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Abstract—The development and tuning of denoising algorithms is
usually based on readily processed test images that are artificially
degraded with additive white Gaussian noise (AWGN). While AWGN
allows us to easily generate test data in a repeatable manner, it does
not reflect the noise characteristics in a real digital camera. Realistic
camera noise is signal-dependent and spatially correlated due to the
demosaicking step required to obtain full-color images. Hence, the
noise characteristic is fundamentally different from AWGN. Using such
unrealistic data to test, optimize and compare denoising algorithms
may lead to incorrect parameter tuning or suboptimal choices in
research on denoising algorithms.

In this paper, we therefore propose an approach to evaluate
denoising algorithms with respect to realistic camera noise: we describe
a new camera noise model that includes the full processing chain of
a single sensor camera. We determine the visual quality of noisy and
denoised test sequences using a subjective test with 18 participants. We
show that the noise characteristics have a significant effect on visual
quality. Quality metrics, which are required to compare denoising
results, are applied, and we evaluate the performance of 10 full-
reference metrics and one no-reference metric with our realistic test
data. We conclude that a more realistic noise model should be used
in future research to improve the quality estimation of digital images
and videos and to improve the research on denoising algorithms.
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I. INTRODUCTION

The demand for ever higher resolution has driven an increase
in pixel count, resulting in a lower pixel pitch (size of each pixel
on the sensor). Thus, the amount of light trapped by a single pixel
is lower, and the signal-to-noise ratio decreases. This is especially
severe under low light conditions. Hence, algorithmic methods to
reduce the noise are key for applications ranging from professional
movie shots to smart phone recordings. Denoising has been studied
extensively and various methods have been developed [1], [2], [3],
[4], [5], [6].

The development and tuning of these algorithms is typically
based upon standard test datasets like the Kodak image set [7].
These datasets include a collection of representative reference
images. To evaluate denoising algorithms, the reference images are
degraded using artificial noise, to obtain pairs of a reference and
a noisy image. In the simplest case, the results of the denoising
algorithms are subsequently evaluated using the difference to the
reference image (PSNR). As this measure does not correlate well
with human perception of visual quality, several more sophisticated
quality metrics have been proposed [8], [9], [10], [11], [12], [13].

Typically, the mentioned noisy images are generated by applying
additive white Gaussian noise (AWGN) to the reference images.
While AWGN allows us to easily generate noisy images in a
repeatable manner, it does not reflect the properties of realistic
camera noise. In [14] it is shown that noise in the raw sensor data
is signal dependent. Three major steps, shown in Fig. I, are required
to transform the raw sensor data to an image that can be viewed
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Figure 1. Image processing pipeline of a single-sensor camera.

on a display device (display domain image): The first step is the
white balance. Since the sensor data only provides one color value
per pixel (Bayer mask) demosaicking is required, as a second step,
to obtain a full-color image. In a third step, a color transformation
is applied to transform the image into the monitor color space.
Previous work showed that the second step, the demosaicking, has
a significant effect on denoising results using the Kodak data set, as
it introduces a spatial correlation in the noise characteristics [15].
Further, the color transformation changes the noise distribution in
a nonlinear manner. Hence, the realistic noise characteristic in the
camera data is fundamentally different from AWGN.

Thus, the complete processing pipeline shown in Fig. I must
be considered to generate test images with realistic camera noise.
Some recent denoising methods implemented more realistic camera
noise models, e.g., [16], [17], [18]. To evaluate these algorithms
representative result images based on real camera data are shown.
To quantitatively compare their results simple models as AWGN are
used. When denoising algorithms are evaluated and optimized using
unrealistic test data, this, however, may lead to wrong parameter
tuning or suboptimal choices in research and development of
denoising algorithms.

