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Abstract—For Gaussian multiple-input multiple-output
(MIMO) relay channels with partial decode-and-forward, the
optimal type of input distribution is still an open question
in general. Recent research has revealed that in some other
scenarios with unknown optimal input distributions (e.g.,
interference channels), improper (i.e., noncircular) Gaussian
distributions can outperform proper (circular) Gaussian
distributions. In this paper, we show that this is not the case
for partial decode-and-forward in the Gaussian MIMO relay
channel with Gaussian transmit signals, i.e., we show that a
proper Gaussian input distribution is the optimal one among
all Gaussian distributions. In order to prove this property, an
innovation covariance matrix is introduced, and a decomposition
is performed by considering the optimization over this matrix
as an outer problem. A key point for showing optimality of
proper signals then is a reformulation that reveals that one of
the subproblems is equivalent to a sum rate maximization in
a two-user MIMO broadcast channel under a sum covariance
constraint, for which the optimality of proper signals can be
shown.

Index Terms—Asymmetric complex signaling, composite real
representation, Gaussian broadcast channel, Gaussian relay
channel, multiple-input multiple-output (MIMO), partial decode-
and-forward, proper and improper signals.

I. INTRODUCTION

The idea of supporting wireless communication by means

of relay nodes has attracted the interest of researchers both

with an application oriented and with an information theoretic

background. However, the capacity of relay networks is still

an open problem except for special cases. In this work,

we consider a network with a multiantenna transmitter, a

multiantenna receiver, and one multiantenna relay node, where

all channels are assumed to be additive circularly symmetric

Gaussian noise channels, i.e., the setting under consideration is

a so-called Gaussian multiple-input multiple-output (MIMO)

relay channel (cf., e.g., [1]–[11]).

This setting with only one transmitter-receiver pair and only

one relay is interesting both from a theoretical and a practical

point of view. In information theory, it is a common approach

to first understand fundamental properties in a minimal exam-

ple before studying larger scenarios, and also when introducing
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relaying into practical wireless networks, it suggests itself

to first start with simple settings before proceeding to more

complicated scenarios like multiuser relay channels or settings

with multiple relays. The study of such advanced settings is

not considered in this paper and is left open for future research.

The assumption of additive Gaussian noise on all channels

has a strong practical and theoretical justification as well.

Practical systems designed based on this assumption perform

quite well, which can be explained by the composite effect

of many independent noise sources [12]. The assumption of

circularly symmetric noise is due to the fact that Gaussian

noise at the demodulator output of a bandpass system with

real wide-sense stationary noise is circularly symmetric [13].

The justification from an information theoretic point of view

is that Gaussian noise is the worst case noise in general

wireless networks under very mild assumptions [12], and that

the circularly symmetric Gaussian distribution maximizes the

differential entropy [13], [14].

In addition to being an interesting setting in itself, the

Gaussian MIMO relay channel can also be used as an ele-

mentary building block of larger multihop wireless networks

[15]. To use it as such, a deep understanding of its properties

is clearly necessary, which provides an additional motivation

for studying the Gaussian MIMO relay channel.

A. The Gaussian MIMO Relay Channel with Partial Decode-

and-Forward

An information theoretic model that is appropriate to ana-

lyze the Gaussian MIMO relay channel was first introduced

in [16]. The application of this general model to the Gaussian

MIMO relay channel was studied, e.g., in [1]–[11].

Since the optimal coding scheme is not known for relay

channels, researchers have derived upper bounds such as the

cut-set bound [17], which was studied for Gaussian (MIMO)

relay channels in [1], [5], [7], [8], [17], [18], and achievable

schemes (see also [19, Ch. 9]) such as amplify-and-forward

[2], [4], [18], [20], [21], decode-and-forward [1], [5], [7],

[8], [17], [18], compress-and-forward [6], [7], [17], [18], and

combinations of these schemes [17].

While amplify-and-forward restricts the processing at the

relay to consist of linear operations (or widely linear opera-

tions1), compress-and-forward relies on nonlinear quantization

operations, but the message is not decoded by the relay. In

1Widely linear functions are linear functions of the real and imaginary parts
of a complex number or, equivalently, linear functions of the complex number
and its conjugate (e.g., [22]–[24]).
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the decode-and-forward protocol, the relay has to decode and

re-encode the message in order to then transmit it to the

destination jointly with the source node. This strategy can be

capacity-achieving in special cases, in particular if the channel

between the source and the relay is strong [18]. However,

if this is not the case, the source-relay link can become a

bottleneck [18], [19, Section 9.2.1]. In this case, schemes

where only a part of the message is decoded by the relay

can be superior.

Such a scheme was formulated in [17], where it was

proposed to split the message transmitted by the source into a

part that is transmitted using the decode-and-forward protocol

and a second part that is not decoded by the relay, but relayed

with compress-and-forward. As a special case of this general

scheme, we can obtain the partial decode-and-forward scheme

[3], [9], [10], [18], [25], [19, Section 9.4.1], where the second

part is not relayed at all (i.e., it is compressed to a zero-

message).

For Gaussian MIMO relay channels, partial decode-and-

forward was previously considered in [3], [9]–[11]. Based

on [3], where the achievable partial decode-and-forward rates

were formulated for the Gaussian MIMO relay channel with

jointly circularly symmetric Gaussian transmit signals, algo-

rithms to find good suboptimal source and relay transmit

covariance matrices were developed in [9], [10]. Due to the

nonconvexity of the optimization problem, a method to find

the globally optimal transmit covariance matrices under the

assumption of circularly symmetric Gaussian transmit signals

has not yet been proposed in the literature.

Moreover, the optimal type of probability distribution of

the transmit signals is still unknown for partial decode-and-

forward in Gaussian MIMO relay channels. This is in contrast

to decode-and-forward, for which it can be shown that the

circularly symmetric Gaussian distribution is the optimal input

distribution [1].

In cases where the optimal partial decode-and-forward

strategy becomes equivalent to decode-and-forward (or equiv-

alent to point-to-point transmission without a relay), it can

be concluded that the optimal input distribution of partial

decode-and-forward is the same as for decode-and-forward

(or direct transmission). These cases include physically (re-

versely) degraded relay channels [17], semideterministic relay

channels [25], relay channels with orthogonal components

[26], and stochastically (reversely) degraded relay channels

[11], [21]. Special cases of the Gaussian MIMO relay channel

can correspond to the cases considered in [26] or [11] (or

[21], where the special case of [11] for single-antenna nodes

was discussed). For these cases, we can directly conclude

that the circularly symmetric Gaussian distribution is optimal

for partial decode-and-forward. However, the optimal partial

decode-and-forward input distribution remains unknown for

general Gaussian MIMO relay channels.

B. Contributions

In this paper, we make a step towards finding the optimal

type of input distribution for partial decode-and-forward in

general Gaussian MIMO relay channels by providing an

answer to the following question: under the assumption of

Gaussian transmit signals, shall these signals be circularly

symmetric (i.e., proper, see Section I-D) or not. As explained

in detail in Section I-D, this question arises since many recent

works have revealed that noncircular (i.e., improper) Gaussian

distributions can outperform proper Gaussian distributions in

various communication systems.

