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Abstract

We introduce a technique to analyse the dependence structure of an elliptical copula
with focus on extreme observations. The classical assumption of a linear model for the
distribution of a random vector is replaced by the weaker assumption of an the elliptical
copula in the high risk observations. More precisely, we describe the extreme dependence
structure by an elliptical copula, which preserves a ’correlation-like’ structure in the ex-
tremes. Based on the tail dependence function we estimate the copula correlation matrix,
which is then analysed through classical covariance structure analysis techniques. After
introducing the new concepts and deriving some theoretical results we observe in a simu-
lation study the performance of the estimator. Finally, we test our method on real financial
data assessing extreme risk dependence.

1 Introduction

Covariance or correlations structure analysis is a popular method in multivariate statistics to
analyse the dependence structure in the data assuming a latent structure. Classical structure
analysis is based on the assumption of normally distributed data, see e.g. [20] or the review
paper [2]. Likelihood ratio tests were developed to distinguish between different model hypo-
theses. But the asymptotic χ2-distribution is only valid for normally distributed data.However,
many data sets exhibit properties contradicting the assumption of normality, see e.g. [5] for
a study of financial data. Therefore, a number of extensions have been developed to deal
with those kinds of features. On the one hand scaled normal theory test statistics and estim-
ators were introduced, e.g. in [22], [34] or [38], on the other hand so-called asymptotically
distribution-free test statistics were developed in [3]. Concerning the first approach we also
like to mention [36], who extended the normal theory methods for structure analysis to the
class of elliptical distributions, by suitably scaling the test statistics with an estimator of the
kurtosis parameter of the elliptical distribution.

All of the above approaches use in some way the covariance matrix, but for multivariate
data it may happen that some margins are well modelled as being normal and some are much
more heavy-tailed such that the existence of second moments is not guaranteed.

Motivated by such problems [24] introduced a correlation structure analysis, which does
not assume the existence of any moments of the data. Their approach is based on analysing
the ’correlation matrix’ of an elliptical copula model describing the dependence in the data
by Kendall’s tau. Recall that this dependence measure is based on the ranks of the data,
consequently, it disregards the absolute size of the data. The result is a robust dependence
estimate.
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In many applications, however, dependence in extremes is a much more important issue
than dependence in the mean of the data or its ranks as it is assessed by the classical correl-
ation or by Kendall’s tau, respectively. For example, financial risk management is confronted
with problems concerning joint extreme losses, and one of its prominent questions is how to
measure or understand dependence in the extremes, see e.g. [30]. This focus on dependence
in extremes requires a different approach than in [24] and will be developed in this paper.
We assess extreme dependence by the well-known concept of a tail dependence function. For
such elliptical copulas, which can model extreme dependence, we present how to estimate
a copula correlation matrix based on the tail dependence function. Given this estimate we
illustrate, how to analyse the structure of the estimated correlation matrix.

Our paper is organised as follows. We start with a short review of classical factor analysis
and afterwards give some definitions and preliminary results on elliptical distributions and
elliptical copulas in Section 2. Section 3 introduces the tail dependence function as a copula
dependence concept and estimators are developed, which can be used for a copula structure
analysis. We also derive asymptotic results like asymptotic normality of our estimates. In
Section 4 a simulation study shows that the derived asymptotic results hold already for a
moderate sample size. Finally, we perform a factor analysis based on the copula correlation
matrix estimate of a real life data set and give an interpretation of the results. The longer
proof of our main result is postponed to Section 6.

Throughout this paper we shall use the following notation. We denote the set of real
d × m matrices by Md,m(R). If d = m we simply write Md(R). The space of symmetric
matrices is denoted by Sd, the positive semi-definite cone by S+

d and the positive definite cone
by S++

d . Id stands for the d× d identity matrix and det(A) for the determinant of a matrix
A ∈ Md(R). The transposed of a matrix A ∈ Md(R) will be denoted by A>. Moreover,
vecp : Mk,l(R) → Ru stands for the operator that stacks the u non-duplicated and non-fixed
elements of a patterned matrix below another. For example, in case of a correlation matrix R
we get

r := vecp(R) ∈ Rd(d−1)/2. (1.1)

Finally, we denote throughout this paper Rd
+ := [0, ∞]d \ {(∞, . . . , ∞)} and for x, y ∈ Rd

+ we
denote by x ∨ y the componentwise maximum and by x ∧ y the componentwise minimum.

2 Preliminaries

2.1 Structure analysis based on the correlation matrix

Classical structure analysis techniques such as factor analysis can be based on the covariance
Cov(X) = Σ or the correlation matrix Corr(X) = R of a random vector X ∈ Rd. In the first
case the results depend on the scale of X and, thus, often the correlation matrix is used. We
will later on also work with a correlation like dependence measure, the ’copula correlation
matrix’.

In classical factor analysis the data X is assumed to satisfy a linear model X d
= µ+ L̃f+ Ṽe,

where µ = (µ1, . . . , µd)
>, f = ( f1, . . . , fm)> (m < d) are non-observable and (usually) uncorrel-

ated factors, e = (e1, . . . , ed)
> is a noise vector, and d

= means equality in distribution. Further,
L̃ ∈ Md,m(R) is called loading matrix and Ṽ is a diagonal matrix with nonnegative entries,
the specific factor loadings. An often used additional assumption is that (f>, e>) has mean
zero and covariance matrix Im+d. Then, describing the dependence structure of X through

its covariance matrix yields Σ = L̃L̃> + Ṽ2
; i.e., the dependence of X is described through
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the entries of L̃. In terms of the correlation matrix R we get the following decomposition

R = LL> +V2, where L = diag(Σ)−1/2L̃ and V2 = diag(Σ)−1/2Ṽ2
diag(Σ)−1/2.

2.2 Elliptical copulas

Elliptical copulas describe the dependence structure in elliptical distributions as well as in
their extensions, the meta-elliptical distributions, which were originally introduced in [13].
We start by recalling the definition of an elliptical distribution and refer also to [12] for a
comprehensive overview.

Definition 2.1. A d-dimensional random vector Z is said to have an elliptical distribution with

parameters µ ∈ Rd and Σ = (σij)1≤i,j≤d ∈ S+
d (R), if it has the stochastic representation Z d

=

µ+GAU(m) , where G is a positive random variable, U(m) ∼ unif(s ∈ Rm : s>s = 1) is independent
of G, and A ∈ Md,m(R) is a matrix such that AA> = Σ for some m ∈ N. In particular, if G has a
density, then the density of Z is of the form

det(Σ)−1/2g
(
(z−µ)>Σ−1(z−µ)

)
,

where g(·) is a function uniquely determined by the distribution of the generating variable G. We shall
use the notation Z ∼ Ed(µ, Σ, G). Further, if the first moment exists, then E(Z) = µ and, if the
second moment exists, then G can be chosen such that Cov(Z) = Σ.