In this paper, we propose an approach to evaluate denoising
algorithms with respect to realistic camera noise. To this end, we
describe a new camera noise model that includes the complete
processing chain. Further, two state-of-the-art denoising algorithms
are evaluated with respect to their denoising results on test images
with AWGN and images generated using our new realistic camera
noise model. To evaluate the visual quality of the denoised images
a reliable quality metric is required. Up until now, quality metrics
have not been tested with respect to realistic camera noise. Thus,
to determine the visual quality of the test images in a reliable way,
a subjective test with human observers is performed. Further, the
results of the subjective test are compared to a large set of existing
quality metrics. We evaluate in detail how the individual processing
steps influence the performance of these metrics. This allows us to
identify the most suitable metrics to evaluate denoising algorithms
with respect to realistic camera noise.

The remainder of this paper is organized as follows: First, we
discuss the camera noise characteristics in Sec. II and describe
the processing steps that influence the noise characteristics in
Sec. III. The test setup for the subsequent experiments including
the subjective test is outlined in Sec. IV. We discuss the subjective
quality results in Sec. V. In Sec. VI we compare the performance
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Figure 2. Variance and distribution of the noise in the raw domain (signal
values in 16 bit precision).

of quality metrics with respect to realistic camera noise. Two state-
of-the-art denoising algorithms are evaluated using test images with
AWGN and test images with the new realistic camera noise model
in Sec. VII. Finally, we conclude in Sec. VIII.

II. CAMERA NOISE

For a realistic denoising evaluation we need a realistic model
for the camera noise. To find this model, we first measure the real
camera noise in the raw domain. While this measurement can be
performed with any camera, we use the ARRI Alexa camera, as it
delivers uncompressed raw data in 16 bit precision. Since the data
is uncompressed, we can expect unaltered measurement results.
Furthermore, the individual camera processing steps are known for
this camera [19]. Our method can equivalently be used for other
cameras.

To measure camera noise in the raw images we take a series
of exposures. The Alexa camera has been developed for motion
picture recordings in digital cinema applications. It has a CMOS
sensor with a resolution of 2880×1620. In front of the sensor, the
camera has a filter pack composed of an infrared cut-off filter, an
ultraviolet cutoff filter and a low pass filter to reduce aliasing. The
color filter array (CFA), which is located between the filter pack
and the sensor, is a Bayer mask.

To measure the camera noise variance we use the photon transfer
method [20]. This method uses two subsequent frames recorded
at constant and homogenous lighting conditions. The variance is
calculated as the mean of the difference between these two frames,
the corresponding signal value is calculated as the mean over all
the signal values in these frames. The graph in Fig. 2(a) shows the
variance plotted over the respective mean signal value. The variance
of the sensor noise can be approximated by a linear model. This
finding matches the results reported in [14], where other cameras
have been studied. We see, however, one difference in the region

(a) Inoisy,a, no demosaicking (b) Inoisy,b, with demosaicking

(c) Id,a , uncorrelated noise (d) Id,b , spatially correlated
noise

Figure 3. Crop of the sequence “City”. Noisy image (left) and noisy image
with demosaicking (right). In the second row the respective difference
image Id = Iref − Inoisy , scaled for display.

around signal value 0.1 × 104. The step in the variance curve is
due to a special characteristic of the Alexa sensor, the dual-gain
read-out technology. This means, the sensor read-out of the Alexa
provides two different paths with different amplification (dual-gain
read-out). The low amplified path provides the data for the signal
range starting from 0.1×104. The high amplified path is saturated
in the high signal values, but for the low signal values it provides a
significantly higher signal-to-noise ratio. The read-out noise (offset
of the variance curve) is reduced, thus the dual-gain technology
enhances the low light performance of the camera. The two read-
out paths are combined in the region around signal value 0.1×104,
which explains the step in the variance curve.

The distribution is very similar to a Gaussian distribution. In
Fig. 2(b) the distribution at signal level 1265 is shown with the
Gaussian approximation. That means we can well approximate the
sensor noise n in the raw domain using a Gaussian distribution
with signal-dependent variance.

n ∼ N (0, σ(x)) with σ2(x) = m(x)x+ t(x) (1)

The variance σ2(x) is approximated as a piecewise linear function
depending on the signal x, with the slope m(x) and the intercept
t(x) based on the measurement data in Fig. 2(a). Because of the
dual-gain read-out the values for m(x) and t(x) are piecewise
constant.