Following the commonly accepted approach in information

theoretic studies of relay channels (e.g., [1], [3], [5]–[7],

[17], [18]), our study is based on so-called achievable rates

(Shannon rates, [27]), which give us the theoretical limits on

the data rates that can be transmitted with vanishing error

probability.

At least under the assumption of partial decode-and-forward

with Gaussian input signals, we can show in Section IV

that proper signals are indeed optimal from a Shannon rate

perspective, i.e., they maximize the achievable rate. Note that

this does not answer the question whether or not Gaussian

signals are the optimal input signals for the partial decode-

and-forward protocol. Nevertheless, the result obtained in this

paper is a significant step towards a better understanding of

partial decode-and-forward and towards finding the optimal

input distribution.

Studying the special case of Gaussian inputs as a start when

approaching difficult information theoretic problems involving

Gaussian channels is a common practice (e.g., [3], [6], [9],

[10], [21], [28], [29]). The assumption of Gaussian signals

leads to tractable expressions and allows benefiting from the

large variety of results on Gaussian signaling in the existing

literature. In the outlook in Section VI, we shed some light on

why it is not trivial to extend our considerations to the case

where arbitrary transmit signals and not only Gaussian signals

are allowed.

While the information theoretic relevance of the question

treated in this paper comes from the pursuit of deeper insight

into the problem of optimal relaying as explained above,

there is also a strong motivation from a signal processing

point of view. Since optimizing transmit strategies with proper

signals requires far less optimization variables than optimizing

improper signals (this becomes clear in Section IV), it is

helpful to know that a restriction to proper signals can be

introduced without a loss in performance.

Further contributions in the paper are a new parametrization

of impropriety (see Section III) and a new decomposition of

the optimization of the partial decode-and-forward rate based

on a so-called innovation covariance matrix (see Section IV).

We think that especially the latter might be a helpful tool for

future research on partial decode-and-forward, e.g., for study-

ing the abovementioned question whether Gaussian inputs are

optimal as well as for algorithm design.

Finally, it turns out that as an ingredient for the proof of our

main theorem, we also have to derive a new result concerning

optimality of proper signals in MIMO broadcast channels with

sum covariance constraints, which is presented as an excursus

in Section V.

Before introducing the details of the system model and cod-

ing scheme in Section II, we want to introduce some notational

conventions and devote the remainder of this section to a
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brief introduction to proper and improper Gaussian signals. In

addition, we provide a review of the communications-related

literature on this subject, e.g., on related results for interference

channels and broadcast channels.

C. Notation

In this paper, we use ℜ and ℑ for the real and imaginary

parts, respectively, •∗ for the complex conjugate, •T for the

transpose, •H for the conjugate transpose, and •+ for the

pseudoinverse. The notation •⋆ is used for quantities that

are optimizers or optimal values. The operators I(•), h(•),
E [•], and tr[•] denote mutual information, differential entropy,

expected value, and trace, respectively. We use 0 for the

zero matrix or zero vector of appropriate size and IN for

the identity matrix of size N . Throughout the paper, we use

Cx for the covariance matrix of a real-valued or complex

random vector x, and C̃x for the pseudocovariance matrix (see

Section I-D) of a complex random vector x. Cross-covariance

matrices and pseudo-cross-covariance matrices are denoted

by Cxy and C̃xy , respectively. The sets S
N ⊂ R

N×N and

H
N ⊂ C

N×N are the set of real-valued symmetric matrices

and the set of complex Hermitian matrices, respectively. Or-

thogonal complements of linear subspaces are denoted by •⊥.
The order relation � has to be understood in the sense of

positive-semidefiniteness.

D. Proper and Improper Gaussian Signals

To exhaustively characterize the second-order statistical

properties of a zero-mean complex random vector x, we

need the so-called pseudocovariance matrix C̃x = E
[
xxT

]

in addition to the conventional covariance matrix Cx =
E
[
xxH

]
(see [22]–[24] and references therein). Note that

an alternative description of complex random vectors, which

uses a composite real representation instead of the complex

covariance matrix and pseudocovariance matrix, is introduced

in Section I-E.

Only if the pseudocovariance vanishes, i.e., E
[
xxT

]
= 0,

the covariance matrix alone is sufficient to describe the second-

order properties, in which case the random vector is called

proper. Otherwise, it is called improper. In the case of a zero-

mean Gaussian distribution, propriety is equivalent to circular

symmetry of the probability density function.

In information theory, the proper Gaussian distribution plays

an important role since it maximizes the differential entropy

of a complex random vector for given covariance matrix [13],

[14], i.e., it achieves equality in

h(x) ≤ log det(πeCx). (1)

In particular, this entails that the proper Gaussian distribution

is the optimal input distribution of a point-to-point MIMO

communication system with proper Gaussian noise [14].

The situation is different in interference-limited communi-

cation systems such as interference channels (see, e.g., [30]–

[34]) or broadcast channels with (widely) linear transceivers

(see, e.g., [33], [35], [36]). For such systems, the optimal

input distribution is not known, but it can be shown that the

proper Gaussian distribution is not always the optimal one.

Advantages of using improper input distributions have also

been shown for relay-assisted interference channels [37].

Between these two extreme cases, there is the intermediate

case of systems where only some interference is present.

An example is a broadcast channel with interference pre-

compensation using so-called dirty paper coding (DPC) [38],

[39]. Interestingly, improper signaling is not beneficial in the

case of dirty paper coding with a sum power constraint [38].

An intuitive explanation of this fact was given in [35]: with

dirty paper coding, there is a user that does not see any

interference, and for this user a proper transmit signal is

optimal just like in a point-to-point link. This leads to a proper

interference-plus-noise signal for the next user, and the same

reasoning can be applied recursively to understand why proper

transmit signals should be utilized for all users. In Section V,

we provide a formal generalization of this result to the case of

a sum covariance constraint instead of a sum power constraint.

Moreover, in that section, it is also made clear why the same

optimality of proper signals is true for multiple access channels

with successive interference cancellation.

Against this background, the question arises to which of

these cases the various coding schemes for the Gaussian

MIMO relay channel belong. Not only for the cut-set upper

bound, but also for the decode-and-forward strategy, proper

Gaussian signals have been shown to be optimal in Gaussian

(MIMO) relay channels [1], [17]. In the decode-and-forward

scheme, both the relay and the destination decode the complete

source signal so that no interfering signal remains. Therefore,

it is not surprising that this scheme belongs to the interference-

free case where proper signals are optimal.

In the partial decode-and-forward scheme, only a part of

the signal transmitted by the source node is decoded by the

relay. This is explained in detail together with the system

model in Section II. The other part of the source signal causes

interference at the relay and is treated as additional noise.

Therefore, the question arises whether or not the presence of

this interference leads to a situation in which impropriety can

be helpful. This question is studied in this paper.