Assuming G is absolutely continuous, all marginal distribution functions of the scaled
vector Z∗ = diag(σ11, . . . , σdd)

−1/2Z are given by:

Qg(x) =
1
2
+

π(d−1)/2

Γ((d− 1)/2)

∫ x

0

∫ ∞

u2
(y− u2)(d−1)/2−1g(y)dydu , x ∈ R,

see equation (1.5) in [13], which is limitation of elliptical distributions.
We regain the flexibility of modelling the margins separately, while keeping the depend-

ence structure of an elliptical distribution, by considering meta-elliptical distributions. The
dependence structure in a meta-elliptical distribution is described by the corresponding el-
liptical copula, where a copula C : [0, 1]d → [0, 1] is a d-dimensional distribution function
with standard uniform margins, i.e. C(1, . . . , 1, uj, 1, . . . , 1) = uj for j ∈ {1, . . . , d}. For more
technical background information on the copula concept we refer to [31].

Definition 2.2. Let Z ∼ Ed(µ, Σ, G) and define Z∗ := diag(σ11, . . . , σdd)
−1/2Z ∼ Ed(µ,R, G) with

R :=
(

σij/
√

σiiσjj

)
1≤i,j≤d

. Then we define the elliptical copula ECd(R, G) associated with Z∗ as

the joint distribution function of U ∈ Rd with Uj = Q(Z∗j ) for j ∈ {1, . . . , d}. We shall call R the
copula correlation matrix.

The following corollary shows that the notation ECd(R, G) for an elliptical copula is reas-
onable. It is a simple consequence of the definition and the fact that copulas are invariant
under strictly increasing transformations; see [11, Theorem 2.6].

Corollary 2.3. An elliptical copula is characterised by the generating variable G and the copula cor-
relation matrix R =:

(
ρij
)

1≤i,j≤d.

Our assumptions are based on the following:

(A1) X1, . . . , Xn are i.i.d. with elliptical copula ECd(R, G).

(A2) ρii > 0, for i = 1, . . . , d, and |ρij| < 1, for i 6= j.

(A3) limx→∞ P(G > tx)/P(G > x) = t−ν for all t > 0 and some ν > 0. This means that G is
regularly varying with index ν, denoted by G ∈ RV−ν.
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3 Methodology

In this section we will introduce a copula based dependence concept and the correspond-
ing correlation matrix estimate. This estimate will describe the dependence structure in the
extremes.

3.1 Dependence Concepts

Measuring dependence by correlation or covariance is limited by the fact that they measure
only linear dependence. Further, since copulas are invariant under strictly increasing trans-
formations, correlation is not a copula parameter, but depends on the full distribution, see e.g.
[11, Example 3.1]. On the other hand, for the proposed structure analysis method, we need a
dependence concept, which can at least be linked to correlation.

Although the focus in this paper is on extreme dependence, we shall also need Kendall’s
tau, since we shall use it as a preliminary dependence estimate; for more details see [23].

Definition 3.1. Kendall’s tau τij between two different components (Xi, Xj), i 6= j, of a random vector
X is defined as

τij := P
(
(Xi − X̃i)(Xj − X̃j) > 0

)
−P

(
(Xi − X̃i)(Xj − X̃j) < 0

)
,

where (X̃i, X̃j) is an independent copy of (Xi, Xj).

Concerning elliptical copulas the following result will be used, which is given in [13,
Theorem 3.1].

Proposition 3.2. Let X be a random vector with elliptical copula ECd(R, G) and generating variable
G > 0. If rank(R) = 1 and G is continuous or, if rank(R) ≥ 2 and P(G = 0) = 0, then
τij = 2 arcsin(ρij)/π.

By Sklar’s theorem, the copula C describes the dependence structure in a multivariate
distribution model on all levels of the data. It also describes dependence in extremes. As C is
a distribution on [0, 1]d with uniform marginals, extreme values happen near all boundaries
and joint extreme dependence between all components happen around the points (0, . . . , 0)
and (1, . . . , 1). This can be captured by the following concept, see e.g. equation (1) in [26] or
equations (2.2) and (2.3) in [19].

Definition 3.3. Let X be a random vector with values in Rd
+ and marginal distribution functions Fj

for j = 1, . . . , d. We define the upper tail dependence function of X as

TX
upper(x) := lim

t→0
t−1P (1− F1(X1) ≤ tx1, . . . , 1− Fd(Xd) ≤ txd) (3.1)

= lim
t→0

t−1C(1− tx1, . . . , 1− txd),

for x = (x1, . . . , xd) ∈ R
d
+ if the limit exists, where C is the survival copula of C. We define the lower

tail dependence function of X as

TX
lower(x) := lim

t→0
t−1P (F1(X1) ≤ tx1, . . . , Fd(Xd) ≤ txd)

= lim
t→0

t−1C(tx1, . . . , txd),

for x = (x1, . . . , xd) ∈ R
d
+ if the limit exists.
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Remark 3.4. (i) Since by symmetry TX
lower(x) = TX

upper(x) =: TX(x) holds for elliptical cop-
ulas, we concentrate only on the upper tail dependence function and call it tail dependence
function, and write T(x). If T(x) > 0 for some x > 0, X is called asymptotically dependent
and asymptotically independent, otherwise. In [18, Theorem 4.3] it is shown that a random
vector X with elliptical copula is asymptotically dependent, if and only if the corresponding
generating variable G is regularly varying with index ν, i.e. G ∈ RV−ν for some ν > 0. By
definition, T(x) = 0, if T(Xi ,Xj)(xi, xj) = 0 for some i, j, i.e. X is asymptotically independent,
if some bivariate margins (Xi, Xj) of X are asymptotically independent. Concerning asymp-
totic independence we refer to [28], and for a conditional modelling and estimation approach
allowing for asymptotic independence in some components and asymptotic dependence in
others, see [16]. We will use the assumption of asymptotic dependence for modelling and
estimation and, therefore, we omit further discussions about asymptotic independence.
(ii) The bivariate marginal tail dependence function measures the amount of dependence in
the upper right corner of the first quadrant of R2. Thus only positive dependence of (Xi, Xj)
will be considered. As a consequence, if the estimated T is close to 0, the data may still be
dependent or, for instance, negatively dependent.
For an account of negative dependence in the extremes, one can move due to the symmetry
of the elliptical copula from the pair (Xi, Xj) to (Xi,−Xj) and interpret the findings appropri-
ately.

From [26, Theorem 4] we know the tail dependence function T(x) corresponding to an
elliptical copula ECd(R, G). It is given by

T(x) =
∫

u∈Sd−1,A1·u>0,...,Ad·u>0

d∧
i=1

xi(Ai·u)νdFU(u)

 ∫
u∈Sd−1,A1·u>0

(A1·u)νdFU(u)

−1

,

where Ai· is the i-th row of A from Definition 2.1 and FU is the uniform distribution on the
unit sphere Sd−1 = {s ∈ Rd : s>s = 1} in Rd. For the estimation of R and ν with focus on
extreme dependence we will need a one-to-one relation between the tail dependence function
and R respectively ν. By elliptic dependence each bivariate margin

Tij(x, y) := T(∞, . . . , ∞, x, ∞, . . . , ∞, y, ∞, . . . , ∞) , ∀i 6= j,

of the tail dependence function depends only on ρij and ν as shown in [25, Theorem 1]. We
recall this representation in Proposition 3.5. The second equality of this Proposition is due to
[8], who derived an expression for the Pickands dependence function A(x) := 1− T(x, 1−
x, ν, ρ) of the bivariate t-distribution, and which was shown in [1] to be the same for all
elliptical distributions with regularly varying generating variable G ∈ RV−ν, for some ν > 0.