Thus we found a model for the camera noise in the raw data.
The signal values in the raw data are in linear domain, that means
the signal value is proportional to the amount of light collected by
the sensor and the raw data provides only one color value per pixel
according to the Bayer pattern. Therefore the data must be further
processed to obtain a full-color display domain image that can be
used for testing.

III. CAMERA NOISE IN THE PROCESSING PIPELINE

In the previous section we presented a realistic model for the
camera noise in the raw data. As the quality estimation of test
images requires images in the display domain, we need to consider
all the processing steps to obtain display domain test images with
realistic camera noise. Three main steps are performed:



1) White Balance,
2) Demosaicking,
3) Color Transformations.

After the three steps a display domain image is obtained. In the
following, we discuss the influence of the individual steps on the
camera noise characteristics for a detailed understanding.

White balance is a known gain factor that is different for each
color. While the white balance directly influences the noise level
in the different color channels, it does not affect the distribution,
as it is a linear transformation.

The next step is to create a full-color image with three color
values per pixel by demosaicking the white-balanced raw data.
Different demosaicking algorithms can be used and the noise
characteristic is changed depending on the algorithm. The demo-
saicking algorithm we use in our test was a standard directional
interpolation method using a 5x5 window. The green interpolation
is a gradient based decision between horizontal and vertical linear
interpolation. The red and blue interpolation additionally uses
green high pass information for correcting the chroma values.
Like most debayering approaches the algorithm is nonlinear and
uses neighboring values. Therefore a spatial correlation between
neighboring pixel values and a chromatic correlation of the three
color channels is introduced.

The influence of the demosaicking step on the noise characteris-
tics is illustrated in Fig. 3. On the left, a test image with uncorre-
lated noise is shown, which is processed without the demosaicking
step. The test image on the right was processed including the demo-
saicking step, and thus the noise in the image is spatially correlated.
The respective difference images are obtained by calculating the
difference Id = Iref − Inoisy between the reference image Iref
and the respective noisy image Inoisy . While the difference image
Id,a in Fig. 3(c) shows uncorrelated noise, the spatially correlated
noise due to demosaicking is shown in Fig. 3(d). Both difference
images are scaled the same way to visualize the effect unbiased. We
see that the noise after demosaicking is structured and of coarser
grain. This might lead to a lower performance of standard denoising
algorithms.

The third step, the color transformation, is composed of different
steps, usually a nonlinear tone mapping, a color space conversion
and a gamma transformation. While the exact color transformation
is an individual choice, it is an essential step to map the linear raw
values onto displayable signals. The nonlinear tone mapping and
the gamma transformation lead to a nonlinear signal-dependence
of the noise an to an unknown noise distribution. The color space
conversion can strengthen the chromatic and thereby the spatial
correlation.

The images in display domain, therefore, have a noise charac-
teristic that is spatially correlated, signal-dependent and with an
unknown noise distribution. Hence, the noise characteristic is very
different to AWGN in the display domain, which is the adequate
domain for human observers and thus the appropriate domain for
the evaluation of denoising algorithms. For a realistic evaluation
test data in the display domain is required. We show how to
obtain realistic test data taking into account the complete camera
processing pipeline in the next section.

IV. TEST SETUP

To evaluate denoising algorithms, our test setup consists of a
reference image, a noisy image and a denoised image. While noisy
images could be obtained in the form of real camera data, we
would lack the corresponding reference imagery. Applying noise
to a readily processed image, e.g., an image from the Kodak data
set, cannot be used for tests with realistic camera noise, as it is
necessary to include all the processing steps described in Sec. III.
To obtain realistic test data, a full-color reference in the linear
domain is required. We obtained this reference data from a rendered
3D scene.

