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Summary

In this thesis we adapt the discrete-time model for the conditional volatilities and
conditional correlations from Brownlees and Engle [1] to a continuous-time model
called "MUCO-Diag". Brownlees and Engle introduced an index for systemic
risk (SRISK) in financial systems. This index is based on a discrete-time bivari-
ate model for the log returns, where the conditional volatilities and conditional
market-firm correlations are separately modelled and then plugged into the model.
We adapt the discrete-time model class to a continuous-time analogue: We model
the conditional volatilities with an asymmetric GJR COGARCH process and the
conditional correlations are modelled continuously in time based on the DCC (Dy-
namic Conditional Correlation) model of Engle in [2]. We derive several important
properties of the "MUCO-Diag" process, such as existence and uniqueness and
stationarity. Based on the theoretical results, we present some examples of the
modelled volatilities and correlations.
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1 Introduction

1 Introduction

"Financial institutions are systemically important if the failure of the firm to meet its
obligations to creditors and customers would have significant adverse consequences
for the financial system and the broader economy." 1

After the financial crisis of 2007-2009 many market participants and academics
recognized the importance of systemic risk in financial systems. The above attempt
of Federal Reserve Governor Daniel Tarullo to define systemic risk already shows
the main idea: If a financial institution faces a capital shortage, this normally
doesn’t have consequences on the whole financial and real economy, because
stronger competitors absorb the capital shortage. But during a financial crisis, such
an absorption might be impossible. The consequences are external costs on the real
economy [15].
Brownlees and Engle introduced in [1] a systemic risk index SRISK, that measures
the expected capital shortfall of a firm during a crisis. The index is based on the SES
index by Acharya [15]. The key insight gained by SES was, that capital shortages
may have external costs on the real economy, if the whole financial system is in a
crisis. SRISK improves an important shortcoming of SES: SRISK doesn’t require
data from the actual crisis. In order to calculate SRISK, we need to model the
conditional volatilities and conditional correlations of the market and firm returns.
It all starts with a bivariate model for the market and firm returns:

rm,t = σm,tεm,t

ri,t = σi,tρi,tεm,t + σi,t

√
1− ρ2

i,tεi,t

(εm,t, εi,t) ∼ F

where (εm,t, εi,t) stand for the shocks, that drive the system. Only the conditional
market-firm correlations are considered in this model. We may interpret the condi-
tional market-firm correlation as the accumulated conditional correlations to all
other firms from the perspective of each firm.

In this thesis we model the conditional volatilities and conditional correlations
continuously in time, based on the above model setting. The motivation comes
from the fact, that most financial data is sampled irregularly and therefore needs
to be modelled continuously in time. The source of risk (εm,t, εi,t) is replaced by
the jumps of a two-dimensional Levy process. The bivariate model turns into the

1"Regulatory Restructuring" Testimony before the Committee on Banking, Housing, and Urban
Affairs, U.S. Senate, Washington, D.C., July 23, 2009.
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1 Introduction

set of stochastic differential equations

drm,t = σm,tdLm,t

dr1,t = σ1,tρ1,tdLm,t + σ1,t

√
1− ρ2

1,tdL1,t

We also decompose the system dynamics and model the conditional volatilities
with the corresponding time-continuous GJR COGARCH(1,1) and the conditional
correlations are modelled with a new model called "MUCO-Diag", also on the
basis of the discrete-time model due to the DCC model, but now continuously
in time. We show the existence and uniqueness of the conditional correlation
process, give a representation of the unique solution, show the existence of a
one-dimensional COGARCH(1,1) bound of the process norm and show that the
MUCO-Diag volatility process is a strong Markov process with the weak Feller
property. These properties are fundamental for the proof of the stationarity of the
solution of the corresponding stochastic differential equations.

The thesis is organized as follows. Chapter 2 gives the definition of the sys-
temic risk index SRISK from [1] and describes the economic approach to model
the market and firm returns. Chapter 3 introduces the discrete models for the
conditional volatilities and conditional correlations from [1]. Chapter 4.2 contains
the model class of multidimensional continuous GARCH models and discusses
the most important properties like existence, uniqueness and stationarity of a
solution. In chapter 4.3 we create a new simple model for the volatilities by
adapting the discrete models of chapter 3 to the model class of multidimensional
continuous GARCH models. We also show existence, uniqueness, existence of
a one-dimensional COGARCH(1,1) bound of the solution and stationarity of the
solution. In chapter 5 we give some examples of the modelled volatilities and
correlations. Chapter 6 summarizes our results and gives an outlook. Chapter 7

contains all necessary proofs and definitions.
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2 Systemic Risk Index

2 Systemic Risk Index

In the following chapter we introduce the SRISK index from [1], which measures
the capital shortfall of an financial institution during a crisis. Brownlees and Engle
showed the practical usefulness of this index: "one year and a half before the
Lehman bankruptcy, nine companies out of the SRISK top ten turned out to be
troubled institutions."(abstract in [1])

2.1 Definition of SRISK

The whole definition is on the basis of [1], where the following systemic risk index
was invented. In order to define systemic risk, we need the so called capital buffer of
i = 1, ..., I financial institutions. Capital buffer stands for the working capital of a
firm, and is defined as

CBi,t = Wi,t − k(Di,t + Wi,t) (1)
= (1− k)Wi,t − kDi,t (2)

where Di,t and Wi,t of a firm i denote respectively the book value of debt and the
market value of its equity at time t. Many firms maintain a fraction k of its own
assets, therefore each firm is only responsible for k percent of the firm debt and may
only use (1− k) percent of publicly acquired money. But what is the interpretation
of CBi,t?
We say, that a firm works properly if CBi,t > 0 and experiences a capital shortage,
if CBi,t < 0. In reality, a capital shortage of a single financial institution normally
won’t have an influence on the whole financial sector or even the real economy,
because there are plenty of other liquid firms to absorb this capital shortage through
credits. But if the economy is in distress, a capital shortage might cause further
externalities. That means, we are interested in computing the capital shortage of all
financial institutions, when the economy is in distress. A distress or systemic event
is defined in [1] and also in this work as a drop of the market below a threshold
C over a given time period h. Rm,t:t+h denotes the simple market return between
period t and t + h. The systemic event is denoted by {Rm,t:t+h < C}. We then
define the expected capital shortage as

CSi,t:t+h = −Et(CBi,t+h|Rm,t:t+h < C)
= −kEt(Di,t+h|Rm,t:t+h < C) + (1− k)Et(Wi,t+h|Rm,t:t+h < C)

In case of a systemic event, it is challenging to renegotiate debt. Hence we assume
that it is impossible, which means Et(Di,t+h|Rm,t:t+h < C) = Di,t. Using this
assumption and also the assumption, that Wi,t+h = Wi,tRi,t:t+h, we get:

CSi,t:t+h = −kDi,t + (1− k)Wi,tEt(Ri,t:t+h|Rm,t:t+h < C)
= −kDi,t + (1− k)Wi,t MESi,t:t+h(C)

3



2 Systemic Risk Index

Figure 1: ([1], Fig. 1, page 20) Cumulative average return by industry group
between July 2005 and June 2010.

where MESi,t:t+h(C) is the tail expectation of the firm equity returns conditional
on the systemic event. We define the systemic risk index of institution i as

SRISKi,t = max(0, CSi,t)

The total amount of systemic risk in the economy is

SRISKt =
I

∑
i=1

SRISKi,t

For a better understanding, we present the example from [1] of calculated aggregate
SRISK. They studied a panel of institutions between July 3, 2000 and June, 30, 2010.
This panel consists of U.S. financial institutions which have a market capitalization
greater than 5 billion US Dollar at the end of June 2007. They extracted daily
returns and market capitalization and divided the firms in 4 groups: Depositories
(such as Bank of America), Broker-Dealers (such as Lehman Brothers), Insurances
(AIG) and Others (non depository institutions, real estate). Figure 1 shows the
cumulative average return by each industry group. If we compare figure 2 with
figure 3, we see that after July 2007 not only the correlations to the market index
go up in each industry group, but also the aggregate SRISK index. Interpretation
of aggregate SRISKt: If it comes to a market drop and the government rescues the
financial system, SRISKt gives the expected amount of rescue costs.

4



2 Systemic Risk Index

Figure 2: ([1], Fig. 3, page 26) Average in-sample correlations with the market index
between July 2005 and June 2010.

Figure 3: ([1], Fig. 8, page 38) Aggregate SRISK of the biggest U.S. financial firms
between July 2005 and June 2010. The industry groups are ordered from
top to bottom: Others, Insurance, Depositories and Broker-Dealers

5



2 Systemic Risk Index

2.2 Economic Approach

Since we are interested in computing SRISKit , we need data on the debt, equity
and MES of each firm. Debt and equity are publicly available, but MES has to be
estimated. We first describe the bivariate dynamic time series model in ([1], chapter
3). Let rit and rmt denote respectively the ith firm’s and the market log return on
day t. We use a bivariate model for the firm and market log returns, which reads
for t ∈N as

rm,t = σm,tεm,t (3)

ri,t = σi,tρi,tεm,t + σi,t

√
1− ρ2

i,tεi,t (4)

(εm,t, εi,t) ∼ F (5)

where σm,t and σi,t are the conditional standard deviations of the market and firm
return, respectively. ρi,t is the conditional correlation between firm i and the market
and (εm,t, εi,t) are the shocks, the sources for randomness. They are independent
and identically distributed over time and have zero mean and unit variance. The
financial crisis showed, that systemically risky firms are interlinked and therefore
highly dependent. So we expect εm,t and εi,t at time t to be dependent. To complete
the model, we need further descriptions of σi,t and ρi,t ,which we introduce in the
coming chapters. The conditional volatilities are modelled with a discrete-time
(asymmetric) GJR(1,1) model. The correlations are modelled discrete in time with
the DCC model, introduced in [2].
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3 Discrete-time GARCH Models

AutoRegressive Conditional Heteroscedasticity (ARCH) models were introduced by
Engle [19] and then generalised by Bollerslev to the GARCH (generalised ARCH)
in [20]. GARCH models are very popular in modelling of time series in finance. In
chapter 3.1 we define the one-dimensional GARCH(1,1) model and an asymmetric
version, the GJR GARCH model, which also captures the so called "leverage effect".
In chapter 3.2 we explain the multivariate DCC model of [2] for time varying
correlations.

3.1 One-dimensional Models

We introduce the widely used GARCH model:

Definition 3.1. ([11], page 3)(GARCH(1,1)) Let (εn)n∈N be an independent and identi-
cally distributed (i.i.d.) non-degenerate series of random variables with
P{ε1 = 0} = 0. Then for n ∈N:

Yn = εnσn (6)

σ2
n = β + λY2

n−1 + δσ2
n−1 (7)

The parameters β, λ and δ satisfy β > 0, λ ≥ 0 and δ ≥ 0.

