristic should preferably find a variable ordering
which leads to a maximal frontier with lower or at most equal size in comparison to the
bfs-heuristic. In case the cardinality of the maximal frontier set is equal for both heuristics,
the cardinalities of all frontier sets Fk obtained from the new heuristic should be less than
or equal to those from the bfs-heuristic.
At each level k of the factoring order (the number of levels equals the number of edges of
the input graph G), we have a certain set of frontier nodes Fk. The cardinality of Fk highly
depends on the previous choices of edges to be factored and is at least two. To keep the
frontier size as small as possible, we must focus on adding as few vertices as possible to
Fk and getting rid of as many vertices as possible from Fk at each iteration of the edge
choice (see Algorithm 8). By choosing an edge to factor, at most two new vertices can be
added to the current frontier Fk. This is done by choosing an edge which is not adjacent
to Fk. Hence, a better choice must be an edge adjacent to Fk. Each time an edge is chosen,
it is deleted from G. Algorithm 8 ends when all edges are deleted from G. The candidate
for our first priority choice must be an edge which connects two vertices n1, n2 ∈ Fk. In
case this choice can be made, the chosen edge is added to the variable order list order and
deleted from G (see Algorithm 8 line 8). The size of Fk would at least remain constant
or at most decrease by two. Everytime a choice is made, we subsequently have to check
whether the affected nodes n1, n2 must be added or removed from Fk and subsequently
update Fk. This fact is considered in lines 9, 15 and 20 of Algorithm 8. The maximal size
of Fk is updated after each iteration in line 5.
Otherwise, if the set of Fk-adjacent edges does not contain any edge e = (n1, n2) with
n1, n2 ∈ Fk, we decide for an edge e = (nmin, n2) adjacent to the frontier node of low-
est degree nmin := arg min

n∈Fk

deg(n), where the neighborhood of n2, N(n2), contains at least

one node from the current frontier set Fk excluding nmin (second priority choice, see Algo-
rithm 8 line 12). If there are several nodes nmin meeting the second priority and having the
same degree, we randomly decide for one of them. Otherwise, if there is no edge which
meets the second priority, we make our choice according to the third priority: among the
set of frontier nodes with minimal degree J , we choose the egde with end vertex n2 which
is from the neighborhood of J and has minimal degree (see Algorithm 8 line 18). If the
choice is not clear, we again randomly decide for one possibility.
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6.2. A new heuristic for finding a good variable order

The reason behind this choice is that we expect nodes that are still contained in Fk and
nodes that will be added to Fk to leave Fk as early as possible in one of the following itera-
tions. This also means that we needed at least deg(v)−1 more edge decisions for a recently
added node v to leave the frontier set.
Finally, the variable order is returned as an ordered list of edges order. The variable order
and the size of the maximal frontier set |Fmax| depends on the initial input node n. So
findV arOrder is conducted for all nodes of v ∈ G and the order is taken for the initial
node n that gives the lowest size for Fmax.

6.2.1. Complexity discussion

In Algorithm 8, we decide |E| times for an edge. In the worst case, there are no matches
for the first and second priority choice in each iteration k. Since each of the three priority
choices implies the analysis of the neighborhood N(Fk) of boundary set Fk, we have a
worst case complexity of O

Ä
|Fk| · |N(Fk)|

ä
for each iteration k, where N(Fk) := {v /∈ Fk :

(u, v) ∈ Ek, u ∈ Fk}. Define Nmax to be the maximal cardinality neighborhood among
all frontier sets: Nmax := maxk |N(Fk)|. Overall, the worst case runtime complexity is
O
Ä
|V | · |E| · |Fmax| ·Nmax

ä
. Note that Nmax ≤ |V | − |Fk′ |, with k′ := arg maxk |N(Fk)|.

6.2.2. Application on Example Graphs

In the following, we compare the results of both heuristics based on two general regular
networks (a Fan network and a complete N-node network, and an irregular network), the
ARPANET from 1979 (consisting of 59 nodes and 71 edges, see [70]).
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3

Figure 6.2.: Fan network

Fan network For the regular graph called the ”Fan” graph (see Figure 6.2), the new
heuristic finds a variable ordering of |Fmax| = 3 with regard to the initial nodes n ∈ S :=
{s, t, 1, 2, N − 1, N}. Otherwise, the new heuristic yields |Fmax| = 4 for all n ∈ V \ S.
For n ∈ {s, t} the bfs-heuristic yields |Fmax| = N or |Fmax| = N + 1. With respect to initial
nodes in V \ {s, t}, the bfs-heuristic yields 3 ≤ |Fmax| ≤ N + 2 depending on the order of
the bfs-traversal.
For the bfs-heuristic, we have a huge difference of N − 1 for |Fmax| between the worst and
the best case, while the difference of values for |Fmax| is only one for the new heuristic.
For this particular network, we obviously obtain a better variable ordering with the new
heuristic.
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Algorithm 8: findV arOrder

Require: node n, Graph G
1: Choose an edge (n, n′) := e ∈ E with n′ ∈ {v ∈ N(n) : arg min deg(v)}
2: order.add(e), G.delete(e)
3: F0.add(n), F0.add(n′)
4: while Fk 6= ∅ do
5: Update size of Fmax
6: //1st priority choice
7: for all edges (n1, n2) =: e ∈ Ek with n1, n2 ∈ Fk do
8: order.add(e), G.delete(e)
9: Update Fk

10: end for
11: //2nd priority choice
12: Choose an edge e = (n1, n2) with n1, n2 from

H :=
{
n1 ∈ Fk : arg min deg(n1) ∩

Ä
Fk \ {n1}

ä
∩N(n2)

}
13: if

Ä
Fk \ {n1}

ä
∩N(n2) 6= ∅ then

14: order.add(e), G.delete(e)
15: Update Fk
16: else
17: //3rd priority choice
18: Choose an edge e = (n1, n2) with

n1 ∈ J := {v ∈ Fk : arg min deg(v)}, n2 ∈ {v ∈ N(J) : arg min deg(v)}
19: order.add(e), G.delete(e)
20: Update Fk
21: end if
22: end while
23: return order
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Figure 6.3.: N-node complete graph (two-level bfs recursion)
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Complete Graph Applying the bfs heuristic to a complete N-node graph yields a vari-
able ordering which leads to a sequence of frontier sets with the following cardinalities:

2, 3, . . . , N − 1︸ ︷︷ ︸
N−2 levels

, N − 1, . . . , N − 1︸ ︷︷ ︸
N−2 levels

, N − 2, . . . , N − 2︸ ︷︷ ︸
N−3 levels

, . . . , 4, 4, 4, 3, 3, 2 (6.1)

So we have in level one of the BDD-tree a frontier set F1 with size two, in level two |F2| = 3
and so forth, whereas the last level is omitted, since the size of the last frontier set equals
zero. The accomplishment of this sequence is clarified by Figure 6.3. It shows the two
recursion levels of the bfs. In the first level N-1 edges are consecutively chosen. Since they
are deleted together with node 0 (after being visited), each of the remaining N-1 nodes
has N-2 neighbors. Again, N-2 edges which are adjacent to one of the remaining nodes
are chosen and deleted from the graph. In the same way the choices are made for the
rest. Applying the new heuristic to the complete graph, yields the reverse order of sizes
of frontier sets. In this sense, Expression 6.1 is mirrored. This gives |F1| = 2, |F2| = 3,
|F3| = 3, and so on. The mirroring fact is shown for a complete 10-node graph in Figure
6.4. In total, the sum of frontier sizes are equal and in addition to that the maximal frontier
size is N-1 for both. One would be left with the impression that both heuristics should
lead to the same performance of the decomposition algorithm. However, this is not the
case: though frontier sizes in one of the first levels are higher for the bfs heuristic, the
number of possible children in each BDD-level l, l ∈ N, are limited to 2l due to the binary
structure of the BDD. In contrast to this, the higher frontier set cardinalities obtained by
the new heuristic for the last levels l, can lead to a dramatic growth of the BDD width,
since l has increased. This fact is confirmed by measurements for the complete 10-node
graph in Section 8.1. So for complete graphs, it is better to utilize the bfs heuristic.
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Figure 6.4.: Frontier size in each BDD level for the complete 10-node network

ARPANET 1979 Nevertheless, we have found that the new heuristic generally delivers
much better results for irregular graph structures such as the ARPANET 19792: applying
Algorithm 8 to node 30 we obtain |Fmax| = 6. Otherwise, by using the bfs-heuristic we
obtain |Fmax| = 16. Considering that for |K| = 2 there are at most 810 different parti-
tions for |Fmax| = 6 (see Table 8.6) and around 41,92 billion partitions for |Fmax| = 16,
one can roughly guess the huge difference in time and memory requirement claimed by

2The graphical representation of the ARPANET 1979 is given in [70].
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Figure 6.5.: Frontier size in each BDD level for the ARPANET 1979

the computation. Not only |Fmax| is vastly larger, also the cardinalities for all frontier sets
are significantly higher for the bfs heuristic (see Figure 6.5). Consequently, this inevitably
leads to a huge difference in runtime and memory demand approved by results which
can be found in Section 8.1. Furthermore, we have observed that in most cases of regular
graph structures - such as grid networks - it is of no matter which heuristic to use . For
those structures we cannot expect any improvements since both heuristics deliver variable
orderings which have the same size of Fmax. Moreover, we have not yet found any coun-
terexamples where the new heuristic produces variable orderings with higher |Fmax| than
the current bfs-heuristic. Except for complete graphs, the new heuristic is consequently at
least as good as the bfs-heuristic and finds for many graphs - especially irregular graphs -
a better variable ordering with a significantly lower cardinality of Fmax.
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7. Improving the Dotson-Gobien Algorithm

In Section 4.3.4 we have addressed the maintenance of different data structures for the DG
method. Certain drawbacks of them can pose a serious issue in terms of the DG method’s
expectantly high memory demand. For being able to cope with inputs of larger dimensions
and additionally obtain more accurate bounds, we will show how to keep the memory con-
sumption of the DG method with reductions as low as possible. To remedy the redundant
information stored in the event queue, the lack of reductions of the original approach and
Deo and Medidi’s high memory demand for the storage of each evolving subgraph, we
propose the use of a so-called delta tree. It keeps track of all changes made to the original
graph due to reductions and partitioning.
Even though memory consumption is kept as low as possible, the limitation is soon reached
by large graph sizes due to the exponential growth of this problem. Another key idea is to
migrate the delta tree to hard disk. The data to be written is arranged in a certain way in
order to comply with the hard disk’s sequential read and write access (see 7.1.1).

