TECHNISCHE UNIVERSITAT MUNCHEN
Lehrstuhl fiir Integrierte Systeme

FAST AND ACCURATE
PERFORMANCE SIMULATION OF
OUT-OF-ORDER PROCESSING CORES
IN EMBEDDED SYSTEMS

Roman Plyaskin

Vollstandiger Abdruck der von der Fakultat fiir Elektrotechnik
und Informationstechnik der Technischen Universitat Miinchen
zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender:
Univ.-Prof. Dr.-Ing. Ulf Schlichtmann

Priifer der Dissertation:
1. Univ.-Prof. Dr. sc. techn. Andreas Herkersdorf
2. Univ.-Prof. Dr. rer. nat. Wolfgang Rosenstiel, Eberhard
Karls Universitdt Tiibingen

Die Dissertation wurde am 30.10.2013 bei der Technischen Uni-
versitdt Miinchen eingereicht und durch die Fakultat fiir Elek-
trotechnik und Informationstechnik am 23.06.2014 angenom-
men.

ABSTRACT

Recent embedded systems employ multiple processing cores on a sin-
gle chip. Such multiprocessor system-on-chip (MPSoC) can incorpo-
rate heterogeneous processing cores with diverse internal complex-
ity in order to offer an optimized solution in terms of performance,
power consumption and dependability. Considering the growing MP-
SoC complexity, system architects require fast and accurate perfor-
mance simulation of out-of-order processing cores to enable design
space exploration (DSE) of MPSoC in reasonable time. Interpretive
cycle-accurate instruction set simulators (ISS) employ detailed models
of the core microarchitecture. Therefore, their use in iterative system-
level DSE of MPSoC is limited because of low simulation speed. At
the same time, recent approaches for fast software performance sim-
ulation leveraging annotated source code are too abstract to consider
the effects of out-of-order instruction execution.

This thesis addresses the gap between interpretive cycle-accurate
ISS and abstract source-level simulation and presents a novel ap-
proach for software performance simulation considering out-of-order
execution. The proposed approach enables fast and accurate repro-
duction of the processor’s out-of-order behavior and accelerates DSE
at the system level. Furthermore, the thesis presents a SystemC-based
simulation tool for performance evaluation of multicore architectures.
The tool additionally supports trace-driven simulation of target appli-
cations and incorporates a high-level scheduler for flexible evaluation
of SW partitioning in MPSoC platforms.

1ii

ZUSAMMENFASSUNG

Moderne eingebettete Systeme setzen Chips mit mehreren Prozes-
sorkernen ein. Solche Multiprozessor Systeme-on-Chip (MPSoC) kon-
nen heterogene Prozessorkerne mit diverser interner Komplexitit en-
thalten und somit eine optimierte Losung im Bezug auf Performanz,
Leistungsverbrauch und Zuverladssigkeit bieten. Wegen der steigen-
den Komplexitat der MPSoC benétigen Systemarchitekten eine schnelle
und genaue Performanzsimulation der Out-of-Order-Prozessorkerne,
um eine Entwurfsraumexploration der MPSoC in annehmbaren Zeiten
zu ermoglichen. Interpretierende, zyklenakkurate Instruktionssatz-Sim-
ulatoren (ISS) enthalten detaillierte Modelle der Mikroarchitektur des
Prozessorkerns und kénnen nur kleine Simulationsgeschwindigkeiten
erreichen. Aus diesem Grund ist die Nutzung dieser Werkzeuge fiir it-
erative Entwurfsraumexplorationen der MPSoC auf Systemebene be-
grenzt. Neueste Ansitze, die eine schnelle Software-Performanzsim-
ulation basierend auf annotierten Quellcodes ermdglichen, sind zu
abstrakt, um die Effekte der Out-of-Order-Ausfithrung der Instruk-
tionen zu berticksichtigen.

Diese Dissertation stellt ein neues Verfahren fiir eine Software-Per-
formanzsimulation mit Beriicksichtigung der Out-of-Order-Ausfiih-
rung vor und schliefst somit die Liicke zwischen den interpretieren-
den, zyklenakkuraten ISS und einer abstrakten Simulation auf Quell-
code-Ebene. Der vorgeschlagene Ansatz ermoglicht eine schnelle und
genaue Wiedergabe des Verhaltens der Out-of-Order-Prozessoren und
beschleunigt Entwurfsraumexplorationen auf Systemebene. Aufserdem
stellt diese Dissertation ein SystemC-basiertes Werkzeug fiir Perfor-
manzabschédtzungen der Mehrkern-Architekturen vor. Das Werkzeug
ermdglicht zusitzlich eine Trace-getriebene Simulation der Zielan-
wendungen und enthilt einen Scheduler fiir flexible Evaluierungen
der Software-Partitionierungen in MPSoC-Plattformen auf hoher Ebene.

ACKNOWLEDGMENTS

I would like to sincerely thank Prof. Andreas Herkersdorf for super-
vising this thesis and providing me with the opportunity to work
and do the research at the institute. I particularly appreciate our dis-
cussions on this project, which kept me motivated and helped me
to gain a more comprehensive view on the research problems. I also
would like to express my gratitude to Prof. Wolfgang Rosenstiel for
co-examining this work and his comments which helped me to im-
prove the dissertation.

In addition, I would like to thank Prof. Walter Stechele and Dr.
Thomas Wild for their help and valuable comments on this work.
Special thanks go to all present and past colleagues at the institute for
integrated systems for creating a nice working atmosphere. Finally,
this work wouldn’t be possible without loving support of my family
and my fiancée Michaela who always stood by my side during these
years.

vii

CONTENTS

1

INTRODUCTION 1
1.1 Scopeofthethesis 1
1.2 Problem statement, 2
1.3 Contributions 0L 3
1.4 Outline o 4
PRIOR ART 5
2.1 Instruction Set Simulation 5
2.1.1 Interpretive ISS00 5
212 CompiledISS 6
2.1.3 Sampled simulation 10
2.1.4 ISS-based simulation of multicore architectures 12
2.2 Simulation based on targetcode 14
2.2.1 Source-level simulation 14
2.2.2 Simulation based on intermediate representation 16
2.2.3 Instruction-level simulation 18
2.3 Trace-driven simulation 20
2.4 High-level OS modeling 23
25 Summary 28
BACKGROUND OF COMPILED SW SIMULATION AT BINARY
LEVEL 31
3.1 Functional behavior 32
3.1.1 Binary-to-C translation. 32
3.1.2 Organization of translated code 33
3.1.3 Modeling of target memory 34
3.2 Timingbehavior 36
3.2.1 Annotation of timing information 36
3.22 Modelingofcaches 37
COMPILED SW SIMULATION CONSIDERING OUT-OF-ORDER
INSTRUCTION EXECUTION 41
4.1 System-level effects of out-of-order execution 41
4.1.1 Classification of out-of-order effects 41
4.1.2 Limitations of conventional host-compiled sim-
ulations o 0oL 44
4.2 Derivation of basic block timing 47
4.2.1 ISSenhancements. 47
4.2.2 Identification of basic block boundaries 50
4.3 Context dependency of basic block timing 51
431 Concept 51
4.3.2 Derivation of context-dependent timing 53

ix

X

CONTENTS

4.3.3 Context-aware host-compiled simulation
4.4 Reordering of memory accesses
4.4.1 Classification of basic blocks
4.4.2 Simulation of memory reordering
4.5 Non-blocking behavior of data cache
4.5.1 Modeling of non-blocking behavior
4.5.2 Dependency analysis of memory instructions
4.6 Optimizations
4.6.1 Optimization of binary-to-C translation
4.6.2 Averaging of basic block timings
4.6.3 Static reordering of memory accesses

SYSTEM-LEVEL SIMULATION OF MULTICORE ARCHITEC-

TURES

5.1 Simulation methods
5.1.1 Trace-Driven Simulation
5.1.2 Binary-level simulation
513 Summary

5.2 High-level scheduler model
5.2.1 Taskmodel
5.2.2 Schedulermodel
5.2.3 Implementation details

5.3 SystemC models of hardware components
5.3.1 Out-of-ordercore
5.3.2 Communication infrastructure and memory . .

EXPERIMENTAL RESULTS

6.1 Context-aware host-compiled SW simulation
6.1.1 Experimentalsetup
6.1.2 Optimization of binary-to-C translation
6.1.3 Context-aware compiled simulation
6.1.4 Averaging of basic block timing
6.1.5 Consideration of a datacache

6.2 System-level simulation based on SystemC
6.2.1 Experimentalsetup
6.2.2 Evaluation of BLS and TDS methods

6.3 Multicore design space exploration: A use case
6.3.1 Experimentalsetup
632 Results

CONCLUSIONS AND FUTURE WORK
71 Conclusions
7.2 Outlook for future work

BIBLIOGRAPHY

LIST OF FIGURES

Figure 3.1

Figure 3.2
Figure 3.3
Figure 3.4
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10

Figure 4.11
Figure 4.12
Figure 4.13

Figure 4.14
Figure 4.15
Figure 4.16
Figure 4.17
Figure 4.18
Figure 4.19
Figure 4.20
Figure 4.21
Figure 4.22
Figure 4.23
Figure 4.24

Figure 4.25
Figure 4.26
Figure 4.27
Figure 4.28

Figure 4.29
Figure 4.30

Workflow of binary-level SW compiled simu-
lation L
Binary-to-C translation
Timing annotation
Calls to dynamic cache models
Context-dependent timing of basic blocks . . .
Reordering of memory accesses
Error of conventional compiled simulation
Timing behavior during a data cache miss . . .
Derivation of basic block timing
Consideration of overlapping of basic blocks .
Contexts of basic blocks
Context-aware measurement
Differentiation of basic block instances
Algorithm for obtaining context-dependent tim-
INg . . .
Context-aware basic block function
Reordering of memory accesses
Detection of possible memory reordering over
multiple basic blocks
Simulation of reordered memory accesses . . .
Example code with data dependency
Hit under dependent miss
Second miss under a dependent miss
Simulation of independent miss
Consideration of instruction window
Dependency analysis
Total amount of basic block timings
Optimization of context signatures
Averaging of block timings
Simulation of exchanged accesses to the same
cacheline
Simulation of exchanged accesses to different
cache lines with no dependency
Simulation of exchanged accesses to different
cache lines with dependency
Static reordering of memory accesses.
Types of basic block overlapping
Block overlapping without data cache accesses
Measurement of basic block timings with stat-
ically reordered accesses

Xi

Xii

List of Figures

Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.9
Figure 5.10

Figure 5.11
Figure 5.12
Figure 5.13
Figure 5.14
Figure 5.15
Figure 5.16
Figure 5.17
Figure 5.18
Figure 5.19
Figure 5.20

Figure 5.21
Figure 5.22
Figure 5.23
Figure 5.24

Figure 5.25
Figure 5.26

Figure 5.27
Figure 5.28
Figure 5.29
Figure 5.30
Figure 5.31
Figure 5.32
Figure 5.33
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6
Figure 6.7
Figure 6.8

SystemC simulator 85
Generation of an abstract trace 88
Trace-driven simulation of multicores 89
Different levels of trace abstraction 91
Different abstraction levels of traces. 91
Binary-level compiled simulation of multicores 92
Comparison of TDS and BLS methods 95
State diagram of tasks. 98
Structure of the OS scheduler model 99
Algorithm for generation of instances of user

tasks 101
Algorithm for scheduling of user tasks 102
Preemption of user tasks 103
Termination of user tasks 104
Simulation of OS ticks without task switching 104
Synchronization of user tasks 106
Adding synchronization to TDS tasks 108
Adding synchronization to BLS tasks 108
Class hierarchy of TDS- and BLS-tasks. 110
Execution of a TDS task in SystemC. 111
Memory modeling in case of multiple target

applications 113
Mapping of virtual and physical address spaces 114
Abstracted coremodel 116
Queue in the non-blocking cache extension . . 117
Behavior of the non-blocking cache extension

onandataaccess 118
Behavior of the non-blocking cache extension

after simulating a miss penalty 119
Stalling due to the limited size of the instruc-

tionwindow 120
Stalling due to data dependency 121
Database in the cache model 122
Model of arbitrated bus 123
Bus arbitration process 124
States in MESI protocol 125
Cache coherency extension 126
Operation in case of a write hit 127
Workflow of experiments 131
Optimization of binary-to-C translation 133
Amount of basic block contexts 134
Size of translated code 134
Compilationtime 134
Timing error of context-aware simulation . . . 136
Average timing error 136
Speed of context-aware simulation 136

Figure 6.9

Figure 6.10
Figure 6.11
Figure 6.12
Figure 6.13
Figure 6.14
Figure 6.15
Figure 6.16

Figure 6.17
Figure 6.18

Figure 6.19

Figure 6.20
Figure 6.21
Figure 6.22
Figure 6.23

Figure 6.24
Figure 6.25
Figure 6.26
Figure 6.27
Figure 6.28
Figure 6.29
Figure 6.30
Figure 6.31
Figure 6.32
Figure 6.33
Figure 6.34
Figure 6.35
Figure 6.36
Figure 6.37
Figure 6.38
Figure 6.39
Figure 6.40
Figure 6.41
Figure 6.42
Figure 6.43

List of Figures

Average speed of context-aware simulation . . 136
Reorderdepth 138
RMSE of reorder depth 140
Mean RMSE of reorder depths 140
Percentage of out-of-order blocks 141
Deterioration of simulation time 142
Mean deterioration of simulation time 142
Timing error of context-aware simulation with

averaging 143
Mean timing error with averaging 144
Speed of context-aware compiled simulation

with averaging 144
Mean speed of context-aware compiled simu-

lation with averaging 145
RMSE of reorder depths with averaging 146
Mean RMSE of reorder depths with averaging 146
Simulation scenarios with data cache 148
Accuracy of simulation with static memory re-

ordering 149
Estimated miss rate of data cache 149
Simulation speed with static memory reordering150
Percentage of reorder depths 151
Average percentage of reorder depths 152
valuation of cache accesses 152
Experimental setup for BLSand TDS 154
Speed of TDS and BLS simulation 156
Simulation error of TDSand BLS 157
Rate of accesses to on-chip interconnect 157
Accuracy of data cache simulation in BLS . . . 158
Accuracy of instruction cache simulation in BLS 159
Simulation of random bus traffic 160
Utilization of data/instructionbus 160
Estimated time and accuracy of BLS 162
Simulation speed of a multicore architecture . 163
Task graph of JPEG encoding 164
Paretofront 167
Distributions of execution time 168
Scheduling diagram 169
Invalidations per bus master 169

xiii

LIST OF TABLES

Table 2
Table 3

Table 4

Table 5

Xiv

Content of the task queue 107
Configuration of the core simulated in the Sim-
pleScalar. o o oL 130
Configuration of a data cache employed in sim-
ulations oL 147
Evaluation results of the JPEG application . . . 167

ACRONYMS

ALU
API
BCET
BLS
CFG
CPI
DBT
DCT
DSE
EDF
EDS
EU
FIFO
GUI
HDL
10
IPC
IR
ISA
ISS
w
LSQ
MESI

MIT

Arithmetic and Logic Unit
Application Programmable Interface
Best-case Execution Time
Binary-Level Compiled Simulation
Control-Flow Graph

Cycles per Instruction

Dynamic Binary Translation
Discrete Cosine Transform

Design Space Exploration

Earliest Deadline First
Execution-Driven Simulation
Execution Unit

First In First Out

Graphical User Interface
Hardware Description Language
Input/Output

Instructions per Cycle
Intermediate Representation
Instruction Set Architecture
Instruction Set Simulator
Instruction Window

Load/Store Queue

Modified, Exclusive, Shared, Invalid

Mean Interarrival Time

MPSoC Multiprocessor System-on-Chip

MSHR Miss Status Holding Register

XV

XVi

ACRONYMS

MSI

oS

RAW

RISC

RMSE

RTOS

SLS

SMP

SoC

TDS

TLM

WAR

WAW

Modified, Shared, Invalid
Operating System

Read After Write

Reduced Instruction Set Computer
Root Mean Square Error
Real-Time Operating System
Source-Level Simulation
Symmetric Multiprocessing
System-on-Chip
Trace-Driven Simulation
Transaction-level Modeling
Write after Read

Write after Write

WCET Worst-case Execution Time

INTRODUCTION

1.1 SCOPE OF THE THESIS

Recent embedded systems leverage chips with multiple processing
cores to improve the performance of target applications and reduce
power consumption. Such multiprocessor systems-on-chip (MPSoCs)
can have a heterogeneous architecture and incorporate processing
cores with diverse complexity to offer an optimized solution in terms
of performance, power consumption and dependability. For exam-
ple, a heterogeneous MPSoC may incorporate processing cores with
a simple microarchitecture optimized in terms of chip area and power
consumption. In addition, the MPSoC may contain processing cores
with a complex microarchitecture optimized for performance. Com-
plex cores may incorporate multiple execution units, support branch
prediction and dynamic scheduling of instructions for faster execu-
tion of the software.

The heterogeneous MPSoC structure allows for more efficient dis-
tribution of software execution on the processing cores. For example,
parallel software parts can be executed on multiple simple cores to ef-
ficiently exploit thread-level parallelism. In turn, sequential software
parts, which are inevitable due to the limited parallelism in the target
software, can be executed on fewer complex but faster cores to profit
from instruction-level parallelism as much as possible. Advanced pro-
cessing cores capable of out-of-order instruction execution have been
recently emerged in embedded systems, e.g. Freescale e5500, ARM
Cortex-Ry or Cortex-A1s.

Furthermore, because of the increasing performance capabilities of
MPSoCs, the complexity of target applications executed in embed-
ded devices is steadily increasing. As as a result, design of MPSoCs
involves many decisions that need to be made both on the software
and hardware side. For example, a hardware designer may need to
find a suitable hardware architecture with respect to allocation of pro-
cessing elements and interconnect in order to meet the application
requirements. Moreover, target applications can be composed of mul-
tiple communicating tasks. In this case, a software designer may need
to explore various mappings of the tasks on the underlying hardware
architecture, e.g. while trying to reduce the overall execution time
of the target application. In this evaluation process, a key require-
ment is the flexibility during evaluation of SW partitioning. Different
task mappings and scheduling strategies need to be studied at early
stages, without the need of porting the applications to a specific im-

INTRODUCTION

plementation of an operating system (OS). Consequently, the devel-
opers are faced with a large amount of possible design solutions. In
order to enable exploration of design alternatives and rapidly obtain
their performance characteristics at early stages, performance mod-
eling and simulation of MPSoC architectures at the system level is
necessary.

1.2 PROBLEM STATEMENT

Efficient system-level simulation of multicore architectures is a con-
tradicting problem as it requires fast and at the same time accurate
performance models of processing cores. For many years, a typical
approach for conducting performance simulation of the target soft-
ware has been to use cycle-accurate instruction set simulation (ISS).
Cycle-accurate simulators incorporate a detailed model of the pro-
cessor’s microarchitecture. In this type of simulators, fetching, de-
coding and scheduling of instructions is performed dynamically at
simulation run-time. Cycle-accurate simulators are indispensable for
exploration of the processor’s internal microarchitecture. However,
the use of these simulators during system-level design space explo-
ration (DSE) of MPSoC is limited because of their low simulation
speed. Consequently, for fast system-level performance analysis, the
abstraction level of processor models must be raised.

On the other side of the spectrum are recently introduced host-
compiled source-level simulation methods. These methods are based
on a native execution of the target code on the host computer. In these
approaches, timing simulation of the target software is enabled by
annotating pre-estimated execution delays in the target code. Source-
level techniques can efficiently abstract the microarchitectural details
of processing cores and achieve significantly higher simulation speed
compared to conventional cycle-accurate ISS. However, current ap-
proaches assume processors with in-order instruction execution only.
At the moment, there is a gap in performance simulation of out-of-
order processors between very accurate but slow cycle-accurate ISS
and fast but very abstract host-compiled source-level simulation. To
improve the efficiency of system-level DSE of multiprocessor architec-
tures, new methodology for performance simulation is required that
would consider out-of-order execution of instructions, while achiev-
ing speed higher than cycle-accurate ISS.

Moreover, one of the major goals of system-level DSE is to assess
different options of SW partitioning in a multicore architecture, i.e.
to investigate various task mappings and scheduling strategies, and
to derive the requirements for a future OS implementation. Many re-
cent approaches, that address high-level OS modeling at early design
stages, consider the execution time of tasks at very high granularity.
Particularly, they abstract hardware timing effects during a task exe-

1.3 CONTRIBUTIONS

cution, e.g. temporal behavior of coherent caches or arbitration on the
shared interconnect, and model application tasks as a set of fixed pro-
cessing latencies. For more comprehensive performance analysis of
SW partitioning, the low-level hardware effects of the tasks” execution
must be taken into consideration, e.g. cache coherency. Cycle-accurate
processor simulators are not applicable for these investigations due
to their low simulation speed, as mentioned earlier.

1.3 CONTRIBUTIONS

The goal of this thesis is fast and yet accurate performance simula-
tion of out-of-order processors at the system-level that enables de-
sign space exploration of multiprocessor system-on-chip in reason-
able time.

Firstly, I introduce a novel approach for performing host-compiled
SW performance simulation that considers out-of-order instruction
execution. The proposed method is based on simulation of the target
code at the binary (i.e. instruction) level. The simulation is performed
on the host computer by translating target instructions into equiv-
alent C code, which is then annotated with timing information. The
thesis presents the methodology for obtaining and annotating the exe-
cution delays as well as considering the timing effects of out-of-order
execution at simulation run-time. In particular, context-dependent ex-
ecution time of instructions as well as reordering of memory accesses
are tackled. To the best of my knowledge, it is the first approach
that addresses out-of-order instruction execution in host-compiled
SW simulation.

Secondly, I present a SystemC-based simulation framework for per-
formance evaluation of multiprocessor architectures at the system
level. In addition to the host-compiled binary-level SW simulation
(BLS) method mentioned earlier, the framework supports trace-driven
simulation (TDS). TDS completely abstracts the internal microarchi-
tecture of processing cores. In contrast to BLS, TDS employs abstract
application traces and does not require functional simulation of the
target code. At the same time, TDS provides pin-accuracy of the com-
munication requests and allows detailed evaluation of contentions in
the chip interconnect. In the sequel of the thesis, we will see that out-
of-order effects are exposed differently at the system level for various
target applications. As a result, TDS offers a better trade-off between
simulation speed and accuracy than BLS for certain target applica-
tions.

Finally, I present a high-level model of a scheduler. The scheduler
model is a component of the simulation framework that enables eval-
uation of different SW partitioning options in multicore architectures.
The scheduler model enables high-level management of application
tasks and provides capabilities for inter-task synchronization. At the

INTRODUCTION

same time, the workload of the application tasks is simulated with
either BLS or TDS method, while considering the low-level hardware
timing effects and still retaining the flexibility for high-level task man-
agement. Concepts presented in this dissertation have been published
in [42, 59, 60, 61, 62].

1.4 OUTLINE

The thesis is structured as follows. Chapter 2 provides an overview
of the state-of-the art techniques for SW performance evaluation. As
the simulation method presented in this dissertation employs host-
compiled simulation at the binary level, in Chapter 3 I briefly review
the basics and the workflow of binary-level host-compiled simulation.
Chapter 4 presents details of the proposed approach.

Chapter 5 describes in detail the proposed SystemC-based simula-
tion framework. Particularly, I discuss the employment of BLS and
TDS methods for system-level performance simulation of multicore
architectures. Furthermore, I present implementation details of Sys-
temC models of a high-level scheduler model, out-of-order process-
ing cores, arbitrated on-chip bus and memory. Chapter 6 presents
evaluation results of the BLS and TDS methods. In addition, it de-
scribes a use case of system-level DSE of a parallelized JPEG applica-
tion on different multicore platforms. Finally, Chapter 7 concludes the
dissertation with a discussion on the obtained results and presents an
outlook on future work.

PRIOR ART

This chapter presents an overview of the related work in SW per-
formance evaluation at different levels of abstraction, starting from
cycle-accurate instruction set simulation (ISS) up to highly abstracted
simulation of application models during system-level design. In the
first part, I provide an overview of different ISS approaches and
discuss recent advancements in this methodology. Afterwards, I re-
view techniques for performance simulation at a higher abstraction
level based on a native host-compiled execution of the annotated tar-
get code. Both ISS and host-compiled simulation are execution-driven
techniques. In addition, we will retrospect estimation methods based
on trace-driven performance simulation. Finally, I review recent ap-
proaches for the timing analysis of complex multi-tasking applica-
tions by means of a high-level model of a real-time operating system.