The (Yn)n∈N process models the observed data, for example log returns, whereas
(σn)n∈N models the time-varying volatility. The GARCH (Generalized Autoregres-
sive Conditional Heteroscedasticity) model has great importance in the modelling
of financial data, such as returns. GARCH models capture the so called "stylized
facts" ([12], page 141) of financial times series:

• Returns are not i.i.d. and have low correlation

• Returns are heavy-tailed

• Absolute returns are highly correlated

• Volatility changes (randomly) over time

• Extreme returns appear in clusters

"Autoregressive" means, that past observations and volatilities influence the
present volatility and therefore the observation itself. This effect is called "feed-
back". "Conditional Heteroscedasticity" means, that the volatility is time-varying,
conditional and also random. In GARCH models, only the magnitude of past
returns determine the future volatility. In practice, we can observe a phenomena

7



3 Discrete-time GARCH Models

called leverage effect: volatilities tend to rise with "bad news" (negative returns) and
to fall with "good news" (positive returns). (Nelson, [10]) We model the volatilities
of a two factor model of returns using the GJR model, a special Asymmetric Power
ARCH model (APARCH). The APARCH model is defined as follows.

Definition 3.2. ([9], chapter 6)(APARCH) Let (εn)n∈N of i.i.d random variables such
that E(εn) = 0 and Var(εn) = 1. The process (Yn)n∈N is called Asymmetric Power
ARCH(p,q), and we write APARCH(p,q), if it is satisfying an equation of the following
form:

Yn = εnσn

σδ
n = θ +

q

∑
i=1

αih(Yn−1) +
p

∑
j=1

β jσ
δ
n−j

where h(x) = (|x| − γx)δ,θ > 0,δ > 0,αi ≥ 0,β j ≥ 0 and |γi| < 1.

The APARCH model includes the GJR model by choosing δ = 2 ([5], Remark
5.2). Because Brownlees and Engle used in [1] a GJR(1,1) model, we only present
the p = q = 1 case:

For 0 ≤ γ < 1 the GJR model reads

σ2
n = θ + α̂Y2

n−1 + βσ2
n−1 + γ̂1{Yn−1<0}Y

2
n−1

with α̂ = α(1− γ)2 and γ̂ = −4α.

For −1 < γ < 0 the GJR model reads

σ2
n = θ + α̂Y2

n−1 + βσ2
n−1 + γ̂1{Yn−1>0}Y

2
n−1

with α̂ = α(1 + γ)2 and γ̂ = −4αγ.

"The main highlight of this specification is its ability to capture the so called
leverage effect, that is the tendency of volatility to increase more with negative
news rather than positive news."([1], page 16)

In [1] the conditional market volatility (σm,t)t∈N and the conditional firm volatili-
ties (σi,t)t∈N for i = 1, ..., d are each modelled with a GJR GARCH(1,1) model

σ2
m,t = θm + α̂mr2

m,t−1 + βmσ2
t−1 + γ̂m1{rm,t−1>0}r

2
m,t−1

σ2
i,t = θi + α̂ir2

i,t−1 + βiσ
2
i,t−1 + γ̂i1{ri,t−1>0}r

2
i,t−1

with α̂k = αk(1 + γk)
2, γ̂k = −4αkγk for k ∈ {m, 1, ..., d}.

8



3 Discrete-time GARCH Models

3.2 Multivariate Models - The DCC Model

We repeat the discrete-time DCC (Dynamic Conditional Correlation) model for the
time varying conditional correlations introduced in [2], a further generalization of
Bollerslev’s model ([2], page 6).

Let for each i = 1, ..., d and t ∈ N be εim,t := (εm,t, εi,t)
T an independent and

identically distributed sequence of 2-dimensional vectors with mean zero and
variance one. The time varying conditional correlation between the returns of the
market m and firm i is

ρi,t =
Et−1[(rm,t −E[rm,t])(ri,t −E[ri,t])]

σm,tσi,t

In order to estimate ρi,t, we model a covariance matrix Qi,t

Qi,t :=
(

qii,t qim,t
qim,t qmm,t

)
through

Qi,t = (1− αC − βC)Si + αCdiag(Qi,t−1)
1/2εim,t−1εT

im,t−1diag(Qit−1)
1/2 + βCQit−1

= (1− αC − βC)Si + αC ε̂im,t−1ε̂T
im,t−1 + βCQi,t−1

where t ∈ N, α, β ∈ R, α + β < 1 and ε̂im,t = diag(Qit)
1/2εim,t are the rescaled

disturbances. Under the assumption of stationarity the matrix Si equals the uncon-
ditional covariance matrix of the ε̂it:

Si = E[ε̂itε̂
T
it]

and may therefore be estimated via Ŝi =
1
n ∑ ε̂im,tε̂

T
im,t. This reduces the number of

parameters, which have to be estimated! The remaining parameters are α, β and
the initial matrix Qi,0.

The estimator ρ̂it of the correlation ρit is defined by

ρ̂it :=
qim,t√qii,tqmm,t

In matrix notation this transformation reads as(
1 ρit

ρit 1

)
= Pit = diag(Qit)

−1/2Qitdiag(Qit)
−1/2 (8)

We summarize the above model in a definition:

9



3 Discrete-time GARCH Models

Definition 3.3. (DCC Model) Let for each i = 1, ..., d and t ∈ N be εim,t = (εm,t, εi,t)
T

an identically distributed sequence of 2-dimensional vectors with mean zero and variance
one. Then we call a covariance matrix process (Qit)t∈N modelled by the DCC model, if it
satisfies

Qi,t = (1− αC − βC)Si + αCdiag(Qi,t−1)
1/2εim,t−1εT

im,t−1diag(Qi,t−1)
1/2 + βCQi,t−1

= (1− αC − βC)Si + αC ε̂im,t−1ε̂T
im,t−1 + βCQi,t−1

for all t ∈ N, αC, βC ∈ R, ε̂im,t = diag(Qit)
1/2εim,t and Si = E[ε̂itε̂

T
it] ∈ S+

d , where S+
d

denotes the set of symmetric and positive semi-definite d× d matrices. Via the transforma-
tion of equation (8), we receive the conditional correlation matrix Pit.

10
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4 Continuous-time GARCH Models

4.1 One-dimensional COGARCH

"In practice, for various reasons, including weekend and holiday effects, or in
tick-by-tick data, many financial time series are irregularly spaced and this, to-
gether with options pricing requirements, in particular, has created a demand for
continuous-time models." ([17], page 520) Therefore, we are looking for a continu-
ous model, which also captures the above mentioned "stylized facts", see chapter
(3.1). One successful approach by Klüppelberg et al. ([11]) uses only one source of
randomness and reads as

Definition 4.1. ([13], page 6)(COGARCH(1,1)) Let (Lt)t≥0 be a Levy process. Then the
COGARCH process (Gt)t≥0 is defined in terms of its stochastic differential, dG, and the
volatility process σt satisfies:

dGt = σt−dLt, t ≥ 0

dσ2
t = (β− ησ2

t−)dt + Φσ2
t−d[L, L]t, t ≥ 0

for constants β > 0, η ≥ 0 and Φ ≥ 0. [L, L]t denotes the quadratic variation process of L,
defined for t > 0 by [L, L]t = σ2

Lt + ∑0<s≤t(∆Ls)2.

For a short overview of the Levy process notation, see chapter (7.1). We receive
the solution of the above stochastic differential equation (SDE) for the squared
volatility process with the help of the process X = (Xt)t≥0 defined by

Xt = ηt− ∑
0<s≤t

log(1 + Φ(∆Ls)
2), t ≥ 0

As in [13], we may write the squared volatility as

σ2
t = e−Xt(β

∫ t

0
eXs ds + σ2

0 ), t ≥ 0 (9)

And we get

σ2
t = σ2

0 + βt− η
∫ t

0
σ2

s ds + Φ ∑
0<s≤t

σ2
s (∆Ls)

2

Via the method of Klüppelberg et al. ([11]) we also get a continuous version of
the discrete GJR GARCH model introduced in chapter (3.1). For θ, α > 0 and γ,
β ∈ (0, 1) the process (σ2

t )t≥0 satisfies for t ≥ 0 ( [5], page 69):

σ2
t = σ2

0 + θt + log(β)
∫ t

0
σ2

s ds +
α

β ∑
0<s≤t

σ2
s h(∆Ls)

where h(x) = (|x| − γx)2.

11
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4.2 Multidimensional COGARCH

In a multidimensional setting, we need to replace the positive variance by the
covariance matrix. Hence, if we try to build a model for the covariance matrix, the
stochastic volatility process has to be a stochastic process in the positive semidefinite
matrices. The volatility process of a multidimensional GARCH(1,1) model in the
BEKK-representation of [8] is given by

Σn = C + AΣ1/2
n−1εn−1εT

n−1Σ1/2
n−1AT + BΣn−1BT

with C ∈ S+
d , A, B ∈ Md(R) and (εn)n∈N being an i.i.d. sequence in Rd. In order to

get a time-continuous and multidimensional GARCH(1,1) process, we replace the
noise ε of a multivariate GARCH(1,1) process by the jumps of a multidimensional
Levy process L and the autoregressive structure of the covariance process by a
continuous autoregressive (AR) structure.

Definition 4.2. ([3], Definition 3.1)(MUCOGARCH(1,1)) Let L be an Rd-valued Levy
process and A, B ∈ Md(R), C ∈ S+

d . The process G = (Gt)t∈R+ solving

dGt = V1/2
t− dLt (10)

Vt = C + Yt (11)

dYt = (BYt− + Yt−BT)dt + AV1/2
t− d[L, L]dt V1/2

t− AT (12)

with initial values G0 in Rd and Y0 in S+
d , is then called a MUCOGARCH(1,1) process.

The process Y = (Yt)t∈R+ with paths in S+
d is referred to as a MUCOGARCH(1,1)

volatility process.

The "matrix-integral"
∫ t

0 As−dLsBs− denotes the matrix Ct in Mm,s(R) with the
ij’th entry Cijt = ∑n

k=1 ∑r
l=1
∫ t

0 Aik,s−Bl j,s−dLkl,s, where (At)t∈R+ in Mm,n(R) and
(Bt)t∈R+ in Mr,s(R) are cadlag and adapted processes and (Lt)t∈R+ in Mn,r(R) is a
semimartingale, see section 2.1 in [3]. We are interested in the volatility process Vt,
which satisfies the SDE

dVt = (B(Vt− − C) + (Vt− − C)BT)dt + AV1/2
t− d[L, L]dt V1/2

t− AT

Equivalently we may use the vec operator to write the above SDEs

dGt = V1/2
t− dLt, Vt = C + Yt (13)

dvec(Yt) = (B⊗ I + I ⊗ B)vec(Yt−)dt + (A⊗ A)(V1/2
t− ⊗V1/2

t− )dvec([L, L]dt ) (14)

dvec(Vt) = (B⊗ I + I ⊗ B)(vec(Vt−)− vec(C))dt + (A⊗ A)(V1/2
t− ⊗V1/2

t− )dvec([L, L]dt )
(15)

For a proof, see (7.2). We now state the important result of existence and uniqueness
of a solution of equation (15):

12



4 Continuous-time GARCH Models

Theorem 4.1. ([3], Theorem 3.2) Let A, B ∈ Md(R), C ∈ S+
d and L be a d-dimensional

Levy process. The SDE (15) with initial value Y0 ∈ S+
d has a unique positive semidefi-

nite solution (Yt)t∈R+ . The solution (Yt)t∈R+ is locally bounded and of finite variation.
Moreover, it satisfies Yt ≥ eBtY0eBT t for all t ∈ R+.