7.1. Obtaining better bounds with the ∆tree

All the intermediary results of this method can be stored in a recursion tree called a delta
tree, T∆, whose structure is as follows: starting with the root node, we store all reductions
performed on the original input graph. In general, each node of the tree stores all conse-
cutively performed reductions on a certain subgraph. The number of child nodes equals
the length of the shortest s-t path found at the parent node. The edges connecting the
parent node with the child nodes contain the information for partitioning the respective
subgraph represented by the parent node. In the course of the algorithm the tree emerges
level by level according to breadth-first-search order. Each leaf of the tree represents a
subgraph or task to be processed. This subgraph can be reconstructed by tracing back the
delta path, P∆, from leaf to root. Apart from the subgraph, the appropriate edge probabil-
ity map, EdgeProbMap (epm), and the accumulated path/cut terms can be reconstructed
by the help of P∆. Below, we show how the relevant information can be stored in T∆.
Each series or parallel reduction involves two edges, e1 and e2, whereas the first one’s
probability pe1 is readjusted with respect to the performed reduction: pe1 := pe1 · pe2 (for
series-) or pe1 := pe1 + pe2 − pe1 · pe2 (for parallel reduction). Edge e2 will be contracted
in case of a series reduction and deleted in case of a parallel reduction. In general, the
contraction of an edge e contains the following steps: first delete e, then merge the border
nodes of e to one node. In both cases (series- and parallel), edge e2 is removed from the
graph. Edge e1 remains in the graph and pe1 is captured in the EdgeProbMap. The operation
◦ is introduced for distinguishing a contraction (◦ = +) from a deletion (◦ = -). To distin-
guish e1 and e2, any reduction term, red, comprises a semicolon. Its string representation
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is as follows:
red := ”e1; ◦e2”

Any T∆-node n of a graph containing l reductions is represented by:

n := ”red′1red
′
2 . . . red

′
l”

The reductions are separated by an acute accent.
Based on the shortest path of length r, the r subproblems are each derived by edge deletion
and contraction operations. All edges which are to be contracted, are standing upfront
followed by the last edge er which is to be deleted (by the - operation). Again those edges
can be separated by a semicolon. Suppose we have found a path of length r at a node n
in the delta tree, then the r delta tree edges e∆ emerging from parent node n are defined as
follows:

e1
∆ := ”− e1” e2

∆ := ”e1;−e2” . . . er∆ := ”e1; e2; . . . ; er−1;−er”

Every delta path P∆ of recursion level m is an alternating sequence of T∆-nodes ni (com-
mencing with root n0) and T∆-edges ei∆, 0 ≤ i ≤ m:

P∆ := ”n0 > e0
∆ > n1 > e1

∆ > . . . > em−1
∆ > nm > em∆”

7.1.1. Memory-efficient implementation

In this part we describe the whole modified algorithm which generates an output file FNext
by taking an input file FPrev at each recursion level. After initialising the input graph, the
files and all appropriate maps in Algorithm 9, Algorithm 10 is invoked for processing the
initial graph. There we first check the connectivity of the graph. If the graph is connected,
we look for possible reductions in line 12. The changed probabilities due to reductions are
updated in epm at line 13. Additionally, the performed graph manipulations caused by
reductions are captured in a string as described above and again this string is contributed
to line (line 14). Furthermore, line is enriched with the respective subproblems according
to the shortest path sp. Finally, line is written to FNext.
Now we define the rules for writing T∆ to FNext. Each line in FNext (linebranch) represents
a branch of T∆ comprising k leafs. The string representation therefore is defined as follows

linebranch := ”n0 > e0
∆ > n1 > e1

∆ > . . . > em−1
∆ > nm : esub0∆ , esub1∆ , . . . , esubk∆ ”

Hereby the k delta tree edges esub∆ are separated by a comma and attached by a colon. In
Algorithm 10 the first part of linebranch - to the left of the colon - is aggregated by ag-
gregateLeaf(e) with the respective subproblems. At the end of the for-loop the completed
linebranch is written to file FNext. After all linebranches of the current T∆ level have been
written, the FNext file is renamed to FPrev and then taken as input for the next recursion in
Algorithm 11. A delta path (task P∆i) with i ∈ {0, 1, . . . , k} is derived from linebranch and
is represented as follows

P∆i := ”n0 > e0
∆ > n1 > e1

∆ > . . . > em−1
∆ > nm > esubi∆ ”

In Algorithm 11, each P∆ deduced from linebranch is processed by Algorithm 12 which
reads P∆ and reconstructs the subgraph and the appropriate accumulated terms acc. At
the end of each level of T∆, the current bounds are printed out.
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7.1. Obtaining better bounds with the ∆tree

Algorithm 9: Main

1: Init(); //Initialize inputGraph, epmInit, FNext, FPrev
2: FPrev = computeRel(inputGraph,new List(), epmInit, ””, FNext);
3: FNext = new File;
4: bfsLevel(FPrev);

Algorithm 10: computeRel

Require: RBD Graph,List acc,EdgeProbMap epm,String line,File FNext
1: bool PorC; //Condition variable for determining path/cut
2: bool b = Graph.findPath();
3: if b == false then
4: double tmp = computeProduct(acc);
5: if PorC == true then
6: Paths = Paths+ tmp;
7: else
8: Cuts = Cuts+ tmp;
9: end if

10: return
11: end if
12: SPRed red = Graph.reduce() //Preprocessing: Reduce graph.
13: epm = red.getEdgeProbMap(); //Update edge probabilities
14: line = line+ red.getString(); //Extend line with reduced terms
15: List sp = BFS.shortestPath(Graph); //Find shortest path
16: for each e ∈ sp do
17: line = line+ aggregateLeaf(e);
18: end for
19: FNext.write(line);
20: return FNext
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7. Improving the Dotson-Gobien Algorithm

Algorithm 11: bfsLevel

Require: File FPrev
1: for each linebranch ∈ FPrev do
2: //proceed each subproblem (path)
3: for each sub ∈ linebranch do
4: RBD rbd = readTaskBranch(sub);
5: FNext = computeRel(rbd, accumlation, epm, line, FNext);
6: end for
7: end for
8: if FNext.IsEmpty() then
9: return

10: end if
11: FPrev = FNext;
12: FNext = new File;
13: print ”upper bound for Unreliability = 1− Paths()”;
14: print ”lower bound for Unreliability = Cuts()”;
15: bfsLevel(FPrev);

Algorithm 12: readTaskBranch

Require: String sub
1: String[] deltapath = sub.split(>);
2: for each i ∈ deltapath do
3: processNode(deltapath[i]); //reductions
4: i = i+ 1;
5: processEdge(deltapath[i]); //merge&delete operations
6: end for
7: epm.update(); //recreated EdgeProbMap
8: acc.update(); //recreated accumlation List
9: return rbd; //reconstructed graph
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Measuring and Comparing
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8. Evaluation on different network structures

To prove the relevance of our extensions and modifications, we have compared our ap-
proaches to the original approaches based on 27 example networks (Figure 8.1) and 5 ran-
domized sets of networks. Some of the networks are taken from [85, 36, 25] in order to
allow for comparison. Those are networks 2-8, 10, 11, 13, 14, 16, 17, 26. The other networks
are well-known examples from the literature. For example Nw.22 is known as the street
network with parameter N. This network has N horizontal edges in each row and N-1
edges in each column. Nw.18 is the K4 ladder of dimension 21 (having 21 vertical edges).
Its reliability can be determined analytically for any dimension by method [72]. Also the
ARPANET 1979 - one of the world’s first operational packet switching networks, the pro-
genitor of what was to become the global Internet is taken into consideration (see [70]). To
cover as many different graph structures as possible and to realise a fair comparison, we
have additionally created different sets of random network structures (see Nw. 28-32).

Randomized network structures Based on the work in [77], we have used the GenGraph
tool to generate randomized networks whose degree distribution follows the power-law.
According to [77], the power-law distribution for the node degree seems to give a good
replication of the Internet or real world communication network structures. The generated
graphs depend on a set of four parameters: N (the number of nodes), α (the exponent of the
power law distribution), mindeg (the minimal node out-degree) and maxdeg (the maximal
out-degree). We have chosen the following parameter configuration for

• Nw.28 : |V | = 130, α = 4, mindeg=2, maxdeg=3

• Nw.29 : |V | = 66, α = 3, mindeg=3, maxdeg=4

• Nw.30 : |V | = 45, α = 2, mindeg=2, maxdeg=4

• Nw.31 : |V | = 15, α = 4, mindeg=5, maxdeg=8

• Nw.32 : |V | = 100, α = 3, mindeg=3, maxdeg=8

In the field of fault-tolerant systems, it is realistic to assume double, triple or quad re-
dundancy justifying our choice for mindeg and maxdeg in Nw. 28-30. The parameter α
determines the interlacement of the network: the graph structure turns out to be more
”planar” and less complex with increasing α. Since the network gets more complex with a
lower α, we had to decrease the number of nodes to maintain the computation feasible in a
short time. Each result listed for Nw. 28-32 is an average made up of over 100 randomized
samples × number of all different s-t-pairs, that equals 100×

(∑|V |−1
i=1 i

)
. To give an initial

impression of the randomized graphs’ appearance, we have illustrated in Figure 8.2 four
representative samples taken from the generation. Nw. 32 is not depicted, however, we
can imagine it to look like a highly interlaced ball of wool.
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Figure 8.1.: Benchmark Networks 1-27.
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8.1. Results after applying modifications

Nw.28 Nw.29

Nw.30 Nw.31

Figure 8.2.: Samples for the randomized networks 28-31

The KLY and decomposition approaches were implemented in the C++ programming lan-
guage and the Dotson-Gobien approach was implemented in JAVA. The experiments were
run on an Intel Xeon 5670 (Westmere EX) 2.93GHz machine with 12M L3 Cache and 40GB
of RAM. For comparability reasons, all edges are assumed to fail with probability of 0.1.
In fact, the failure probabilities can be arbitrary and in addition they do not have any in-
fluence on the performance of the algorithms. First we do a pre-post comparison for each
method regarding their runtime and memory demand. Then all three approaches are con-
trasted against one another.

8.1. Results after applying modifications

In the tables listed underneath, index two is assigned to the original approaches whereas
the modified new approaches bear index one. The computed reliability values, network
parameters |V |, |E| and number of ROBDD nodes for the KLY and number of OBDD nodes
for the decomposition approach (abbreviated with ”D”) are shown in Table 8.1. Tables 8.1
and 8.4 are of relevance for the KLY and decomposition approach. Separately, the results
are found for each of them in Tables 8.2 and 8.3. The measurements for the Dotson-Gobien
approach are listed in Tables 8.5 and 8.6.