2.1 INSTRUCTION SET SIMULATION

Instruction set simulation allows for accurate evaluation of the SW
execution on a target processor and can be employed for various pur-
poses. For example, instruction set simulators are indispensable tools
for evaluating the design of processors and compilers [50, 54]. Par-
ticularly, the processor designer can assess the efficiency of specific
instructions in the instruction set and make decisions on the parame-
ters of microarchitectural components in a processor, e.g. dimensions
of internal memory structures or type of branch prediction [50]. SW
developers can employ ISS to validate the functionality of the target
software before the actual HW implementation becomes available [5].
The review starts with interpretive instruction set simulation.

2.1.1 Interpretive ISS

In interpretive ISS, the simulation of target instructions is organized
in a loop. In this loop, the processor model sequentially performs
instruction fetching, decoding as well as performing the actual oper-
ation according to the semantics of the instructions [41]. A. Nohl et al.
claimed that the simulation of the instructions in the loop “enables
the highest degree of simulation accuracy and flexibility” [54].
SimpleScalar [5] is an example of interpretive ISS. The suite consists
of multiple tools, which incorporate processor models at different lev-
els of abstraction. At the highest abstraction level (sim-fast tool), only
functional processor simulation is performed without any notion of

PRIOR ART

timing. At the lowest abstraction level (sim-outorder), the tool incor-
porates a detailed cycle-accurate model of an out-of-order processor
capable of speculative execution. For accurate timing evaluation, sim-
outorder employs performance models of internal microarchitectural
components, e.g. instruction pipeline, instruction queues, branch pre-
dictor and caches. The simulator supports several instruction sets in-
cluding ARM, PPC, Alpha and PISA (a slightly modified version of
the MIPS-IV ISA [13]). In [14], D. Burger et al. presented further ex-
tensions to SimpleScalar that enable more detailed modeling of mem-
ory hierarchies and bus interconnect. The simulator has been widely
adopted by computer architecture researchers as stated in [5].

Gems [9] (formerly M5 [10]) is a simulation framework that pro-
vides a range of processor models at different abstraction levels, in-
cluding a model of a complex pipelined processing core with multiple
hardware threads and capable of out-of-order execution. The proces-
sor models support multiple instruction set architectures including
MIPS, ARM, Alpha and x86. In addition, the simulator allows mod-
eling and evaluation of complex hierarchies of coherent caches and
memories. The tool can perform a full-system simulation of target
applications, considering IO devices and an operating system.

The major drawback of interpretive ISS is a low simulation speed,
which, among other factors, results from time-intensive decoding of
target instructions at simulation run-time [54].

2.1.2 Compiled ISS

Compiled instruction set simulators try to optimize simulation per-
formance by moving the frequent operation of instruction decoding
from run-time to compile-time. Two approaches of performing com-
piled simulation can be differentiated: static compilation of the target
instructions and dynamic binary translation (DBT).

2.1.2.1 Statically compiled ISS

The key idea behind statically compiled ISS is to translate the com-
plete code of the target application into an intermediate, functionally
equivalent representation. The intermediate code is then compiled
and executed on the host computer.

In [50], C. Mills et al. suggested to employ static compilation to im-
prove the simulation performance. The proposed method uses macro-
statements and case statements of the C programming language to
translate each target instruction into functionally equivalent C-opera-
tions. Afterwards, the resulting C-code is compiled and executed on
the host machine at higher simulation speed than conventional in-
terpretive ISS. The authors showed that the instruction compilation
prior to simulation allows achieving a simulation speedup of 3 times
compared to interpretive ISS. The suggested approach requires addi-

2.1 INSTRUCTION SET SIMULATION

tional efforts for code compilation on the host. However, the associ-
ated timing overhead can be amortized if the target program must be
simulated multiple times.

J. Zhu and D. Gajski in [9o] proposed a statically compiled ISS
based on intermediate instructions of a RISC-like virtual machine. In
this approach, the target program is translated to virtual instructions
which perform operations on a set of virtual registers. Afterwards,
the virtual instructions are used to generate either host instructions
or a C-code which has to be compiled on the host computer. By in-
troducing the virtual machine, the authors address both adaptability
of the simulator to different target/host platforms and the ability to
directly manipulate the hardware resources of the host machine for
higher simulation efficiency (e.g. by mapping virtual registers to the
host registers). The authors reported that the speed of compiled ISS
was only 1.1-2.5 times lower than the native execution of the target
code on the host computer.

In [53], T. Nakada et al. proposed an approach in which target in-
structions are statically translated into a functionally equivalent C-
code. In this method, multiple target instructions belonging to one
basic block are grouped into a basic block function. The basic block
functions are invoked based on the value of the program counter reg-
ister, which is used to select an appropriate function according to
the program flow. The use of basic block functions has many bene-
fits with respect to the final code size and simulation performance.
However, such representation of the translated code does not allow
simulation of indirect branches, i.e. the branches whose target address
is calculated at run-time and cannot be determined at compile-time.
In this case, the address of the target basic block function cannot
be determined during the simulation. The authors solve this prob-
lem by using a second simulation mode, in which each instruction
is simulated individually until the address of the known basic block
function is found. At simulation run-time, the translated C-code is
co-executed with the models of the processor microarchitecture to
dynamically obtain the instruction execution time. In addition to the
ode translation, the authors suggested optimized, workload-specific
simulation of caches to further improve the simulation performance.
On average, the use of static translation and compilation of the tar-
get instructions improved simulation speed by 19 times compared to
the fast untimed simulator and 3.8x compared to the cycle-accurate
out-of-order simulator from the SimpleScalar tool set.

Simulation methods based on static compilation require the target
program code to be completely known prior to simulation. Therefore,
the use of this approach may be limited if the target code changes at
run-time (e.g. as in case of self-modifying codes). If the target code is
not completely available prior to simulation, a more flexible approach

PRIOR ART

is to translate the target instructions dynamically as discussed in the
next section.

2.1.2.2 Dynamic binary translation

The limitations of static compiled simulation mentioned above are
addressed by just-in-time cache compiled simulation introduced in
[54]. The idea behind this approach is to pre-compile the behavioral
description of the target instructions into C-functions. At simulation
run-time, these functions are dynamically selected and executed on
the host computer. The references to the functions are temporarily
stored in a cache and subsequently reused multiple times during the
simulation. If the program code has been changed, the simulator up-
dates the cache with references to new C-functions. The authors re-
ported that just-in-time compilation achieves 95% of the performance
of conventional compiled simulation (if the size of the simulation
cache is selected appropriately), while providing the full flexibility of
the dynamic approach.

The Edinburgh High Speed simulator [31] supports both interpre-
tive and DBT mode of instruction simulation. The simulation starts in
the interpretive mode first. At simulation run-time, the tool profiles
the program execution and dynamically translates the code of the
most frequently used basic blocks. During the translation, the corre-
sponding code sections are converted into a C-code, which is then dy-
namically compiled using a gcc-compiler and linked to the simulator.
In the sequel of simulation, the translated basic blocks are simulated
using the compiled code approximately 10 times faster than in the
interpretive mode. In [31], the authors suggested that the granularity
of translation units must be set either at the level of basic blocks or
groups of multiple basic blocks. By using the variable size of trans-
lated code sections, an average speedup from 9.4 to 15.5 could be
achieved compared to pure interpretive ISS.

Hybrid compiled instruction set simulation introduced in [65] fol-
lows a similar approach. The method employs instruction templates
that are specific to various instruction classes of the target ISA. Based
on these templates, the tool generates a custom template for each
instruction of the target code. The generated code of custom tem-
plates is optimized and pre-compiled prior to simulation. The use of
customized templates allows for a compact representation of the tar-
get code. At simulation run-time, a specialized decoder processes the
transformed target code and then executes pre-compiled code of the
respective custom templates. Thus, the authors tried to combine the
benefits of statically compiled ISS and DBT. However, the approach
still requires the availability of the complete target code prior to simu-
lation. With the proposed technique, the authors achieved a speedup
of 3 times compared to functional simulation in SimpleScalar.

2.1 INSTRUCTION SET SIMULATION

QEMU [7] is a tool aiming at emulation of multiple target proces-
sors on different host machines. The tool enables full-system emula-
tion of the target machine and is capable of executing unmodified
target operating systems. The emulator dynamically translates target
instructions into host instructions. Particularly, each target instruction
is translated into a set of simpler micro operations, which are written
in C and pre-compiled on the host platform. At simulation run-time,
the micro operations are dynamically concatenated by the code gen-
erator and executed on the host machine. The translated target code
is partially cached during the simulation in order to achieve better
performance. The author of the tool reported a slowdown of the sim-
ulated code by 4 times (integer operations) and 10 times (floating
point operations) compared to the native code execution.

The methods above focus on functional simulation only and do not
consider the timing properties of software execution. Performance es-
timation of program execution is addressed in [11]. The paper aims at
providing cycle-accurate performance modeling of an in-order proces-
sor during functional DBT-based ISS introduced in [31]. Particularly,
the method employs a simplified performance model of a pipeline,
which is capable of considering data dependencies among the tar-
get instructions. In this approach, the performance model is decou-
pled from the functional model and operates on the instruction-by-
instruction and not cycle-by-cycle basis for the purpose of higher
simulation efficiency. Similarly to [31], the tool translates most fre-
quently used sections of the target code into C-code at simulation
run-time. Additionally, the translated code includes functional calls
to the pipeline model in order to update the microarchitecture state.
Afterwards, the code is compiled as a shared library and dynami-
cally linked to the simulator. With the proposed technique, the au-
thors achieved a speedup of 3 times and an average simulation error
of 1.4% compared to a cycle-accurate ISS.

D. Thach et al. [77] introduced a method for cycle count estimation
by combining functional simulation in QEMU [7] with a timing anal-
ysis of the processor pipeline. In contrast to [31], the approach stati-
cally evaluates the pipeline timing prior to simulation, while making
some assumptions on the status of cache accesses and branch predic-
tions. At simulation run-time, the timing estimates are additionally
adjusted to consider dynamic behavior of caches and branch predic-
tion. The authors reported a simulation error up to 26% for an ARM
processor with the average value of 10% compared to a real HW im-
plementation. The extended version of QEMU was on average 3.37
times slower compared to functional simulation.

S. Stattelmann et al. [76] similarly added the capability of timing
estimation to a DBT-based functional simulation in QEMU [7]. How-
ever, in this approach the execution time of basic blocks is derived
using worst-case execution time (WCET) analysis of the target code

10

PRIOR ART

prior to simulation. The timing estimates are used during run-time
of simulation to obtain an overall execution time of the target pro-
gram. The proposed QEMU extension resulted in a relatively small
slowdown of 1.6 times compared to the normal functional execution.
However, due to the usage of the WCET values for the execution time
estimation, the proposed approach still resulted in large simulation
errors for some benchmarks up to 33%.

There are several commercial products currently available and aim-
ing at fast simulation of processing cores. Synopsys CoMET [97] (for-
merly VaST CoMET) allows fast simulation of software on a virtual
platform of the target system-on-chip. The tool includes a number of
cycle-accurate models of processors from various vendors. Although
there is no detailed information on the simulator available neither in
the literature nor on the company’s website, several recent publica-
tions [70, 66, 75] report that the tool is based on DBT technique.

OVPsim [95] from Imperas Software is a simulation tool that in-
cludes a large number of functional models of diverse processors.
The simulator is based on dynamic binary translation of target in-
structions into x86 instructions on the host machine. The processor
models are instruction-accurate and can be employed for early devel-
opment and validation of the target software.

2.1.3 Sampled simulation

The key idea behind sampled simulation is to perform detailed sim-
ulation only for representative parts (or samples) of the target appli-
cation'. Thus, the overall simulation time can be effectively reduced
while still providing accurate simulation results.

HySim [34] is a hybrid approach that combines the native execu-
tion of annotated target code and functional instruction-accurate ISS.
During the native execution, which is also denoted as fast-forwarding
mode, the performance is only approximated. For this, the authors
propose to statically analyze the target source code and assign execu-
tion costs to each operation in the code. Switching of the simulation
mode between ISS and native execution occurs at the boundaries of
target functions. The designer can manually define which functions
should be executed in a particular mode. Alternatively, the switching
between the modes can be performed automatically, e.g. in order to
promptly reach a breakpoint set by the designer. The authors also
mentioned that certain functions, e.g. calls to standard C libraries
or third party libraries, for which the source code is not available,
cannot be executed in the fast-forwarding mode. Simulation of these
functions must be carried out in the ISS mode only. Nevertheless, the
proposed method still allows achieving an average speedup of 36.6
times compared to pure ISS-based simulation. In addition, the au-

1 This approach is sometimes referred to as sampling simulation.

2.1 INSTRUCTION SET SIMULATION

thors reported an estimation error up to 17.6% with the average error
value of 9.5%.

SMARTS framework [86] employs systematic sampling of program
execution at fixed intervals. The simulation runs in two alternating
modes: detailed simulation of the representative parts and fast func-
tional simulation. During the functional simulation, the simulator up-
dates the programmer view of the architecture only. At the same time,
in detailed simulation the complete microarchitecture is updated. Fur-
thermore, the authors showed that the state of the microarchitecture
at the beginning of a detailed simulation has a significant impact
on simulation accuracy. In order to reconstruct the microarchitecture
state, the processor model undergoes functional warming of critical
microarchitecture components, e.g. caches and branch predictor, be-
fore starting the detailed simulation. The approach allows achieving a
very low average simulation error of 0.64% with the average speedup
of 35 and 60 times depending on the considered processor microar-
chitecture.

Similarly to SMARTS, D. C. Powell and B. Franke [63] propose a
method for accelerating performance estimation by running the pro-
cessor simulation tool in two modes: slow cycle-accurate interpretive
simulation and fast instruction-accurate simulation with performance
prediction. However, in contrast to SMARTS, this approach employs
adaptive sampling intervals. The decision on the appropriate simula-
tion mode is made by the tool at simulation run-time. The simulation
starts in the cycle-accurate mode, in which the performance predic-
tion model is trained. If the prediction model produces accurate re-
sults relative to the cycle-accurate execution, the simulator switches to
the faster instruction-accurate mode, while relying on the predicted
values for performance estimation. In this mode, the tool continues
evaluating the accuracy of the prediction model. If the accuracy drops
below a certain threshold, the simulation is switched back to the cycle-
accurate mode until the quality of prediction modeling is again im-
proved. The authors reported an estimation error up to 19.97% with
the average value of 2.36% and a speedup of 50%.

SimPoint [24] exploits the fact that target programs exhibit a repet-
itive behavior during an execution. This approach is based on auto-
matic recognition of regular patterns in the program execution intro-
duced in [72]. In SimPoint, a program’s execution is divided into a
set of non-overlapping intervals and the program behavior in each
interval is analyzed. Intervals with a similar behavior are grouped in
so called phases. In the next step, a representative interval is selected
in each phase. The authors showed that by simulating only one rep-
resentative interval per phase and extrapolating the obtained results,
the overall performance of the program can be accurately estimated
without the need of simulating the program completely.

11

12

PRIOR ART

2.1.4 1SS-based simulation of multicore architectures

Many research works employ ISS for performance evaluation of mul-
ticore architectures. For example, Gems [9] mentioned earlier in this
chapter simulates multicore architectures by instantiating multiple
ISS objects running in parallel. Simics [46, 45] can instantiate multi-
ple instruction-level processor models to simulate a wide range of
target systems, from a small embedded system to multiple complex
interconnected servers. The models are simulated by translating the
target instructions into an intermediate representation. The instruc-
tions in the intermediate format are then interpreted on the host
machine. The processor models are instruction-accurate and do not
provide accurate estimation of the cycle count. Nevertheless, the mod-
els are claimed to provide sufficient timing accuracy for simulating
hardware peripherals required for full-system simulation of modern
operating systems. The simulator’s speed is 26 to 75 times slower
compared to a native execution of the code on the host machine.

Many approaches propose to integrate multiple ISS instances into
a SystemC model of a complete system-on-chip. MPARM [8] encap-
sulates several cycle-accurate simulators of an ARM processor into a
wrapper. The wrapper is used to synchronize timing and enable data
exchange between the ISS and SystemC environment, where an on-
chip AMBA bus and shared memory components are simulated. The
authors demonstrated an example of design space exploration of a
MPSoC architecture by evaluating different cache sizes and bus arbi-
tration policies. In a single-core architecture, the proposed approach
achieved a speed of 60 Kcycles/s on a Pentium 4 2.6 GHz host com-
puter. In a six-core architecture, the simulation speed of individual
cores was reduced to 10 Kcycles/s.

Y. Yi et al. [88] improved co-simulation of multiple ISS instances by
reducing the synchronization overhead and distributing the simula-
tion over multiple processors in the host computer. In this method,
each instruction set simulator generates a sequence of events, which
are then transferred to a simulation backplane in the form of a trace.
The trace is transferred at time points of inter-core communication.
The backplane reconstructs the global timing of the supplied events
under consideration of possible contentions on the interconnect. Thus,
multiple instances of ISS can be co-simulated with a very small syn-
chronization overhead. The method makes a simplifying assumption
that the processors do not exhibit out-of-order behavior, i.e. the ac-
cesses latencies determined in the backplane do not impact on the
time stamps of upcoming events. The authors showed that the pro-
posed synchronization method achieves a simulation speed 8 times
larger than the speed of a commercial SystemC simulator with con-
ventional lock-step synchronization between ISS instances. Further-
more, by using the multicore architecture of the host computer, simu-

2.1 INSTRUCTION SET SIMULATION

lation performance could be further improved by 28%, resulting in a
speed of 400 Kcycles/s. In addition, the simulation could be further
distributed over multiple hosts. In this case, simulation performance
could be approximately doubled on 4 host computers.

Sesame [58] is a simulation framework for design space exploration
of embedded system-on-chip architectures. The framework allows for
flexible mapping of application models to the underlying model of
a HW architecture. The timing properties of the architecture compo-
nents, among other methods, can be dynamically calibrated by an ISS
co-simulated in the simulator. The cycle count estimated in the ISS is
then used for high-level timing simulation of the HW architecture.

Hybrid simulation introduced in [19] aims at fast performance eval-
uation of multiprocessor architectures. This approach is based on the
HySim simulator [34] that was also discussed in the previous sec-
tion. Similarly to [34], the method relies on hybrid co-simulation of
a cycle-accurate instruction set simulator and a native execution of
the annotated target code. During the native execution, the timing of
the target code is only approximated. For this, the tool statically ana-
lyzes the intermediate representation of the target code. Afterwards,
the tool evaluates timing of the intermediate operations using fixed
cycle costs and annotates the calculated time values back to the target
source code. In addition, the approach employs dynamic simulation
of data caches in order to improve the accuracy of timing estimation.
Simulation of multiprocessor architectures is performed by instantiat-
ing multiple processor models in the simulator. Each of the processor
model can run either in the ISS- or native execution mode and has its
own local time which is then synchronized with the global time. In
the experiments, the authors employed a very abstract bus model that
does not consider contentions. The proposed method allowed simula-
tion of the target application with an error of 3% at a speedup of 3-5
times compared to full cycle-accurate simulation.

O. Almer et al. [3] employ just-in-time DBT and parallelized sim-
ulation on the host computer to enable fast functional simulation
of multicore architectures. This technique combines interpretive and
compiled ISS and follows similar simulation principles introduced
in [31]. The parts of the target code, which are most frequently exe-
cuted during the interpretive simulation, are dynamically compiled
and simulated on the host machine at a very high speed. The high effi-
ciency of multicore simulation is achieved by simulating each individ-
ual core in a separate thread, which is then scheduled and executed
in the host OS. Moreover, the authors show that the translated and
compiled target code can be effectively shared among multiple simu-
lations of individual cores. The synchronization of the cores is carried
out with the support of the hardware synchronization instructions in
the x86 host computer. The proposed technique was evaluated on a
host machine with a 32-core Intel Xeon processor, achieving a speed

13

14

PRIOR ART

of 11982 MIPS when simulating a 2048-core target architecture. The
presented approach assumes functional simulation only and does not
perform evaluation of execution time.

2.2 SIMULATION BASED ON TARGET CODE

A different approach for performance estimation is to employ the
code of target applications. In this case, the target code is annotated
with pre-estimated execution delays and then compiled and executed
on the host computer. Host-compiled simulation achieves very high
speed compared to cycle-accurate ISS. Consequently, host-compiled
techniques have been widely used during simulation of MPSoC ar-
chitectures [20], for which simulation performance is very critical.
The target code can be employed at different levels of abstraction:
source-level, intermediate-representation level or binary-level. We dis-
cuss each of these levels in more detail in the following sections.

2.2.1 Source-level simulation

Many recent research works employ simulation of the target code
at source level, e.g. written in C language. The idea behind this ap-
proach is to annotate pre-estimated timing directly to the target source
code. The methods reviewed in this section differentiate in the way
of obtaining the timing information prior to simulation.

J. Bammi et al. [6] perform partial compilation of the source code
in order to derive initial information on the target instructions. The
instructions are then mapped to processor-independent virtual in-
structions. Performance estimation is enabled by assigning a cost to
each virtual instruction. The costs are target-specific and represent
approximated execution time of the instructions on the target proces-
sor. The authors suggested to determine the costs using either infor-
mation provided in the processor’s documentation or by employing
ISS-based calibration. The timing estimates are then back-annotated
in the original source code of the target application in order to en-
able its timing evaluation. This approach approximates the pipeline
effects, e.g. stalls in the pipeline are not assumed, and neglects the
timing effects of caches. The authors also suggested timing estima-
tion based on the object code. This method will be discussed in the
next section.

In [49], T. Meyerowitz et al. annotate the target source code with tim-
ing estimations obtained on a cycle-accurate virtual prototype of the
target system. In this approach, the target software is executed in the
cycle-accurate simulator first in order to obtain an execution trace. Af-
terwards, the tool analyzes the trace and calculates the timing delays
of the instructions. The average execution time is then back-annotated
to the source code using the debugging information. In the presented

2.2 SIMULATION BASED ON TARGET CODE

approach, caches, memory and communication components are not
simulated and the communication delays are pre-characterized and
annotated in the code. The proposed method achieves a speedup of
10-1000 times with the average estimation error of 4.9% and a maxi-
mum estimation error of 17.5% .

J. Schnerr et al. [70] similarly employ back-annotation of timing to
the original source code of the target application. The authors sug-
gested to employ static worst-case (WCET) and best-case execution
time (BCET) analysis to obtain the execution time of basic blocks prior
to compiled simulation. The proposed method uses a dynamic model
of an instruction cache in order to adjust the estimated cycle count at
simulation run-time. The resulting annotated code is simulated us-
ing SystemC. The method increases the simulation speed up to 91%
compared to conventional ISS.

SciSim [83] is a source-level simulation technique in which the exe-
cution time of target instructions is pre-estimated using static pipeline
analysis prior to simulation. The approach uses debugging informa-
tion to find mapping between instructions of the object code and
corresponding lines in the source code. In addition to static timing
annotations, dynamic models of caches and branch predictors are co-
simulated to consider dynamic timing effects. To support the sim-
ulation of data caches, additional code is added for calculating the
target addresses at simulation run-time. For target code, which was
compiled without optimizations, the proposed approach achieves a
speedup of 16 times (assuming that the branch predictor and caches
are co-simulated) at the average error of 0.1% compared to a cycle-
accurate ISS of a PowerPC processor.

Y. Hwang et al. [28] presented a technique for performance esti-
mation based on automatic generation of annotated transaction level
models of processing elements. In this method, timing estimation is
carried out using generic models of pipelined processing elements
under consideration of data dependencies between operations. In ad-
dition, the authors employ statistical models of caches and branch
predictor to consider dynamic timing effects. The timing estimation
is performed for all basic blocks of the target application. Afterwards,
the approach uses the LLVM compiler infrastructure in order to gen-
erate a C code of the target application annotated with the estimated
timing values. The generated code is then simulated in the scope of
SystemC processes for performance evaluation of the complete archi-
tecture.

K.-L. Lin et al. [43] propose a similar approach that relies on static
back-annotation of the timing estimates to the source code of the
target application. In this method, timing estimation is performed
for target basic blocks using static pipeline analysis as well. In addi-
tion, the authors consider pipeline effects between two adjacent basic
blocks and add a correcting factor to the obtained timing values. Dur-

15

16

PRIOR ART

ing the timing annotation, the proposed method tries to find the basic
block boundaries in the source code in order to locate the annotation
points as accurately as possible. The timing effects of branch predic-
tion are considered by using a prediction model at simulation run-
time. The method makes use of a dynamic instruction cache model in
order to dynamically consider the impact of miss penalties on the SW
execution time. In turn, the data cache is considered by using statistic
modeling because target memory addresses are difficult to obtain at
the source level as mentioned by the authors. The method achieves a
speedup of three orders of magnitude compared to a reference cycle-
accurate ISS at the average error of 2%.