It has to be mentioned that the processing of improper

signals by means of widely linear operations [40] has recently

been considered in relay channels [41] and two-way MIMO

relay channels [42] with amplify-and-forward for the case

where the utilization of an improper transmit signal is a

system assumption (e.g., due to BPSK, ASK, or GMSK

modulation). Such studies are fundamentally different from

the kind of study presented in this paper: while we ask

whether or not improper input distributions can achieve a

better performance than proper ones, the authors of [41] and

[42] took improper signals as given and only asked how to

adequately process these signals. To the best of the authors’

knowledge, the question whether or not proper signals are

optimal for amplify-and-forward has not yet been answered

in the existing literature, and the same is true for compress-

and-forward. However, since this paper focuses on the partial

decode-and-forward scheme, we do not further elaborate on

amplify-and-forward or compress-and-forward.
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E. Composite Real Representation

As an alternative to describing the statistical properties of a

complex random vector by means of the covariance matrix and

the pseudocovariance matrix, a composite real representation

can be used (e.g., [24]). To this end, we introduce the notations

Ǎ =

[
ℜ(A) −ℑ(A)
ℑ(A) ℜ(A)

]

and ǎ =

[
ℜ(a)
ℑ(a)

]

(2)

for the real-valued counterparts of a complex matrix A and a

complex vector a. Note that Ǎ is defined in a way that [14,

Lemma 1]

b̌ = Ǎx̌ ⇔ b = Ax. (3)

By definition, we have (e.g., [23, Section 2.2.3])

h(x̌) = h(x) and h(x̌|y̌) = h(x|y). (4)

For a general (proper or improper) complex Gaussian random

vector x, we therefore have

h(x) = h(x̌) =
1

2
log det(2πeCx̌) (5)

where

Cx̌ =

[
Cℜx Cℜxℑx

CT
ℜxℑx Cℑx

]

(6)

is the (real-valued) covariance matrix of the composite real

vector x̌. This matrix may not be confused with the composite

real equivalent Čx of the (complex) covariance matrix Cx.

The covariance matrix and the pseudocovariance matrix of

a complex random vector x can be expressed as a function of

Cx̌ by means of the equations [24]

Cx = Cℜx +Cℑx + j(CT
ℜxℑx −Cℜxℑx) (7)

C̃x = Cℜx −Cℑx + j(CT
ℜxℑx +Cℜxℑx). (8)

In the recent literature, it has been argued that for many

problems involving improper signals, an augmented complex

representation x = [xT,xH]T leads to more convenient math-

ematical expressions than the composite real representation

(e.g., [22]–[24], [32], [33]). For instance, while we can directly

see if a vector x is proper by verifying whether the off-

diagonal blocks of the augmented covariance matrix Cx are

zero (e.g., [24]), we have to check the conditions

Cℜx = Cℑx and CT
ℜxℑx = −Cℜxℑx (9)

in order to test for propriety based on the composite real

formulation (e.g., [24]).

However, the composite real representation has an important

advantage that is crucial for a proof in this paper: in the

literature, there exist many results for real-valued systems, and

in addition, many results that have been shown for systems

with proper complex signals can easily be transferred to real-

valued systems. By means of the composite real representation,

these existing results can be used to gain new insights about

systems with improper complex signals. Such an approach

was, e.g., pursued in [35], [36] and for the special case of

scalar complex random variables in [30], [31].

S

R

D

HSR HRD

HSD

Fig. 1. Illustration of the Gaussian MIMO relay channel.

II. SYSTEM MODEL AND CODING SCHEME

We consider data transmission from a multiantenna source

node S to a multiantenna destination node D, where a mul-

tiantenna relay R is used to support the transmission. Under

the assumption of frequency flat channels and additive circu-

larly symmetric complex Gaussian noise at the relay and the

destination, the transmission can be described by

yR = HSRxS + ηR (10)

yD = HSDxS +HRDxR + ηD (11)

where Hij ∈ C
Nj×Ni denotes the channel matrix between

node i and node j with i, j ∈ {S,R,D}, and Ni is the number

of antennas at node i. The noise ηR ∼ CN (0,CηR
) at the

relay and the noise ηD ∼ CN (0,CηD
) at the destination are

assumed to be independent of each other and independent of

the useful signals. Throughout the paper, we assume CηR
=

INR
and CηD

= IND
without loss of generality. The system

model is visualized in Fig. 1.

Throughout this work, we assume the transmit signals xS

and xR at the source and at the relay to be jointly complex

Gaussian, but not necessarily proper. Consequently, the receive

signals yR and yD at the relay and the destination are general

(proper or improper) complex Gaussian signals as well.

The relay is assumed to work in full-duplex mode with

perfect self-interference cancellation, i.e., it is assumed to be

able to transmit while receiving without disturbing its own

reception. From an implementation point of view, this may be

an overly optimistic assumption, and half-duplex operation,

where self-interference cancellation is not necessary, might

be preferable in practice. However, this paper is not meant

to focus on aspects of practical implementations, but rather

on fundamental properties of the optimal partial decode-and-

forward solution. For the same reason, we restrict ourselves

to the case of complete and perfect channel state information

at all nodes. We conjecture that the results can be extended

to the half-duplex case, and that they are also helpful to

gain insights for the case of imperfect or incomplete channel

state information. However, we leave a detailed study of these

aspects open for future research.

In the partial decode-and-forward scheme, the transmit

signal xS consists of a part u that is transmitted in cooperation

with the relay and a part v which is received by the destination

without the help of the relay, i.e., by making use of the direct

link only. This implies that u has to be decoded by the relay.

The transmit signal xS of the source node is created from

the cooperation signal u and the noncooperative signal v by

means of superposition coding (e.g., [25], [19, Section 9.4.1]),
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i.e., xS = u+ v for continuous alphabets (e.g., [3]). While v

is statistically independent of u and xR, the cooperation signal

u and the relay transmit signal xR are statistically dependent

in general.

The achievable partial decode-and-forward rate is then given

by

R = min{I(xS;yD|uxR) + I(u;yR|xR)
︸ ︷︷ ︸

RA

; I(xSxR;yD)
︸ ︷︷ ︸

RB

}.

(12)

For a derivation of (12), the reader is referred to [25], [19,

Section 9.4.1]. An intuitive interpretation of the involved

mutual information expressions is given in Section IV. The

optimization problem with power constraints reads as

max
pm∈M

R s.t. E
[
xH
S xS

]
≤ PS and E

[
xH
RxR

]
≤ PR (13)

where m = [uT,xT
S ,x

T
R ]

T, and M is the set of all valid

probability distributions of m that have the property that u–

(xSxR)–(yRyD) is a Markov chain. In (13), PS and PR denote

the average transmit powers available at the source and at the

relay, respectively.

We remark that the partial decode-and-forward scheme

includes point-to-point transmission as the special case u ≡ 0

and decode-and-forward as the special case v ≡ 0. However,

in the general case, where u 6≡ 0 and v 6≡ 0, we have to

consider that the noncooperative signal v causes interference

at the relay since it is not decoded by the relay. Due to

this interference, it is not obvious whether the optimal input

distribution is proper or improper, and it is not even clear

whether Gaussian inputs are optimal (for a brief summary

of special cases for which the optimal input distribution is

known to be proper Gaussian, see Section I-A). Moreover,

even if we restrict ourselves to jointly proper Gaussian signals

as in the existing literature [3], [9], [10], the optimization of

the transmit covariance matrices is a nonconvex problem for

which only suboptimal solutions have been proposed [9], [10]

for the general case.