Proposition 3.5. Suppose X has elliptical copula ECd(R, G) and (A2)-(A3) hold. Then the bivariate
marginal tail dependence function of X is given by

Tij(x, y) =

(
x
∫ π/2

gij((x/y)1/ν)
(cos φ)ν dφ + y

∫ π/2

gij((x/y)−1/ν)
(cos φ)ν dφ

)(∫ π/2

−π/2
(cos φ)ν dφ

)−1

= x

1− tν+1

 ( x
y )

1
ν − ρij√

1− ρ2
ij

√
ν + 1

+ y

1− tν+1

 ( y
x )

1
ν − ρij√

1− ρ2
ij

√
ν + 1


=: T(x, y, ν, ρij), (3.2)

where x is the i-th and y the j-th component of x ∈ Rd.
Moreover, gij(t) := arctan

(
(t− ρij)/

√
1− ρ2

ij

)
and tν+1 denotes the t-distribution with ν + 1 de-

grees of freedom.
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Remark 3.6. (i) The case of ρij = 1 can be interpreted as a limit, i.e.

T(x, y, ν, 1) := lim
ρij→1

T(x, y, ν, ρij).

Then

gij(t) = lim
ρij→1

arctan

 t− ρij√
1− ρ2

ij

 =


+π/2, t > 1,

0, t = 1,
−π/2, t < 1,

and we obtain T(x, y, ν, 1) = x ∧ y for all i 6= j ∈ {1, . . . , d}. Similarly, T(x, y, ν,−1) = 0.
(ii) We want to recall that by [26, Theorem 5.1], T is also for arbitrary dimension d completely
characterized by the copula correlation matrix R and the index ν of regular variation of G.

3.2 Copula correlation estimator based on the tail dependence function

From Proposition 3.5 we observe that for an elliptical copula T can be expressed as a function
of R and ν. Vice versa, the correlation matrix R is a function of the tail dependence function
and the index ν of regular variation of G. In this section we will exploit this functional
relationship for the estimation of R. Using the tail dependence function for estimation of R
fits only the dependence structure in the upper extremes to an elliptical copula and does not
necessarily fit the dependence of the data in other regions. This is in contrast to the classical
approach, and also to the approach in [24], where R was estimated via Kendall’s tau.

We shall show how, given an estimator of T, we can estimate R and ν, i.e. we can estimate
the elliptical structure, which is likely to generate the observed extreme dependence.

By Proposition 3.5, given an estimator of ν and of all bivariate marginal tail dependence
functions, we can estimate the bivariate correlations, i.e. the correlation matrix R. We start
with an estimator of the tail dependence function.

Definition 3.7. Given an i.i.d. sample X1, . . . , Xn with Xl = (Xl,1, . . . , Xl,d)
> for l = 1, . . . , n, we

define the empirical tail dependence function for x = (x1, . . . , xd) > 0 as

T(x; k) =
1
k

n

∑
l=1
1(1− Fj(Xl,j) ≤

k
n

xj, j = 1, . . . , d), (3.3)

where 1 ≤ k ≤ n, and Fj denotes the empirical distribution function of {Xl,j}n
l=1 for 1 ≤ j ≤ d.

Further, we define the empirical bivariate marginal tail dependence function as

Tij(x, y; k) := T(∞, . . . , ∞, x, ∞, . . . , ∞, y, ∞, . . . , ∞; k)

:=
1
k

n

∑
l=1
1(1− Fi(Xl,i) ≤

k
n

x , 1− Fj(Xl,j) ≤
k
n

y ), (3.4)

where x is at the i-th and y at the j-th component, respectively.

For details on empirical tail dependence functions see [9], [25], [35], and further references
therein.

Since T estimates a tail dependence function, the number k should be small compared
to n. Setting xj = 1 for 1 ≤ j ≤ d in (3.3), only the k largest observations of Xl,j satisfy
1−Fj(Xl,j) ≤ k/n, therefore, k can be interpreted as the number of the largest order statistics,
which are used for the estimation as is typical in extreme value theory.

Immediately by representation (3.2), it follows that T(ax) = aT(x) for every a > 0, i.e. T is
homogeneous of order 1. Hence, for the estimation we follow the convention only to consider
points (x(θ), y(θ)) := (

√
2 cos(θ),

√
2 sin(θ)) for θ ∈ (0, π/2), which includes the point (1, 1),
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but also points off the diagonal. By this procedure we obtain more information about the tail
dependence of the data, than by just considering the point (1, 1).

Recall that our task is now to estimate ν and ρ from T for each pair of marginals (Xl,i, Xl,j)
for 1 ≤ i, j ≤ d. Obviously, it is not straightforward to estimate two parameters from one
curve. We proceed as follows. For estimation of ν we use the approach of [26], which is based
on inversion of the tail dependence function with respect to ν. To derive this estimator we
need to replace the unknown ρij in (3.2) by an appropriate initial estimator ρ̂. We will choose
the estimator (cf. Proposition 3.2)

ρ̂τ
ij := sin

(π

2
τ̂ij

)
, (3.5)

where τ̂ij = (n
2)
−1 ∑1≤l<k≤n sgn

(
(Xk,i − Xl,i)(Xk,j − Xl,j)

)
is the empirical version of Kendall’s

tau τij, cf. Definition 3.1. The convergence rate of τ̂ij, i.e., of ρ̂τ
ij, is n−1/2, which is much faster

than the convergence rate for any tail dependence function estimator, even when based on all
n data points, see e.g. Theorem 5 in [35]. Thus the asymptotic behaviour of the tail index
estimator ν̂ is not changed, if ρij is replaced by ρ̂τ

ij in the tail dependence function.
We want to recall that this estimator works regardless of the marginal models, which can

be heavy- or light-tailed, and may be completely different.
The following estimate has been suggested in [26]

Definition 3.8. Define T←ν(·| x, y, ρ) as the inverse of T(x, y, ν, ρ) (given in (3.2)) with respect to ν.
Using ρ̂τ

ij estimated as in (3.5) and Tij estimated as in (3.4), define for i 6= j

Q̂ij :=

{
θ ∈

(
0,

π

2

)
: Tij(x(θ), y(θ); k) < T

(
x(θ), y(θ),

∣∣∣∣∣ ln(tan(θ))
ln(ρ̂τ

ij ∨ 0)

∣∣∣∣∣ , ρ̂τ
ij

)}
,

Q̂∗ij :=
{

θ ∈
(

0,
π

2

)
: |ln(tan(θ))| <

(
1− k−1/4

)
ν̃ij(1, 1; k)

∣∣∣ln(ρ̂τ
ij ∨ 0)

∣∣∣}
Q∗ij :=

{
θ ∈

(
0,

π

2

)
: |ln(tan(θ))| < ν

∣∣ln(ρij ∨ 0)
∣∣} ,

where for θ ∈ Q̂ij we define ν̃ij as the estimator of ν based on the empirical bivariate tail dependence
function (3.4)

ν̃ij(x(θ), y(θ); k) := T←ν
(
Tij(x(θ), y(θ); k)| x(θ), y(θ), ρ̂τ

ij

)
.