All research works presented above rely on back-annotation of pre-
estimated instruction timing into the source code. However, there are
two problems associated with this approach. The first problem oc-
curs if the target software is compiled with compiler optimizations.
The target compiler may modify the structure of the binary program
without changing its functional behavior [74]. Thus, the control flow
graph (CFG) of the source code does not match the CFG of the binary
code. In this case, it is particularly difficult to find mapping between
instructions in the object code and the corresponding statements in
the source code. Secondly, for accurate simulation of data caches, SW
compiled simulation requires actual target memory addresses that
are used by load/store instructions. However, this information is not
visible at the source level, at which computational operations are per-
formed on the source-code variables.

Some of the recent works address the problems above. In [74],
S. Stattelmann et al. suggested to find matching between binary- and
source-level code using dominator homomorphism. This method re-
lates the execution order of basic blocks in the source- and binary-
level code. Thus, the control flow of binary basic blocks can be re-
constructed at the source level. In [75], the authors aim at accurate
simulation of data caches during source-level simulations. Since the
target addresses cannot be always determined correctly using the de-
bugging information, the authors propose to use interval analysis on
the target processor’s registers in order to evaluate possible address
ranges. Further, the authors introduce an abstract cache model that
operates on the annotated address ranges and approximates the be-
havior of real caches. K. Lu et al. [44] address the matching problem
by decomposing the CFG of the binary- and source-level code into
multiple nested sub-graphs. The basic blocks in the sub-graphs are
then matched using the domination principle.

2.2.2 Simulation based on intermediate representation

As mentioned in the previous section, the problems in matching bi-
nary- and source-level code of the target application hinder accurate

2.2 SIMULATION BASED ON TARGET CODE

timing annotations in the source code. One of possible solutions to
this problem is to employ the intermediate representation (IR) of the
target code for simulation. The IR code already considers many com-
piler optimizations and can be obtained during the compilation of the
target software.

J.-Y. Lee and L.-C. Park in [39] employ a target-independent IR for
performance simulation of the application code. Using the descrip-
tion of the target processor, cost of each intermediate operation is
determined and annotated in the intermediate code. Afterwards, the
intermediate code is compiled and executed on the host computer. In
this approach, timing effects of instruction scheduling in the target
processor are considered by scaling the annotated timing informa-
tion by the pre-estimated value. Moreover, this method assumes co-
simulation of cache models in order to determine cache access laten-
cies at simulation run-time. To enable this, additional IR operations
are added to obtain the target memory addresses.

T. Kempf et al. [33] use a similar approach to perform instrumen-
tation of the target code represented at the intermediate, target-inde-
pendent level. In this method, each operation in the IR is additionally
instrumented with the code that accumulates the associated timing
costs. The memory accesses are simulated by adding additional func-
tion calls to the communication model that adjust the simulation time
accordingly. The instrumented code is then compiled and executed on
the host computer for performance estimation of the target software.
The proposed approach relies on approximated values of the execu-
tion time of the intermediate operations. Dynamic target-dependent
timing effects, e.g. pipeline interlocks and effects of the caches and
branch prediction, are not considered at this abstraction level.

A. Bouchhima et al. [12] employ IR-level of the target code for in-
strumentation and additionally introduce the concept of cross inter-
mediate representation. The cross IR is the extended version of the
original IR that considers target-specific transformations of the pro-
gram control flow. The authors correspondingly extended the back-
end of the LLVM compiler infrastructure achieving one-to-one map-
ping between the cross IR and the latest stage of the target-dependent
IR. The authors reported an accuracy of 100% in reconstructing the
sequence of basic block execution in the native execution with respect
to the execution of the target binary in the instruction set simulator.

E. Cheung et al. [15] use a modified version of the target compiler to
generate annotated structural models of the target software. The struc-
tural models are derived in the GCC compiler based on the IR of the
target code. In addition, these models are annotated with the execu-
tion time of the instructions obtained using the documentation of the
target processor. The annotated timing considers data dependencies
among the instructions in the processor’s pipeline. In the next step,
the structural models are wrapped into SystemC components and,

17

18

PRIOR ART

along with other components” models, are employed for MPSoC per-
formance simulation. The proposed approach allowed a simulation
speedup of three orders of magnitude compared to cycle-accurate
ISS at an average error of 1%. However, such a speedup was achieved
assuming a number of simplifications. Particularly, dynamic branch
prediction and cache effects were not addressed in this approach.
Moreover, the authors assume only coarse-grained communication
between the processing cores in MPSoC.

In [82], Z. Wang and A. Herkersdorf proposed to generate a new
intermediate C-code based on the IR of the target code. The resulting
C code is very close to the target binary code and considers opti-
mizations of the target compiler. The timing estimation is performed
on a binary code generated from the intermediate C-code. The au-
thors showed that in this case the source-code statements and the
binary-level instructions can be matched very accurately using the
debugging information of the intermediate C-code. The instructions’
timing is determined prior to simulation using static pipeline anal-
ysis. In addition, cache models are employed to consider dynamic
cache effects. As the target addresses are not available at the inter-
mediate level, the authors suggested to use the host addresses of the
variables in the intermediate C-code. The authors showed that simu-
lation of the intermediate C-code produces the execution time which
is very close to the execution time of the original source code. The
proposed approach allowed for a simulation speed close to the native
host-execution, showing the average timing error of 0.53% compared
to a cycle-accurate ISS of an in-order processor.

2.2.3 Instruction-level simulation

At the instruction- (or binary-) level, timing simulation of the target
code is performed at the granularity of instructions. The code at the
binary level already contains all optimizations made by the target
compiler. Therefore, the matching problem due to compiler optimiza-
tions is not relevant at this abstraction level.

J. Bammi et al. [6] suggested to use the modified version of the tar-
get compiler in order to produce an assembler-level C code which
considers compiler optimizations. The code has a similar functional
behavior as the original program and contains additional timing an-
notations. The timing estimates are derived using generic virtual in-
structions with the associated costs. The resulting assembler-level C
code is then compiled and executed on the host computer in order to
perform accurate performance estimation of the target software. The
proposed approach allowed improvement of simulation speed by a
factor of 18 times compared to a cycle-accurate ISS.

M. Lazarescu et al. [36] employ the assembler representation of the
compiled target code to produce equivalent assembler-level C code.

2.2 SIMULATION BASED ON TARGET CODE

The translated assembler-level C code can be co-simulated with un-
translated functions of the target C code. This is enabled by using
shared variables in the translated and untranslated parts and by im-
plementing target-specific conventions of function calls. Afterwards,
the resulting code is annotated with timing estimates produced by
static pipeline analysis. In this approach, dynamic timing effects of
instruction and data caches are abstracted. The proposed method al-
lowed improvement of simulation speed by one order of magnitude
compared to a cycle-accurate ISS.

J. Schnerr et al. [69] proposed an approach in which a target pro-
cessor is emulated on a prototyping platform consisting of a VLIW
processor and FPGAs. The execution of the target code is enabled
by translating target instructions into instructions of the VLIW pro-
cessor. Time estimation is then enabled by adding a pre-estimated
cycle count in each basic block of the translated code. In addition,
special code is inserted to simulate the timing behavior of the instruc-
tion cache and branch predictor. The annotated translated code is
executed on the prototyping platform to obtain the overall execution
time of the target software. The proposed approach achieved speed
comparable to an FPGA emulation. At the highest level of accuracy,
the authors reported a speed in the range of 3-10 MIPS, with an esti-
mation error of 3-15% compared to the reference evaluation board.

M.-H. Wu et al. [85] translate target instructions into equivalent
C-code annotated with timing, which is then simulated using Sys-
temC. For simplicity reasons, the authors assume that each target in-
struction is executed in one cycle. Thus, the target-dependent timing,
e.g. pipeline or cache effects, are not addressed. Moreover, similarly
to [15], the authors simulate only coarse-grained communication re-
quests, represented by inter-task communication using shared vari-
ables. However, the approach does not consider contentions on the
shared interconnect between inter-task communication points. The
simulation methodology achieves a speedup of 22-101 times com-
pared to a cycle-accurate ISS.

In [81], Z. Wang and]. Henkel introduced a hybrid approach that
combines simulation of the target code at the source and binary levels.
Thus, the authors address one of the major restrictions of the source-
level methods, which cannot simulate parts of the target application,
for which the source code is not available, e.g. third-party libraries.
In particular, this work focuses on data synchronization between the
source- and binary-level code to enable functionally correct simula-
tion. The proposed approach could double the speed of simulation
compared to the pure binary-level simulation, achieving an overall
speedup of 128 times compared to cycle-accurate instruction set sim-
ulator.

19

20

PRIOR ART

2.3 TRACE-DRIVEN SIMULATION

Trace-driven simulation (TDS) has been widely used for performance
evaluation of computing systems [71, 79]. The key idea behind this
approach is to collect a trace of events using a reference comput-
ing system first. The obtained trace is then simulated on a model
of the system to predict its performance in a new environment. Al-
ternatively, the trace can be used to assess new configurations of the
system.

For multiple decades TDS has been applied for analysis of differ-
ent aspects of computing systems. S. Sherman and J. C. Browne [71]
presented an overview of trace-driven modeling techniques that were
employed for evaluation of computer systems at the level of OS ser-
vices. In these approaches, event-sensitive probes in the operating
system were used to collect a trace of events. These events describe
points when the system’s resources were requested and allocated. Af-
terwards, performance estimation was carried out by simulating the
resulting trace in a system’s model. Trace-driven modeling techniques
reviewed in [71] were used, among others, to evaluate algorithms
for CPU scheduling, resource allocation or dynamic storage manage-
ment.

TDS techniques have been also employed to improve performance
simulation of the processor’s microarchitecture. ReSim [18] is a pa-
rameterizable, trace-driven performance simulator of out-of-order pro-
cessors. In this approach, the authors employ traces which capture a
complete sequence of the executed target instructions. The traces are
generated using an ISS and then used to stimulate the components
of the processor’s microarchitecture implemented in FPGA. L. Eeck-
hout et al. [17] proposed to employ reduced synthetic traces in order
to accelerate performance evaluation of diverse processor microarchi-
tectures. In this approach, a target program is executed first to derive
a set of execution characteristics. Afterwards, the obtained values are
used to generate a representative synthetic trace reflecting the col-
lected characteristics. The trace is then used during trace-driven sta-
tistical simulation of the target processor. The synthetic traces are sig-
nificantly smaller than full execution traces. Therefore, they require
significantly less time to simulate.

Due to the increasing gap between the speed of processor units
and memory components, TDS has gained high popularity in the
performance assessment of memory systems [79]. In this type of TDS,
traces contain a sequence of memory addresses generated by a pro-
cessor during a program execution. In the next step, the resulting
trace is used to stimulate a model of a memory system, e.g. which
incorporates hierarchical caches and diverse memory structures, and
to explore possible design solutions. In [79], the authors discuss ad-
vances in the three main aspects of trace-driven memory simulation:

2.3 TRACE-DRIVEN SIMULATION

collection of representative traces, reducing the size of large trace files
and efficient simulation of the traces.

In [27, 64], TDS was applied in simulation of multiprocessor sys-
tems with shared memory. The work in [64] used TDS to evaluate
caches containing shared data, trying to improve the efficiency of the
existing coherency protocols. In addition to conventional traces, the
authors advocate the use of synthetic traces generated by a stochastic
model for the purpose of better controlling the properties of the simu-
lated workload. In [27], the authors address the correctness of TDS in
a situation when the memory architecture and memory management
policy change in a new multiprocessor environment. In this situa-
tion, the addresses captured in a trace may change. The presented ap-
proach correspondingly modifies the addresses during a simulation.
For this, the authors propose to identify points in the traces at which
the values of addresses might change and then attempt to reconstruct
the address values. The presented approach is based on the analysis
of the target code represented in the intermediate three-address for-
mat.

Many recent approaches employ TDS to accelerate design space
exploration of MPSoC architectures. In contrast to conventional TDS
methods, these approaches employ traces that additionally contain
processing delays in order to enable timed simulation of MPSoC mod-
els. TAPES [84] is a tool for trace-based architecture performance eval-
uation in SystemC. In this approach, the functionality of each MPSoC
component is specified at a very high abstraction level and repre-
sented in the form of abstract execution traces. Each execution trace
defines a sequence of communication requests and processing laten-
cies between them, thereby determining the system-level behavior of
the respective component. Performance estimation of the MPSoC is
performed by superposed co-simulation of the traces on the model
of the shared interconnect. Processing latencies are fixed and derived
prior to simulation. In turn, communication latencies are determined
dynamically at simulation run-time, depending on the contentions on
the shared HW resources.

Sesame [57] employs TDS to enable fast design space exploration of
multimedia applications in embedded systems-on-chip. In this frame-
work, a target application modeled using Kahn Processing Networks
(KPN) generates a trace of events, which is then used to simulate the
hardware models. Thus, in contrast to conventional TDS methods,
traces in Sesame are generated at simulation run-time. The traces ab-
stract the behavior of the applications on processing components. In
fact, the traces specify coarse-grained interaction between KPN pro-
cesses using very basic commands, e.g. read, write and execute. Fur-
thermore, the simulation framework includes a mapping layer which
is used to assign and schedule the execution of traces on the under-
lying hardware components. The aim of the mapping layer is to en-

21

22

PRIOR ART

able flexible evaluation of SW partitioning. Moreover, this layer is
employed to refine the traces events into fine-granular events during
the architecture refinement process.

S. Mahadevan et al. [47] employ TDS to model interconnect traf-
fic generated by processing elements in a MPSoC. For this purpose,
the authors present an abstracted generic IP model which is capable
of executing a small set of simple instructions, e.g. reading/writing
data or waiting for a specific amount of cycles. The generic IP model
reconstructs the timing behavior of a programmable processing core.
The authors demonstrated how to derive a program for the IP model
using an execution trace captured on a reference cycle-accurate ISS.
The set of IP models instructions includes control-flow instructions
for performing conditional and unconditional branches to a certain
label. Thus, using the available instructions, the designer can write
custom programs for the IP model in order to create traffic of not yet
existing peripherals.

T. Isshiki et al. [29] aim at overcoming the performance limitations
of cycle-accurate ISS by making use of execution traces. In this method,
the traces are represented in the from of branch streams. A branch
stream is a sequence of the branch operation results which was cap-
tured during the execution of a target program. To generate such a
trace, the target source code is instrumented and natively executed
on the host computer. The approach makes an assumption that the
control flow graphs of the source and binary code are identical. The
produced trace is then used to reconstruct the execution flow in an
optimized control flow graph of the target program. To enable per-
formance evaluation, this graph is annotated with cycle counts of
the respective parts of the target code. In turn, the cycle counts are
obtained by means of the target compiler and by employing static
timing analysis of instruction execution. In this approach, only static
execution time of instructions is considered. Dynamic timing effects,
e.g. originating from instruction and data caches and memory access
latencies, were abstracted.

H. Lee et al. [38] employ TDS for fast performance simulation of
multicore architectures. The authors propose a simulation approach
consisting of two separate phases. In the first phase, an abstract exe-
cution trace of the target application is generated by means of a cycle-
accurate instruction set simulator. The generated trace is then filtered
leaving only Li-cache miss events and timing intervals between them.
In the second phase, the trace is simulated in a new multicore envi-
ronment, in which a mesh network on-chip and shared L2-caches are
modeled. The authors mentioned that filtering out the L1-cache intro-
duces a problem in case of coherent caches. For example, an access to
the L1 cache data, which resulted in a hit during the trace generation,
may result in a un-expected miss in a new multicore environment,
because the data may have been invalidated by another core. In this

2.4 HIGH-LEVEL OS MODELING

case, the trace will not reflect the correct behavior of the processing
core anymore. The authors mentioned that a possible solution to this
problem could be not to filter accesses to the L1 cache for the data
that may be potentially shared between multiple cores. However, this
approach would require reconstruction of the complete L1-cache state
at a simulation run-time which is not a trivial task. This issue was left
by the authors as a future work.

In [40], K. Lee et al. employ trace-driven simulation to accurately
reconstruct the timing behavior of out-of-order processors during ex-
plorations of diverse memory systems. Similarly to the previous ap-
proach, the authors employ filtered traces specifying the events of L1
misses. The obtained traces are simulated to evaluate the execution
time of SW in an out-of-order processor in a different environment.
In this paper, the authors introduced a model that considers pairwise
dependent cache misses to predict the timing behavior of the processor
during L1 cache misses. Particularly, in this approach, the simulation
of an Li-cache miss is postponed if the miss depends on a previous
L1-cache miss and, at the same time, the data transfer caused by the
previous miss has not yet been completed. Furthermore, the authors
introduced a method for reorder buffer (ROB) occupancy analysis to
prevent the simulation of a Li-cache miss if the corresponding mem-
ory instruction can not be placed into the ROB. With the proposed
methodology, the authors could significantly improve the accuracy of
TDS in case of out-of-order processors.

2.4 HIGH-LEVEL OS MODELING

In complex embedded systems integrating the functionality of mul-
tiple applications, the use of a real-time operating system (RTOS) is
vital to manage the execution of application tasks on the underlying
processing elements. Many recent research work address high-level
modeling of RTOS in order to consider the behavioral and temporal
effects of a RTOS at early design stages and, thus, to improve the ac-
curacy of system-level performance evaluations. The largest part of
this section reviews simulative approaches. However, I also present
a few examples employing formal timing analysis in the end of this
section.

The simulative methods presented here differentiate, among other
criteria, in the abstraction level and simulation method of task models.
The overview starts with OS modeling approaches, in which the tim-
ing behavior of tasks is represented at a very high-level of abstraction
using coarse-grained execution delays. This abstract representation is
typical for early stages of system-level design.

ABSTRACT TASK MODELING S. Yoo ef al. in [89] aim at fast build-
ing of OS simulation models and exploration of different OS candi-

23

24

PRIOR ART

dates at system-level. The process starts from a behavioral descrip-
tion of the target SoC, which is then refined to the implementation
level by means of so called HW and SW wrappers. The method pre-
sumes that the wrappers are available from the libraries in the form
of synthesizable code and simulation models. The wrappers are em-
ployed to generate an application-specific timed OS model using the
same principles as used for the generation of the final OS code. Thus,
the authors address the equivalence between the generated OS model
and the final OS code used in the SoC. In this approach, the execution
time of tasks is considered by annotating pre-calculated execution de-
lays into the OS model. The resulting OS model is then simulated
using SystemC.

A. Gerstlauer et al. in [21] aimed at the lacking capability of system-
level modeling languages in capturing the behavior of real-time oper-
ating systems (RTOS) during system-level design. In the first design
stage, the behavior of the target system is represented as a set of com-
municating processes and abstract processing elements. The system
model is further refined to consider the serialized execution of appli-
cation processes on precessing elements according to the assigned pri-
orities and scheduling algorithm. To enable this, the authors present
a high-level RTOS model for dynamic scheduling of the application
processes independently of a particular RTOS implementation. The
timing simulation of application tasks is enabled by inserting coarse-
grained pre-estimated execution delays.

Similarly to the previous paper, R. Le Moigne et al. [51] address
serialization of task execution on processing elements and introduce
a high-level RTOS model implemented in SystemC. This approach
additionally considers the RTOS timing properties. Particularly, the
designer can specify the duration of the scheduling process and task
context switches. The authors presented two implementations of the
RTOS model. In the first implementation, the model is simulated as
a separate SystemC thread. The second implementation improves the
simulation efficiency by moving the RTOS methods directly to the
tasks objects, thus, reducing the overall number of cost-intensive Sys-
temC context switches. The proposed approach has been employed
in CoFluent Studio, a commercial product which is now the part of
the Intel’s portfolio [94].

In [1], the authors address co-simulation of embedded software and
an application-specific RTOS model in SystemC. The proposed RTOS
model offers a set of APIs that can be used in the application’s code to
access the RTOS services. The application’s code is simulated in the
form of tasks using separate SystemC threads. The execution time of
the tasks and RTOS services are considered by annotating execution
latencies in the model. The latencies are obtained by calculating the
execution time of instructions in the application/RTOS code using
the datasheet of the target processor. In addition to RTOS calls, the

2.4 HIGH-LEVEL OS MODELING

tasks can perform memory and IO operations by invoking the bus
functional models of the processor. The timing of the memory and
IO operations is assumed to be fixed and can be configured by the
designer.

Z. He et al. [25] presented a generic RTOS model that can be re-
fined to simulate the behavior of existing RTOS implementations.
The model is represented by a configurable state machine and imple-
mented using SystemC. The timed simulation is enabled by annotat-
ing pre-estimated execution delays in the model. To obtain the timing
information for the application models, the authors suggested to per-
form instruction-level timing analysis of the target code. In turn, the
execution timing of the OS services is obtained from the benchmark
data provided by the OS vendor.

In [32], the authors aim at flexible performance evaluation of task
mappings with a particular focus on application-specific SoC incorpo-
rating multiple processing elements with hardware multi-threading.
The tasks are mapped and scheduled on the available processing re-
sources by means of an intermediate mapping layer. In this approach,
tasks are modeled by means of finite state machines which are an-
notated with coarse-grained timing information. In addition, the de-
signer can specify the time required to swap the tasks in a processing
element. In the provided example, the authors used the timing values
published in the vendor’s documentation.

ARTS [48] is a SystemC based simulation framework for evaluation
of various task mappings on a MPSoC platform taking the RTOS ef-
fects into consideration. The approach has been applied for investiga-
tion of streaming multimedia applications. In this framework, target
applications are modeled as a set of task graphs. In these graphs, each
task is characterized by a set of timing properties which has to be set
by the designer prior to simulation, e.g. start time, period, worst- and
best-case execution time as well as pre-estimated execution costs for
various types of processing elements. In addition, the designer needs
to assigh communication costs between the tasks, which are required
to determine data transfer time in the communication model. In the
simulation phase, the tasks are mapped onto architectural compo-
nents and simulated in order to produce the overall program comple-
tion time on a given architecture.

ISS-BASED SIMULATION In contrast to previous approaches that
use abstracted task models, in this part we discuss research works
that employ cycle-accurate ISS in order to simulate the task workload.
In [87], Y. Yi et al. address efficient co-simulation of SW and HW sim-
ulators, while considering the effects of a preemptive RTOS. In this
approach, multiple application tasks are executed on an ISS, while
the abstract RTOS model is implemented in the simulation backplane
at an abstraction level higher than ISS. In this approach, the ISS exe-

25

26

PRIOR ART

cutes application’s code without any notion of an RTOS and provides
the execution time stamps to the backplane. In the backplane, the
RTOS model reconstructs the actual simulation time considering the
effects of the RTOS-supervised execution. In addition, the model al-
lows consideration of the RTOS timing overhead by accounting delays
of context switches and interrupt handling. The presented approach
was also applied during simulation of multiprocessor architectures in
[88].

M. Krause et al. [35] suggested to employ a cycle-accurate simulator
to execute the application’s code. The simulator is wrapped into a Sys-
temC environment and co-simulated with an abstracted RTOS model.
In this approach, scheduling decisions are made in the RTOS model
which does not require cycle-accurate simulation. To consider the tim-
ing overhead of the RTOS, the model is annotated with a measured
execution latencies of the corresponding RTOS services, e.g. latencies
for creating tasks and starting their execution. The authors showed
that implementing the RTOS functionality at the higher abstraction
level allows achieving higher simulation speed compared to pure ISS,
particularly in a use case when task switching occurs frequently.

J. Chevalier et al. [16] address architectural exploration of a SoC
with a focus on evaluation of HW/SW implementation alternatives
for the target application. Similarly to [21], the method follows a top-
down approach of the system-level design, starting at a high-level rep-
resentation of the application in the form of untimed, communicating
SystemC modules. In the next step, SystemC modules are classified
as either HW or SW modules to represent the HW and SW parts of
the system respectively. The presented method enables accurate sim-
ulation of the SW modules by using an ISS of the target processor.
Furthermore, the authors employ the code of an existing commercial
RTOS to schedule the execution of SW modules in the ISS. To enables
this, an interface adapter was created which maps SystemC function
calls made by a SW module to the equivalent RTOS functions. Af-
terwards, the SW module is cross-compiled for the target ISA and
linked with the RTOS code. The resulting binary code is executed in
the ISS which, in turn, is co-simulated with other HW modules in
the common SystemC environment. The advantage of this approach
is a possibility to represent the application’s either as a HW or a SW
module very easily.

EMPLOYMENT OF ANNOTATED TARGET CODE This part reviews
approaches that employ annotated target code for simulation of ap-
plications tasks. In [82], the workload of user tasks is simulated using
intermediate-level source code annotated with pre-estimated timing
information. To manage the simulation of tasks on a multicore archi-
tecture, the authors present a SystemC-based simulation framework
incorporating a very abstract RTOS model.

