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Abstract

At a time where video communication is the dominating traffic source in mobile networks,

providing a satisfactory user experience is crucial for mobile network operators. On one hand,

this is challenged by the mobile users’ demand for high-quality real-time video content with

continuous playout. On the other hand, the access network is suffering from resource crunch

with an increasing number of smartphone users.

The focus of this thesis is to design, implement and evaluate novel user-centric approaches

for the distribution of the limited wireless network resources across multiple users in a mobile

cell. Different from Quality of Service (QoS)-driven resource allocation schemes, the goal is

to maximize the Quality of Experience (QoE) by considering the individual application and

content characteristics of the mobile users.

The first part of this thesis presents a service-centric concept for uplink distribution of

user-generated video content over fourth generation mobile networks. Challenging in this

respect is to understand the end-user requirements who are the actual consumers of the

uploaded videos. To this end, the proposed approach incorporates knowledge about the video

consumers, in terms of video popularity and live versus on-demand consumption, in order to

prioritise the uplink resources. Furthermore, given the active involvement of the mobile users,

distributed approaches for uplink video transmission with minimal signaling overhead are

desired. Hence, the uplink optimization process is decomposed into two parts: a distributed

QoE optimization which is performed at the mobile terminals to decide on the video coding

parameters and packet transmission, and a centralized QoE optimization in the mobile network

to allocate the network resources among the video producers. Both theoretical and practical

performance analysis are conducted which indicate substantial user perceived gains compared

to state-of-the-art schedulers in LTE systems.

The second part of the thesis explores the benefit of QoE-based traffic and resource man-

agement in the mobile network in the context of adaptive HTTP downlink video delivery.

Indeed, there is a pragmatic shift in mobile multimedia streaming from RTP/UDP-based into

HTTP/TCP-based streaming services to ensure higher reliability. Dynamic Adaptive Stream-

ing over HTTP (DASH) is poised to be the future standard for mobile multimedia delivery.
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Most notably, it allows for intra-session rate adaptation to deal with the variability in mobile

networks and supports both live and on-demand streaming. Whereas DASH has been mainly

studied from an end-to-end perspective, this thesis is the first to propose in-network man-

agement approaches for multi-user adaptive HTTP streaming. In particular, it exploits the

DASH specificities to develop low-complexity adaptation approaches which are both suitable

for Over the Top (OTT) streaming services and can be deployed in a real mobile network.

The approaches presented in this thesis are validated by extensive experimental results, sub-

jective laboratory tests and simulation results in the LTE OPNET simulator. The conducted

performance evaluation shows that the proposed QoE framework can provide a better video

quality, faster adaptation to network variations and a fairer resource allocation in a mobile

cell compared to standard adaptive HTTP streaming.



Kurzfassung

In einer Zeit in der Videoanwendungen das Verkehrsaufkommen in Mobilfunknetzen do-

minieren, ist es für Mobilfunkbetreiber entscheidend, ein zufriedenstellendes Benutzererlebnis

anzubieten. Einerseits wird dies durch die Nachfrage von mobilen Nutzern nach qualita-

tiv hochwertigen Echtzeit-Videoinhalten mit kontinuierliche Playout herausgefordert. Ander-

erseits leidet das Zugangsnetz unter Ressourcenmangel aufgrund der wachsenden Zahl von

Smartphone-Nutzern.

Der Schwerpunkt dieser Arbeit liegt auf der Konzeption, Umsetzung und Evaluierung

von nutzerzentrierten Ansätzen für die Aufteilung der begrenzten Übertragungsressourcen

auf mehrere drahtlose mobile Nutzer in einer Zelle. In Gegensatz zur Quality of Service

(QoS)-gesteuerten Ressourcenallokation, ist es das Ziel dieser Arbeit, die Nutzerzufrieden-

heit (Quality of Experience (QoE)) unter Berücksichtigung der Eigenschaften der einzelnen

mobilen Anwender zu maximieren.

Der erste Teil dieser Arbeit stellt ein dienstorientiertes Konzept zur Uplink-Übertragung

von benutzergenerierten Videoinhalten über Mobilfunknetze der vierten Generation vor. Hier

ist die Herausforderung, die Anforderungen der Endnutzer zu verstehen, die die tatsächlichen

Verbraucher der hochgeladenen Videos sind. Zu diesem Zweck enthält der vorgeschlagene

Ansatz Wissen über die Video-Konsumenten in Bezug auf die Popularität und den Live vs.

Video-on-Demand Verbrauch, um die Uplink-Ressourcen zu priorisieren. Da die mobilen

Nutzer außerdem aktiv beteiligt werden, sind verteilte Ansätze für die Uplink-Videoübertra-

gung mit minimalen Signalisierungsaufwand wünschenswert. Auf diesem Grund wird die

Uplink-Optimierung in zwei Teile aufgeteilt: eine verteilte QoE-Optimierung, die auf den

mobilen Endgeräten ausgeführt wird, um die Parameter für die Videocodierung und die

Paketübertragungsstrategie zu bestimmen, und eine zentrale QoE-Optimierung im Mobil-

funknetz, um die Netzwerk-Ressourcen zwischen den Videoproduzenten aufzuteilen. Sowohl

theoretische als praktische Performanz-Analysen werden durchgeführt, die erhebliche Gewinne

in der Nutzerzufriedenheit im Vergleich zum Stand-der-Technik in LTE-Systemen zeigen.

Der zweite Teil der Arbeit untersucht den Nutzen eines QoE-basierten Verkehrs- und
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Ressourcenmanagements im Mobilfunknetz im Rahmen der adaptiven HTTP-basierten Down-

link Videoübertragung. Aktuell findet ein Paradigmenwechsel im mobilen Multimedia Stream-

ing von RTP/UDP-basierten zu HTTP/TCP-basierten Streamingdiensten statt, um eine

höhere Zuverlässigkeit zu gewährleisten. Dynamic Adaptive Streaming over HTTP (DASH)

wird voraussichtlich das Standardprotokoll für die mobile Multimedia-Übertragung. DASH

ermöglicht eine intra-Session Anpassung der Datenrate und unterstützt sowohl Live- als On-

Demand-Streaming. Während DASH bisher hauptsächlich aus einer Ende-zu-Ende Sicht un-

tersucht wurde, ist diese Dissertation die Erste, die Netzmanagementansätze für adaptives

HTTP Mehrbenutzer Streaming vorschlägt. Insbesondere werden die DASH Besonderheiten

zur Entwicklung von Anpassungsverfahren mit geringer Komplexität genutzt, die für Over-

the-Top (OTT) Streaming-Dienste geeignet sind und in einem echten Mobilfunknetz eingesetzt

werden können. Die in dieser Arbeit präsentierten Ansätze werden durch umfangreiche ex-

perimentelle Ergebnisse, subjektive Labortests und Simulationsergebnisse im LTE OPNET

Simulator überprüft. Die durchgeführte Leistungsbewertung zeigt, dass das vorgeschlagene

QoE-Framework eine bessere Videoqualität, eine schnellere Anpassung an Veränderungen im

Netz und eine gerechtere Ressourcenaufteilung in einer mobilen Zelle im Vergleich zum stan-

dard HTTP-adaptiven Streaming bietet.
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Chapter 1

Introduction

Next generation mobile networks will offer improved throughput and lower delays. The evolu-

tion towards the 4G standards Long Term Evolution (LTE) and the Worldwide Interoperabil-

ity for Microwave Access (WiMAX) has been mainly driven by a rapid increase in resource-

demanding multimedia applications. Whereas the first cellular networks only supported voice

and short text messaging, mobile video is eating up more than half of the wireless bandwidth

nowadays [San13]. According to Cisco’s traffic forecast, mobile video traffic is expected to

further grow by 90% between 2011 and 2016 [Cis12].

Despite the capacity enhancements in wireless networks, mobile communication is chal-

lenged by an increasing number of smartphone users. There is a proliferation of powerful

mobile devices (phones, tablets) with improved camera capabilities and which are also sup-

ported with large screens capable of displaying high quality video content. This has indeed

changed the context of use of mobile phones. Mobile users increasingly tend to use social

networking websites for sharing their experiences. Upstreaming of rich multimedia content

from mobile devices to video portals is more common nowadays. Camcorders, in-car cameras

and mobile users on the street are generating large volumes of video data which are being

uploaded over the mobile network. In addition, cloud backup services are being integrated

into the mobile phones to upload photos and videos for storing into the cloud. The downlink

channel has been considered the main bottleneck in the past. Nevertheless, the increasing

availability of smartphones and tablets will tighten the burden on the capacity-limited uplink

distribution channel.

Moreover, the consumption of multimedia content has changed tremendously over the

last few years with the advent of community portals and video sharing websites. Consumers

are driven towards the consumption of on-demand video and user-generated content (UGC)

available through video portals (e.g., YouTube, Netflix) which could eventually replace the

traditional static TV broadcast [GKLP10]. Thus, we are rapidly moving from a managed

1
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network architecture where mobile operators possess full control over the streamed content

towards a distributed one, dominated by over the top (OTT) media services. In addition,

new streaming protocols are being standardized to cope with the dynamic nature and the re-

source constraints of wireless networks. Most notable is the pragmatic shift from RTP/UDP

to HTTP/TCP based streaming. The lion share of mobile traffic today is TCP/IP based,

dominated by streaming of video and audio [San13]. According to [San13], YouTube alone

accounts for 27% of the mobile downlink traffic in North America at peak hours. Whereas

progressive download, used for example in YouTube nowadays, suffers from playout interrup-

tions and initial buffering delays, Dynamic Adaptive Streaming over HTTP (DASH [Sto11]) is

emerging as the new standard which utilizes TCP/IP and offers intra session rate adaptation

capable to deal with the variability of wireless networks. Adaptive streaming is expected to

account for 51% of internet video by 2015 [TDG11].

Mobile networks will have to deal with a vast increase in video traffic given the quite

limited resources in the wireless spectrum [OFYjSC10]. The admission control mechanisms

implemented in mobile networks are based on static Quality of Service (QoS) constraints

and are not suited for the dynamic and variable characteristics of video contents. Moreover,

QoS-aware schedulers [CPG+13] that map the QoS constraints into QoS parameters such as

minimum delay, guaranteed bit-rate or packet loss rate are content agnostic and thus do not

truly reflect the user satisfaction. It has become increasingly important for mobile operators

to look for user-centric approaches that complement the QoS mechanisms in the network.

More specifically, the ultimate goal of a mobile network operator is to maximize the users’

quality of experience (QoE). This thesis builds on previous work on QoE-driven resource

allocation in mobile networks [KPS+06] [KDSK07] [TKSK09], which focused on RTP-based

downlink video streaming services. Specifically, this thesis extends the previous works in two

main directions, which represent the core parts of this thesis. Table 1.1 summarizes the basic

differences between this thesis and the previous work in [TKSK09].

The first part studies the problem of resource-efficient uplink distribution of user-generated

video content over fourth generation mobile networks. QoE-based resource allocation is an

approach for allocating the network resources among multiple users in a mobile cell such that

the overall QoE is maximized [TKSK09]. The main concept is to exploit the variable content

characteristics of the video users and their individual channel conditions to find an optimal

allocation policy in terms of user satisfaction. Meanwhile, uplink resource management brings

along several challenges compared to the downlink case. First, for downlink-based services, a

pure network-centric approach for optimization is possible as both the network including the

base station and the content source are in front of the bottleneck wireless link. However, for

uplink-based services the bottleneck is between the content source, i.e., the terminal and the

network. Hence, a distributed optimization approach has to be considered involving entities in
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Figure 1.1: Schematic overview of QoE-based uplink resource allocation based on video portal
feedback. The mobile terminals provide their utility functions to the base station. The base
station determines the optimal rates of the mobile users in a cell by considering their utility
and channel characteristics and the consumers’ requirements. The terminals then adapt their
video transmission to the available transmission capacity.

the network and in the terminal. More specifically, the base station collects channel and utility

information about all the users competing for the resources and determines their uplink rates.

The terminal can directly influence the source coding and packet transmission (Figure 1.1).

Moreover, different from the downlink where the resource allocation maximizes the QoE of the

mobile users downloading the video content, the end goal of the uplink resource allocation is

to maximize the perceived quality of the users watching the upstreamed videos. Consequently,

some knowledge about the video consumers is required to optimize the uplink distribution.

For instance, not all videos uploaded to sharing portals have the same popularity or will be

viewed at the same time. Here, the approach is to include the consumers’ requirements into

the uplink optimization problem, which is available through feedback from the video portal.

The second part focuses on OTT downlink adaptive HTTP streaming and proposes novel

traffic and resource management approaches to maximize the user QoE. In DASH, a standard

HTTP server encodes the media stream at different representations and provides the client

with a list of the available representations in a media presentation description (MPD). The

client uses HTTP requests for downloading the representation that matches its transmission

capacity. This thesis investigates how adaptive HTTP video streaming can benefit from QoE-

driven optimization in the mobile network (Figure 1.2). This is different from the downlink

resource allocation considered in [TKSK09] in two aspects: First, transcoding is typically

applied for video adaptation in RTP/UDP-based optimizations, which is costly in terms of

computational resources and induces additional delays. Meanwhile, adaptive HTTP streaming

provides inherent adaptivity by encoding the same content at multiple bitrates. Second,

HTTP/TCP-based streaming is mostly delivered OTT. This means that the operator has

less control on the transmitted data compared to a managed network scenario. This thesis
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Figure 1.2: System overview for QoE-based adaptive HTTP streaming over mobile networks.
A QoE optimizer in the mobile network determines the optimal transmission rate for each
user. A proxy rewrites the client requests based on the feedback from the QoE optimizer and
forwards the target streaming rate to the adaptive HTTP server.

is the first to address the resource allocation and streaming rate selection of the adaptive

HTTP streaming users within a joint QoE optimization framework. More specifically, the

optimization involves two processes: a QoE optimization in the mobile network to determine

the optimal transmission rate for each user, and a proxy-based method to match the streaming

rate of each user to the QoE optimization result. The proposed adaptation approach at the

proxy makes use of the multiple bitrate encodings within the adaptive HTTP content and

thus requires no further adaptation to the video content. This makes it particularly suitable

for OTT streaming services.

1.1 Contributions of the thesis

This thesis envisions novel optimization approaches to improve the video delivery in next

generation mobile networks. The main contributions are summarized as follows:

1) Service-centric approach for uplink resource allocation: This thesis proposes a

service-centric approach for uplink resource allocation among multiple mobile video producers

by incorporating feedback from a video portal on the consumers’ preferences. Two use-cases

are illustrated in Chapters 3 and 4 which consider the popularity of the uploaded content

(i.e., number of followers) and the type of video delivery (live or on-demand), respectively.

In both cases, the uplink resource allocation is optimized to provide video consumers with

the best possible Quality of Experience (QoE) taking the limited and time-varying uplink

resources into account. In particular, for uplink-based video communications, incorporating

the feedback from the portal results in improved video quality and efficient usage of the

network resources, compared to a QoE-driven resource allocation which is ignorant of the

consumers’ consumption patterns.
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Table 1.1: Comparison between this thesis and the previous work on QoE-driven resource
allocation in mobile networks [TKSK09]

[TKSK09] Chapters 3 and 4 Chapters 5 and 6

Objective
function

QoE-based QoE-based with video
portal feedback

QoE-based and playout
buffer-aware

Streaming
type

RTP RTP Adaptive HTTP

Mobile Sys-
tem

Downlink HSPA Uplink LTE Downlink LTE

Application Video, audio, file down-
load

Video (Live, live and
on-demand)

Video (Live)

Optimization Centralized (eNodeB) Centralized (eNodeB),
Distributed (Terminal)

Centralized (eNodeB),
Distributed (Proxy)

Solution Network (Greedy) Network (Greedy), Dis-
tributed (Analytical, It-
erative)

Network (Greedy), Dis-
tributed (Heuristic, Op-
timal)

2) Analytical model for joint live and on-demand optimization: Chapter 4 presents

a QoE-based distributed optimization approach for joint live and on-demand uplink video

distribution. This is conceptually different from state-of-the-art work where optimization is

performed for either live or on-demand consumption. Particularly, an optimal de-centralized

approach is presented for scalable video scheduling which is independently performed at each

mobile terminal. The proposed approach defines deadlines both from the consumer perspective

(video request time) and the producer perspective (upload time), and both constraints are

included into the distributed optimization problem. Furthermore, an analytical solution that

finds a global optimum for a set of video layers with different deadline constraints is provided.

3) Uplink optimization architecture: To provide an optimal user experience, both the

mobile terminals and the network have to be QoE-aware. The benefit for the mobile network

operator is a potentially substantial saving in used network resources or the ability to provide

higher user satisfaction for a given set of uplink resources. In addition, by distributing the

adaptation functionalities across the mobile terminals and making use of the processing and

caching capabilities of the tablets and smartphones, the signaling information is highly reduced

compared to a fully centralized scheme. The conducted performance evaluation shows that the

proposed uplink optimization can substantially improve the user QoE compared to standard

scheduling mechanisms in LTE networks.

4) Proactive approach for adaptation of OTT adaptive HTTP content: The

proactive approach for rewriting the client HTTP requests presented in this thesis gives

control of the video content adaptation to the network operator. This provides three key

improvement aspects while also allowing a standard unmodified DASH client to decode and

play the redirected media segments. First, it results in improved traffic management in the
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mobile network. OTT DASH provides a stalling-free playout at the expense of lower video

quality. Here, the network resource allocation is optimized to provide a better user experience

or support more clients at the same video quality. Second, it ensures a fairer user experience

in the cell. Recent studies on adaptive HTTP streaming show unfair throughput when mul-

tiple clients are competing for shared resources due to the video player behavior [ABD11].

The objective and subjective results presented in Chapter 5 indicate a smaller QoE range

among the different users. Third, clients react late to congestion and channel variations. The

proposed approach exploits the network operator’s information on the traffic load and radio

conditions in the cell which allows for a faster adaptation to network dynamics.

5) Joint traffic and resource management for adaptive HTTP video delivery:

A main contribution of this thesis is the joint transmission and streaming rate allocation for

adaptive HTTP mobile video delivery. Specifically, both optimal and heuristic approaches for

solving the corresponding rate allocation problems are investigated.

1.2 Organization

The rest of this thesis is structured as follows. The next chapter provides background material

for this thesis. It starts by reviewing the recent advances in mobile communications, video

coding and quality of experience assessment, and then surveys the state-of-the-art work on

resource allocation approaches for optimizing the video delivery in wireless networks. Chap-

ter 3 presents a service-centric approach for uplink resource allocation based on popularity

feedback from a video portal. Specifically, it addresses the network resource allocation for live

video transmission in the LTE uplink. Chapter 4 studies the simultaneous upstreaming of

real-time and on-demand user-generated video content from the mobile terminals to a video

portal. More specifically, a systematic resource allocation and transmission optimization ap-

proach is presented, which considers both the QoE-based multi-user resource allocation in the

network and the distributed QoE optimization for packet scheduling at the mobile terminals.

In Chapter 5, QoE-based traffic management for OTT downlink adaptive HTTP video deliv-

ery is considered. Chapter 6 additionally considers the buffered media time at the clients and

studies both traffic and resource management for adaptive HTTP streaming. Finally, Chapter

7 concludes this thesis and points out some limitations and future research directions.

Parts of this dissertation have been published in [ESM+11, EZS+11, ESS+13, KMT+13,

SSK+14].



Chapter 2

Background

This chapter first reviews some basic concepts on modern mobile communication systems,

multimedia content preparation and delivery, and quality of experience for multimedia appli-

cations that form prerequisite material for this thesis. Then, it covers state-of-the-art work

on optimization techniques for mobile multimedia communications.

2.1 Modern mobile communications

With the unprecedented growth in mobile traffic, particularly driven by audio and video ap-

plications, there is an increasing demand for higher data rates and lower latencies. Meanwhile,

mobile networks have also evolved to address these stringent requirements. Both the 3G Part-

nership Project (3GPP) and the IEEE 802 LMSC (LAN/MAN Standard Committee) have

been working towards the fourth generation (4G) standards, which meet the International Mo-

bile Telecommunications-Advanced (IMT-Advanced) requirements for future mobile systems.

More specifically, 3GPP introduced Long Term Evolution (LTE) in its Release 8 [3GP10b].

LTE provides improved data rates for cell-edge users and for high mobility scenarios. In a 20

MHz spectrum, LTE supports peak rates of up to 300 Mbps for the downlink and 75 Mbps

for the uplink and a radio delay of less than 5 ms [ADF+09]. In 3GPP Release 10 (LTE-

Advanced [3GP08a]) additional support for local area radio is provided with peak data rates

of 1 Gbps. The commercial deployment of LTE networks has just started. There are already

175 LTE networks and more than 90 million LTE subscribers nowadays [Glo13].

Compared to the third generation (3G) networks (HSPA), LTE provides an enhanced radio

interface with flexible system bandwidth and support for higher spectral efficiencies. Down-

link access in LTE is based on orthogonal frequency division multiple access (OFDMA), which

is based on multi-carrier transmission compared to single carrier transmission in WCDMA

(Wideband Code Division Multiple Access). OFDMA provides orthogonal access among mul-

7
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tiple users in a cell and combines narrowband subcarriers with a cyclic prefix and is thus

insensitive to time dispersions on the radio channel [DPSB08]. The uplink access is based on

single carrier frequency division multiple access (SC-FDMA) which assigns the users adjacent

subcarriers (one virtual subcarrier) to compensate for the power variations in the transmit-

ted signal which come from the multi-carrier transmission [DPSB08]. It results in a smaller

peak-to-average power ratio than orthogonal frequency division multiplexing (OFDM) which

is important for battery-powered mobile devices in the uplink.

The user equipment (UE) and the base station (eNodeB) are the basic elements in the

LTE access network. Furthermore, LTE exhibits a distributed architecture where the eNodeB

is solely in charge of radio resource management (RRM) in a mobile cell [HT09]. The RRM

functionalities can be further classified into static (admission control and QoS management)

which are carried out during the setup of the data transmissions and dynamic (scheduling

and resource allocation) which are executed during transmission on a millisecond (ms) basis.

Channel-dependent scheduling is considered to exploit channel diversities in the time and

frequency domains [ADF+09]. The Physical Resource Block (PRB) is the smallest resource

allocation entity in LTE that can be allocated to a user. More specifically, each LTE radio

frame has a length of 10 ms, divided into 10 sub-frames of length 1 ms (1 Transmission

Time Interval (TTI)) each. In the frequency domain, a sub-frame is divided into chunks of

subcarriers (typically 12 OFDM subcarriers with 15 kHz subcarrier spacing, i.e., granularity

of 180 kHz). For a system bandwidth of 5 MHz or 10 MHz, this results in 25 or 50 PRBs,

respectively. The scheduler decides on the allocation of the PRBs in each sub-frame by

selecting the users with better channel conditions. For uplink transmissions, the UEs transmit

Sounding Reference Signals (SRSs) to the eNodeB which are used to determine the channel

state of each user. In the downlink, each UE computes a Channel Quality Indicator (CQI)

and sends it back to the eNodeB.

Proportional Fair (PF) scheduling is most commonly used in LTE systems. It combines

instantaneous channel information with the throughput history of each user to provide a fair

resource allocation [JPP00]. As a scheduling metric, it divides the instantaneous throughput

per PRB of user i (TPRBi (t)) by its average throughput (T̄i(t)). The average throughput of

each user is updated in each TTI by considering a fairness threshold αPF , where T̄i(t+ 1) =

(1 − αPF ) · T̄i(t) + αPF · T TTIi (t), where T TTIi (t) is the current transmission rate of user i,

which corresponds to all the PRBs allocated to user i in this TTI. When αPF = 0, the current

throughput is not included in the average throughput calculation and the scheduler will act

in a greedy way by trying to serve the users with maximum throughput. On the other hand,

when αPF = 1, the average throughput is equal to the current one and the scheduler allocates

the PRBs in a completely fair manner. In this case, it is equivalent to the Round Robin (RR)

scheduling policy that allocates the same number of PRBs to every user.
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Decisions about user admission are made by the eNodeB. More specifically, a radio bearer

defines a logical connection between the eNodeB and the UE which is used for QoS provisioning

in the radio access network. There are two types of bearers, a Guaranteed bit-rate (GBR) or

non-guaranteed bit-rate (non-GBR) bearer. For GBR bearers, the eNodeB guarantees upon

admission a bit-rate by reserving the resources for the user [Eks09]. Furthermore, a maximum

bit-rate is defined for a GBR bearer. Non-GBR bearers, on the other hand, are admitted

without reserving the resources. Instead, an aggregate maximum bit rate (AMBR) is specified

which represents the total amount of bit-rate of a group of non-GBR bearers. This means

that non-GBR bearers may experience congestion in high traffic load scenarios. Furthermore,

each bearer is assigned a QoS class identifier (QCI) which is used for the admission control. A

total of 9 QCIs are specified in the LTE standard [3GP12], which define a bearer type (GBR

or non-GBR), QoS parameters (delay budget, packet loss rate), and priority levels depending

on the user’s application. A new user is admitted if its QoS requirements can be fulfilled,

given the cell load and considering the QoS requirements of the other users in the cell.