8.1.1. Results for the KLY approach

For effectively applying logic operations on ROBDDs, we have incorporated the BuDDy
BDD library (from [44]) in the KLY approach. The size of the ROBDD is determined by
bfs variable ordering and since the order of this edge traversal is ambiguous, we might
not obtain the same ROBDDs as in [85] for the same input networks. However, according
to the bfs-variable ordering, the resulting ROBDDs are the same for either of our imple-
mented approaches. In the result Tables 8.1, 8.2, 8.4 our new approach bears index 1 and
the original KLY approach index 2.
The number of Gnode/Hits, runtimes and speedup are illustrated in Table 8.2. Examples
which we could not compute within an acceptable amount of time/memory are marked
with ”-”. Table 8.4 exposes the peak memory consumption and the relative memory con-
sumption m1

m2 for each example network. Networks where no redundant biconnected com-
ponents occur and hence no improvement with our new approach could be gained, are
underlined. The memory consumption is equal for both methods when applied to this
kind of network. Yet, the runtimes are expected to be slightly shorter for the original ap-
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8. Evaluation on different network structures

Table 8.1.: Reliability values and number of BDD-nodes for KLY and D2 using bfs heuris-
tic, and D1 using new heuristic

Nw |V | |E| |BDDKLY | |BDDD1 | |BDDD2 | Reliability
1 7 11 26 18 63 0.979257
2 5 8 23 31 31 0.997632
3 6 9 16 22 22 0.977184
4 7 11 31 27 42 0.995665
5 16 24 450 361 667 0.995553
6 20 30 558 491 821 0.994395
7 20 30 3,995 3,165 6025 0.99712
8 13 23 275 155 412 0.987428
9 10 45 74,885 146,987 58,291 1.000000

10 25 40 1,147 2,104 1,694 0.975557
11 36 60 4,969 10,121 7,227 0.975645
12 49 84 20,752 46,795 29,821 0.975659
13 36 57 316 474 474 0.961730
14 48 76 436 654 654 0.956266
15 60 97 556 834 834 0.950832
16 40 58 114 168 169 0.784482
17 200 298 594 888 889 0.304293
18 42 101 372 563 564 0.995652
19 210 347 2,056 3,084 3,084 0.885461
20 27 74 1,495 1,754 2,249 0.997996
21 36 101 1,996 2,480 2,951 0.997996
22 22 41 1,686 2,411 2,466 0.999909
23 32 61 8,610 11,534 12,460 0.999987
24 44 85 41,904 52,936 60,057 0.999998
25 71 265 - 81,998,602 109,023,610 1.000000
26 7,000 12,993 - 12,968,704 12,951,730 0.975357
27 59 71 917,328 2,880 14,469,848 0.956042
28 130 140 122,004 15,312 1,587,344
29 66 85 - 245,615 -
30 45 59 38,067 8,950 967,400
31 15 44 365,337 39,707 493,739
32 100 210 - - -
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Figure 8.3.: Hit ratio and ratio of hashmap sizes
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8.1. Results after applying modifications

Table 8.2.: Comparison of results (original KLY vs. improved KLY)
t1 := runtime of the improved KLY method,
t2 := runtime of the original KLY method,
t2
t1

:= speedup

Nw GNode1 GNode2 Hit1 Hit2 t1 t2
t2
t1

1 8 16 5 8 <1ms <1ms 1
2 8 8 2 2 <1ms <1ms 1
3 11 11 5 5 <1ms <1ms 1
4 12 12 5 5 <1ms <1ms 1
5 123 137 49 41 <1ms <1ms 1
6 205 241 87 77 <1ms <1ms 1
7 577 613 249 225 0.02 0.02 1
8 106 135 85 85 <1ms <1ms 1
9 1,025 1,025 2,568 2,568 0.32 0.31 0.97

10 774 2,106 589 973 0.04 0.06 1.5
11 7,849 58,226 6,686 31,606 0.99 2.53 2.56
12 137,899 3,112,115 127,282 1,847,623 30.59 206.62 6.75
13 725 16,958 580 7,842 0.08 0.69 8.63
14 1,629 272,614 1,372 127,313 0.29 15.1 52.07
15 3,077 4,363,912 2,676 2,040,215 0.83 385.45 464.4
16 75 75 35 35 <1ms <1ms 1− ε
17 395 395 195 195 0.33 0.26 0.79
18 231 231 329 329 0.04 0.03 0.75
19 119,277 - 114,376 - 410.64 - -
20 61,594 912,957 105,568 1,206,264 8.24 51.86 6.27
21 1,206,586 - 2,128,876 - 246.43 - -
22 1,020 2,292 741 1,041 0.06 0.06 1
23 10,629 68,504 8,639 34,386 1.12 2.6 2.32
24 189,702 3,629,099 173,264 2,030,453 35.94 212.54 5.91
25 - - - - - - -
26 - - - - - - -
27 402 1600 92 215 3.35 3.45 1.03
28 623 2,783 78 200 0.52 1.04 2.0
29 - - - - - - -
30 844 1,613 308 409 0.12 0.12 1
31 10,531 12,017 16,306 17,155 3.46 3.28 0.95
32 - - - - - - -
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8. Evaluation on different network structures

proach since the overhead does not pay off for the new approach. In the worst case (see
Nw.18), the new approach takes 1.33 times longer than the original approach. However,
the additional time is in absolute values only 100 ms for a relatively large network. For
smaller ones such as Nw.2, 3 and 4, the overhead spent is negligible. In most of the samples
we can observe a significant speedup and reduction of memory consumption by applying
our new approach. This becomes especially more significant for larger-sized networks. A
remarkable speedup was achieved for Nw.15 with 464 times. Furthermore, our new ap-
proach needs only 0.3 percent of the memory claimed by the original one. Comparing the
results with Nw. 13 and 14 one should expect these factors to rise for higher dimensions
of this grid network. For Nw.19 it was not possible to finish the computation with the
original approach in an acceptable time frame and without exhausting the memory.
A similar conclusion can be drawn for the other recursive network structures Nw.10-12
and Nw.20-24. Even more, Nw. 25 and 26 are unfeasible for the original and the modi-
fied approach. In general, we indicated a much higher number of Gnode for the original
approach coupled with a higher number of hits. The number of Gnode can be regarded
as the number of misses since a miss leads to a new hashmap entry. A large difference
between the number of Gnode indicates that either numerous or large-sized biconnected
components were removed in the course of the algorithm.
We can justify the hahsmap’s value of benefit by means of the above-defined hit ratio

Hit
|Gnode|+Hit . The hit ratio for our new approach is for most examples significantly higher
than for the original one (upper graph of Figure 8.3). On average, we have a hit ratio of
41 percent (a1) for the new approach and 32 percent (a2) for the original approach. For
the scalable and regular network structures we notice that the hit ratio (or the benefit of
the hashmap) increases linearly with the size of the networks. For Nw.13-15 the hit ratio
remains even constant for the original algorithm. From these facts we conclude that the
hashmap’s benefit is clearly improved by using the new approach. Another fact that we
can deduce from this diagram is that the hit ratio grows with the density or interlacement
of the network. This can be observed for the sets of randomized graphs and especially for
the 10-node complete graph where we have obtained the highest hit ratio. The diagram
at the bottom of Figure 8.3 depicts the hashmap size ratio of the two approaches. For in-
stance, in Nw.1 the hashmap size has shrunk to 50 percent with regard to the hashmap
size of the KLY-algorithm. The more redundant biconnected components are removed,
the more the hashmap shrinks. We find that the new approach performs better on graphs
tending to be planar. For example, Nw.28 has a maximum out-degree of three and a low
interlacement. The number of Gnode for the original approach is 4 times higher than the
number of Gnode for the new approach. The new approach gives a speedup factor of 2 and
91.5 percent of the memory is needed. With decreasing α and increasing interlacement the
number of Gnode for the original approach is only twice as much as the new one (see lower
graph of Figure 8.3). For Nw.30 and 31 both approaches end up with the same average run-
time. The memory consumption is expected to be lower since the number of Gnode differs
significantly. However, compared to Nw.28 the memory savings with the new approach
is proportionally lower. It can be seen that the number of BDD-nodes and the memory
consumption have risen although the number of nodes and edges were decreased. This
is traced back to the increased network interlacement/complexity related to a decreasing
α. To affirm this assertion, the randomized graphs in Nw.31 were given a high connectiv-
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8.1. Results after applying modifications

ity by fixing mindeg=5 and maxdeg=8. There, the overhead spent to find and to remove
redundant biconnected components does not pay off in runtime. However, by looking at
the number of Gnode we infer that with regard to Nw.28, 30 and 31 proportionally fewer
redundant biconnected components occur and hence only a small amount of memory is
less demanded by the new approach. Regarding runtime and memory consumption, the
smaller-sized networks are of no consequence. In other words, it does not make any dif-
ference in runtime and memory consumption to compute them either with the original
approach or the new one. Our measurements stress that apart from the network size,
the network structure has even a higher impact on the performance of both approaches.
Sparse and regular networks can be well handled by both algorithms whereas dense and
irregular network structures with a high interlacement can easily lead to vast memory con-
sumptions and long runtimes. So both approaches could not solve Nw.29 and above all
Nw.32 which has a high connectivity and more than 200 edges.
In general, the memory consumption for the new approach is for every kind of network
at most as much as for the original approach. In the worst case where no redundant bi-
connected components occur (here we do not involve the case with redundant nodes of
degree one which is already covered by the original approach), the same amount of mem-
ory is consumed and the runtime of the new approach is extended by the overhead spent
to detect biconnected components (see Nw.18).