2.4 HIGH-LEVEL OS MODELING

M. Miiller et al. [52] aimed at automated generation of system-level
models of the target platform for early design space explorations. The
presented approach starts with an abstract functional model of the ap-
plication represented in the form of Kahn Process Networks (KPN).
The models are then refined and employed in system-level modeling
of the target platform which considers the timing effects of an RTOS.
The method proposes two types of RTOS models. Firstly, the authors
employ a generic RTOS model for coarse evaluation of thread schedul-
ing. Secondly, the authors demonstrated refinement of the generic
RTOS model to a specific RTOS implementation in order to provide
higher accuracy of performance estimation. For this, an interface was
created that couples the refined generic RTOS model with the specific
RTOS implementation. In order to consider the timing properties of
software execution in the system-level model, the modified front-end
of the LLVM compiler is used to statically determine execution time
of the applications and RTOS at the level of basic blocks. Dynamic tim-
ing effects are considered by simulating instruction and data caches.
The resulting annotated code is compiled and executed on the host
computer to estimate performance of the complete system.

FORMAL ANALYSIS A different approach for evaluating perform-
ance of task mappings and scheduling strategies is to perform for-
mal performance analysis of the target platform. In [80], the authors
propose a method for evaluating non-preemptive scheduling and de-
tecting possible deadlocks in an MPSoC with shared resources. The
approach is based on abstraction of a functional implementation of
SW processes and their formal representation in the form of com-
munication dependency graphs with annotated best- and worst-case
execution times. Afterwards, analysis is performed to evaluate differ-
ent task mappings considering the impact of cooperative scheduling.
In [80], the approach was applied to a JPEG application executed on
a platform with different configurations in order to obtain the utiliza-
tion of computational resources.

The formal analysis can be also employed for performance valida-
tion of complex distributed embedded systems. In such systems, the
challenge is to consider a multicore architecture of individual nodes
in the scope of holistic performance analysis at the system level [68].
In [68], the authors employ a concept of event model propagation to
determine the maximum response time of tasks on a multicore plat-
form under assumption of dynamic task scheduling and the usage of
shared resources. The analysis starts with an estimation of the maxi-
mum number of accesses performed by tasks to a shared resource. In
the next step, the access latency to the shared resource is determined
considering possible interference among the tasks. Finally, schedul-
ing analysis is performed considering the estimated access latencies
to the shared resources.

27

28

PRIOR ART

Formal analysis is a suitable method for investigation of corner
cases, which are difficult to discover with simulative approaches. Par-
ticularly, the formal analysis allows the designer to identify worst-
/best-case execution times of the application on a MPSoC platform
as well as best-/worst-case response times of tasks in a distributed
real-time embedded system.

2.5 SUMMARY

As can be concluded from the previous sections, different techniques
have been proposed allowing performance estimation of SW execu-
tion at early design stages. Cycle-accurate interpretive instruction set
simulators provide very high estimation accuracy because they con-
tain performance models of the microarchitectural components, e.g.
instruction pipeline, instruction queues, caches or branch predictor.
In these tools, the simulation of a target program is organized in a
loop, in which the instructions are fetched, decoded and executed
at simulation run-time. For out-of-order processors, these simulators
can accurately capture the effects of out-of-order execution since they
model dynamic scheduling of the target instructions. However, due to
the high level of details, these simulators suffer from low speed and
their use in system-level design space exploration of multiprocessor
architectures is limited. At the level of SoC components, the designers
are primarily interested in inter-core events, e.g. communication over
the shared interconnect or the usage of common hardware resources,
rather than in intra-core events.

Recent research works aim at improving the speed of interpre-
tive ISS by moving cost-intensive instruction decoding to compile-
time. For example, the workload specific simulator introduced by
T. Nakada et al. [53] decodes target instructions at compile-time and
improves the performance of an interpretive cycle-accurate ISS by an
average factor of 3.8 as reported in [53]. However, this method still
achieves relatively low simulation speed because it only abstracts the
decoding part of the processor’s microarchitecture. In fact, H. Lee
et al. in their publication [38] conducted performance analysis of an
interpretive cycle-accurate ISS and reported that the most simulation
efforts are spent rather in modeling the pipeline’s behavior and in-
struction scheduling. Some of the recent techniques employ dynamic
binary translation (DBT) of the target instructions. However, these
methods primarily focus on functional simulation of the target code.
One of the latest approaches presented in [11] does address perfor-
mance simulation by combining interpretive cycle-accurate ISS with
cycle-approximate just-in-time DBT. However, this method still re-
quires co-simulation of a pipeline’s performance model and assumes
in-order target processors only.

2.5 SUMMARY

Host-compiled techniques, which have been introduced recently,
are based on a native execution of the target code and employ pre-
estimated timing annotations instead of detailed modeling of the mi-
croarchitecture. Consequently, these methods achieve higher simula-
tion speed than ISS and hence they are very attractive for system-level
simulation of multiprocessor architectures. Most of them attempt to
completely substitute cycle-accurate ISS and predict the SW execution
time of target instructions, e.g. by employing static pipeline analysis
prior to simulation. However, to the best of my knowledge, none of
the existing techniques considers the capability of modern processors
to perform out-of-order execution of instructions.

Host-compiled simulation introduces many challenges in recon-
structing the timing behavior of an out-of-order processor. Particu-
larly, the target code used for host-compiled simulation has a static
structure and cannot reflect context-dependent deviations of the in-
structions” execution time as well as the order of memory operations
(see Section 4.1.2 for further details). Moreover, non-blocking behav-
ior of data caches is not considered in conventional host-compiled ap-
proaches. Currently, there is a demand for host-compiled simulation
methodology that could capture the timing behavior of out-of-order
processors, while having a reasonable level of accuracy and enabling
simulation speed higher than interpretive cycle-accurate ISS.

This thesis addresses this gap in simulation techniques by introduc-
ing a novel approach for host-compiled SW performance simulation,
which considers complex timing behavior of out-of-order processors.
The proposed technique is based on simulation of the target code at
the binary level and employs the principles of the target code trans-
lation originally proposed by T. Nakada et al. in [53]. However, in
contrast to [53], in the presented approach the processor’s microar-
chitecture is abstracted at a much greater extent, allowing for a larger
speedup with respect to an interpretive cycle-accurate ISS. Essential
background information on the code translation will be provided in
Chapter 3. To capture dynamic effects of out-of-order execution, the
proposed approach follows the idea which was initially proposed by
K. Lee et al. for trace-based simulations in [40]. I employ a similar
method, which is adapted for binary-level host-compiled simulation
and considers data dependencies between memory access instruc-
tions. The corresponding details will be given in Section 4.5.

Trace-driven simulation (TDS) is an alternative method for system-
level performance evaluation. Compared to execution-driven simu-
lation methods, TDS is performed at a very high abstraction level.
It completely abstracts the internal processor’s microarchitecture and
does not require functional execution of the target code or availabil-
ity of the target code in general. Thus, in case of TDS, more compu-
tational efforts in the host computer can be spent in simulating the
system-level aspects, e.g. interaction of MPSoC components at the

29

30

PRIOR ART

system-level. However, this advantage comes at the expense of simu-
lation flexibility. Particularly, the control flow of the target application
captured in a trace is fixed. Thus, a new trace must be generated if the
control flow has been changed, e.g. if different input data has been
applied to the target application. Moreover, because of the abstracted
functionality, no data-dependent relations between tasks in a complex
application can be reconstructed at simulation run-time using TDS.
Nevertheless, if the control-flow of the application is kept fixed, e.g.
if the designer is interested in evaluation of exactly the same workload
on different hardware architecture, the TDS method can alleviate the
simulation complexity and accelerate design space exploration.
Abstract RTOS modeling is essential to capture the realistic behav-
ior of modern multi-tasking applications at the system level. Many
approaches abstract the complete execution of tasks to processing de-
lays and do not consider low-level timing effects in HW, e.g. dynamic
behavior of caches or contentions on the shared on-chip interconnect.
In general, this level of abstraction is suitable at very early design
stages, when the details of the target HW architecture are not known
yet. If the target processor architecture is known, many approaches
suggest to co-simulate an ISS instance with a high-level RTOS model.
As mentioned earlier, the use of ISS during design space exploration
is limited, particularly if multiple simulations have to be performed.
Some of the recent approaches simulate tasks at a higher abstraction
level by employing annotated target code of the application tasks.
However, they make a number of simplifying assumptions on the
processor’s microarchitecture and assume in-order processors only.

BACKGROUND OF COMPILED SW
SIMULATION AT BINARY LEVEL

Host-compiled simulation allows the designer to efficiently repro-
duce the functional and temporal behavior of the target' code at the
system level by abstracting unnecessary microarchitectural details of
the target processing core. For the simulation purposes, the target
code can be employed at different representation levels, e.g. source
level, intermediate representation level or binary level as discussed
in Chapter 2. This section provides details on host-compiled simula-
tion at the binary level.

The workflow of binary-level simulation is presented in Fig. 3.1. In
the first step, the binary code of the target application is translated
into a functionally equivalent C code. The translation is necessary be-
cause of the following reasons. Firstly, the target and host processors
may have different instruction set architectures (ISAs). In this case,
the target code cannot be natively executed on the host computer.
Secondly, afterwards the resulting C code can be easily extended for
other simulation purposes as will be discussed later in this chapter.

Target binary
code

Binary-to-C translation

Intermediate Functional behavior
C-code

Timing annotation

Annotated - ,
(C-code Timing behavior

Host compilation

Executable

U‘

Figure 3.1: Workflow of binary-level SW compiled simulation

The resulting C code preserves the semantics of the original binary
code. Therefore, during the execution, the C code accurately repro-
duces the functional behavior of the target application. In order to
reconstruct the timing behavior of the application under considera-

1 For the following explanations, the term target refers either to a simulated processing
core or to the software code running on that core. In turn, the computer which
performs the simulation is referred to as host.

31

32

BACKGROUND OF COMPILED SW SIMULATION AT BINARY LEVEL

tion of the performance characteristics of the target processor, the C
code must be additionally annotated with timing information. In the
last step, the annotated code is compiled on the host computer, pro-
ducing in an application-specific executable performance model of the
target processor. The resulting model can be further employed for
simulations of multiprocessor architectures at the system level.

The following sections describe the reconstruction of the functional
and temporal behavior of the target code in greater details.

3.1 FUNCTIONAL BEHAVIOR
3.1.1 Binary-to-C translation

The aim of binary-to-C translation is to represent instructions of the
target binary code in the form of functionally equivalent C expres-
sions. In contrast to instructions, in which arithmetic operations are
performed on registers of the target processor, the C expressions per-
form operations on a set of register variables. Fig. 3.2 illustrates an
example of binary-to-C translation of the binary code (shown in the
left part) into an equivalent C-code (shown in the right part).

lui r4, 16 r(4] = 16;

add r5, r4, r3 r(51 = r[4] + r[3];

w rio, 0(rie6) r[{10] = read(r[16]);
sub r4, rl@, r5 rf4] = r[10] - r[5];
sw r4, 4(rle) write(r[4], r[16] + 4);

Figure 3.2: Translation of the target binary code into a functionally equiva-
lent C code.

During the translation, arithmetic and logic instructions, e.g. lui,
add or sub, are transformed to the respective arithmetic C operations
on array of register variables r. At the same time, translation and
execution of load/store operations, e.g. lw and sw, requires additional
modeling of the target memory, which will be discussed in detail
in Section 3.1.3. The memory model is accessed by means of read
and write functions. The purpose of these functions is to copy the
values of register variables to/from the target memory. The address
of memory locations is specified in another register variable and may
require an additional offset. In this case, the address is computed
directly in the translated code as shown in sw instruction in Fig. 3.2.

A target application may perform system calls to request services
of the operating system, e.g. to read data stored on the hard disk.
Therefore, the translated code must be capable of handling system
call requests. For these purposes, system calls can be emulated, i.e.
each system call request made in the target code is converted into an
equivalent system call in the host computer. Afterwards, the result

3.1 FUNCTIONAL BEHAVIOR

of the system call is written back to the target memory if necessary.
The emulation of system calls is often supported in instruction set
simulators [5, 9].

3.1.2 Organization of translated code

The execution flow of target instructions can be changed on jump in-
structions. These instructions can modify the value of the program
counter register and, thus, break the sequential order of instruction
execution. Consequently, in addition to arithmetic operations on the
register variables and accessing the target memory, the translated
code must be capable of dynamically changing the flow of execution.
It can be achieved by organizing the translated code in basic block
functions as proposed in [53].

A basic block function contains the translated code of instructions
belonging to one basic block?. In the example shown in Listing 1, the
translated code is structured into two basic block functions. These
functions incorporate the code of basic blocks starting at addresses
0x100 and 0x200. The functions are invoked using an array of function
pointers (see line 2 in Listing 1), which is indexed by the addresses
of the first instructions of basic blocks. Please note that the start ad-
dresses cannot be employed directly for indexing, as in this case the
array would have a very large size and contain 2™ elements, where n
is the instruction width in the target processor. Instead, the array’s in-
dex can be represented in a more compact form using macro function
INDEX() shown in line 1. This function calculates the offset between
the start addresses of the current basic block and the start address
of the first basic block? in the target program. Afterwards, the offset
is divided by the instruction width expressed in bytes. The result of
this manipulation is the sequence number of a given instruction in the
target code (assuming that the instruction width is constant in the
target processor). In this case, the size of the array will equal the total
number of instructions in the target code. The array of function point-
ers needs to be initialized prior to the code’s execution as shown in
lines 3-5.

2 A section of the binary code that has only one input point and one exit point. Basic
blocks may consist of one or several instructions.
3 The first basic block in the program order having the smallest start address.

33

34

O 0N Ul A WN R

| I T T T S R T R R O
C O N oUW N R O

21
22
23
24
25
26
27
28
29
30

BACKGROUND OF COMPILED SW SIMULATION AT BINARY LEVEL

Listing 1: Organization of the translated code in basic block functions.

#define INDEX(x) ((x - FIRST_INST_ADDR) / INST_WIDTH)

void (xtable[])() = { /* array with function pointers x/
[INDEX(06x100)] = b_0x100,
[INDEX(0x200)]1 = b_0x200,
[INDEX(0x300)] = b_0x300,

}i

unsigned int r[32]; /* processor registers x*/

unsigned int pc = 0x100; /* initialize program counter */
unsigned int *xmem_data; /* virtual data memory */
unsigned int xmem_stack; /x virtual stack memory x*/

void b_0x100() { /* basic block function 0x100 x/
r[2] = read(r[28] + 32);
ri2] = r[2] + 1;
r[(31 = read(r[28] + 48);
if (r[2] !'= r[31) /* conditional jump */
pc = 0x200;
else
pc = 0x300;
}
void b_0x200() { /* basic block function 0x200 x/
r[(2] = r[0] + 1;
write(r[2], r[28] + 16);
pc = 0x300; /* unconditional jump x*/
1
int main() {
while (1) { /* main execution loop */
table[INDEX(pc)1(); /* call to basic block function */
}
b

J

The execution of basic block functions is organized in a loop (see
line 27). The invocation of basic block functions is carried out using
the value of program counter variable pc, which specifies the next
basic block function to be executed. The value of pc is modified inside
the basic block functions (line 24) and is used to select an appropriate
function pointer in the array (28). In case of a conditional jump, e.g. as
shown in line 16, the value assigned to pc depends on other register
variables.

3.1.3 Modeling of target memory

For the correct operation of memory instructions, the translated code
must provide a model of the target memory. Ideally, the memory in-
structions should be able to access the full range of target addresses.
However, it results in large consumption of resources in the host com-
puter. In fact, the target program consume only a limited amount of
memory in predefined memory ranges. Therefore, the target mem-

3.1 FUNCTIONAL BEHAVIOR

ory can be efficiently modeled using two arrays which represent the
data segment (also including the target heap memory) and stack seg-
ment as shown in Listing 2. The size of the arrays (DATA_SIZE and
STACK_SIZE) depends on the range of memory addresses which are
accessed by the target application. This information can be obtained
by analyzing the target code prior to simulation. Alternatively, the
memory consumption can be evaluated during a preliminary execu-
tion of the target code in an instruction set simulator.

Listing 2: Initialization of data and stack memory

unsigned int xdata_mem;
unsigned int *xstack_mem;

void init_data() {
data_mem = new unsigned int[DATA_SIZE]();
// initialize array with data words
data_mem[0]=0x47415355; data_mem[1]=0x62203a45;
data_mem[2]=0x6a32706d; data_mem[3]1=0x73206770;

}
void init_stack(const char xfname) {
stack_mem = new unsigned int[STACK_SIZE]();
FILE xf = fopen(fname, "rb");
// initialize array using file data
fread((void *)((char *x) stack_mem + INIT_OFFSET), 1,
INIT_SIZE, f));
fclose(f);

For the correct operation of the translated code, some entries in
the data and stack memory have to be pre-initialized. For example,
the data segment must be initialized with the values of global and
static variables. These values can be retrieved from the target binary
code using a disassemble tool, e.g. objdump provided in the GNU bi-
nary utilities. In the depicted example, the initialization of the data
segment is preformed in function init_data(). In turn, the stack seg-
ment must be pre-initialized with run-time information such as com-
mand line arguments and environment variables. This information
can be obtained from the simulation environment on the host com-
puter. Alternatively, the stack memory can be initialized with the pre-
defined values stored in a file. The latter approach is implemented in
Listing 2 in function init_stack().

35

36

BACKGROUND OF COMPILED SW SIMULATION AT BINARY LEVEL

Listing 3: Implementation of functions for accessing the target memory
model

#define IN_RANGE(addr,min,max) (addr >= min && addr <= max)

int read(unsigned int addr)

{
if (IN_RANGE(addr, MIN_DATA, MAX_DATA))
return x(intx) ((charx) &data_mem[0] + (addr - MIN_DATA);
else if (IN_RANGE(addr, MIN_STACK, MAX_STACK))
return x(intx) ((charx) &stack_mem[0] + (addr - MIN_STACK);
}
void write(int src, unsigned int addr)
{
if (IN_RANGE(addr, MIN_DATA, MAX_DATA))
*(intx) ((charx) data_mem + (addr - MIN_DATA)) = src;
else if (IN_RANGE(addr, MIN_STACK, MAX_STACK))
(intx) ((charx) stack_mem + (addr - MIN_STACK)) = src;
b

As mentioned previously, the modeled target memory is accessed
using read() and write(). The implementation of these functions
is shown in Listing 3. Firstly, these functions check the range of the
given memory address by comparing its value with predefined bound-
aries MIN_DATA and MAX_DATA. Afterwards, depending on whether the
address corresponds to the data or stack segment, the functions de-
termine the offset in the respective array and copy the content of the
memory.

3.2 TIMING BEHAVIOR

In host-compiled simulation, the reconstruction of timing behavior of
the binary code consists of static and dynamic parts. In the static part,
execution delays of the target instructions are pre-estimated at com-
pile time and annotated in the translated code prior to simulation.
In the dynamic part, the delays are additionally adjusted at simula-
tion run-time in order to consider those timing effects that cannot
be determined at compile time, e.g. behavior of instruction and data
caches.

3.2.1 Annotation of timing information

One of the central idea of host-compiled simulation is to move the
estimation of instruction timing from simulation time to compile time
and, thus, to improve simulation efficiency. An example of translated
code which has been annotated with timing information is presented

in Fig. 3.3.

3.2 TIMING BEHAVIOR

0x4014a0: 1w r2,60(rl6) r[2] = mem_access(READ, r[16] + 60);
0x4014a8: 1w r3,64(rl6) r[{3] = mem_access(READ, r[16] + 64);
0x4014b0: addu rl19,rl19,r4
0x4014b8: addu r2,r4,r2 cycle += 4;
0x4014c0: addu r3,r4,r3
0x4014c8: sw r2,60(rl6) r{19] = r[19] + r[4];

ri2] = r[4] + r[2];

ri(31 = r[4] + r[31];

cycle += 5;

mem_access (WRITE, r[2], r[16] + 60);

Figure 3.3: Target binary code and translated code annotated with execution
delays.

The annotated values represent execution latencies of the respec-
tive instructions in the target processor. Please note that in contrast
to arithmetic instructions, the execution time of memory instructions
is highly dynamic and cannot be precisely determined prior to sim-
ulation. The consideration of dynamic memory access latencies will
be discussed later in this chapter. During the execution of the trans-
lated code, the values are added to variable cycle, thereby perform-
ing evaluation of the program’s execution time. Thus, at the end of
the execution, this variable contains the total amount of clock cycles
elapsed from the beginning of the simulation.

The execution time of instructions can be determined in different
ways, e.g. by using data sheets provided by the manufacturer and
statically analyzing the timing effects in the pipeline [83]. Alterna-
tively, the execution time can be obtained using WCET analysis as in
[76]. In this work, the timing of instructions is derived by executing
the target code on a reference cycle-accurate simulator prior to host-
compiled simulation. During the measurement, the completeness of
collected timing information depends on the choice of input stimuli
applied to the cycle-accurate simulator. Therefore, we assume that
the target code is measured using a typical input set that covers most
relevant code parts. Nevertheless, if host-compiled simulation reveals
unmeasured sections of the target code, the uncovered path has to be
measured again and the translated code must be updated with the
missing timing values.

3.2.2 Modeling of caches
In the dynamic part, the execution time is adjusted at simulation run-

time in order to reflect the dynamic timing behavior of processor
components. For example, if the target processor employs data and

37

38

BACKGROUND OF COMPILED SW SIMULATION AT BINARY LEVEL

instruction caches, the latency of a memory operations depends on
the current state of the cache.

Although the state of caches can be captured during the measure-
ment in the reference cycle-accurate simulator, this information can-
not be annotated in the translated code because of the following rea-
sons. First, a memory instruction may access different data and cause
both cache hits and cache misses during the program execution. As a
result, neither a permanently annotated hit nor a miss would reflect
the access status correctly. Second, if a memory instruction always
causes a cache hit during the measurement, it may not be the case in
a new environment. Particularly, this situation may occur in a mul-
tiprocessor environment, in which other processors may potentially
invalidate the respective cache line. In this case, the annotated hit
will not be valid anymore. Therefore, it is essential to measure the
instruction timing in the reference cycle-accurate simulator assuming
perfect, i.e. always-hit, instruction and data caches. In turn, the infor-
mation about misses must be determined dynamically as it is critical
for deriving correct values of memory access latencies.

0x4014a0: 1w r2,60(rl6) cycle += icache(0x4014a0);

0x4014a8: 1w r3,64(rl16)

0x4014b0: addu rl19,r19,r4 r[2] = mem_access(READ, r[16] + 60);
0x4014b8: addu r2,r4,r2 cycle += dcache(READ, r[16] + (60));
0x4014c0: addu r3,r4,r3

0x4014c8: sw r2,60(rl6) r[31 = mem_access(READ, r[16] + 64);

cycle += dcache(READ, r[16] + 64);
cycle += 4;

r[19]
ri2]

r(19] + r[4];
ri4] + r[2];

cycle += icache(0x4014c0);

ri3]

r(4] + ri[3];
cycle += 5;

mem_access (WRITE, r[2], r[16] + 60);
cycle += dcache(WRITE, r[l1l6] + 60);

Figure 3.4: A piece of target binary code (left side) and the respective trans-
lated code (right side) accessing dynamic models of instruction
and data cache using icache() and dcache() functions.

In order to determine whether a memory access results in a hit
or a miss, host-compiled simulation requires performance models of
caches. These models allows to determine whether the requested data
is present in the cache during the simulation. In the translated code,

3.2 TIMING BEHAVIOR

the cache models are accessed using functions icache() and dcache()
as shown in Fig. 3.4. If an access to the instruction or data cache
results in a miss, the value of cache miss penalty is additionally added
to cycle variable. In turn, if an access results in a hit, no additional
value is added as the annotated timing has been derived assuming a
cache hit.

In reality, the target processor access the instruction cache for ev-
ery instruction. However, in host-compiled simulation, the effective
number of instruction cache accesses can be reduced, thus, improv-
ing the overall simulation performance. The optimization is based on
the fact that the instructions of a basic block are always stored se-
quentially in the memory. If an instruction accesses results in a miss,
fetching of consecutive instructions fitting into the same cache line
will always result in a hit. Therefore, if the size of the cache lines is
known in advance, unnecessary accesses to the instruction cache can
be removed. In the example shown in Fig. 3.4, the instruction cache is
accessed only for lw instruction at address 0x4014a0 and addu instruc-
tion at address 0x4014c0. Other instructions fit in these cache lines*
and always generate a cache hit. Consequently, cache accesses for
these instructions can be omitted. In contrast, the model of the data
cache has to be invoked for each access to data memory. The target
address, which is necessary for the cache model, is determined using
the values of register variables as shown in the example in Fig. 3.4.