III. PROPOSED PARAMETRIZATION OF IMPROPRIETY

As explained in Section I-E, the composite real represen-

tation enables us to transfer results that exist for real-valued

systems or for systems with proper complex signals to the case

of general (proper or improper) complex signals.

In order to benefit from this property, we have to overcome

the disadvantages of the composite real-valued representa-

tion described in Section I-E. To this end, we propose to

decompose the covariance matrix Cx̌ of the composite real

representation (6) as

Cx̌ =
1

2

[
ℜ(Cx) −ℑ(Cx)
ℑ(Cx) ℜ(Cx)

]

︸ ︷︷ ︸

Px

+
1

2

[
ℜ(C̃x) ℑ(C̃x)

ℑ(C̃x) −ℜ(C̃x)

]

︸ ︷︷ ︸

Nx

(14)

which is obtained by solving the system of equations (7) and

(8) for Cℜx, Cℑx, and Cℜxℑx.

The matrices Px and Nx are both real-valued and sym-

metric with twice the size of the complex covariance matrix

Cx. However, each of these matrices has its own characteristic

block pattern. This leads to the following definition.

Definition 1: Let

PN =

{

P ∈ S
2N

∣
∣
∣
∣
P =

[
A −B

B A

]

, A,B ∈ R
N×N

}

(15)

NN =

{

N ∈ S
2N

∣
∣
∣
∣
N =

[
C D

D −C

]

, C,D ∈ R
N×N

}

.

(16)

Then, PN is called the power shaping space, andNN is called

the noncircularity space or impropriety space.

It is easy to verify that PN and NN are linear subspaces of

the space of real-valued symmetric matrices S2N . The names

for PN and NN refer to the fact that Px ∈ PN completely

determines the covariance matrix Cx while Nx ∈ NN

determines the pseudocovariance matrix C̃x and, thus, the

impropriety of x ∈ C
N .

Note that the set PN is not restricted to the positive-

semidefinite cone, and elements of NN are indefinite by

definition. A meaningful covariance matrix Cx̌ is obtained

only for those Px ∈ PN and Nx ∈ NN that fulfill

Px + Nx � 0 (which implies Px � 0 due to the special

structure of Px and Nx).

Due to the following lemma, any feasible composite real

covariance matrix Cx̌ can be uniquely decomposed into a

power shaping component Px and an impropriety component

Nx.

Lemma 1: NN is the orthogonal complement of PN in

S
2N .

Proof: Orthogonality of NN and PN follows from

tr[PTN ] = tr[PN ] = 0 for any choice of A, B, C, and D.

Noting that A, C, and D must be symmetric while B must

be skew-symmetric, we can count that PN is N2-dimensional,

and NN is (N2+N)-dimensional. This adds up to (2N2+N),
which is the dimensionality of S2N .

IV. CHARACTERIZATION OF THE OPTIMAL GAUSSIAN

SIGNALING

In this section, we characterize the optimal Gaussian sig-

naling in Gaussian MIMO relay channels with partial decode-

and-forward by first stating and proving the main theorem of

this paper and by giving an interpretation of the new insights

afterwards.

Theorem 1: In a Gaussian MIMO relay channel with partial

decode-and-forward, the zero-mean proper Gaussian distribu-

tion is the optimal one among all Gaussian input distributions.

The main difficulties in proving the theorem are

• the correlation between the cooperation signal u and the

relay transmit signal xR,

• the fact that the rate is given by a minimum of two rate

expressions RA and RB [see (12)], and

• the interference that the noncooperative signal v causes

at the relay.

To overcome the first problem, we split the cooperation signal

u into a part q that has no linear relationship with xR and
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a part covering the linear relationship with xR.
2 Then, we

introduce the covariance matrix Cv+q of the sum v + q and

consider the separate maximization of RA and RB for a given

Cv+q . This separate maximization leads to an upper bound for

the original problem, but in the end of the proof, it turns out

that this bound is tight. Finally, the problem of interference

at the relay is treated by identifying that for a fixed Cv+q ,

the rate expression RA can be reformulated in a way that it

becomes mathematically equivalent to a dirty paper coding

sum rate in a MIMO broadcast channel. As a last ingredient

for the proof, it is then necessary to state and prove a new

theorem for the MIMO broadcast channel, namely that proper

Gaussian signaling is optimal for the sum rate maximization

in a two-user MIMO broadcast channel not only under a sum

power constraint, but also under a sum covariance constraint.

The detailed proof of the optimality of proper signaling

for partial decode-and-forward in the MIMO relay channel

with Gaussian transmit signals and proper Gaussian noise is

provided below.

Proof of Theorem 1: Since a nonzero mean of the

involved random vectors would not change the entropy, but

require a part of the available transmit power, we can directly

conclude that it is optimal to only use zero-mean random

vectors.

We decompose u as

u = q +AxR such that CqxR
= E

[
qxH

R

]
= 0 (17)

i.e., the linear relationship between u and xR is completely

covered by AxR. For a better understanding of this decompo-

sition, we have to consider that the partial decode-and-forward

rate can be achieved by a block-Markov coding scheme [19,

Section 9.4.1], and that the relay can only forward messages

that it has received in earlier blocks for reasons of causality.

With this in mind, we note the following. Both q and AxR

represent messages that are transmitted jointly with the relay.

However, while AxR represents the joint transmission that

is currently taking place, q represents the message that is

provided to the relay to allow cooperation in a future block.

Since vanishing error probability can be assumed due to the

formulation based on Shannon rates (cf. Section I-B), the

source knows what the relay has received and decoded in

the previous block and can conclude what the resulting relay

transmit signal xR in the current block is. This explains why

cooperative transmission of the source and the relay in the

form of the signals AxR and xR is possible even without a

feedback link from the relay to the source. An illustration can

be found in Fig. 2.

This correlation of the transmit signals of the source and the

relay implies that the relay transmit signal and the matrix A

have to be designed in a way that not only the power constraint

at the relay is fulfilled, but also the power constraint at the

source. This will be later seen in (19). Finding the value of A

2Note that we do not use the term correlation since for improper random
vectors, correlation may also be understood as the presence of a widely linear
(but not necessarily linear) relationship [23, Section 2.2.1]. An example of
vectors q and xR that are correlated in this sense without having a linear

relationship is CqxR
= 0 and C̃qxR

6= 0. This situation is explicitly allowed
in our considerations.

S

AxR

q

v

R
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D

cooperative
transmission
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o
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er
at
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at
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useful signal

known interference

harmful interference

processing with delay

Fig. 2. Illustration of the proposed decomposition of the source signal.

and the distribution of xR that maximize the achievable rate

while fulfilling these two constraints is one of the goals of the

optimization.