2.2 Video coding and Quality of Experience

2.2.1 Rate-distortion models

Media transmission is lossy due to source coding and channel impairments which result in vari-

able delays, throughput or packet losses that influence the user perceived quality. Specifically,

a video is compressed to minimize its transmission rate by exploiting perceptual redundancies

in the input data stream [WR05]. This induces some level of distortion due to quantization

errors in the encoded stream which can not be fully recovered at the decoder. A tradeoff

exists between the desired rate and the corresponding distortion. R-D optimization is applied

at the encoder to minimize the distortion subject to the rate constraint [Ber71].

Moreover, the R-D performance is content-dependent, and thus it varies depending on the

amount of spatial and temporal activities in the captured video. The R-D optimization can

be performed offline (on-demand media) or online (live media). Calculating all the operating

R-D points induces high complexity at the encoder. For delay-sensitive media applications,

this would result in additional delays. Also, for in-network optimizations, meta information

that describes the R-D characteristics of the content should be transmitted to a central con-

troller with minimal overhead. Therefore, different abstraction models have been proposed

to model the R-D performance of a video (e.g., [SFLG00] [CISN05]). Instead of calculating

the distortion for all operational R-D pairs, this allows to predict the R-D characteristics

from a few operating points. This is particularly relevant for the scope of this thesis where

optimization problems involving multiple users need to be performed in real-time at the base

station.
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Distortion is commonly measured by the mean squared error (MSE) (2.1) or peak-signal-

to-noise-ratio (PSNR) (2.2). The MSE is calculated by performing a pixel-by-pixel comparison

between a reference image X and a reconstructed image Xr, where M and N are the height

and width of the image, respectively.

MSE =
1

M ·N

M∑
m=1

N∑
n=1

(X(m,n)−Xr(m,n))2 (2.1)

PSNR = 10 log10

2552

MSE
(2.2)

Despite its simplicity, the PSNR is criticized for not considering the characteristics of the

human visual system (HVS) [Gir93]. This means that different types of distortion will be

quantified equally if they have the same distortion measure. The structural similarity index

metric (SSIM) uses structural distortions as a perceptual measure, which correlates with the

human visual perception of distortions [WBSS04]. Specifically, it measures the similarity

between two images by comparing the luminance (mean intensity), the contrast (standard

deviation), and the structure after mean subtraction and variance normalization.

Both metrics require the availability of a reference image and can be used at the video

encoder to generate the R-D curves. In [CISN05], a sequence-level model which requires three

pairs of rate and distortion measures to model the R-D function of a video is proposed:

PSNR(R) = a+ b ·
√
R

c
(1− c

R
) (2.3)

where (a, b, c) are three content-dependent coefficients which can be fitted for each video

sequence. Using three measurement pairs of source distortion PSNRi and source rate Ri,

i = {1, 2, 3}, the coefficients a, b and c can be analytically expressed by:

c = R1 ·
(1− v2,1)µ+ v3,1 − 1

(1− v1,2)µ+ v1,3 − 1
, b =

PSNR2 − PSNR1

ξ2 − ξ1
, a = PSNR1 − b · ξ1 (2.4)

where

vi,j =

√
Ri
Rj
, ξi =

√
Ri
c

(
1− c

Ri

)
, µ =

PSNR1 − PSNR3

PSNR1 − PSNR2
(2.5)

2.2.2 Video coding techniques

Video streams can be classified as scalable, where the same video is encoded into multiple bi-

trates or quality levels, or nonscalable, where it is available at a single bitrate. The H.264/SVC

(Scalable Video Coding [SMW07]) and the H.264/MPEG-4 AVC (Advanced Video Coding)

[AVC12] are the corresponding state-of-the-art video coding standards, respectively. On top
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of this, a video stream is prepared for transmission over dynamic and resource-limited chan-

nels. To this end, different coding and rate adaptation (also referred to as traffic shaping)

approaches have been considered [vC07] [CF07]. A schematic illustration of different rate

adaptation techniques is given in Figure 2.1.

For nonscalable video, rate adaptation can be done at the encoder by adjusting the video

coding parameters (e.g., quantization parameter (QP) [HOK99]) to meet a target encoding

rate. Many encoder rate control methods have been proposed to optimize the H.264 video

delivery (e.g., [CCLC11] [OHC11]). Another form of dynamic rate adaptation is transcoding.

Rate transcoding is commonly used where the original stream is transcoded to a lower rate

that matches the available network capacity [BC98]. This typically requires to first decode

the input stream and re-encode at a target rate, which induces additional complexity and

encoding delays.

Scalable video coding [SMW07], on the other hand, introduces inherent rate scalability in

the encoded bitstream. It encodes the video into a base layer and several enhancement layers.

A base layer can be independently decoded at the receiver and provides a coarse video quality.

The enhancement layers can be utilized once the base layer is received to enhance the perceived

video quality. To generate multiple video layers, either temporal, spatial or SNR scalability

is applied whereby the base layer is encoded at a lower frame rate, a lower spatial resolution

or at the same spatio-temporal resolution but a lower fidelity, respectively. A combination

thereof can be also considered. Another alternative for rate scalable video coding is multiple

description coding (MDC), where the stream is encoded at multiple representations which

can be independently decoded at the receiver [Goy01]. Loss adaptive coding that combines

multi-stream video with forward error correction has been studied as well and results in higher

resilience against network variations (e.g., [HSX05]).

Scalable video coding provides rate adaptivity with minimal redundancy at the expense

of additional coding complexity. An alternative mechanism is to provide redundant represen-

tations of the video stream at multiple bitrates. This can be done, for instance, by offering

alternative encodings of the same content (e.g., low, medium and high rates) and switching

among the streams depending on the available transmission rate [FHK+06]. Furthermore,

the video files can be segmented into small fragments which are encoded at different rates.

To deal with drift effects due to the mismatch of reference frames in the decoder, the video

streams can be aligned at a segment level, typically starting with an I-frame. This allows

seamless switching between the segments depending on the available bandwidth. A most

recent example is adaptive HTTP streaming which is explained in detail in Section 2.3.3.

In addition to the source coding mechanisms, receivers perform their own adaptation

policies to cope with the channel variabilities. Adaptation can be applied at the decoder by

adjusting the initial playout time [SJK04], the playout rate [KSG04] or by applying error
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Figure 2.1: Illustration of different rate adaptation approaches: Transcoding dynamically
adapts the video bitrate to the available transmission rate. Multiple bitrate coding provides
different quality levels for the same content, and can switch at the segment boundaries. Scal-
able video coding encodes each Group of Picture (GoP) into a base layer (BL) and multiple
enhancement layers (EL). The shaded regions in the figure correspond to the transmitted
videos.

concealment [WZ98] in the case of lost frames.

2.2.3 Quality of Experience

The network Quality of Service (QoS) is measured using parameters such as delay, jitter,

packet loss, and throughput [Hal00]. The application quality can be assessed by evaluating

the impact of these parameters on the perceived quality. For instance, packet losses may

result in lost frames that degrade the video quality. The impact level, however, depends on

the relative importance of the lost frame. If the reference frame is available, the corresponding

distortion can be measured. In this respect, quality is a measure of fidelity, i.e., frame-by-

frame comparison, between the two videos. More generally, in the context of communication

systems, the application QoS has been defined in terms of requirements such as required bit-

rate or maximum end-to-end delay [Hal00]. So, the quality has been linked with the degree
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of satisfying these requirements. According to the ITU definition, QoS is a measure of the

application performance from a system perspective [IT94].

Quality of experience, on the other hand, is a subjective measure of the user perceivability

of an application [IT07]. This depends on several aspects such as the content characteristics,

user expectations, viewing conditions and the context of use of the application. According

to [FKR09], QoE represents the degree of delight of the user of an application. [Moe10]

elaborates the dimensions of QoE by considering the individual elements that affect the user

experience. These can be grouped into communication, service and contextual factors. These

factors are translated into quality aspects (e.g., communication efficiency, comfort, service

efficiency, and economical benefits) which provide an overall utility measure.

Subjective quality assessment is the most reliable measure of the user satisfaction with

a certain service. The user QoE is typically expressed on a Mean Opinion Score (MOS)

scale [IR98]. For instance, on a 5-scale rating which is commonly used for audio and video

assessment, a subjective score of 1 stands for bad quality while a score of 5 represents excellent

quality. Moreover, QoE assessment results should be reproducible. Therefore, ITU has defined

several requirements for performing the subjective evaluations, which cover the test design,

the selection of test material and the appropriate test methods for a given application [IR98]

[IT99] [IR07]. Subjective tests are typically conducted in a laboratory where individual users

participate in a subjective experiment and assess the quality of a new algorithm or system

approach. Nevertheless, this approach is best suited for offline evaluations since it is time-

consuming and requires the involvement of the end-user.

Instead, objective measures are typically considered for assessing the user perceived quality

in real-time [WSB03]. Meanwhile, subjective test results are used for developing and validat-

ing new objective metrics. Generally, objective video quality assessment (VQA) metrics can

be classified into three categories: full reference metrics require the availability of the original

video which is compared on a frame-by-frame basis with the reconstructed one to determine

the video quality (e.g., PSNR, SSIM [WBSS04] and the motion-based video integrity evalu-

ation (MOVIE) [SSBC10]). This represents the most accurate quality estimation but is not

suitable for real-time assessment at the end user. A survey and comparison of full reference

VQA metrics can be found in [CSRK11]. No-reference metrics do not require a reference

video. Instead, the video quality is deduced by processing the bit-stream (e.g., [SES+13]) or

measuring certain types of distortions (e.g., blockiness [WY97], blurriness [MDWE02]) in the

received video stream. These metrics are most suitable for in-service monitoring. Reduced

reference metrics rely on spatial or temporal features which are extracted from the original

video and signaled along the video stream (e.g., Video Quality Metric (VQM) [PW04]). They

require less overhead compared to the full reference metrics.



14 Chapter 2. Background

2.2.4 QoE-based utility functions

QoE models which consider the channel and video coding properties are typically used to

represent the user experience with a multimedia service. Specifically, for resource allocation

in mobile networks, utility functions that map the network performance parameters (e.g.,

throughput, delay, and packet loss) into a QoE level are desired. Utility functions provide

a mathematical means for representing the user’s satisfaction for a given set of resources

[RTS10]. [She95] outlines various types of utility functions that correspond to different types

of traffic. Elastic utility curves are characterized by their concavity and differentiability.

That is, the marginal utility gain decreases as the rate increases. They nicely match the R-D

characteristics of video streams where the quality improvements are more noticeable in lower

rate regions. Discrete utility curves, on the other hand, operate at discrete levels. Examples

are audio and video codecs that operate at predefined rates. These curves are more challenging

to model as their properties are not known in advance (e.g., layered video coding and adaptive

bitrate encoding).

QoE-based utility functions offer a natural extension of utilities by additionally taking

the human perception into account. For instance, Ameigeiras et al. [AMO+10] define QoE

for web browsing as a function of delay and packet loss rate. In [GLGP13b] different MOS

utility functions are considered for web browsing, YouTube, VoIP applications. The utility

functions in [AMO+10] and [GLGP13b] are further used for multi-user resource allocation in

LTE networks. [BSK13] surveys state-of-the-art work on QoE modeling approaches and their

application for resource management in mobile networks. Most relevant for this thesis are

the application-driven utility functions defined in [KDSK07] [TKSK09]. In [KDSK07], QoE

metrics for different applications (voice communication, file download, and video streaming)

are defined by mapping the transmission rate and packet error probability into a common

utility space. The utility function for video streaming has been extended by [TKSK09] to

exploit the enhanced transmission characteristics in modern mobile networks. Due to the fast

and reliable retransmissions at the medium access control (MAC) layer in wireless networks, it

can be assumed that all packets are successfully transmitted. Therefore, the video utility can

be described as a function of the data rate. Figure 2.2 shows utility curves for two videos with

different content characteristics and their corresponding sample images. The utility curves

are obtained by encoding the videos at three different QPs and then applying the model from

(2.3) to reconstruct the whole R-D function. For each encoding setting, the average rate of

the video stream is measured with the average PSNR, which is linearly mapped on the MOS

scale. It can be observed that for the same data rate (i.e., 250 kbps) the perceived quality

is different. While the akiyo sequence is characterized by a static background, the harbor

sequence includes structural information (e.g., waves) which can not be well perceived at a

low bitrate.
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Figure 2.2: Sample images from the harbor and akiyo sequences and their corresponding
MOS-Rate curves [KDSK07].

2.3 Mobile multimedia streaming

Mobile multimedia streaming refers to the transmission of live or pre-encoded media con-

tent from a producer (server) to one or more consumers (clients) over a wireless network.

Meanwhile, the clients are able to concurrently decode and play the media while retrieving it

from the server. The server and the client maintain a logical end-to-end connection to control

the sending rate according to the buffer level at the client and the network conditions.

Furthermore, the media content can be classified as managed if the server and the clients

are inside the mobile operator network. In this case, the operator can adapt and prioritize

the media transmission to provide QoS guarantees to the mobile clients. On the other hand,

most dominant nowadays is over-the-top (OTT) content where the server is out of control of

the mobile operator. Typical examples of OTT content are professional and user-generated

content which are posted on third party servers such as YouTube.

Mobile multimedia streaming protocols provide end-to-end transmission and control mech-

anisms between the server and the clients. On the application layer, mobile streaming services
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use the Hypertext Transfer Protocol (HTTP) [FGM+99] or the Real-time Transport Protocol

(RTP) [SCFJ03]. They are typically considered in combination with the Transmission Con-

trol Protocol (TCP) [Jac88] and the User Datagram Protocol (UDP) [Pos80] at the transport

layer, respectively. The TCP protocol uses flow and error control to provide an error-free

delivery at the expense of higher transport delay due to its congestion control and retrans-

mission mechanisms. The UDP protocol provides a best effort service with low transport

delays. Historically, HTTP/TCP has been used for web browsing and FTP (File Transfer

Protocol) applications where as RTP/UDP was mainly considered for real-time streaming

services. With the advances in mobile streaming protocols and the increasing need for higher

transmission reliability, the attention shifted again to streaming over HTTP/TCP. This sec-

tion reviews the different paradigms in mobile multimedia streaming, which are standardized

by the 3GPP [GKLP10].

2.3.1 RTP-based streaming

RTP is a push-based streaming protocol used with UDP for real-time media delivery. On the

application layer, a session control server (commonly Real Time Streaming Protocol (RTSP)

[SRL98]) establishes and maintains a session with the client. Once the connection is es-

tablished, the RTP/UDP protocol is used for pushing the media stream to the client. The

application layer determines the transmission rate because of the absence of rate control mech-

anisms in UDP. That is, the stream is pushed to the lower radio layers at a rate which is equal

to the source rate of the media file, referred to as streaming rate.

The actual streaming rate is adapted to the transmission characteristics between the client

and the server. More specifically, the RTP/UDP server reacts to the allocated resources

by the scheduler in the mobile network. Although UDP is less delay critical than TCP, it

can not provide guarantees on timely delivery of the packets due to buffering delays in the

access network. Moreover, RTP over UDP transmission can suffer from packet losses due

to congestion if the available transmission rate is below the streaming rate. As a result,

the estimated transmission rate might differ from the actually received rate at the client.

This variability in the wireless network requires proper buffer control between the server

and the client to avoid buffer underflow and buffer overflow events at the client. For this

purpose, dynamic video bitrate adaptation is used to ensure a continuous playout [FHK+06].

Specifically, a client provides periodic reports on its observed session statistics (e.g., round

trip time, packet loss rate) over the RTP Control Protocol (RTCP).

The TCP Friendly Rate Control (TFRC) [FHPW08] is commonly used with RTP to

control the streaming rate in a fair manner with respect to other TCP flows that share the

same resources [FHPW00]. TFRC relies on average throughput estimates and the adaptation

is typically done in the order of seconds. An alternative approach is to use the explicit
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congestion notification (ECN) bit in the IP header [RFB01] to notify the application about

imminent congestion in order to adapt its streaming rate. In a typical RTP/UDP streaming

session, the server will strive to adapt the streaming rate to match the media playout rate at

the client [BAB11a].

Packet losses are the main reason for video quality degradation in RTP/UDP streaming.

Packet losses can correspond to packets dropped in the network or packets arriving after the

playout deadline. A media client typically applies error concealment strategies to compensate

for missing frames during playout which result in a degraded video quality at the receiver.

Despite the popularity RTP/UDP streaming has enjoyed, it has several limitations [Sto11]:

First, it requires a specialized RTSP server instead of a standard web server, and the UDP

ports are often blocked by firewalls. Also, the server keeps track of the client state until

it disconnects. Finally, it leaves the flow control, congestion control, and error recovery

responsibilities to the application layer. This leads to an additional complexity at the server

which needs to manage and control the streaming of all the clients.

2.3.2 Progressive download over HTTP

The HTTP [FGM+99] protocol is used for file download, progressive download and adap-

tive streaming applications. Progressive download was introduced in the 3GPP Release 6

[GKLP10]. Different from RTP/UDP streaming, progressive download over HTTP is pull-

based. A client uses HTTP/TCP to download chunks of video before the actual playout

begins. Once the client buffer reaches a predefined threshold, video playout can start. In this

respect, progressive download provides a compromise between streaming and download.

Different from RTP/UDP streaming, packet losses are handled by TCP. Progressive down-

load mainly suffers from the TCP rate fluctuations and the untimely delivery of the packets,

which cause playout interruptions. The client buffer and the initial playout time are typically

used to mitigate the rate variations and minimize the re-buffering occurrences, respectively.

Progressive download is widely deployed nowadays (e.g., YouTube). Nevertheless, it has

several shortcomings [Sto11]: First, no live streaming is supported. Also, the client decides on

the desired rate or resolution at the beginning of the streaming session, but no rate adaptivity

is supported once the streaming starts. As a result, playout freezes can happen in case the

bandwidth is limited. Recent studies [WKST08] show that the TCP throughput should be

twice the video bit-rate to ensure a good streaming performance, which is difficult in resource-

constrained wireless networks.

2.3.3 Adaptive HTTP streaming

Similar to progressive download, adaptive HTTP streaming is a pull-based streaming protocol

that runs over TCP. In addition, it allows for dynamic rate adaptation during streaming and
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also provides support for live streaming. In adaptive HTTP streaming, the server encodes the

same media content at multiple bitrates. Moreover, each media stream is divided into segments

of equal duration (typically 2 to 10 seconds). A client can request the media segments that

match its available throughput and also switch among different bitrates during the streaming

session.

In adaptive HTTP streaming, the client requests the media segments using HTTP URL

identifiers. Persistent connections are supported by default in HTTP/1.1 where multiple URLs

are fetched in a single TCP connection. In addition, the HTTP requests can be pipelined

which allows a client to send multiple HTTP requests without waiting for each response, thus

allowing the TCP connection to be used more efficiently [FGM+99].

The HTTP server treats each requested segment as a media file and sends it to the lower

layers at a high rate. Different from RTP/UDP based streaming, the congestion control

mechanism in TCP controls the transmission rate of the media segments. Meanwhile, a

media client measures its TCP throughput and monitors its buffer state to decide on the

streaming rate. The actual client control mechanisms are vendor specific. A typical adaptive

HTTP client will switch to a lower streaming rate once the buffered media time drops below a

certain threshold. Therefore, playout interruptions are less frequent compared to progressive

download. The main cause of quality degradation is reduced video quality when switching

to lower rate representations. Also, frequent and uncontrolled switches among the different

representations can result in negative effects on the user perceived quality.

Proprietary solutions for adaptive HTTP streaming are widely deployed nowadays. Exam-

ples include the Microsoft Smooth Streaming, Apple Live Streaming and the Adobe Dynamic

Streaming [ABD11]. For instance, BBC used the adaptive HTTP streaming technologies

from Apple and Adobe for live coverage of the 2012 Olympics. To provide interoperabil-

ity among servers and clients, both the 3GPP and MPEG communities have been working

towards a standard adaptive HTTP streaming protocol. DASH, also referred to as MPEG-

DASH [ISO12] and 3GP-DASH [3GP13], was first adopted in Release 10 by 3GPP in 2011

and standardized by MPEG in 2012, respectively. In addition, there is an ongoing work by

MPEG to develop a reference software for DASH [ISO13].

The DASH protocol defines a media presentation description (MPD) for communication

between an HTTP server and a streaming client (Figure 2.3). Each MPD is composed of one

or more presentation periods. A period can include multiple representations of the same video

content which correspond to different encoding characteristics (bitrate, resolution, codec, etc.).

Each representation consists of an initialization segment which provides the client with the

metadata that describes the content and one or more media segments. A client can seamlessly

switch between the different segments during the streaming session by adaptively adjusting

the streaming rate to its estimated transmission capacity.
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2. QoE‐based Adaptive HTTP Media Delivery 

 

2.1 Background 

 

In contrast to UDP streaming which is push‐based, 3GPP Adaptive HTTP streaming (DASH) is a 
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Figure 1: Media Presentation Description (MPD) for adaptive HTTP streaming [1]. 

2.2 QoE‐based adaptive HTTP downlink media delivery 
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Figure 2.3: Media Presentation Description (MPD) for adaptive HTTP streaming [Sto11].

In adaptive HTTP streaming, both live and on-demand adaptive video streaming are sup-

ported. In the case of live video, a subset of the media segments (initial MPD) is generated

on the fly by the server. The initial MPD can contain different representations which allow

for dynamic rate adaptation at the client. Once new segments are available, they are commu-

nicated to the client through MPD updates. The MPD and segment formats are defined by

the DASH specification. The delivery of the MPD, client control and media players, however,

are not defined within the standard [Sod11].

DASH offers several advantages [Sto11]: First, the DASH representations can correspond

to different quality levels or spatial and temporal resolutions. Thus, adaptive HTTP stream-

ing can support a wide range of clients e.g., mobile phones, TVs, laptops. Also, different from

RTP/UDP, DASH is HTTP-based which allows it to re-use the existing HTTP servers, caches

and is firewall friendly. Moreover, being a client-driven protocol, this allows for the accommo-

dation of a large number of clients without increasing the load on the server. Furthermore,

DASH provides formats for media delivery and it can work on top of standard codecs (e.g.,

H.264, MPEG). Finally, its support for both live and on-demand media services makes it

convenient for real-time media applications.

2.4 Optimization techniques for media transmission in mobile net-

works

Despite the capacity improvements in mobile networks, they continue to suffer from overload

and congestion caused by an increasing number of mobile users. This is coupled with an

increased mobile traffic with the emergence of resource-hungry applications such as high res-

olution or 3D movies, gaming and the increasing popularity of real-time streaming services.

Specifically, the access network still represents the main bottleneck for video delivery. The

QoS mechanisms implemented in wireless networks fall short in accommodating all the users
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and providing them with a satisfactory user experience. Besides the limited wireless resources,

radio signals are characterized by high variability due to a non-line-of-sight radio path be-

tween the eNodeB and the UEs, multi-path propagation, channel fading and mobility effects.

Although channel-aware scheduling is used in LTE to compensate for that, the adaptation

cycles are on a very short time-scale which is not optimal from a media perspective. Conse-

quently, long-term adaptation approaches that take into consideration the channel variations’

influence on the perceived video quality have to be considered.

Moreover, mobile video delivery has to cope with the variability in the transported media

content. Video streams are characterized by their variable bit rate (VBR) properties due

to the varying spatiotemporal complexities of the video scenes. Also, the demand for rich

high definition (HD) video content in the future will further increase the mobile traffic load.

Modern video codecs offer high compression efficiency (H.264/AVC) and high rate scalability

(H.264/SVC), but they are optimized for single-user transmission. Furthermore, in a multi-

user scenario mobile users will be running applications with different delay requirements and

themselves have diverse device capabilities and expectations. With the limited resources in

the shared wireless spectrum and the increasing number of mobile users, there is a growing

need for resource allocation approaches that can be performed in real-time and take into

consideration the variable content and channel characteristics.

Generally, resource allocation for multimedia applications involves two complementary

steps: On one hand, defining a resource allocation function for determining the resource

shares of multiple users in a network. On the other hand, exploiting the result of the resource

allocation for adapting the network resources, the media transmission, or the combination

thereof. This depends on the optimization system’s objective and the availability of the

media stream. In this section, different optimization approaches for resource allocation are

discussed based on 1) where the adaptation is carried out (network, end-to-end), 2) how

(physical layer, application, or by involving multiple layers) and 3) when (short-term, long-

term) the adaptation is performed. A summary is provided in Table 2.1.