Please note that the cache models are used for evaluation of mem-
ory access latencies but not for actual caching of data. The real data
are not handled by the models for the sake of better simulation per-
formance. In fact, the cache models only contain address tags which
are sufficient to determine a hit or a miss for the current memory ac-
cess. Given the memory address, the cache model performs a lookup
in its internal database with address tags. Further details on the im-
plementation of cache models will be given in Section 5.3.

4 In this example, the cache line size is assumed to be 32 bytes, i.e. one cache line can
hold four 64-bit instructions.

39

COMPILED SW SIMULATION CONSIDERING
OUT-OF-ORDER INSTRUCTION EXECUTION

This chapter presents details of the proposed method of performing
host-compiled binary-level SW simulation considering out-of-order
execution of instructions in the target processor. Firstly, we will dis-
cuss the effects of out-of-order execution at the system level that
need to be addressed in host-compiled simulation. Afterwards, I will
present a technique for deriving the execution time of basic blocks us-
ing a reference simulator of an out-of-order processor. Furthermore,
I will demonstrate how to annotate this information in the translated
target code and how to consider the out-of-order effects at simulation
run-time in order to reproduce the processor timing behavior more
accurately. Finally, I will present a number of optimization techniques
that improve the speed of the proposed simulation method without
a significant loss in simulation accuracy.

4.1 SYSTEM-LEVEL EFFECTS OF OUT-OF-ORDER EXECUTION

In this section, we will characterize the system-level effects of out-
of-order execution. Particularly, we will focus on context-dependent
deviations of instruction timing as well as reordering of memory ac-
cesses. In addition, we will discuss the limitations of conventional
host-compiled simulation techniques in case of out-of-order target
processors.

4.1.1 Classification of out-of-order effects

Data dependencies among instructions is one of the major issues lim-
iting the instruction-level parallelism. In simple processors that have
a statically scheduled pipeline, the program execution flow is stalled
if the input operands of an instruction are not yet available [26]. To
overcome this problem and reduce the total number of stalls caused
by data dependencies, advanced processors perform dynamic schedul-
ing of the instructions [26]. This technique allows detecting indepen-
dent instructions within a certain instruction window and enabling
their execution out-of-order, i.e. irrespectively of their program order.
The execution of any instruction in the window can start as soon as
the input operands and a corresponding execution unit become avail-
able. In addition, advanced processors may support speculative execu-
tion [26]. Speculative execution allows instructions to be scheduled
and executed beyond the boundaries of basic blocks by predicting

41

42

COMPILED SW SIMULATION CONSIDERING OUT-OF-ORDER INSTRUCTION EXECUTION

the outcome of branch instructions. Thus, in out-of-order processors
the computational resources are utilized more efficiently, though, at
the cost of additional hardware.

Out-of-order execution of instructions leads to a more complex tim-
ing behavior of the processor at the system level. The availability of
the execution units is highly dynamic and may rapidly change during
the program execution. Hence, in out-of-order processors the execu-
tion time of an instruction may not remain constant but determined
by the current state of the internal processor components. In fact, each
instruction of the target code starts executing within a particular con-
text which defines the timing of this instruction. From the system
level perspective, the execution time of an entire basic block as well
as the time intervals between load/store operations may also deviate
depending on the current execution context for that basic block.

Context C' Context C"
program order program order
of basic blocks of basic blocks
bjs7 b7 '—L'
) memory .,
b, M‘ access b, M‘
— —
L' L"
time time
(a)
Context C' Context C"

program order program order
\

of basic blocks }’\; of basic blocks o
bjs1 :,—}—T—< bj+7)-%L
b; ‘—T—T—H overlapping b ‘—T—L\—‘ overlapping

)
|
1 !

-~ ~-7

time time
(b)

Figure 4.1: Context-dependent execution of two adjacent basic blocks in a
speculative out-of-order processor: (a) processing latency L; of
block bj and the time intervals between the two memory accesses
d; change depending on the execution context. (b) Overlapped
execution of two adjacent basic blocks at two different contexts.

In the example shown in Fig. 4.1a, basic block b; is executed at two
different contexts C’ and C”, representing different states of the pro-
cessor’s microarchitecture. Therefore, processing latency of the block
L; as well as the time intervals between the two memory accesses d;
are specific for each context.

As mentioned earlier, speculative out-of-order processors can ex-
ecute instructions of the succeeding basic blocks in advance. As a
result, the execution of adjacent basic blocks may be partially over-
lapped. In the example shown in Fig. 4.1b, several instructions of
basic block bi;7 are executed out-of-order with respect to the in-
structions of basic block b;. The execution of the both blocks is over-

4.1 SYSTEM-LEVEL EFFECTS OF OUT-OF-ORDER EXECUTION

lapped, thereby resulting in a reduced execution time. Please note
that the size of the overlapping interval can be context-dependent
too, as shown in the figure.

In addition to context-dependent latencies of basic blocks, out-of-
order execution may result in reordering of memory instructions. As
a result, the order of memory accesses performed by the processor
will also change at the system level.]. L. Hennessy and D. A. Patter-
son in [26] described the following situations that may occur in an
out-of-order processor:

e A load instruction can be executed out-of-order with respect to
any another load instruction, as long as the address calculation
of the reordered load does not dependent on other loads.

e A load instruction can be executed out-of-order with respect to
a store instruction if the both instructions accesses memory at
different addresses. Otherwise, out-of-order execution may lead
to a read-after-write (RAW) hazard. This hazard occurs when the
reordered load instruction retrieves a wrong value which has
not yet been updated by the store.

e A store instruction can be executed out-of-order with respect to
other memory instructions as long as this execution does not re-
sult in a write-after-read (WAR) and write-after-write (WAW) haz-
ards. In a WAR hazard, the reordered store instruction updates
the memory before it has been read by the load instruction. As
a result, the load instruction will read wrong data. In a WAW
hazard, two store instructions are exchanged. As a result, the
correct value in the main memory will be overwritten by out-
dated data. Please note that during speculative execution, store
operations are performed differently. In case of a branch mis-
prediction, the processor must be able to recover its state before
the mispredicted branch. Thus, store instructions can update
the main memory only when the respective store instructions
can commit from the pipeline, i.e. on the execution path pre-
dicted correctly. As a consequence, in speculative processors,
write operations are performed in the program order at the com-
mit stage of store instructions (for further details see [26]).

In this thesis, I refer to intra-block reordering if memory instruc-
tions are reordered within one basic block. Similarly to arithmetic
instructions, memory instructions are dynamically scheduled during
the program execution, depending on the current availability of the
memory unit. Moreover, memory instructions may have data depen-
dencies on other dynamically scheduled instructions. Thus, the actual
order of memory operations may depend on the context of the basic
block as well (see block b; in Fig. 4.2). If the target processor is capa-
ble of speculative execution, memory instructions can be reordered

43

44 COMPILED SW SIMULATION CONSIDERING OUT-OF-ORDER INSTRUCTION EXECUTION

Context C' Context C"

program order program order "7~ inter-block

of basic blocks of basic blocks] .
I I ! reordering
bjx7 b7 -
o | T SN S

time time

- intra-block
ML reordering

Figure 4.2: Context-dependent reordering of memory accesses. The accesses
can be reordered within a single basic block (intra-block reorder-
ing) or among multiple basic blocks (inter-block reordering).

among multiple adjacent basic blocks as shown for blocks b; and
biy1. This type of memory reordering is referred to as inter-block. The
inter-block reordering results from the overlapped execution of ba-
sic blocks as described above. Inter-block memory reordering can be
context-dependent as well.

4.1.2 Limitations of conventional host-compiled simulations

In host-compiled simulations, the static organization of translated
code (see Section 3.1.2) has a number of limitations if the target pro-
cessor supports out-of-order execution of instructions.

First, the annotated timing information in basic block functions is
fixed. If a basic block is executed only once, the annotated delays pre-
cisely describe the execution time of this basic block. However, if a
basic block is executed multiple times, the annotated delays might
not be able to reflect alternating timing behavior at different contexts
correctly. Moreover, the annotated timing cannot consider context-
dependent overlapping of basic blocks” execution.

Fig. 4.3 shows the timing error of conventional binary-level host-
compiled simulation, which does not consider context-dependent tim-
ing of instructions and overlapped execution of basic blocks. In this
experiment, the code of multiple benchmarks from MiBench [23] and
MediaBench [37] were evaluated. Delays annotated in the translated
code have been preliminary obtained by means of a cycle-accurate
simulator of out-of-order processors sim-outorder* from the Simple-
Scalar suite [5]. The depicted timing error was calculated as a relative
error of the execution time produced by host-compiled simulation
compared to the reference value obtained by the SimpleScalar sim-
ulator. As can be seen from the experimental results, neglecting the
out-of-order effects leads to a large overestimation of the execution
time (from 58% for rijndael_decode and up to 308% for dijkstra_small).

1 The following processor configuration was assumed: 64-entry re-order buffer and
load-store queue, 4-entry instruction fetch queue, 4 integer ALUs, 1 integer multi-
plier, 4 floating point ALUs, 1 floating point multiplier, 2 memory ports, decode/is-

4.1 SYSTEM-LEVEL EFFECTS OF OUT-OF-ORDER EXECUTION

350 Simulation error of conventional compiled simulation, %

300
250
200
150
100

50

fft
g

g721decode
ifft

jpeg_decode
ges

rasta
susan_smoothin,

rijndael_decode

ejpeg
rijndael_encode

epic_decode
epic_encode

bitcount

blowfish_decode
patricia

blowfish_encode
gsm_toast

dijkstra_small
g721encode
gsm_untoast
mpeg2decode
qsort_small
susan_corners
susan_ed

v o
T T
o o
Qo Q
o €
59
E E
Qo
2 a
° T
o ©

basicmath_small
stringsearch_large

Benchmark

Figure 4.3: Error of timing estimation with conventional (i.e. not consider-
ing out-of-order effects) compiled simulation compared to the
reference, cycle-accurate processor simulator.

The second limitation of conventional host-compiled simulation
originates from the fact that the order of memory accesses within ba-
sic block functions is fixed. In case of intra-block reordering, this prob-
lem could be partially solved by changing the order of cache accesses
in the translated code. However, if the order of memory instructions
is context-dependent, the correct order of cache accesses cannot be re-
constructed since the code of basic block functions is static. Moreover,
inter-block memory reordering cannot be considered as well. In real-
ity, an out-of-order processor can start executing a memory instruc-
tion from the next basic block out-of-order, while the current block is
still being executed. However, in the translated code, basic block func-
tions are executed sequentially and the following basic block function
can start executing only after the previous one has been completed.
In this case, a memory instruction cannot be simulated if its target
address is determined in the basic block function which is about to
be executed.

Summarizing the discussions above, we can outline the following
requirements for system-level, host-compiled simulation with respect
to ouf-of-order execution of instructions:

e the simulation must be capable of considering context-dependent
execution delays of a basic block and overlapped execution of
multiple basic blocks;

e the simulation must support reordered execution of memory
instructions within one or multiple basic blocks.

sue/commit width is 4 instructions per cycle. In this experiment, instruction and
data caches were assumed to be perfect.

45

46

COMPILED SW SIMULATION CONSIDERING OUT-OF-ORDER INSTRUCTION EXECUTION

These requirements will be addressed in Sections 4.2, 4.3 and 4.4 of
this chapter.

4.1.2.1 Non-blocking cache behavior

In the previous section, we discussed reordering of memory instruc-
tions within one or multiple basic blocks due to dynamic schedul-
ing of instructions. If a target processor accesses the main memory
via caches, additional modeling efforts are required to reconstruct its
timing behavior, as out-of-order processors are capable of hiding long
memory access latencies.

In conventional host-compiled simulation (see Fig. 3.4), miss penal-
ties are simply added to the overall cycle count in a situation of a
cache miss. In other words, it is assumed that the execution is stalled
during a miss, i.e. cache accesses are assumed to be blocking. In an
out-of-order processor, this assumption is valid for instruction caches
only. In fact, if an instruction cache miss occurs the processor can-
not continue executing the program because the next instructions are
not yet read from the instruction memory. However, in case of a data
cache miss, the behavior of an out-of-order processor is different.

load/store

Basic block 0 Basic block 1_+— instruction

1 ‘2‘3‘4‘5‘6‘7 ‘8‘9 10\11\12\13\1@15\16

(a)

- miss
13 10| penalty |813
2| 5]4]6]12)21] [7] o l1sjidlie]

I 1

miss hit hit hit t
(b)

Figure 4.4: (a) Instructions of the target code in the program order; (b) tim-
ing behavior of an out-of-order processor in case of a data cache
miss. Instructions, which do not depend on the active miss, con-
tinue executing out-of-order.

Assume a sequence of target instructions shown in Fig. 4.4a. In
this figure, the numbers represent the sequential number of the in-
structions according to their program order. The highlighted rectan-
gles denote memory instructions and the remaining rectangles denote
arithmetic instructions.

The execution of this instruction sequence in an out-of-order pro-
cessor is shown in Fig. 4.4b. Assume that the first memory instruction
(sequential number 4) results in a miss in the data cache. Despite the
active miss, the processor can execute some subsequent instructions
in advance and thus partially hide the cache miss latency.

Simulation of this behavior with an assumption of blocking caches
results in overestimation of the execution time. Since some instruc-

4.2 DERIVATION OF BASIC BLOCK TIMING

tions can continue their execution in the presence of a cache miss, the
execution delays annotated after this memory instruction will not be
correct anymore. Thus, host-compiled simulation requires additional
means for considering the effects of non-blocking data caches. This
issue will be addressed in Section 4.5.

4.2 DERIVATION OF BASIC BLOCK TIMING
4.2.1 ISS enhancements

In the proposed simulation approach, timing of basic blocks, which is
required for code annotations, is derived using a cycle-accurate simu-
lator of the target processor (Fig. 4.5). For this purpose, the simulator
must be additionally enhanced with a monitoring unit, which cap-
tures and stores the execution information of target instructions. To
enable capturing, the simulator requires the binary code of the tar-
get application as well as the boundaries of the basic blocks. These
boundaries must be obtained prior to measurements. A possible algo-
rithm for obtaining the boundaries will be presented in Section 4.2.2.

Target binary Basic block
code boundaries

input
stimuli

Data structures with
Basic timing information

inst. addr block :
| Execution pipeline | stage addr ;1T“T'.'|' i
t * Monitoring
cycle count unit

IW LSQ event
— |

Basic

Cycle-accurate | memory t_)lo_ck j_ ..
simulator interface timing L

Figure 4.5: Derivation of basic block timing using a cycle-accurate simulator
of the target out-of-order processor.

Obtaining of basic block timing requires a convention on when
basic blocks start and stop executing. In a pipelined processor, the in-
structions of the target code are processed in multiple stages. For ex-
ample, the execution of instructions in an out-of-order processor typi-
cally involves the following processing steps, as described by M. John-
son in [30]:

e Fetch/Decode: Target instructions are fetched from the program
memory and placed after decoding into the instruction window
(IW). The instruction window can be implemented either as a
set of reservation stations holding the instructions for specific
execution units [78] or as a centralized buffer that holds the
instruction for all execution units [2, 73].

47

48 COMPILED SW SIMULATION CONSIDERING OUT-OF-ORDER INSTRUCTION EXECUTION

e Issue: In this step, instructions are checked for data and con-
trol dependencies. If there are no dependencies detected and
all input operands are available, instructions are issued to the
respective execution unit (EU).

e Execution: The corresponding execution unit performs computa-
tion and the result is stored in a temporary buffer. Note that in
the absence of inter-instruction dependencies, instructions may
be executed out-of-order if there are sufficient available hard-
ware resources. In case of load and store operations, the proces-
sor calculates the effective memory address and places the in-
struction in a load/store queue (LSQ). The corresponding memory
operation is carried out by the memory unit in the processor.

e Commit: At this stage, the processor registers are updated with
the result from the temporary buffer. The commit stage decou-
ples completing of the instruction execution and actual updat-
ing of the register file or main memory with computed values.
Thus, instructions can be executed speculatively, enabling more
efficient utilization of the hardware resources. Although instruc-
tions may be executed out-of-order, they are committed in the
program order in order to maintain the correct data flow.

In this work, I assume that the execution of a basic block starts as
soon as one of its instructions is issued to the respective functional
unit. It is important to mention that the issued instruction might not
be necessarily the first instruction in the program order, since out-
of-order processor may change the execution order of instructions. It
is further assumed that a basic block stops executing when its last
instruction has been committed and removed from the pipeline. In
contrast to the first issued instruction, the last committed instruction
will be always the last instruction in the program order, as mentioned
above. Otherwise, the correct program execution cannot be preserved.

During capturing of basic block timing (Fig. 4.5), the cycle-accurate
simulator executes the target binary code and provides the following
information on executed instruction to the monitoring unit:

e the instruction address, which is needed to identify the basic
block the instruction belongs to,

e current pipeline stage,

e the type of memory instructions (read or write) and the time
stamp of respective memory access events,

e current cycle count, which is required to obtain timing values.

For each basic block, the monitoring unit allocates a data structure
holding the timing information as well as some additional control
information. One of the most important timing properties of a basic

4.2 DERIVATION OF BASIC BLOCK TIMING

block is its execution latency, which is denoted as L in Fig. 4.5. If a
basic block contains one or multiple memory instructions, the data
structure contains the type (read or write) as well as the time offset
of the memory access event measured relative to the start time of the
basic block (fields e;). The memory events are captured at the out-
put interface of the load/store queue before the local caches. More-
over, the measurement is performed assuming perfect instruction and
data caches, which always result in a hit. This condition is necessary
in order to obtain execution latencies of basic blocks independently
from the timing characteristics of the interconnect and main memory
modeled in the reference simulator. These latencies will be obtained
dynamically at run-time of host-compiled simulation in a new envi-
ronment, which may be different from the environment assumed in
the reference simulator. Dynamic modeling of cache effects will be
discussed in detail in Section 4.5.

CONSIDERATION OF BASIC BLOCK OVERLAPPING A straightfor-
ward method to obtain execution latency L of a basic block is to calcu-
late the difference of time stamps when the block started and finished
its execution. However, if the execution of basic blocks in an out-of-
order processor is overlapped (see Section 4.1.2), the simulation of
block latencies obtained in this way will result in an overestimated
execution time, as the overlapping interval will be considered twice
for adjacent basic blocks.

A simple and yet efficient solution to this problem is to assume that
a basic block starts executing when the last instruction of the previ-
ous block has been committed. In the example shown in Fig. 4.6a case,
the execution of two adjacent basic blocks is overlapped (at this mo-
ment it is assumed that no memory accesses are performed during
the overlapped execution). In order to consider overlapping, the exe-
cution latency of succeeding basic block bi 1 can be reduced by the
size of the overlapping interval. Although the latency does not corre-
spond to the real timing observed in the cycle-accurate simulator, the
sequential simulation of the two execution latencies of the blocks will
not result in a visible timing error.

If the processor executes some memory instructions of the succeed-
ing basic block out-of-order within the overlapped interval (event e;
in Fig. 4.6b), the latency of the second block is determined similarly
as in the previous scenario in Fig. 4.6a. However, in this situation, off-
set t2 of event e, will have a negative value. Simulation of memory
accesses that have a negative offset will be discussed in Section 4.4.2.

CONSIDERATION OF SPECULATIVE EXECUTION In case of specu-
lative execution, certain target instructions may be flushed from the
pipeline without being committed, if they have been executed on a
mispredicted execution path, i.e. the outcome of preceding branch

49

50 COMPILED SW SIMULATION CONSIDERING OUT-OF-ORDER INSTRUCTION EXECUTION

program order 5 <0t
of basic blocks t 1 t,
1

bjs7 to € |83 bj+7 to H =

by e [e by e e
_ t\atl | t\atl

time time

(a) (b)

Figure 4.6: Consideration of overlapped execution of two adjacent basic
block during the derivation of block timing in the cycle-accurate
simulator. Two possible scenarios are considered: (a) no memory
instructions are executed in the overlapping interval, (b) one or
multiple memory instructions of the succeeding basic block are
executed in the overlapping interval.

has been predicted incorrectly. To address this issue, each data struc-
ture holding the basic block timing (see Fig. 4.5) additionally contains
misprediction flag m. When at least one instruction from the basic
block gets flushed from the pipeline, this flag is set to one and the
complete data structure gets invalidated. In this case, the penalty due
to the branch misprediction is considered in the execution latency of
the first basic block executed after the misprediction. At the same
time, the invalidated timing is discarded and it must be captured
once again when the basic block is executed on the path predicted
correctly.

4.2.2 Identification of basic block boundaries

In order to obtain the execution latencies of basic blocks, it is essential
to identify the boundaries of each basic block in the target binary
code. The boundaries of a basic block are defined by the addresses
of its first and last instructions. A possible algorithm for finding the
block boundaries is shown in Algorithm 1.

As basic blocks cannot overlap, it is sufficient to determine the be-
ginning of basic blocks (i.e. the addresses of their first instructions).
The search starts from the first instruction of the target code addry,
which also denotes the beginning of the first basic block, and is per-
formed within the outer while-loop.

In most cases, basic blocks terminate with a branch instruction. This
instruction can modify the value of the program counter register and,
thus, change the execution flow of the program. In the nested loop
shown in lines 4 and 5, the algorithm sequentially searches for the
next branch instruction. In line 7, the algorithm continues if a such
instruction is found?.

2 Please note that the condition checking whether the nested loop has reached the last
instruction of the code (addry) is not shown for simplicity reasons.

4.3 CONTEXT DEPENDENCY OF BASIC BLOCK TIMING

Algorithm 1 Identification of basic block boundaries in the target bi-
nary code (addrp and addry are the first and last instructions in the
code respectively).

1: addr < addrg

2: while addr # addry do

3: known list < addr

while insTRUCTION(addr) = branch do
INcrREMENT(addr)

end while

if INsTRUCTION(addr) = direct branch then
known list <= branch target

end if

10: INCREMENT(addr)

11: end while

e PN T B

The target of the branch as well as the instruction immediately
following the branch denote the beginning of new basic blocks. A
branch, whose target address is known at compile time, is referred
to as a direct branch. Direct branches are typically used to perform
conditional execution (e.g. if statements in the C code) or to perform
a function call. If the branch is direct, its target address is added to
the list of known basic blocks as shown in line 8. The address of the
instruction following the branch denotes a new basic block as well.
It is added to the list in the next iteration of the outer while-loop in
line 3.

In a certain type of branch instructions, the target address is stored
in an architecture register and, hence, cannot be defined at compile
time. Such branches are referred to as indirect. The target address of
an indirect branch may point to an instruction of another basic block,
thus, splitting the block into two new basic blocks which cannot be
determined by the algorithm. These basic blocks can be identified
dynamically during the reference cycle-accurate simulation.

4.3 CONTEXT DEPENDENCY OF BASIC BLOCK TIMING
4.3.1 Concept

To address the complex behavior of out-of-order processors in host-
compiled simulation, I propose to consider multiple context-dependent
timings of a basic block of the target code. Each timing determines
the execution latency of the block at a unique execution context. In
host-compiled simulation, the details of the processor’s microarchi-
tecture are abstracted. Therefore, a suitable specification of the execu-
tion context must be found first, allowing context-dependent timings
to be differentiated at simulation run-time.

51

52

COMPILED SW SIMULATION CONSIDERING OUT-OF-ORDER INSTRUCTION EXECUTION

To find an appropriate definition of a context, it is essential to
understand the cause of context diversity. During the execution of
instructions, the state of internal processor’s components changes.
Thus, the context at which an instruction starts executing, is deter-
mined by the sequence of instructions executed previously. In gen-
eral, the context is defined by all instructions executed from the start
of the program till the current instruction. However, it is reasonable
to assume that only recent instructions have the largest impact. Thus,
to differentiate possible contexts of an instruction, we can take into
a consideration a sequence of previous instructions within a certain
observation window of a fixed size.

contexts of b8

b4-b6 | b0-b4-b6
b5-b7 | b1-b4-b6
——— b2-b5-b7
signature b3-b5-b7
length2 «———
signature
length 3

contexts of b9

b6-b8 | b4-b6-b8

b7-b8 | b5-b7-b8
—_— —
signature signature
length 2 length 3

Figure 4.7: Consideration of multiple contexts for basic blocks. The size of
context signatures determines the amount of contexts that can be
differentiated for each basic block.