8.1.2. Results for the decomposition approach

Unlike the KLY approach, there are two columns for the number of OBDD nodes for the de-
composition approach in Table 8.1, brought off by the different strategies for determining
the variable ordering. As stated above, the decomposition approach using bfs heuristic
bears label D2 and the use of the new heuristic is labeled with D1 respectively. The dif-
ferent OBDD sizes are a significant evidence for differences in the performance on certain
networks. In general, the OBDD sizes obtained from the new heuristic are significantly
lower for unregular network structures in comparison to the bfs heuristic. The differ-
ences are especially huge when there are great variations of the |Fmax| value between both
heuristics. For regular structures, we have a patchy situation. While it is better to use the
new heuristic for Nw.20 and Nw.21, street networks (Nw.22-25), fan networks (see Section
6.2.2), the bfs heuristic leads to fewer BDD-nodes for complete N-node graphs or grid net-
works such as Nw.10-12. The reasons therefore were exemplarily discussed in Section 6.2.2
for the complete and fan network. In Table 8.3, the |Fmax| values, maximal BDD-width W
and the runtime are listed for both heuristics. Small differences of time ratio t2

t1
- with less

than 1 percent - are annotated by an ε. Again, we have marked those networks (with ’)
where the use of the new approach does not bring any improvements. For these cases,
mostly the new heuristic yields a variable ordering with at most the same |Fmax| as the bfs
heuristic. Since their |Fk|, k = 1, 2, . . . ,m may differ, the resulting maximal BDD width
W or the number of BDD-nodes may also vary (see Nw.9). This is also the only network
where the decomposition approach performs significantly better with the bfs-heuristic.
For the small sized networks, such as Nw.1-6, where the runtimes are less than 1 ms, the
improvements are not perceptible. They can be better traced on medium scaled networks
such as Nw.24. The improvement scales up when the dimension of the street network is
increased. Since |Fmax| is the same for both heuristics, the ratio of improvement is rela-
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8. Evaluation on different network structures

Table 8.3.: Comparison of results (decomposition method using bfs vs. new heuristic)
t1 := runtime of the improved decomposition method,
t2 := runtime of the original decomposition method,
t2
t1

:= speedup

Nw |Fmax1 | |Fmax2 | W1 W2 t1 t2
t2
t1

1 3 5 4 12 <1ms <1ms 1 + ε
2’ 3 3 8 8 <1ms <1ms 1
3’ 2 2 3 3 <1ms <1ms 1
4 3 4 4 8 <1ms <1ms 1 + ε
5 4 5 27 72 <1ms <1ms 1 + ε
6 4 5 27 75 <1ms <1ms 1 + ε
7 6 7 363 830 0.01 0.03 3
8 3 5 10 47 <1ms <1ms 1 + ε
9’ 9 9 17,007 6,670 0.70 0.23 0.33

10’ 5 5 90 90 <1ms <1ms 1
11’ 6 6 297 297 0.04 0.03 1
12’ 7 7 1,001 1,001 0.20 0.12 1
13’ 3 3 9 9 <1ms <1ms 1
14’ 3 3 9 9 <1ms <1ms 1
15’ 3 3 9 9 <1ms <1ms 1
16’ 2 2 3 3 <1ms <1ms 1
17’ 2 2 3 3 <1ms <1ms 1
18’ 2 2 3 3 <1ms <1ms 1
19’ 3 3 9 9 <1ms <1ms 1
20 4 5 37 141 0.01 0.01 1
21 4 5 37 141 0.01 0.01 1
22 5 5 90 90 <1ms <1ms 1 + ε
23 6 6 297 297 0.05 0.05 1 + ε
24 7 7 1,001 1,001 0.23 0.27 1.17
25 12 12 534,888 534,888 666.20 936.40 1.41
26’ 7 7 1,001 1,001 62.20 62.20 1
27 6 16 361 1,595,155 0.01 179.74 17,974
28 7 12 642 96,300 0.08 12.77 160
29 9 18 18,562 - 1.63 - -
30 6 11 861 166,091 0.05 11.85 237
31 7 10 4,583 62,630 0.17 3.16 18.59
32 23 39 - - - - -
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Table 8.4.: Memory consumption (KLY and decomposition approach)
mKLY1 := memory demand for improved KLY method
mKLY2 := memory demand for original KLY method
mKLY1
mKLY2

:= memory consumption ratio between improved and original KLY
method
mD1 := memory demand for improved decomposition method
mD2 := memory demand for original decomposition method
mD1
mD2

:= memory consumption ratio between improved and original decompo-

sition method

Nw mKLY1 mKLY2

mKLY1
mKLY2

mD1 mD2

mD1
mD2

1 <1MB <1MB 1− ε <1MB <1MB 1− ε
2’ <1MB <1MB 1 <1MB <1MB 1
3’ <1MB <1MB 1 <1MB <1MB 1
4 <1MB <1MB 1 <1MB <1MB 1− ε
5 <1MB <1MB 1− ε <1MB <1MB 1− ε
6 <1MB <1MB 1− ε <1MB <1MB 1− ε
7 1.75MB 1.77MB 0.988 1.85MB 2.25MB 0.822
8 <1MB <1MB 1− ε <1MB <1MB 1− ε
9’ 6.74MB 6.74MB 1 25.50MB 10.21MB 2.50

10’ 1.59MB 2.51MB 0.633 1.54MB 1.50MB 1
11’ 10.89MB 35.60MB 0.306 2.93MB 2.54MB 1
12’ 139MB 1717MB 0.081 9.57MB 6.34MB 1
13’ 1.7MB 7.92MB 0.215 <1MB <1MB 1
14’ 3.46MB 98.44MB 0.035 <1MB <1MB 1
15’ 5.30MB 1755MB 0.003 <1MB <1MB 1
16’ <1MB <1MB 1 <1MB <1MB 1
17’ 3.89MB 3.89MB 1 1.33MB 1.36MB 1
18’ 1.61MB 1.61MB 1 <1MB <1MB 1
19’ 275MB - - 1.66MB 1.66MB 1
20 35.30MB 345MB 0.102 1.42MB 1.62MB 0.877
21 649MB - - 1.44MB 1.64MB 0.878
22 2.82MB 3.22MB 0.876 1.66MB 1.66MB 1− ε
23 12.93MB 39.20MB 0.330 2.93MB 3.03MB 0.967
24 257MB 1955MB 0.131 10.64MB 11.82MB 0.900
25 - - - 14.2GB 19.9GB 0.714
26’ - - - 1.8GB 1.8GB 1
27 65.23MB 66.10MB 0.987 1.25MB ≈2.5GB <0.001
28 25.91MB 28.32MB 0.915 4.00MB 236.4MB 0.017
29 - - - 39.10MB - -
30 21.08MB 21.83MB 0.965 2.83MB 174.80MB 0.016
31 51.20MB 51.90MB 0.986 8.10MB 88.51MB 0.092
32 - - - - - -
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tively small. It already becomes significantly larger if the difference of |Fmax| would be
only one. The difference in runtime and memory consumption (see Table 8.4) is then al-
ready perceptible for small sized networks, e.g. Nw.7. For this network, the runtime of our
implementation with the new heuristic is even more than four times lower than the one
from Hermann with OBDD-A2 [25], even though the architecture that Hermann has used
works with a higher CPU clock rate (Intel Xeon 3.2GHz). For the medium sized unregular
network - the ”ARPANET 1979”, the bfs heuristic yields an |Fmax| which is almost three
times larger. In addition, the cardinalities for each boundary set are smaller or equal for
the variable ordering achieved by the new heuristic. As a result, the differences between
the runtimes and memory demands are remarkably large: the speedup is around 18,000
times and less than 0.1 percent of the memory is claimed with the new approach. The
conspicuously better performance of the new approach is further approved by the results
on the set of randomized graph structures. At this point we note that the decomposition
approach finds its limit on the order of magnitude of |Fmax|. The computation turns out to
be impracticable for variable orderings where |Fmax| > 16. For instance, the bfs-heuristic
yields |Fmax| = 18 for Nw.29 rendering the computation impratical. The same holds for
Nw.32 where both methods deliver a practically too high |Fmax| value. Despite this short-
coming and under the condition that |Fmax| is not larger than 16, the new heuristic allows
to compute certain networks which could not be computed before because of a too large
|Fmax| obtained by the bfs heuristic. Overall, the application of the new heuristic for both
unregular and regular network structures is to be favored.

8.1.3. Results for the modified Dotson-Gobien approach

We give two result tables for the Dotson-Gobien approach. One where a relative accuracy
of ten percent for the unreliability is achieved (Table 8.5) and one where the exact result is
given in case the network can be completely computed (Table 8.6). Some regular network
structures of larger scale were omitted, since we can infer their results from their smaller
scale representatives. Another reason is that we only want to examplarily show the poor
performance of the Dotson-Gobien approach for large scale regular structures in contrast
to the KLY or decomposition approach. The strength of the Dotson-Gobien approach ap-
plies more to unregular randomized structures.
The last column d(T∆) of Table 8.5 indicates the depth or level of the delta tree after which
the respective bounds are obtained. The file size, the number of tasks and the average disk
IO bandwidth are also listed. For Nw.1-4, the bandwidth cannot be measured since the
size of the file created is too small.
It can be observed that apart from the number of components, the runtime highly depends
on the structure of the network. Comparing the results of Nw.11 and Nw.22 in Table 8.5,
their runtimes are roughly the same. However, Nw.22 reveals a three times higher band-
width than Nw.11. The reason therefore lies in the different graph structures: the shortest
s-t path for Nw.11 is twice as long as the one for Nw.22 which means that Nw.11 generates
in general more subproblems in each level than Nw.22. This leads to a higher compu-
tation time for processing all tasks for each level. Hence, for Nw.11 more time must be
spent to wait for the data to be written on hard disk leading to a lower bandwidth. In
the same time, ten levels are processed for Nw.22 whereas only seven levels are finished
for Nw.11. Another observation concerning the impact of the graph structure is between
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Nw.24 and Nw.18: Nw.24 has 20 components fewer than Nw.18 but we needed about four
times longer in order to achieve bounds with the same relative accuracy. Though we start
with a lower number of subproblems (length of shortest s-t path) in Nw.24, this number
still remains high after several recursion levels for many child nodes in T∆ leading to a
high number of tasks for each level. For Nw.24 272 million subproblems are stored in
21.4 GB which means that in average 84 Bytes are needed to encode a task. Comparing
the bandwidths of Nw.22-24, we notice that the average disk bandwidth drops when the
network size increases. The simple reason is that it takes more time to perform graph ma-
nipulations on larger graphs and more subproblems evolve due to the increasing length of
the shortest s-t path leading to a higher latency. For some networks it was not possible to
obtain the exact results within two days. Those that we could finish are listed in Table 8.6.
The maximal depth (or the total amount of levels) of the delta tree is denoted as dmax(T∆).
Note that the depth of the tree is limited by the number of edges of the original input
graph since the number of edges decreases by at least one, after each recursion. dw(T∆) is
the broadest level of the tree. The file size of this level also indicates the maximum disk
space needed for the whole computation. We can make the following observation by com-
paring the two tables: for large networks we only need a little fraction of the total time and
also of the maximum required disk space in order to reach satisfying bounds. Most of the
additional time only contributes to minor improvements of the bounds. For example, for
Nw.11 the fraction of disk space required is 0.071 percent and the time spent is only 0.018
percent of the overall time. Similarly, this can be observed for Nw.23. We remark that for
even smaller failure probability values, on the order of magnitude of 10−5 for highly reli-
able systems, the bounds would be obtained in an even shorter amount of time requiring
less hard disk space.
To compare the implementation based on the delta tree and disk storage with an older im-
plementation of the DG method [18] extended with series and parallel reductions, we have
added another time column t2 in Table 8.5 and Table 8.6. For Nw.13, 14, 18, 23 and 24 the
memory of 2GB was exhausted before the respective bounds could be attained. For all the
other networks we can observe that the runtime is shorter for the small sized Nw.1-5, but it
takes significantly more time for the larger networks such as Nw.11. This is due to the hold
of all subgraphs and performed reductions in memory by the DG method with reductions:
for small sized problems less memory is required to store each generated subgraph. Fur-
thermore fewer subproblems evolve. As soon as the problem reaches a certain size, more
storage is needed for each subgraph and also more subproblems are to be expected. Con-
sequently, the prohibitively rapid growth of memory demand leads to a negative impact
on runtime. The measurements for the randomized structures (Nw. 28-32) are hence only
carried out for the modified DG approach. We observe a decrease of of the bandwidth
when the interlacement increases. It is more likely that subgraphs of the more planar (less
interlaced) graphs contain reducible structures, thus more reduction data is written and
fewer subproblems are generated during the computation which results in a lower latency
for newly generated workload-data. On the contrary, there are less reducible structures
for highly interconnected graphs so that the length of the shortest path or the number
of subproblems will only decrease slowly. More time must be spent for computing new
workloads or tasks leading to a lower bandwidth.
The demand for memory grows unacceptably high with the size of the networks due to the
exponential nature of the terminal-pair reliability problem. This imposes a limiting factor
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for reaching good reliability bounds since the computation must be interrupted because
of memory shortage. By migrating the memory content to hard disk, the new method al-
lows for coping with larger-sized networks. This method even allows interruptions since
the files created until the point of interruption can be reused to continue the computa-
tion at a later time. One may assume that by migrating the memory content to hard disk,
afterwards the hard disk itself might be a bottleneck. However, by having a look at the
measured bandwidth values, this is definitely not the case. On the contrary, the maximal
average disk bandwidth of merely 3.90 MB/s shows that there is space for exploiting even
further the writing speed of today’s hard disks (of around 150 MB/s). This leaves room
for further parallelization.