Note that even under the assumption of Gaussian signals,

CqxR
= 0 does not imply statistical independence of q and

xR since the pseudo-cross-covariance matrix C̃qxR
might be

nonzero [23, Section 2.2.1], i.e., there might still be a widely

linear relationship between q and xR. However, we will later

show that independence of q and xR is indeed optimal.

Our aim is to maximize the partial decode-and-forward

rate R subject to power constraints at the source and at the

relay. Under the assumption of zero-mean complex Gaussian

transmit signals, the mutual information expressions in R can

be written as functions of A and of the (joint) covariance and

pseudocovariance matrices, which are, therefore, the optimiza-

tion variables.

Let X = (Cv,Cq,CxR
,A, C̃v, C̃q, C̃xR

, C̃qxR
), and let

X =

{

X

∣
∣
∣
∣

Cv�0,Cq�0,CxR
�0,

C̃v∈C̃(Cv),C̃ρ∈C̃(Cρ)

}

(18)

where we have used the abbreviation ρ = [qT xT
R ]

T. The set

C̃(C) is the set of valid pseudocovariance matrices for given

covariance matrix C, i.e., the set of all complex symmetric

matrices C̃ for which C − C̃(C∗)+C̃∗ � 0 and for which

the null space of C is contained in the null space of C̃∗ [23,

Section 2.2.2].

Using the tuple of optimization variables X and the defi-

nitions of RA and RB in (12), the optimization (13) can be

written as

max
X∈X

min{RA(X ); RB(X )} (19)

s.t. tr[Cv +Cq +ACxR
AH] ≤ PS

tr[CxR
] ≤ PR.

Due to the max-min-inequality [43, Section 5.4.1], an upper

bound to the optimal value is given by

max
Cv+q�0

min{R⋆
A(Cv+q); R⋆

B(Cv+q)} (20)

s.t. tr[Cv+q] ≤ PS
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where R⋆
i (Cv+q), i ∈ {A,B} is the optimal value of

max
X∈X

Ri(X ) (21)

s.t. Cv +Cq = Cv+q

tr[ACxR
AH] ≤ PS − tr[Cv+q]

tr[CxR
] ≤ PR.

This upper bound is tight if there exists an optimizer

X ⋆(Cv+q) that maximizes RA and RB simultaneously for

given Cv+q . In the following, we show that such an optimizer

exists for any possible Cv+q . Therefore, the following results

are not restricted to some fixed Cv+q , but still hold if the

optimal Cv+q is searched in the outer maximization of (20).

Let us first consider the solution of R⋆
B(Cv+q). In terms of

differential entropies, RB can be written as

RB = h(yD)
︸ ︷︷ ︸

≤h(yD,proper)

− h(ηD)
︸ ︷︷ ︸

const.

(22)

where yD,proper is a proper Gaussian signal with the same

covariance matrix as yD, i.e.,

CyD,proper
= CyD

= HSDCv+qH
H
SD+

(HSDA+HRD)CxR
(HSDA+HRD)

H + CηD
. (23)

Since the noise ηD is assumed to be proper, equality in (22)

can be achieved by setting all pseudocovariance matrices to

zero for any fixed choice of the covariance matrices (due to

[14, Lemmas 3 and 4]). Also note that for fixed Cv+q , the

receive covariance matrix CyD
does not depend on Cv and

Cq . Therefore, there is an optimizer X ⋆
B that maximizes RB

and has the structure

X ⋆
B = (∗, ∗,C⋆

xR
,A⋆,0,0,0,0) (24)

where ∗ denotes “don’t care.” Note that due to the fact that

CqxR
= 0 by assumption and C̃ρ = 0 in the optimum, RB is

maximized by statistically independent random vectors q and

xR.

The rate RA can be written as

RA =h(HSDv + ηD)− h(ηD)

+ h(HSR(v + q) + ηR|xR)
︸ ︷︷ ︸

≤h(HSR(v+q)+ηR)

− h(HSRv + ηR). (25)

Since conditioning reduces uncertainty unless in the case of

statistical independence [44, Section 8.6], equality holds in

(25) if and only if q and xR are independent, i.e., C̃qxR
=

0. We can therefore assume this independence and drop the

conditioning on xR. As a result, the probability distribution of

xR does not play a role for the optimal RA.

Based on the composite real representations of all complex

random vectors, we can use (5) to express RA as

RA(Cv̌,Cq̌) =
1

2
log

det
(
1
2I2ND

+ ȞSDCv̌Ȟ
T
SD

)

det
(
1
2I2ND

)

+
1

2
log

det
(
1
2I2NR

+ ȞSRCv̌Ȟ
T
SR + ȞSRCq̌Ȟ

T
SR

)

det
(
1
2I2NR

+ ȞSRCv̌Ȟ
T
SR

) (26)

where we have used Cη̌R
= PηR

= 1
2I2NR

and Cη̌D
= PηD

=
1
2I2ND

.

The optimization of RA can thus be written as

max
Cv̌�0,Cq̌�0

RA(Cv̌,Cq̌) (27)

s.t. PPNS (Cv̌ +Cq̌) = Pv+q

where PPNS denotes projection onto the power shaping space

PNS , and Pv+q is the constant real-valued power shaping

matrix corresponding to the constant complex covariance

matrix Cv+q . Due to the projection, the constraint on Cv̌+Cq̌

only concerns the power shaping component Pv+Pq and not

the impropriety component. Therefore, it is equivalent to the

constraint on Cv +Cq in (21).

Since PNS is the orthogonal complement of NNS , the opti-

mal real-valued covariance matrices C⋆
v̌,C

⋆
q̌ can be uniquely

decomposed into power shaping matrices P ⋆
v ,P

⋆
q and impro-

priety matrices N⋆
v ,N

⋆
q , which, in turn, uniquely determine

the complex covariance matrices C⋆
v,C

⋆
q and pseudocovari-

ance matrices C̃⋆
v, C̃

⋆
q , respectively.

By comparing (26) with [39, Eq. (43)], we note that the

equation for RA is the same mathematical expression as for the

sum rate in a real-valued Gaussian MIMO broadcast channel

with dirty paper coding.3 Since the channel matrices have

the special block structure (2) while no particular structure

is assumed for the real-valued covariance matrices, the opti-

mization in (27) can also be understood as the maximization of

the sum rate in a complex broadcast channel with dirty paper

coding and general complex (possibly improper) Gaussian

signals subject to a constraint Cv +Cq = Cv+q on the sum

transmit covariance matrix. This observation is the key point of

our proof since it can be shown that for such a setting, proper

complex signals (i.e., vanishing pseudocovariance matrices)

are optimal. However, this fact is stated and proven separately

as Theorem 2 in Section V since the proof is nontrivial (see

the discussion at the beginning of the next section).

Due to the mathematical equivalence, we can conclude

that also for (27), there must exist an optimal solution that

corresponds to proper complex signals in the original complex

system. Summing up, there is an optimizer X ⋆
A that maximizes

RA and has the structure

X ⋆
A = (C⋆

v,C
⋆
q , ∗, ∗,0,0, ∗,0). (28)

If we let XA denote the set of all X ⋆
A with this structure, and

let XB denote the set of all X ⋆
B with the structure given in

(24), it is easy to verify that XA ∩ XB 6= ∅. Therefore,

X ⋆ = (C⋆
v,C

⋆
q ,C

⋆
xR
,A⋆,0,0,0,0) ∈ XA ∩ XB (29)

maximizes RA and RB simultaneously.