For a proof see chapter (7.3). Since we proved existence and uniqueness, we want
to find a way to represent our solution. We prove now the so called shot noise
representation:

Theorem 4.2. ([3], Theorem 3.6) The MUCOGARCH(1,1) volatility process Y satisfies

Yt = eBtY0eBT t +
∫ t

0
eB(t−s)A(C + Ys−)

1/2d[L, L]ds (C + Ys−)
1/2ATeBT(t−s)

f or all t ∈ R+

Proof. The proof is based on ([3], page 100-101). Define Mt =
∫ t

0 A(C+Ys−)1/2d[L, L]dt (C+

Ys−)1/2 AT. M is S+
d -increasing and of finite variation, because all jumps are positive

semi-definite and [L, L]dt is of finite variation. Y solves the stochastic differential
equation

dXt = (BXt− + Xt−BT)dt + dMt

In order to find an explicit representation for Yt, we refer to Ornstein-Uhlenbeck
(OU) processes. Let (Lt)t∈R+ be a Levy process and consider the stochastic differ-
ential equation in one dimension

dσ2
t = −λσ2

t−dt + dLt

with some λ ∈ R and initial value σ2
0 ∈ R. The solution may be written as

σ2
t = e−λtσ2

0 +
∫ t

0
e−λ(t−s)dLs

We identify Md(R) with Rd2
. Let (Lt)t∈R+ be a Levy process with values in Rd2

,
A : Md(R) −→ Md(R) a linear operator. We call some solution to the SDE

dYt = AYt−dt + dLt

a (matrix-valued) process of Ornstein-Uhlenbeck type. As in one dimension, one
can show that for some initial value X0 the solution is unique and given by

Yt = eAtY0 +
∫ t

0
eA(t−s)dLs (16)

In our case, the linear operator is A(Y) = BY + YBT = A1(Y) + A2(Y) with
A1(Y) = BY and A2(Y) = YBT. A1 and A2 are commutating: A1(A2(Y)) =
BYBT = A2(A1(Y)) and therefore

eAtY0 = e(A1+A2)tY0 = eA1teA2tY0 = eBtY0eBT t

13
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Equation (16) and the defintion of M lead to our final representation

Yt = eBtY0eBT t +
∫ t

0
eB(t−s)A(C + Ys−)

1/2d[L, L]ds (C + Ys−)
1/2ATeBT(t−s)

f or all t ∈ R+

In the following, we will consider a special norm. Let || · ||2 denote the operator
norm on Md2(R) associated with the usual euclidian norm. Take a diagonalizable
matrix B and let S ∈ GLd(C) be a matrix such that S−1BS is diagonal. Define the
norm || · ||B,S on Md2(R) by ||X||B,S := ||(S−1 ⊗ S−1)X(S⊗ S)||2 for X ∈ Md2(R).
This norm depends both on B and S and is also an operator norm, associated with
the norm ||x||B,S := ||(S−1 ⊗ S−1)x||2 on Rd2

.

The proof of the stationarity needs some preparation. The first step to show
stationarity of our volatility process is the existence of a COGARCH(1,1) process,
which bounds the above introduced norm of our MUCOGARCH(1,1) process.

Theorem 4.3. ([3], Theorem 4.1) Let Y be a MUCOGARCH volatility process with initial
value Y0 ∈ S+

d and driven by a Levy process in Rd. Assume, further, that B ∈ Md(R) is
diagonalizable and let S ∈ GLd(C) be such that S−1BS is diagonal. The process solving
the SDE,

dyt = 2λyt−dt + ||S||22||S−1||22K2,B||A⊗ A||B,S(
||C||2
K2,B

+ yt−)dL̂t

y0 = ||vec(Y0)||B,S

with
L̂t =

∫ t

0

∫
Rd
||vec(xxT)||B,SµL(ds, dx), λ := max(<(σ(B)))

and

K2,B := max
X∈S+

d ,||X||2=1
(
||X||2

||vec(X)||B,S
)

is the volatility process of a univariate MUCOGARCH(1,1) process and y satisfies

||vec(Yt)||B,S ≤ yt f or all t ∈ R+ a.s.

Moreover, K2,B ≤ maxX∈S+
d ,||X||2=1(

||X||2
||vec(X)||B,S

) ≤ ||S||22.

For a proof see chapter (7.3).

From ([3], Theorem 4.4) we know, that the volatility process is a time-homogeneous
Markov process with the weak Feller property:

14
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Theorem 4.4. ([3], Theorem 4.4) (Markovian Properties) The MUCOGARCH(1,1) process
(G,Y) and its volatility process Y alone are temporally homogeneous strong Markov processes
on Rd × S+

d and S+
d , respectively, and they have the weak Feller property.

This result together with the one-dimensional MUCOGARCH(1,1) bound serve
as the fundament for the proof of the stationarity. We use the stationary condition
(7.13) to prove the stationarity of the bound, which helps us to show the prerequi-
sites of the Krylov-Bogoliubov Theorem. This theorem, in the end, brings us the
desired stationarity of the MUCOGARCH(1,1) volatility process.

With Theorem (4.4) we show the stationarity of the MUCOGARCH volatility
process:

Theorem 4.5. ([3], Theorem 4.5) (Stationarity) Let B ∈ Md(R) be diagonalizable with
S ∈ GLd(C) such that S−1BS is diagonal. Furthermore, let L be a d-dimensional
Levy process with non zero Levy measure, y be defined as in Theorem 4.3 and α1 :=
||S||22||S−1||22K2,B||A⊗ A||B,S. Assume that∫

Rd
log(1 + α1||vec(yyT)||B,S)νL(dy) < −2λ

Then there exists a stationary distribution µ ∈ M1(S
+
d ), that is, the set of all probability

measures on the Borel-σ-algebra of S+
d .

For a proof see chapter (7.5). The above conditions for the stationarity of the
MUCOGARCH(1,1) volatility process are similar to the one-dimensional case:

Theorem 4.6. ([11], Theorem 3.1 and 3.2) The squared volatility process (σ2
t )t≥0 as given

by equation (9), is a time homogeneous Markov process. Moreover, if we suppose∫
Rd

log(1 + Φy2)νL(dy) < η (17)

then σ2
t

D→ σ2
∞ and if we also assume σ2

0
D
= σ2

0 , independent of (Lt)t≥0, then (σ2
t )t≥0 is

strictly stationary.

15
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4.3 Continuous Modelling of the Correlations

We present a new continuous-time multivariate model for the covariance matrix Qit
of the DCC model to model the conditional correlations of each financial institution
with the market. So we start with the equations:

Qit = (1− αC − βC)Si + αC ε̂it−1ε̂T
it−1 + βCQit−1 (18)

= (1− αC − βC)Si + αCdiag(Qit−1)
1/2εit−1εT

it−1diag(Qit−1)
1/2 + βCQit−1 (19)

where we already used the rescaling of the innovations ε̂it = diag(Qit)
1/2εit, which

ensures that {ε̂it, Qit} is a MGARCH process, see [1]. If we compare equation (19)
with the BEKK representation of the multidimensional GARCH model

Σn = C + AΣ1/2
n−1εn−1εT

n−1Σ1/2
n−1AT + BΣn−1BT,

we recognize a similar structure by choosing the matrices A, B as scalars. Now we
proceed like in chapter (4.2): We replace the noise ε of equation (19) process by the
jumps of a multidimensional Levy process L and the autoregressive structure of
the covariance process by a continuous autoregressive (AR) structure:

Definition 4.3. (MUCO-Diag(1,1)) Let L be an Rd-valued Levy process and αC, βC ∈ R,
αC + βC < 1, S ∈ S+

d . The process Qi = (Qit)t∈R+ solving

Qit = (1− αC − βC)Si + Yit (20)

dYit = (βCYit− + Yit−βC)dt + αCdiag(Qit−)
1/2d[L, L]dt diag(Qit−)

1/2 (21)

with initial value Qi0 ∈ S+
d , is then called a MUCO-Diag(1,1) volatility process.

Our aim is to show the following properties of the MUCO-Diag(1,1):

• Existence and uniqueness of a solution

• Representation of a solution

• Existence of a COGARCH(1,1) bound for the norm

• Stationarity of the MUCO-Diag(1,1) volatility process

We can directly write the stochastic differential equation for Yit:

dYit =(βCYit−+ Yit−βC)dt

+ αCdiag((1− αC − βC)S + Yit)
1/2d[L, L]dt diag((1− αC − βC)S + Yit)

1/2

16



4 Continuous-time GARCH Models

Analogously to the MUCOGARCH case, see chapter (7.2), we may equivalently use
the vec operator to write the above SDEs

dvec(Yit) =(βC ⊗ I + I ⊗ βC)vec(Yit−)dt

+ (αC ⊗ αC)(diag(CαC ,βC + Vit−)
1/2 ⊗ diag(CαC ,βC + Vit−)

1/2)dvec([L, L]dt )

First of all we want to make sure, that the MUCO-Diag(1,1) is a new process.
Therefore we have a deeper look on the structural difference of the MUCOGARCH
and MUCO-Diag SDE’s. We compare equation (12)

dYt = A2(C + Yt−)
1/2d[L, L]dt (C + Yt−)

1/2

with equation (21):

dYit = αCdiag(C + Yit−)
1/2d[L, L]dt diag(C + Yit−)

1/2

by setting B, βC = 0 and choosing A to be scalar. The main difference is the
diagonalization before taking the square root of (C + Yit−). The square root of a

2× 2 matrix M =

(
A B
C D

)
is

R =
1
t

(
A + s B

C D + s

)
(22)

where s2 = det(M) = AD− BC 6= 0 and t2 = A + D + 2s. If M is diagonal, we just
take the square roots of the diagonal entries.

Proposition 4.7. The MUCOGARCH volatility process and the MUCO-Diag process
aren’t equal, even if we choose the matrix C and the initial value Yi,0 diagonal.

Proof. We now show, that even if the initial value of the MUCOGARCH volatility
process Y0 and C are diagonal, the volatility process Yt doesn’t have to be diagonal
for all t > 0, hence the volatility processes aren’t equal. We choose B, βC = 0,
A scalar and the two dimensional Levy process (Lt)t∈R+ = (L1, L2)t∈R+ to be
compound Poisson and we assume, for simplicity, both components to jump at the
same time. Let Γ1 be the first jump time, and we use the shot noise representation of
Theorem 4.2 and the definition of the "matrix-integral" to analyse the non-diagonal
entries of the 2-dimensional Yt. Let t < Γ1, then we get

(Yt)12 = (Y0 + A2
∫ t

0
(C + Ys−)

1/2d[L, L]ds (C + Ys−)
1/2)ij

= (Y0)ij + A2
2

∑
k=1

2

∑
l=1

∫ t

0
(C + Ys−)

1/2
ik (C + Ys−)

1/2
l j d[L, L]dk,l,s

= (Y0)ij + A2
∫ t

0
(C + Ys−)

1/2
11 (C + Ys−)

1/2
22 d[L, L]d1,2,s

= 0

17
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The double sum vanishes, because C and Ys stay diagonal (at least until t < Γ1).
The integral in line three vanishes, because there haven’t yet been jumps. For t = Γ1
we get

(YΓ1)12 = (Y0)12 + A2
2

∑
k=1

2

∑
l=1

∫ Γ1

0
(C + Ys−)

1/2
ik (C + Ys−)

1/2
l j d[L, L]dk,l,s

= 0 + A2
∫ Γ1

0
(C + Ys−)

1/2
11 (C + Ys−)

1/2
22 d[L, L]d1,2,s

= A2(C + Y0)
1/2
11 (C + Y0)

1/2
22 (∆L1)Γ1(∆L2)Γ1

6= 0

If we choose, for example, all diagonal entries to be equal to one. Hence, (Yt)t∈R+

is not diagonal and since (C + Yit−)
1/2 6= diag(C + Yit−)

1/2 for t > Γ1, we proved,
that both volatility processes can’t be equal.