Further, let w be a non negative weight function. Then we define the smoothed estimator ν̂ of ν as

ν̂(k, w) :=
1

d(d− 1) ∑
i 6=j

1
W
(
Q̂ij ∩ Q̂∗ij

) ∫
θ∈Q̂ij∩Q̂∗ij

ν̃ij(x(θ), y(θ); k)W(dθ), (3.6)

where W is the measure induced by w.

From Theorem 1 in [26] we know that for every fixed x, y > 0 the tail dependence function
T(x, y, ν, ρij) is strictly decreasing with respect to ν for all ν > | ln(x/y)/ ln(ρij ∨ 0)|. Thus the
estimator ν̃ij is well-defined.

We use now the estimate ν̂ to define an estimator of the correlation matrix R via extreme
observations. To this end we invert the bivariate tail dependence function with respect to ρ
after having plugged in ν̂. Using (3.2) it is straightforward to show the following.

Lemma 3.9. For fixed x, y, ν > 0 and all ρ ∈ [−1, 1], the tail dependence function T(x, y, ν, ρ) is
strictly increasing in ρ and the inverse T←ρ(·| x, y, ν) of T with respect to ρ exists.
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By Remark 3.6 (i), T(1, 1, ν, 1) = 1 and T(1, 1, ν,−1) = 0 for ν > 0. Hence, we can define

ρ̃ij(1, 1; k) := T←ρ
(
Tij(1, 1; k)| 1, 1, ν̂(k, w)

)
. (3.7)

Since this estimator only employs information at (x, y) = (1, 1), it may not be very efficient.
Therefore, we define an estimator based on Tij(x, y; k) for other values (x(θ), y(θ)), θ ∈ (0, π

2 ).
The following definition is an analogue of Definition 3.8. To ensure existence and consist-

ency of the estimator, we define the appropriate sets.

Definition 3.10. Define T←ρ(·| x, y, ν) as the inverse of T(x, y, ν, ρ) (as given in (3.2)) with respect
to ρ. Using ν̂ estimated as in (3.6) and Tij estimated as in (3.4), define for i 6= j

Ûij :=
{

θ ∈
(

0,
π

2

)
: Tij (x(θ), y(θ); k) < T

(
x(θ), y(θ), ν̂(k, w), e−| ln(tan θ)|/ν̂(k,w)

)}
,

Û∗ij :=
{

θ ∈
(

0,
π

2

)
: |ln(tan θ)| < (1− k−1/4)ν̂(k, w)

∣∣ln (ρ̃ij(1, 1; k) ∨ 0
)∣∣}

U∗ij := Q∗ij ,

where for θ ∈ Ûij we define ρ̃ij as the estimator of ρij based on the empirical bivariate tail dependence
function (3.4)

ρ̃ij(x(θ), y(θ); k) := T←ρ
(
Tij(x(θ), y(θ); k)| x(θ), y(θ), ν̂(k, w)

)
. (3.8)

Observe that the set U∗ij defines for given θ and ν the constraint

ρij < ρ∗ :=
(
(xi(θ) ∧ xj(θ))/(xi(θ) ∨ xj(θ))

)1/ν .

By Lemma 3.9 there exists a unique ρ such that

T (x(θ), y(θ), ν̂(k, w), ρ) = Tij (x(θ), y(θ); k) , θ ∈ Ûij.

This implies that the definition in (3.8) makes sense.
Note further that, by the definition of ρ̃ij(1, 1; k) in (3.7), it always holds that π/4 ∈ Ûij

provided that Tij(1, 1; k) < 1 and we also have π/4 ∈ Û∗ij, since

(1− k−1/4)ν̂(k, w)
∣∣ln (ρ̃ij(1, 1; k) ∨ 0

)∣∣ > 0 .

To ensure consistency we further require θ ∈ Û∗ij. This implies that the true ρij is smaller

than e−| ln(tan(θ))|/ν̂(k,w) with probability tending to one. The set U∗ij is then the true subset of
(0, π/2), where Lemma 3.9 applies.

Now we can define an estimator for ρij as a smooth version of ρ̃ij:

Definition 3.11. Let w∗ be a non negative weight function and W∗ be the measure induced by w∗.
Then we define for i 6= j and with ρ̃ij as in (3.8)

ρ̂T
ij(k, w∗) :=

1
W∗
(
Ûij ∩ Û∗ij

) ∫
θ∈Ûij∩Û∗ij

ρ̃ij(x(θ), y(θ); k)W∗(dθ). (3.9)

Further, we define ρ̂T
ii(k, w∗) := 1 for 1 ≤ i ≤ d, and R̂T(k, w∗) :=

(
ρ̂T

ij(k, w∗)
)

1≤i,j≤d
.

The next theorem shows the asymptotic properties of R̂T(k, w∗). To derive these properties
we will use the theory developed in [35] about the limit behaviour of Tij and give a formal
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proof in Section 6. In order to derive the asymptotic properties we need the following second
order condition.

There exists A(t)→ 0 as t→ 0 such that

lim
t→0

t−1P(1− F1(X1,1) ≤ tx1, . . . , 1− Fd(X1,d) ≤ txd)− T(x)
A(t)

= b(x) (3.10)

holds locally uniformly for all x = (x1, . . . , xd) in Rd
+, and b is some non-constant function.

Theorem 3.12. Suppose (A1)-(A3) and (3.10) hold. Further assume that k = k(n) → ∞, k/n → 0
and
√

kA(k/n)→ 0 as n→ ∞. Let w∗ be a non negative weight function satisfying supθ∈U∗ij
w∗(θ) <

∞ for all i 6= j and θ ∈ (0, π/2), and W∗ is the measure induced by w∗. Define

B̃ij(x, y) := Bij(x, y)− Bij(x, ∞)
∂

∂x
T(x, y, ν, ρij)− Bij(∞, y)

∂

∂y
T(x, y, ν, ρij), (3.11)

Bij(x, y) := B(∞, . . . , ∞, x, ∞, . . . , ∞, y, ∞, . . . , ∞),

where x is the i-th and y the j-th component and B is a zero mean Wiener process onRd
+ with covariance

structure

E(B(x)B(y)) = T(x ∧ y), x, y ∈ Rd
+. (3.12)

Set as before r := vecp(R) and r̂T(k, w∗) := vecp
(
R̂T(k, w∗)

)
, then

√
k (r̂T(k, w∗)− r) d−→ Nd(d−1)/2(0, ΓT) , n→ ∞ ,

where ΓT = (γT
ij,kl)1≤i 6=j,k 6=l≤d with

γT
ij,kl = σ1;ij,kl + σ2;ij,kl + σ3;ij,kl + σ4;ij,kl . (3.13)