Table 8.5.: Bounds (relative accuracy=0.1)
t1 := runtime for memory-efficient DG method with reductions
t2 := runtime for DG method with reductions
file(MB):= size of generated file in MB
øbw

Ä
MB
s

ä
:= bandwidth in MB per second

d(T∆) := level of the delta tree after which the respective bounds are obtained

Nw lb ub t1 t2 file(MB) #tasks øbw
(
MB
s

)
d(T∆)

1 2.05 · 10−2 2.10 · 10−2 0.008 s 0.005 s 0.00 3 - 3
2 2.37 · 10−3 2.37 · 10−3 0.007 s 0.006 s 0.00 0 - 3
3 2.26 · 10−2 2.28 · 10−2 0.009 s 0.007 s 0.00 2 - 3
4 4.33 · 10−3 4.33 · 10−3 0.013 s 0.010 s 0.00 0 - 4
5 4.40 · 10−3 4.47 · 10−3 0.282 s 0.229 s 0.02 368 0.30 6
6 5.58 · 10−3 5.61 · 10−3 0.455 s 0.485 s 0.01 1, 474 0.13 7
7 2.86 · 10−3 2.88 · 10−3 2.00 s 2.18 s 0.53 8, 188 1.04 8
8 1.25 · 10−2 1.27 · 10−2 0.141 s 0.123 s 0.01 233 0.01 5
9 1.99 · 10−9 2.05 · 10−9 0.68 s 0.41 s 0.14 1, 464 0.64 11
10 2.42 · 10−2 2.47 · 10−2 0.86 s 0.85 s 0.41 9, 171 1.22 6
11 2.42 · 10−2 2.47 · 10−2 6.91 s 9.80 s 5.46 121, 622 1.27 7
12 2.42 · 10−2 2.47 · 10−2 117.64 s - 62.54 1, 275, 901 0.84 8
13 3.81 · 10−2 3.85 · 10−2 49.16 s - 54.10 697, 592 0.75 8
14 4.36 · 10−2 4.38 · 10−2 1.39 h - 4, 899 53, 184, 683 0.56 8
18 4.34 · 10−3 4.41 · 10−3 1.91 h - 9, 011 50, 958, 418 0.78 10
22 9.12 · 10−5 9.14 · 10−5 7.68 s 9.73 s 7.26 97, 036 3.90 10
23 1.32 · 10−5 1.36 · 10−5 166 s - 183.78 2, 631, 226 0.60 11
24 1.88 · 10−6 1.91 · 10−6 7.73 h - 21, 924 272, 012, 633 0.40 14
27 4.36 · 10−2 4.40 · 10−2 1.96 s 1.87 s 0.69 3, 929 1.67 8
28 65.92 s - 47.56 99, 700 1.86 10
29 97.45 s - 138.89 850, 055 2.38 10
30 1.67 s - 1.03 9, 934 1.13 7
31 0.64 s - 0.07 1, 778 0.15 7
32 190.10 s - 8.34 204, 512 0.08 8

8.2. Comparing State-Of-The-Art

Comparing all three approaches, we come to the following conclusions: unlike Hardy’s
claim (see [23]), we have found that the D2 approach does not outperform the KLY2 ap-
proach in general. No fair comparison was given to these two approaches by Hardy, since
the approaches were not run on an equivalent architecture. With regard to runtime and
memory demand, the D2 approach is, even in comparison with the KLY1 approach, the
uncontested clear winner for regular network structures. Networks with bounded path-
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Table 8.6.: Exact results (DG method)
t1 := runtime for memory-efficient DG method with reductions
t2 := runtime for DG method with reductions
dmax := maximal depth of the delta tree
dw := broadest level of the delta tree

Nw Unreliability t1 t2 dmax dw file(MB) #tasks øbw
(
MB
s

)
1 2.07 · 10−2 0.010 s 0.07 s 5 3 0.00 3 -
2 2.37 · 10−3 0.007 s 0.006 s 3 1 0.00 4 -
3 2.28 · 10−2 0.11 s 0.08 s 5 1 0.00 5 -
4 4.33 · 10−3 0.13 s 0.10 s 4 2 0.00 7 -
5 4.45 · 10−3 0.33 s 0.28 s 9 5 0.17 369 0.13
6 5.60 · 10−3 0.56 s 0.60 s 11 7 0.01 1, 474 0.13
7 2.88 · 10−3 2.90 s 3.15 s 11 8 0.53 8, 188 1.04
8 2.88 · 10−3 0.29 s 0.25 s 11 7 0.17 306 0.03
9 2.00 · 10−9 9.79 s 5.96 s 36 20 1.65 12, 574 1.99

10 2.44 · 10−2 12.50 s 13.50 s 15 10 4.59 51, 695 2.36
11 2.43 · 10−2 12.45 h - 25 16 20.429 62, 358, 421 2.43
13 3.83 · 10−2 0.61 h - 22 12 521.65 4, 135, 084 1.25
22 9.13 · 10−5 51.75 s 53.52 s 20 12 14.52 138, 814 1.65
23 1.33 · 10−5 39.55 h - 30 20 30, 613 203, 132, 939 1.43
27 4.40 · 10−2 3.23 s 3.10 s 12 8 0.69 3, 929 1.67
28 127.82 s - 13 10 47.56 99, 700 1.86
30 7.59 s - 13 9 2.28 16, 662 1.68
31 195.00 s - 29 19 49.86 483, 366 1.71

width (maximal frontier size) are computed with extreme efficiency. For instance, the run-
time for Nw.19 with the extended KLY approach is 410.640 times the runtime of the D2

approach. Only a fraction of 0.6 percent of the memory demand for the KLY1 is claimed
by the D2 approach. The runtime and memory demand for D2 merely grow linearly with
the length of grid networks. Comparing these two approaches with the modified DG ap-
proach, we observe the DG method’s poor performance for regular structures, especially
when the length of the shortest s-t path is high. While the exact result is determined within
a few milliseconds and without any noticeable memory demand by the decomposition
approach, the bounds of desired accuracy are reached after hours with a high hard disk
space demand (see Nw.14 and 18). We note, that by using the original DG approach, these
bounds would not at all be reached due to lack of memory. Even more, very large regular
structures such as the street network of dimension 12 or the 7x1000 grid are even out of
scope, not only for the modified DG approach but also for the KLY1 approach.
On the contrary, when running the KLY1/2 and D2 approach on unregular or random-
ized structures, the D2 approach reveals its weakness as soon as the bfs variable ordering
leads to high |Fmax| values. The KLY1 and KLY2 approach significantly perform better
than the D2 approach for the two networks 7 and 27, taken from the literature. For net-
work 27, less than one percent of the memory demand for the D2 approach are claimed
by the KLY1/2 approach and in addition to this, the KLY1/2 approach is 536 times faster.
Moreover, the BDD-size is 21 times larger for the D2 approach. Regarding the randomized
networks, the situation between the KLY1/2 and D2 approach is similar: the difference in
runtime and memory demand is enormous for medium-sized networks such as Nw.30 or
Nw.28. For smaller-sized structures, where a small |Fmax| is yielded, all three approaches,
KLY1/2 and D2, show on average similar performances (see Nw.31). However, for highly
interlaced and large-scale structures, such as Nw.29 and 32, KLY1/2 and D2 approach find
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their limits. At this point, the memory efficient DG approach proves itself valuable. It
provides good bounds after a bearable amount of time. For Nw.32, consisting of 100 nodes
and more than 200 edges, we needed only 8.34MB of hard disk storage to obtain bounds
satisfying the required relative accuracy of 10 percent. The computations conducted by
the KLY1/2 and D1/2 approach fail due to lack of memory and an unknown prohibitive
amount of time must be spent to find the exact result.
With the new heuristic, the D1 approach significantly outperforms the KLY1/2 in every
sense: both for the regular and unregular randomized structures, the runtime and mem-
ory demand are many times lower for theD1 approach. For instance, Nw.29 is computable
with the D1 approach, whereas KLY1/2 and D2 fail. To again emphasize: the D1 approach
performs far better than the D2 approach with respect to unregular structures. Yet, Nw.32
could only be adequately handled by the modified DG approach. For overview purposes,
all five different approaches, KLY1/2 D1/2 and modified DG, are roughly ranked accord-
ing to their performance on regular and unregular network structures (of at least medium
size) in Table 8.7.