2.4.1 Application-layer techniques

The state-of-the-art H.264 video codec provides a flexible syntax which is suitable for video

transmission [WSJ+03]. That is, the R-D information is exploited during the encoding process

to determine the operating modes that maximize the video quality. Mobile media stream-

ing, reviewed in Section 2.3, has evolved from simple RTP/UDP to adaptive HTTP/TCP to

cope with the variability of the mobile networks [GKLP10]. Despite these major advances in

multimedia delivery protocols, they generally provide an end-to-end adaptation mechanism

whereas multi-access and network awareness remain an open issue [BAB11b]. The TCP or

TFRC congestion control mechanisms, used with HTTP and RTP, try to provide some fair-
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Table 2.1: Comparison of different adaptation mechanisms for mobile media delivery

Mechanism Location Layer Adaptation cycle

Adaptive streaming
protocols (HTTP/TCP,
RTP/TFRC) [GKLP10]

End-to-end
(Server-client)

Application 2-10 sec

SVC, MDC, packet
dropping [CM06] [CF06]

Network Application Frame

Conventional CLO
[vS05] [MMLB+07]

Network (e.g., schedul-
ing) or at the terminal
(e.g., source coding)

Different layers of
the protocol stack

order of ms

Packet scheduling, link
adaptation, resource al-
location [3GP06]

Network (eNodeB) Radio link 1-2 ms

QoE-based resource allo-
cation [TKSK09]

Network (eNodeB) Application 1-2 sec

ness among the multiple flows that share the network resources. Nevertheless, the adaptation

is still based on the end-to-end flow characteristics and is network-blind, i.e., it only reacts

to the network. Multi-stream video (e.g., Multiple Description Coding [Goy01] and Scalable

Video Coding [SMW07] [SSW07]) encodes the same content into multiple representations and

thus provides a more flexible framework for in-network adaptation (e.g., description or layer

dropping). Furthermore, in-network adaptation can be performed by embedding the R-D

characteristics of a video in the transmitted bitstream. The pioneer work is presented by

[CM06] where R-D optimization is used for prioritizing the video frames or packets based on

their delay dependencies and their loss impact on the user perceived quality. Packets with

lower priority are dropped in case of congestion or rate limitation on the communication chan-

nel. R-D optimization has also been considered for multi-user resource allocation. In [TKS04]

a centralized approach for R-D optimized streaming is considered where frame dropping is

performed at an intermediate node to match the available rate constraint. In [CF06] a dis-

tributed approach that exploits the R-D information for packet prioritizing and scheduling

across multiple streams is considered.

2.4.2 Cross-layer optimization

For multi-user resource allocation in mobile networks, it is important to understand the ca-

pabilities of the network and combine them with the video characteristics of the mobile users.

Cross-layer optimization (CLO) approaches for resource allocation have been considered to

improve the quality of service by exchanging information across the different protocol layers

(e.g., [BY04], [MMLB+07]). The objective, therein, is to maximize a system utility such

as throughput, fairness, or video quality. Utility-based optimization for resource allocation

across multiple flows has been first studied by [Kel97]. [Kel97] presented an optimization
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Figure 2.4: Application-driven cross-layer optimization concept [KPS+06].

framework for allocating the link rates across multiple TCP flows such that the overall utility

is maximized. This framework, known as Network Utility Maximization (NUM), has been

used to solve different optimization problems in communication systems, which are surveyed

in [CLCD07].

In general, cross-layer optimization approaches can be classified into top-down approaches,

where the resource management at the radio link layer is done by considering the video charac-

teristics at the application layer or bottom-up approaches where the video source coding rate

is adapted to the channel conditions [IN04]. [GNT06] uses abstracts models for the physical

to transport layers and performs a CLO to maximize the QoS using different objective func-

tions (e.g., throughput maximization, rate-utility maximization and energy consumption min-

imization). Conventional CLO adapts the instantaneous transmission parameters on a short

timescale which is not optimal from a multimedia quality perspective [vS05]. Application-

driven cross-layer optimization, on the other hand, directly maximizes an application-specific

objective function while using abstracted models for the application and radio link layers

[KPS+06] (Figure 2.4). A cross-layer optimizer jointly considers abstracted application (e.g.,

R-D profile) and radio (e.g., transmission rate) parameters. It determines the combination

of parameters that maximizes an objective function which reflects the user satisfaction. The

optimal decisions are then distributed to the corresponding layers where they are translated

into layer-specific modes of operation (e.g., video source rate, modulation scheme).

2.4.3 Resource allocation in LTE networks

Resource allocation has also been widely investigated for optimizing the users’ performance in

next generation mobile networks. Specifically, resource allocation in LTE networks has been

thoroughly studied for both uplink (e.g., [RdTBFM08]) and downlink (e.g., [SHL03])). In

[LCW+10], the PRB assignment among multiple users is done with the objective of maximiz-



2.4. Optimization techniques for media transmission in mobile networks 23

ing the real-time video streaming quality. These works, however, focus on short-term resource

allocation solutions such as adaptive transmission rate (channel dependent scheduling), trans-

mission power control, adaptive modulation and channel coding [3GP06]. From a multimedia

perspective, utility-based resource allocation that aims at maximizing the user QoE is desired.

[KL07] presents an utility-based maximization framework for both best effort and hard QoS

(guaranteed service) traffic. The authors conclude that channel-dependent-only approaches

which are ignorant of the traffic demands result in sub-optimal resource allocation. With re-

spect to QoE-based resource allocation, utility optimization for radio resource management in

the access network with the objective of maximizing the application QoE has been well stud-

ied (e.g., [AKK+10]). [GLGP13b] further estimates several performance indicators which are

measured at the mobile terminals and provided to a central controller for QoE management

in the wireless network. The feedback from the mobile users is considered for simultaneously

controlling the QoE for VoIP, YouTube and web browsing applications. [FMM+13] combines

QoE-based resource allocation with optimal path selection. First, it selects a video cache

through either the LTE network or WLAN in order to reduce the transmission delay. Then,

a traffic optimization module in the access network is considered for overall utility maximiza-

tion by dropping scalable video layers to match the target data rate of each user. A detailed

discussion on QoE-based management approaches can be found in [BSK13].

2.4.4 QoE-based resource allocation

A specific approach for QoE-based resource allocation is to proactively adapt the network

resources on a long-term scale in order to meet the user requirements without interfering with

the radio resource management mechanisms in the access network. For this, the application-

driven CLO concepts [KPS+06] have been extended to solve resource allocation problems in

mobile networks. Both centralized ([KDSK07] [TKSK09]) and distributed approaches (e.g.,

based on auction theory [SES+12]) for resource allocation have been studied in this context.

More specifically, in [KDSK07] a multi-user multi-application cross-layer design framework is

described. A MOS-maximization function that allocates the resources among users running

multiple types of applications is formulated, and a sub-optimal greedy resource allocation

algorithm is presented. A generic mobile scenario that reflects the user mobility is considered.

[TKSK09] has further extended the work and applied it for downlink resource allocation in

High Speed Downlink Packet Access (HSDPA) networks (Figure 2.5). The objective of the

QoE-based optimization is to find a long-term resource allocation which maximizes the overall

utility based on the application and channel conditions of the users in the cell. In-network

content adaptation is then used to shape the transmitted video streams according to the QoE

optimization result. In [TKS10] the authors show that transcoding can yield a better QoE

compared to packet dropping at the cost of a higher computational complexity.
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The adaptation is carried out in the order of seconds which is less than the admission

control functions, realized during the setup of data transmission, and by far larger than the

scheduling cycles, which are executed on a ms basis. This can be further explained by:

1) The admission control mechanisms that are implemented in mobile networks are not

sufficient for mobile multimedia applications. First, the users’ streaming data rates vary

over time, and thus, the QoS requirements which are considered during admission control

do not truly reflect the actual cell load. Second, the QoS provided by the network is not

aware of the multimedia content. In the QoE-based resource allocation, non-GBR bearers are

considered. The goal is to optimize the system performance in loaded scenarios by admitting

more users instead of blocking them. At the same time, by exploring the content information

the quality of some users can be degraded in a controlled way while maximizing the average

user satisfaction in the cell.

2) The objective of the QoE-based optimization is to control the system load without

affecting the user quality of experience. That is, the different video streams are shaped

such that the system does not run into overload. Meanwhile, given that the adaptation is

performed every 1-2 seconds, this does not conflict with the scheduling mechanisms deployed

in mobile systems. Overall, the QoE-based optimization can significantly improve the QoE

in a mobile cell compared to throughput-based optimization and to standard non-optimized

HSDPA systems [TKSK09].



Chapter 3

QoE-based resource optimization for

live uplink video transmission in LTE

With the prevalence of video traffic in the uplink of next generation mobile networks, a need

arises for optimizing the network resource allocation while preserving the user satisfaction.

In this chapter, a service-centric approach is proposed for uplink distribution of real-time

user-generated content based on the Quality of Experience (QoE) and popularity of the video

content. In case of limited network resources, the proposed approach assigns more resources

for popular contents while maintaining a minimum guaranteed QoE for the less popular ones.

Furthermore, the service-centric optimization problem is compared with a QoE-driven one

that does not consider video popularity and both approaches are evaluated for the uplink of

an LTE system. The simulation results show that a significant gain in terms of average user

satisfaction can be achieved.

3.1 Introduction

There is a proliferation of mobile phones equipped with digital cameras that allow the up-

streaming of high quality multimedia content. Users capture real-time events and share

them with other users, for instance, on video portals. The analysis of large-scale User-

Generated Content (UGC) shows that the users’ requests are highly skewed towards popular

videos [CKR+09]. In their work on YouTube traffic characterization, the authors of [GALM07]

find that the video popularity is Zipf-like.

This chapter tries to answer the following question: Given that not all upstreamed videos

have the same popularity, can the average user satisfaction be improved by optimizing the

uplink resource allocation for the live captured videos? Despite the growing interest in UGC

systems and services, there is no prior work that addresses this problem. Popularity has been

25
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traditionally exploited in cache management for proxy servers, whereby a proxy stores the ini-

tial frames of popular videos [SRT99]. In [BSW09], an analytical model for the design of coding

strategies for time-shifted personalized video content is described. The authors show that a

higher multicast gain can be achieved by considering the content popularity. In [RCFW10],

the skewed popularity distribution in file sharing is utilized for optimal placement of the re-

sources in structured Peer-to-Peer networks. By accelerating the search for popular contents,

the average search cost for the whole system is reduced. A popularity-aware scheduling for

network coding based content distribution in ad hoc networks is presented in [XDBC07].

Network-coded blocks are assigned a popularity value based on the requests from neighbor-

ing nodes. The transmission efficiency can be improved by assigning higher channel access

priorities to popular blocks. Class-based resource allocation has been intensively studied in

the literature (e.g., [GC02]). This is fundamentally different from this work which studies the

popularity of UGC within the same video streaming service class.

The rest of this chapter is organized as follows. The next section first outlines the system

model. Section 3.3 then describes the proposed service-centric resource allocation approach for

the LTE uplink. In Section 3.4 the simulation results are presented and Section 3.5 concludes

this chapter.

3.2 System model

3.2.1 Application model

This thesis focuses on characterizing the QoE in video streaming applications. It adopts the

model from [TKSK09] where the utility function for video streaming is defined as a function

of the application data rate R by:

U = f(R), f : R→MOS (3.1)

where MOS represents the user satisfaction [ITU96]. The MOS is defined in the E-model

over a continuous range between 1 and 4.5, which stand for unsatisfactory and very satisfactory

streaming experiences, respectively [BM03].

Throughout this thesis, a simple linear mapping between the PSNR and the MOS is

used [Vid00]. In addition, the considered mapping is validated with subjective experiments (in

Chapter 5) which show high correlation between the objective results and the users’ ratings.

Moreover, other objective QoE models, which are based on the SSIM measure and more

complex PSNR-based mappings, are provided for comparison in Appendix A.

In a CLO context, varying the transmission rate at the radio link layer allows the video

application to adjust its encoding parameters (e.g., rate, quantization parameter) to maximize

its utility function. Different from the downlink where the video application is constrained by
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the applied transcoding mechanism, an arbitrary set of encoding parameters can be defined in

the uplink (i.e., at the video encoder). Figure 3.1 shows the utility functions for 10 different

video sequences encoded with the H.264/AVC video codec [h26] at QCIF resolution and a

frame rate of 30 frames/sec. To produce the utility curves, each video is encoded at three

different quantization parameter settings which correspond to low, medium and high bit-

rates. For each encoded video, the average rate and the average PSNR are measured. The

application model from [CISN05] is then used to generate an arbitrary set of points for each

sequence. The PSNR is linearly mapped to the MOS, where MOS can take on any value

between 1.0 (30 dB) and 4.5 (42 dB), which represent the worst and best QoE, respectively.

Each video sequence exhibits a different MOS-Rate granularity. In a multi-user scenario where

each user is upstreaming a different video, the transmission rates of the different users can be

determined such that the overall QoE is maximized.
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Figure 3.1: MOS as a function of data rate for different test video sequences. Videos are
encoded with the H.264/AVC video codec [h26] at QCIF resolution and 30 frames/sec.

3.2.2 LTE model

Throughout this thesis a long-term radio link layer model with optimization periods in the

order of seconds is considered. The objective is to determine the average resource share

(i.e., number of PRBs) of each user in each optimization round irrespective of the individual

assignment of the PRBs, which is carried out by the LTE scheduler. This allows for integrating

the QoE-based optimization with any of the state-of-the-art LTE schedulers without the need

to modify the scheduling mechanisms already deployed.

Specifically, an LTE simulator is developed in this thesis which follows the 3GPP LTE

recommendations [3GP06]. To determine the achievable throughput per PRB for a given
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Figure 3.2: Link performance level mapping of Signal-to-Noise ratio to throughput [3GP08b].
The average throughput in the uplink and downlink can be approximated by an attenuation
factor β = 0.4 and 0.6, with respect to the Shannon capacity, respectively.

Signal-to-Noise ratio (γ), the LTE link layer model from [3GP08b] is used. The model ap-

proximates the throughput T for both uplink and downlink, after link adaptation and hybrid

automatic repeat request (HARQ), by an attenuation factor β compared to the Shannon

capacity (3.2) (Figure 3.2).

As baseline uplink parameters, [3GP08b] defines β = 0.4, a γmin of -10 dB, a γmax of 15

dB and a maximum throughput Tmax of 2 bps/Hz. For the downlink, it defines β = 0.6, a

γmin of -10 dB, a γmax of 23 dB and a maximum throughput Tmax of 4.4 bps/Hz, cf. (3.2).

T =


0 for γ < γmin

β log2(1 + γ) for γmin ≤ γ < γmax

Tmax for γ ≥ γmax

(3.2)

The objective of the QoE optimization is to adapt the video transmission of the mobile

terminals on timescales of seconds. As a result, no instantaneous channel quality indicator

(CQI) is required but rather a long-term CQI update for each user. At each optimization

cycle, an average channel statistic for each user is calculated based on its observed channel

conditions in the previous second. The channel realizations are further tuned to follow the

typical SNR distribution of the users in an urban macrocell [3GP10a] (Figure 3.3). These

distributions represent the average SNR a UE will experience in the uplink/downlink and are

defined as calibration guidelines so that different LTE simulators produce comparable results.

Although this model does not capture short-term channel effects, it provides an estimate of

the average SNR for each user which is sufficient for the link-layer model in (3.2).
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Figure 3.3: Distributions of downlink and uplink SNR in an urban macrocell [3GP10a]. The
distributions are used for the calibration of simulations so that different simulators meet
standard evaluation references. The figure is reproduced using the LTE simulator from [Ell12].

3.3 Service-centric resource allocation

3.3.1 Architecture overview

This chapter presents a method for uplink distribution of live video contents by addressing the

popularity of the content (i.e., number of followers), the video characteristics, and the available

network resources. Specifically, a service-centric concept that is based on video consumer-

producer coordination through a video portal is introduced (Figure 3.4). In such a scenario,

multiple users are simultaneously connecting to a video portal for sharing their captured live

video content. The video portal ranks the video contents based on the consumers’ requests

and provides a central entity in the operator’s network (e.g., eNodeB) with a standardized

feedback about the popularity of the videos. This entity is then responsible for scheduling

and resource allocation among multiple video producers. A big potential gain is foreseen by

optimizing the uplink resources based on the popularity of video contents. Knowing that not

all the live content uploaded to the portal has the same number of followers, the presented

approach allows for better user satisfaction among the video consumers and provides efficient

use of the wireless medium.

3.3.2 Objective function and solution

This chapter extends the QoE-driven resource allocation from [TKSK09] (Section 2.4.4) into

a service-centric one by incorporating the feedback from a live video portal into the uplink

optimization. The video portal provides live streaming for a list of video contents which are
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Figure 3.4: Schematic depiction of the proposed service-centric approach: A video portal
collects the consumers’ requests and provides the eNodeB with feedback on the popularity of
the video contents; the eNodeB allocates the uplink resources among the video producers.

dynamically sorted by the number of downstream requests. The popularity of a video content

follows a Zipf-Mandelbrot law [New05]. Specifically, the popularity of a content of rank k out

of a population of C contents is defined by:

pk =
1/(k + q)s

HC,q,s
with HC,q,s =

C∑
i=1

1

(i+ q)s
(3.3)

where q and s are the shift and shape parameters of the distribution, respectively. By

setting s to 0, all contents have the same popularity. As s increases, more requests are made

for popular contents. Given a population of N video upstreaming users, each uploading one

content at a time, the utility-based maximization is defined by:

x̃opt = arg max
x̃∈X̃

N∑
k=1

Uk(x̃) · pk where
N∑
k=1

pk = 1 (3.4)

x̃opt and X̃ are the optimal and the set of possible optimization parameters abstracted

from the protocol layers, respectively [IN04]. Please note that the formulation in (3.4) max-

imizes the sum of all users’ objective functions. Alternative formulations are also possible

(e.g., max-min utility [Sau08]). The content popularity, pk, is a weighting factor that shapes

the utility of user k according to the importance of the uploaded content, where
∑N

k=1 pk = 1.

Hence, the convexity of the utility-based optimization problem in (3.4) is not affected.

To abstract the application parameters (i.e., utility) and the link layer parameters (i.e.,

data rate) the long-term cross-layer abstraction model from [SKA+07] is considered. The
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Algorithm 1: Greedy algorithm based on [JF07]

input : Utility Uk, minimum utility improvement ∆umin, number of users N ,
maximum number of iterations IT , iteration step size ∆α, iteration step
size increment ∆α,inc

output: Optimal allocation αopt

Initialize starting allocation α in a Round Robin way ;
Set iteration index t = 0;
while t < IT do

for k = 1 to N do
calculate ∆uk,inc,t = Uk(αk + ∆α)− Uk(αk);
calculate ∆uk,dec,t = Uk(αk)− Uk(αk −∆α);

find ∆uinc,max,t for user k+ which maximizes ∆uk,inc,t;
find ∆udec,min,t for user k− which minimizes ∆uk,dec,t;
where k+ 6= k−;
∆uinc,t = ∆uinc,max,t −∆udec,min,t;
if ∆uinc,t < ∆umin and ∆α < 1 then

∆α = ∆α + ∆α,inc;

else
αk+ = αk+ + ∆α;
αk− = αk− −∆α;

t = t+ 1;

Output allocation αopt;

model defines the data rate Rk for user k as a function of its resource share αk and its

maximum achievable rate Rmax,k if all the PRBs are allocated exclusively to user k, cf. (3.5).

Rk = fk(αk) = αkRmax,k 0 ≤ αk ≤ 1, ∀k (3.5)

The utility is defined as a function of the data rate as in (3.1). The utility function in

(3.4), that maximizes the sum of utilities of N users given each’s content popularity, can then

be described by:

arg max
(α1,...,αN )

N∑
k=1

Uk(αk) · pk subject to
N∑
k=1

αk = 1 (3.6)

Each αk value corresponds to the fraction of total PRBs assigned to user k. A greedy al-

gorithm, similar to the work in [TKSK09], is used to determine the value of αk (Algorithm 1).

It is based on the approach originally proposed in [JF07]. The algorithm is initialized by

assigning an equal amount of resources to every user. In each iteration, the algorithm itera-

tively takes a small amount of resources (∆α) from the user who is the least sensitive to the

decrease in resources and assigns it to the user who gets the maximum benefit, until no further

improvement in (3.6) is possible. The minimum resource allocation granularity in LTE is 1
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PRB per TTI. For a 5 MHz system bandwidth with 25 PRBs, ∆α = 1
25 = 0.04. In this case,

the algorithm has little granularity to assign the PRBs for a large number of users. Given

that the optimization is performed once every second, the algorithm determines the average

number of PRBs for each user in a 1 second interval (i.e., 1000 TTI). Thus, ∆α can be chosen

as small as 1/25000 = 0.00004. In this work, ∆α = 0.004 is used which ensures that the

algorithm quickly converges to the solution. Moreover, the following parameters are defined

inside the algorithm: ∆α,inc = ∆α, ∆umin = 0.0005 and IT = 1000.

3.4 Simulation results

3.4.1 Performance study of the service-centric optimization approach

The service-centric approach is first evaluated in a Matlab-based simulated LTE environment.

More specifically, a system-level LTE simulator which abstracts the application layer and radio

layer characteristics of the mobile users is developed in this thesis. As input, it considers the

average channel conditions over the last second to estimate the achievable throughput per

PRB for each user (Section 3.2.2). On the application layer, it uses the average utility curves

for different video sequences and assigns them to the mobile users (Figure 3.1). Furthermore,

it combines the abstracted information from both layers and focuses on maximizing a long-

term objective function (cf. (3.6)). As output, it returns a target rate for each user which

can be used for encoding the video stream for the next optimization round (Section 3.2.1).

An optimization cycle of 1 second is considered here.

In the following simulations, a single LTE cell scenario with multiple users upstreaming

their videos is considered. Specifically, 25 test video sequences with different content charac-

teristics are used. At each simulation run, the assignment of the sequences to upstream users

is shuffled to guarantee no particular sequence enjoys higher popularity. Furthermore, the

Zipf shape parameter for video popularity is initially set to 1.0 [CKR+09]. The simulation

parameters are summarized in Table 3.1.

Two variants of the proposed service-centric approach are considered: 1) A scheme that

maximizes the overall user satisfaction and does not provide any guarantees for the less popular

contents (Max-MOS+pop). 2) A scheme that defines a minimum guaranteed QoE for all

upstreamed videos (Max-MOS-Fair+pop). The Round Robin (RR) resource allocation scheme

is first run as a baseline to determine the minimum QoE a user should get. The minimum

QoE of each user is then added as an additional constraint to solve the optimization problem

in (3.6). Generally, an explicit guaranteed QoE value for each user or group of users can be

defined (e.g., [Sau08]). The service-centric approach is also compared with a QoE-driven one

that does not consider video popularity (Max-MOS-Fair), and a reference RR scheme that

allocates to each user an equal number of PRBs (RR).



3.4. Simulation results 33

Table 3.1: Simulation parameters for the live uplink scenario

Simulation parameters
Number of sequences 25
Number of upstream users 5...50
Number of downstream users 1000
Zipf shape parameter 1
PSNR-MOS mapping Linear: (1,30 dB),(4.5,42 dB)
Application type Video streaming
PSNR-Rate model from [CISN05]
Simulation time 30 sec
Simulation runs 200

LTE parameters
System bandwidth 5 MHz
Number of PRBs 25
Number of subcarriers 300
Bandwidth per PRB 180 KHz
Link layer model [3GP08b] see (3.2)
Channel model Urban macrocell [3GP10a]
CQI averaging cycle 1 sec
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Figure 3.5: CDF of the mean MOS for 25 upstream users. The figures compare the QoE-
driven approaches, with and without popularity, with a no-adaptation approach (default LTE
mode); the round robin (RR) and proportional fair (PF) schedulers are considered for the
Matlab and OPNET simulations, respectively.

The number of upstream users is initially set to 25, each uploading a different content. The

number of downstream users is fixed to 1000. Figure 3.5(a) shows the cumulative distribution

function (CDF) of the mean MOS for the different schemes. The mean MOS is computed by

averaging the MOS for all downstream users over 200 simulation runs, 30 sec each. Please note

that this is one way to measure the average user satisfaction while considering the downstream
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users’ requests across different contents. The Max-MOS-Fair approach improves the mean

MOS compared to the reference RR scheme. Both proposed service-centric approaches show

an additional gain compared to the QoE-driven approach as they take the popularity of

upstreamed contents into account. Meanwhile, the gain decreases in the Max-MOS-Fair+pop

approach as a result of the constraint on minimum guaranteed QoE for the less popular

contents.
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Figure 3.6: Individual performance for the upstreamed videos sorted in descending order of
priority. The popularity-aware approaches follow the Zipf distribution whereas the Max-MOS-
Fair and the RR schemes result on average in an equal resource share and utility for each
content, independent of its popularity.