A. Reference sequences

(a) city (b) landscape

Figure 5. One frame of the computer-generated test sequence

For our test we use two different scenarios, one pan over a city,
namely “city”, Fig. 5(a), and a landscape sequence obtained by
moving a static image by a few pixels to provide a video sequence,
namely “landscape”, Fig. 5(b). The sequences have been chosen
to reflect typical challenges in denoising natural images. The city
sequence is dominated by horizontal and vertical edges and squares,
whereas the landscape sequence has a lot of fine details that are
not part of larger structures. In the landscape sequence, the optical
low pass filter of the simulated camera has been adjusted to be
less restrictive such that more high-frequency content is left in the
images. The sequences are 16 bit data rendered in linear domain. To
incorporate the optics of a camera system the images are multiplied
in the Fourier domain with the optical transfer function of the
camera. This step takes into account the diffraction limited lens,
the optical low pass filter and the pixel aperture. For details we
refer to [21]. The rendering of the 3D scene has to provide high
resolution images to avoid aliasing effects in the camera optics
simulation. We use a resolution of 40962 pixels to obtain 10242-
sized images as simulation output. This approach provides realistic
reference data in linear domain. Applying the color transformation
to this data, provides a display domain reference image.

B. Test sequences

Besides the reference images, noisy test images are required
for denoising evaluation. To generate these noisy images, we
use the most usual and most simple model, AWGN in display
domain, and our new realistic camera noise model. Additionally
we use noise models that enable us to evaluate the impact on
visual quality of the two main differences between camera noise
and AWGN individually: signal-dependence and spatial correlation
through demosaicking.
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Figure 4. Processing of simulated sensor data for the test using signal-dependent noise (SD) and AWGN.

In Fig. 4 the usual AWGN model corresponds to the simulation
path named ”noisy AWGN uncorrelated“. We use AWGN with a
standard deviation of 1100 in 16 bit domain, which is equivalent to
approximately 1.7% of the signal range. To evaluate the influence
of the demosaicking step on visual quality, we simulate AWGN
with subsequent demosaicking, which is represented by the simu-
lation path ”noisy AWGN demosaicked“ in Fig. 4. While this does
not correspond to real camera data, we can expect more realistic
results by including this step into the usual AWGN model. To
obtain signal-dependent noise, we replace the AWGN based noise
model with the signal-dependent camera noise from Sec. II added
in linear domain (“noisy SD uncorrelated” in Fig. 4). The noise
level of the camera noise in our test sequences corresponds to
a sensitivity of 3200 ASA. To obtain realistic camera noise the
demosaicking step must be included, thus the simulation path for
realistic camera noise is ”noisy SD demosaicked“ in Fig. 4.

To obtain denoised sequences, all the noisy sequences from
Fig. 4 are denoised with two different denoising algorithms, BM3D
[4] and BLS-GSM [3].

C. Subjective test design

With the approach described above, we obtained reference, noisy
and a denoised images. To evaluate denoising algorithms, the visual
quality of the noisy and the respective denoised image must be
compared. We thus require a metric, which can reflect the visual
quality of the noisy and denoised test images similar to the human
perception. However, to the best of our knowledge, the performance
of quality metrics has not been validated for realistic camera noise.

The validation of quality metrics is based on databases that
contain test images with artificial degradations and respective
results of subjective tests, in which the test participants assess the
perceived visual quality of these test images. To determine quality
metric performance, the metrics are applied to the database test
images and the results are compared to the respective subjective
test result. While databases as the LIVE [22], the TID2008 [23]
and the CSIQ [24] database were used to evaluate state-of-the-art
quality metric performance with respect to different noise models,
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Figure 6. The MOS and PSNR results for the test sequences “City” and
“Landscape” using the traditional AWGN model (dashed) and the realistic
signal-dependent noise (solid lines). The uncorrelated noise, processed
without demosaicking, is shown on the left, the results with demosaicking
on the right.

none of them uses realistic camera noise. The performance of the
quality metrics is thus unknown for camera noise.