In order to show existence and uniqueness of a solution, we proceed like in
chapter (4.2).

Theorem 4.8. (Existence and Uniqueness of MUCO-Diag(1,1)) Let L be an Rd-valued
Levy process and αC, βC ∈ R, αC + βC < 1, S ∈ S+

d and the initial value Q0t ∈ S+
d . Then

the SDE (21) has a unique and locally bounded solution Qt ∈ S+
d with finite variation and

satisfies the inequality Qit ≥ eβCtQi0eβT
Ct for all t ∈ R+.

Proof. Define the mappings F(vec(y)) = (Id ⊗ β + β⊗ Id)vec(y) and G(y) = (α⊗
α)((C+ diag(y))1/2⊗ ((C+ diag(y))1/2, where C := diag((1− α− β)S). We receive
the SDE in vec notation, using F and G:

dvec(Yit) = F(vec(Yit))dt + G(Yit−)dvec([L, L]dt )

Like in Theorem 4.1, the only difference will be to handle the additional function
diag in our jump term.

Lemma 4.9. Consider the mapping diag : S+
d −→ S+

d , X 7→ diag(X). diag is linear,
well-defined and there exists a constant K > 0 such that

||diag(A)− diag(B)||2 ≤ K · ||A− B||2

for all A, B ∈ Md(R).

Proof. Take an arbitrary A ∈ S+
d , then all diagonal entries of A are necessarily

non-negative, and hence diag(A) ∈ S+
d . We first of all show an inequality, using

18
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the 1-matrix-norm instead of the induced euclidean norm:

||diag(A)− diag(B)||1 = ||diag(A− B)||1

= max
i=1,...,d

d

∑
j=1
|diag(A− B)ij| = max

i=1,...,d
|(aii − bii)|

≤ max
i=1,...,d

d

∑
j=1
|aij − bij| = ||A− B||1

The above inequality holds for all A, B ∈ Md(R), which is a finite-dimensional
vector space. Therefore all norms on Md(R) are equivalent and we get our desired
constant K > 0 such that

||diag(A)− diag(B)||2 ≤ K · ||A− B||2

We show that G is locally Lipschitz on UC,ε := {x = diag(y) ∈ S+
d : diag(y) >

−εId} with 0 < ε < min σ(Cα,β) using Lemma 4.8 and the Lemmata from Theorem
4.1:

||G(A)− G(B)||2
= ||(α⊗ α)((Cα,β + diag(A))1/2 ⊗ ((Cα,β + diag(A))1/2

− (α⊗ α)((Cα,β + diag(B))1/2 ⊗ ((Cα,β + diag(B))1/2||2
≤ 2 max{||Cα,β + diag(A)||2, ||Cα,β + diag(B)||2} · ||(Cα,β + diag(A))1/2 − (Cα,β + diag(B))1/2||2
= Nα,β(A, B) · ||(Cα,β + diag(A))1/2 − (Cα,β + diag(B))1/2||2

≤ Nα,β(A, B) · 1
2
√

c
||(Cα,β + diag(A))− (Cα,β + diag(B))||2

≤ Nα,β(A, B) · K
2
√

c
||A− B||2

where Nα,β(A, B) := 2 max{||Cα,β + diag(A)||2, ||Cα,β + diag(B)||2} < ∞ if ||A||2, ||B||2 <
R for a constant R > 0. Hence, G is locally Lipschitz on UC,ε. It remains to show
that G has linear growth:

||G(A)||22 = α4||((Cα,β + diag(A))1/2 ⊗ ((Cα,β + diag(A))1/2||2 = ||Cα,β + diag(A)||22
≤ α4(||Cα,β||2 + ||diag(A)||2)2 ≤ ||Cα,β||22 + 2||Cα,β||2K||A||2 + K2||A||22

If ||A||2 < 1, we get

||G(A)||22 ≤ ||Cα,β||22 + 2||Cα,β||2K + K2||A||22
≤ max{||Cα,β||22 + 2||Cα,β||2K, K2}(1 + ||A||22)
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If ||A||2 ≥ 1, we get

||G(A)||22 ≤ ||Cα,β||22 + (2||Cα,β||2 + K2)|A||22
≤ max{||Cα,β||22, 2||Cα,β||2 + K2}(1 + ||A||22)

So G is locally Lipschitz on UC,ε and has linear growth, hence there exists a unique
locally bounded solution (Yit)t∈R+ , which also fulfills the claimed inequality, due
to the same arguments as in Theorem 4.1.

Now we know, that a unique solution of the MUCO-Diag volatility SDE’s exists
and we want to give, like in chapter (4.2), a so called shot noise representation of
the MUCO-Diag(1,1) volatility process:

Theorem 4.10. The MUCO-Diag(1,1) volatility process Y satisfies

Yit = eβCtYi0eβCt +
∫ t

0
eβC(t−s)αCdiag(C + Yis−)

1/2d[L, L]ds diag(C + Yis−)
1/2αCeβC(t−s)

= e2βCtYi0 + α2
C

∫ t

0
e2βC(t−s)diag(C + Yis−)

1/2d[L, L]ds diag(C + Yis−)
1/2

f or all t ∈ R+

With Mt = α2
∫ t

0 diag(C + Ys−)1/2d[L, L]dt diag(C + Ys−)1/2 S+
d -increasing and of

finite variation, Y solves the stochastic differential equation

dXt = (βCXt− + Xt−βC)dt + dMt

and the proof is the same as in Theorem 4.2.

Like in the MUCOGARCH case, we prove the stationarity of the volatility process
using the following properties: Existence of a one-dimensional MUCOGARCH(1,1)
bound, the Markov and the weak Feller property. We start with the bound:

Theorem 4.11. ([3], Theorem 4.1) (Existence of a bound for the norm) Let Y be a MUCO-
Diag(1,1) volatility process with C := (1− αC − βC)S and initial value Y0 ∈ S+

d driven
by a Levy process in Rd and K the Lipschitz constant of the diag-function. The process
solving the SDE,

dyt = 2λyt−dt + Kα2K2,B(
||C||2
K2,B

+ yt−)dL̂t

y0 = ||vec(Y0)||B,S

with
L̂t =

∫ t

0

∫
Rd
||vec(xxT)||B,SµL(ds, dx)

and

K2,B := max
X∈S+

d ,||X||2=1
(
||X||2

||vec(X)||B,S
)
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is the volatility process of a univariate MUCOGARCH(1,1) process and y satisfies

||vec(Yt)||B,S ≤ yt f or all t ∈ R+ a.s.

Moreover, K2,B ≤ maxX∈S+
d ,||X||2=1(

||X||2
||vec(X)||B,S

) ≤ ||S||22 = 1.

The proof works as in the MUCOGARCH case: We first show the existence of the
bound process for driving compound Poisson processes and transform this result
via an approximation argument to the general case with driving Levy processes.

Proof. STEP 1: We show Theorem 4.11 for driving compound Poisson processes.

Lemma 4.12. ([3], Lemma 6.5) Let (Lt)t∈R+ be a driftless Levy subordinator. Then there
exists a Levy process (L̄t)t∈R+ in R such that Lt = [L̄t, L̄t]dt for all t ∈ R+.

For a proof see chapter (7.4).

L̂t =
∫ t

0

∫
Rd ||vec(xxT)||B,SµL(ds, dx) is a driftles subordinator, hence, due to Lemma

4.12 there exists a Levy process (Lt)t∈R+ such that: L̂t = [Lt, Lt]dt .
Let Γ1 be the time of the first jump of the compound Poisson process. Until Γ1 the
process Yt follows the deterministic differential equation given by dYt = (2βCYt−)dt
and in vec-notation dvec(Yt) = 2βCvec(Yt−)dt and is uniquely solved by

vec(Yt) = e2βCtvec(Y0)

And we get:

||vec(Yt)||B,S = ||e2βCtvec(Y0)||B,S = e2βCt||vec(Y0)||B,S = e2λty0 = yt

Thus our inequality is shown for all t ∈ [0, Γ1). At time Γ1 we calculate

||vec(YΓ1)||B,S

= ||vec(YΓ1−) + (αC ⊗ αC)(diag(C + YΓ1)
1/2 ⊗ diag(C + YΓ1)

1/2)vec(∆LΓ1(∆LΓ1)
T)||B,S

≤ yΓ1 + ||αC ⊗ αC||B,S||diag(C + YΓ1)
1/2 ⊗ diag(C + YΓ1)

1/2||B,S||vec(∆LΓ1(∆LΓ1)
T)||B,S

≤ yΓ1 + α2
C||diag(C + YΓ1)

1/2 ⊗ diag(C + YΓ1)
1/2||2∆L̂Γ1

≤ yΓ1 + Kα2
CK2,B(||C||2 + ||YΓ1−||2)∆L̂Γ1

≤ yΓ1 + Kα2
CK2,B(||C||2 + ||vec(YΓ1−)||2)∆L̂Γ1

= yΓ1

By iterating the same argument, since compound Poisson is memoryless, gives us
the inequality for all t ∈ R+.

STEP 2: We want to extend our results above to MUCO-Diag(1,1) processes
driven by general Levy processes. The following Proposition shows, that we
can approximate MUCO-Diag(1,1) processes by approximating the driving Levy
processes with compound Poisson processes.

21



4 Continuous-time GARCH Models

Proposition 4.13. Let Y be a MUCO-Diag(1,1) volatility process with C ∈ S++
d and

Y0 ∈ S+
d , driven by a Levy process L in Rd, and let (εn)n∈N be a monotonically decreasing

sequence in R+ \ {0} with limn→∞ εn = 0. Define compound Poisson Levy processes
Ln by Ln,t :=

∫ t
0

∫
Rd,||x||≥εn

xµL(ds, dx) for n ∈ N and associated MUCO-Diag(1,1)
volatility process Yn by

dYn,t = (2βCYn,t− + Yn,t−B)dt + Adiag(C + Yn,t−)
1/2d[L, L]dt diag(C + Yn,t−)

1/2AT

Yn,0 = Y0

Then Yn → Y as n→ ∞ almost surely uniformly on compacts.