The above results can be further explained by inspecting the distribution of utilities and

resource shares for each content. Figure 3.6(a) shows the average resource share per content



3.4. Simulation results 35

2

2,5

3

3,5

4

4,5

5 10 15 20 25 30 35 40 45 50

M
e
an

 O
p
in
io
n
 S
co
re
 (
M
O
S)

Number of upstream Users

Max‐MOS + pop Max‐MOS‐Fair + pop Max‐MOS‐Fair RR

Figure 3.7: Mean MOS as a function of the number of upstream users in the cell, averaged
over 200 simulation runs.
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(b) CDF of the MOS gain compared to a QoE-
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Figure 3.8: Comparison for different Zipf shape parameters.

as a function of the rank of the content. Contents are indexed from 1 to 25 which represent

the most and least popular contents, respectively. Both service-centric approaches allocate

more resources for popular contents and the distribution of resource shares much reflects the

Zipf popularity distribution. Again, the Max-MOS-Fair+pop scheme shows a less skewed dis-

tribution due to the fairness constraint. The other two schemes will allocate on average equal

resources for each content as they do not consider the content popularity. Figure 3.6(b) shows

the distribution of average utilities of the 25 uploaded contents, sorted by their popularity.

The Max-MOS-Fair approach provides an average gain compared to RR for all contents, irre-

spective of the content popularity. The Max-MOS+pop scheme improves the utility of popular
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contents dramatically. Less popular contents (i.e., contents which receive fewer downstream

requests) suffer from a decrease in their individual utilities at the expense of higher overall

user experience. The Max-MOS-Fair+pop scheme provides a slightly lower improvement in

utility for popular contents compared to Max-MOS+pop, but it still guarantees a minimum

QoE for the less popular contents (contents 13 to 25 get the same utility as in the RR scheme).

System dimensioning gain

Figure 3.7 shows the average MOS experienced by the downstream users as a function of

the number of upstream users. When the number of upstream users is low, there are enough

uplink resources and the performance of the QoE-driven and the service-centric approaches is

similar. As the number of upstream users increases, the competition for resources is tighter and

the service-centric approach improves the average MOS by prioritizing the popular contents.

For a target MOS of 3.0, the Max-MOS-Fair+pop approach can admit 40 upstream users

whereas the Max-MOS-Fair scheme can admit 30 users compared to 23 users for an RR

scheme. This results in a system dimensioning gain of 25% and 42% compared to the QoE-

driven and RR approaches respectively, while maintaining a minimum QoE for the less popular

contents. The Max-MOS+pop scheme can even achieve a larger average gain, in particular

when the network resources are more limited.

Influence of the popularity factor

Throughout this chapter, a Zipf shape parameter of 1.0 is considered. In Figure 3.8(a), the

shape parameter of the Zipf-Mandelbrot distribution is varied between 0.4 and 2.0. As a result,

the skewness of the video popularity distribution is altered. As the shape parameter increases,

more downstream requests are made for popular contents. Furthermore, deltaPop(MOS) is

defined as the difference in MOS between the Max-MOS-Fair+pop service-centric approach

and the Max-MOS-Fair scheme. Figure 3.8(b) shows the CDF of deltaPop(MOS) for a 25

upstream users’ case for different Zipf shape parameters. The more skewed the popularity

distribution gets, the larger the popularity induced performance gain is.

3.4.2 LTE OPNET simulator results

Besides the Matlab-based LTE simulations, the service-centric optimization approach is fur-

ther implemented and evaluated in an LTE OPNET simulator. Different from the Matlab

simulations, the OPNET simulator provides detailed modules for customizing the application,

transport and radio access functionalities. For each UE, different traffic patterns can be speci-

fied in an application profile and updated in real-time during the simulation (e.g., packet size,

packet inter-arrival time). Also, at the eNodeB, the physical layer attributes (e.g., pathloss,

channel models, power settings) and the MAC layer parameters (scheduler, random access)

can be defined in configuration files. In addition, the simulations are event-driven with ran-
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dom seeds which allow for reproducing the same simulation (e.g., user mobility patterns) to

evaluate different optimization schemes. At the end of each simulation, detailed simulation

statistics are available through the simulation interface. For the QoE-based schemes, the

greedy allocation approach in Algorithm 1 is implemented to determine a target transmission

rate for each user. Specifically, the mean SNR is calculated in each optimization round and

used as an input to the greedy algorithm. Furthermore, the result of the QoE optimization is

used to adapt the uplink streaming rate at the UE without interfering with the scheduler at

the eNodeB.

For the conducted performance evaluation, a single cell scenario is considered with 25

mobile users simultaneously upstreaming their video contents. In the simulation setup, ad-

mission control is disabled (i.e., all users use non-GBR bearers). The simulation parameters

are the same as in Table 3.1. Furthermore, the following schemes are compared:

1) PF (Proportional Fair): The actual streaming rate is only determined by the PF sched-

uler. The application profile of each user defines an initial uplink target rate of 700 kbps.

This represents the default LTE scheme with no adaptation.

2) Max-MOS: The application rate of each user is adjusted to the result of the QoE

optimization at the beginning of each optimization round. The objective is to maximize the

overall user satisfaction in the cell.

3) Max-MOS + pop: The goal of the optimization is to maximize the overall quality

of experience by additionally including the popularity information. Each user adapts its

streaming rate to the optimization result.

Figure 3.5(b) shows the CDF of the mean MOS for the 25 upstream users, which corre-

sponds for 20 simulation runs. The Max-MOS scheme improves the mean MOS compared to

the PF scheme as it adapts the application rate of each user to the channel and video charac-

teristics. The Max-MOS+pop scheme provides an additional improvement in the overall user

satisfaction by assigning higher priority for popular contents. Please note that in the OP-

NET implementation, there is no implicit guaranteed MOS for the users in the optimization

problem. In the Matlab-based simulations in Section 3.4.1, however, a Max-MOS-Fair+pop

scheme is additionally considered which provides a minimum guaranteed MOS for the less

popular contents.

Moreover, by comparing the OPNET results to the Matlab results in Figure 3.5(a) similar

gains in perceived video quality are observed. Specifically, the Max-MOS scheme improves

the MOS by about 0.25 and 0.2 compared to the RR and PF schemes for the Matlab and

OPNET results, respectively. Meanwhile, the Max-MOS+pop scheme achieves a gain of

about 0.25 compared to the Max-MOS scheme for the OPNET results. In the Matlab results,

the popularity aware optimizer manages to improve the MOS by about 0.2 and 0.37 for the

Max-MOS-fair+pop and the Max-MOS+pop, respectively. Besides indicating similar gains,
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the above results also show that the OPNET simulation scenario is providing some inherent

fairness to the less popular contents.

3.5 Chapter summary

This chapter presents a service-centric approach that incorporates popularity feedback from

a video portal into the QoE-based uplink resource allocation. The objective is to improve

the overall user satisfaction in loaded network situations by considering the asymmetry in the

users’ consumption of video contents. The fairness issue that could result from prioritizing

the video contents is addressed by setting a minimum assured QoE for the less popular con-

tents. The proposed approach is evaluated for the uplink of an LTE system and compared

to a QoE-driven resource allocation scheme which does not consider the video popularity. A

significant and consistent gain is observed by including the popularity information into the

uplink resource allocation under various simulation scenarios.

The main contribution of this chapter is the service-centric resource allocation which

distributes the uplink resources according to the popularity distribution of the upstreamed

videos. Indeed, the approach exploits the fact that the majority of live video streams are

watched by a few users and only a small number of the uploaded videos have a high popularity.

The proposed approach, however, has a few limitations. First, it assumes no prior knowledge

of the semantics of the uploaded videos. For instance, in the case of an emergency video,

the popularity needs to be dynamically updated irrespective of the number of registered

consumers. Moreover, this work assumes a reliable feedback channel between the video portal

and the access network. This becomes more challenging when the consumers are served by

different portals and as the popularity changes dynamically over time.



Chapter 4

QoE-based live and on-demand uplink

video transmission in LTE

In Chapter 3, live video transmission on the uplink is studied using a service-centric QoE-based

approach. This chapter considers the joint upstreaming of live and on-demand user-generated

video content. This is challenged by 1) the capacity-limited and time-variant uplink spectrum,

2) the resource-hungry upstreamed videos and their dynamically changing complexity, and

3) the different playout times of the video consumers. To address these issues, a systematic

approach for QoE-based scheduling and resource allocation of multi-user generated video

content is proposed. First, the base station is responsible for optimizing the scarce uplink

resources among multiple video producers in a cell. Second, a video portal provides feedback to

the mobile terminals on the playout deadlines (live, on-demand, or both live and time-shifted)

of the consumers of the content. Third, the mobile producers jointly optimize the transmission

of live and time-shifted video by considering the available capacity, the deadline constraints

and the video characteristics of the uploaded content. More specifically, a multi-constraint

analytical model for de-centralized scalable video transmission at the mobile terminals is

presented. Furthermore, a low-complexity iterative algorithm is proposed which is then used

for real-time scheduling at mobile terminals in an emulated LTE network. Simulation results

using the LTE OPNET simulator show that significant gains in perceived video quality can

be achieved by the QoE-based resource optimization scheme when compared to the state-of-

the-art proportional fair scheduler. In addition, the distributed optimization at the mobile

terminals can further improve the user experience across the different types of consumers.

39
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4.1 Introduction

Mobile media streaming, which has been largely dominated by static TV content, is moving

into a user-defined streaming architecture where users are both producers and consumers of

the media content [GKLP10]. The evolution of mobile social networks and the penetration

of video portals for storing of user generated content (UGC) further contribute to this trend.

As a result, mobile networks will have to deal with this vast increase in user-generated video

content given the quite limited resources in the wireless uplink.

To address these issues, a service-centric approach for uplink resource allocation which

jointly considers the consumer preferences and the uplink streaming conditions is proposed in

Chapter 3. While Chapter 3 focuses on the live video transmission in the uplink, this chapter

addresses the problem of uplink video transmission for both live and on-demand consumption.

Indeed, the majority of uploaded videos to a video portal are expected to be retrieved for on-

demand consumption at different time instants. The objective here is to optimize the uplink

video distribution to provide the video consumers with the best possible QoE within the

scheduled playout time taking the limited and time-varying uplink resources into account.

In the proposed solution, a video portal plays a central role in informing the mobile

video producers about the intended consumers of the uploaded content. The portal supports

different types of video delivery which include live streaming, time-shifted viewing and up-

loading/archiving for on-demand consumption. It collects feedback from consumers on their

type of video delivery (live or on-demand) and playout times and provides this feedback to

the video producers. A key novelty stems from the fact that consumers can simultaneously

subscribe to different video services which pertain to the same content. For example, one

user may be interested in watching a live video stream on its mobile phone and later with a

refined and improved quality at home. Scalable video coding (SVC) [SMW07] provides this

encoding flexibility by decomposing a video stream into multiple video layers where the base

layer (BL) yields a basic video quality and the remaining enhancement layers (EL) provide a

refined video quality. This chapter considers both live and time-shifted upstreaming of scal-

able video from a video producer to a video portal which acts as an intermediate node for

both live consumption and archiving of video streams for on-demand retrieval. Video layers

which can not be uploaded in real-time to the portal are cached at the mobile terminal and

transmitted later for time-shifted consumption. The goal of the optimization is to provide the

best possible resource allocation to the video producers while at the same time maximizing

the user perceived quality across the different types of consumers.

Moreover, a pure network-centric optimization approach can be applied for downlink video

communications as both the network including the base station and the content source (i.e.,

streaming server) are in front of the bottleneck wireless link (Section 2.4.4). For uplink-based

video services, however, the bottleneck is between the content source (i.e., the terminal) and
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Figure 4.1: System image for QoE-driven uplink resource optimization, which includes
network-based QoE optimization in the mobile network and distributed QoE optimization
at the mobile terminals.

the network. More specifically, the optimization approach presented in this chapter distin-

guishes between the centralized multi-user resource allocation problem in the network and the

distributed optimization for video layer selection at the mobile terminal. The base station has

the most updated channel quality information of all the users competing for the resources,

and it can determine the optimal resource distribution among the video producers. Mobile

terminals can directly influence the source coding and packet transmission, and therefore a

distributed optimization approach can be followed where each terminal determines its opti-

mal scheduling decisions. The proposed approach thus represents a paradigmatic separation

of responsibilities among the video producers and the network.

A schematic overview of the proposed system for uplink resource optimization is further

illustrated in Figure 4.1. Multiple mobile video producers are upstreaming their content to

a video portal. In the operator network, the base station is responsible for allocating the

resources for uplink transmission among the video producers in one cell such that the overall

QoE is maximized. Complementing it, a distributed QoE-based optimization is performed by

each video producer to decide on which video layers to transmit and their respective rates.

The rest of the chapter is organized as follows. The next section surveys related work

on deadline-aware scheduling for multimedia communications. In Section 4.3, the distributed

QoE optimization which is performed by all terminals individually is presented. First, an

optimal analytical solution is provided, and then a low-complexity iterative algorithm which is

used for real-time scheduling of scalable video at the mobile terminals is proposed. Section 4.4

describes the network-based QoE optimization for uplink resource allocation among the video
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Figure 4.2: Schematic depiction of queued packets for K users sharing the wireless network
resources. A group of packets, which constitute a video frame, is associated with a common
decoding deadline. (Reproduced for an uplink scenario from [DCBA10]).

producers. Sections 4.5 and 4.6 present the simulation results using the Matlab-based and

OPNET LTE simulators, respectively.

4.2 Related work

The work presented in this chapter spans different directions of research on multi-user schedul-

ing and delay-sensitive media transmission in mobile networks. An abstract system setting,

widely studied in literature, is depicted in Figure 4.2. The model is formed of K streaming

users competing for shared network resources on a wireless channel. Each user has an output

queue of packets which are associated with a decoding deadline. In the following, the key

approaches that address the scheduling and packet transmission problems are surveyed:

• Earliest Deadline First (EDF) [GGP97] is one of the first studied scheduling policies

whereby the objective is to schedule the packets with the most imminent deadline.

Packets delivered after their deadline are useless and therefore the scheduler aims at

delivering each packet before its expiry time. [SS02] shows that the EDF scheduling

policy is sub-optimal in mobile environments as it fails to exploit the channel variabil-

ities. The Round Robin, maximum throughput and PF scheduling schemes (Section

2.1) have been considered to achieve different levels of fairness/throughput efficiency in

a mobile network [DBHL11].

The above scheduling mechanisms, however, are not optimized for handling real-time

multimedia communications with strict delay constraints. On one side, the scheduler in

the mobile network is typically ignorant of the individual packet requirements and on
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the other hand, the scheduling decisions are performed on a short-term TTI basis which

is not optimal from a multimedia perspective.

• The seminal work on packetized media transmission, which takes into account the con-

tent characteristics and the decoding deadlines of the individual packets, goes back to

[CM06]. In their approach, the dependencies among the media packets are captured by

a directed acyclic graph. This allows to prioritize the packet transmission based on the

R-D characteristics and the relative importance of the packets. Specifically, the induced

distortion cost from packets missing their playout deadline is introduced into the ob-

jective function and a Lagrangian rate-distortion cost function J = D + λ · R is used,

where D is the expected distortion and R is the expected transmission rate, to decide

on the packet transmission for a given rate budget. In [CM06], the channel condition

is modeled with a Markov Decision Process (MDP) and assumed to be time-invariant

where the transmission policy for a group of packets can be determined apriori. This

is different from the time-varying characteristics of wireless channels where the trans-

mission policies should be determined at each scheduling interval. The original work

from [CM06] has been extended in several directions to account for channel, deadline

and distortion impacts in multi-user streaming scenarios (e.g., [CF06] [DCBA10]).

• A cross-layer packetization and retransmission approach for video transmission in wire-

less LANs that explicitly considers the actual transmission requirements is proposed in

[vT07]. More specifically, the video packets are grouped by their decoding deadlines

and the cross-layer optimization problem is solved independently for all packets with a

common decoding deadline using a general Lagrangian optimization formulation.

While the authors do not consider the potential benefit of transmitting some pack-

ets with a later deadline before those with an earlier deadline, it is favorable in our

case to schedule layers with a later deadline to guarantee a basic quality in real-time

before previously cached enhancement layers with an earlier deadline are transmitted

for on-demand consumption. As a result, the optimization problem cannot be solved

independently as proposed in [vT07].

• Several research works have studied deadline-aware media transmission in LTE net-

works. The authors in [JHC+09] propose a multi-user gradient-based scheduling frame-

work that considers the streaming of scalable videos with different playback deadlines

in an OFDMA system. They present a dynamic weighting metric for mitigating the

approaching deadline effect such that video layers with imminent deadlines are assigned

a higher priority. Again, the idea is to enforce the scheduler to assign more resources for

users with approaching deadlines without considering the possibility of storing and trans-

mitting the video layers for on-demand retrieval. A two-level scheduling approach for
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Figure 4.3: Two-level scheduling approach for real-time media transmission in LTE proposed
in [PGB+11].

real-time media delivery in LTE networks is proposed in [PGB+11] (Figure 4.3). More

specifically, a long-term resource allocation algorithm runs on top of the PF scheduler

to decide the amount of data that each source should transmit in order to satisfy its

delay constraint. The main drawback of the approach in [PGB+11] is that the upper

level scheduler does not take into account the channel conditions of the users. Therefore,

there is no guarantee that the PF scheduler can assign each user the amount of resources

it needs to satisfy its delay requirements. Different from [PGB+11], the approach pre-

sented in this chapter leverages cross-layer information about the channel conditions

and video characteristics of each user to determine its optimal rate budget.

4.3 Distributed QoE optimization at the mobile terminals

4.3.1 System model

Consider mobile terminals that are capable of generating scalable video streams which can be

decomposed into several video layers (e.g., [SMW07]). In addition, the mobile producers can

cache parts of the video stream and upload those parts later during good channel conditions

and under lower cell load. As a result, the instantaneous user uplink transmission capacity is

distributed for live and on-demand video layer transmission.

More precisely, a Group of Pictures (GoP) is encoded into a set of video layers with a

common deadline (i.e., BL, EL, etc.). Please note that a GoP can be alternatively broken

down into individual frames with different deadlines (e.g., [JHC+09]). At each scheduling

round, a new GoP (with playout deadline d1) and the layers from previous GoPs which have

been cached at a mobile terminal (with playout deadline (d2 − j · t0), 1 ≤ j ≤ n, t0 is the

scheduling period) are considered for upstreaming. d1 and d2 represent the playout times for

live and on-demand video consumers, respectively. If the video is requested for on-demand
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Table 4.1: Nomenclature

K total number of upstream users
Hk cache size of user k
ck uplink transmission capacity of user k

l, l
′

video layers

l
′ ≺ l l is a descendant of layer l

′

Ll size of layer l
Rl instantaneous rate of layer l
tl transmission time of layer l

∆MOSl additional MOS improvement by transmitting layer l
d playout deadline

SL,d one set of video layers with a common deadline d
SL all sets of video layers
al binary: = 1 if layer l is scheduled

bl binary: = 1 if layer l can be scheduled, i.e., al′ = 1,∀ l′ ≺ l

consumption only, then d1 equals d2. Moreover, SL represents the set of all candidate video

layers at a mobile terminal (i.e., live and cached) and SL,d corresponds to one set of video

layers with a common deadline d. These sets are illustrated in Figure 4.4 for a scalable video

stream encoded into four layers.

In addition, the following notations are used: K is the number of users who have data to

send. ck is the instantaneous uplink transmission capacity, and Hk is the cache size of user

k. In addition, for each video layer l ∈ SL,d: Ll represents its size, Rl is the instantaneous

rate, tl is the required time to transmit the video layer, and MOSl is its utility value which

is determined according to (3.1). Table 4.1 summarizes the notations used in this chapter.
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4.3.2 Problem formulation

The distributed QoE optimization is performed independently at each mobile terminal. The

goal is to maximize the QoE by determining the set of layers to be scheduled for transmission

at each round, and the rate of each scheduled layer. If layer l is scheduled, al is equal to 1

and 0 otherwise. bl ∈ {0, 1}, describes the layer dependencies inside a GoP, i.e., if layer l is

dependent on layer l
′

(i.e., l
′ ≺ l), then bl is equal to 1 if layer l

′
has been transmitted and

0 otherwise. That is, for layer l to be scheduled, layer l
′

must also be scheduled. ∆MOSl

denotes the additional improvement of the QoE by transmitting layer l. The distributed

optimization problem for user k is formulated as:

arg max
al,Rl,∀SL,d,∀l∈SL,d

Udk =
∑
SL,d

∑
l∈SL,d

al · bl ·∆MOSl(Rl) (4.1)

s.t.
∑
SL,d

∑
l∈SL,d

alRl ≤ ck, (4.2)

∑
SL,d

∑
l∈SL,d

Ll(1− al) ≤ Hk, (4.3)

∑
l∈SL,d

altl ≤ d,∀SL,d, (4.4)

where (4.1) is the QoE-based objective function; (4.2) corresponds to the rate constraint

where the sum of rates of all transmitted layers should not exceed the available capacity; (4.3)

is a necessary condition to avoid cache overflow; the size of cached layers should not exceed

the cache size; (4.4) is a necessary condition to transmit layers by their deadlines; the time to

transmit all layers with one common deadline should be less than the deadline.

For a given set of resources ck for user k, the problem in (4.1)-(4.4) can be solved locally

for each user. In Appendix B, it is shown that the independent de-centralized optimization

can lead to an optimal solution for each user. Moreover, an upper bound on the convergence

is provided.

4.3.3 Low-complexity iterative algorithm

The distributed QoE optimization problem from (4.1)-(4.4) can be solved using the interior

point method [BV04]. Nevertheless, the time complexity for determining the optimal solution

will increase as a function of the number of cached video layers. As a result, searching through

all the possible transmission policies of the newly generated and cached GoPs could become

infeasible for real-time scheduling. In this section, a low-complexity iterative greedy algorithm

is proposed to solve the problem in (4.1)-(4.4) at each mobile terminal. The optimization prob-

lem can be further simplified by considering that: 1) the GoPs are independent and thus the

layer scheduling decisions in one GoP do not affect the subsequent GoPs. 2) The dependencies
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Algorithm 2: Low-complexity distributed algorithm for scalable video transmission
at mobile terminals

input : available transmission capacity ck for user k
output: transmission vector a ∀SL,d,∀l ∈ SL,d
Initialize transmission vector a = {0};
Drop layers with expired delay ;
while ck > 0 do

if this is the first iteration then
for all candidate GoPs do

if ck is enough to send the layer l in GoP j that has not been sent yet
and with the highest priority then

calculate utility improvement Uj = ∆MOSl(Rl)/(Rl);

else
Uj = 0;

else
only update Un = ∆MOSl(Rl)/(Rl), l is the layer in GoP n with the second
highest priority;

find arg maxn Uj where n is the GoP with the maximum utility improvement;
set al = 1;
ck = ck −Rl;

Check cache overflow, drop layers if necessary ;
Output transmission vector a;

between the video layers inside a GoP can be described by an acyclic graph [CM06]. In this

case, the layers are represented by a sequential acyclic graph (BL, EL, etc.). An iterative

greedy approach is considered for allocating the resources among the different GoPs. The

objective is to determine which video layers should be scheduled/cached at each optimization

round.

A description of the proposed low-complexity distributed algorithm is given in Algorithm 2.

At a given scheduling round, there are L video layers whose transmission policies are defined

by al ∈ {0, 1},∀SL,d,∀l ∈ SL,d. The transmission vector a is initialized to 0. At each iteration,

the GoP which provides the maximum utility improvement is allocated a fraction of resources

necessary to transmit a new layer l. Inside a GoP, the transmission priorities are determined

by the acyclic graph. As a result, the iteration complexity is determined by the number of

candidate GoPs. The above procedure is repeated until no more layers can be transmitted

with the rate constraint. At the end of the optimization, the layer with the minimum MOS

improvement is dropped in the case of cache overflow. Please note that the available capacity

ck for user k is determined by the network-based QoE optimization.

Remark: Acyclic graphs have been previously studied for the transmission of packetized
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media in a rate-distortion optimized way [CM06]. While the background of the proposed

iterative algorithm and the work of [CM06] are similar, the approaches differ in a number of

aspects. In [CM06], 1) the channel condition is assumed to be time-invariant and the trans-

mission policy for a group of data units can be determined apriori; 2) only one deadline is

considered for each data unit; 3) data units can get lost during transmission. In this approach,

a time-varying wireless scenario is considered and therefore the transmission policies are de-

termined at each optimization round. In addition, in each round a new GoP is generated for

live transmission. Also, the proposed approach assumes that the video layers are transmitted

successfully due to the fast retransmissions at the MAC layer in LTE.

4.4 Centralized QoE optimization at the base station

The objective of the network-based QoE optimization is to determine the uplink resources

(i.e., ck in (4.2)) provided to each mobile terminal that maximizes the overall QoE. Let Udk be

the utility function of user k as the resulting distributed QoE-based objective function in (4.1)

at the mobile terminal for a given rate constraint ck. The network-based objective function,

that maximizes the sum of utilities of K users, can then be described by:

arg max
(α1,...,αK)

K∑
k=1

Udk (ck) subject to

K∑
k=1

αk = 1 (4.5)

To determine the resource share αk of each user, a similar greedy algorithm as described

in Section 3.3.2 is considered. Each optimization round (1 GoP interval), the optimization

problem in (4.5) is executed and the resulting ck is used for distributed layer scheduling at the

mobile terminal k. Please note that this provides an upper limit on the system performance if

network-based QoE optimization is considered. The uplink resource allocation, however, can

be decoupled from the distributed QoE optimization at the mobile terminal. In this case, the

actual data rate ck can be directly determined by the deployed scheduler at the base station,

for instance. The optimization problem in (4.1)-(4.4) is still solved independently by each

mobile terminal.