This shows that the upper bound in (20) is tight and that

it can be achieved with vanishing pseudocovariance matrices

C̃v = C̃q = 0, C̃xR
= 0, and C̃qxR

= 0, i.e., with

a transmit strategy consisting of proper signals. Since this

reasoning holds for any feasible Cv+q , it also holds for the

optimal C⋆
v+q , which proves that propriety is optimal for

partial decode-and-forward with Gaussian signals.

3Note that the encoding order does not play any role for sum rate
maximization (see Theorem 2).

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2014.2321737

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



8

Since both v and q are statistically independent of the relay

transmit signal xR in the optimal Gaussian signaling, the sum

v+q can be interpreted as the innovation the source introduces

into the system, and Cv+q can be called innovation covariance

matrix.

In the above proof, we have seen that for a fixed innova-

tion covariance matrix Cv+q , the optimization of the partial

decode-and-forward rate can be solved by separately solving

the optimizations of RA and RB. However, it is not clear to

which value the matrix Cv+q should be fixed in order to

obtain a good (or even optimal) overall solution. Therefore, it

is not obvious whether this decomposition is useful to derive

new optimization algorithms. Nevertheless, such an approach

should be investigated in future research.

On the other hand, introducing the innovation signal v + q

is very insightful from a theoretical point of view since it

reveals that we have the following behavior when using proper

Gaussian signaling.

Apart from the dependence on the power shaping of the

innovation, the first mutual information expression RA then de-

pends only on how this power shaping is distributed between q

and v, but not on the statistical properties of the non-innovative

signal AxR and the relay signal xR [see (28)]. This is similar

as in the cut-set bound (cf. [17]), where we also have the

situation that the mutual information expression corresponding

to the cut at the source depends on the innovation only. The

only difference is that the mutual information expression used

in the cut-set bound is equivalent to joint reception by the

relay and the destination, whereas the corresponding term in

the partial decode-and-forward rate results from the restriction

to a particular coding scheme, which takes into account the

distributed reception.

The second mutual information expression RB, by contrast,

only depends on the power shaping of the innovation and on

the properties of AxR and xR, but not on how the innovation

power is distributed between q and v [see (24)].

For an intuitive understanding of this observation, we have

to recall that in the block-Markov coding scheme discussed

earlier in this section, q is provided to the relay to allow future

cooperation while the joint transmission that is currently taking

place is represented by AxR. This means that in the current

block, q is transmitted without the help of the relay—just

like the noncooperative signal v. Consequently, for RB, which

represents the reception of all currently transmitted signals at

the destination, there is no difference between q and v, and

the distribution of the power between these two signals does

not play a role.

We think that the insights obtained by fixing the innovation

covariance matrix Cv+q might be helpful not only for the

proof in this paper, but also for future research on partial

decode-and-forward.

V. EXCURSUS: GAUSSIAN MIMO BROADCAST CHANNEL

WITH SUM COVARIANCE CONSTRAINT

As stated before, (27) is equivalent to a sum rate maximiza-

tion in a two-user MIMO broadcast channel. As in [36], we

distinguish three different cases of Gaussian MIMO broadcast

channels. In a real-valued broadcast channel, the channel

matrices Hk are real-valued, and the transmit signal vectors

and noise vectors follow real-valued Gaussian distributions.

The second case we consider is a complex broadcast channel

with complex channel matrices Hk, proper complex noise

and proper complex transmit signals. By allowing the transmit

signals to be general complex (proper or improper) Gaussian

vectors even though the noise is proper, we obtain a broadcast

channel with improper signaling as the third case.

Even though it is accepted as common knowledge (e.g.,

[30], [32], [33], [36]) and intuitively understandable (see [35]

and Section I-D) that proper Gaussian signals are capacity

achieving in MIMO broadcast channels with proper Gaussian

noise, the existing literature on MIMO broadcast channels does

(to the best of the authors’ knowledge) not include any results

about optimality of proper signals under a sum covariance

constraint.

In [38], it was shown that dirty paper coding with proper

complex Gaussian signals is capacity-achieving for a MIMO

broadcast channel with a sum power constraint. Thus, under

a sum power constraint, we could directly conclude from [38]

that C̃v = C̃q = 0 in the optimum of (27). However, due to

the sum covariance constraint in (27), this conclusion is not

possible.

In [39], a real-valued broadcast channel with a sum covari-

ance constraint was considered, but the results do not help,

either, for the following two reasons. Firstly, since [39] does

not assume any special structure of the channel matrices, the

results from [39] do not allow conclusions about the structure

of the optimal covariance matrices C⋆
v̌,C

⋆
q̌ that we obtain for

channels with the block structure (2). In particular, we cannot

conclude whether or not the impropriety matrices N⋆
v ,N

⋆
q

that correspond to the optimal solution are zero matrices, i.e.,

whether or not the optimal pseudocovariance matrices C̃⋆
v, C̃

⋆
q

are zero. Secondly, the constraint on the real-valued sum

covariance matrix in [39] is not the same as a constraint on the

power shaping component of the real-valued sum covariance

(or, equivalently, the complex sum covariance) in our case.

Since optimality of proper signals under a sum covariance

constraint cannot be concluded from the abovementioned ref-

erences, we state this optimality in the following theorem and

devote the remainder of this section to proving this statement.

Theorem 2: In a complex two-user MIMO broadcast chan-

nel with proper Gaussian noise, the optimal sum rate under a

sum covariance constraint Cx1
+Cx2

= C is achievable with

proper Gaussian transmit signals by using dirty paper coding

with arbitrary encoding order.

Following the derivation in [38], optimality of proper signals

under a sum power constraint can be shown by the help of a

dual uplink, i.e., a multiple access channel. Since the classical

uplink-downlink duality from [38] only holds under a sum

power constraint and not under a sum covariance constraint,

we make use of the uplink-downlink minimax duality with

linear conic constraints from [45], [46]. This duality has

been derived under the assumption of proper signals in both

uplink and downlink. However, to study the case of general

complex signals, we can apply the duality to the composite real

representation. To do so, we first introduce some notations,
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equations, and lemmas.

Throughout the remainder of this section, we use xk and

ξk, k ∈ {1, 2} for the transmit signals in the downlink and in

the uplink, respectively, ηk for the downlink noise, and η for

the uplink noise. The number of downlink transmit antennas is

denoted byM , and the number of antennas at the kth downlink

receiver is Nk. The data rate for the first two cases (real-valued

and proper complex) can be expressed as

RDL = µ log
det

(
Cη2

+H2Cx2
HH

2

)

det (Cη2
)

+ µ log
det

(
Cη1

+H1Cx2
HH

1 +H1Cx1
HH

1

)

det
(
Cη1

+H1Cx2
HH

1

) (30)

where the pre-log factor is µ = 1 in the complex case and

µ = 1
2 in the real-valued case. Instead of explicitly stating a

rate equation for improper signaling, we can treat the third

case by studying its composite real representation as a real-

valued broadcast channel.