Table 8.7.: Perfomance ranking (KLY1/2 vs. D1/2 vs. modified DG)

Network type KLY1 KLY2 D1 D2 modified DG
regular 3 4 1/2 1/2 5

unregular 3/4 3/4 2 5 1

8.2.1. Application of the new heuristic to KLY

As mentioned in Chapter 6, the new heuristic can also be applied to other BDD-based
k-terminal reliability approaches. Based on the canonicity Lemma 2.6, we expect improve-
ments for other BDD-based approaches only for those cases where a significantly smaller
OBDD size is obtained from the decomposition approach with regard to the new heuristic:
meaning that |BDDD1 | � |BDDD2 |. To exemplify the impact of the new variable ordering
for the KLY approach, we additionally carried out measurements for sample Nw.27 - the
ARPANET: instead of 917,328 we obtained 1031 ROBDD nodes. The runtime for KLY1

is 60ms in contrast to 3.35s and for KLY2 120ms in contrast to 3.45s. Lastly, the memory
consumption for KLY1 and KLY2 amounts to 2.64MB and 3.53MB respectively, in con-
trast to 63.25MB and 66.10MB. Similarly, improvements in runtime and memory demand
were also achieved for the randomized structures in Figure 8.2 and some regular structures
listed in Figure 8.1. More measurement results can be found in [42, 41].
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Dependent Component Failures
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9. Considering dependent failures

In the literature, it is generally assumed that edges or components fail independently. Un-
fortunately this simplified assumption does not suffice the requirements in reality where
dependencies among some components may occur. Among others, those dependencies
come up due to common cause failures (e.g. growing neighborhood dependency) or fault
propagation (see Schneeweiss [81]). Neglecting dependencies may lead to overoptimistic
results in the reliability evaluation. Thus, it is a matter of great importance to extend the
problem of calculating the network reliability with the additional feature of interdepen-
dent component failures. Therefore Walter [79] proposed a hybrid-solution method that
combines combinatorial and stochastic models (e.g. Markov chains, Petri nets, Gaussian
Copula). State-based stochastic models (SBM) such as Markov chains and Petri nets de-
duce the component interdependencies from the causal dependencies. They are complex
mathematical modelling concepts that require a deep understanding from the modeler’s
point of view. SBM can only be used for relatively small systems since they suffer from the
state-space explosion problem. To elude these disadvantages, the Gaussian-Copula repre-
sentation [54] can be used as an alternative (referring to Walter et.al. [80]). It directly spec-
ifies the component dependencies instead of inferring them from the causal dependencies.
In this chapter, we show how to appropriately extend the present combinatorial model for
considering component interdependencies. First, the dependency relation is formalized af-
ter which a formal description of the extended problem is given. With these preliminaries,
we accordingly adjust the presented state-of-the-art algorithms (DG with series-parallel re-
ductions, KLY and decomposition approach) for using the Gaussian-Copula as stochastic
model.

9.1. Preliminaries

According to Walter [79], the set of components C can be partitioned into k disjoint SIC
(set of interdependent components) Ci, 1 ≤ i ≤ k, k ∈ N:

C = C1 ∪ C2 ∪ . . . ∪ Ck.

The dependency is characterized as a transitive pairwise relation: if two distinct compo-
nents fail dependently, they must belong to the same SIC Ci, for i ∈ {1, 2, . . . , k}. If a
component c ∈ C fails dependently with any component from a SIC Ci, then c ∈ Ci.
Consequently, the failure of c also depends on the failure of each component in Ci (transi-
tivity). Otherwise, there are no dependencies between two components if they belong to
two different SIC Ci, Cj with i 6= j. Adhering to this definition, the k-terminal problem
with dependent basic events is formulated as follows:
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Statement of the problem Given a network graph G := (V,E), its terminal node set K,
a set of system components C = C1 ∪ C2 ∪ . . . ∪ Ck, k ∈ N, Ci ∩ Cj = ∅ for i 6= j and two
not-necessarily injective maps f : E → C and g : E → V × V . Each component c ∈ C
represents a random variable with two states: failed or working. The reliability for each
c ∈ C is given by pc. For all Ci ⊆ C,where|Ci| > 1, there exists a corresponding stochastic
model. The system’s k-terminal reliability RK(G) is the probability that each pair of nodes
from a selected set of nodesK (terminal nodes) can communicate through at least one path
of working edges.

9.1.1. The Gaussian Copula

A possible combination of working / failed components that lead to system operation
/ failure corresponds to a conjunction term whose Boolean variables are the respective
working / failed components. If all components that occur in this conjunction term are in-
dependent, the probability of the conjunction term equals the product of operation/failure
probabilities of the contained components.
In case of dependence, the components have to be grouped according to their SIC filiation.
Before the probability of the whole conjunction term can be determined, the probability
of the conjunction terms for each SIC needs to be computed. This can be carried out by
a solver for the used stochastic model. As mentioned above, we make use of a copula-
based stochastic model. Its application is based on Sklar’s theorem [66] which relates joint
distribution functions (probability of component failure combinations) to their marginal
distribution functions (component failure probabilities) by means of copulas. When using
the Gaussian Copula, a family of copulas, the component dependencies can additionally
be specified by a q × q symmetric correlation matrix ρ with ρij ∈ [0, 1]. One only needs to
know that there are some components which fail dependently and that their dependencies
are of a certain strength. For ρij > 0, there is a pairwise dependence between two compo-
nents and independence for ρij = 0. If ρij = 1 for two distinct components ci and cj , then
the failure of ci directly implies the failure of cj . Thus, ci and cj can be subsumed to one
single component occuring multiple times as multiple edges in the redundancy structure.
For the special case when there are no dependencies, ρ equals the identity matrix. We note,
that the case of antidependence (−1 ≤ ρij < 0) is omitted here, since we have postulated
the system monotonicity which means that the failure of a component cannot increase the
reliability of the whole system.
With regard to the Gaussian Copula, ρ is the correlation of the margin probability mass
functions transformed to a standard normal distribution. The probability of a conjunction
term CT = x1∧ . . .∧xk, where all variables xi inside CT are elements of the same SIC, can
be expressed by means of the Gaussian Copula CG with respect to network G:

P(CT ) = CG(P(x1), . . . ,P(xk), ρ)

= Φk,ρ(φ−1(P(x1)), . . . , φ−1(P(xk))). (9.1)

Here, Φ−1 is the inverse standard normal distribution with mean zero and variance one.
The conjoint probability P(CT ) is obtained by computing Φk,ρ - the multivariate standard
normal distribution with correlation matrix ρ - which is expressed as a multiple integral.
According to Walter [79], Monte-Carlo integrators [43] can be used for its approximation.
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At this point we do not want to go further into the stochastic details, but assume that all
conjunction terms can be computed as described (see Walter et al. [80] for further details).

9.2. Extension for the DG with series-parallel reductions
approach

In the following, the extension of the DG method for the dependent case is described.
Note that the resulting approach only allows for computing two-terminal reliability with
dependent component failures. The DG method finds cuts and paths which contribute
to the lower and upper bound. Those cuts and paths are conjunction terms consisting of
Boolean variables from different SICs. Assume that we have found a cut. Then all edges
belonging to the cut will be grouped according to their SICs. For those SICs that have a
cardinality greater than one, the grouped Boolean term is stored in a distinguished map
called cutDependent. The probabilities of the Boolean variables, with SIC size equal to one,
are multiplied and the result stored in another map called cutIndependent. Both map entries
obtain the same index i for the i-th cut so that later on the probabilities for the dependent
Boolean terms can be queried from a stochastic-based solver such as the Gaussian Copula
solver. Now, since all probabilities are given in numeric values, the whole probability of
the found cut can be determined by multiplication. Analogously, the same procedure is
applied to paths. We refer to [40] for implementational details.
Regarding reductions, we restrict the DG approach to series-parallel reductions. The rea-
son for this is that we want to preserve the DNF for Boolean terms when undertaking
reductions between dependent components. Subsequently, the DNF terms are further
decomposed by using the inclusion-exclusion method into a sum of disjoint conjunction
terms (see Walter et al. [80]). The probabilities of those terms can then be obtained from
the Gaussian Copula. Other established reduction methods such as the polygon-to-chain
[37] or triangle reductions [29] are excluded, since their application does not preserve the
DNF.

Rules for series and parallel reductions

Under the consideration of dependencies among certain system components we want to
sum up the rules and heuristics for series and parallel reductions proposed in one of our
works [39]:

• Reductions with multiple components are not allowed except multiple components
become unique in the course of the algorithm.

• Reductions can only be performed among components which are a SIC of their own
(SIC size equals one) and among components which are from the same SIC (with
SIC size larger than one). We call the first case independent reduction and the latter
dependent reduction.

In case of an independent reduction, the probability of the edge resulting from the reduc-
tion will be re-adjusted according to the rules for a regular series or parallel reduction (see
Section 3.2). In case of a dependent reduction, we relabel one of the two affected edges,
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e1 or e2, with a capital letter Rj whereby j stands for the j-th dependent reduction. W.l.o.g.
we label e1 with Rj and delete e2. Rj comprises the concatenated expression of the two
affected edges. Here we introduce the labeling function l : E → B where B stands for a
boolean expression in DNF - initially, the edges assigned to a dependent component are
labeled with the Boolean variable of the respective component. To be more precise, for
edges e1, e2 ∈ Ck, k ∈ N , we now define Rj = l(e1) ∧ l(e2) for a series reduction and
Rj = l(e1) ∨ l(e2) for a parallel reduction. Hereafter e2 will be deleted and l(e1) = Rj . For
details of the algorithmic approach we refer to [39].
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Figure 9.1.: Initial graph.