4.5 Simulation results

4.5.1 Comparison of QoE-based and earliest deadline first scheduling approaches

In the following simulation, three users upstreaming the Football, Bus and Soccer test video

sequences with CIF resolution, 30 frames/sec and a GoP size of 8 frames are considered. Each

sequence is encoded with the H.264 scalable video codec [SMW07] into four video layers using

SNR scalability. For simplicity, a fixed transmission rate for each layer per GoP is used. In

addition, a linear mapping between Peak Signal to Noise Ratio (PSNR) and MOS [KDSK07]
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Table 4.2: Simulation parameters for the live and on-demand uplink scenario

Parameter Value
LTE bandwidth 5 MHz

Number of PRBs 25
Number of subcarriers 300

PRB size 12 subcarriers
Link layer model [3GP08b] see (3.2)

Channel model Urban macrocell [3GP10a]
CQI averaging cycle 266 msec

Number of upstream users 3
Video sequences Football, Bus and Soccer

Relative cache size 0.3
(Live, VoD) deadlines (266 msec, 10 sec)

Video codec H.264/SVC, CIF, 30 fps, 4 layers
Simulation time 10 sec
Simulation runs 25

is considered. MOS can take on any value between 1.0 (25 dB) and 4.5 (40 dB), which

represent the worst and best QoE, respectively. A simulation run lasts for 10 sec and the

relative cache size is 0.3. In other words, a user can cache 30% of its video without dropping

any layer. The simulation results are based on 25 simulation runs. The simulation parameters

are summarized in Table 4.2.

The video transmission is optimized for two scenarios: 1) Live + time-shifted: the uploaded

videos are optimized for both live and on-demand consumption. 2) Video-on-Demand (VoD):

videos are intended for on-demand consumption only. In both scenarios, the VoD delay is

equal to 10 sec for all users. That is, the VoD users will request the uploaded videos from a

video portal after 10 sec. Meanwhile, the deadline for live video consumption in scenario 1) is

1 GoP (i.e., 266 ms). To evaluate the proposed approach, both the uplink resource allocation

at the eNodeB (i.e., to find ck) and the distributed optimization at the mobile terminals (i.e.,

(4.1)-(4.4)) are simulated. In the following results, an upper limit on the achievable QoE

is provided when optimal resource allocation can be made by the eNodeB among the three

users. More specifically, the two following schemes are compared:

• Max-MOS: the eNodeB is responsible for multi-user resource allocation. For an allocated

bit rate, each user performs a de-centralized video layer optimization with the objective

of transmitting layers which provide the best MOS improvement. The eNodeB assigns

the resources in a greedy way until the sum of QoEs of all users is maximized.

• Priority-aware Earliest Deadline First (EDF): the eNodeB serves the user with the ear-

liest deadline. Priority-aware means that each user knows about the video dependencies

and orders its layers accordingly. Each user performs a de-centralized video layer opti-

mization with the objective of transmitting the layers with the most imminent deadline

first.
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(a) Scenario 1 (live + on-demand video).

3.2 3.4 3.6 3.8 4
0

0.2

0.4

0.6

0.8

1

mean MOS

C
D

F

 

 

VoD - MaxMOS
VoD - EDF

(b) Scenario 2 (on-demand video only).

Figure 4.5: CDF of the mean MOS for all users. The figure compares the performance of the
MaxMOS and EDF schemes for both live and on-demand video consumption.

Figure 4.5(a) shows the cumulative distribution function (CDF) of the mean MOS of all

users for the first scenario. The base layer is always sent in real-time and the enhancement

layers are transmitted according to the optimization criteria for both schemes. Comparing

the dotted curves (live) with the solid curves (VoD) for both schemes, a substantial gain

can be achieved by uploading additional cached video layers before playout. In addition, the

Max-MOS scheme improves the mean MOS compared to the EDF-based one as it selectively

transmits layers which provide highest MOS improvement first. In fact, both schemes should

converge to a maximum mean MOS, if the videos are requested after some sufficient time and

enough cache is available for layers which are not sent in real-time.

Figure 4.5(b) shows the CDF of the mean MOS of all users for the second scenario. More

specifically, it shows the average MOS if the videos are requested directly after the uplink

transmission stops (VoD delay of 10 sec). Different from the first scenario, the uplink trans-

mission of both base layers and enhancement layers is optimized for on-demand consumption

for both schemes. In this case, the EDF-based scheme assigns the same transmission priority

for all video layers which are transmitted according to the earliest deadline criteria. This is

different from the first scenario where the base layers are assigned a higher priority to serve

the live users. Therefore, not all the base layers can be duly transmitted and the EDF-based

scheme fails to provide a sustainable video quality for the whole session. By comparing with

the Max-MOS scheme, a significant gain can be achieved if the video layers are transmitted

according to the MOS criteria.

Appendix A.1 further compares the performance of both schemes using an SSIM-based

QoE-model, which shows similar QoE gains for the Max-MOS approach compared to the

EDF-based scheme for both live and on-demand consumers.
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(a) Mean number of iterations per optimization
round as a function of the number of video layers
at the mobile terminal. The number of iterations
to achieve the solution can be drastically reduced
as the number of cached video layers increases.
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(b) Mean MOS of all users. The performance of
the iterative solution is close to the optimal one for
both live and on-demand consumption.

Figure 4.6: Comparison of the optimal solution from (4.1)-(4.4) and the approximate solution
from the proposed iterative scheme.

4.5.2 Complexity analysis

The performance of the iterative greedy algorithm is compared with the optimal solution using

the interior point method [BV04]. It is clear that the computational complexity can be sig-

nificantly reduced with the iterative approach (Figure 4.6(a)). In fact, it is enough to look for

the GoP with the highest utility gain and then use the acyclic graph to pick the corresponding

layer inside the GoP to be scheduled. As a result, the number of iterations per optimization

round is proportional to the number of scheduled layers for each user. Figure 4.6(b) further

depicts the cumulative distribution function (CDF) of the mean MOS of all users. The MOS

for the proposed scheme is close to the optimal solution for both live and VoD transmission.

The slight MOS reduction depends on the choice of enhancements layers that are uploaded

for on-demand consumption. Table 4.3 summarizes the average performance statistics using

both schemes.

Table 4.3: Average statistics per optimization round

Optimal Iterative

Number of iterations 295 4
Execution time (msec) 69 1

Mean MOS (Live) 3.531 3.503
Mean MOS (VoD) 3.865 3.835
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Table 4.4: LTE OPNET simulation setup for the live and on-demand uplink scenario

Application parameters
Video codec H.264 SVC [SMW07]
SVC SNR scalability, 4 layers at CIF resolution and 30 fps
GoP size 8 frames
Video sequences Football, Bus, Soccer and Foreman
Relative cache size 0.3
Live deadline 1 GoP (266 msec)
VoD deadline 20 sec
LTE parameters
Transmission scheme SC-FDMA
Base frequency 1920 MHz
Bandwidth 5 MHz
Bandwidth per PRB 180 KHz
Subcarrier spacing 15 KHz
eNodeB antenna gain 15 dBi
UE speed 30 km/h
UE antenna gain 0 dBi
Max Tx power per user 24 dBm
UE receiver sensitivity -160 dBm
Scheduler Proportional fair
Channel model Urban macrocell
Shadowing disabled
CQI averaging cycle 266 msec
Simulation parameters
Number of users 4
Simulation runs 50
Simulation time 100 sec
Simulator LTE OPNET 16.0

4.6 LTE OPNET simulator results

The benefits of the proposed QoE optimization framework are further evaluated in the LTE

OPNET simulator. The purpose of the study is twofold: 1) to compare the network-based QoE

resource allocation approach to the content-agnostic one by a standard LTE PF scheduler,

and 2) to analyze the potential gains of applying the distributed QoE optimization at a mobile

terminal for joint scheduling of live and on-demand video streams.

A single simulated LTE cell is considered with 4 users upstreaming the Bus, Soccer, Football

and Foreman test video sequences. The videos are encoded with the H.264 scalable video

codec [SMW07] into 4 layers using SNR scalability and have a CIF resolution and a frame

rate of 30 frames per second. Furthermore, a relative cache size of 30% is considered at the

mobile terminals. Moreover, the live and on-demand consumption deadlines are set to 1 GoP

(i.e., 266 ms) and 20 sec, respectively. Please note that for each new GoP, the average rate

and distortion characteristics of the different layers within this GoP are considered. The

simulation parameters are summarized in Table 4.4.
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Figure 4.7: OPNET channel traces of the 4 video producers as a function of simulation time.
The users are moving at a speed of 30 km/h in an urban macrocell.

0 1000 2000 3000 4000 5000
1

1.5

2

2.5

3

3.5

4

4.5

Rate (kbps)

M
ea

n 
O

pi
ni

on
 S

co
re

 (
M

O
S

)

 

 

Bus
Soccer
Football
Foreman

Figure 4.8: Utility functions for the upstreamed video content at the base station fitted using
the parametric model from [CISN05].

4.6.1 Comparison of network-based QoE optimization and proportional fair schedul-

ing

First, a single simulation run with the 4 video producers undergoing dynamic channel varia-

tions as depicted in Figure 4.7 is considered. The temporal quality of the upstreamed videos is

analyzed for both network-based QoE optimization and standard non-optimized proportional

fair scheduling. In both schemes, a distributed QoE optimization is applied at each mobile

terminal for joint live and on-demand video layer scheduling, given the available network ca-

pacity. The low-complexity distributed approach from Section 4.3.3 is considered herein. For

the network-based QoE optimization, it is assumed that a parametric utility function for each

upstreamed video content is available at the base station [CISN05] (Figure 4.8). This means
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(a) Bus
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(b) Soccer
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(c) Football
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(d) Foreman

Figure 4.9: MOS of the different users as a function of simulation time applying distributed
QoE optimization at the mobile producers and proportional fair scheduling in the network.
The PF Live and VoD curves show the MOS a video consumer will achieve when requesting
the video from the portal for live and on-demand consumption, respectively.

that the mobile terminals do not need to exchange their instantaneous encoding parameters.

This reduces the signaling of media-specific information between the base station and the

mobile terminals and thus reduces the overall optimization complexity.

The PF scheduler (Figure 4.9(a)-4.9(d)) assigns the resources by considering the channel

characteristics and irrespective of the uploaded video content. This results in high MOS for

the less demanding videos while more demanding ones or users moving to the edge of the cell

will suffer in streaming performance. For instance, the Bus and Soccer producers undergo bad

channel situations between 150-180 sec and 120-150 sec, respectively. This leads to a severe

degradation in the perceived video quality of the uploaded videos. Also, for the Football

producer, the MOS will only improve after 140 sec as the user moves towards the center of

the cell. Meanwhile, the less demanding Foreman producer who is in less favorable channel

conditions can maintain a satisfactory video quality throughout the streaming session.
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(a) Bus
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(b) Soccer
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(c) Football

100 120 140 160 180 200
1

1.5

2

2.5

3

3.5

4

4.5

M
O

S

Time (sec)

 

 

QoE-based Live
QoE-based VoD

(d) Foreman

Figure 4.10: MOS of the different users as a function of simulation time applying both dis-
tributed and network-based QoE optimizations at the mobile terminals and the eNodeB, re-
spectively. The QoE-based Live and VoD curves show the MOS a video consumer will achieve
when requesting the video from the portal for live and on-demand consumption, respectively.

The network-based QoE optimization (Figure 4.10(a)-4.10(d)) distributes the resources

by considering the channel and the video characteristics of each producer. This means that

users undergoing bad channel conditions (e.g., Bus and Soccer) can benefit from the QoE

optimization to upload a better video quality during channel fades. Furthermore, the de-

manding Football producer can achieve a higher MOS compared to the PF non-optimized

case. This comes at the expense of a slight degradation in the MOS performance for the

Foreman producer.

Figures 4.9 and 4.10 further illustrate the gains of the distributed QoE optimization at

the mobile terminals for PF scheduling and network-based QoE optimization, respectively. In

both cases a refined streaming performance is observed for all on-demand video consumers.

Interestingly, the live quality of the soccer video in Figure 4.10(b) drops as the upstream

user moves towards the edge (115 sec). In this case, only the base layer is uploaded for live
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(a) Network-based QoE optimization.
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(b) PF scheduler.

Figure 4.11: Mean MOS of all users as a function of simulation time. The network-based
QoE optimization provides a better and smoother video quality compared to the LTE PF
scheduler.

consumption. As the user moves again to the center of the cell (135 sec), the live video quality

improves again and additionally the enhancement layers of previous GoPs are uploaded for

on-demand consumption. For a VoD consumer, who requests the video from the portal after

20 seconds, the MOS will be substantially ameliorated (MOS increases by up to 1.5).

Figure 4.11 depicts the mean MOS of all the uploaded videos for the same simulation

run. The network-based QoE optimized scheme sustains the average video quality and dis-

tributes the resources among the video producers to maximize the overall quality of experience.

Meanwhile, the PF scheduler only adapts to the channel conditions which results in a fluc-

tuating video quality. Moreover, both schemes show the potential improvement of applying

the distributed QoE optimization at the mobile terminals. By caching and uploading the en-

hancement layers, the overall user experience for video on-demand consumption is enhanced.

Figure 4.12 shows the average mean MOS and the standard deviation over 50 simulation

runs. As can be seen, for both schemes, the mean MOS for on-demand viewers can be improved

by uploading additional enhancement layers before the playout deadline. In addition, the

QoE-based optimization scheme manages to improve the mean MOS substantially for both

live and on-demand consumers, when compared to the PF scheme. In fact, by adapting the

transmission rates of the different producers, the network-based QoE optimization prevents

the system from running into overload and thus allows for an improved overall user satisfaction.

Besides, it results in less variation in the resulting mean MOS across the different simulation

runs. Again, by shaping the transmission capacity of each terminal a more consistent user

experience can be achieved.
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Figure 4.12: Average mean MOS of all users and the standard deviation of the mean MOS
over 50 simulation runs.

4.7 Chapter summary

This chapter presents a systematic approach for live and on-demand uplink video transmission

from video producers to sharing portals over next generation LTE networks. More specifically,

a QoE-based uplink resource optimization system which involves both the network and the

mobile producers is considered. Additionally, a video portal plays a key role by providing

feedback to mobile terminals on the desired playout deadlines for the uploaded video content.

The chapter proposes an optimal distributed model and a low-complexity iterative algorithm

for scalable video transmission at mobile terminals, which adapts the uplink video transmission

to the variable channel characteristics to provide optimal user experience for different types

of consumers. The proposed QoE optimization approach is validated both theoretically and

practically in an LTE OPNET simulator.

The experimental evaluation shows that the state-of-the-art proportional fair LTE sched-

uler results in suboptimal performance, in particular for resource-demanding videos. By

acquiring general knowledge about the content characteristics, the base station can more

efficiently shape the resources of each user to improve the level of user satisfaction in the

mobile cell. The mobile terminals make the scheduling decisions based on their individual

GoP characteristics and the available transmission rate. Indeed, both the network-based and

the distributed QoE optimizations presented in this chapter can be implemented in real-time

and require minimal signaling between the base station and the mobile equipments.

Moreover, this work exploits an important use-case for scalable video transmission over

wireless networks. It is an enabler for different video communication services. In particular,

live and time-shifted mobile video have been considered in this work. By properly adapt-
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ing the media transmission to the available network resources, significant improvements in

perceived video quality can be realized for on-demand video consumers while providing the

live consumers with the best possible quality in real-time. A main challenge for the practical

application of the proposed approach is the availability of real-time SVC encoders in the mo-

bile devices. This should be realistic in the near future given the rapid improvements in the

processing and storage capabilities of mobile phones.



Chapter 5

QoE-based adaptive HTTP downlink

video delivery

This chapter focuses on the downlink transmission of adaptive HTTP video content over next

generation mobile networks. It presents a QoE-driven approach for multi-user resource op-

timization in Dynamic Adaptive Streaming over HTTP (DASH) over LTE. The objective is

to enhance the user experience in adaptive HTTP streaming by jointly considering the char-

acteristics of the media content and the available wireless resources in the operator network.

Specifically, a proactive QoE-based approach for rewriting the client HTTP requests at a proxy

in the mobile network is proposed. The advantage of the proposed approach is its applica-

bility for OTT streaming as it requires no adaptation of the media content. Furthermore,

the proposed scheme is compared to both reactive QoE-optimized and to standard-DASH

HTTP streaming. The performance evaluation, carried out using both objective and subjec-

tive experiments, shows that by taking a proactive role in determining the transmission and

representation rates, the network operator can provide a better video quality and a fairer QoE

across the streaming users.

5.1 Introduction

RTP/UDP-based streaming requires a specialized streaming server and is often blocked by

firewalls. On the other hand, traditional HTTP/TCP progressive download is widely de-

ployed nowadays (e.g., YouTube). Nevertheless, it does not support intra-session rate adap-

tation which results in frequent stallings under throughput limitations. Due to the TCP

rate fluctuations, over-provisioning of the network resources is often required in conventional

HTTP/TCP streaming. Indeed, [WKST08] concludes that the TCP throughput should be

twice the video bit-rate to ensure a good streaming performance.

59
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Figure 5.1: Typical client request and response timings during an adaptive HTTP streaming
session [AABD12]. In the buffering state, a client builds up its buffer by requesting new
segments after the current download finishes until a maximum buffer size is reached. In the
steady state, a client aims to maintain a constant buffer size which results in ON-OFF periods.

DASH is specially designed to adapt the video quality to mobile networks with limited

and highly variable resource availability. It provides multiple bitrate encodings of the same

content which allows a client to continuously adjust its video rate during a streaming session

to the current channel conditions. Nevertheless, DASH faces several challenges when it comes

to video transport in multi-user mobile environments.

First, DASH gives the control of the streaming rate to the client. Recent studies show a

fluctuating throughput and an underutilization of the network resources when multiple clients

are competing for shared resources [ABD11] [AABD12]. Figure 5.1 explains a conventional

client behaviour when requesting media segments from the server. At the beginning, a client

tries to quickly build up its buffer by requesting a new segment immediately after the current

segment is received until a maximum buffer size is reached (buffering state). Afterwards, a

client aims to maintain a constant playout buffer size (steady state). In this case, the inter-

request time is set to be equal to the video segment duration (T ) which results in active (ON)

periods, where the client is downloading a video segment, and idle (OFF ) periods.

A client measures its TCP throughput during the ON intervals and then determines the

streaming rate for the next segment. Figure 5.2 illustrates some cases where the ON-OFF

intervals can be problematic when estimating the TCP throughput by a client. Figure 5.2(a)

first considers a single user scenario who observes a TCP throughput which is higher than

its video rate (i.e., ON < T ) and consequently attempts to increase its streaming rate. In

Figure 5.2(b), a second user is sharing the same resources and the ON-OFF intervals of the

two users are non-overlapping. Subsequently, increasing the video rate of both users will

lead to congestion as the network resources are already fully utilized in this case. Figure

5.2(c) shows the case when the ON-OFF intervals of the two users are fully overlapping. The
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Figure 5.2: Illustrative example of ON-OFF periods at a client. The network resources are
distributed in the time and frequency domain [AABD12] [LZG+13].

network resources are only half utilized in this case, and while the clients can reach an efficient

throughput allocation at the end by increasing their streaming rates, the reactive behaviour

of the client indicates a considerable delay to reach the optimal solution. A deeper discussion

on the client behaviour can be found in [AABD12] [LZG+13].

Consequently, relying on the client decisions barely results in an optimal user experience.

To address these issues, recent research focuses on improving the rate control logic at the

client [JSZ12] or server [AADB13] for stabilizing the client’s behaviour and efficiently using the

network resources. Another promising approach is to transmit meta information that describes

the quality of the representations such that the clients are made QoE-aware [THKP12]. All

these approaches, however, optimize the HTTP streaming of a single client without further

considering the influence on other DASH users sharing the same network resources.

To this end, there is a growing research interest in exploiting the multi-user adaptive HTTP

streaming scenario. Instead of individually adapting the streaming rate of each user, the

objective herein is to jointly optimize the transmission of multiple adaptive HTTP streaming

users that share common resources. So far, the adaptive HTTP-based video delivery has been

mainly studied from an end-to-end server-client perspective and the mobile network is treated

as a black box [BAB11b] [MBBN11]. In the wireless network this means that DASH adapts

the video quality individually for every user to the resources allocated by the scheduler in

the eNodeB. The eNodeB, however, is typically not content-aware and the scheduler assigns

resources only based on the channel conditions and without considering the characteristics of

the transported content.
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QoE-based resource allocation over wireless networks has been proposed for traditional

RTP/UDP streaming (e.g., [TKSK09]) but has not yet been studied for adaptive HTTP

media delivery. In-network content adaptation (e.g., transcoding [LG05]) is used to shape the

transmitted video streams according to the QoE optimization result. This, however, is costly

in terms of computational resources and induces additional delays. Meanwhile, DASH provides

inherent adaptivity by encoding the same content at multiple bit-rates which simplifies the

video adaptation compared to RTP/UDP based optimizations.

With respect to multi-user resource allocation for adaptive HTTP video delivery, it has

been studied in [MB11] [HG12] [WSHS12]. In [MB11], network traffic management for adap-

tive HTTP video delivery across multiple clients is considered. The target bitrate is deter-

mined by the network based on available throughput estimates of all users. The authors

in [HG12] conclude that a simple rate shaping policy in a residential gateway can improve the

adaptive HTTP experience among two competing clients. [WSHS12] studies adaptive HTTP

streaming in LTE networks with the aim of minimizing the number of interruptions. The in-

vestigated approaches, however, can be classified as reactive, i.e., they focus on optimizing the

network resource allocation to meet an objective criteria and the clients react to the assigned

resources. Recently, [PZC12] proposed a rate adaptation algorithm, WiDASH, for optimiz-

ing the adaptive HTTP streaming across multiple wireless clients. The proposed approach,

however, does not consider the individual content characteristics of the different clients and

aims at stabilizing the user throughput. Also, different from the approach presented in this

chapter, the authors of [PZC12] propose to transcode the DASH stream, similar to typical

RTP/UDP based optimizations (e.g., [TKSK09]), which is costly and may react too late.

The goal of this chapter is to evaluate the benefits of QoE-based traffic and resource

management in the mobile network in the context of adaptive HTTP streaming. It exploits the

mobile operator’s knowledge about the radio conditions in the cell and the streaming users in

terms of their content characteristics to maximize the overall user satisfaction. Different from

previous work, the objective here is to proactively adapt the streaming rate and the network

resources to the user perceived quality in adaptive HTTP streaming. Also, different from rate

adaptation schemes which adjust to throughput variations, the QoE-based multi-user resource

allocation approach directly considers the impact on the user quality of experience given that

the streamed contents exhibit different rate-distortion characteristics.

The remainder of the chapter is structured as follows. First, Section 5.2 presents the

proposed QoE-based optimization system for adaptive HTTP streaming. The experimental

and the subjective evaluation results are then described in Section 5.3 and Section 5.4, re-

spectively. These results are further validated in an LTE OPNET simulator as described in

Section 5.5.
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Figure 5.3: System image of QoE-driven adaptive HTTP mobile video delivery, illustrating
both proactive and reactive optimization approaches.

5.2 QoE-based adaptive HTTP streaming system

A schematic depiction of the proposed QoE-based adaptive HTTP system is given in Fig-

ure 5.3. Multiple mobile clients are simultaneously downstreaming different DASH content

over an LTE network. At the DASH server, the utility information of each content is first

extracted and added to the MPD. The envisioned approaches for signaling meta information

are explained in Section 5.2.1. At the base station or close to it, a QoE optimizer collects

utility and channel information about the different clients, and then determines the target

transmission rates using utility maximization, as described in Section 5.2.2. Furthermore,

proactive and reactive approaches are considered for adapting the streaming rates, which are

presented in Section 5.2.3.

5.2.1 Utility curve signaling

This study considers two options for providing meta information about the streamed DASH

content. In the first case, the parametric model (PM) from [CISN05] is used which requires

three pairs of rate and distortion to represent each video sequence. Please note that this

represents a generic MOS-Rate function which can be delivered for instance at the beginning

of the streaming session. The model from [CISN05] can be then used to generate an arbitrary

set of MOS-Rate operating points. In the second case, the utility information is provided in

the form of MOS-Rate pairs for each representation in the MPD. Although the DASH protocol

does not explicitly define how to transmit utility information, it provides various options for

this [ISO12]. The utility can, for example, be signaled in the initialization segments of the
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Figure 5.4: Utility curves using the actual DASH representations and by fitting using the
parametric model from [CISN05].