Lemma 2: In a real-valued or proper complex two-user

MIMO broadcast channel, the sum rate maximization with a

sum covariance constraint Cx1
+Cx2

� C has an optimizer

for which the sum covariance constraint is active.

Proof: Let RDL(Cx1
,Cx2

) denote the sum rate (30)

that is achieved with the transmit covariances Cx1
and Cx2

.

Since HXHH � HX ′HH for X � X ′ and det(X)
is nondecreasing in X � 0 [47, Section 7.7], it is easy

to verify that RDL(Csum − Cx2
,Cx2

) is nondecreasing in

Csum = Cx1
+Cx2

. Moreover, the constraint on the covariance

matrices can be written as 0 � Cx2
� Csum � C, where

Cx2
� Csum is relaxed if Csum is increased.

The following lemma states the minimax duality with linear

conic constraints from [45], [46]. A short interpretation is

given below.

Lemma 3: For the real-valued case and for the proper

complex case, the two-user downlink minimax problem

min
Cη1

�0,Cη2
�0 : (Cη1

,Cη2
)∈Y⊥

tr[B1Cη1
]+tr[B2Cη2

]=σ2

max
Cx1

�0,Cx2
�0,Z∈Z

Cx1
+Cx2

�C+Z

RDL (31)

and the two-user uplink minimax problem

min
Cη�0 :Cη∈Z⊥

tr[CCη ]=σ2

max
Cξ1

�0,Cξ2
�0,(Y1,Y2)∈Y

Cξk
�Bk+Yk ∀k

RUL (32)

have the same optimal value, where Z ⊆ H
M and Y ⊆

H
N1×H

N2 are linear subspaces (S instead of H in the real-

valued case).

Proof: See [45] for the proper complex case. The real-

valued case can easily be proven by repeating all steps of the

proof in [45] for the real-valued setting.

The maximizations in the minimax problems (31) and (32)

correspond to the design of the optimal transmit strategies

while the minimizations can be interpreted as finding the

worst-case noise properties [45], [46]. By appropriately choos-

ing the linear subspaces Y and Z , various constraints on the

transmit covariance matrices such as sum power constraints

or shaping constraints can be modeled [46]. Accordingly, the

subspaces Y⊥ and Z⊥ restrict the noise covariance matrices

so that various kinds of noise can be allowed in the worst-

case noise optimization and even fixed noise covariances can

be modeled (see below and [46]).

Lemma 4: In a MIMO multiple access channel with proper

Gaussian noise, an optimum of the sum rate maximization

under constraints on the covariance matrices Cx1
and Cx2

is

achieved with proper transmit signals.

Proof: The sum rate in the multiple access channel is

given by (e.g., [44, Section 15.3])

RUL = h(HH
1 ξ1 +HH

2 ξ2 + η)
︸ ︷︷ ︸

=h(y)≤h(yproper)

− h (η)
︸ ︷︷ ︸

const.

(33)

where y = HH
1 ξ1+HH

2 ξ2+η, and yproper is a proper Gaussian

signal with the same covariance matrix as y. The differen-

tial entropy h(y) is bounded from above by h(yproper), and
h(yproper) only depends on the covariance matrices of ξ1, ξ2
and η. Given any choice of these covariances, we can achieve

equality h(y) = h(yproper) by setting the pseudocovariance

matrices C̃ξ1
and C̃ξ2

to zero since C̃η = 0 (due to [14,

Lemmas 3 and 4]).

Based on these lemmas, we can now prove the optimality

of dirty paper coding with proper Gaussian signals under a

sum covariance constraint in the two-user MIMO broadcast

channel with proper Gaussian noise.

Proof of Theorem 2: Due to the equivalence with a

composite real broadcast channel, we can directly conclude

from [39] that dirty paper coding with Gaussian signals is

optimal, but we have to show the optimality of proper signals.

We can assume identity matrices as noise covariance matrices

since any other case could be treated by introducing equivalent

channels after noise whitening.

We express the sum rate maximization for the broadcast

channel with general complex signals in the equivalent com-

posite real broadcast channel. Similar as in the proper complex

case in [46], the sum rate maximization with fixed noise

covariance matrices Cη̌1
= 1

2I2N1
and Cη̌2

= 1
2I2N2

can

be rewritten as a minimax problem with worst-case noise. To

this end, we define a feasible set for the noise covariance

matrices that is compatible with the structure of (31), but only

contains one feasible element. This formulation is given in

(34) in Table I. Since the constraint on the complex sum

covariance matrix translates to a constraint on the power

shaping component of the real-valued sum covariance matrix,

we can add a matrix Z out of the impropriety space NM to

the constant power shaping matrix P = 1
2Č ∈ PM on the

right hand side of the sum covariance constraint.

Due to Lemma 3, the optimal minimax sum rate R⋆
UL in the

dual uplink given by (35) in Table I is equal to the optimal

minimax rate R⋆
DL in the downlink (34), i.e., we have R⋆

UL =
R⋆

DL.

Since the uplink channels ȞT
k have the block structure

(2), we can return to a complex formulation. The key point

now is to note that we have the constraint Cη̌ ∈ PM in the

optimization for the worst-case noise. Therefore, even without

solving the minimization in (35), we know that C̃η = 0,

i.e., the uplink noise η is proper. Moreover, it is easy to

verify that also the constraints on the real-valued covariance

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2014.2321737

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



10

TABLE I
STEPS OF THE PROOF OF THEOREM 2.

composite real (=̂ general complex) proper complex

downlink

uplink

⇒

Lemma 3

⇒
L
em

m
a
4

⇒Lemma 3

min
Cη̌1

�0,Cη̌2
�0 : (Cη̌1

,Cη̌2
)∈Y̌⊥

tr[Cη̌1
]+tr[Cη̌2

]=N1+N2

max
Cx̌1

�0,Cx̌2
�0,Z∈Ž

Cx̌1
+Cx̌2

�P+Z

RDL (34)

Ž = NM

Y̌⊥ = {(Cη̌1 ,Cη̌2 ) ∈ S
2N1×S

2N2 | Cη̌k
= αI2Nk

∀k, α ∈ R}

RDL =
1

2
log

det
(

Cη̌2 + Ȟ2Cx̌2Ȟ
T
2

)

det (Cη̌2 )

+
1

2
log

det
(

Cη̌1 + Ȟ1Cx̌2Ȟ
T
1 + Ȟ1Cx̌1Ȟ

T
1

)

det
(

Cη̌1 + Ȟ1Cx̌2Ȟ
T
1

)

min
Cη̌�0 :Cη̌∈Ž⊥

tr[PCη̌ ]=N1+N2

max
C

ξ̌1
�0,C

ξ̌2
�0,(Y1,Y2)∈Y̌

C
ξ̌k

�I2Nk
+Yk ∀k

RUL (35)