The execution flow of instructions changes at the boundaries of ba-
sic blocks only. Therefore, we can similarly define a context of a basic
block by the sequence of previously executed basic blocks. I refer to
a possible sequence of the preceding blocks as a context signature for
the given basic block. The length of a context signature determines
the amount of contexts that can be captured for a basic block. In
the example shown in Fig. 4.7, basic block bg can be reached in 4
different paths in the depicted control flow graph. If the signature
length equals two, 2 contexts for block bg with signatures bs—bg and
bs—b7 can be differentiated. Similarly, at the same signature length,
basic block by will have 2 contexts with signatures bg—bg and b7-
bg. Please note that a context signature must unambiguously identify
the sequence of previous blocks. For this purpose, we can employ
the start addresses of basic blocks, as the start addresses are always
unique in the target program.

If the length of signatures is increased, more contexts can be differ-
entiated for a given block. For example, with the signature length of
3, block by (Fig. 4.7) will have 4 contexts with signatures bo—bs—bg,
b1-bs—bg, by-bs—b~, b3—-bs-bs. In turn, for block be the number of
distinguishable contexts will not change, i.e. there will be 2 contexts

4.3 CONTEXT DEPENDENCY OF BASIC BLOCK TIMING

with signatures bs—bg—bg, bs—b7-bs. The length of context signatures
can be arbitrarily chosen. In most cases, with a larger signature more
contexts of a basic block can be specified and, hence, more context-
dependent timings can be associated with the block. Consequently,
by employing larger signatures, the timing behavior of the target pro-
cessor can be reproduced more accurately. However, as we will see in
the following sections, larger signatures result in a larger translated
code, thereby deteriorating the simulation speed.

4.3.2 Derivation of context-dependent timing

4.3.2.1 Concept

In order to support the context dependency, the monitoring unit of
the reference cycle-accurate simulator has to be enhanced as shown
in Fig. 4.8. During the program execution, the unit temporarily stores
the start addresses of the previously executed blocks in a buffer. The
buffer operates as a sliding window, storing the addresses of last N
blocks. When the execution of a basic block is completed, the content
of the buffer is used to construct a context signature of size N for the
captured basic block timing. Afterwards, if the current context has
not been previously recorded, the timing and its signature is added
to the central database. Thus, the database stores multiple timings for
each basic block.

Execution order Monitoring unit
of basic blocks Context-dependent
B M1 Temporary containers timings
i-3
Cycle- (.. [oover J
b'. £3
IB,] | accurate (——> Lol o o
) simulator block b0]
Tk oo 1T
boundaries| | temporary block b1§ -] bl;,:k
ID : .]
ik o 1| EI TR N R
prev. block b0

block bn blocks

buffer

Figure 4.8: Measurement of multiple context-dependent timings per one ba-
sic block. Each timing is tagged with context signature ctx;,
which is a sequence of previously executed basic blocks.

During speculative execution, the pipeline of the processor may
contain instructions of multiple basic blocks simultaneously and the
execution of multiple basic blocks is overlapped. A special case occurs
when the pipeline of the processor contains multiple instances of the
same basic block executing at a time, e.g. as part of a loop. During
such overlapped execution, it is particularly difficult to distinguish
the events and timing properties of different block instances.

53

54

COMPILED SW SIMULATION CONSIDERING OUT-OF-ORDER INSTRUCTION EXECUTION

To address this issue, for each basic block the measurement unit
allocates a set of temporary containers (see Fig. 4.8). These containers
temporarily store timings of all currently active instances of the basic
blocks. The instances of basic blocks can be recognized by differentiat-
ing the instances of their instructions. In turn, the instructions can be
differentiated by their sequence numbers obtained at the fetch stage.
To enable this, the sequence number of each instruction instance is
associated with a temporary ID number. The temporary ID number
is always unique among the currently active instances.

For example, assume a simple program shown in Fig. 4.9. The pro-
gram consists of three basic blocks where the second block constitutes
the body of a loop. If there are no data dependencies between the loop
iterations, the processor can fetch and execute multiple instances of
the loop body within a certain instruction window. The instructions
of the first and second iteration are assigned a temporary identifier of
o and 1 respectively. This identifier is used as to select an appropriate
temporary container in the monitoring unit (Fig. 4.8). Thus, know-
ing the sequence number of an instruction, we can always determine
its temporary ID and associate this instruction with the respective
temporary container. When an instruction instance commits, its tem-
porary ID is released and reused by the following instances.

instruction window

.

i0|i1|i2|i3|i4!i2|i3|i4 is | i |

ID=0 ID=1
temporary ID

Figure 4.9: Differentiation of basic block instances in the processor’s
pipeline. Instances of the same instruction are assigned a tem-
porary ID. The ID is related with the sequence number of in-
struction’s instances.

4.3.2.2 Implementation details

The algorithm for obtaining context-dependent timing of basic blocks
is shown in Fig. 4.10. The algorithm is executed every time when the
stage of a target instruction changes. If the instruction is at the fetch
stage, the monitoring unit allocates a temporary ID for the current in-
struction instance. The ID is used to select an appropriate temporary
container for the block timing.

The timing measurement of a basic block is triggered as soon as
one of its instruction moves to the execute stage. The monitoring unit
allocates a new temporary container for the current basic block in-

[

N3 O U A~ W N

4.3 CONTEXT DEPENDENCY OF BASIC BLOCK TIMING

(stage = FETCH?] (stage = EXECUTE?] tage-COMMIT?)
allocate

get tmp. ID Iast instruction of the
temporary ID basic block?
associate tmp. ID the block instance is being
with seq. number measured? gettmp. ID

no
Y timing for the context
[allocate tmp. J already exist?

container
R
copy timing from tmp. }

start block no yes container to database

measurement
release tmp.
container
release tmp. ID

Figure 4.10: Algorithm for obtaining context-dependent timing of basic
blocks.

stance, which will hold all timing information of this block instance.
The measurement stops when the last instruction of the basic block
has been committed and left the pipeline. At this moment of time,
the measurement unit retrieves the sequence of previously executed
blocks from the buffer to obtain the context signature of the timing.
If the timing for this context has been already measured before, the
timing is discarded. Otherwise, the timing is tagged with the context
signature and copied from the temporary container into the database.
Afterwards, the temporary container is released and can be reused
for other block instances. In the last step, the temporary ID assigned
for the last instruction is released as well.

Listing 4: Allocation of a temporary ID for instruction instances

void allocate_tmp_id (addr_t iaddr, seq_t seq)
{
int id = global_id[iaddr];
CREATE_HASH(seq, id);
global_id[iaddr]++;
global_id[iaddr] %= MAX_OVERLAP;
}

Allocation of a temporary ID is presented in Listing 4. The tempo-
rary IDs are treated separately for every instruction. The IDs are de-

55

56

COMPILED SW SIMULATION CONSIDERING OUT-OF-ORDER INSTRUCTION EXECUTION

rived using array global_id, which is indexed using the instruction
addresses. Each element of the array contains the next free tempo-
rary ID that can be used for the instruction instance. After the assign-
ment, the global index is incremented in a circular way by applying
a modulo operation. Value MAX_OVERLAP must be pre-defined by the
user and denotes the maximum amount of instances contained in the
pipeline at a time. The ID lookup operation from the sequential num-
ber is a time-consuming task, which is often performed during the
measurement. To speed up this operation a hash table is employed.

4.3.3 Context-aware host-compiled simulation

In order to enable context-dependent timing in host-compiled simula-
tion, basic block functions must be capable of reflecting multiple tim-
ings. An example of a block function incorporating multiple context-
dependent timings is presented in Fig. 4.11. Consideration of context
dependency during the execution of translated code requires a new
data structure, which holds the sequence of recently executed basic
block functions. For this purpose, a history FIFO is employed, which
temporarily stores the sequence of start addresses of the previously
executed blocks. The size of the FIFO must correspond to the length
of context signatures which was used during capturing of basic block
timings.

// context signatures of length 2
addr_t history_FIFO0[2];
// context-aware implementation
void b_0x700() {
if (in_FIF0(0x100, 0x500)) {
// use timing 1
reg[2] = r[5] + 16;
cycle += 2;

0x100 0x200

}
else if (in_FIF0(0x200, 0x500)) { b1-b5 .I_T_‘
// use timing 2 b2-b5

reg[2] = r[5] + 16; ———
cycle += 5; context timings
signatures of block b7

}

add_to_FIF0(0x700);

Figure 4.11: Basic block function incorporating multiple context-dependent
timings of the basic block.

During simulation, the current context of a block function is deter-
mined by evaluating the content of the history FIFO in the beginning

4.4 REORDERING OF MEMORY ACCESSES

of the function. Depending on the block sequence stored in the FIFO,
the appropriate execution delays of the block are selected using mul-
tiple if-statements. In the presented example, the signature length
equals two. Thus, the history FIFO holds the last two blocks executed
prior to the current function. When the execution of the block func-
tion is completed, the start address of the current basic block is added
to the FIFO, replacing the least recently executed block. This address
forms a new context signature for the succeeding block function.

4.4 REORDERING OF MEMORY ACCESSES

In this section, I address intra- and inter-block reordering of mem-
ory accesses. First, I introduce a classification of basic blocks with
respect to reordering of data memory accesses. Afterwards, I provide
a solution for handling the reordering at run-time of host-compiled
simulation.

4.4.1 Classification of basic blocks

Overlapping of basic block depends on several factors including the
size of the instruction window, amount and availability of the execu-
tion units and data dependencies among the instructions. Depending
on the degree of block overlapping, several types of memory reorder-
ing may exist as shown in Fig. 4.12. In the first type (shown in basic
block by), the memory accesses are reordered locally within the same
basic block. In the second type, memory accesses are reordered be-
tween two adjacent basic blocks as shown for basic blocks b, and bs.
Finally, reordering may occur over multiple basic blocks, whose exe-
cution is overlapped as shown for block bs. In the presented example,
the memory access performed in block b, is reordered with the mem-
ory operations of multiple blocks by, b, and bs. To handle memory
reordering at run-time of compiled simulation correctly, it is essential
to identify basic blocks involved in memory access reordering. Such
basic blocks are referred to as out-of-order. In contrast to normal ba-
sic blocks, in which reordering of memory accesses never occurred,
out-of-order blocks require a different simulation mode, as will be
discussed later.

Classification of basic blocks is performed after the derivation of
block timings in the reference cycle-accurate simulation. If the order
of memory accesses within a basic block did not match the actual
program order of memory instructions, the first type of memory re-
ordering is detected. In this case, the respective basic block is classi-
fied as out-of-order. The second type of reordering can be detected by
analyzing the timing offsets of memory accesses. As described in Sec-
tion 4.3.2.1, if two adjacent blocks overlap and the succeeding block
performs a memory operation in the overlapped region (see Fig. 4.6b),

57

58 COMPILED SW SIMULATION CONSIDERING OUT-OF-ORDER INSTRUCTION EXECUTION

p der of reordering over
rogram order o AN multiple blocks

basic blocks ’T

local reordering

! ~e=? reordering over
»—T—" b1 adjacent blocks
time

Figure 4.12: Three possible types of memory access reordering: local reorder-
ing within one basic block, reordering among two adjacent basic
blocks and reordering over multiple basic blocks.

this memory operation has a negative offset. If a basic block has an
event with a negative offset, this block as well as the preceding block
are classified as out-of-order.

The third type requires more careful consideration. In this case,
more than one preceding basic blocks must be classified as out-of-
order. We can employ a conservative algorithm that determines all
possible preceding blocks that might be involved in reordering of
memory accesses. The algorithm performs backward analysis of basic
block timings as presented in Fig. 4.13. Let us assume that the execu-
tion of basic block by is overlapped with the previous basic blocks,
and the block’s execution latency equals Ly. Moreover, let us assume
that memory access event e0 of that block occurs in the overlapped
region and, hence, it has negative offset ty. The algorithm finds all
possible preceding blocks, whose execution may overlap with block
by, thereby not exceeding interval to.

For the following explanation, we define complete execution latency
of an i*" basic block L/ as

Li +1tiol, iftig <0,
L/i _ i | 1,0| 1,0 (1)

L, if tip >0,

where L; is the execution latency of the basic block as defined in
Section 4.3.2.1, and t; ¢ is the offset of the first memory access event.
If the basic block does not contain memory instructions, I_g =1 as
well.

The algorithm estimates the sum of complete execution latencies of
previous basic blocks denoted as L'. The algorithm starts with the first
level of preceding basic blocks (b1, b, and b3 in Fig. 4.13). Firstly, the
complete execution latencies of these blocks are evaluated. If a pre-
ceding block has multiple context-dependent timings, the algorithm
conservatively takes the timing with the smallest complete execution
latency. If the complete latency of the preceding block is not larger
than the absolute value of ty, the preceding block is considered as
out-of-order. In the shown example, all three preceding blocks by, b,

4.4 REORDERING OF MEMORY ACCESSES

Figure 4.13: Detection of possible memory reordering over multiple basic
blocks for basic block by. If the sum of complete latencies along
a backward path in the CFG is not greater than [ty], the respec-
tive basic blocks constituting the path are considered as out-of-
order (blue dashed circles).

and b3 are classified as out-of-order and respectively denoted by the
dashed blue circles.

In the next step, the algorithm identifies the next level of preceding
basic blocks by evaluating the context signatures of timings of blocks
b1, by and bs. For each block in the new level, the algorithm again
determines the smallest complete execution latency and adds it to
the previous latency on the same path, e.g. L, + L for path bs-b;.
If the sum is not greater than [to|, block by is considered as out-of-
order. However, if the sum is larger than [ty], e.g. as for block bs, the
algorithm stops further analysis on the respective path. The similar
analysis is performed for all possible backward paths of block by.

Please note that a preceding basic block is considered out-of-order
independently of whether it contains any memory instructions, as
long as its complete execution latency fits to interval |to|. We will dis-
cuss the need for this assumption in the following section, in which
simulation of memory reordering is discussed. The presented algo-
rithm is performed for every basic block of the target code. Basic
blocks, which have never been classified as out-of-order during the
analysis, are classified as normal.

4.4.2 Simulation of memory reordering

In Section 3.1.2, we discussed a conventional way of performing host-
compiled simulation, in which basic block functions are executed se-
quentially according to the program order of the target code. For nor-
mal basic blocks, the sequential execution of basic block functions is
capable of reconstructing the correct order of memory events. In the
example shown in Fig. 4.14, basic blocks by and by have been classi-
fied as normal. They are simulated in a normal mode of host-compiled
simulation.

59

60 COMPILED SW SIMULATION CONSIDERING OUT-OF-ORDER INSTRUCTION EXECUTION

Simulation normal bs .%T_‘ Memory queue

order of mode bg [_.63 event e
basic blocks Ie 1 Ie2 event e0
b <« — levented
3 event e2

b2 Te0 normal

b1 mode

bo out-of-order
l _T_, mode
time

Figure 4.14: Simulation of reordered memory accesses. In the normal mode
(blocks by, by, bg), the memory accesses are simulated immedi-
ately. In the out-of-order mode (blocks b,-bs), memory events
are placed in a sorted queue, which reconstructs the correct
event order at simulation run-time. The events in the queue are
simulated before the mode switches back to normal.

In contrast, basic blocks by, b3, by and bs have been classified as
out-of-order (Fig. 4.14). The sequential simulation of the respective
basic block functions will produce a wrong order of memory access
events e0—el-e2—e3. To solve this issue, the respective basic block
functions must be executed in the out-of-order mode. In this mode,
the simulation time is not yet advanced as the basic block functions
execute and the memory access events are temporarily placed to a
memory queue. Each event in the queue is tagged with an absolute
time stamp, which is calculated using the event’s offset. To recon-
struct the correct event order, the queue must be sorted by the time
stamps. Simulation in the out-of-order mode continues till the next
normal basic block is reached. At this point, the memory events are
simulated according to the reconstructed order and the simulation
time is advanced. Afterwards, the simulator flushes the contents of
the queue, which remains empty till the next first out-of-order block.

Please note that due to consistency reasons, block bz (Fig. 4.14)
must be executed in the out-of-order mode as well, although it does
not contain any memory instructions. It is necessary since the fol-
lowing block b4 performs reordered memory operations, and the
out-of-order mode must be preserved for obtaining the correct order.
Because of this reason, block b3z must be classified as out-of-order
during the classification phase.

The size of the memory queue may not be sufficient for storing all
memory events in the out-of-order mode. In this case, the simulation
in the out-of-order mode must be stopped and the queue must be
emptied to avoid possible drops of memory accesses. This situation
may potentially lead to an error in the order of memory accesses.
However, the resulting error will not be significant if the selected size
of the memory queue is large enough compared to the size of the
processor’s instruction window.

The memory queue improves the accuracy of host-compiled sim-
ulation with respect to the order of memory accesses. However, the

4.5 NON-BLOCKING BEHAVIOR OF DATA CACHE

run-time manipulation on the memory queue, e.g. insertion of new
elements and their sorting, requires additional computational efforts.
In Section 4.6, we will discuss a possible optimization technique that
addresses this issue.

4.5 NON-BLOCKING BEHAVIOR OF DATA CACHE

4.5.1 Modeling of non-blocking behavior

During the program execution, an out-of-order processor fetches mul-
tiple target instructions at a time. A certain part of these instructions
may have data dependencies among each other3. Dependent instruc-
tions cannot start executing until all input data dependencies are re-
solved. In turn, independent instructions can be executed immedi-
ately. In case of a long-latency miss in the data cache, a processor can
continue executing subsequent instructions out-of-order if two condi-
tions are fulfilled. First, the subsequent instructions are independent
of the data being currently retrieved from the main memory. Second,
the respective execution units are available.

Please note that not only arithmetic operations can be performed
out-of-order. If the data cache supports non-blocking behavior, the
processor can perform subsequent independent memory operations
in the presence of an active miss. Generally, non-blocking data caches
may support the following operation modes, as described in [26]:

e hit under miss: In this mode, another memory access request can
be served by the cache during an active miss if the requested
data is present in the cache.

o miss under miss: In this mode, multiple outstanding misses can
overlap in time. This policy imposes large bandwidth require-
ments on the main memory and is often employed in recent
high-performance processors (e.g. in Intel Core iy) [26] or in
large server systems [56].

In this thesis, I focus on data caches implementing the hit-under-
miss policy. Such caches are employed in many recent embedded pro-
cessors, e.g. ARM1136 [91] or Freescale e5500 [93]. In this type of
non-blocking behavior, only one cache line can be retrieved from the
memory at a time, i.e. there can be only one outstanding miss. In the
following, I refer to a cache miss as dependent if one or multiple subse-
quent instructions in the instruction window of the processor depend
on the missing data. This type of misses is caused by load instructions
retrieving the data which is then processed by other instructions. An

We assume that instruction a depends on instruction b if a’s input operand depends
on the b’s output (directly or indirectly via other instructions).

61

62

O 00N O Ul A WN R

-
o

COMPILED SW SIMULATION CONSIDERING OUT-OF-ORDER INSTRUCTION EXECUTION

independent cache miss is typically caused by store instructions. How-
ever, an independent miss can be caused by a load instruction as well.
This situation occurs when the instruction depending on the retrieved
data has not yet been fetched and placed in the instruction window.

The timing behavior of out-of-order processors is different for de-
pendent and independent misses. Both scenarios are discussed sepa-
rately in the following sections.

4.5.1.1 Out-of-order execution of instructions under a dependent miss

To understand the timing behavior of an out-of-order processor in
case of a dependent miss, let us assume the following target code:

addiu rl6, rle6, 20
w r2, 4(rl6) // access a0
sub r5, r7, r9
w r3, 4(rl7) // access al
addiu r4, r3, 1 Captured execution delays
sub ré, r4, r5 o a1 a,
st r9, r2, r6 ol d TV o
andi rl6e, r9, 240
w r5, 8(rl6) // access a2 . -

slt instruction depends on
addu rl, r3, r5

read memory access ag

Figure 4.15: Example target code (left) and the respective timing captured
during the reference cycle-accurate simulation with perfect
caches (right); st is the first instruction which depends on read
access ag.

The code contains three load instructions 1w, which perform read
accesses ap, aj and a; to the data cache. The first instruction depend-
ing on the data retrieved by a is slt in line 7 (the dependent data is
stored in register r2). All instructions between ay and slt, including
access aj caused by the second load instruction, are independent of
ao. In turn, access a; depends on access a; (indirectly over multiple
instructions). The execution delays of the code obtained in the refer-
ence cycle-accurate simulation are shown in the timing diagram in
the right part of Fig. 4.15. As discussed in Section 4.2, the execution
delays are measured assuming perfect caches. The diagram shows the
data cache access as well as the time intervals d; between them.

Now assume that if the presented code is executed in the cycle-
accurate simulator with a realistic data cache, access ag results in a
miss. In the following sections, we will discuss different cache sce-
narios. In all of these scenarios, the goal is to reconstruct the pro-
cessor’s timing behavior at miss ap as accurate as possible during
host-compiled simulation.

SCENARIO 1: HIT AFTER MIss In the first scenario, let us assume
that the following accesses a; as well as a, result in a cache hit. In

4.5 NON-BLOCKING BEHAVIOR OF DATA CACHE

this case, the execution of the code in the reference simulator with a
realistic data cache is shown in detail in Fig. 4.16a.

do d; a
dep.miss hit dZ,dep hit
| .

a) do d, ds
d2,oo‘ stall t

miss latency

do. a a;
dep..mlss stall hit hit

b)i_ ledZTd3

do a az d)
dep.miss it (dep on ap) hit

o »
S S R S N O

stall Tt

Figure 4.16: Timing behavior of an out-of-order processor during a hit under
a dependent miss: (a) behavior in the cycle-accurate simulator,
the execution stalls at the dependent instruction after the hit, (b)
simulated behavior assuming blocking cache accesses, the exe-
cution time is overestimated by interval dj + d3 40, (c) approx-
imated behavior, in which the overlapped execution continues
until the first dependent memory access and the execution time
is overestimated only by interval d; .

During the miss on ap (the miss penalty is denoted by the red rect-
angle), the processor continues executing further instructions, which
are independent of ap, in an out-of-order fashion without stalling.
Access a; does not dependent on ag. Therefore, the cache can sup-
ply data to the processor during the active miss according to the hit-
under-miss policy. The out-of-order execution stalls on the first de-
pendent slt instruction (residing between accesses a; and a;), until
the missing cache line is arrived from the memory. The stall inter-
val is marked by the blue rectangle in the figure. Thus, the processor
can hide the miss latency by executing the independent instructions
out-of-order in parallel to the cache miss. As a result, execution delay
d; and a part of delay d, (denoted as d, o) are masked by the cache
miss latency. When the missing data arrives, the processor continues
executing further instructions (execution delay d; gep)-

Conventional host-compiled simulation of the code with blocking
cache behavior is shown in Fig. 4.16b. Here, the execution in the pro-
cessor stalls directly after the miss, i.e. the miss penalty is simply
added to the execution delays. As a result, the total execution time of
the code is overestimated by the value of di + d3 -

The exact time interval after which the execution stalls, i.e. the
value of d; ,, is difficult to predict. This interval could be measured
in the reference simulator with a realistic cache. However, this solu-

63

64

COMPILED SW SIMULATION CONSIDERING OUT-OF-ORDER INSTRUCTION EXECUTION

tion would not be feasible for large programs. Particularly, this so-
lution would require a very large number of independent measure-
ments, where a miss had to be forced for every load instruction. A
simple and yet efficient solution is presented in Fig. 4.16¢. In this ap-
proximation, the out-of-order execution during the miss is simulated
as follows:

1. The execution delays d; are simulated in parallel to the miss
until the first dependent access is discovered (access a; in the
example).

2. When the dependent access is discovered, the processor execu-
tion is stalled till the missing data is arrived.

3. Afterwards, the execution delay preceding the dependent access
(d2) is simulated again. It is a conservative assumption since the
exact stalling point within interval d, is not known.

4. The following access a, resulting in a hit and execution delay
d3 are simulated as usual.

The conservative approximation results in overestimation of the to-
tal execution time. The resulting error will be determined by the exact
position of the stalling point (i.e. by the relation of d; gep and d; inter-
vals in the presented example). The error is minimal if the dependent
instruction is executed right after the last independent hit (right after
access aj in the example). In turn, this error is maximal if the de-
pendent instruction is executed just before the first dependent access
(just before a, in the example). Thus, the error is generally bounded
by the size of the preceding interval (the size of interval d, in the
example).

SCENARIO 2: MISS AFTER MISS In the second scenario, a second
miss occurs during the active first miss. Fig. 4.17a shows the execution
of the code in the cycle-accurate simulator with a realistic data cache
when both ay and a; result in a miss.

A cache implementing the hit-under-miss policy can retrieve only
one cache line at a time. Hence, the simulation of a; miss penalty can
start only when the miss on ag is completed. Afterwards, the data re-
trieved from a; is processed by instruction addiu (line 5 in Fig. 4.15),
which directly follows a;. Since no independent instructions can be
executed out-of-order during the second miss, i.e. latencies d; and d3
are not masked by the second miss penalty. Fig. 4.17b shows conven-
tional host-compiled simulation with a blocking data cache. Under
this assumption, the total execution time is overestimated by interval
dj.