To obtain reliable information on the visual quality of our noisy
and denoised test sequences, we conduct a subjective test with
our test material. We used the double stimulus DSIS methodology
with a undistorted reference and impaired noisy sequence according
to ITU-R BT.500. A discrete scale from 1 to 10, representing a
impairment range of “very annoying” to “imperceptible”, was used.
The test participants were 18 students, aged between 20 and 30. The
task for the participants was to assess the perceived impairment of
the images. Before each test, at training session was performed and
expected distortion, blur and noise, were mentioned in this training.
The test was performed in the ITU-R BT.500 compliant video
quality evaluation laboratory at the Institute for Data Processing
at Technische Universität München. For displaying the videos, a
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Figure 7. Quality metric results for the test sequences “City” and “Landscape” using the traditional AWGN model (dashed) and the realistic signal-dependent
noise (solid lines). The uncorrelated noise, processed without demosaicking, is shown on the left, the results with demosaicking on the right.

color calibrated Sony BVM-L230 reference LCD display with a
screen diagonal of 23 inches was used. To get reliable results,
the outlier were removed in the post processing of the subjects’
votes. Votes were removed, if they deviated more than 2σ from the
mean for a sequence. Using this criterion, 4.6% of all votes were
discarded. After outlier removal, the mean opinion score (MOS)
was determined for the different test images.

The subjective test results provide reliable values for the sub-
jective quality of all our test images. This results enable us to
compare the visual quality of the noisy and denoised test sequences.
Furthermore, the test data enables us to determine the performance
of quality metrics with respect to realistic camera noise.

V. SUBJECTIVE QUALITY OF SEQUENCES DEGRADED BY

CAMERA NOISE

The performance of denoising algorithms is evaluated by com-
paring the quality of a denoised image to the quality of the
respective noisy image. To determine the performance of denoising
algorithms we therefore need to evaluate the quality of the noisy
images first. As described in Sec IV-B, four different noise models
were used in our test: the usual AWGN model, AWGN with
demosaicking, signal-dependent noise without demosaicking and
finally the realistic camera noise model – signal-dependent noise
with demosaicking. In this section, we evaluate the visual quality
of the noisy test sequences and analyze the main differences
between the realistic camera noise and AWGN: spatial correlation
introduced through demosaicking and signal-dependence.

In Fig. 6(a) the MOS results are shown for sequences without the
demosaicking step, thus containing uncorrelated noise, on the left,
and the results for noisy sequences with demosaicking are shown
on the right. We notice that the demosaicking leads to a lower MOS
for all three test sequences. The MOS of the city sequence with
AWGN is about 3 scores lower when demosaicking is included.
Regarding the sequences with signal-dependent noise, the MOS is
0.5 lower for the city sequence and 2.3 lower for the landscape se-
quence when demosaicking is included. The demosaicking changes
the difference in visual quality of the sequences: While it is notice-
able that the MOS for the uncorrelated noisy landscape sequence is

quite good (7.1) compared to the respective city sequence (4.9), the
difference is much smaller (0.4) when demosaicking is included.
This may be explained by the image content: While the fine grain
of the uncorrelated noise that is hardly differentiable to the sand,
the coarser grain of the spatially correlated noise that is clearly
visible in the landscape sequence. For all three test sequences
the spatially correlated noise is perceived as more annoying than
the uncorrelated noise. Furthermore, the demosaicking changes the
difference in visual quality of different noisy images.

To reflect realistic camera noise a signal-dependent noise model
is required. The noise level of signal-dependent noise depends
on the signal and thus on the image content. Through the color
transformation, the signal-dependence is nonlinear in display do-
main images, usually is most visible in dark regions of the image.
The noise level of signal-dependent noise is varying with the
image content and thus not directly comparable to AWGN. For the
city sequence we simulated both AWGN and the signal-dependent
noise. While AWGN is classified as less annoying than signal-
dependent noise when it is uncorrelated, AWGN with demosaicking
is classified as more annoying than signal-dependent noise with
demosaicking. That means, the relative order is changed with the
noise model.

The MOS results showed that demosaicking has a significant
impact on visual quality, in our test it leads to a lower visual quality
of the noisy sequences. The noise model can change the difference
and the relative order of the visual quality of the test sequences.

The effect of the noise model on the PSNR results, shown in
Fig. 6(b), shows clearly different results than for the MOS. While
the decrease with demosaicking is the correct for the landscape
sequence, very different results are obtained for the city sequences:
The PSNR is approximatly constant when AWGN is compared
to AWGN with demosaicking, and regarding the signal-dependent
noise it is about 2dB higher for the demosaicked city image (33.95).
With demosaicking, the quality of the city sequence is rated much
higher compared to the landscape sequence, thus the relative order
does not correspond to the MOS results.