The proof is analogue to Proposition 7.7: The only difference lies in the choice of
the function η in the Gronwall Lemma (Theorem 7.8), where the Lipschitz constant
K of the diag operator appears. The inequalities our now:

||Yn,t||2 ≤ (||Y0||2 + ||A||22||C||2
∫ T

0

∫
Rd
||x||22µLn(ds, dx))eK||A||22

∫ t
0

∫
Rd ||x||22µLn (ds,dx)+2||B||2t

≤ (||Y0||2 + ||A||22||C||2
∫ T

0

∫
Rd
||x||22µL(ds, dx))eK||A||22

∫ T
0

∫
Rd ||x||22µL(ds,dx)+2||B||2T

||Yt||2 ≤ (||Y0||2 + ||A||22||C||2
∫ T

0

∫
Rd
||x||22µL(ds, dx))eK||A||22

∫ T
0

∫
Rd ||x||22µL(ds,dx)+2||B||2T

The rest f the proof works as in the MUCOGARCH(1,1) case.
Proof of Theorem 4.11 for general L: In the last proposition we constructed a

sequence (Yn)n∈N of compound Poisson driven MUCO-Diag(1,1) processes con-
verging u.c.p. to Y. Let yn be the univariate MUCOGARCH(1, 1) bounds, that
means ||vec(Yn,t)||B,S ≤ yn,t for all n and t ∈ R+. Due to the defintion of Ln,t, it is
clear, that we add only more jumps through increasing n and therefore

yn+l,t ≥ yn,t

for all n, l ∈N and t ∈ R+. Define the process y by:

dyt = 2λyt−dt + Kα2
CK2,B(

||C||2
K2,B

+ yt−)dL̂t

y0 = ||vec(Y0)||B,S

with L̂t =
∫ t

0

∫
Rd ||vec(xxT)||B,SµL(ds, dx) and again yn,t ≤ yt for all n ∈N and t ∈

R+. Passing to the limit n→ ∞ in ||vec(Yn,t)||B,S ≤ yn,t ≤ yt shows ||vec(Yt)||B,S ≤
yt for all t ∈ R+.

We now start with the proof for the stationarity of the MUCO-Diag(1,1) volatility
process. In the proof for the existence and uniqueness of a solution of equation (21)
we already showed, that the coefficients of the SDE

dvec(Yit) =(βC ⊗ I + I ⊗ βC)vec(Yit−)dt

+ (αC ⊗ αC)(diag(CαC ,βC + Vit−)
1/2 ⊗ diag(CαC ,βC + Vit−)

1/2)dvec([L, L]dt )
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are locally Lipschitz on the open sets UC,ε. Hence, all prerequisites for Theorem 7.9
and 7.10 are fulfilled and we can conclude:

Theorem 4.14. (Markov and weak Feller property) The MUCO-Diag(1,1) volatility process
Y is a temporally homogeneous strong Markov process on S+

d and has the weak Feller
property.

Using the bound of Theorem 4.11, the strong Markov property and the Krylov-
Bogoliubov Theorem of Lemma 7.14, we can also show the stationarity of the
MUCO-Diag(1,1) volatility process:

Theorem 4.15. (Stationarity) Let L be a d-dimensional Levy process with non zero Levy
measure, y be defined as in Theorem 4.11 and α1 := Kα2K2,B. Assume that∫

Rd
log(1 + α1||vec(yyT)||B,S)νL(dy) < −2βC

Then there exists a stationary distribution µ ∈ M1(S
+
d ), that is, the set of all probability

measures on the Borel-σ-algebra of S+
d .

Proof. The proof works like in the MUCOGARCH case, since we also for the
MUCO-Diag volatility process showed the existence of a one dimensional bound y.
Take λ, L̂ and L̂ = [L̄, L̄] as in Lemma 4.3. Then we have∫

Rd
log(1 + α1y2)νL̄(dy) =

∫
Rd

log(1 + α1||vec(yyT)||B,S)νL(dy) < −2λ

and therefore the COGARCH(1,1) bound y from Lemma 4.11 satisfies all prereq-
uisites of Lemma 7.13 and it follows, that our bound converges in distribution
to a distribution concentrated on R+. If we assume that y0 has this stationary
distribution and is independent of (Ls)s∈R+ , (yt)t∈R+ is stationary. We want to
transform this stationarity result from the bound to our MUCO-Diag(1,1) volatility
process. We set Y0 = y0

||vec(Id)||B,S
Id, independent of (Ls)s∈R+ and ||vec(Y0)||B,S ≤ y0.

Our next step is to show the existence of a stationary solution for the MUCO-
Diag(1,1) volatility process Y. The set {L (Yt) : t ∈ R+} of laws of Yt forms a tight
subset of M1(S

+
d ): For all K > 0 the set {x ∈ S+

d : ||x|| ≤ K} is compact in S+
d ,

P(||Yt||B,S ≤ K) ≥ P(yt ≤ K), because ||Yt||B,S ≤ yt and y is stationary with a sta-
tionary distribution concentrated on R+. (Yt)t∈R+ is a weak Feller Markov process
(Theorem 4.14) and therefore fulfills all requirements for the Krylov-Bogoliubov
Theorem 7.14. We conclude, there exists a stationary distribution µ ∈ M1(S

+
d ) for

the MUCO-Diag(1,1) volatility process Y such that µ is in the closed convex hull of
{L (Yt) : t ∈ R+}.
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5 Simulations

In this chapter we present some examples for the modelled volatilities and correla-
tions. First of all we give a short overview of the discrete and continuous model
settings, introduced in chapters 3 and 4. In both cases, discrete and continuous,
we have a bivariate model for the returns, where we plug in the distinctly mod-
elled volatilities of one firm and the market and the corresponding market-firm
correlation. The driving shocks of the discrete model are replaced by the jumps of
a Levy process. The volatilities are modelled wih a GJR GARCH and COGARCH
model, where we picked the parameters from [18]. Within the discrete framework
the market firm correlation ρ1t is modelled with the DCC approach, introduced
in chapter 3.2, where we picked the parameters from [2]. Within the continuous
framework, the DCC analogue was introduced in chapter 4.3 with parameters from
[3]. In chapter 5.2 we approximate the continuous model by assuming the two
dimensional Levy process to be compound Poisson. Due to a high rate λ of the
compound Poisson process, we assume the jump times of each component of L to
be the same.

Discrete framework

The returns are modelled with a bivariate model

rm,t = σm,tεm,t

r1,t = σ1,tρ1,tεm,t + σ1,t

√
1− ρ2

1,tε1,t

(εm,t, ε1,t) ∼ F

where we plug in the distinctly modelled conditional volatilities and conditional
correlations! The shocks (εm,t, ε1,t) are normally distributed. The conditional
volatilities (σm,t)t∈N and (σ1,t)t∈N are each modelled with a GJR GARCH(1,1)
model

σ2
m,t = θm + α̂mr2

m,t−1 + βmσ2
t−1 + γ̂m1{rm,t−1>0}r

2
m,t−1

σ2
1,t = θ1 + α̂1r2

1,t−1 + β1σ2
1,t−1 + γ̂11{r1,t−1>0}r

2
1,t−1

with α̂k = αk(1 + γk)
2, γ̂k = −4αkγk for k ∈ {m, 1}. The DCC approach models the

covariance matrix Q1t by

Q1t = (1− αC − βC)S1 + αCdiag(Q1,t−1)
1/2ε1,t−1εT

1,t−1diag(Q1,t−1)
1/2 + βCQ1,t−1

with parameters αC, βC ∈ R, αC + βC < 1 and S1 ∈ S+
d . This matrix is then mapped

in a correlation matrix using the following transformation:(
1 ρ1t

ρ1t 1

)
= diag(Q1t)

−1/2Q1tdiag(Q1t)
−1/2
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Continuous framework

Let L be an R2-valued Levy process, then we model for t ≥ 0 the returns by

drm,t = σm,tdLm,t

dr1,t = σ1,tρ1,tdLm,t + σ1,t

√
1− ρ2

1,tdL1,t

The conditional volatility processes (σ2
m,t)t≥0 and (σ2

1,t)t≥0 satisfy

σ2
k,t = σ2

k,0 + θkt− ηk

∫ t

0
σ2

s ds + Φk ∑
0<s≤t

σ2
s h(∆Ls)

where h(x) = (|x| − γkx)2, θk > 0, Φk ≥ 0 and |γk| < 1 for k = m, 1.

As in the discrete case, we first model the covariance matrix Q1t. With αC, βC ∈ R,
αC + βC < 1 and S1 ∈ S+

d the model reads as

Q1t = (1− αC − βC)S1 + Y1t

dY1t = (βCY1t− + Y1t−βC)dt + αCdiag(Q1t−)
1/2d[L, L]dt diag(Q1t−)

1/2

And by the transformation

P1t = diag(Q1t)
−1/2Q1tdiag(Q1t)

−1/2

we receive the correlation matrix.

5.1 Modelling the GJR-COGARCH Volatilities

The GJR model is a time-continuous model for the volatilities and therefore we need
to discretize it. Maller et al. [17] constructed a family of discrete-time processes,
which discretized the continuous-time integrated COGARCH process and the
volatility process. They showed, that this family of processes converged in the
Skorokhod metric to the continuous-time process and it’s volatility process. In
Behme et al [18], this procedure was also successfully used for the GJR COGARCH.
Our programs are based on the programs, introduced in the Master’s thesis of
Mayr [5]. The parameters for the continuous volatilities are as in [18]: θ = 0.0001,
η = −log(0.9) = 0.04576, φ = 1/18 = 0.05556, γ = 0.2. Through the parameter
transformation, as in [18], the corresponding parameters for the discrete-time GJR
GARCH are θ = 0.0001, η = 0.9, β = 0.05, γ = 0.2. In order to receive initial values
for the volatilities, we let one simulation run with starting value zero and pick the
last value as the initial one for the second simulation.
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Figure 4: Simulation of GJR GARCH (left column) vs. GJR COGARCH (right
column) volatilities. We compare the volatilities for different times t =
100, 1000, 5000. Parameters: θ = 0.0001, η = −log(0.9) = 0.04576, φ =
1/18 = 0.05556, γ = 0.2
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5.2 Approximation of the MUCO-Diag Correlations

In chapter 4.3 we introduced the continuous-time model for the correlation matrix
on the basis of the discrete DCC approach. We now discretize the continuous
model by assuming the driving Levy processes to be compound Poisson processes.
Through the transformation

P1t =

(
1 ρ1t

ρ1t 1

)
= diag(Q1t)

1/2Q1tdiag(Q1t)
1/2 (23)

we get the correlation matrix P1t where ρ1t denotes the correlation between the
institute and the market. The matrix Q1t is modelled by

Q1t = (1− αC − βC)S + Y1t

dY1t = (βCY1t− + Y1t−βC)dt + αCdiag(Q1t−)
1/2d[L, L]dt diag(Q1t−)

1/2

By integration we get

Y1t = 2βC

∫ t

0
Y1t−dt + αC

∫ t

0
diag(Q1t−)

1/2d[L, L]dt diag(Q1t−)
1/2︸ ︷︷ ︸

=:Ω1t

where Ω1t is a 2 × 2 matrix. We use the definition of the "matrix-integral" to
compute each component of the matrix. Let’s start with

(Ω1t)ij =
2

∑
k=1

2

∑
l=1

∫ t

0
(diag(Q1s−)

1/2)ik(diag(Q1s−)
1/2)l jd[L, L]dkl,s

which reduces to

(Ω1t)12 =
∫ t

0
(diag(Q1s−)

1/2)11(diag(Q1s−)
1/2)22d[L, L]d12,s

(Ω1t)ii =
∫ t

0
(diag(Q1s−))iid[L, L]dii,s f or i = 1, 2.