Setting h(θ, ν, ρ) := T(x(θ), y(θ), ν, ρ), we have

σ1;ij,kl =
2

d2(d− 1)2W∗(U∗ij)W
∗(U∗kl)

(3.14)

× ∏
J∈{ij,kl}

∫
θ∈U∗J

∂

∂ν
T←ρ (TJ(x(θ), y(θ))| x(θ), y(θ), ν)W∗(dθ)

×
(

∑
1≤p<q,r<s≤d

1
W∗(Q∗pq)W∗(Q∗rs)

×
∫

θ1∈Q∗pq

∫
θ2∈Q∗rs

E
(

B̃pq(x(θ1), y(θ1))B̃rs(x(θ2), y(θ2))
)

∂
∂ν h(θ1, ν, ρpq)

∂
∂ν h(θ2, ν, ρrs)

W∗(dθ2)W∗(dθ1)

)

σ2;ij,kl =
1

d(d− 1)W∗(U∗ij)W
∗(U∗kl)

∑
1≤p<q≤d

1
W∗(Q∗pq)

(3.15)

×
(∫

θ1∈U∗ij

∫
θ2∈U∗kl

∫
θ3∈Q∗pq

∂

∂ν
T←ρ

(
Tij(x(θ1), y(θ1))|x(θ1), y(θ1), ν

)
×

E
(

B̃pq(x(θ3), y(θ3))B̃kl(x(θ2), y(θ2))
)

∂
∂ν h(θ3, ν, ρpq)

∂
∂ρ h(θ2, ν, ρkl)

W∗(dθ3)W∗(dθ2)W∗(dθ1)

)
,
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similarly σ3;ij,kl (by interchanging the indices ’ij’ and ’kl’), and

σ4;ij,kl =
1

2W∗(U∗ij)W
∗(U∗kl)

(3.16)

×
∫

θ1∈U∗ij

∫
θ2∈U∗kl

E
(

B̃ij(x(θ1), y(θ1))B̃kl(x(θ2), y(θ2))
)

∂
∂ν h(θ1, ν, ρij)

∂
∂ρ h(θ2, ν, ρkl)

W∗(dθ2)W∗(dθ1) .

Using (3.13), we can define an estimator of ΓT.

Definition 3.13. We define the estimator of ΓT = (γT
ij,kl)1≤i 6=j,k 6=l≤d by Γ̂T = (γ̂T

ij,kl)1≤i 6=j,k 6=l≤d with

γ̂T
ij,kl := σ̂1;ij,kl + σ̂2;ij,kl + σ̂3;ij,kl + σ̂4;ij,kl . (3.17)

The σ̂ are defined in (3.14)–(3.16), where ν, ρij and ρkl are replaced by their estimators ν̂(k, w),
ρ̂T

ij(k, w∗) and ρ̂T
kl(k, w∗), respectively, the sets U∗ and Q∗ are replaced by their estimators Û ∩

Û∗ and Q̂ ∩ Q̂∗, respectively, and the covariances E(B̃ij(·)B̃kl(·)) are replaced by their estimators
Ê(B̃ij(·)B̃kl(·)) using (3.11) and (3.12) and estimating T by T.

The asymptotic properties of T, ν̂, ρ̂T
ij in combination with the delta method yield imme-

diately the following result.

Theorem 3.14. Under the conditions of Theorem 3.12, the estimator vecp(Γ̂T) is consistent and
asymptotically normal.

Remark 3.15. It may happen that the correlation matrix estimators (3.5) or (3.9) are not positive
semi-definite. In this case, we apply some of the methods described in [17] or [33] to project
the indefinite correlation matrix to the set of positive semi-definite correlation matrices, see
also [24] for details. Considering covariance matrix estimators, which are not positive semi-
definite, we project them on S+ by replacing the negative eigenvalues of the covariance matrix
estimator by their absolute values.

Estimation of dependence in extremes is always difficult. The problem of estimating tail
dependence lies in its definition as a limit, see (3.1). For some methods of estimating the tail
dependence function Tij(1, 1) and pitfalls we refer to [14]. Estimators of the tail dependence
are based on a sub-sample using the largest (or smallest) observations. Concerning the op-
timal choice of the threshold (equivalently the number k of upper order statistics used in the
estimation), we refer to [6], [10], [25], [26] and [32]. In our applications we used a heuristical
approach to select k, which will be explained in the next section.

4 Copula structure analysis: a factor analysis example

In the previous section we have presented an estimate for the copula correlation R of an
elliptical copula based on extreme dependence. Now we want to explain how the structure
of this matrix can be analysed. Therefore, we will assume a model for the structure of R.
Throughout the rest of the paper we will assume a factor model; i.e., we assume that the
copula correlation matrix has the structure R(ϑ) = LL> + V2, where L ∈ Md,m(R), V ∈
S+

d (R) is a diagonal matrix, and ϑ ∈ Θ ⊂ Rp are the free parameters in L and V . But this
choice is arbitrary. One can choose any parametric model which defines a correlation matrix.
We will now use the asymptotic properties of our estimator R̂T defined in (3.9) to derive
testing procedures.

In case of the classical covariance structure analysis, there is a vast amount of literature
on how to define a suitable test to decide if the true covariance is a member of the assumed
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model class, see e.g. [2], [3], [34] and [36]. We adapted the main ideas of covariance structure
analysis to our setting, that is to measure the discrepancy between the model R(ϑ) and an
estimate R̂ of the copula correlation matrix. Therefore, we minimize a discrepancy function
F(·, ·) with respect to ϑ ∈ Θ:

min
ϑ∈Θ

F(R̂,R(ϑ)) .

A suitably scaled version of the discrepancy function should then be asymptotically pivotal,
i.e. its asymptotic distribution should be independent of the unknown parameters in the
model. There are different choices of discrepancy functions but for most of them their corres-
ponding asymptotic distribution depends on distributional assumptions about X, like e.g. the
normal maximum likelihood discrepancy function

FML(R̂,R(ϑ)) = log
(

det(R(ϑ))
)
− log

(
det(R̂)

)
+ tr

(
R̂R(ϑ)−1

)
− d .