9.2.1. Case study

Now we describe the workings of the introduced extensions for the DG approach by means
of the example in Figure 9.1. The set of components C is made up of five SICs: C1 and C2

are the only two SICs with size larger than one. All other components beyond C1 and C2

are regarded as independent. In accordance with these, ρ is an 8 × 8 correlation matrix
with ones on its main diagonal. The entries ρ1,2 = ρ2,1, ρ1,3 = ρ3,1, ρ2,3 = ρ3,2, ρ5,7 = ρ7,5

take different values α ∈ R, with 0 < α < 1. The rest of the matrix is filled with zeros.
W.l.o.g. the edges are labeled by natural numbers representing Boolean variables or com-
ponents. There is a 2-out-of-3 edge modeled by multiple edges assigned to components 1,
2 and 3. The two terminal nodes s and t are marked in black. Because there are no possible
reductions, we start with looking for a shortest path. The algorithm delivers for example
path 1∧2 (Figure 9.2 (a)). In the next step we would obtain two subgraphs: G1 by deleting
edges labeled with component 1. G2 by contracting edges assigned to component 1 and
deleting edges assigned to component 2. Again, for each of those subgraphs we try to re-
duce. We notice that a series reduction can be made between the edges labeled with 2 and
3, because 2 and 3 are in the same SIC. One of the edges will be labeled as R1 and the other
deleted. We store the reduction made in our edge-probability-map for graph G1′ which is
a complete graph containing four nodes1. Now we continue to search for the shortest path
which is obviouslyR1. After deletingR1 (Figure 9.2 b), we would obtainG3. Normally the
algorithm would proceed with subgraph G2 which has the same structure as G1′. Hence
we omit the sketch of processing G2, nevertheless it can be reconstructed by the help of
Figure 9.3. Continuing with G3, we look for a shortest path since no parallel or series re-
ductions are possible. Partitioning the graph on the base of shortest path 4∧ 8 we arrive at
G5 and G6. Though G5 is a series structure, we are not allowed to reduce because compo-
nents 7 and 6 are not from the same SIC. Proceeding on the basis of the shortest path 7 ∧ 6

1In the literature this type of graph is also known as ”K4 graph”.
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we obtain two cuts since the terminal nodes are disconnected. The cuts are highlighted in
the dotted boxes of Figure 9.3. We climb up the recursion tree to go on with G6. There we
can do a dependent parallel reduction, since components 5 and 7 are from the same SIC.
The reduction is captured in a separate map asR2 = 5∨7. Again, we obtain two cuts based
on the shortest path R2 ∧ 6. The recursion tree in Figure 9.3 illustrates all possible paths
and cuts obtained in each depth/level of the recursion. As mentioned before, the Boolean
expressions within cuts and paths are rearranged and grouped according to their SIC fili-
ation. The grouped terms are stored separately in the maps pathDependent or cutDependent
to be handed over to the Gaussian Copula. The probabilities of the independent expres-
sions are simply multiplied and then added to maps pathIndependent or cutIndependent.
After the probabilities of the dependent terms were returned from the Gaussian Copula,
the whole probability for any path/cut term can be reassembled by multiplying, since the
SICs are independent among each other. For instance, the relevant probabilities of the first
cut term !1 ∧ R1∧!4∧!7 would be classified as follows: The value of p!4 would be added to
map cutIndependent at the first index whereas !1 ∧ R1, belonging to C1, and !7, belonging
to C2, would be added to the first position of map cutDependent. Analogously the second
cut would be stored at the second position of the respective map. When all values for the
dependent basic events are returned from the Gaussian Copula, the probability for the first
cut is computed as p!4 · p!1∧R1 · p!7. For implementational details, we refer to [40].

9.2.2. Complexity considerations

It is clear that the runtime and memory demand for the dependent case is at least as much
as the independent case. The memory demand grows with the storage of dependent con-
junction terms in the dependent maps. Furthermore, the performed dependent reductions
must be captured in separate maps. The runtime increases with the rearrangement and
classification of the Boolean terms (paths and cuts), the decomposition of the DNF terms,
the simplification of conjunction terms with negated variables2 and the computation of
the multiple integral. However, in practical applications we hope to expect only a small
number of dependent subsets so that the computation of the extended problem does not
take much more time than the original problem.

9.3. Extension for BDD-based approaches

In what follows, we explain how to appropriately extend BDD-based approaches, such
as the KLY or decomposition approach, in order to consider the described dependencies.
In principle, we do not need to change the algorithms. Instead, the following four major
steps need to be done:

1. First, we need to rearrange the preprocessed variable order (e.g. bfs-order or new-
heuristic order) so that variables from the same SIC occur consecutively in the vari-
able order. This step is realized by Algorithm 13 (sortVarorder) which is applied to
an existent variable order list, called L. As a result, a rearranged list L′ is returned.
Based on the rearranged variable order in L′, the algorithms are performed on the
input graph as usual.

2See [80] for details.
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2. The resulting BDD is replicated to a MDD (Multiple Decision Diagram). This data
structure contains nodes (MDD nodes labeled with ”M”) having more than two out-
going directed edges that are labeled with the respective conjunction terms. Those
edges are created by traversing SIC layers (sequence of consecutive BDD nodes re-
presenting dependent variables). The nodes representing independent variables (with
SIC size one) and their two outgoing edges are merely copied. We start the replica-
tion with Algorithm 15 which initially takes the result BDD root-node, a newly crea-
ted MDD root-node and the true-value as input. It iteratively creates the MDD by
traversing the result BDD in dfs-order. The addNode function is responsible for MDD
node creation. Its second argument is the label (Boolean term) of the MDD edge
pointing to the first argument, the MDD child node. To avoid redundant MDD node
creation, addNode keeps track of already created nodes by the help of a hashmap. If
a node was already created it is returned by addNode.

3. After the creation of the MDD, the missing probability values for the labeled MDD
edges are queried from the Gaussian Copula solver so that the complete informa-
tion can then be provided for obtaining the seeked reliability value. This is done by
passing on the ToSolver list to the Gaussian Copula solver.

4. Finally, we can compute the numeric reliability value by applying Algorithm 14
(Prob2) to the MDD root-node.

9.3.1. Case study

To get a better idea of the described extensions, we perform the KLY approach using bfs
variable order on the example graph from Figure 9.1. A possible bfs variable order would
be 1, 2, 4, 7, 3, 5, 6, 8. Then, by applying Algorithm 13 we obtain the rearranged version
[1, 2, 3], 4, [7, 5], 6, 8. As we can see, the SIC variables are now placed in a consecutive or-
der. The two SIC layers are highlighted in square brackets. The KLY approach creates the
ROBDD (see left half of Figure 9.4) representing the system structure function:

XG = (1 ∧ (2 ∨ 3)) ∨ (2 ∧ 3) ∨ (7 ∧ (6 ∨ 5 ∧ 8)) ∨ (4 ∧ (8 ∨ 5 ∧ 6)).

Note that we could also have used the decomposition approach or other BDD-based ap-
proaches instead. In any case, the resulting BDD would be the same.
Now the result ROBDD is replicated by Algorithm 15 to ROMDD (left side of Figure 9.4).
The conjunction terms labeled at the ”M”-edges are collected in the ToSolver list and their
probabilities are resolved by the Gaussian Copula. Afterwards, the seeked reliability value
can be determined by applying Algorithm 14 on ROMDD root-node M1.

9.3.2. Complexity discussion

Similar to the previous complexity discussion for the dependent DG approach, the com-
plexity of a BDD-based approach is increased by the following overheads: the overhead
for resorting the variable order is negligible. However, resorting the variable order may
leave a significant impact on the performance of the BDD-based approach. As shown by
the measurements in Chapter 8, the impact can be drastic - both negative and positive in
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terms of runtime and memory demand - indicated by the resulting BDD-size. Further-
more, the additional overhead for replicating the result BDD is, in the worst case, linear in
the size of the result BDD: if all components are dependent, i.e. they belong to one and the
same SIC, then the resulting MDD would consist of one root-node, two leafs (1 and 0) and
a set of labeled edges equal to the number of all possible directed root-to-leaf paths of the
result BDD. This number can be determined in time linear to the number of BDD edges
[9]. The traversal of the result MDD with function Prob2 also claims time linear in the
number of MDD edges. Finally, we have to compute the joint probability for each labeled
MDD-edge: in contrast to the DG method with series-parallel reductions, no decomposi-
tion of DNF terms needs to be conducted. This means that another considerable effort,
which is exponential in the worst case is spared. The time complexity for simplifying
each conjunction term that contains negated variables, is linear in the number of negated
variables. Lastly, the total overhead for determining the probabilities of the resolved con-
junction terms depends on the used Monte-Carlo integrator. For example, one can use the
method in [43]: it is efficient even in high dimensions3, since the method’s overhead and
memory requirements grow only linearly with dimension.
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Figure 9.4.: Referring to the example from Figure 9.1, ROBDD (Left), ROMDD (Right).

3The dimension of the multiple integral equals the number of different variables in the resolved conjunction
term.
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Algorithm 13: sortVarorder

Require: List L
1: shift = 1, C ′ = ∅
2: for i = 1→ |L| do
3: if L(i) ∈ Ck and |Ck| > 1 then
4: if L(i) ∈ C ′ then
5: continue for-loop
6: end if
7: for j = 0→ |Ck| − 1 do
8: L′(i+ j) = Ck(j)
9: end for

10: C ′ = C ′ ∪ Ck, shift = shift+ |Ck|
11: else
12: //L(i) ∈ Ck and |Ck| = 1
13: L′(shift) = L(i), shift = shift+ 1
14: end if
15: end for
16: return L′

Algorithm 14: Prob2

Require: MDDNode m
1: if m == true then
2: return 1
3: end if
4: if m == false then
5: return 0
6: end if
7: if result = hm.find(m) 6= NULL then
8: return result
9: else

10: if m has label ”M” then
11: for all m-adjacent edges e := (m,m′) do
12: result = result+ pe · Prob2(m′)
13: end for
14: else
15: //m is a binary node, p is the reliability of the component represented by m
16: result = p · Prob2(m.high) + (1− p) · Prob2(m.low)
17: end if
18: hm.put(m, result)
19: end if
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Algorithm 15: replicate

Require: BDDNode b, MDDNode m, BoolExpr acc
1: if b is independent then
2: if b.high == true then
3: m.high = 1
4: else
5: mh = m.addNode(b.high, b) //addNode returns MDDNode if already existent
6: replicate(b.high,mh, 1)
7: end if
8: if b.low == false then
9: m.low = 0

10: else
11: ml = m.addNode(b.low, b)
12: replicate(b.low,ml, 1)
13: end if
14: else
15: for b′ = b.high and b′ = b.low do
16: if b′ == b.high then
17: acc = acc ∧ b
18: else
19: acc = acc ∧ b
20: end if
21: if b′ == true or b′ == false then
22: m.addLeaf(acc) //Adds edge labeled with acc directing to leaf node
23: ToSolver.add(acc) //add conjunction term acc to ToSolver list
24: else
25: //Preview whether creation of MDDNode is possible
26: if SICIndex(b)! = SICIndex(b′) then
27: m′ = m.addNode(b′, acc) //creation of MDDNode m′

28: ToSolver.add(acc)
29: replicate(b′,m′, 1)
30: else
31: replicate(b′,m, acc)
32: end if
33: end if
34: end for
35: end if
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10. Summary