In order to discretize the continuous model, we approximate a general bivariate
Levy process by a two-dimensional compound Poisson process with a high inten-
sity λ. We assume, that both components of L jump at same times. (Lmt, L1t)

T =

(∑N(t)
i=1 Xm,ti , ∑N(t)

i=1 X1,ti) and the jump sizes X are normally distributed with expec-
tation vector µ and correlation matrix Σ. The discontinuous part of the quadratic
variation process of the 2-dimensional Levy process [L, L]dt equals the matrix

[L, L]dt = ∑
0≤s≤t

(∆Ls)(∆Ls)
T =

∫ t

0

∫
R

xxTµL(ds, dx) (24)

where µL denotes the corresponding jump measure of L. So in the ij’th entry of
[L, L]dt we sum up all simultaneous jumps of the i’th and j’th component of Lt
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until time t. Now we rewrite the expression for the ij’th component of the pseudo
correlation matrix and we receive

(Ω1t)12 =
∫ t

0
(diag(Q1s−)

1/2)11(diag(Q1s−)
1/2)22d[L, L]d12,s

=
N(t)

∑
k=1

(diag(Q1tk−1)
1/2)11(diag(Q1tk−1)

1/2)22(∆L1)tk(∆L2)tk

and for i = 1, 2

(Ω1t)ii =
∫ t

0
(diag(Q1s−))iid[L, L]dii,s

=
N(t)

∑
k=1

(diag(Q1tk−1))ii(∆Li)
2
tk

We approximate the first term of Yit by 2βC ∑N(t)
k=1 (Y1tk)ij(tk − tk−1) and if we com-

bine all, we get a recursion formula

(Y1tk+1)12 = 2βC(Y1tk)12(tk+1 − tk) + αCdiag(Q1tk)
1/2
11 diag(Q1tk)

1/2
22 (∆Ltk+1)1(∆Ltk+1)2

(Y1tk+1)ii = 2βC(Y1tk)ii(tk+1 − tk) + αCdiag(Q1tk)ii∆(Ltk+1)
2
ii f or i = 1, 2

We plug everything into equation (23) and receive a recursion formula for the
correlation ρ1t.

5.3 Modelling the Correlations with the MUCO-Diag Model

In the continuous setting the parameters αC and βC are chosen as in [2]: αC = 0.06,
βC = 0.9 and the shocks are normally distributed like F ∼ N ((0, 0), Σ) with

Σ =

(
0.03 0.001
0.001 0.03

)
. The matrix S1 equals

(
0.03 0.001
0.001 0.03

)
. We conduct a first

simulation with ρ1,0 = 0 to get an initial value for the correlation.
In the continuous setting, the Levy process is assumed to be compound Poisson
with rate λ = 10 and the jump size distribution is also distributed like F. In order
to receive an initial value for the correlation, we conduct a starting simulation with
ρ1,0 = 0 and take the last simulated value of the correlation as the initial value
for the second simulation. We choose the parameters αC, βC as in [3]: αC = 1,
βC = −1.6. The matrix S1 are in both cases equal.
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Figure 5: Simulation of Time-Discrete Correlations. We compare the correlations
for different times t = 100, 1000, 5000. We use the parameters
mentioned above.
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Figure 6: Simulation of Time-Continuous Correlations. We compare the correlations
for different times t = 100, 1000, 5000. We use the parameters
mentioned above.
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6 Conclusion and Outlook

We successfully adapted the time-discrete models of Brownlees and Engle in [1] to
time-continuous models for the volatilities and the market-firm correlations. The
theoretical basis of existence and uniqueness of a solution for the pseudo-correlation
process of the SDE for the MUCO-Diag(1,1) process and also the stationarity are
proved. The simulations of volatilities and correlations were done with parameters
from the literature. The magnitude of both, time-discrete and time-continuous,
correlation do not match to correlations in finance, which are typically much higher
and non negative. Also a comparison of the time-discrete and time-continuous
processes weren’t possible, because the exact parameter-transformation between
both model classes hasn’t yet been available. At this point we are interested in such
a parameter transformation and the calculation of some moments in order to start
a pseudo-maximum-likelihood-parameter estimation. The parameter estimation
is crucial for the usage of the time-continuous model for the SRISK index. For
a comprehensive study of the SRISK index with the new model class, we need
parameters matching to the financial background.
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7 Proofs and Definitions

7.1 Levy Processes

For a comprehensive introduction to Levy processes see [21]. We give the basic
notation of Levy processes, based on chapter 2.2 of [3]. Consider a Levy process
L = (Lt)t∈R+ (where L0 = 0 a.s.) in Rd which is determined by its characteristic
function in the Levy-Khintchine form E[ei<u,Lt>] = exp(tΨL(u)) for t ∈ R+ with

ΨL(u) = i < σL, u > −1
2
< u, τLu > +

∫
Rd
(ei<u,x>− 1− i < u, x > 1[0,1](||x||))νL(dx)

where σL ∈ Rd, τL ∈ S+
d and the Levy measure νL is a measure on Rd, which satisfies

νL(0) = 0 and
∫

Rd(||x||2 ∧ 1)νL(dx) < ∞ and < ·, · > denotes the Euclidean scalar
product on Rd. We assume L to be cadlag (right continuous with left limits) and
denote its jump measure by µL, that is, µL is the Poisson random measure on
R+ ×Rd \ {0} given by µL(B) = ]{s ≥ 0 : (s, Ls − Ls−) ∈ B} for any measurable
set B ⊂ R+ ×Rd \ {0}. We write ∆Ls = Ls − Ls− if |Ls − Ls−| > 0.

7.2 The Vec-Representation

Theorem: We may rewrite

dGt = V1/2
t− dLt

Vt = C + Yt

dYt = (BYt− + Yt−BT)dt + AV1/2
t− d[L, L]dt V1/2

t− AT

into

dGt = V1/2
t− dLt

Vt = C + Yt

dvec(Yt) = (B⊗ I + I ⊗ B)vec(Yt−)dt + (A⊗ A)(V1/2
t− ⊗V1/2

t− )dvec([L, L]dt )

dvec(Vt) = (B⊗ I + I ⊗ B)(vec(Vt−)− vec(C))dt + (A⊗ A)(V1/2
t− ⊗V1/2

t− )dvec([L, L]dt )

using the vec operator.

Proof.

dYt = (BYt− + Yt−BT)︸ ︷︷ ︸
(1a)

dt + AV1/2
t− d[L, L]dt V1/2

t− AT︸ ︷︷ ︸
(1b)

(25)

dvec(Yt) = (B⊗ I + I ⊗ B)vec(Yt−)︸ ︷︷ ︸
(2a)

dt + (A⊗ A)(V1/2
t− ⊗V1/2

t− )dvec([L, L]dt )︸ ︷︷ ︸
(2b)

(26)
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We compare the according parts of the above equations in order to identify the two
representations.
Step 1: (1a) and (2a)

The vec-operator transforms a m⊗ n matrix A into a column vector by stacking
all columns of A on top of one another:

vec(A) = [a1,1, ..., am,1, a1,2, ..., am,2, ..., a1,n, ..., am,n]
T (27)

Hence, to find the (i, j)’th entry of a d⊗ d matrix A in vec(A), we stack the first
j− 1 columns on top of another and the remaining i entries of the j’th column.
Therefore the (i, j)’th entry of a d⊗ d matrix A equals the ((j− 1) ∗ d + i)’th entry
of vec(A).

(BY + YBT)ij =
d

∑
k=1

bikykj +
d

∑
k=1

yikbkj

and accordingly in vec notation

(B⊗ I + I ⊗ B)vec(Y)(i+(j−1)d) = ((diagd(bj1) · · · diagd(bjn))vec(Y))i + (B(Y)j)i

= bj1yi1 + bj2yi2 + ... + bjnyin +
d

∑
k=1

bikykj =
d

∑
k=1

bikykj +
d

∑
k=1

yikbkj

Step 2: (1b) and (2b)

(AV1/2
t− d[L, L]dt V1/2

t− AT)ij = ∑
k,l

∫ t

0
(AV1/2)ik,s− (V1/2AT)l j,s−︸ ︷︷ ︸

((V1/2)T AT)l j=(AV1/2)T
lj=(AV1/2)jl

d[L, L]dkl

and accordingly in vec notation

(A⊗ A)(V1/2
t− ⊗V1/2

t− )dvec([L, L]dt )(i+(j−1)d) = (AV1/2
t− ⊗ AV1/2

t− )dvec([L, L]dt )(i+(j−1)d)

We want to understand the above matrix vector multiplication and therefore we
need to analyse the (i + (j− 1)d)’th row of the matrix AV1/2

t− ⊗ AV1/2
t− .

(AV1/2
t− ⊗ AV1/2

t− )(i+(j−1)d)′th row

=

(AV1/2)11AV1/2 . . . (AV1/2)1d AV1/2

...
. . .

...
(AV1/2)d1AV1/2 . . . (AV1/2)dd AV1/2


(i+(j−1)d)′th row

=((AV1/2)j1AV1/2 . . . (AV1/2)jd AV1/2)i′th row

=((AV1/2)j1(AV1/2)i′th row . . . (AV1/2)jk(AV1/2)i′th row . . . (AV1/2)jd(AV1/2)i′th row)
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And we receive our matrix vector multiplication

(A⊗ A)(V1/2
s− ⊗V1/2

s− )dvec([L, L]d)(i+(j−1)d)

=
d

∑
l=1

(AV1/2)jl,s−
d

∑
k=1

(AV1/2)ik,s− dvec([L, L]dt )((l−1)d+k︸ ︷︷ ︸
=d[L,L]dlk,t

=∑
k,l
(AV1/2)jl,s−(AV1/2)ik,s−d[L, L]dlk

7.3 Existence of the MUCOGARCH(1,1) volatility process

Theorem 4.1: Let A, B ∈ Md(R), C ∈ S+
d and L be a d-dimensional Levy process. The

SDE (15) with initial value Y0 ∈ S+
d has a unique positive semidefinite solution (Yt)t∈R+ .

The solution (Yt)t∈R+ is locally bounded and of finite variation. Moreover, it satisfies
Yt ≥ eBtY0eBT t for all t ∈ R+.

Proof. The proof is based on ([3], page 98-100). Consider the SDE for Yt:

dYt = (BYt− + Yt−B)dt + AV1/2
t− d[L, L]dt V1/2

t− AT

This SDE can equivalently be written in vec notation:

dvec(Yt) = (B⊗ I + I ⊗ B)vec(Yt−)dt + (A⊗ A)(V1/2
t− ⊗V1/2

t− )dvec([L, L]dt )

In order to show existence and uniqueness of a solution of the above SDE, define
the following mappings F(vec(y)) = (Id ⊗ B + B ⊗ Id)vec(y) and G(y) = (A ⊗
A)((C + y)1/2 ⊗ (C + y)1/2). Rewriting the SDE gives

dvec(Yt) = F(vec(Yt))dt + G(Yt−)dvec([L, L]dt ) (28)

We try to show, that G has linear growth and is locally Lipschitz on a well chosen
set U. The following lemmata help us to find the right choice of U.

Lemma 7.1. ([4], Problem I.6.11) For all A, B ∈ Md(R), we have

||A⊗ A− B⊗ B||2 ≤ 2 max{||A||2, ||B||2}||A− B||2

In particular, the mapping ⊗ : Md(R) −→ Md2(R), X 7→ X⊗ X is uniformly Lipschitz
on any set of the form {x ∈ Md(R) : ||x|| ≤ c} with c > 0.