In this section, we have seen that the noise characteristics have a



significant effect on the subjective quality. Interestingly, subjective
quality in terms of MOS does not match the PSNR of the test
sequences. While the PSNR is still widely used, it is well known
that it is not optimal for visual quality estimation. Therefore, we
evaluate mor sophisticated metrics that correlates better with the
visual quality given by the MOS results of our subjective test in
the next section.

VI. QUALITY METRIC PERFORMANCE

To improve the correlation with the perceived visual quality,
adaptions of the mentioned PSNR were proposed, such as the visual
signal-to-noise ratio (VSNR) [10], the weighted SNR (WSNR) [25]
and the human visual system based PSNR (PSNR-HVS/ PSNR-
HVSM) [11]. The performance of several quality metrics including
the above has been evaluated using the TID2008 database in [23]
that contains a test setup with different types of noise, including
spatially correlated noise. In these test the PSNR-HVS and the
WSNR achieved the highest correlation with the subjective test
results. We therefore can expect good results using these metrics
for our test data.

Other approaches that showed good results for various degra-
dations, including white noise and Gaussian blur [26], are struc-
tural algorithms, as the structural similarity (SSIM) index [8]
and the multiscale SSIM (MSSIM) [9], and information-theoretic
algorithms, as the visual information fidelity (VIF) [12] and the
information fidelity criterion (IFC) [27].

The noise quality measure (NQM) [28] is used as it is a metrics
designed for noisy images. Furthermore, we used one no-reference
metric, the “MetricQ”, as this metric was particularly designed for
estimating the quality of images degraded by blur and noise [13]
to optimize denoising algorithms.

An optimal quality metric would show the same tendencies
and relative order as the MOS results described in the previous
section. One of our main result from the previous section was, that
including the demosaicking step in the processing pipeline of the
noisy test images significantly reduces visual quality. That means,
for both noise models the MOS is lower when demosaicking is
included. In contrast, the SSIM is higher for the spatially correlated
noise with demosaicking (Fig. 7(e)), the relative order of the
sequences inlcuding demosaicking is thus incorrect. The SSIM
could potentially be improved by tuning a scale parameter to better
capture the coarser grain noise in the sequences with demosaicking.
However, the default parameters remain unchanged here to obtain
comparable results. Using the default scale parameter the SSIM
does not reflect the subjective test results. The MSSIM results better
match the subjective quality, as it shows a lower value for the noise
after demosaicking , see Fig. 7(f). The VIF, IFC, WSNR and the
PSNR-HVS rate the noisy images including demosaicking lower
and thus reflect well the subjective quality, see Fig. 7(a) - 7(c). The
IFC results are left out, as they are very similar to the VIF results.
The no-reference metric in Fig. 7(d), the MetricQ, does not reflect
the visual quality, as it rates the noisy sequences with demosicking
higher.

In summary, none of the tested metric is able to perfectly
reflect the visual quality of all the noisy sequences as given by
the MOS. However, VIF, IFC, PSNR-HVS, VSNR and MSSIM
showed lower results for the noisy images when demosaicking is
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included compared to the uncorrelated noise, and thus matched this
important tendency shown by the MOS.

VII. QUALITY ASSESSMENT OF DENOISING RESULTS

In the last two sections we discussed the subjective quality and
the quality metric performance for noisy sequences. In this section,
we discuss the visual quality of the denoised test sequences and
based on this results the performance of the quality metrics for the
denoised test images. Finally we identify the most suitable quality
metrics for denoising algorithm evaluation.

We used two different state-of-the-art denoising methods, BM3D
[4] and BLS-GSM [3]. In Fig. 8(a) the MOS results for denoised
sequences are shown. In the subsequent plots the two left results
show the quality of the usual AWGN model and the AWGN model
with demosaicking, whereas the two results on the right show the
quality for signal-dependent noise and for signal-dependent noise
with demosaicking. The last corresponds to the realistic camera
noise model.