Before summing up this thesis, we want to refer back to the gas supply network example
from Section 1.1. In that what follows, possible ways are discussed to determine the relia-
bility of this gas supply network, both with and without the influence of seismic hazard.
Up to this point, we also have accumulated enough background knowledge in network
reliability evaluation in order to create an appropriate abstraction for a possible real-world
gas supply network (see Figure 10.1). Here the pipelines are modelled as edges, distribu-
tors and supplier are represented by nodes. Under the assumption that only pipelines can
fail and that their failures are independent in the absence of seismic hazard, the terminal-
pair reliability problem can be efficiently solved by one of the suggested state-of-the art
methods. For instance, we can stipulate s and D2 to be the terminals. Since all edges fail
independently, there would be seven single-element sets of interdependent components.
With this graph model, the k-terminal problem can be answered by using the KLY or de-
composition method. Even if we assume that distributors and supplier do not operate
perfectly, the k-terminal problem with node failures can be efficiently solved by the help
of the KLY and decomposition method.
In case of an earthquake, pipelines P5, P6 and P7 are claimed to be spatially correlated.
Hence, the respective edges 5, 6 and 7 are subsumed into one SIC C5. Applying the tech-
niques described in the previous chapter, the two-terminal problem for the dependent case
can be efficiently solved. However, the k-terminal problem with dependent basic events
can only be solved with the extended KLY and decomposition method.
We take another step of model refinement and assume that the nodes may also fail for the
dependent case. Then D2 and D3 would be added to SIC C5. Using the KLY and decom-
position method for imperfect nodes, we can compute the BDD for the independent case.
Afterwards, the k-terminal reliability for dependent failures can be obtained by applying
the extension for BDD-based methods, explained in the previous chapter.
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Figure 10.1.: Graph model for the gas supply network under seismic hazard.
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10.1. Extensions and modifications

Once again, the example raises several important issues that need to be considered in the
evaluation of network reliability: imperfect nodes, multiple edges, k-terminal connected-
ness and intercomponent dependencies. In this thesis, we have first given a chronological
overview over the state-of-the-art exact methods that are restricted to independent compo-
nent failures. The state-of-the-art further provides appropriate extensions to handle node
failures with small additional overhead. An extensive survey on bounding algorithms
was given in Chapter 4: both for models assuming equal and arbitrary component failure
probabilities. It turns out that the two BDD-based methods, the KLY and decomposition
method, are currently the most efficient exact methods for two-terminal reliability of undi-
rected networks. Both methods allow arbitrary component failure probabilities, also node
failures and k-terminal connectedness can be considered. When restricted to networks of
bounded tree-width, the decomposition method is indisputably the most efficient method:
its time complexity is then linear in the size of the network. Nevertheless, the decomposi-
tion method only works for undirected networks. In contrast to that, the KLY method can
also handle directed networks since path information is stored.
With regard to bounds, the DG method with reductions shows to be the most efficient
bounding algorithm for two-terminal network reliability with arbitrary component failure
probabilities: tight bounds can be rapidly obtained in only a fraction of the total compu-
tation time. If the computation can be completed the exact result is obtained. The DG
method can also handle node failures and directed networks. However, only the two-
terminal case can be treated by the DG method. Our probabilistic graph model allows
for considering multiple edges in all three mentioned methods: KLY, decomposition and
DG. Each method’s compatibilities towards all four aspects are again summed up in the
following Table 10.1.

Table 10.1.: KLY, decomposition and DG method compatibility towards modelling aspects
for the independent case.

Method k-terminal imperfect nodes multiple edges directed networks
KLY 3 3 3 3

Decomposition 3 3 3 −
DG − 3 3 3

The main reasons that lead to the efficiency of the KLY and decomposition method are the
fast recognition of isomorphic subproblems which avoids redundant computations, the
locating of mutually disjoint relevant states which oviates another possibly expensive set
disjointing process, and the use of BDD for compactly storing the structure function of
the network. Nevertheless, we sought for ways to further improve those two methods. In
Chapter 5 we have revealed that the KLY method performs redundant computations in the
presence of redundant biconnected components. Those structures may occur during the
computation process and can be recognized in linear time. On certain network structures,
redundant biconnected structures occur more frequently e.g. on grid networks or sparse
network structures. For significantly improving the KLY in terms of runtime and memory
demand, we have shown how to efficiently recognize and remove redundant biconnected
structures. This also has direct improvement implications for the k-terminal version of the
KLY method along with node failures. To highlight this on the example of a 3x20 grid
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network: a speedup of 464 times was reached with the extended KLY and the memory
consumption amounts to only 0.3 percent of the memory that was claimed by the original
KLY method. In the worst case when no redundant biconnected components occur, the
runtime of the new approach is only extended by the recognition overhead and the mem-
ory demand remains unchanged.
The time and space complexity of the decomposition method highly depends on the car-
dinality of the maximal boundary set Fmax, which in turn depends on the chosen variable
ordering. Since finding an optimal variable ordering is an NP-hard problem, one has to
resort to heuristics for finding a good variable ordering in an acceptable amount of time.
In the literature, the bfs heuristic is empirically chosen to be a good heuristic. However,
we have developed in Chapter 6 a new heuristic which leads for many examples to much
lower |Fmax|. This ”greedy” heuristic can also be embedded in other BDD-based methods
such as the KLY method. As a result, the size of the result BDD significantly shrinks in
comparison to the BDD obtained by the bfs heuristic, and this is immediately noticeable
in terms of runtime and memory demand. Hence, the new heuristic leads to better perfor-
mances for many networks such as the ARPANET from 1979. There a speedup of around
18,000 times is gained and less than 0.1 of the memory is needed with the application of
the new heuristic. Nevertheless, we also showed examples where the bfs heuristic is to
be preferred. One obtains slightly better performances with the bfs heuristic on complete
networks and grid networks, though the same |Fmax| is generated by both heuristics. This
is due to the fact that the distribution of the boundary set sizes differ (see Section 6.2.2).
Due to the exponential nature of the terminal-pair reliability problem, the demand for
memory grows unacceptably with the size of the networks to be assessed. To improve
the quality of reliability bounds, we must be very economical with memory resources.
Therefore we have optimized the GD method in terms of memory consumption in Chap-
ter 7. The requirements for memory consumption could be drastically decreased by an
introduced data structure called delta-tree. Instead of storing subgraphs, the delta-tree
keeps track of the changes made to the original network graph and the respective subprob-
lems can be reconstructed by the help of the delta-tree. We further suggested to migrate
the memory content to hard disk in order to cope with even larger networks and obtain
tighter bounds. Moreover, the measurements in Section 8.1.3 proved that the migration of
the memory content to hard disk does not constitute a bottleneck.
To cope with the problem of dependent component failures, we have reformulated the
two-terminal reliability problem with regard to the introduced SIC (see Chapter 9). Sub-
sequently, the three improved methods were given appropriate modifications in order to
allow the consideration of dependent basic events. To put it briefly: for the purpose of
considering dependent component failures, we have proposed suitable modifications for
the combinatorial methods to efficiently interact with a stochastic based model, in this case
the Gaussian Copula, in a hybrid context. Also for the case of dependency, the compati-
bilities of the three algorithms towards the mentioned modelling aspects are illustrated in
the following Table 10.2.
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Table 10.2.: KLY, decomposition and DG method compatibility towards modelling aspects
for the dependent case

Method k-terminal imperfect nodes multiple edges directed networks
KLY 3 3 3 3

Decomposition 3 3 3 −
DG − − 3 3

10.2. Choosing the right algorithm

To prove that the discussed extensions and modifications are justified, we have compared
the improved versions of the KLY, decomposition and GD method with their original ver-
sion in a large-scale measurement series comprising typical benchmark networks from the
literature, regular networks and four sets of randomized structures of different scale (see
Chapter 8). In addition, all three methods were empirically compared against each other
in order to conclude their efficiency for arbitrary network structures. The execution of
all three implementations on the same architecture allows for a fair comparison. Such a
comparison has not yet been found in the literature, when the KLY and decomposition
method (in their original version) were compared based on runtimes obtained from dif-
ferent computer architectures [25]. Hence the conclusion that the decomposition method
performs better than the KLY method for general networks is not legitimate. Our measure-
ment results reveal that the decomposition method is only superior in regular networks
of bounded tree-width. However, the KLY method shows better performances on many
unregular structures. There the bfs heuristic often causes high |Fmax| values rendering the
decomposition method inefficient. Only if the new heuristic is applied to both the KLY and
decomposition method, we can conclude that with respect to undirected networks, the de-
composition method is superior to the original and improved KLY method (see Table 8.7).
Based on the following guidelines, a recommendation for the application of a respective
method can be inferred: undoubtedly, the decomposition method is to be favored for reg-
ular structures with bounded tree-width. Also, with regard to the new heuristic, priority
should generally be given to the choice of the decomposition method over the KLY. Unfor-
tunately, the decomposition method only works for undirected networks. Hence, the KLY
method turns out to be very useful for regular directed structures and with this regard it
is the currently most efficient method. Although the DG method performs quite weakly
on regular networks, the measurements justify its indispensability for unregular and ran-
domized network structures of larger scale. While the DG method covers both undirected
and directed networks, it unfortunately lacks the ability to determine the k-terminal relia-
bility. Furthermore, imperfect nodes cannot yet be considered in case of dependency (see
Table 10.2).

10.3. Future research

Finally, we want to point out future research directions that arise from this thesis and the
above discussions: as we can see, the technique of dynamic programming avoids redun-
dant computations and is one of the key ideas that lead to significant improvements for
BDD-based approaches. Further improvements can be obtained by finding a better vari-
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able ordering which leads to an equivalent (in terms of the reliability measure) but smaller
result BDD. This means that the number of relevant full events (sets of system states) in
the smaller result BDD is generally fewer than the number of relevant full events (root-
to-leaf-paths) in the equivalent larger BDD (with respect to the worse variable ordering).
Hence, the full events in the smaller BDD must be composed of more elementary events.
In other words, those full events (sets) constitute a larger fraction of the probability space
and the number of those respective fractions is fewer. This shows that we have to focus
on finding techniques which yield fewer relevant full events, comprising preferably lots of
elementary events. For the BDD-based approaches, this can be done by further improving
the heuristics for variable ordering.
Finding better variable orderings also means finding tree decompositions of smaller tree-
width. However, computation is not practically feasible for graphs with tree-width larger
than 16. To obtain at least any valuable results, we have to even more consider how to in-
crease the efficiency of bounding algorithms. Unlike BDD-based methods, the GD method
does not make use of dynamic programming. Thus, we have to find ways how to ap-
propriately incorporate dynamic programming into the DG method. This would certainly
lead to a significant improvement of bounds. To cover all important modelling aspects,
future efforts must be dedicated towards conceiving efficient bounding algorithms for k-
terminal reliability for both independent and dependent case. This could be done by using
similar strategies which were just mentioned. Furthermore, bounding algorithms should
be able to consider imperfect nodes when components may fail dependently. Lastly, it is
desirable to extend the generality of the decomposition approach, meaning that it should
be also applicable to directed networks.
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