MPD. In DASH, one initialization segment is allowed per representation. Alternatively, the

utility of different representations within a program period can be added to the Subset element

of DASH [THKP12].

To generate the DASH representations, a video sequence is encoded at different quality

levels with the H.264/AVC video codec. Specifically, a total of 11 different quantization

parameters ranging from 20 to 40 are used at the encoder to generate 11 representations of the

same video. Then, the average bitrate and average MOS is calculated for each representation.

The MOS is computed using the same linear mapping with the PSNR as in Section 3.2.1.

Figure 5.4 shows the utility curves for three different video sequences which correspond to the

discrete MOS values of the actual DASH representations and the interpolated values using

the PM from [CISN05]. For the parametric model, three MOS-rate pairs that correspond to

the quantization parameters of 40, 28 and 20 are used. The fitting of other MOS-Rate points

is performed according to (2.3).

5.2.2 Optimization objective

The objective of the QoE-based resource allocation is to determine the transmission rates of

all clients that maximize the overall user satisfaction. This work uses the objective function

originally proposed in [TKS11]. The optimization problem for K clients is given by:

arg max
(α1,...,αK)

K∑
k=1

Uk(αk)− Pk (5.1)
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subject to

K∑
k=1

αk = 1, Rk ≥ Rmin,k (5.2)

where Pk = min(0, |Uk(αk)t − Uk(αk)t−1| − 0.23) (5.3)

where (5.1) determines the network resource share of each user that maximizes the sum

of utilities. It additionally penalizes the temporal fluctuations of the video quality which are

perceivable by the users. Specifically, it adds a penalty term Pk if the quality change between

two successive optimization rounds (denoted by t and t−1) exceeds a just noticeable difference

(JND) threshold. In this work, an average JND threshold for all users is considered which

has been derived using subjective tests and is equal to 0.23 MOS [TKS11]. (5.2) constrains

on the available resources and defines a minimum rate that should be allocated to each user

(e.g., lowest representation).

Each αk value corresponds to the fraction of total PRBs assigned to user k in each op-

timization round. A gradient-based greedy algorithm, similar to the work in [JF07], is used

to determine the values of αk (see Algorithm 1 in Section 3.3.2). Depending on the utility

information two types of optimization are applied:

1) Continuous QoE optimization (QoE): In the case parametric meta data about the

streamed content is available, the algorithm will search for the set of αk values that maximizes

(5.1). For arbitrary small αk → 0, the algorithm can choose from a continuous set of rates for

each user. The optimal bit-rate is returned by the QoE optimizer.

2) Discrete QoE optimization (QoE-d): When the actual MOS-Rate values of the DASH

representations are available, the algorithm will choose from a discrete set of operating points.

The set of αk values corresponds to the encoding rates which are defined in the MPD. The

actual target representation rate from the MPD is returned by the QoE optimizer.

5.2.3 Enforcement of video quality adaptation

Knowing the target transmission rate of each user as described in (5.1)-(5.2), the objective is

to adapt the application to the data rates supported at the lower layers. When the DASH

server and the mobile clients are contained in the operator network, the mobile operator can

fully optimize the video delivery. This corresponds to the case of managed content where

the server can adapt the streaming rate of each client to the target rate returned by the

QoE optimizer. Internet video streaming, on the other hand, is dominated by OTT content

where the server lies outside the operators’ network. Specifically, two different paradigms for

determining the streaming or representation rate of each user, given its target transmission

rate are considered:

(A) Proactive optimization: Consider a proxy (e.g., at the edge of the wireless network)

which intercepts the client HTTP requests and rewrites them according to the feedback
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from the QoE optimizer. In the proactive approach (Figure 5.3), the target rate of each

client is signaled to a resource shaper and the proxy server. The resource shaper limits the

TCP throughput of each client. In addition, the proxy rewrites the client HTTP requests

and forwards them to the DASH server. Specifically, it rewrites the client requests to

the closest lower representation. The DASH server and the DASH clients are unaware

of the proxy operation, i.e., each client will decode and play an optimized representation

for its requested segment. This approach exploits the multiple bit-rate encodings within

the MPD and requires no adaptation to the media content, which makes it particularly

suitable for OTT video streaming. It additionally allows a mobile operator to control

the streaming rates of the different clients based on the cell load and the individual radio

conditions.

Proactive optimization has been considered in the earlier work in [TKSK09] to shape the

video streams so that the system does not go into congestion. This work makes use of the

rate scalability in adaptive HTTP streaming to adapt the video streaming rates without

the need to access and decode the transported video content.

(B) Reactive optimization: Alternatively, a mobile operator can adapt the network re-

source allocation without interfering with the client decisions. In the reactive approach,

each client gets a TCP throughput equal to the target rate determined by the QoE op-

timizer (again enforced by the resource shaper in Figure 5.3). The representation rate,

however, is only determined by the media streaming client which reacts to the throughput

changes.

In both cases, a standard unmodified DASH client is considered. The approaches only

differ in how the QoE-based resource allocation result is exploited for dynamic rate adaptation

for overall QoE optimization.

5.3 Experimental results

5.3.1 Experimental setup

In the following, a single LTE cell with 8 clients requesting different DASH videos is considered.

Specifically, 11 representations are available for each video as explained in Section 5.2.1. For

the experimental evaluations, the Microsoft Smooth Streaming client [ABD11] and the DASH-

enabled VLC client [MT11] are chosen because DASH clients are still under development. The

two clients are used without any modification. Furthermore, a standard HTTP server is used

and the wireless network is emulated. In other words, a resource shaper is placed between the

server and the clients that limits the data rates per client to the output of the QoE optimizer.

In order to emulate an LTE network, the Dummynet [Riz97] software is used on the server
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which allows enforcing bandwidth/bitrate limitations at TCP level by creating pipes. Several

pipes outgoing from the server can be created and assigned to different users, so multiple

downstream users will experience different bitrates. 50 simulation runs are considered in

order to study the impact of different mobility patterns. All users start streaming at the same

time. Table 5.1 summarizes the simulation parameters.

Moreover, the following schemes are compared:

• QoE-Server: The server encodes the video stream at the optimal rate returned by

the QoE optimizer. This provides an upper limit on the achievable QoE in the case of

managed video content.

• QoE-Proxy: The optimal rate is first signaled by the QoE optimizer to the proxy. The

proxy then chooses the closest lower available streaming rate from the MPD, rewrites

the client request and forwards it to the DASH server. This represents approach (A) in

Section 5.2.3 where the DASH server is outside the control of the network operator.

• QoE-d-Proxy: Similar to the QoE-Proxy scheme. However, the optimizer uses the

discrete utility representation and returns the target rate (MPD compatible) to the

proxy which again rewrites the client request. This also represents approach (A).

• QoE-Reactive: Each client gets a TCP throughput equal to the optimal rate deter-

mined by the QoE optimizer. The streaming rate, however, is only determined by the

media streaming client. This corresponds to approach (B).

• Non-Opt: Standard OTT DASH streaming where the transmission rate is determined

by the content-agnostic LTE scheduler, and the streaming rate is dynamically decided

by the standard DASH client. This represents the reference scheme for comparison.

5.3.2 Comparative evaluation of the different schemes

The Microsoft Smooth Streaming client is first considered for assessing the different ap-

proaches. Moreover, the MOS is measured from 20 to 60 seconds to exclude the client de-

pendent start-up behaviour. In Figure 5.5, the distribution of average mean MOS for the

different schemes is depicted in order to highlight the differences in the overall performance.

The QoE-Server approach represents the optimal performance when all users are streaming

at their optimal rates. The MOS for the QoE-Proxy approach will drop compared to the

QoE-Server scheme as only a discrete set of representations is available. Meanwhile, the MOS

degradation is less noticeable in the QoE-d-Proxy approach and is close to the optimal value

(QoE-Server) as the QoE optimizer considers the actual DASH representations in the opti-

mization problem. The QoE-Reactive scheme improves the perceived video quality compared
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Table 5.1: Experimental and simulation setup parameters for the adaptive HTTP downlink
streaming scenario

Application parameters

Video codec H.264 AVC, CIF, 30 fps

Application type Adaptive HTTP streaming

Segment size 2 sec

Number of clients 8

Client software MS Smooth Streaming, DASH-enabled VLC [MT11]

LTE parameters

System Bandwidth 5 MHz

Number of PRBs 25

PRB size 12 subcarriers

Subcarrier spacing 15 KHz

Bandwidth per PRB 180 KHz

SNR averaging cycle 2 sec

Link layer model [3GP08b] see (3.2)

Channel model Urban macrocell

Shadowing disabled

User speed 30 km/h

Default scheduler Round Robin (RR)

Experimental parameters

Number of runs 50

Experiment length 60 sec

to the non-optimized DASH scheme (Non-Opt). The MOS for the QoE-Reactive scheme,

however, drops compared to the proactive approaches as the client reacts late to throughput

changes and does not always converge to the best representation level. Please note that for the

QoE-Reactive and Non-Opt schemes the streaming rate is only determined by the client. The

QoE-Reactive, QoE-Proxy, QoE-d-Proxy and QoE-Server schemes improve the average user

satisfaction by 0.2, 0.36, 0.48 and 0.57 on the MOS scale compared to the Non-Opt scheme,

respectively.

Furthermore, the mean MOS for the individual videos is evaluated in order to explain

and further highlight the benefits of the QoE optimization that considers the content char-

acteristics (Figure 5.6). The Non-Opt scheme provides a very good performance for the less

demanding videos but fails for more demanding ones like bus, coastguard and harbour. Mean-

while, the QoE-based schemes allocate the resources among the users such that the overall

user satisfaction is maximized. This results in substantial gains in perceived video quality for

the demanding users while maintaining the MOS for the less demanding videos.
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Figure 5.5: CDF of the mean MOS for 8 users. The figure illustrates the MOS gains for
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Figure 5.6: Individual performance averaged over 50 simulation runs. MOS gains are more
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Temporal quality analysis

In the following, the temporal video quality of the QoE-Proxy approach is assessed and

compared to the QoE-Reactive and Non-Opt schemes. Specifically, two separate experiments

are conducted, one with the Microsoft Smooth Streaming client and one with the DASH-

enabled VLC client [MT11]. Please note that in both experiments the clients remain unmodi-
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Figure 5.7: OPNET channel traces of 3 users as a function of time (segment = 2 seconds).

fied and thus the control mechanisms and buffering behaviour depend on the respective client

implementation.

Figure 5.7 shows the signal-to-noise ratio (SNR) of three users who are undergoing dynamic

channel variations. Figure 5.12 (a)-(f) show the requested representations by the users for

the different schemes. The available transmission capacity for each user is shown for the

non-optimized (Throughput RR) and the optimized (Throughput QoE) cases, as determined

by the default LTE scheduler and the QoE optimizer, respectively. The Non-Opt and QoE-

Reactive schemes indicate the corresponding representations as requested by the media client

in both cases, respectively. For the QoE-Proxy approach, the client is unaware of the rewriting

of the HTTP requests and can decode the redirected segments in both experiments.

In Figure 5.12 (a) and (b), both clients start streaming at a low bit-rate whereas the QoE-

Proxy approach can start streaming at a much higher rate. Indeed, the user is experiencing

favorable channel conditions and rewriting the requests cancels the slow-start behaviour of

the standard clients. The Microsoft Smooth Streaming client smoothly increases the represen-

tation rate while the DASH-enabled VLC client immediately switches to a higher rate after

the start-up phase (5 segments). As the channel conditions of the Soccer user deteriorates,

the QoE-Proxy approach switches to a lower representation while the other approaches can

continue playout at a higher rate for some time, as they have already buffered these rep-

resentations during the start-up phase. As the channel conditions improve again (after 15

segments), QoE-Proxy can quickly switch to a higher rate whereas the other approaches are

late to react.

Figure 5.12 (c) and (d) consider the demanding Coastguard user who undergoes some bad

channel conditions after a good start-up phase. In this case, the DASH-enabled VLC client
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will run into a sequence of ”rebuffering” events (e.g., after 14, 19, and 25 segments for the

QoE-Reactive approach). The Microsoft Smooth Streaming client can continue to play the

video at a higher rate before it switches to a lower representation. This is again explained by

the buffered segments when the user was in an excellent channel condition.

Figure 5.12 (e) and (f) consider the Container user whose channel quality is bad at the

beginning of the streaming session and starts improving afterwards. The Microsoft Smooth

Streaming client and the DASH-enabled VLC client slowly adapt to the channel improvements

and would only converge to the rate of the QoE-Proxy scheme after 27 and 24 segments,

respectively.

These results show that the DASH-enabled VLC client provides the worst user experience

as it fails to maintain quality during deep channel fades and runs into ”rebuffering” mode.

The Microsoft Smooth Streaming client keeps a large buffer which allows it to maintain a

good quality when the channel degrades but often reacts very late and does not converge to

the best representation. Meanwhile, the proposed QoE-Proxy approach can fully utilize the

network resources and provide the best possible representation for each client under different

channel conditions.

Perceptual video quality assessment

Furthermore, the perceptual gains of the proposed QoE-Proxy approach with respect to the

QoE-Reactive scheme are illustrated using the Microsoft Smooth Streaming client. Figure 5.13

shows snapshots captured at different time instants during the start-up phase and after the

quality has stabilized. The figure shows remarkable gains in perceived video quality that can

be achieved by proactively adapting the video transmission rate by the QoE-Proxy scheme.

5.4 Subjective quality assessment

In order to assess how the different schemes impact the video perception, a subjective eval-

uation is performed with human subjects. For the subjective tests, the Microsoft Smooth

Streaming client is selected because it performed better than the DASH-enabled VLC client

[MT11] in the objective experiments. Without loss of generality, the following results can

be applicable to any DASH system. Furthermore, a standard HTTP server is used and the

wireless network is emulated similar to the experiments in Section 5.3.1.

Two scenarios each with 8 adaptive HTTP streaming users in one LTE cell are simulated.

The simulation parameters are presented in Table 5.1. Each user is downstreaming a differ-

ent video with specific rate-distortion characteristics (soccer, ice, bus, coastguard, foreman,

akiyo, container, harbour). In the first scenario (scenario 1), users move in the cell with a

speed of 30km/h. The second scenario (scenario 2) presents more rapidly changing channel

conditions as all users move with a speed of 120km/h. Moreover, the QoE-Proxy and the
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QoE-Reactive approaches are assessed. These methods are also compared to a non-optimized

scheme (Non-Opt) where the PRBs are equally shared among the users, and the streaming

rate is dynamically decided by the client. As a result, there are 6 cases to evaluate.

5.4.1 Test methodology

The subjective test is conducted using the SAMVIQ (Subjective Assessment of Multimedia

Video Quality) method [IR07], which is specifically designed for assessing multimedia appli-

cations. The viewer is given access to several versions of a video which he can select and play

through a computer graphic interface and then score as desired (Figure 5.8). The test videos

are presented to the subjects one-by-one. That is, for each video sequence, the subjects can

score the different approaches (buttons A to H) and can switch to the next video after rating

the previous one.

A 10 seconds long sequence extracted from the simulated 60 seconds is presented to the test

subjects (viewers) for each scenario and each optimization method. More precisely, seconds

30 to 40 from the sequences are extracted. This allows avoiding the typical poor quality start-

up phase of the adaptive streaming client (Microsoft Smooth Streaming). Additionally, 10

seconds of videos are a recommended duration for conducting subjective tests [IR07]. Besides

the evaluated 6 cases, viewers also rate a reference sequence (best possible quality), a hidden

reference and a poor quality sequence. The quality anchors are recommended to stabilize the

subjective results [IR07]. Viewers rate the videos on a continuous scale from 0 to 100. After

the screening procedure described in [IR07], the data of 20 test subjects was verified to be

valid. For each sequence, the average rating over the 20 viewers is taken and a differential

quality score (DMOS) [IT99] value is then computed by:

DMOS = R(sequence)−R(hidden reference) + 100 (5.4)

where R is the average rating over the 20 viewers. The DMOS value is used in the data

analysis as the subjective quality rating.

5.4.2 Test results

Figure 5.9 shows the mean DMOS over the 8 users in the cell. Additionally, the boxplot

illustrates the distribution of the DMOS values for the 8 users.

The first observation is that for both scenarios, QoE-Proxy achieves the best mean DMOS,

that is, provides the best mean QoE for the users. The QoE-Reactive approach achieves a

better mean DMOS than a non-optimized approach. That is, both QoE-based optimization

approaches improve the mean QoE compared to a non-optimized approach. In the more

dynamic scenario (scenario 2), the gains in term of mean QoE are more important compared

to the less dynamic scenario (scenario 1).



5.4. Subjective quality assessment 73

Figure 5.8: Graphical user interface, used in the subjective test, implemented using the
SAMVIQ method [IR07].
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Figure 5.9: DMOS of 8 users for 30 km/h (scenario 1) and 120 km/h (scenario 2). The error
bars represent the worst and best user ratings. The boxplot shows the median, 25th and the
75th percentiles.

Second, the boxplot indicates a larger spread of the users’ DMOS for the non-optimized

scheme. This indicates that in a non-optimized case, some users will experience an excellent

quality (e.g., low-demanding video users) and some may experience a bad quality due, for

example, to bad channel conditions and a high-demanding video. On the contrary, both QoE-

based approaches present a lower variance, which indicates that most users will experience a

similar quality, i.e., the fairness is improved by using a QoE-based method.

A detailed description of the individual results for each video and comparison with other
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objective QoE models is given in Appendix A.2.

5.5 LTE OPNET simulator results

5.5.1 Simulation setup

The adaptive HTTP optimization framework is further integrated and evaluated in an LTE

OPNET simulator. The simulator provides transport control between the HTTP server and

the HTTP clients using the TCP protocol. Nevertheless, adaptive HTTP is not directly

supported in the OPNET simulator. Therefore, custom application profiles are used to set up

an adaptive HTTP session between an HTTP server and multiple clients in a single LTE cell.

Moreover, a client-driven rate adaptation algorithm [LBG11b] is implemented to decide on the

segment switching at the mobile users. In addition, a rate controller module is implemented

to limit the transmission rate of each client to the output of the QoE optimizer.

Client-driven adaptive HTTP algorithm [LBG11b]

A client-driven rate adaptation technique for adaptive HTTP streaming is implemented

based on the approach from [LBG11b]. In this algorithm, the client compares the segment

fetch time (SFT) of the segment with the media segment duration (MSD) to estimate the

available data rate. So the client switches up/down to different bitrates between the available

representations after receiving the last segment and before sending the next request. The

SFT is defined as the time between sending the segment request and receiving the last bit of

that segment. Moreover, the ratio of the media segment duration to the segment fetch time

is used as a metric to detect the network capacity.

µ =
MSD

SFT
(5.5)

In this algorithm, switching to different representations is performed as follows:

Switch up: If µ > 1+ε then the client switches up to the next higher bitrate representation

level, where ε is the switch up factor and can be determined as

ε = max
i=1...N−1

bri+1 − bri
bri

(5.6)

where bri denotes the bitrate of representation i and N is the highest representation level.

Switch down: If µ < 1 the client will switch to a lower representation. In the switch down

case, an aggressive switch down will be performed and the highest bitrate representation that

satisfies inequality (5.7) will be selected.

bri < µ · bc (5.7)

where bc denotes the bitrate of the current representation.
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(b) Resource utilization.

Figure 5.10: Performance comparison of the different schemes for 8 users streaming adaptive
HTTP content in a simulated LTE cell. The results are averaged over 20 simulation runs.

Rate controller

A rate controller is implemented at the eNodeB that reshapes the transmission rate of

each user based on the output rate of the QoE optimizer. This is similar in function to the

rate shaper used in the previous experiments. In adaptive HTTP streaming, the server sends

the requested segments into the network at very high speed. This means that mobile users

streaming at low data rates (e.g., non resource-demanding videos) will fetch much data within

a short interval and quickly fill up their buffers while mobile users streaming at high data rates

will experience larger delays. The rate controller is implemented at the eNodeB scheduler.

It takes the optimized data rates for each bitstream as input from the QoE optimizer. The

input traffic from higher layers is placed into the temporary buffers at the scheduler and the

rate controller regulates the output rate. In short, the rate controller module limits the data

rate of each bitstream to the QoE optimizer rate.

5.5.2 Simulation results

An LTE macrocell is considered with the adaptive HTTP custom application deployed. The

mobile users are HTTP streaming clients and the server is an HTTP server. A total of 11

representations are available for each video. A segment duration of 1 second is considered.

The clients start playout immediately after receiving the first segment. The simulation setup

parameters are the same as in Table 5.1. Moreover, the QoE-Proxy, QoE-Reactive and Non-

Opt schemes are compared (Section 5.3.1). For the Non-Opt scheme, the assigned resources

are determined by the proportional fair scheduler in the LTE network.

Eight user scenario

In the first simulation setup, 8 users are considered in a simulated LTE cell. Users start



76 Chapter 5. QoE-based adaptive HTTP downlink video delivery

100 150 200 250 300
1

1.5

2

2.5

3

3.5

Time (sec)

M
ea

n 
M

O
S

 

 

Non-Opt
QoE-Reactive
QoE-Proxy

(a) Mean QoE over time.

100 150 200 250 300
75

80

85

90

95

100

Time (sec)

U
til

iz
at

io
n 

(%
)

 

 

Non-Opt
QoE-Reactive
QoE-Proxy

(b) Resource utilization.

Figure 5.11: Performance comparison of the different schemes with 8 users starting streaming
at 100 sec and 5 more users joining at 200 sec. The results are averaged over 20 simulation
runs.

streaming after 100 seconds and are continuously streaming for 200 seconds. Figure 5.10(a)

shows the resulting QoE averaged over the 8 users and 20 simulation runs. The QoE-Proxy

provides the best user experience, which confirms the previous results. The QoE-Reactive ap-

proach also performs better than the non-optimized case. Specifically, QoE-Reactive provides

a mean gain of 0.16 on the MOS scale compared to the non-optimized case and QoE-Proxy

provides a mean gain of 0.28 on the MOS scale. Furthermore, the number of buffer underflows

are analyzed for the QoE-Proxy approach. Over the 20 simulations with 8 users requesting

each 200 segments, which makes at total of 32000 segments, there are 33 playout interrup-

tions. This corresponds to 0.1% of the segments. This shows that the QoE-Proxy approach

not only offers the best visual quality, it also provides an almost interruption-free playout.

Figure 5.10(b) shows the percentage of resource utilization in the LTE cell over time for

the different methods. In the non-optimized case, the resource utilization is constantly 100%

over time. There is no rate-adaptation in this case, thus there is no limitation on the data that

comes from the server to the eNodeB. The buffers at the eNodeB are filling without control,

which can lead to congestion. On the other hand, in the QoE-based approaches, the resource

utilization is about 90%. This is due to the rate control at eNodeB (Section 5.5.1) where the

rate for each user is limited to the output of the QoE-optimizer. In this case, congestion is

avoided, and although the radio resources are not totally exhausted, the QoE can be improved

for the users as shown in Figure 5.10(a).

Thirteen user scenario

In the second simulation setup, 8 users (soccer, ice, bus, coast, foreman, akiyo, container,

harbour) start streaming at time t=100s. Additionally, 5 streaming users (mother, crew, city,

football, bridge) join the cell at t=200s. Figure 5.11(a) shows the QoE on a MOS scale averaged
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over all users and 20 simulations. The QoE-Proxy approach provides the best QoE over time.

The QoE-Reactive also shows an improved QoE compared to the non-optimized case. When

the 5 additional users join, the mean QoE over all users drops sharply for the non-optimized

case and the QoE-Reactive method. This is due to the start behavior of the client, which

starts requesting video at a low quality. On the other hand, the QoE-Proxy method can

provide a good quality from the beginning of the streaming session, which explains that the

mean QoE is not dropping sharply as in the QoE-Proxy case when the additional users join.

In addition, the number of playout interruptions are examined for the QoE-Proxy method. In

total there are 42000 segments transmitted during the 20 simulations, and 88 interruptions

are observed. This corresponds to 0.2% of the total number of segments. This confirms that

the QoE-Proxy method is able to provide an almost interruption-free playout.

Figure 5.11(b) shows the mean resource utilization in the cell over the 20 simulations for

the different approaches. The resource utilization is 100% for the non-optimized scenario, as

there is no rate control in the cell. In both QoE-based approaches, the cell load is about 90%

when 8 users are streaming, similar to the case presented in Figure 5.10(b). When 13 users

are streaming, the cell load is about 95%. This means that the rate control allows to avoid

congestion in the cell, while providing a better QoE if the rate is controlled according to the

QoE-optimizer. A minor drop in the resource utilization is observed at t=200s when the 5

additional users join the cell. In the first second where the users join, no estimation of their

channel conditions has been performed yet, and they are assigned a low bit-rate.