Lemma 7.2. ([4], page 305) Let A, B ∈ S+
d and a > 0 such that A, B ≥ aId. Then

||A1/2 − B1/2||2 ≤
1

2
√

a
||A− B||2

Hence, the mapping ⊗ : S+
d −→ S+

d , X 7→ X1/2 is uniformly Lipschitz on any set of the
form {x ∈ S+

d : ||x|| ≥ cId} ⊂ S++
d wth c > 0.
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Lemma 7.3. ([3], Lemma 6.3) Consider the map F : S+
d −→ S+

d2 , X 7→ X1/2 ⊗ X1/2. F is
continuous and uniformly Lipschitz on any set of the form {x ∈ S+

d : ||x|| ≥ cId, ||x|| ≤ ĉ}
with c, ĉ > 0. Moreover, we have that ||A1/2 ⊗ A1/2||2 = ||A||2 for all A ∈ S+

d .

We set UC,ε := {x ∈ S+
d : x > −εId} and choose 0 < ε < min σ(C), where σ(C)

denotes the spectrum of C. Then UC,ε (and vec(UC,ε)) is open and satisfies for all
x ∈ UC,ε:

C + x > (min σ(C)− ε)Id

From Lemma (7.3) follows, that G is locally Lipschitz on UC,ε and has linear growth:

||G(x)||22 = ||x||22 ≤ 1 · (1 + ||x||22)

From standard results on stochastic differential equations, like [21], it follows, that
the SDE (28) has a unique locally bounded solution (Yt)t∈R+ with initial value Y0
and is also of bounded variation, because t and [L, L]dt are of bounded variation.
These results only hold, if we can ensure, that our solution doesn’t leave the open set UC,ε.
We now prove the inequality Yt ≥ eBtY0eBT t for all t ∈ R+. Between two jumps Yt
follows the deterministic differential equation dYt = (BYt−+ Yt−B)dt, which is
uniquely solved by Yt = eBtY0eBT t. If Y0 ∈ S+

d , xTeBtY0eBT tx = (eBT tx)TY0eBT tx ≥ 0
for all x ∈ Rd and therefore Yt ∈ S+

d , too. The inequality follows from the fact, that
all jumps are positive semi-definite: For all x ∈ Rd we have

xT AV1/2
t− ∆[L, L]dt V1/2

t− ATx

=(ATx)TV1/2
t− ∆[L, L]dt V1/2

t− ATx

=(V1/2
t− ATx)T∆[L, L]dt V1/2

t− ATx
≥0

since ∆[L, L]dt is a matrix subordinator. An Sd-valued Levy process is said to be a
matrix subordinator, if Lt − Ls ∈ Sd for all s, t ∈ R+ with t > s, (see [23]). Therefore,
(Yt)t∈R+ satisfies the claimed inequality Yt ≥ eBtY0eBT t and the solution stays as a
sum of a positive semi-definite process and positive semi-definite jumps necessarily
in S+

d .

7.4 The MUCOGARCH(1,1) Bound

Theorem 4.3: Let Y be a MUCOGARCH volatility process with initial value Y0 ∈ S+
d and

driven by a Levy process in Rd. Assume, further, that B ∈ Md(R) is diagonalizable and
let S ∈ GLd(C) be such that S−1BS is diagonal. The process solving the SDE,

dyt = 2λyt−dt + ||S||22||S−1||22K2,B||A⊗ A||B,S(
||C||2
K2,B

+ yt−)dL̂t

y0 = ||vec(Y0)||B,S
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with
L̂t =

∫ t

0

∫
Rd
||vec(xxT)||B,SµL(ds, dx), λ := max(<(σ(B)))

and

K2,B := max
X∈S+

d ,||X||2=1
(
||X||2

||vec(X)||B,S
)

is the volatility process of a univariate MUCOGARCH(1,1) process and y satisfies

||vec(Yt)||B,S ≤ yt f or all t ∈ R+ a.s.

Moreover, K2,B ≤ maxX∈S+
d ,||X||2=1(

||X||2
||vec(X)||B,S

) ≤ ||S||22.

Proof. The proof is based on ([3], page 101-104). We will need the following two
lemmata to show the existence of a one-dimensional COGARCH(1,1) bound.

Lemma 7.4. ([3], Lemma 6.5) Let (Lt)t∈R+ be a driftless Levy subordinator. Then there
exists a Levy process (L̄t)t∈R+ in R such that Lt = [L̄t, L̄t]dt for all t ∈ R+.

Proof. We denote the jump measure of L with µL, the Levy measure by νL and we
may write Lt =

∫ t
0

∫
R+ xµL(ds, dx), since Lt is driftless. Let

L̄t :=
∫ t

0

∫
0<x≤1

√
x(µL(ds, dx)− dsνL(dx)) +

∫ t

0

∫
x>1

√
xµL(ds, dx)

the first integral exists, because
∫

0<x≤1

√
x2

νL(dx) =
∫

0<x≤1 xνL(dx) < ∞, because
L is of finite variation. Therefore (L̄t)t∈R+ is a Levy measure and also satisfies
Lt = [L̄t, L̄t]dt .

The following elementary properties of the norm|| · ||B,S are important for the
upcoming steps.

Lemma 7.5. ([3], Lemma 6.6) It holds that

||S⊗ S||B,S = ||S||22 and ||S−1 ⊗ S−1||B,S = ||S−1||22
||x||B,S ≤ ||S−1||22||x||2 and ||x||2 ≤ ||S||22||x||B,S f or all x ∈ Rd2

||X||B,S ≤ ||S||22||S−1||22||X||2 and ||X||2 ≤ ||S||22||S−1||22||X||B,S f or all X ∈ Md2(R)

STEP 1: We show Theorem 4.3 for driving compound Poisson processes.
L̂t =

∫ t
0

∫
Rd ||vec(xxT)||B,SµL(ds, dx) is a driftles subordinator, hence, due to

Lemma 7.4 there exists a Levy process (Lt)R+ such that: L̂t = [Lt, Lt]dt .
Let Γ1 be the time of the first jump of the compound Poisson process. Until
Γ1 the process Yt follows the deterministic differential equation given by dYt =
(BYt−+Yt−BT)dt and in vec-notation dvec(Yt) = (B⊗ I + I ⊗ B)vec(Yt−)dt and is
uniquely solved by

vec(Yt) = e(B⊗I+I⊗B)tvec(Y0)
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Claim 7.6. ||e(B⊗I+I⊗B)t||B,S = e2λt.

Proof. The upcoming calculations are based on elementary properties of the ma-
trix exponential and the following two calculation rules regarding the Kronecker
product: (A⊗ B)−1 = (A−1 ⊗ B−1) and (A⊗ B)(C⊗ D) = (AC⊗ BD).

||e(B⊗I+I⊗B)t||B,S = ||(S−1 ⊗ S−1)e(B⊗I+I⊗B)t(S⊗ S)||2
= ||(S⊗ S)−1e(B⊗I+I⊗B)t(S⊗ S)||2
= ||e(S⊗S)−1(B⊗I+I⊗B)(S⊗S)t||2

For the first matrix in the matrix exponential we get

(S⊗ S)−1(B⊗ I)(S⊗ S) = (S−1 ⊗ S−1)(B⊗ I)(S⊗ S) = (S−1B⊗ S−1 I)(S⊗ S)

= (S−1BS)⊗ (S−1 IS) = (S−1BS)⊗ I = B̂⊗ I

where B̂ = S−1BS is diagonal. Analogously we receive for the second matrix:

(S−1 ⊗ S−1)(I ⊗ B)(S⊗ S) = I ⊗ (S−1BS) = I ⊗ B̂

Let σ(B) = {λ1, λ2, ..., λd} with λ′s ∈ C be the spectrum of B. The first matrix
B̂⊗ I is a d2 × d2 diagonal matrix, where each eigenvalue appears d times in a row.
Whereas the second matrix I ⊗ B̂ is d times B̂. We write the sum of them as D and
notice, that D is also diagonal, where each entry represents one possible sum of
eigenvalues: D := diagi,j=1,...,d({λi + λj}). The order of the diagonal entries is not
important, because || · ||2 is invariant with respect to permutations on diagonal
matrices. Define λ := max(<(σ(B))) and we conclude our calculations

||e(B⊗I+I⊗B)t||B,S = ||eDt||2 = e2λt

And since we proved our claim, we get

||vec(Yt)||B,S = ||e(B⊗I+I⊗B)tvec(Y0)||B,S ≤ ||e(B⊗I+I⊗B)t||B,S||vec(Y0)||B,S

= e2λty0 = yt

Thus our inequality is shown for all t ∈ [0, Γ1). At time Γ1 we calculate

||vec(YΓ1)||B,S

= ||vec(YΓ1−) + (A⊗ A)((C + YΓ1)
1/2 ⊗ (C + YΓ1)

1/2)vec(∆LΓ1(∆LΓ1)
T)||B,S

≤ yΓ1 + ||A⊗ A||B,S||(C + YΓ1)
1/2 ⊗ (C + YΓ1)

1/2||B,S||vec(∆LΓ1(∆LΓ1)
T)||B,S

≤ yΓ1 + ||A⊗ A||B,S||S||22||S−1||22||(C + YΓ1)
1/2 ⊗ (C + YΓ1)

1/2||2∆L̂Γ1

≤ yΓ1 + ||A⊗ A||B,S||S||22||S−1||22(||C||2 + ||YΓ1−||2)∆L̂Γ1

≤ yΓ1 + ||A⊗ A||B,S||S||22||S−1||22K2,B(K−1
2,B||C||2 + ||vec(YΓ1−)||B,S)∆L̂Γ1

= yΓ1

37



7 Proofs and Definitions

By iterating the same argument, because compound Poisson is memoryless, gives
us the inequality for all t ∈ R+.

STEP 2: We want to extend our results above to MUCOGARCH(1,1) processes
driven by general Levy processes. The following Proposition shows, that we can
approximate MUCOGARCH(1,1) processes by approximating the driving Levy
processes with compound Poisson processes.

Proposition 7.7. ([3], Proposition 6.7) Let Y be a MUCOGARCH volatility process
with C ∈ S++

d and Y0 ∈ S+
d , driven by a Levy process L in Rd, and let (εn)n∈N be a

monotonically decreasing sequence in R+ \ {0} with limn→∞ εn = 0. Define compound
Poisson processes Ln by Ln,t :=

∫ t
0

∫
Rd,||x||≥εn

xµL(ds, dx) for n ∈ N and associated
MUCOGARCH volatility process Yn by

dYn,t = (BYn,t− + Yn,t−B)dt + A(C + Yn,t−)
1/2d[L, L]dt (C + Yn,t−)

1/2AT (29)
Yn,0 = Y0 (30)

Then Yn → Y as n→ ∞ almost surely u.c.p. (uniformly on compacts).