The noise model significantly affects the visual quality of
denoising results. Including the demosaicking step into the noise
simulation leads to a MOS that is up to 3 scores lower. Thus,
denoising uncorrelated noise is easier than denoising spatially
correlated noise. The signal-dependence also affects the denoising
performance: BLS-GSM achieves a 1.7 lower MOS for uncor-
related signal-dependent noise compared to AWGN. When both
signal-dependence and demosaicking is included, thus realistic
camera noise is used, the quality of the BLS-GSM result is even
lower than the quality of the noisy sequence, thus no improvement
is achieved with denoising. This shows, that it is crucial to use an
adequate model in the development of denoising algorithms.

Optimal quality metrics should show the same tendencies and
relative order as the MOS results. As described above, the demo-
saicking leads to a lower MOS, thus the lines in Fig. 8(a) are
decreasing. This is reflected by the MSSIM, VIF and PSNR-HVS,
see Fig. 9(a)-9(c). The PSNR in Fig. 8(b) matches this tendency
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Figure 9. Quality metric results for the denoised test sequences using BM3D [4] and BLS-GSM [3].

for the denoised sequences except for the sequence with signal-
dependent noise denoised with BLS-GSM. The MetricQ, shows
a similar behaviour, see Fig. 9(d), and does not reflect the MOS
results. Regarding the relative order of the sequences with realistic
camera noise, the VIF is the only metric in our test that rates
the denoised sequences using BLS-GSM lower than the noisy
sequence, which reflects the MOS (see “dem. SD” in Fig. 9(a)).
However, the VIF rates the sequences denoised with BLS-GSM
lower for the other noise characteristics, too, which does not reflect
the MOS results.

We found that the noise model has a significant effect on the
visual quality of denoising results. We have shown that demo-
saicking decreases denoising performance of both tested algorithms
significantly and found that the signal-dependence leads to a
lower visual quality of the BLS-GSM results. We compared our
subjective test results to the quality metric results and found
that none of the tested metrics reflected the MOS perfectly. To
determine the metrics that correlate best with the perceived quality,
we evaluate the overall metric performance by means of the
Pearson correlation coefficient, results shown in Fig. 10(a), and
the Spearman correlation coefficient, results shown in Fig. 10(b).
The MetricQ, the only no-reference metric used in our tests, shows
the lowest correlation coefficient (0.4). However, the MetricQ rates
the denoised sequences higher than the noisy sequences and thus
could at least be used to detect noise when no reference is available.
The highest correlation to the subjective quality is achieved by the
full-reference metrics IFC, VIF and PSNR-HVS. Thus, among the
tested metrics these are the most suitable for the evaluation of
denoising algorithms.

VIII. CONCLUSION

In this paper we proposed a realistic camera noise model and
showed how to integrate the complete camera processing chain
into the test setup to evaluate denoising approaches. We not only
showed that the noise characteristic of the typically applied AWGN
is fundamentally different from our realistic noise model, but also

identified that the signal-dependent noise as well as its spatial
correlation has a significant impact on the perceived visual quality
of noisy and denoised images. In our subjective test, we found that
the spatially correlated noise, introduced in the demosaicking step,
is perceived as more disturbing.

Denoising test images degraded by signal-dependent noise leads
to results with a lower visual quality than for AWGN. Further, the
performance of state-of-the-art denoising algorithms is consider-
ably impaired by spatially correlated noise. Using realistic camera
noise, denoising can even reduce the perceived visual quality.

To estimate the visual quality of denoising results without costly
subjective tests, reliable quality metrics are required. In this paper,
several state-of-the-art quality metrics are evaluated, however, none
of the tested metrics fully reflects the perceived visual quality.
While the widely used metrics PSNR and SSIM show a low
correlation with the subjective test results, the highest correlation
is obtained using the metrics PSNR-HVS, IFC and VIF.

With the significant impact of the chosen noise characteristic
on the visual quality of noisy images and of denoising results,
we conclude that a realistic noise model should be used in future
research. For realistic denoising evaluation, a new extensive test set
based on realistic noise, as well as new quality metrics that better
reflect the visual quality of camera data, would be required.
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