5.6 Chapter summary

This chapter presents a QoE-based approach for jointly optimizing the adaptive HTTP media

delivery across multiple clients in a wireless cell. By considering the media characteristics

of each content and the channel conditions of the mobile users the optimal streaming rate

is determined. The experimental results show that QoE-based multi-user resource allocation

improves the user experience compared to non-optimized OTT adaptive HTTP streaming,

when using the same client adaptation algorithm. In addition, a QoE-based proxy approach

is proposed for redirecting the HTTP client requests to the optimal streaming rate, and which

can be still decoded by a standard DASH client. While client-based adaptation approaches

react late to channel variations and fail to stream at the optimal rate, significant gains in

user perceived video quality can be achieved by proactively adjusting the streaming rate. For

the performance evaluations, two standard adaptive HTTP clients are considered, namely the

Microsoft Smooth Streaming and the DASH-enabled VLC [MT11].

The experimental results are further corroborated by subjective tests, that reveal a higher

MOS, with improvements more notable in dynamic scenarios. Additionally, a fairer user

experience, up to 35% MOS increase for the worst-case user, compared to non-optimized
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OTT DASH is reported. Finally, the LTE OPNET simulator results confirm the superiority

of the proactive approach compared to the reactive approaches in terms of mean MOS over the

users. Additionally, the investigation of playout interruptions shows that the proxy scheme

can provide an almost stalling-free experience for the users.

In this chapter, both discrete and continuous QoE-based approaches for resource allocation

are investigated. One limitation of the continuous optimization is the requirement of concave

utility functions for modeling the R-D behaviour of the videos. In this work, the different

DASH representations are generated by varying the quantization parameter settings. More

generally, when varying the frame rate or spatial resolution the concavity property might

not hold. The discrete optimization, however, directly operates on the actual MOS/Rate

pairs and can be still applied in this case. Nevertheless, more complex mapping models which

characterize the MOS as a function of the different encoding parameters need to be considered.
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(a) Soccer: Microsoft Smooth Streaming
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(b) Soccer: DASH-enabled VLC [MT11]
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(c) Coastguard: Microsoft Smooth Streaming
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(d) Coastguard: DASH-enabled VLC [MT11]
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(e) Container: Microsoft Smooth Streaming
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(f) Container: DASH-enabled VLC [MT11]

Figure 5.12: Temporal assessment of the different optimization approaches. Throughput QoE
and throughput RR are the available rates for each user as determined by the QoE optimizer
and RR scheduler, respectively.
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(a) QoE-Proxy 2 seconds

 

(b) QoE-Reactive 2 seconds

 

(c) QoE-Proxy 15 seconds

 

(d) QoE-Reactive 15 seconds

 

(e) QoE-Proxy 29 seconds

 

(f) QoE-Reactive 29 seconds

Figure 5.13: Comparison of the visual quality for the QoE-Proxy approach and the QoE-
Reactive scheme.



Chapter 6

QoE-based traffic and resource

management for adaptive HTTP

streaming

Despite the growing interest in adaptive HTTP streaming, there is still a lack of understand-

ing of the mobile network’s potential in enhancing the user satisfaction, particularly for OTT

services. This chapter provides an insightful study of the multi-user resource allocation in

the network and the representation selection of the individual clients. Specifically, it extends

the proposed proxy approach in Chapter 5 to consider the playout buffer level of the clients,

and then considers distributed and joint QoE optimization approaches for solving the cor-

responding rate allocation problems. A playout buffer-dependent approach is proposed that

determines the representation rate of each client based on its buffer time and the achiev-

able QoE under current channel conditions, which smoothes the video playout over time.

Furthermore, the simulation results show that by jointly solving for the representation and

transmission rates, the wireless network resources are more efficiently allocated among the

users and substantial gains in the user perceived video quality can be achieved.

6.1 Introduction

In Chapter 5, different QoE-based traffic management approaches are investigated for enhanc-

ing the adaptive HTTP video delivery in next generation mobile networks. In particular, the

proposed proxy approach proactively adapts the streaming rates of the clients to the result

of a network resource allocation process that maximizes the overall utility. Indeed, by giving

control of rewriting the client decisions to a network proxy, the responsiveness to channel

81
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Figure 6.1: Receiver and playout curves of an adaptive HTTP video stream. Video segments
have a variable size and the same playback time.

variations is improved and a higher perceived video quality is achieved.

This chapter extends the optimization approach in Chapter 5 to additionally consider the

playout buffered video time at the client. In non-adaptive streaming, the buffer size (in bits)

is commonly used to measure the amount of buffered video at the client [SJK04]. In adaptive

HTTP streaming, the video segments correspond to representations with different bitrates

and that are characterized by a constant playback time (Figure 6.1). Therefore, the buffered

video time is used as a measure of the buffer fullness at the client.

The research on adaptation approaches for HTTP-based media delivery that relies on

client buffer information can be classified into two main categories:

• Client-based: The buffered media time is considered as a key parameter in designing

client-based adaptation strategies for adaptive HTTP streaming. Recently, much re-

search work studied the combination of rate, utility and buffer information to improve

the playback experience at the client (e.g., [ZXD+13], [TL12]). In their evaluation of the

end-to-end QoE in adaptive HTTP streaming over LTE, the authors in [OS12] conclude

that playout interruptions can be largely reduced compared to HTTP-based progressive

download. A client will typically switch to a lower streaming rate once its buffered

media time drops below a certain threshold in order to avoid playback stalls. In ad-

dition, experimental results have shown that mature adaptive clients eliminate playout

interruptions in real scenarios [MLT12]. Indeed, recent studies show that it is important

to address the multi-level rate switches as a measure of user dissatisfaction in adaptive

HTTP streaming (e.g., [KAS12], [MCLC11]). In this respect, [MLCC12] concludes that

gradual switches in the representation rates are preferred in adaptive HTTP streaming.
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• Controller-based: The buffered media time feedback has been also considered for op-

timizing the resource allocation in the mobile network. The majority of prior work

focuses on minimizing the stalling events (e.g., [WSP+12] [DSA+12]). [WSP+12] pro-

poses a traffic prioritization approach at the scheduler in the mobile network that relies

on playout buffer level feedback from YouTube videos. [DSA+12] presents an analyti-

cal model for the multiplexing of multiple variable bit-rate videos over a time-varying

wireless channel with the goal of minimizing the number of playout stalls.

[CSK12] proposes a predictive encoder and buffer control algorithm for statistical mul-

tiplexing of video contents that considers the quality, fairness and temporal smoothness

of the video streams. The approach in [CSK12] is categorically different from the work

presented in this chapter as it assumes that the channel dynamics are represented by

a Markov sequence and that future data rates are known a priori. This is not suitable

for real-time video streaming over wireless networks where the video characteristics and

the channel conditions are not known in advance.

Recently, [WSHS12] [SOP+12] proposed new metrics for optimizing the radio resource

management in adaptive HTTP streaming over LTE networks. The approaches modify

the resource allocation at eNodeB by considering the available DASH rates in the MPD

[WSHS12] and the reported buffered time by the client [SOP+12], respectively.

In this chapter, the feedback from the client on its buffered video time is considered to

refine the selection of the representation rate at the proxy. As a further step, the playout

buffer information of all clients is incorporated into the network resource allocation. The

objective here is to jointly optimize the streaming and transmission rates by considering the

instantaneous channel conditions, the content characteristics and the buffered video time of

the DASH users. Compared to the proxy approach in Chapter 5, this allows a mobile operator

to further tune the network resource allocation to the buffer demands of the mobile users.

Compared to prior work, this one is the first that addresses the joint network and application

rate allocation in the context of adaptive HTTP streaming.

The remainder of this chapter is organised as follows. Section 6.2 introduces the playout

buffer-aware QoE optimization approach. The enforcement of DASH rate adaptation and the

joint streaming and transmission rate allocation approaches are described in Section 6.3 and

Section 6.4, respectively. Then, the simulation results are presented in Section 6.5. Section

6.6 points out the limitations of this approach and Section 6.7 concludes the chapter.

6.2 Playout buffer-aware resource allocation

The QoE-based proxy adaptation scheme presented in Section 5.2 optimizes the adaptive

HTTP video delivery by considering the channel and content characteristics of the streaming
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users. This section investigates whether the playout buffer information can be utilized to

further improve the QoE. The buffer level is defined as the length of buffered media time at

the client which can be either estimated at the proxy by analyzing the timestamps of the

client HTTP requests or is reported by the client. Indeed, the DASH specification [ISO12]

defines a buffer level metric where the client reports the playout duration for which media

data is available.

In this section, two directions are considered where a) the buffer levels of the mobile

clients are only available at the proxy and used to enhance the streaming rate selection of the

individual clients and b) the buffer levels are additionally signaled to the QoE optimizer and

considered in the multi-user resource allocation. The first case is referred to as the distributed

DASH and network rate allocation, because the streaming and transmission rate problems are

solved separately and the later as the joint DASH and network rate allocation, where the QoE

optimizer has a global picture on the users’ conditions (channel, utility and buffer levels) and

jointly solves the two rate allocation problems.

In both cases, as with the proxy approach in Section 5.2, no modifications are required to

a standard DASH client which can decode and play the data from a rewritten HTTP request.

In the subsequent sections, Rk and Qk are referred to as the transmission and representation

rate for user k, as a result of the network and DASH rate allocation problems, respectively.

QoE-driven Adaptive HTTP media delivery
Outlook: Buffer-aware QoE optimization

• Current results: We show that the buffer-aware QoE optimization can improve the QoE by transmitting at a DASH 
rate which is higher than the current available rate, when a client has buffered enough media time.

• Next steps

“Playout-buffer aware optimizer with playout-buffer dependent quality bounds”, potential IPR under 
preparation.
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(a) Distributed DASH and network rate allocation.

QoE-driven Adaptive HTTP media delivery
Outlook: Buffer-aware QoE optimization

• Current results: We show that the buffer-aware QoE optimization can improve the QoE by transmitting at a DASH 
rate which is higher than the current available rate, when a client has buffered enough media time.

• Next steps

“Playout-buffer aware optimizer with playout-buffer dependent quality bounds”, potential IPR under 
preparation.
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(b) Joint DASH and network rate allocation.

Figure 6.2: Investigated approaches for traffic and resource management for adaptive HTTP
video delivery.

6.3 Distributed DASH and network rate allocation

In this case, the QoE optimizer first determines the optimal rate for each client as in (5.1)-

(5.2) and provides the rates to the resource shaper and the proxy (Figure 6.2(a)). The proxy

then considers both the returned rate and the buffer level of each client when deciding on the

representation rate. Specifically, two approaches are studied here: 1) the first one is to solve

for the optimal representation that considers the throughput and buffer time of each client
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without any additional constraints. This represents the highest possible streaming rate given

the buffer and transmission rate constraints. 2) The second approach aims at smoothing the

playout video quality by considering playout buffer-aware quality bounds for selecting the

representation rate of each client.

6.3.1 Optimal DASH rate selection

Given the available transmission capacity feedback from the QoE optimizer, the proxy solves

for the highest representation for each user, given its current buffer level. The transmission

capacity and buffer level are updated periodically (e.g., each 1 second). This approach is

similar to the QoE-Proxy scheme and additionally allows to stream at a higher rate than

the current transmission capacity if there is enough buffered media time at the client. The

objective of user k can be written as:

arg max
Qk

OptQ(Rk, Bk) = Uk(Qk) (6.1)

s.t. Qk ≤ Rk(1 +
Bk
Tseg

) (6.2)

where : Bk = buffer level (s), Tseg = segment size (s)

where Rk is its transmission rate as determined by the QoE optimizer, Qk is the repre-

sentation rate that maximizes the objective function in (6.1) and that satisfies the continuous

playout constraint at the client (6.2). If the current buffer level at the client Bk > 0, then

the user can stream at a representation rate which is higher than its transmission capacity

and less than Rk(1 + Bk
Tseg

), where Tseg is the segment duration. This represents the highest

possible representation that does not violate the buffer underflow constraint.

6.3.2 Playout buffer-dependent quality bounds

Instead of solving for the optimal DASH representation (6.1)-(6.2), the benefit of allowing

clients to build-up buffer that can later compensate for dynamic channel variations is investi-

gated. The main idea is to introduce upper and lower quality bounds which constrain on the

representation quality as a function of the playout buffer time at the client (Figure 6.3). To se-

lect the target representation, both the current buffer level and the achievable QoE according

to the instantaneous transmission capacity feedback from the QoE optimizer are considered.

This is illustrated in Figure 6.4 which shows the available representation qualities and the

actually selected representations as a function of the playout buffer time. Users who have few

segments in their buffer can transmit at a lower representation rate in order to build up their

buffers. Also, users with enough buffer can switch to a representation quality which is higher

than the one at the instantaneous transmission rate. The overall objective is to improve the
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user experience by observing the buffer demands and the decision impact on the perceived

user video quality.

The optimization is realized in two steps:

1) The MOS value (MOSRk
) that corresponds to the returned rate by the QoE optimizer

from (5.1)-(5.2) is determined. This represents the highest representation rate which is lower

than the target rate from the QoE optimizer (cf. (6.3)).

MOSRk
= sup {Uk(Qk) : Qk ≤ Rk} (6.3)

2) Upper bound (UB) and lower bound (LB) thresholds are defined for finding the rep-

resentation rate given the buffer level Bk and the current MOS value (i.e., MOSRk
). For

simplicity, in this work, linear thresholds are considered (cf. (6.7)). An example of these

boundary conditions is given in Figure 6.5. The values of a and b determine how fast the

users will deplete and build up their buffers, respectively. The values of TL and TH represent

the lower and upper QoE bounds, when the buffer level of the client is equal to zero. The

DASH rate selection problem for user k is:

arg max
Qk

OptQ(Rk, Bk) = Uk(Qk) s.t. (6.4)

Uk(Qk) ≤ min (UB,MOSRk
) if MOSRk

≥ UB (6.5)

Uk(Qk) ≥ max (LB,MOSRk
) otherwise (6.6)

UB = TH +Bk · b, LB = TL +Bk · a (6.7)

where (6.4) is the objective function for user k, (6.5) and (6.6) constrain on the desired

region of representation quality.

In this work, the value of TL is set to 1 on the MOS scale. That is, for users with

empty buffers, the requested representation rate should not exceed the available transmission

capacity. Also, the value of TH is set to 4 on the MOS scale, so that the representation

quality of the users with favorable conditions is not much degraded. For determining the a

and b values (0.35 and 0.05, respectively), the assumption is that users with enough buffered

segments (10 segments in this case) can request the highest quality representation. Please

note that the upper and lower bound thresholds have been selected to control the QoE in

a reasonable way. Nevertheless, other threshold values and in general more complex quality

bound definitions could be considered.

6.4 Joint DASH and network rate allocation

The objective is to optimize the network resource allocation based on the content and channel

characteristics and the client playout buffer levels. A big potential is foreseen in redistributing



6.4. Joint DASH and network rate allocation 87

Copyright © 2012 DOCOMO Communications Laboratories Europe GmbH  IRG

Buffer-Dependent-QoE-Range

Playout buffer time

QoE of requested 
representation

Max QoE

Min QoE

ra
ng

e 
of

 Q
oE

 v
al

ue
s

lower bound for 
QoE

upper bound for 
QoE

Figure 6.3: Illustration of the playout buffer-dependent quality bounds approach for selecting
the representation rate. The quality of requested representation is constrained to a target
region depending on the current buffer level.
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Figure 6.4: The representation is selected based on the buffer level and achievable QoE ac-
cording to the instantaneous transmission capacity feedback from the QoE optimizer.

the network resources while considering the buffer information. This allows, for instance,

to take some physical resources from a user without degrading the video quality of future

representations if it has buffered enough segments and to assign these resources to another

user with low buffer level which permits it to stream at a higher quality. Specifically, different

from Sections 5.2 and 6.3, where the resource allocation and the enforcement of streaming

rates were determined separately, both rate allocation problems are jointly solved now. In

this case, the proxy first provides the buffer level of each client to the QoE optimizer. The

optimizer then solves for the optimal transmission rate and the representation rate of each

client. The resulting rates are signaled back to the resource shaper and the proxy, respectively.
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Figure 6.5: Example of buffer-aware boundary conditions for selecting the DASH representa-
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considered in this work.

This is illustrated in Figure 6.2(b).

Thus, the objective of the joint optimization is:

arg max
(α1,...,αK)

K∑
k=1

OptQ(αk, Bk)− Pk, (6.8)

s.t.

K∑
k=1

αk = 1 (6.9)

where OptQ(αk, Bk) is the utility value of user k, as the resulting distributed DASH

optimization function in (6.1), respectively (6.4), for a given network resource share αk (Rk

via (3.5)) and buffer level Bk.

To solve this problem, an iterative descent algorithm is considered. Let ((R1)0, ..., (RK)0)

be the initial rate allocation vector and ((Q1)0, ..., (QK)0) the corresponding DASH rates

as determined in (6.1)-(6.2), respectively (6.4)-(6.6). At each iteration m, the algorithm

searches for the users i and j, where increasing the transmission rate (R+
i )m and decreasing

(R−j )m results in the maximum increase in the objective function (6.8). The corresponding

representation rates (Qi)
m and (Qj)

m are updated. The above procedure is repeated until no

further improvement in (6.8) is possible.

At each iteration, the objective function in (6.8) is maximized by determining the sensi-

tivity of users i and j to gaining or losing a certain resource proportion, while keeping the

optimization variables of the other users fixed, until convergence is achieved. The decision

on the representation rate Qk of user k for a given transmission rate Rk is done locally in-

dependent of the other users. This holds for both distributed optimizations in (6.1)-(6.2)
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and (6.4)-(6.6). Hence, the optimality of the optimization approach depends on the set of

achievable rates Rk that are considered inside the algorithm. For arbitrary small αk → 0, the

algorithm can determine an optimal rate allocation.

6.5 Simulation results

A resource-constrained LTE cell is considered with 8 clients streaming adaptive HTTP video

content from a DASH server. Each content is encoded into 11 representations by varying

the encoder’s quantization parameter. In the following, it is assumed that a client requests

a new segment immediately after the previous segment is downloaded. Furthermore, each

client provides a periodic feedback (each 1 sec) on its playout buffer level. The representation

and transmission rates for each client are determined at a time scale of 1 sec as well. The

simulation parameters are further illustrated in Table 6.1.

Figure 6.6 shows the individual channel traces and the mean SNR of the 8 users. In each

simulation run, the requested content and the channel condition of each user are shuffled. Each

content is limited to 20 segments. During the simulation, a user will periodically request a

new content type after it has downloaded the previous one. A pool of 12 videos with different

content characteristics is considered.

Moreover, the following schemes are compared:

• QoE-Proxy: This represents the buffer unaware proxy approach introduced in Sec-

tion 5.2 and is used as a baseline for comparison with the buffer-aware schemes.

• QoE-Opt: This corresponds to the optimal DASH selection approach in Section 6.3.1.

• QoE-QB: This represents the playout buffer-dependent quality bounds approach in

Section 6.3.2.

• QoE-Opt-Joint: This corresponds to the joint DASH and network rate allocation

approach in Section 6.4. The utilities are determined according to the optimal DASH

rate selection in (6.1).

• QoE-QB-Joint: This also represents the joint DASH and network rate allocation ap-

proach in Section 6.4. The utilities are determined according to the playout buffer-

dependent quality bounds approach in (6.4).

Figures 6.7 and 6.8 show the mean MOS and the mean buffer level of all users for the dif-

ferent schemes. Results are averaged over 50 simulation runs. The QoE-Proxy scheme always

selects the highest possible representation below the available throughput. Consequently, the

buffer level at the client will increase over time. Please note that buffer overflow is not con-

sidered here and it is assumed that clients have enough buffer depth. The QoE-Opt scheme
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Table 6.1: Simulation parameters for the buffer-aware adaptive HTTP downlink streaming
scenario

Application parameters
Video codec H.264 AVC, CIF, 30 fps
Application type Adaptive HTTP streaming
Segment size 1 sec
LTE parameters
Carrier frequency 2 GHz
System bandwidth 5 MHz
Number of PRBs 25
Bandwidth per PRB 180 KHz
SNR averaging cycle 1 sec
Link layer model [3GP08b] see (3.2)
Channel model Urban macrocell
Shadowing standard deviation 8 dB
Correlation distance of Shadowing 50 m
Simulation parameters
Number of users 8
Number of video sequences 12 videos
Simulation runs 50
Simulation time 300 sec

utilizes the buffer feedback to request a higher quality representation in case the buffer is

non-empty. Nevertheless, similar to the QoE-Proxy scheme, it adapts to the instantaneous

rate. The QoE-QB provides a smoother mean MOS compared to the two other schemes. It

builds up buffer at the client by requesting at a lower representation rate than the available

throughput and then utilizes the buffer to smooth the playout curve over time. It also leads to

a reasonably higher minimum mean MOS in the cell (3.08 for QoE-QB and 2.79 for QoE-Proxy

and QoE-Opt schemes).

The QoE-Opt-Joint and the QoE-QB-Joint refer to the case when joint throughput and

DASH rate optimization is considered. The QoE-Opt-Joint allows for a higher quality level

compared to the QoE-Opt scheme but it still runs the client buffers to their limits and ends in

a fluctuating mean MOS over time. The QoE-QB-Joint, on the other hand, provides the best

overall video quality. The gain comes from the building/depleting of the client buffers and the

time multiplexing of the representation rates and the transmission rates of the clients. For

instance, between 200 and 250 sec, users build up enough buffer which is used afterwards to

stream at a higher quality when the channel deteriorates. In the QoE-QB scheme, however,

the transmission rate only depends on the content and the channel properties of the different

clients. This means that users with good channels will get a high transmission rate, irrespective

of their buffer level. As a result, the gap between the representation and transmission rates

is reduced, overall less buffer is built up and the perceived quality will drop faster compared

to the joint optimization scheme.

Figure 6.9 describes the mean MOS gain compared to the buffer unaware QoE-Proxy
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Figure 6.6: Mean SNR of all users as a function of time. SNRs of individual users are shuffled
at each simulation run.
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Figure 6.7: Mean MOS of 8 users as a function of simulation time averaged over 50 simulation
runs.

approach. The QoE-Opt and QoE-QB, which use the same resource allocation approach as

the QoE-Proxy, can result in a higher MOS by utilizing the buffer feedback when selecting the

DASH representation. The joint optimization schemes can further improve the MOS level.

Particularly, the proposed QoE-QB-Joint scheme results in up to 0.6 improvement on the

MOS scale.

In addition, the impact of the different schemes on the perceived video quality of the indi-

vidual users is analyzed. In Figure 6.10, the quality switches which exceed one representation

level are considered as a measure of the temporal unsmoothness. The QoE-Proxy scheme
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Figure 6.8: Mean buffer level of 8 users as a function of simulation time averaged over 50
simulation runs.

optimizes the resources to minimize temporal quality fluctuations between two optimization

rounds and leads to very few unsmooth quality switches. Similarly, the QoE-QB scheme

smoothly increases and decreases the DASH representation rate based on its boundary condi-

tions and results in similar performance compared to the QoE-Proxy approach. The QoE-Opt

scheme, however, always adapts the representation rate to the instantaneous buffer level and

the available transmission rate resulting in more abrupt quality switches. Finally, in the joint

optimization function, a penalty term is used to penalize quality switches across two succes-

sive rounds. Subsequently, the quality switches for the QoE-Opt-Joint and QoE-QB-Joint

schemes are reduced.

6.6 Discussion

The buffer-aware rate allocation approach presented in this chapter requires no additional

signaling between the mobile users and the proxy. In the DASH specification the clients

periodically report their buffered media time, which is enough for performing the optimization.

Nevertheless, there are a few challenges for the practical implementation of the proposed

approach in a mobile network.

First, the joint network and rate allocation scheme assumes that the proxy and the QoE

optimizer are synchronized. That is, in each optimization round, the proxy provides feedback

on the buffer levels of the clients and gets a target DASH rate from the optimizer. On the other

hand, in the distributed rate allocation approach, the representation rate can be determined

independently by the proxy for each user based on its buffer level and the returned rate from

the QoE optimizer. As a result, less signaling information is required. In both approaches,
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correspond to 50 simulation runs, 300 sec each.
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Figure 6.10: CDF of the mean number of non-smooth (jump more than 1 representation
level) quality switches for each user. Simulation time is 300 sec. Results are averaged over 50
simulation runs.

however, it will be more practical to have the proxy close to the base station.

Furthermore, in the simulations, the content characteristics of the downloaded video seg-

ments by a client vary over time. The QoE optimizer then accordingly considers the utility

information of the current requested segments when solving the multi-user resource allocation

problem. This requires the availability of the actual MOS-bitrate profiles of each segment in

the MPD.

This study presents the potential gains that can be achieved if QoE-based traffic and

resource management is considered for adaptive HTTP streaming scenarios. The proposed
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proxy-based approach (Chapter 5) and the distributed and joint rate allocation approaches

(this chapter) show different dimensions of QoE gains when the content, channel and buffer

time information of the users is available to a central controller in the mobile network.