We cite the proof from [3], Proposition 6.7:

Proof. First, observe that [Ln, Ln]dt =
∫ t

0

∫
||x||≥εn

xxTµL(ds, dx) implies that [Ln, Ln]d →
[L, L]d, as n→ ∞ a.s. uniformly on compacts, and that [Ln, Ln]d → [L, L]d is mono-
tonically increasing in n. Since all processes involved are of finite variation, we can
prove the claim with a pathwise approach. So, fix ω ∈ Ω and thereby one path. Let
T ∈ R+ be arbitrary. The Gronwall inequality, Theorem 7.8, shows that

||Yn,t||2 ≤ (||Y0||2 + ||A||22||C||2
∫ T

0

∫
Rd
||x||22µLn(ds, dx))e||A||

2
2
∫ t

0

∫
Rd ||x||22µLn (ds,dx)+2||B||2t

≤ (||Y0||2 + ||A||22||C||2
∫ T

0

∫
Rd
||x||22µL(ds, dx))e||A||

2
2
∫ T

0

∫
Rd ||x||22µL(ds,dx)+2||B||2T

||Yt||2 ≤ (||Y0||2 + ||A||22||C||2
∫ T

0

∫
Rd
||x||22µL(ds, dx))e||A||

2
2
∫ T

0

∫
Rd ||x||22µL(ds,dx)+2||B||2T

for all t ∈ [0, T]. Since Yt ≥ eBtY0eBT t, Yn,t ≥ eBtY0eBT t and Y0 is positive semidefinite,
C + Y and (C + Yn)n∈N all remain in one common compact set in S++

d on [0, T].
Thus, when considering (29) and (12), we can regard the coefficients of these
SDE’s as being globally Lipschitz with a common Lipschitz coefficient. Thus, [21],
Corollary, page 261 after Theorem v.11, implies that Yn(ω)→ Y(ω) uniformly on
[0, T]. Note that, formally, the result of [21] is applied on the probability space
given by the set {ω}, the trivial σ-algebra {{ω}, ∅} (which also gives the filtration)
and the Dirac measure with respect to ω. Since ω ∈ Ω and T ∈ R+ were arbitrary,
this completes the proof.

We state the Gronwall Lemma, used in the above Proposition:
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Theorem 7.8. (Lemma A.2.35, [21])(Gronwall’s Lemma) Let Φ : [0, ∞]→ [0, ∞) be an
increasing function satisfying

Φ(t) ≤ A(t) +
∫ t

0
Φ(s)η(s)ds t ≥ 0,

where η : [0, ∞)→ ∞ is positive and Borel, and A : [0, ∞)→ [0, ∞) is increasing. Then

Φ(t) ≤ A(t)exp(
∫ t

0
η(s)ds) t ≥ 0.

We proceed with the proof of Theorem 4.3 for general L: In the last proposition we
constructed a sequence (Yn)n∈N of compound Poisson driven MUCOGARCH(1,1)
processes converging u.c.p. to Y. Let yn be the univariate MUCOGARCH(1, 1)
bounds, that means ||vec(Yn,t)||B,S ≤ yn,t for all n and t ∈ R+. Due to the defintion
of Ln,t, it is clear, that we add only more jumps through increasing n and therefore

yn+l,t ≥ yn,t

for all n, l ∈N and t ∈ R+. Define the process y by:

dyt = 2λyt−dt + ||S||22||S−1||22K2,B||A⊗ A||B,S(
||C||2
K2,B

+ yt−)dL̂t

y0 = ||vec(Y0)||B,S

with L̂t =
∫ t

0

∫
Rd ||vec(xxT)||B,SµL(ds, dx) and again yn,t ≤ yt for all n ∈N and t ∈

R+. Passing to the limit n→ ∞ in ||vec(Yn,t)||B,S ≤ yn,t ≤ yt shows ||vec(Yt)||B,S ≤
yt for all t ∈ R+.

7.5 Stationarity of the MUCOGARCH(1,1) process

The proof of the stationarity is based on ([3], 104-105) and needs some preparation.
First of all we show, that our volatility process is a time-homogeneous Markov pro-
cess with the weak Feller property. This result together with the one-dimensional
MUCOGARCH(1,1) bound serve as the fundament for the proof of the stationarity.
We use the stationary condition Lemma (7.13) to prove the stationarity of the bound,
which helps us to prove the prerequisites of the Krylov-Bogoliubov Theorem. This
theorem, in the end, brings us the desired stationarity of the MUCOGARCH(1,1)
volatility process.

Let U ⊆ Rd be an open set, f : U −→ Md,m(R) a locally Lipschitz function
and (Lt)t∈R+ a m-dimensional Levy process. We want to show, that the solution of
the following stochastic differential equation

dXt = f (Xt)dLt

is Markovian and has the weak Feller property. But before we start, we give some
standard notion regarding Markov processes:
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Definition 7.1. ([3], Definition 6.7.7) Let Z = (Zt)t∈R+ be a process with values in U
which is adapted to a filtration (Ft)t∈R+ .
(i) Z is called a Markov process with respect to (Ft)t∈R+ , if

E(g(Zu)|Ft) = E(g(Zu)|Zt)

for all t ∈ R+, u ≥ t and g : U −→ R bounded and Borel measurable.
(ii) Let Z be a Markov process and define for all s, t ∈ R+, s ≤ t, the transition func-
tions Ps,t(Zs, g) = E(g(Zt)|F ) with g : U −→ R bounded and Borel measurable. If
Ps,t = P0,t−s =: Pt−s for all s, t ∈ R+, s ≤ t, Z is said to be a time homogeneous Markov
process.
(iii) A time homogeneous Markov process is called a strong Markov process, if E(g(ZT+s)|FT) =
Ps(ZT, g) for g : U −→ R bounded and Borel measurable and a.s. finite stopping time.

Under the assumptions on U ([3], chapter 6.7.1.2) and the enlargement of the
probability space as in ([21], page 293) we are able to show, that the solution
(Xt)t∈R+ is Markovian:

Theorem 7.9. (Theorem 6.7.8, [22])(Markov process) Under the above assumptions the
unique solution (Xt)t∈R+ to

Xt = X0 +
∫ t

0
f (Xt−)dLt (31)

is a temporally homogeneous strong Markov process on U.

And under the same assumptions we are able to show the weak Feller property
of the solution (Xt)t∈R+ , which is defined as

Definition 7.2. ([22], Definition 6.7.11) Let (Ps)s∈R+ be the transition semi-group of a
time homogeneous Markov process Z on U.
(i) (Ps)s∈R+ (respectively the associated Markov process Z) is called stochastically continu-
ous, if

lim
t→0,t≥0

Pt(x, U(x)) = 1

for all x ∈ U and open neighbourhoods U(x) of x.
(ii) A stochastically continuous semi-group (Ps)s∈R+ (respectively its associated Markov
process Z) is called weakly Feller, if

Ps(Cb(U)) ⊆ Cb(U)

for all s ∈ R+ (iii) A probability measure µ ∈ M1(U) is said to be an invariant (stationary)
measure for the Markovian semi-group (Ps)s∈R+ (repsectively for its associated Markov
process), if P?

s µ = µ for all s ∈ R+.

and we conclude
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Theorem 7.10. (Proposition 6.7.13, [22])(Weak Feller Property) Under the above assump-
tions the unique solution (Xt)t∈R+ to

Xt = x +
∫ t

0
f (Xt−)dLt (32)

with x ∈ U is a weak Feller process on U.

Remark. Regarding the definitions of the Markov properties and the weak Feller
property, we may replace the open set U ⊆ Rd by any Polish space.

Stelzer used these general results in ([22], chapter 6.3.3 and 6.7.1.2) to show that
the MUCOGARCH and it’s volatility process are Markovian and have the weak
Feller property:

Theorem 7.11. ([3], Theorem 4.4) (Markovian Properties) The MUCOGARCH(1,1)
process (G,Y) and its volatility process Y alone are temporally homogeneous strong Markov
processes on Rd × S+

d and S+
d , respectively, and they have the weak Feller property.

We are now ready to prove the stationarity of the volatility process.

Theorem 7.12. (Theorem 6.7.8, [22])(Stationarity) Let B ∈ Md(R) be diagonalizable
with S ∈ GLd(C) such that S−1BS is diagonal. Furthermore, let L be a d-dimensinal
Levy process with non zero Levy measure, y be defined as in Theorem 4.3 and α1 :=
||S||22||S−1||22K2,B||A⊗ A||B,S. Assume that∫

Rd
log(1 + α1||vec(yyT)||B,S)νL(dy) < −2λ

Then there exists a stationary distribution µ ∈ M1(S
+
d ), that is, the set of all probability

measures on the Borel-σ-algebra of S+
d .

Proof. The one-dimensional MUCOGARCH(1,1) bound y of Lemma 4.3 is the key
for the proof of the stationarity. We first show, that the bound y converges to
a stationary distribution and then we shift this property with the help of the
Krylov-Bogoliubov Theorem to the MUCOGARCH(1,1) volatility process (Yt)t∈R+ .

Lemma 7.13. ([7], Definition 2.1, Theorem 3.1) (Stationarity Condition) We define the
left-continuous volatility process of the COGARCH(1,1) process by

Vt = α0 + α1Yt− t > 0 V0 = α0 + α1Y0

where the state process Y = (Yt)t≥0 is the unique cadlag solution of the stochastic
differential equation

dYt = −β1Yt−dt + (α0 + α1Yt−)d[L, L]dt
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Let (Yt)t≥0 be the state process of the COGARCH(1,1) process with parameters −β1, α1, α0.
Let L be a Levy process with non-trivial Levy-measure νL and suppose that∫

R
log(1 + α1y2)dνL(y) < β1

Then Yt converges in distribution to a finite random variable Y∞ as t→ ∞. It follows that
if Y0 = Y∞ in distribution, then (Yt)t≥0 and (Vt)t≥0 are strictly stationary.

For a proof see [16], Theorem 3.1. Take λ, L̂ and L̂ = [L̄, L̄] as in Lemma 4.3.
Then we have∫

Rd
log(1 + α1y2)νL̄(dy) =

∫
Rd

log(1 + α1||vec(yyT)||B,S)νL(dy) < −2λ

and therefore the COGARCH(1,1) bound y from Lemma 4.3 satisfies all prereq-
uisites of Lemma 7.13 and it follows, that our bound converges in distribution
to a distribution concentrated on R+. If we assume that y0 has this stationary
distribution and is independent of (Ls)s∈R+ , (yt)t∈R+ is stationary. We want to
transform this stationarity result from the bound to our MUCOGARCH volatility
process. We set Y0 = y0

||vec(Id)||B,S
Id, independent of (Ls)s∈R+ and ||vec(Y0)||B,S ≤ y0.

Our next step is to show the existence of a stationary solution for the MUCOG-
ARCH volatility process Y. The set {L (Yt) : t ∈ R+} of laws of Yt forms a tight
subset of M1(S

+
d ): For all K > 0 the set {x ∈ S+

d : ||x|| ≤ K} is compact in S+
d ,

P(||Yt||B,S ≤ K) ≥ P(yt ≤ K), because ||Yt||B,S ≤ yt and y is stationary with a sta-
tionary distribution concentrated on R+. (Yt)t∈R+ is a weak Feller Markov process
(Theorem 4.4, [3]) and therefore fulfills all requirements for the Krylov-Bogoliubov
Theorem:

Lemma 7.14. ([3], Theorem 6.8) (Krylov-Bogoliubov Existence Theorem) Let E be a Polish
space and (Ps)s∈R+ the transition semigroup of an E-valued weak Feller Markov process.
Assume that there is an η ∈ M1(E) such that the set {P∗t η : t ∈ R+} is tight. Then there
exists a µ ∈ M1(E) such that P∗t µ = µ for all t ∈ R+, that is, µ is an invariant measure
for (Ps)s∈R+ or a stationary distribution for the Markov process, respectively, and µ is in
the closed (with respect to weak convergence) convex hull of {P∗t η : t ∈ R+}.

For a proof see [6], Theorem 4.6. We conclude, there exists a stationary distribu-
tion µ ∈ M1(S

+
d ) for the MUCOGARCH volatility process Y such that µ is in the

closed convex hull of {L (Yt) : t ∈ R+}.
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