Since we do not make any assumptions about the marginal distributions of X we can not work
with such a discrepancy function. But we can apply the asymptotic distribution-free method
developed in [3]. There a quadratic discrepancy function

F(R̂,R(ϑ)|U ) = (r̂− r(ϑ))>U−1(r̂− r(ϑ)) ,

where U is a suitably chosen weight matrix, is used to estimate the parameter ϑ. The estimator

ϑ̂ := argmin F(R̂,R(ϑ)|U )

is asymptotically normal with mean ϑ0 and covariance matrix (2.12a) in [3] as long as vecp(R̂)

is asymptotically normal, which is the case for our estimator R̂T(k, w∗) defined in (3.9).
Now let r0 = vecp(R0) be the vectorised correlation matrix and assume that X has the

elliptical copula ECd(R0, G). Then we estimate the copula correlation by R̂T(k, w∗) as shown
in Section 3.2. The parameter ϑ of the structure model is then estimated by minimizing the
quadratic discrepancy function with weight matrix

Û T := Γ̂−1
T − Γ̂−1

T ∆̂(∆̂Γ̂−1
T ∆̂)−1∆̂>Γ̂−1

T ,

where ∆̂ is an estimator of ∆ := ∂r(ϑ)
∂ϑ

∣∣∣
ϑ=ϑ0

. Using this estimator,

ϑ̂T := argmin F(R̂T(k, w∗),R(ϑ)|Û T)

we define the asymptotic distribution-free test statistic

ADF(ϑ̂, R̂T(k, w∗), Γ̂T) = k(r̂T(k, w∗)− r(ϑ̂))>Û T(r̂T(k, w∗)− r(ϑ̂))

which is due to [3],Proposition 4, non-centrally χ2-distributed with d f = d(d − 1)/2 − p
degrees of freedom and non-centrality parameter

η = k(r0 − r(ϑ0))
>
(

Γ−1
T − Γ−1

T ∆(∆Γ−1
T ∆)−1∆>Γ−1

T

)
(r0 − r(ϑ0)) .

In case R0 = R(ϑ0) the non-centrality parameter η is zero and ADF has a central χ2-
distribution. This fact will now be used for testing

H0 : r0 = r(ϑ0) for some ϑ0 ∈ Θ,

by assuming s ≥ 1 nested models

r(i) : Θ(i) → Rd(d−1)/2, ϑ(i) 7→ r(i)(ϑ(i)), and Θ(i) ⊂ Rp(i) , 1 ≤ i ≤ s ,
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which all have to satisfy the conditions in [3, Proposition 4]. The s models will be nested, if for
every 1 ≤ i ≤ s− 1 and ϑ(i) ∈ Θ(i) there exists some ϑ(i+1) ∈ Θ(i+1) such that r(i+1)(ϑ(i+1)) =
r(i)(ϑ(i)). In our factor analysis example these nested models correspond to models with an
increasing number m of common factors.

Next consider the null hypotheses

H(i)
0 : r0 = r(i)(ϑ(i)

0 ) for some ϑ
(i)
0 ∈ Θ(i), 1 ≤ i ≤ s,

and assume that some of these null hypotheses are true. Then there exists some j ∈ N such
that H(i)

0 does not hold for 1 ≤ i < j and does hold for j ≤ i ≤ s. As we are interested in a
structure model, which is likely to explain the observed extreme dependence structure, and
is as simple as possible, we have to estimate j, the smallest index, where the null hypothesis
holds.

By [3, Proposition 4] the corresponding test statistics

ADF(i)(ϑ̂, R̂T(k, w∗), Γ̂T) := k min
ϑ∈Θ(i)

(r̂T(k, w∗)− r(i)(ϑ̂))>Û T(r̂T(k, w∗)− r(i)(ϑ̂))

are non-centrally χ2
d f distributed for 1 ≤ i < j and are χ2

d f -distributed for j ≤ i ≤ s. Con-

sequently, we reject a null hypothesis H(i)
0 , if the corresponding test statistic ADF(i) is larger

than some χ2
d f -quantile. Hence, j is the smallest number, where H(j)

0 cannot be rejected.

Example 4.1. To analyse the small sample behaviour of the test statistic ADF, we perform a
simulation study. We choose a d = 10 dimensional setting with m = 2 factors, loading matrix

L> =

(
0.90 0.90 0.90 0.90 0.90 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.90 0.90 0.90 0.90 0.90

)
and specific factors

diag(V2) =
(

0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19
)

.

Then LL> + V2 = R is a correlation matrix. The dependence structure is described by
the tν-copula ECd(R, G), where G ∼

√
ν/χ2

ν for ν > 0. The tail parameter was chosen to be
ν = 1.5. All marginal distributions were chosen to be standard exponential.

We simulated 500 i.i.d. samples of lengths n = 1 000, 5 000 and 10 000, respectively, of the
t1.5-copula. For each sample we calculated for the one and two factor model r(1) respectively
r(2) the corresponding test statistic ADF(i), i = 1, 2, based on the estimators (3.9) and (3.17)
with weight function taken as a discrete version of

w∗(θ) = 1−
(

θ

π/4
− 1
)2

, 0 ≤ θ ≤ π

2
.

The number of upper order statistics used for estimation of the tail dependence function have
been k = 80, 300 and 500, respectively. These were chosen by a graphical approach shown in
Figure 1. The figure shows estimates of ν for different values of k. The idea now is that
estimates ν̂(k, w) should be stable for suitable values of k. Thus we identify the first stable
region of the estimates of ν and pick one of the corresponding k. Analysing such figures
showed that the above values of k are suitable choices for our simulation study.
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R> cop.struc( data, k.select = TRUE )

200 400 600 800 1000

1.3
0

1.3
2

1.3
4

1.3
6

1.3
8

1.4
0

1.4
2

k

esti
ma

ted
 ν

Figure 1: Estimates ν̂(k, w) for different values of k in the case n = 10000.

A pairs plot of one of the 500 samples is shown in Figure 2 for the case n = 1000. On
the lower panel of the plot we present the estimated values of the upper tail dependence
coefficient T(1, 1) with k = 80.
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Figure 2: Pairs plot of one simulation with Tij(1, 1; 80) on the lower panel.

To ensure uniqueness of the loadings, we restrict L>V−2L to be diagonal, hence we have
m(m− 1)/2 = 1 additional constraints, see [27, Section 2.3]. Using this restriction and the 2-
factor setting, ADF(2) should be asymptotically χ2-distributed with d f = d(d− 1)/2− dm +
m(m− 1)/2 = 26 degrees of freedom. Therefore, we compare in each case the 500 estimates
of ADF(i), i = 1, 2, with the χ2

26-distribution by a QQ-plot, see Figure 3.
From the second row of Figure 3 we see that the distribution of ADF(2) fits the χ2

26-
distribution rather well even for n = 1 000 observations. In the one factor cases, depicted
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in the first row, one clearly recognises the non-centrality parameter η, which leads to a rejec-
tion of the hypothesis in almost all cases.
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Figure 3: QQ-plot of ordered estimates ADF(i) for n = 1 000 and k = 80 (left), n = 5 000 and
k = 300 (middle) and n = 10 000 and k = 500 (right) observations. The first row shows the
results for the one factor model and the second row for the two factor model.

For the two factor model (i = 2) we obtained the following empirical levels of the ADF test
at level α ∈ {0.01, 0.05, 0.1, 0.2}:

R> emp.level.test
k=80 k=300 k=500

alpha=0.20 0.1680 0.2559 0.2793
alpha=0.10 0.1162 0.1650 0.1855
alpha=0.05 0.0840 0.1133 0.1270
alpha=0.01 0.0459 0.0439 0.0498

One observes that in almost all cases the empirical level is above the expected level of the
test. This indicates that, although we get the correct shape of the distribution, we still have
a bias in our estimate of the non-centrality parameter, which leads to an increased rejection
rate.