Ž⊥ = (NM )⊥ = PM due to Lemma 1

Y̌ =
{

(Y1,Y2) ∈ S
2N1×S

2N2

∣

∣

∣
tr[Y1] + tr[Y2] = 0

}

RUL =
1

2
log

det
(

Cη̌ + ȞT
1 Cξ̌1

Ȟ1 + ȞT
2 Cξ̌2

Ȟ2

)

det (Cη̌)

min
Cη�0

tr[CCη ]=N1+N2

max
Cξ1

�0,Cξ2
�0,(Y1,Y2)∈Y

Cξk
�INk

+Yk ∀k

RUL,proper (36)

Z⊥ = H
M (any Cη corresponds to a Pη ∈ Ž⊥ = PM )

Y =
{

(Y1,Y2) ∈ H
N1×H

N2

∣

∣

∣
tr[Y1] + tr[Y2] = 0

}

RUL,proper = log
det

(

Cη +HH
1 Cξ1H1 +HH

2 Cξ2H2

)

det (Cη)

min
Cη1

�0,Cη2
�0 : (Cη1

,Cη2
)∈Y⊥

tr[Cη1
]+tr[Cη2

]=N1+N2

max
Cx1

�0,Cx2
�0

Cx1
+Cx2

�C

RDL,proper (37)

Z = (HM )⊥ = {0}

Y⊥ = {(Cη1 ,Cη2 ) ∈ H
N1×H

N2 |Cηk
= αINk

∀k, α ∈ R}

RDL,proper = log
det

(

Cη2 +H2Cx2H
H
2

)

det (Cη2 )

+ log
det

(

Cη1 +H1Cx2H
H
1 +H1Cx1H

H
1

)

det
(

Cη1 +H1Cx2H
H
1

)

active due to Lemma 2 active due to Lemma 2

matrices Cξ̌1
and Cξ̌2

translate only to constraints on the

complex covariance matrices Cξ1
and Cξ2

and do not affect

the pseudocovariance matrices C̃ξ1
and C̃ξ2

.4 Consequently,

due to Lemma 4, proper signals achieve the optimum in the

complex representation of the uplink, i.e., we have R⋆
UL,proper =

R⋆
UL = R⋆

DL, where R⋆
UL,proper is the optimizer of (36) in

Table I.5

Again due to the uplink-downlink duality (Lemma 3), the

optimizer R⋆
DL,proper of (37) in Table I fulfills R⋆

DL,proper =
R⋆

UL,proper. The chosen encoding order is without loss of gen-

erality: as usual in uplink-downlink duality (cf., e.g., [38]), the

encoding order in the downlink is the reverse uplink decoding

order, and from the symmetry in (33), we can conclude that

this order can be chosen arbitrarily.

The constraints in the worst-case noise optimization corre-

spond again to a feasible set consisting of only one element,

i.e., to fixed noise covariance matrices Cη1
= IN1

and

Cη2
= IN2

. This is in accordance with the original complex

4In fact, the constraints are equivalent to a sum power constraint (similar
as in the proper complex case in [46]): since Yk can be optimized and only
has to satisfy a trace constraint, the constraint on Cξ̌k

is equivalent to a

trace constraint tr[Cξ̌k
] ≤ 2Nk + tr[Yk]. As the trace constraint on Yk

only affects the sum Y1 +Y2, the individual constraints on tr[Cξ̌k
] become

equivalent to a sum power constraint tr[Cξ̌1
+Cξ̌2

] ≤ 2N1 + 2N2.
5Based on (2), we would obtain 1

2
C instead of C in the trace constraint

and 1
2
Cξk

instead of Cξk
in the covariance constraints. However, since

jointly scaling the signal covariance matrices and the noise covariance does
not change the data rate, these two factors can be canceled out against each
other.

broadcast channel.

Due to Lemma 2, the sum covariance constraint of the

proper complex downlink minimax problem is active in the

optimum. This shows that we can indeed find a proper complex

downlink strategy with Cx1
+ Cx2

= C which achieves

R⋆
DL,proper = R⋆

UL,proper = R⋆
UL = R⋆

DL.

This concludes our excursus on the MIMO broadcast chan-

nel, which was necessary as an ingredient for the proof of the

main theorem of this paper in Section IV.

VI. SUMMARY AND OUTLOOK

We have shown that the zero-mean proper Gaussian dis-

tribution is the optimal one among all Gaussian distributions

for the problem of optimizing the partial decode-and-forward

rate in a Gaussian MIMO relay channel. A key point in the

proof was to decompose the optimization in a way that we

could exploit the mathematical equivalence between one of

the arising expressions and the optimization of the sum rate of

a Gaussian MIMO broadcast channel under a sum covariance

constraint.

Since for such broadcast channels it is not only known that

proper signals are optimal under the assumption of Gaussian

signals, but also that the Gaussian distribution is the optimal

input distribution, the question arises whether the same proof

technique can be applied to show optimality of Gaussian

signals in Gaussian MIMO relay channels with partial decode-

and-forward. Unfortunately, this is not the case since the
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equivalence that we have observed is only an equivalence of

the rate expressions obtained after applying the assumption of

Gaussian signals. However, as explained in the following, the

underlying mutual information expressions are not equivalent.

Below (25), we have shown that q and xR have to be

independent. Thus, RA can be written as

RA = I(v;HSD(v+q)+ηD | q)+I(q;HSR(v+q)+ηR). (38)

This can be interpreted as a broadcast channel with a restric-

tion to superposition coding and with a genie that provides the

receiver D with knowledge of the interfering signal q.

In the conventional MIMO broadcast channel model, we

do not have the restriction to superposition coding and we do

not have the abovementioned genie. Dirty paper coding is a

special case of the Gelfand-Pinsker coding scheme. Using the

Gelfand-Pinsker scheme in a broadcast channel without the

assumption of Gaussian signaling, we have [19, Section 7.4]

RBC =I(s1;H1x(s1, s2) + η1)− I(s1; s2)

+ I(s2;H2x(s1, s2) + η2) (39)

where the transmit signal x(s1, s2) is a function of the two

input signals s1, s2, and s2 is considered as a disturbance

that is known to the transmitter when encoding the signals for

user 1, but not to the receiver.

Obviously, the expressions in (38) and (39) do not match.

However, in the case of Gaussian signals, there exists a choice

of x(•, •) that leads to the same rate as if no interference

was present at user 1 [19, Section 6.7], i.e., as if there was

a genie. This explains why we have obtained a mathematical

equivalence of the rate expressions for the two scenarios under

the assumption of Gaussian signals in Section IV.

We know that Gaussian signals are optimal for RBC, i.e.,

using non-Gaussian signals reduces RBC. On the other hand,

equality between RA and RBC no longer holds without the

assumption of Gaussian signals. Therefore, it might be possi-

ble to increase RA by using non-Gaussian signals despite the

fact that RBC decreases. We conclude that it is not obvious

whether RA can be increased by allowing non-Gaussian input

distributions. We also remark that the proof of optimality

of proper signals was performed under the assumption of

Gaussian signals and does not allow conclusions on whether

or not improper non-Gaussian signaling can outperform proper

non-Gaussian signaling. These questions are left open for

future research.
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