With the approximation which was introduced in the previous sec-
tion (Fig. 4.17¢), execution delay d; will be masked. Afterwards, the

4.5 NON-BLOCKING BEHAVIOR OF DATA CACHE 65

do a3 aj
dep.miss miss I hit
sta
t
first miss latency (a) second miss latency (a;)
do di a;
dep.miss miss hit
b) dO ’ stall d1 ? stall d2 d3
| first miss latency (ag) ‘ |__second miss latency (aﬂﬁ
do a a a a

miss (dep on a;) stall

dep.miss miss

C) do 1

—

h‘it

first miss latency (ag) | secondmisslatency(al)‘

Figure 4.17: Timing behavior of an out-of-order processor during a second
miss (access aj) under an active miss (access ap): (a) behavior
in the cycle-accurate simulator, (b) simulated behavior assum-
ing blocking cache accesses, the execution time is overestimated
by interval dy, (c) approximated behavior, in which overlapped
execution continues till the first dependent memory access with-
out a visible timing error.

execution is stalled till the first miss is completed. When the simula-
tion of the second miss latency is started, the following latency d; is
masked till the first dependent access a; is discovered (a, indirectly
depends on ay). At this point, the processor model stalls again till the
data from the second miss is arrived. According to the conservative
approximation made in the previous section, delay d; is simulated
again, followed by the simulation of access a;. In this case, the con-
servative approximation does not result in a visible timing error.

4.5.1.2 Out-of-order execution under an independent miss

In case of an independent data cache miss (e.g. on a store instruc-
tion), two possible scenarios should be considered. In the first sce-
nario (Fig. 4.18a), all subsequent accesses to the cache result in a hit.
According to the hit-under-miss policy, the cache is capable of sup-
plying the requested data and the execution is not stalled. As a result,
the miss latency is completely hidden. The reconstruction of this be-
havior does not require much efforts. Particularly, after initiating the
simulation of the miss penalty, the processor model has to continue
simulating of the execution delays in parallel, as if there was no miss.

In the second scenario (Fig. 4.18b), one of the subsequent accesses
results in a miss. Since there can be only one outstanding miss in a
hit-under-miss cache, the memory access starts only when the first
miss is ready. However, if the second miss is independent as well, the

66 COMPILED SW SIMULATION CONSIDERING OUT-OF-ORDER INSTRUCTION EXECUTION

indep.
miss hit hit hit
d d d
a) do : T & T 3 T‘
miss latency t
indep.
miss hit miss hit

b) _do it d 1 d !

first miss latency second miss latency

\j

Figure 4.18: Timing behavior of an out-of-order processor under an indepen-
dent miss: (a) the following memory accesses result in a cache
hit; the miss latency is completely hidden, (b) one of the fol-
lowing accesses results in a second miss (miss under an active
miss); both cache miss latencies are still hidden.

execution can continue4. As a result, both cache miss latencies will be
hidden. The reconstruction of this behavior is performed in the same
way as in the scenario shown in Fig. 4.18a.

4.5.1.3 Consideration of instruction window

In the approximated timing behavior presented above, we assumed
that under an active miss the out-of-order execution continues till the
first cache access dependent on the active miss is discovered. In re-
ality, the duration of out-of-order execution is limited by the size of
the instruction window of the processor. In fact, there may be more
instructions independent of the active miss than the instruction win-
dow can contain. However, they cannot be fetched and executed be-
cause the instruction window has a limited size. The new instructions
can be fetched and placed into the window only when the memory
instruction which caused the miss can be committed. If a such sit-
uation occurs, the active miss causes head-of-line blocking for the
subsequent independent instructions in the program flow.

An example of head-of-line blocking observed in the cycle-accurate
simulator is shown in Fig. 4.19a. During the active miss, the pro-
cessor continues executing subsequent independent instructions out-
of-order. The execution is stalled after interval d; + d,w since the
instruction window is full and no further independent instructions
can be fetched. When the missing data arrives from the memory, the
processor commits the instructions which have been executed out-of-
order, including the one caused the miss. Afterwards, new instruc-
tions can be fetched and executed. Due to the limited size of the
window, two intervals d; w and d;new Will be observed in place of

4 If the second miss was dependent, this scenario would resemble the scenarios dis-
cussed in the previous section

4.5 NON-BLOCKING BEHAVIOR OF DATA CACHE

do a'l d d dr
miss hit 2,W 2,new hit
/0 stall
? ds
a) do
miss latency t
do dj dr
miss hit hit
® d ® d ® d
b) ,dojmrt : o, .
t
do a , . a
miss hit St%% |r;$gn; hit
d d
C),dOT 1T 2 d, Tda '
So S1 S2 stall t

S1-So < Wisize S2-So > Wgize

Figure 4.19: Timing behavior of an out-of-order processor during a an active
data cache miss a(followed by two independent hits a; and a;:
(a) behavior of the cycle-accurate simulator, the execution stalls
because no further independent instructions can be fetched due
to the limited size of the instruction window, (b) simulated be-
havior that does not consider the limited window’s size, the
total execution time is underestimated, (c) approximated behav-
ior considering the limited size of the instruction window, the
execution stalls at the first memory instruction not fitting into
the window.

interval d,. Interval d,w represents the execution latency of the inde-
pendent instructions which were present in the window during the
miss. Interval d;new represents the execution latency of those inde-
pendent instructions that had to be fetched after the miss.

If the limited window’s size is not considered in the processor
model (Fig. 4.19b), the execution will continue without stalling, as-
suming that the processor contains an infinitely large instruction win-
dow. As a result, the complete miss latency will be erroneously hid-
den by execution delays d;, d, and d3, resulting in underestimation
of the total execution time.

Similar to stalls caused by data dependencies, the exact point in
time at which the processor stalls due to head-of-line blocking is dif-
ficult to predict. Fig. 4.19c shows approximated simulation of the pro-
cessor’s timing behavior based on the sequential numbers of the in-
structions. The sequential numbers can be easily determined in host-
compiled simulation. In this approach, the execution stalls on the first
memory instruction which does not fit to the instruction window. In
the presented example, the sequential number of the memory instruc-
tion causing the miss is so. The memory instruction with sequential
number s; (performing access aj) still fits into the window of size
Wrize, SINCE 81 — S0 < Wsize. In turn, sequential number s; of the mem-
ory instruction performing access a; is too large to fit into the win-
dow. The exact stalling point of the processor between access a; and

67

68

COMPILED SW SIMULATION CONSIDERING OUT-OF-ORDER INSTRUCTION EXECUTION

ay is not precisely known. Therefore, the model stalls when access
ay is discovered. When the missing data is arrived, preceding latency
d; is simulated once again to obtain a conservative estimation of exe-
cution time. For this kind of approximation, the total execution time
will be only slightly overestimated with an error not exceeding the
value of preceding interval d;.

4.5.2 Dependency analysis of memory instructions

Modeling of out-of-order cache effects discussed in the previous sec-
tions requires information on dependency among memory instruc-
tions. A possible way to determine the dependencies is to statically
analyze the target binary code. The analysis requires knowledge of
the ISA-specific format which defines source and target registers of
the instructions. However, not all dependencies can be identified stat-
ically since some of them may not be known at compile-time, e.g. due
to data-dependent branches [26]. In this work, the data dependencies
among instructions are determined during the timing measurements
of the target code in the cycle-accurate processor simulator. Similarly
to K. Lee et al. in [40], the pairs of dependent instructions are identi-
fied by analyzing the dependency chains constructed by sim-outorder
simulator from the SimpleScalar suite. After the measurement, the
pairs are processed to obtain dependent memory instructions as de-
scribed below.

memory

instruction
. . 7 group of instructions
arithmetic e fitting into the
instruction data s y; window
dependency -

Figure 4.20: Backward analysis allowing to identify memory instructions,
which given memory instruction iy depends on. The nodes and
edges of the graph represent preceding instructions and data
dependencies among them.

In order to determine other memory instruction, which given mem-
ory instruction ip depends on, we can construct a graph consisting of
the instruction’s predecessors as shown in Fig. 4.20. The branches of
the graph represent data dependencies among the instructions. The
search is performed among the instructions preceding iy, which fit

4.6 OPTIMIZATIONS

with the given instruction in the instruction window. For such in-
structions, sequential number s; satisfies condition

S0 — S1 < Wiize, (2)

where s¢ is the sequential number of instruction ip and wgize is the
size of the instruction window.

The algorithm starts at the first level of preceding instructions and
gradually expands along each of the dependency paths. In each path,
the algorithm searches for the first memory instruction still fitting
into the instruction window. For example, it is instruction i4 in de-
pendency path i1—iz—ig—i15. K. Lee et al. in [40] claimed that consid-
eration of only one most recent instruction is sufficient during the
dependency analysis. Our experiments also showed that simulation
accuracy is not significantly changed if more than one memory in-
structions are considered. Thus, although instruction iy depends on
other memory instructions on the path (e.g. i15), consideration of only
i4 instruction is sufficient for accurate out-of-order modeling.

When the first memory instruction satisfying the condition in Eq. (2)
is found, the analysis on the current path is stopped and the search
continues in the next dependency path. As a result, the algorithm
produces a group of memory instructions, which the given memory
instruction depends on. In the presented example, instruction iy de-
pends on memory instructions i4, is, iy and i1o.

The algorithm is repeated for every memory instruction of the tar-
get code. If the analysis reveals a load instruction, which has no
memory instructions depending on it, the cache misses caused by
this instruction is always considered as independent and handled as
described in Section 4.5.1.2. Otherwise, this instruction may eventu-
ally cause a dependent miss which is then handled as discussed in
Section 4.5.1.1.

4.6 OPTIMIZATIONS

The use of context-dependent timing of basic blocks increases the di-
versity of the simulated timing behavior of the processor and, hence,
increases the accuracy of the produced timing estimates. As men-
tioned earlier, with a larger signature length, more timings can be
differentiated and associated with a basic block. The total number
of context-dependent timings depends on several factors. Firstly, it
depends on the structure of the control flow graph of the target bi-
nary code. The graph determines how many preceding basic blocks
a current basic block might have. The more ramified the control flow
graph is, the more possible execution paths can lead to each basic
block, and hence more contexts can exists at a given length of context
signatures. The second factor is the input data which is applied to

69

70 COMPILED SW SIMULATION CONSIDERING OUT-OF-ORDER INSTRUCTION EXECUTION
the target code. The input data determines the coverage of executed
blocks in the control flow graph.

Number of basic blocks' contexts Number of basic blocks' contexts
7000 14000 - -
~#i—adpcm_decode —#—adpcm_encode ~—ejpeg ~i—epic_decode
=>=basicmath_small ==bitcount =>=epic_encode =—x—fft ¢
6000 ~o—blowfish_decode blowfish_encode X)(12000 ~0—g721decod g721 d
5000 cre32 dijkstra_small 10000 gsm_toast gsm_untoast &
4000 St el 8000
3000 et 5% 6000
2000 1 ***ﬁjﬂ: 4000
o e T o e
e = =~ | lalelel e e+®
1000 = 1 ‘ oot ‘ === | } 2000
0 —t—t——1 —t—1—1 —t 0 —t—t
1234567 8 910111213141516 1234567 8 910111213141516
Signature length Signature length
60000 : Number of basic.blocks' contexts 16000 Number of basic bIot:.ks' contexts
—m—ifft —#—jpeg_decode ~@-rasta ~#—rijndael_decode
=>=jpeg_encode ==lame)(14000 =>=rijndael_encode ==sha
50000 - —0-mpeg2decode patricia —0-stringsearch_large susan_corners /|
pgp_encode gsort_small / 12000 - susan_edges susan_smoothing
40000 /’ ‘ 10000 "%[
30000 /’ 8000 el 1 \
20000 e X 6000 ‘/.,.r"' .
S : 7 4000 =
10000 wd Sy | e
e e S e8| 2000 e]
Z= Z mm mE e el i i
0 4"\.7‘\--_--7—- ———+—1 —1 ‘ 0 T T —

123456 7 8 910111213141516
Signature length

T
1234567 8 910111213141516
Signature length

Figure 4.21: The total amount of contexts (and hence the total number of
captured context-dependent basic block timings) for different
benchmarks at various signature lengths (see Section 4.1.2 for
the processor configuration used). The number of timings lin-
early increases with the signature length. For some benchmarks,
e.g. lame, jpeg_encode, susan_corners, the increase has an exponen-
tial character.

The plot in Fig. 4.21 shows the total amount of contexts that can be
differentiated at various signature lengths for different benchmarks>
As can be seen from the results, the amount of contexts is highly
benchmark dependent. For most benchmarks, the number increased
linearly with the signature length. For these benchmarks, a rate at
which the number of captured contexts increases with each signature
length can be approximately estimated as:

N6
r= 15 ,
n

where n; and n¢ are the number of contexts at signature length of 1
and 16 correspondingly. In the presented benchmarks, the value of r
ranged from 1.034 (for crc32) to 1.136 (for epic_decode) with the mean
value of 1.087.

(3)

5 The experimental results were obtained for standard input data provided with the
benchmarks.

4.6 OPTIMIZATIONS

In turn, in benchmarks lame, jpeg_encode, gsm_toast, gsm_untoast, fft,
susan_corners, ejpeg, g721encode,g721decode the increase in the amount
of timings was close to exponential. Consequently, the size of the
produced translated code significantly increased at larger signature
lengths. A larger size of the translated code results in a larger compi-
lation time and in lower overall performance of host-compiled simu-
lation.

The problem with the code size can be solved with two different
approaches. Firstly, the effective number of block timings can be re-
duced without sacrificing the simulation accuracy by optimizing the
binary-to-C translation. This approach is discussed in Section 4.6.1.
Secondly, timing of basic blocks can be obtained differently to achieve
better accuracy at smaller signature lengths. This approach is dis-
cussed in Section 4.6.2.

4.6.1 Optimization of binary-to-C translation

The amount of block contexts that can be differentiated increases with
the length of context signatures. Nevertheless, our preliminary exper-
iments showed that the diversity of basic block timings does not in-
crease at the same rate as the amount of contexts. In other words,
many contexts of a basic block have an equal timing®.

The similarity of timings can be exploited to reduce the size of the
translated code. Particularly, the contexts with equal timings can be
combined, leaving only unique timings and thereby reducing the size
of annotated code. A unique timing can span one or multiple contexts
of the basic block, and hence it can be tagged with multiple context
signatures. For correct context-aware host-compiled simulation, the
translated code must support multiple signatures per timing in basic
block functions. An example of such code is shown in Listing 5. Here,
each of the timings spans two basic block contexts. In the beginning
of the block function, two comparisons with the history FIFO must
be performed (function calls to in_FIFO()). If one of the signatures
matches, the respective timing is simulated.

6 Timings of a basic block are equal if the execution latency of the block and time
intervals between memory access events are identical.

71

72 COMPILED SW SIMULATION CONSIDERING OUT-OF-ORDER INSTRUCTION EXECUTION

Listing 5: Annotation of unique timings that span multiple contexts of

the basic block
1| void b_0x700() {
2 if (in_FIF0(0x100, 0x500) && in_FIF0(0x300, 0x500)) {
3 // use timing 1
4 reg[2] = r[5] + 16;
5 cycle += 2;
6
7 }
8 else if (in_FIF0(0x200, 0x500) && in_FIF0(0x400, 0x500)) {
9 // use timing 2
10 reg[2] = r[5] + 16;
11 cycle += 5;
12
13 }
14
15|}

J

REDUCTION OF CONTEXT SIGNATURES With the unique timings,
the size of the translated code can be reduced without sacrificing the
accuracy of timing estimation. However, it became possible at the ex-
pense of additional comparisons with the history FIFO. If a unique
timing spans N contexts and the signature length is L, (N —1) x L
comparisons must be additionally performed. A problem occurs in
a situation when the amount of signatures is large and many com-
parisons have to be made. If the size of the basic block function is
relatively small, the comparison efforts may even dominate the effort
required for executing basic block functions itself.

This problem can be solved by optimizing the structure of context
signatures. In fact, not all signature elements must be evaluated to
select an appropriate timing. Identification of a minimum set of suf-
ficient elements is a challenging task. A simple and yet efficient algo-
rithm is shown in Fig. 4.22a. The example shows three unique timings
of a basic block with a respective signature. Each element in the sig-
natures represents the start addresses of previously executed basic
blocks. The goal is to identify the position of those elements, the eval-
uation of which is sufficient to differentiate these timings. In the first
step, only single elements of the signatures are compared at a certain
fixed position, e.g. only first elements. In the example in Fig. 4.22a,
the second element is unique among all signatures. Hence, the evalu-
ation of the second element is sufficient to identify the right context.
As a result, the comparison efforts can be reduced by two thirds, com-
pared to a case when all elements are compared.

Fig. 4.22b shows an example, in which the signatures cannot be dif-
ferentiated by one element. In this case, the algorithm starts evaluat-
ing larger groups of elements. Grouping starts from the first element

4.6 OPTIMIZATIONS

0x100 Ox300‘:— 0x300
0x100 - 0x400— 0x300
0x200 |- 0x400!— 0x300

0x300 |- 0x300
0x400 - 0x300
0x500 |- 0x300

signature 1: 0x100
signature 2: 0x100
signature 3: 0x200

(@) (b)

Figure 4.22: Optimization of context signatures: (a) evaluation of the middle
element is sufficient to distinguish the signatures, (b) searching
for a suitable size of the elements’ group that is sufficient to
distinguish the signatures.

(representing the oldest block in the execution history), since the last
element (representing the most recent block in the execution history)
is likely to be same in all signatures. The algorithm stops when the
group is large enough to contain a sequence of elements, which is
unique for each signature. In the presented example, a group of the
first two elements is sufficient in order to differentiate the signatures.
As a results, the resulting comparison effort is reduced by one third.

4.6.2 Averaging of basic block timings

As discussed previously, the length of context signatures determines
the amount of contexts per basic block that can be differentiated in
the measurement phase. However, the selected length may be not
sufficient for capturing all possible timings that a basic block has. In
this case, multiple timings can be captured per basic block context in
the cycle-accurate simulator. Generally, any of these timings could be
associated with the context. In Section 4.3.2.1, first observed timing
was captured and annotated in the target code, while other timings
were discarded. Inevitably, neglecting of other timings leads to an
error. The value of this error can get significant if the captured timing
is not typical for that context, i.e. it is observed not as frequently as
compared to other timings. In order to reduce this error, the length
of context signatures must be increased, which leads to an increased
size of the translated code.

This section presents a different approach that allows achieving bet-
ter accuracy of context-aware host-compiled simulation at smaller sig-
nature lengths. Particularly, instead of dropping other timings, multi-
ple timings of a basic block observed in a certain context can be aver-
aged. An example of such averaging is shown in Fig. 4.23. Execution
latency tiat of the block as well as the offsets of memory events t; are
averaged among all timings. To implement this, the timing values ob-
served at the context are summed up and divided by the total amount
of block executions at this context. Note that in host-compiled simu-
lation, the simulated time is defined at the granularity of clock cycles.
Therefore, the resulting mean values must be rounded to the next in-

74 COMPILED SW SIMULATION CONSIDERING OUT-OF-ORDER INSTRUCTION EXECUTION

timing 1 timing 2 timing n
tzl I tz” I
t]l - t,[ll

tOl - toll
4+eO el |e2 ieO el |e2

tiat tiar | /

t
average | to=(to'+to""+...) / n

t
t|m|ng] t tl = (t1|+t1”+...) / n
eOi o1 1o bE(R'+"+.) /n

Bat tjat = (tlat'+ tIat”+'--) / n

Figure 4.23: Averaging of basic block timings observed for the same context
signature.

teger number. The resulting timing error for the complete target code
due to rounding will be defined as:

K My Njk
PEDIPIE
ATe x=0j=01i=0
T T ’
where T is the total execution time obtained without rounding, K is
the number of basic blocks in the target code, My is the amount of
contexts that can be captured for k' block at the current signature
length, Nyj is the number of executions of i context of k'™ block,
and Ay; is the rounding error of the block’s execution latency at j
context.

The averaging approximates the temporal properties of basic blocks
at the given context signature length, thereby improving the overall
accuracy of context-aware host-compiled simulation. The averaged
timing is artificial as it may have never been observed during the tim-
ing measurements in the cycle-accurate simulator. The quantitative
evaluation of this approach will be presented in Chapter 6.

€= —0.5 < Akj < 0.5, (4)

4.6.3 Static reordering of memory accesses

Reordering of memory accesses is one of the key effects of out-of-
order execution that has to be taken into account in host-compiled
simulation. The order of memory accesses is particularly critical for
the behavior of caches. A cache is a complex, state-based structure.
Whether an access to the cache results in a hit or miss is determined
by the current state of the cache, which, in turn, is defined by previous
cache accesses. Therefore, the order of memory accesses produced by

4.6 OPTIMIZATIONS

the processor model and later applied to the cache model needs to be
accurately reconstructed.

Section 4.4.2 presented a general solution for reconstructing the
order of memory accesses at simulation run-time based on a sorted
queue. In this approach, the memory accesses were not simulated di-
rectly but temporarily stored in the queue first. The content of the
queue was dynamically sorted to obtain the correct order of accesses.
However, the manipulations on the data in the queue requires addi-
tional computational efforts. The quantitative estimation of this addi-
tional efforts will be provided in Chapter 6.

In the following, we discuss in detail when a wrong memory order
may result in a timing error. Afterwards, an optimization method will
be proposed.

4.6.3.1 Timing error analysis

As mentioned earlier, the timing behavior of data caches is sensitive
to the order of memory accesses. However, not always will an error in
the order result in a visible timing error in host-compiled simulation.
The reason for this is the temporal locality of accessed data as well
as the organization of data in lines. Let us assume a basic block with
the execution timing shown in Fig. 4.24a. The basic block contains
two independent memory instructions, which perform accesses A and
B to the data cache. During the execution of this block in the cycle-
accurate simulator (left part of Fig. 4.24a), access B is performed out-
of-order with respect to A. Furthermore, let us assume that the both
accesses request data which are located in the same cache line. If the
line is present in the cache, both accesses result in a cache hit. If we
now simulate the memory accesses in host-compiled simulation in
their program order, i.e. A followed by B (the right part of Fig. 4.24a),
the both accesses will similarly result in a cache hit. From the timing
perspective, there will be no difference between these two simulation
runs. Thus, given the assumptions above, the exchange of A and B
does not produce a timing error.

Out-of-order Exchanged
B A A B

a) COT C T C COT Cy T C
H H H H

B A A B
c stall c stall
YRR SECEE - - SECE -

M H M H

Figure 4.24: Simulation of a basic block with two independent accesses to
the same line in the data cache: (a) the line is present in the
cache, (b) the line is missing. In the both scenarios, the exchange
of memory accesses does not result in a visible timing error.

75

76

COMPILED SW SIMULATION CONSIDERING OUT-OF-ORDER INSTRUCTION EXECUTION

If the requested line is not present in the data cache (Fig. 4.24b),
access B causes a cache miss in the cycle-accurate simulation (left
part of Fig. 4.24b). Access A requires the same cache line. Therefore,
the execution is stalled on A till the missing data is arrived. Note that
access A does not depend on B and hence, processing latency c; is
masked by the cache miss latency. If we now exchange accesses A
and B during host-compiled simulation (as shown in the right part
of Fig. 4.24b), the miss will occur on A instead of B. However, the
timing behavior of the model will not change because the execution
will be similarly stalled on B and latency c; will be masked again
(since B does not depend on A too). As a result, the exchange of two
independent accesses to the same cache line in case of a miss will not
produce a timing error as well.

Out-of-order Exchanged
B A C A B C
a) ¢ ! a 1! . o 1 a 1o} IAERR =0
H H H H H H
B A C A B C
b) ¢ ¢ C T G T e I C I Berr =y
M H H M H
B A C A B C
9 ¢ T & I C, I & C1 C T Derr = -C1
H M H M H
B staIIA ¢ A stall B < Berr = 0
) ool gl o T S S—
M M H M M H

Figure 4.25: Simulation of three independent accesses A, B and C. The re-
quested data for accesses A and B reside in different cache lines.
Four scenarios are investigated: no cache misses on A and B, at
least one miss either for A or B, and when both A and B result
in a cache miss.

The simulation error may occur if the two consecutive cache ac-
cesses request data from different cache lines. In this case, the error
will depend on third access C following A and B. In the following,
we discuss two cases. In the first case, C does not depend on A and B.
In the second case, C depends either on A or B. Furthermore, in all
following figures, we similarly assume reference cycle-accurate simu-
lation in the left part and host-compiled simulation with exchanged
memory accesses on the right part.