Example 4.2. In the second example we consider a d = 15 dimensional setting with m = 3
factors. In this case the loading matrix is equal to

L> =

 l> 0 0
0 l> 0
0 0 l>


and the specific factor is

diag(V2) =
(

v> v> v>
)
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with l> =
(

0.70 0.70 0.75 0.80 0.80
)

and v> =
(

0.51 0.51 0.4375 0.36 0.36
)
.

The generating variable G is the same as in the previous example, i.e. we have again the
copula of a tν-distribution with parameter ν = 1.5. We simulated again 500 i.i.d. samples
of length n = 1000, 5000 and 10000. For each sample we calculated for the one, two and
three factor model r(1), r(3) respectively r(2) the corresponding test statistic ADF(i), i = 1, 2, 3,
based on the estimators (3.9) and (3.17). The number k of upper order statistics was selected
as in Example 4.1. as in the previous example. Using the same uniqueness restrictions as in
Example 4.1 we get that ADF(3) should be asymptotically χ2

d f -distributed with d f = d(d −
1)/2− dm + m(m− 1)/2 = 63 degrees of freedom. ADF(i), i = 1, 2 should be asymptotically
non-centrally χ2

d f -distributed with d f = 90 and d f = 76 degrees of freedom, respectively.
Figure 4 shows the corresponding QQ plots.
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Figure 4: QQ-plot of ordered estimates ADF(i) for n = 1 000 and k = 80 (left), n = 5 000 and
k = 300 (middle) and n = 10 000 and k = 500 (right) observations. The first row shows the
results for one factor model, the second row for the two factor model and the last row for
three factor model.

One can clearly observe again the non-centrality parameter in the first two cases. The
distributional assumption seems to hold for all three cases. Again the empirical level of the
ADF test is computed for different significance levels:

R> emp.level.test
k=80 k=300 k=500

alpha=0.20 0.15820 0.126953 0.182617
alpha=0.10 0.10840 0.053711 0.080078
alpha=0.05 0.06738 0.028320 0.044922
alpha=0.01 0.03613 0.004883 0.007812
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5 Data example

Finally we want to apply our method to a financial data set. We consider the same data set
as in [7]. It contains daily observations of 21 financial indices over a period from January
2001 to December 2009. In particular, the indices consist of five equity (DAX, STOXX50,
S&P500, MSCI-World and MSCI-EE), 14 fixed income (iBoxx indices) and two commodity
indices (Commodities and Gold). Ten of fourteen iBoxx indices are German government
bonds and bonds of Euro nations with different times to maturity. The remaining four bonds
are corporate bonds of Euro nations with different ratings. One can observe a very strong
correlation between the German government bonds and the iBoxx indices consisting of Euro
nation bonds, which have the same time to maturity. This is due to the fact that Euro Indices
consisted to a large part of German bonds. High correlations are also observed between
indices of the same type but consecutive time to maturities. Therefore we only considered the
fixed income indices iBoxx-G-3-5, iBoxx-G-7-10, iBoxx-E-1-3, iBoxx-E-5-7, iBoxx-E-10+, iBoxx-
E-AAA, iBoxx-E-AA, iBoxx-E-A and iBoxx-E-BBB.

In a first step we computed log-returns and fitted then univariate ARMA(1,1)-GARCH(1,1)
models to these return series analogously to [7]. The analysis of the dependence structure in
the fitted residuals is then our goal. Since we are interested in the dependence structure of
large losses, we will perform a copula factor analysis of the negative residuals. A pairs plot
of pseudo-observations (see e.g. Section 2 in [15]) is computed from the negative residuals of
some of the indices is shown in Figure 5. The corresponding values of Tij(1, 1; 60) are given
in the lower half of the pairs plot. The copula factor analysis is done by using the function
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Figure 5: Pairwise scatter plots of pseudo-observations computed from the negative residuals
of DAX, S&P500, iBoxx-G-3-5, iBoxx-E-5-7, iBoxx-E-BBB and the Gold index.
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cop.struc() from the R package Cop.Struc, which is available on the first author’s web site.

> cs=cop.struc(negative.residuals,method="tail",k=60,ASYMP=TRUE)

The results of the last two steps of the test procedure described in Section 4 are shown in
the following R output.

> adf.6factors = asymp.distr.free( cs, m = 6, weight.matrix.adf = "adjusted" )
> summary(adf.6factors)$results

test.statistic dimension number.of.factors df p.value
[1,] 60.27008 16 6 39 0.01597962
> adf.7factors = asymp.distr.free( cs, m = 7, weight.matrix.adf = "adjusted" )
> summary(adf.7factors)$results

test.statistic dimension number.of.factors df p.value
[1,] 16.88844 16 7 29 0.9638855

For our sixteen-dimensional data set, the factor model with six factors could still be rejec-
ted at a chosen significance level of 0.05, but the model with seven factors cannot be rejected.
For comparison we also carried out the copula factor analysis, where we estimate R by Kend-
all’s tau via (3.5). In that case we obtained a model with nine factors. Note that our data
set combines three different types of indices: equity, fixed income and commodity indices.
The fixed income indices can further be divided into German government and Euro nation
bonds with different maturities and corporate bonds of Euro nations with different ratings.
Therefore we would have guessed that we need at least six factors to suitably represent the
copula correlation matrix.

Figure 6 shows the estimates R̂(7)
T and R̂(9)

τ in the top row. The estimator R̂(7)
T based on

the tail dependence function gives slightly less weight on the negative dependence between

equity and fixed income indices compared to the estimator R̂(9)
τ based on Kendall’s tau.

Further we see a slightly lower correlation between fixed income and commodity indices in

R̂(7)
T than in R̂(9)

τ . In the second row of Figure 6 the estimated differences R̂(7)
T − R̂(9)

τ and
R̂T − R̂τ are depicted, where the latter one is the difference between (3.9) and (3.5). The
main difference between the figures (iii) and (iv) is that the factor model based on the tail
dependence function assigns much more weight to the dependence between the MSCI East
Europe index and the commodity index than the one based on Kendall’s tau. This effect
cannot be seen for the raw estimates R̂T and R̂τ. Overall, the differences between the copula
correlations vary between −0.27 and 0.26 for the factor models, and between −0.27 and 0.19
for the raw estimates.

Finally we compare the estimated loadings L̂(7)
T and V̂ (7)

T , which define our estimate of the
copula correlation

R̂(7)
T = L̂(7)

T L̂(7)>

T + V̂ (7)
T .

The loadings, which are shown in Figure 7, are obtained by applying the varimax method to
the original loadings ϑ̂T. The set of loadings is not unique with respect to orthogonal trans-
formations. The aim of the varimax method, originally introduced in [21] (see also Chapter
6.3 in [27]), is such that the transformed loadings are either rather large or rather small in
magnitude. For the investigator such a set of loadings is then easier to interpreted. Since
the set of possible orthogonal transformations is not limited to the varimax method, differ-
ent investigators might choose different transformations and, therefore, might come up with
slightly different interpretations. But this is a general drawback of factor analysis and will not
be discussed here any further.
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Figure 6: (i) R̂(7)
T , (ii) R̂(9)

τ , (iii) R̂(7)
T − R̂(9)

τ , (iv) R̂T − R̂τ.