6.7 Chapter summary

This chapter explores the improvements that QoE-based traffic and resource management in

the mobile network can offer in the context of multi-user adaptive HTTP streaming. Com-

pared to RTP/UDP based streaming, adaptive HTTP streaming simplifies the adaptation

process by providing multiple bit-rate encodings for the same content. Inspired by this a

proactive QoE-based approach is proposed in Chapter 5 that rewrites the client HTTP re-

quests at a proxy to the result of an overall network utility maximization. In this chapter,

the buffered media time at the client is further incorporated into the optimization function.

This allows the proxy to control the streaming rate over time to ensure a smoother playout

experience.

Moreover, the main contribution of this paper is the joint optimization of the transmission

and representation rates of the mobile DASH users taking into account their buffer levels.

Trading off the resources among the users allows a mobile network operator to allocate higher

throughput for those running at a low buffer level. At the same time, reducing the data rates of

users with enough buffered media time still allows them to request high quality representations.

This leads to an additional mean gain of 0.3 on the MOS scale to the 0.35 gain that the proxy

approach achieves compared to standard DASH with end-to-end adaptation.
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Conclusion

The improved capabilities of mobile devices and the emergence of resource-demanding multi-

media applications are fueling the demand for higher data rates and lower transport delays in

future mobile networks. Despite the capacity upgrades in LTE networks, they are outpaced by

an increasing number of smartphone users. Video streaming applications, in particular OTT

services, will continue to dominate and grow exponentially in the upcoming years. Compared

to a managed network scenario, operators will have much less control over the transported

content. Hence, providing end-to-end QoS guarantees becomes more challenging. Moreover,

maximizing the average user satisfaction of the mobile users is a key for mobile network op-

erators. The strong content dependencies of multimedia services also means that traditional

content agnostic optimization metrics will not provide an optimal user experience.

QoE-based resource management optimizes the network resource allocation to enhance

the media experience of the mobile users. This is done by considering the user specific media

characteristics and channel conditions and aims at maximizing an application objective func-

tion (e.g., average video quality in a cell). Assessing the user perceived quality in real-time

is challenging. Subjective or objective measures are typically used to evaluate the user QoE.

Subjective quality evaluation can not be used during online optimization. Therefore, mobile

operators resort to objective measures for describing the user quality. Specifically, utility in-

formation which characterizes the user content is provided to the eNodeB along the bitstream

and is considered for real-time optimization. Furthermore, the QoE-based optimization re-

sult can be exploited to reallocate the network resources among the users and also to adapt

the media transport. In this thesis, different transport or traffic management approaches are

investigated. While previous works have focused on transcoding or frame dropping schemes

which result in additional complexity or require to inspect the media stream, respectively, one

important contribution of this thesis is to simplify the rate adaptation process and provide al-

ternatives which can be used in online system optimization at a lower cost. Specifically, for the

95
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uplink, the mobile users can control their encoding rates or decide on the packet transmission

as they are the producers of their own content. Also, for the downlink, the inherent adaptivity

in adaptive HTTP streaming is exploited to redirect the video streaming rate without requir-

ing any further adaptation to the content. In the network, similar utility representations as

in the previous works are used. It is also shown that generic utility functions of the video

content are often enough for performing the QoE optimization in the network.

A main challenge for the success of QoE-based resource management schemes is to stan-

dardize the transport of such meta information along the media stream. The potential gains

for network operators is high and incorporating these functions in the transported RTP or

adaptive HTTP content can be easily done. Nevertheless, given the diversity of generated

content nowadays, standardization efforts should focus on adding standard fields for utility

representation which can be adopted by OTT content producers.

7.1 Summary of contributions

Uplink video delivery

The uplink of next generation mobile networks has to cope with community portals for

the upload and upstream of live media data. Moreover, video portal services such as YouTube

and social web platforms that today serve mostly prerecorded videos will be enhanced with

functionality for offering live video streams. Hence, the popularity of live video capturing and

streaming with high quality and resolutions beyond today’s phones is expected to challenge in

particular the uplink channel of mobile data communication. Chapter 3 addresses the above

issues by proposing a service-centric approach for uplink resource allocation among multiple

mobile video producers. In particular, it exploits the heterogeneity in terms of the number of

viewers of the uploaded video content. Optimizing the QoE-based uplink resource allocation

by incorporating the popularity feedback from a video portal can substantially improve the

overall QoE in a mobile cell.

Moreover, upstreamed video content to video portals can be consumed in real-time but

might also be archived at the portal for on-demand retrieval. As a result, considering the

type of video delivery (live or on-demand) and playout time can be used to further optimize

the uplink resource allocation to provide video consumers with the best possible QoE within

the scheduled playout time taking the limited and time varying uplink resources into account.

Chapter 4 is concerned with the joint upstreaming of live and on-demand user-generated

video content. It targets future mobile terminals that are capable of generating scalable video

streams, and also assumes that these devices can cache parts of the stream for later upload.

For a practical mobile environment where the available uplink resources and the channel

state of each mobile terminal vary over time, the gap between the total available resources
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and the required resources for live video transmission is used for the upload of previously

cached on-demand data. The proposed approach contributes to the state-of-the-art work on

multimedia scheduling in three aspects: 1) The transmission of live and time-shifted video

under scarce uplink resources is jointly optimized by transmitting a basic quality in real-

time and uploading a refined quality for on-demand consumption. 2) A producer-consumer

deadline-aware scheduling algorithm, that incorporates both the physical state of the mobile

producer (e.g., cache fullness) and the scheduled playout time at the end-user, is proposed.

3) The scheduling decisions in 1) and 2) can be determined locally for each mobile producer.

The performance evaluation in an LTE OPNET simulator shows that the proposed QoE-

based resource management scheme can notably improve the user satisfaction when compared

to a standard proportional fair LTE scheduler. Indeed, the content agnostic LTE scheduler

assigns the wireless resources based on the channel conditions and without considering the

characteristics of the uploaded videos. This leads to non-optimal perceptual quality in partic-

ular for cell-edge users with demanding videos. In addition, the simulation results show that

the mutual interaction between the video producers, the network and the target consumers

can serve an enhanced user experience.

Downlink video delivery

The second part of thesis focuses on the downlink video delivery in fourth generation mo-

bile networks. Particularly, it follows the pragmatic shift towards streaming over HTTP/TCP

and proposes solutions for optimizing the OTT adaptive HTTP video delivery. Specifically,

a proxy-based approach for redirecting the client HTTP requests according the result of an

overall QoE optimization is first proposed. The proposed approach is validated by experimen-

tal results with state-of-the-art adaptive HTTP codecs and also using laboratory tests with

human viewers. The main results show that standard OTT DASH leads to unsatisfactory

performance since the content agnostic resource allocation by the LTE scheduler is far from

optimal, and thus a clear QoE improvement can be achieved when considering the content

characteristics. In addition, proactively adapting the video streaming rates of the clients gives

control of the video content adaptation to the network operator which has better information

than the client on the load and radio conditions in the cell. This allows faster reaction to

network variations which yields additional gains in the user perceived video quality. Further-

more, the subjective results indicate a fairer resource allocation among the mobile users when

QoE optimization is considered. It should be also noted that a standard unmodified DASH

client remains unaware of the proposed rewriting of the HTTP requests and can decode and

play the redirected media segments. Hence, the proposed approach is independent of the

client control and adaptation strategies and fully complies with the DASH specifications.

In Chapter 6, a comprehensive study of the network and application rate allocation prob-

lems in the context of adaptive HTTP streaming is presented. While earlier work has studied
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both problems separately, this investigation shows that by jointly optimizing the streaming

and transmission rates of the mobile users, a network operator has more flexibility in allo-

cating the network resources also considering the buffer levels of the users. This leads to

additional gains in user perceived video quality.

7.2 Future directions

With the foreseen growth in mobile video streaming, resource management in mobile networks

remains a key challenge to ensure on-time high quality video distribution. Future work can

build on some of the limitations of this thesis and extend in several directions:

1) This thesis focuses on resource allocation in a mobile cell where all the users are con-

nected to one base station. With the introduction of LTE-Advanced, indoor wireless access

points (APs) are supported and more users will be connected to smaller pico or femtocells

in the future. Also, device-to-device (D2D) communication which has been long studied in

ad hoc networks is being proposed as a potential solution for improving the real-time video

communication in mobile networks. The QoE gains for D2D communication, however, are

not clear yet. Given this hybrid architecture, it will be interesting to investigate distributed

approaches for resource allocation that can be implemented at the AP or the mobile device,

and to analyze the potential QoE gains across the multiple users. This is also challenging

given that the knowledge about the other mobile users may not be locally available.

2) Multimedia streaming is going further apart from the managed server-client architec-

ture into a distributed one, dominated by OTT and UGC content. This thesis has addressed

the challenges in distributing un-managed video content over mobile networks. Nevertheless,

the assumption is that some QoE knowledge about the streamed content is available. One

alternative approach is to use no-reference QoE estimation models or to learn the QoE charac-

teristics over time. The practical application of these methods to real-time resource allocation

problems has been limited so far. In addition, understanding the application requirements and

the user expectations will be crucial in this case. For instance, instead of simply considering

real-time streaming, cloud backup and sharing to social networks as video streams, the data

transmission can be prioritized based on the delay characteristics of each application. In this

case, the mobile phone would be first to know once a mobile user starts the application.

3) Energy management on mobile devices and multimedia streaming have been often stud-

ied independently. Let’s take adaptive HTTP streaming as an example. Actually, switching

from an HD representation to an SD representation may result in unnoticeable degradation in

the perceived video quality but might significantly prolong the battery life time. Appropriate

real-time optimization strategies which jointly consider the application characteristics and the

battery level of a mobile device are yet to be investigated. A first approach in this direction

can be found in [KSES14].



Appendix A

Comparison of different objective

mapping metrics

A.1 Comparison with the SSIM-based QoE model

In Chapter 4, the uplink transmission of scalable video content is optimized for both live and

on-demand consumption. Besides the network-based QoE optimization carried out at the base

station and which is responsible for allocating the wireless resources among multiple video

producers, a distributed QoE optimization is realized at each mobile terminal to determine

the video layers to be transmitted in each scheduling round and their respective rates.

Throughout this thesis, a simple linear mapping between the MOS and PSNR is considered

to represent the user perceived video quality. In this section, the results from Chapter 4 are

additionally validated using an SSIM-based mapping model. The same simulation setup as in

Section 4.5 is considered with 3 users upstreaming different video streams which are encoded

with the H.264 scalable video codec [SMW07]. The simulation parameters are summarized in

Table 4.2.

To calculate the SSIM values, the MSU Video Quality Measurement Tool is used [MSU].

Specifically, the average SSIM over all frames in a GoP is calculated as a measure of the video

quality. A linear mapping between the SSIM and MOS, similar to [TKS11], is considered,

which is based on the scatter plot of subjective and objective results for the SSIM video

quality metric [WLB04]:

MOS =


1 if SSIM < 0.76

15.91 · SSIM − 11.09 if 0.76 ≤ SSIM ≤ 0.98

4.5 if SSIM > 0.98

(A.1)
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Figures A.1(a) and A.1(b) show the CDF of the mean MOS for the PSNR-based and

the SSIM-based mapping models, respectively. Moreover, the two QoE-based, namely the

MaxMOS and its iterative solution, and the EDF distributed optimization schemes are com-

pared. In all three cases, network-based QoE optimization is performed at the base station.

The results from the SSIM-based mapping conform with the PSNR-based ones: First, both

figures show similar MOS gains for the QoE-aware approaches compared to the EDF schedul-

ing scheme, for both live and on-demand consumption cases. In addition, noticeable MOS

improvements are noted for each scheme for the on-demand versus live transmission. Also,

the performance of the iterative approach is very close to the optimal MaxMOS scheme for

both mapping models. The average gains are further summarized in Table A.1.

The presented results show that the QoE optimization will improve the user satisfaction

irrespective of the used QoE model. Nevertheless, it should be noted that the actual MOS

values and the relative gains will depend on the used mapping model. It can be seen from

Table A.1 that the relative gains are comparable for both mapping models, in this case.

A.2 Assessment of the prediction model

In Chapter 5, a subjective test is conducted to assess the performance of the different op-

timization approaches in adaptive HTTP video delivery. Specifically, the proactive (QoE-

Proxy), reactive (QoE-Reactive) and standard non-optimized DASH (Non-Opt) schemes are

compared.

This section first describes the individual results for the 8 different videos from the subjec-

tive experiment in Section 5.4. Then, the linear mapping used in the optimization function is

validated with the subjective results and compared to other objective mappings. Furthermore,

the correlation between these metrics and the subjective results is analyzed.

Individual results

Figure A.2 presents the mean subjective rating for each video sequence as well as the

standard deviation of the ratings (error bars) over the 20 viewers. Additionally, the predicted

objective rating based on the linear PSNR-MOS mapping is presented. The predicted MOS

values from the linear model are converted on the 100 rating scale as described in Appendix I

of [BM03]. The results show a high correlation with the subjective results for all optimization

schemes and in both scenarios, which indicates that the used mapping model is able to predict

the tendency of the rating. Specifically, demanding videos such as soccer, bus, coastguard and

harbour present a gap between the absolute predicted rating and the actual mean rating but

show consistent rating behavior across the different schemes. For the the low-demanding video

ice the predicted ratings are very close to the actual ones. Also, the Foreman, akiyo and the

container videos present a very high correlation between the objective and subjective scores
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and the absolute DMOS values are very close as well.
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(a) PSNR-MOS mapping considered in this thesis.
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(b) SSIM-MOS mapping [TKS11].

Figure A.1: Comparison of the MaxMOS scheme and its corresponding low-complexity iter-
ative approach with the EDF scheme for different QoE mapping models.

Comparison with other objective metrics

Furthermore, the applicability of the linear PSNR/MOS model used for the optimiza-

tion problem is assessed. Therefore, a post-analysis is conducted to measure the correlation

between the subjective results and different objective quality metrics. Specifically, the linear

mapping is compared with two non-linear metrics based on the PSNR, namely the PSNR based

Video Quality Metric (VQMP ) proposed in [WP02] and the STVQM proposed in [PS11]. The

Pearson correlation between the subjective ratings and the predicted ratings for the 8 videos
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Table A.1: Average gains on the MOS scale

PSNR-MOS model SSIM-MOS model

Live (EDF → QoE) 0.36 0.4
VoD (EDF → QoE) 0.11 0.14
QoE (Live → VoD) 0.33 0.2
EDF (Live → VoD) 0.56 0.46

Table A.2: Pearson correlation for each video

Metric Linear VQMP [WP02] STVQM [PS11]

soccer 0.9618 0.9866 0.9697
ice 0.4762 0.8537 0.7792
bus 0.8241 0.8241 0.8241

coastguard 0.9489 0.9466 0.9412
foreman 0.9787 0.9976 0.9988

akiyo 0.9115 0.9077 0.9401
container 0.9826 0.9872 0.9884
harbour 0.8959 0.9262 0.9172
mean 0.8725 0.9287 0.9198

is presented in Table A.2.

The main difference between the metrics is observed for the ice video, where the linear

model achieves a low Pearson correlation. This is due mostly to the low resource-demanding

characteristic of this video, which in our scenario leads to a very high perceived quality for

all cases. The predicted ratings all being in a small range, the Pearson correlation is more

sensitive to a variation of the subjective ratings. However, the mean Pearson correlation over

the 8 videos is 0.8725 for the linear model. This is close to the highest mean Pearson correlation

achieved by the VQMP (0.9287). This shows that although the used linear PSNR/MOS model

is very simple, it performs almost as well as a more complex non-linear video quality metric

in the case of an optimization over multiple videos.
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(g) Container
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(h) Harbour

Figure A.2: Individual ratings for each video. The figure shows the mean and standard
deviation of the subjective DMOS values from the 20 participants. The dots represent the
predicted objective DMOS values as a result of the QoE optimization in (5.1)-(5.2).





Appendix B

Optimality and convergence analysis

In Chapter 4, an analytical framework for scalable video transmission at a mobile terminal

is presented. This section provides a detailed analysis on the optimality and convergence

properties of the distributed scheme in (4.1)-(4.4). A good reference on dual methods for

solving optimization problems is Chapter 6 of [Ber99].

B.1 Optimality analysis

The optimality analysis is composed of three steps. First, the optimization problem in (4.1)-

(4.4) is transformed to a Lagrange dual problem. Then, it is shown that the dual problem

can be solved by an iteration method. Finally, a possible way to guarantee that the proposed

solution converges to the optimal value is provided.

Step 1: Substitute Rl by Ll
tl

in (4.1)-(4.4) and solve for the optimal values of a∗l , t
∗
l and L∗l .

From the definition of the objective function, it can be seen that (4.1) is a classical convex

optimization problem satisfying Slater’s condition [HBCR07]. Specifically, the slater condition

states that strong duality holds if the inequality constraints in (4.2)-(4.4) are strictly feasible,

i.e., they hold with strict inequalities [BV04]. In this case, there exists an allocation policy

(a∗l , t
∗
l and L∗l ), where

∑
SL,d

∑
l∈SL,d

a∗l
L∗l
t∗l

< ck, (B.1)

∑
SL,d

∑
l∈SL,d

L∗l (1− a∗l ) < Hk, (B.2)

∑
l∈SL,d

a∗l t
∗
l < d,∀SL,d, (B.3)
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As a consequence of strong duality, the optimal duality gap is zero [BV04]. In other words,

the optimal solution from the primal problem in (4.1)-(4.4) is equal to the best lower bound

that can be obtained from a Lagrange dual function. As a next step, a Lagrange dual problem

to achieve the optimal value is described.

Step 2: The Lagrange dual problem can be designed by augmenting the constraints from

(4.2)-(4.4) into the objective function:

L (al, Ll, tl, φl, θl, δl) =
∑
SL,d

∑
l∈SL,d

albl∆MOSl

(
Ll
tl

)
−
∑
SL,d

∑
l∈SL,d

φl (τ) (alLl − cktl)−∑
SL,d

∑
l∈SL,d

θl (τ) [Ll (1− al)−Hk]−
∑

l∈SL,d

δl (τ) [altl − d] ,

(B.4)

where, φl, θl, and δl are the Lagrange multipliers associated with the constraints of (4.2),

(4.3) and (4.4), and τ indicates the time index (τ ∈ N).

In order to simplify the optimization problem, the Lagrangian dual problem in (B.4) can

be further decomposed into three sub-problems [Ber99]:

max :
∑
SL,d

∑
l∈SL,d

φl (τ)cktl. (B.5)

max : −
∑
SL,d

∑
l∈SL,d

θl (τ)Ll. (B.6)

max :
∑
SL,d

∑
l∈SL,d

albl∆MOSl

(
Ll
tl

)
−
∑
SL,d

∑
l∈SL,d

φl (τ)alLl

+
∑
SL,d

∑
l∈SL,d

θl (τ)alLl −
∑

l∈SL,d

δl (τ)altl.
(B.7)

Decomposition methods are used to divide an optimization problem into sub-problems

which can be solved iteratively or sequentially. In this case, the original problem from (B.4)

is solved by iteratively solving the sub-problems in (B.5)-(B.7). Specifically, at each iteration,

the two sub-problems in (B.5)-(B.6) can be solved independently to find the values of the

variables tl and Ll, respectively. Furthermore, sub-problem (B.7) can be solved to find the

value of the variable al for a fixed tl and Ll.

In particular, the Lagrange dual function Ld (φ, θ, δ) is defined as the maximum of the

Lagrangian L (al, Ll, tl, φl, θl, δl) over al, Ll and tl for given φ, θ, and δ. Hence, the Lagrange

dual problem can be formulated by:

Ld (φl, θl, δl) = L

(
a∗l (φl, θl, δl) , L

∗
l (φl, θl, δl) ,

t∗l (φl, θl, δl) , φl, θl, δl

)
, (B.8)

where (φl, θl, δl) are the dual variables, and a∗l (φ, θ, δ), L∗l (φ, θ, δ), and t∗l (φ, θ, δ) corre-

spond to the values al, tl and Ll when achieving the optimal solution. As explained in Step 1,
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since the duality gap is equal to zero, the Lagrange dual function returns the optimal solution

for the optimization problem in (4.1)-(4.4).

Step 3: Since Ld may be non-differentiable, an iterative sub-gradient method can be used

to solve it by introducing the variables ρφ, ρθ, and ρδ. Please note that Ld is a convex

optimization problem since the objective to be maximized is concave and can be solved by a

conventional KKT method [Chi05]. For each dual variable, the sub-gradient method generates

a sequence of feasible points which are updated at each iteration τ . Specifically, from (B.5):

φl (τ + 1) = [φl (τ) + ρφ (τ) gφ (τ)]+ =

φl (τ) + ρφ (τ)
∑
SL,d

∑
l∈SL,d

cktl

+

, (B.9)

where gφ (τ) is the sub-gradient of (B.5) at φl (τ), and ρφ (τ) represents the iteration step

size.

Similarly, from (B.6):

θl (τ + 1) = [θl (τ) + ρθ (τ) gθ (τ)]+ =

θl (τ)− ρθ (τ)
∑
SL,d

Ll

+

. (B.10)

where gθ (τ) is the sub-gradient of (B.6) at θl (τ), and ρθ (τ) represents the iteration step

size.

In addition, ∂(B.7)
∂al

= 0 at the optimal solution,

∑
SL,d

∑
l∈SL,d

bl∆MOSl

(
Ll
tl

)
−
∑
SL,d

∑
l∈SL,d

φl (τ)Ll+∑
SL,d

∑
l∈SL,d

θl (τ)Ll −
∑

l∈SL,d

δl (τ)tl = 0.
(B.11)

Hence, δl (τ) can be determined as a function of the iteration step size ρδ (τ):

δl (τ + 1) =δl (τ) + ρδ (τ)
∑
SL,d

∑
l∈SL,d

 bl∆MOSl

(
Ll
tl

)
−cktl + Ll − tl

+
(B.12)

ρφ (τ), ρθ (τ) and ρδ (τ) represent the iteration step size. Certain choices of step sizes, such

as ρφ (τ) = ρ1
τ , ρθ (τ) = ρ2

τ , and ρδ (τ) = ρ3
τ , where ρ1, ρ2, ρ3 > 0 guarantee that this algorithm

will converge to the result obtained via joint optimization. An exemplary illustration of the

choices of the iteration step sizes for determining the upper bound of the convergence step is

provided in the next section.
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B.2 Convergence bound

The relationship between the convergence steps and ρ1, ρ2, ρ3 is studied by analyzing their

dependencies when reaching the optimal solution. Specifically,

1) When ∂(B.5)
∂tl

= 0: ∑
SL,d

∑
l∈SL,d

φl (τ)ck = 0. (B.13)

2) When ∂(B.6)
∂Ll

= 0: ∑
SL,d

∑
l∈SL,d

θl (τ) = 0. (B.14)

3) When ∂(B.7)
∂tl

= 0:∑
SL,d

∑
l∈SL,d

−albl∆MOS

(
Ll
tl

)
Ll

1

t2l
−
∑
l∈SL,d

δl (τ)al = 0. (B.15)

More precisely, from (B.13) and (B.14), φl (τ) = 0 and θl (τ) = 0 at the optimal solution,

respectively. Combing with (B.9) and (B.10), the convergence bound is independent of the

parameters ρ1 and ρ2.

Furthermore, by replacing ρδ (τ) = ρ3
τ and including δl (τ) from (B.12) into (B.15):

∑
SL,d

∑
l∈SL,d

−albl∆MOS
(
Ll
tl

)
Ll

t2l
−

∑
l∈SL,d

 δl (τ − 1) + ρ3
τ

∑
SL,d

∑
l∈SL,d(

bl∆MOS
(
Ll
tl

)
− cktl + Ll − tl

)


+

al = 0.

(B.16)

Moreover, when optimality is achieved, δl (τ) = δl (τ − 1) = C, where C is a constant. So,∑
SL,d

∑
l∈SL,d

−albl∆MOS
(
Ll
tl

)
Ll

t2l
− ρ3

∑
SL,d

∑
l∈SL,d

(bl∆MOS
(
Ll
tl

)
− cktl + Ll − tl) = C

(B.17)

=⇒
∑
SL,d

∑
l∈SL,d

−albl∆MOS
(
Ll
tl

)
Ll

t2l
− C = ρ3

∑
SL,d

∑
l∈SL,d

(bl∆MOS
(
Ll
tl

)
− cktl + Ll − tl)

(B.18)

=⇒ ρ3 ∝

∑
SL,d

∑
l∈SL,d

−albl∆MOS
(

Ll
tl

)
Ll
t2
l∑

SL,d

∑
l∈SL,d

(
bl∆MOS

(
Ll
tl

)
−cktl+Ll−tl

) (B.19)

Furthermore, the MOS improvement is bounded and bl∆MOS
(
Ll
tl

)
≤ 4.5. Therefore, the

upper bound of the convergence step is O

 ∑
SL,d

∑
l∈SL,d

al
Ll
t2
l∑

SL,d

∑
l∈SL,d

(cktl−Ll)

.
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