For comparison, Figure 7 also includes the loadings obtained by estimating the copula
correlation based on Kendall’s tau. The first three factors can be identified as the fixed income,
equity and commodity factors. For the loadings of factor 4 we observe the first differences

comparing L̂(7)
T and L̂(9)

τ . Factor 4 puts weight on the equity and commodity indices for L̂(7)
T .

Concerning the equity indices there is special emphasis on the MSCI East Europe index. The
loadings for the commodity indices are much smaller for the estimator based on Kendall’s
tau. Therefore we would say that for the given sample the dependence between the MSCI
East Europe index and the commodity indices seems to be larger, when focusing on common
large losses compared to considering all observations. Factor 5 distinguishes between different
times to maturity. The short term bonds iBoxx-E-1-3 and iBoxx-E-3-5 get negative loadings
and the mid term bond iBoxx-E-5-7 has a loading of roughly zero, while the long term bonds
iBoxx-G-7-10 and iBoxx-E-10+ have positive loadings. The sixth factor is again an equity
factor. This time higher loadings are given to DAX and STOXX50. We also see some relation
to the iBoxx-BBB index, which is not the case for factor 2. The last two factors are hard to
interpret. The loadings for factor 7 are all very small. Therefore one may argue that a model
with six factor might be sufficient if one takes into account the finite sample properties of our
test statistic as shown in Figure 3.
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Figure 7: Estimated factor (L̂T and L̂τ) and specific (V̂T and V̂τ) loadings.
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6 Proof of Theorem 3.12

In the bivariate case the following weak convergence result was shown in [35, Theorem 5]
under the assumption that the tail dependence function posses continuous partial derivatives:

√
k (T(x1, x2; k)− T(x1, x2))

w→ B(x)− ∂

∂x1
T(x1, x2)B(x1, ∞)− ∂

∂x2
T(x1, x2)B(∞, x2)

in B(R2
+) (see [35] for details on convergence in this space), where B is a zero mean Wiener

process with covariance structure E(B(x1, x2)B(y1y2)) = T(x1 ∧ x2, y1 ∧ y2) for x, y ∈ R2
+. We

know need an extension of this result from the bivariate to a d-dimensional setting. Using the
arguments in the proof of [35, Theorem 5] we get

√
k (T(x; k)− T(x)) w→ B(x)−

d

∑
i=1

∂

∂xi
T(x)Bi(xi)

in B(Rd
+) , where Bi(xi) = B(x) with xl = ∞ for l 6= i and B is a zero mean Wiener process

with covariance structure E(B(x)B(y)) = T(x ∧ y) for x, y ∈ Rd
+. The same result is also

given in the proof of Theorem 1 in [29]. In particular, this implies consistency of all bivariate
empirical tail dependence functions Tij and their distributional convergence (centred and
scaled) to a Gaussian limit. Recently Bücher and Dette [4] have shown that the assumption
of continuous partial derivatives is too restrictive and therefore established the same result
as in [35, Theorem 5] under weaker smoothness assumptions, see [4, Theorem 2]. But the
arguments in their proof can also be extended to the d-dimensional setting.

Since r̂T is the image of T under a certain map φ we can again use an extended version of
the classical delta-method, see [37, p. 374] for details, to show the asymptotic normality of r̂T.
First, note that for all i 6= j and for T defined in (3.2)

inf
θ∈Q∗ij

∣∣∣∣ ∂

∂ν
T(x(θ), y(θ), ν, ρij)

∣∣∣∣ > 0, inf
θ∈U∗ij

∣∣∣∣ ∂

∂ρ
T(x(θ), y(θ), ν, ρij)

∣∣∣∣ > 0

and

sup
θ∈U∗ij

∣∣∣∣ ∂

∂ν
T←ρ(·| x(θ), y(θ), ν, ρij)

∣∣∣∣ < ∞.

Next, define D as the set of all d-dimensional tail dependence functions, which is a subset of
the complete metric space B∞(R

d
+), see [35, Definition 4]. Abbreviate for µ ∈ D, with µij being

the ij-th marginal of µ,

ν̃ij(θ, µ, ρ) := T←ν
(
µij(x(θ), y(θ)) | x(θ), y(θ), ρ

)
and

ρ̃ij(θ, µ, ν) := T←ρ
(
µij(x(θ), y(θ)) | x(θ), y(θ), ν

)
.

Next, define for some correlation matrix R = (ρij)1≤i,j≤d

ν(µ,R) :=
1

d(d− 1) ∑
i 6=j

1
W∗(Q∗ij)

∫
θ∈Q∗ij

ν̃ij(θ, µ, ρij)W∗(dθ),

ρij(µ,R) :=
1

W∗(U∗ij)

∫
θ∈U∗ij

ρ̃ij(θ, µ, ν(µ,R))W∗(dθ) .

Using this notation we get that r = φ(T,R) with φ : T → vecp
((

ρij(T,R)
)

1≤i,j≤d

)
. Due

to the chain rule ([37, Lemma 3.9.3]) φ is Hadamard-differentiable if ν(·,R) and ρij(·,R)
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are Hadamard-differentiable. But ν(·,R) is Hadamard-differentiable, since for tm → ∞ and
hm → h ∈ D for m→ ∞, such that µ + hm/tm ∈ D for all m, we obtain by Taylor expansion,

lim
m→∞

tm (ν(µ + hm/tm,R)− ν(µ,R))

=
1

d(d− 1) ∑
i 6=j

1
W∗(Q∗ij)

∫
θ∈Q∗ij

hij(x(θ), y(θ))
∂

∂ν T
(
x(θ), y(θ), ν(µ,R), ρij

) W∗(dθ) =: ν′µ(h),

which obviously is a linear map. Analogously, ρij(·,R) is Hadamard differentiable; i.e.,

lim
m→∞

tm
(
ρij(µ + hm/tm,R)− ρij(µ,R)

)
=

1
W∗(U∗ij)

∫
θ∈U∗ij

(
hij(x(θ), y(θ))

∂
∂ρ T

(
x(θ), y(θ), ν(µ), ρij

)
+ν′µ(h)

∂

∂ν
T←ρ

(
µij(x(θ), y(θ)) | x(θ), y(θ), ν(µ)

))
W∗(dθ) .

Define
r̂T(k, w∗) = φ

(
T(·; k), R̂τ

)
.

Since R̂τ −R = op(1/
√

k) the delta method yields

√
k (r̂T(k, w∗)− r) d−→ φ′(B̃,R) ,

where B̃(x) := B(x)−∑d
i=1

∂
∂xi

T(x)Bi(xi), x ∈ Rd
+. The result then follows using

E
((

φ′(B̃,R)
)

ij

(
φ′(B̃,R)

)
kl

)
= σ1;ij,kl + σ2;ij,kl + σ3;ij,kl + σ4;ij,kl ,

with σ1;ij,kl , σ2;ij,kl , σ3;ij,kl , σ4;ij,kl defined through (3.14)–(3.16).
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