C 1s INDEPENDENT OF A AND B This case is shown in Fig. 4.25.
Four possible scenarios must be considered with different combina-
tions of hits and misses for A and B. In the first scenario (Fig. 4.25a),
both A and B result in a cache hit. The host-compiled simulation of
the same block with exchanged A and B (shown on the right side of

4.6 OPTIMIZATIONS

the figure) will produce exactly the same result, i.e. there will be no
timing error.

If either A or B generates a miss, a different timing behavior will
be observed. Fig. 4.25b demonstrates a situation when B is a miss
and A is a hit. If we exchange A and B, processing latency ci will
not be masked by the cache miss latency. As a result, the execution
time will be overestimated by the value of c1,i.e. Aerr = c1. A similar
situation occurs when access B is a hit and A is a miss (Fig. 4.25¢). In
this case, the exchange will result in erroneous masking of latency c;.
As a result, the execution time will be underestimated by cy. Finally,
if both A and B result in a cache miss (Fig. 4.25d), the exchange will
not result in an error because processing latencies ¢y and c, will be
equally masked during both simulations.

C DEPENDS ON EITHER A OR B If access C depends on either A
or B, we have to consider five possible scenarios shown in Fig. 4.26.
In the first scenario in Fig. 4.26a, accesses A and B are hits. Here, the
exchange of A and B will not produce a simulation error (similarly
when C is independent). However, if either A or B is a miss, we will
either overestimate or underestimate the execution time by the value
of c1. In the example shown in Fig. 4.26b, access B is a miss, access A
is a hit and access C depends on B. During cycle-accurate simulation
shown on the left side of the figure, latency c; is masked and access
A is an out-of-order hit under the active miss. When the missing data
is arrived, the model conservatively simulates latency c, once again
(see Section 4.5.1.1 for further details) followed by access C. If we
exchange A and B, latency c¢; won't be masked and the simulation
will produce error Aerr = c1. Similarly, if access C depends on the
miss caused by A while B is a hit (Fig. 4.26¢), exchanging of A and
B will lead to error A = —c7, since latency ¢ will be erroneously
masked.

Finally, let us consider two situations when both A and B result
in a miss (Fig. 4.26d and Fig. 4.26e). If access C depends on B, la-
tency c; is masked by the miss on A in cycle-accurate simulation (left
part of Fig. 4.26d). However, if we exchange A and B, the model will
erroneously simulate latency c; according to the conservative approx-
imation made in Section 4.5.1.1. As a result, the total execution time
will be overestimated by c;. If access C depends on A (Fig. 4.26e), de-
lay c; will be erroneously masked if we exchange A and B. Thus, the
exchange will result in underestimation of execution time, thereby
producing error Aerr = —C3.

Summarizing the observations above, we can make the following
conclusion. The exchange of simulation order for two subsequent
memory accesses in compiled simulations does not always lead to a
visible timing error. In fact, the error will occur only if the following
conditions are met:

77

COMPILED SW SIMULATION CONSIDERING OUT-OF-ORDER INSTRUCTION EXECUTION

Out-of-order Exchanged
B A C A B C
a) CoT C1 T Cy T CoT C1 T C2 T Derr =0
H H H H H H
B A tall C A B tall C
sta sta
b) Co% G T Co G ﬁ C | D=0y
M H H H M H
A B
stall $ c stall $
c) Co [« C Lo s C T Derr = -C1
H M H M H H
B A C A B C
’ stalle . e stall c, Stalle stall
d) Co il — Co gii—gcz Berr = €2
M M H M M H
8 stallé stall S A stall% E stall
e) Co G (%) T Co T ! —) Derr = -C2
M M H M M H

Figure 4.26: Simulation of a basic block with independent accesses A and
B, followed by C which depends on either A or B. The target
data of accesses A and B reside in different cache lines. Five
scenarios are investigated: (a) A and B are hits, (b) B results in a
miss and C depends on B (c) A results in a miss and C depends
on A, (d) both A and B result in a miss, C depends on B, (e)
both A and B result in a miss, C depends on A.

e The accessed data reside in different cache lines, and

e cither one access results in a miss, while the other one results
in a hit, or both cache accesses result in a miss, and

e the third following access depends on one of the misses.

4.6.3.2 Static access reordering

In the previous section, we saw that the exchange of cache accesses re-
sults in a visible timing error in particular cases only. If the error con-
ditions occur infrequently, the efficiency of host-compiled simulation
can be improved. Particularly, we can avoid computationally expen-
sive, queue-based reconstruction of out-of-order memory accesses at
a marginal loss of simulation accuracy.

The optimization method introduced in this section is based on a
hypothesis that the simulated sequence of out-of-order cache accesses
can be changed without introducing a large timing error. The idea
behind this optimization technique is to simulate out-of-order data
cache accesses in the program order, while leaving the processing la-
tencies between them unchanged. For example, assume instructions
of the target code shown in Fig. 4.27. When executed in the cycle-
accurate simulator of the target out-of-order processor, these instruc-
tions produce a sequence of data cache accesses performed in in-
tervals d;i. However, instead of queue-based recovery, the order of
accesses can be changed back to their program order prior to host-

4.6 OPTIMIZATIONS

memory access
instruction

bo b, b,
E TR EI R EE

basic block
/

in program order

by | b,
NN

cache

access execution in

dl d 19 ds TdFdldeY o, Taddel die § . out-of-order
N "t processor

processing
delay

|

t accesses

Figure 4.27: Static reordering of out-of-order cache accesses prior to host-
compiled simulation.

compiled simulation. At the same time, execution delays d; are simu-
lated as captured in the reference-cycle accurate simulation. By static
reordering the accesses, we intentionally introduce an error in host-
compiled simulation. However, as will be tested by the experiments
later, the exchanged order results only in a small deviation of the pro-
duced timing estimate. Meanwhile, due to elimination of the queue-
based reordering at simulation run-time, the overall simulation per-
formance can be substantially improved. The quantitative estimation
of the proposed improvement will be presented in Chapter 6.

4.6.3.3 Derivation of block timing considering static reordering

The assumption of static memory reordering requires new principles
of deriving execution delays of basic blocks in the reference cycle-
accurate simulator. In contrast to the derivation method introduced
in Section 4.2, a new scheme is proposed for associating the execution
delays under consideration of static reordering. The main difference
of this scheme and the method presented in Section 4.2 is the inter-
pretation of basic block overlapping.

As mentioned previously, when statically reordered, accesses to the
data cache are simulated in their program order. Thus, there is no
need for determining offsets of data cache accesses” in basic block
timings as suggested in Section 4.3.2.1. Instead, in case of static re-
ordering, it is sufficient to determine execution delays d; between data
cache accesses.

Furthermore, we can characterize the basic block timing to be an-
notated by a set of time constants. If i'" basic block of the target code

Recall that the offsets can be either positive or negative, since they are measured
relative to the beginning of the basic block, which is also the end of the previous
block.

target instructions

of 0 f} o Pafadafe Yadad o, d S iy recadored

79

8o

COMPILED SW SIMULATION CONSIDERING OUT-OF-ORDER INSTRUCTION EXECUTION

contains n memory instructions, its timing can be specified by (n+1)
time constants as follows:

Ti :{c(i)/ C%/ ciZI cees C1i1}/ (5)
where c}(is a k' time constant of i block and n is the number of
memory instructions in the respective basic block.

In the following explanations, I differentiate between these time
constants c¢; to be annotated in the translated code and actual exe-
cution delays d; between data cache accesses observed in the cycle-
accurate simulator. In fact, execution delays may involve execution of

multiple overlapping basic blocks. Therefore, it is essential to decide
which basic blocks these execution delays d; must be assigned to.

block bg
block b,
do di dy ds
a
(@) doT d; T d T ds T ds >
block bg
block b,
do di dr das
© lal o Talla]
) do d, d, ds ds ““t
B Lo P S
block by
black b,
do a a as
el o Talle T
do d; d, ds ds -
- Lo > A oL t

Figure 4.28: Different types of basic block overlapping under consideration
of static reordering of data cache accesses: (a) partial overlap-
ping within execution delay d;; (b) complete overlapping of ex-
ecution delay dj; (c) deep overlapping of basic blocks resulting
in reordering of data cache accesses.

OVERLAPPING OF BASIC BLOCKS Consider the execution of two
basic blocks bp and by in the cycle-accurate simulator (Fig. 4.28). Each
block performs two accesses to the data cache: accesses ap and ay
(by block by) and accesses a, and a3 (by block b7). Execution de-
lays do—d4 represent the latencies observed between accesses a;. The
execution latencies of the basic blocks are denoted as L;. They are
determined according to the rule defined in Section 4.3.2.1. In the fol-
lowing, we discuss three types of possible overlapping of the basic
blocks.

4.6 OPTIMIZATIONS

In the first type (Fig. 4.28a), the execution of basic blocks in the
cycle-accurate simulator is overlapped. Nevertheless, data cache ac-
cesses are still performed in the program order. Here, execution de-
lay d; is partially shared between the two blocks and, hence, it can
be assigned to any of these two blocks. As a matter of convention,
I assume that the shared delay is always assigned to the preceding
block. As a result, the timing of basic blocks will be defined as:

To =1{c, ¢, ¢9} ={do, di, Lo — (do + d1)}, (6)

T ={c},], e}y ={d2—¢3, ds, da}, (7)

where L is the execution latency of basic block by.

In the second type (Fig. 4.28b), the execution of blocks by and b;
is overlapped and access a; is performed while block by is executing.
Accesses a1 and a; are still performed in the program order. In this
scenario, entire delay d, is shared by the blocks. According to the
convention made above, d; is assigned to block by. However, since
this delay is considered in block by, the respective time constant in
the timing of block b; must be set to zero in order to avoid double
inclusion. Thus, in this case the observed execution delays will be
distributed over the blocks as follows:

TO = {Cgr C(])/ Cg} = {dO/ d]/ dz}/ (8)

T ={c}, cl, A} =10, d3, da4). (9)

In the last type (Fig. 4.28¢c), the execution of basic blocks is over-
lapped such that one or multiple accesses to the data cache are per-
formed out-of-order. In this case, we statically exchange out-of-order
accesses and simulate them in their program order, i.e. a; is simu-
lated in place of a, and vice versa. After exchanging, this scenario
converges to the second type of basic block overlapping and the tim-
ing of basic blocks is defined by Eq. (8) and (9).

BLOCKS WITHOUT MEMORY INSTRUCTIONS A special case of ba-
sic block overlapping occurs when one of the blocks does not con-
tain memory instructions and, hence, no data cache accesses are per-
formed during its execution. For example, assume three basic blocks
bo, by and bz shown in Fig. 4.29. Each of blocks by and b, contains
two memory instructions, resulting in data cache accesses ap, aj, a;
and a3. Basic block by does not contain memory instructions. In the
following, we discuss four possible scenarios of overlapped execution
of block bj.

In the first scenario (Fig. 4.29a), the execution of block b; does not
overlap with any data cache accesses from the neighboring blocks. Ex-
ecution delay d; is shared by the three blocks. I propose a “greedy”

81

82

COMPILED SW SIMULATION CONSIDERING OUT-OF-ORDER INSTRUCTION EXECUTION

assignment of d, among the three blocks starting from by. Particu-
larly, block by is assigned the part of d, which fits into execution
latency Lo. In this case, the timing of block by will be defined as:

To =1{c3, ¢$, 9} ={do, d1, Lo —do — d1}. (10)

In turn, block by is assigned the next part of d, which fits into
latency Lj. Thus, the timing of block by will contain only one time
constant equal to the block’s latency:

T ={co} ={L1}. (11)

Finally, block b, is assigned the remaining part of d, left after the
previous assignments. The timing of block b, will be defined as:

TZ — {C%/ C%I C%} — {dz - I—] - Cg/ d3l d4} (12)

In the second scenario (Fig. 4.29b), the execution of block by is over-
lapped with a data cache access from the preceding block (access ay).
According to the greedy policy made above, the assignment execu-
tion delays starts from the preceding block. Therefore, the timing of
the three blocks in this scenario will be same as in the first scenario,
i.e. defined by Eq. (10)—(12).

In the third scenario (Fig. 4.29c), the execution of block by overlaps
with a cache access a, belonging to succeeding block b;. Similarly
to the previous scenarios, block by will be assigned the first part of
d, which fits to latency Lo. However, in this scenario, the greedy
assignment cannot be applied to block b,. Otherwise, the simulation
would produce a positive timing error e = Lo + L7 — (do + d7 + d3)
(denoted in Fig. 4.29c). This error can be omitted by masking latency
L1 by block b,. Thus, timings for block by, by and b, will be defined
as:

To ={c§, ¢, 9} ={do, d1, Lo —do — d1}, (13)
T ={cd} =1{0}, (14)
TZ = {C(z)l C%/ C%} = {dZ - ng d3/ d4} (15)

Finally, in the last scenario (Fig. 4.29d), the execution of block by is
overlapped with the cache accesses of the preceding and succeeding
blocks (accesses a; and a,). With respect to block by, this scenario
is similar to all previous scenarios. By employing the greedy assign-
ment, the timing of block by will be defined by Eq. (10) or Eq. (13). In
turn, with respect to block by and b;. this scenario is similar to the
third scenario shown in Fig. 4.29¢, i.e. the timings of blocks b; and
b, will be defined by Eq. (14) and Eq. (15) respectively.

4.6 OPTIMIZATIONS

block by [block b,
(a) Ao an block b; | a, as
doT d1 T d2 T d3 T d4 o
. L T
block by [block b,
(b) Qo a; block by a, as
doT d1 T d2 T d3 T d4 >
) Lo R
block by [lock b,
() 30 an block b; a, as
dOT dy T d Te ds T ds
B L T P T
block by [lock b,
(d) Ao a; Blockb; a, as
d()T d1 T d2 T d3 T d4 o
. L PR T P T

Figure 4.29: Overlapped execution of a basic block which does not contain
memory instructions (block b1): (a) execution of by is not over-
lapped with any data cache accesses; (b) execution of by is over-
lapped with a cache access belonging preceding block by; (c) ex-
ecution of by is overlapped with a cache access belonging to suc-
ceeding block b;; (d) execution of by is overlapped with cache
accesses belonging to both preceding and succeeding blocks.

SETUP FOR TIMING DERIVATION During the derivation of block
timing under consideration of statically reordered cache accesses, the
same setup of cycle-accurate simulator can be used as described in
Section 4.3.2.1. The only difference is the fact that the resulting timing
of basic blocks contain values determined using Eq. (6)—(15) and not
offsets as was assumed in Section 4.3.2.1.

The setup of the reference cycle-accurate simulator for deriving ba-
sic block timings under consideration of statically reordered access
is shown in Fig. 4.30. The monitoring unit captures the timing val-
ues according to Eq. (6)—(15). For each basic block, multiple timings
may be captured per context. If averaging of block timing is enabled,
time constants c; to be annotated in the code are averaged using the

following formula:
o
i 2120 Cki
¢l = | == x| 16
= [2
where CL is a k" element in the set of time constants for block bj as

defined in Eq. (5), cLi is the time constant derived at the i execu-
tion of block bj, nj is the amount of block executions and [] is the

83

84 COMPILED SW SIMULATION CONSIDERING OUT-OF-ORDER INSTRUCTION EXECUTION

Basic Con- Accumulated time constants and
block text number of block executions

Cycle-
accurate Monitoring bo | CTX [{>- 0. Do el el . b
reference unit -
simulator 7\ b1 CTX, {Z(’éi,zcii,Z(?éi....}.“nl
by, [CTX [{D ¢t D et S cs,, .. na
Target Basic block
code information
Database with

timing values

Figure 4.30: Setup for deriving basic block timing with statically reordered

accesses.

rounding operation to the nearest integer value. In the final step, the
calculated time constants are annotated in the respective basic block

functions in the translated target code.

SYSTEM-LEVEL SIMULATION OF MULTICORE
ARCHITECTURES

So far I have discussed efficient timing simulation of a single out-of-
order core by means of host-compiled simulation. In this chapter, I
will address a broader scope and address simulation of a complete
system-on-chip incorporating multiple processing cores. The goals of
system-level performance simulation are manifold. For example, it
allows for studying the implication of shared hardware resources on
the system performance or identification of bottlenecks in the system
architecture. In addition, system-level simulation can be employed for
rapid evaluation of different options for mapping and scheduling of
the target software on the underlying processing elements.

In the following, I will focus on system-level simulation methods
and present implementation of high-level performance models of ma-
jor SoC components, including out-of-order processing cores, arbi-
trated shared bus and main memory. The models are incorporated
into a simulation tool that has been developed in the scope of this
dissertation. The simulation tool is written using SystemC [22], a
system-level modeling language based on C++ that allows creating
an executable model of a complete system-on-chip. In addition to the
models of HW components, the tool includes an abstract model of a
scheduler (see Fig. 5.1) that manages the simulation of target software
on the core models.

) —
Application
tasks

|

Scheduler model

VA

Processing Processing Processing Processing
core core core core

of o o of

Arbitrated shared bus |

of

Shared memory

Figure 5.1: An example of a system-on-chip architecture which can be mod-
eled and simulated in the SystemC-based tool.

85

86

SYSTEM-LEVEL SIMULATION OF MULTICORE ARCHITECTURES

5.1 SIMULATION METHODS

In this section, I discuss and compare two different simulation tech-
niques employed in the SystemC tool: trace-driven simulation (TDS)
and host-compiled binary-level simulation (BLS). Both of them can be
applied for fast and accurate performance simulation of a complete
MPSoC, as they abstract the details of the core’s microarchitecture.
However, they are fundamentally different in the way of representing
the execution of target software.

5.1.1 Trace-Driven Simulation

In trace-driven simulation, the execution of target software on pro-
cessing cores is represented in the form of abstract traces. In a general
form, a trace contains a sequence of events obtained prior to system-
level simulation, e.g. by means of a cycle-accurate simulator. Traces
can reflect the software execution at different abstraction levels. At
the highest level, a trace captures accesses which a processing core
performs on the interconnect during the program execution, i.e. refill-
s/evictions of cache lines, and execution delays between them.

Listing 6: Abstract trace captured at the output inter-
face of a processing core

DELAY 3 # processing latency of 3 cycles
READ 32 # read request for 32 bytes
DELAY 17

READ 32

WRITE 32 # write request for 32 bytes

An example of a trace is shown in Listing 6. It is a list of com-
mands or so called trace primitives stored in a file. Each primitive
specifies the type of a system-level event as well as its parameters.
For example, READ and WRITE primitives represent communication re-
quests made by the core on the on-chip interconnect. The argument
of these primitives defines the amount of transferred data. In our
example, the transferred data are 32-Byte cache lines being read or
written to the main memory. DELAY primitives represent internal pro-
cessing latencies in the core. The argument of DELAY primitives is the
number of clock cycles between the adjacent communication requests.
Note that represents only performance characteristics of the target
software. The functionality of the target code is abstracted.

The trace shown in Listing 6 completely abstracts the core’s mi-
croarchitecture including local caches. By simulating this trace, the
timing behavior of the core can be accurately reconstructed at its bus
interface without modeling any of the core’s internal components. As
a result, the overall simulation performance can be significantly im-
proved compared to a detailed cycle-accurate simulator of the core.

5.1 SIMULATION METHODS

5.1.1.1 Workflow of TDS

The workflow of trace-driven simulation consists of two stages. In the
tirst stage, the target code is executed on a reference implementation
of the processing core to generate an abstract execution trace. The
reference implementation defines the accuracy of generated traces.
Generally, for this purpose the designer may employ either an exist-
ing hardware implementation, or an HDL model or a cycle-accurate
simulator of the target core. One of the most critical factors when
choosing a reference implementation (in addition to the availability
of the respective prototypes/models) is the time required to generate
a trace. For example, simulation of a very detailed gate-level HDL
model of the core may require a significant amount of time in or-
der to generate a complete execution trace. In this work, I employ
cycle-accurate instruction set simulators to generate abstract traces.
These simulators have adequate accuracy for early system-level de-
sign space exploration and offer sufficient simulation speed to derive
complete execution traces in reasonable time.

In the second stage, generated traces are simulated in a new multi-
core environment using abstracted models of system-on-chip compo-
nents. By means of the simulation, the designer can investigate inter-
action of multiple cores and their contention for the shared resources.
The key advantage of TDS is the possibility to reuse traces during mul-
tiple simulation runs, enabling faster investigation of possible design
solutions. Note that the generation of traces takes at least as much
time as the complete execution of the code on the cycle-accurate sim-
ulator. However, the generation is performed only once, assuming
that the target software and input data do not change®’. In this case,
the overhead of trace generation is spread over multiple simulation
runs. In the following sections, I provide further details on each of
the two stages of trace-driven simulation.

GENERATION OF TRACES Generation of traces by means of a cycle-
accurate instruction set simulator is shown in Fig. 5.2. The code of the
simulator must be correspondingly extended to enable trace genera-
tion. The efforts required for the modification are marginal. In fact,
during the program execution, the trace generation unit has to cap-
ture a system-level memory access (e.g. cache line eviction) and its
time stamp. The time stamps are then used to calculate processing
latencies between two consecutive memory accesses.

The result of the trace generation is a file which contains trace prim-
itives captured during the execution of the target software. The for-
mat of the primitives can be chosen freely as long as it matches the
core model which is going to interpret this trace. For example, the
trace primitives can be stored in a text file using the format shown

If the target software changes or input data change, abstract traces must be generated
once again.

87

88

SYSTEM-LEVEL SIMULATION OF MULTICORE ARCHITECTURES

input lj

trace tj

rd

Wr

rd
. Cycle-accurate
—»| simulator rd
/

‘ (single-core)

Wr
interconnect . QUI
interface

rd

Target code
(control-flow graph)

Figure 5.2: Generation of an abstract trace

in Listing 6. However, large traces can be processed more efficiently
if they are stored in a binary form. In this case, the size of trace files
as well as the time required to parse the primitives during a trace
simulation can be significantly reduced.

The generated trace represents a complete execution of the target
program. Therefore, the size of the trace is proportional to the exe-
cution time of the code. Because of this fact, the use of TDS may be
restricted if the target application produces a very large workload
and, therefore, requires a large space on the hard disk for storing the
trace. Furthermore, there may be multiple execution paths in the con-
trol flow graph of the target code (see Fig. 5.2). Each execution path
is determined by the results of branch instructions, which in turn de-
pend on the input data. Thus, the trace represents only one of possible
execution paths, corresponding to a specific input applied during the
trace generation.

SIMULATION OF MULTICORE Traces are generated on a simulator
in the context of a single core and then simulated to predict the per-
formance of target software in a new multicore environment. The sim-
ulation of traces in a system-on-chip model consisting of abstracted
processing cores, on-chip interconnect and shared memory is shown
in Fig. 5.3.

The processing cores are modeled as black boxes, which reconstruct
the core’s timing behavior by reading and interpreting the assigned
traces. In case of DELAY primitives, the core models just wait for the
specified amount of cycles, thereby simulating internal processing of

5.1 SIMULATION METHODS 89

Target code : communicaiton processing
¢ latency latency
Cycle-accurate I N —t
simulator / \ rd wr
(single-core) ! -
Core O Corel Core 2

interconnect | _ »| Abstract
interface

A
y

Interconnect

:

Core 3 Core 4 Core 5

Memory

Memory

Trace Generation i Trace-driven simulation of multicores

Figure 5.3: Employment of abstract traces for performance simulation of
multicore architectures.

data. In case of READ or WRITE primitives, the models make communi-
cation requests to the shared on-chip interconnect model.
Performance evaluation of the complete system-on-chip is performed

by superposed simulation of multiple traces on the common inter-
connect. Contrary to the processing latencies, which are explicitly
defined in the traces, communication latencies c; are determined dy-
namically at simulation run-time (Fig. 5.3). Communication latencies
consist of the memory access latency as well as dynamic arbitration
delays which appear if multiple cores want to simultaneously access
the shared interconnect. The overall performance of the system-on-
chip is evaluated by combining processing latencies and communica-
tion latencies determined during the simulation. Please note that the
communication latencies are determined solely in the new multicore
environment. Therefore, it is important to assure that the processing
latencies contained in traces do not depend on the communication la-
tencies in the reference cycle-accurate simulator. This can be achieved
by setting communication latencies to zero during the trace genera-
tion.

5.1.1.2 Trace modifications

Representation of software execution in the form of abstract traces
allows for flexible modification of the workload imposed by the tar-
get software. This can be particularly useful for investigation of func-
tional repartitioning between processing cores and hardware periph-
erals. To enable this, a part of the trace representing a certain function
may be replaced by new primitives. These primitives can be used
to simulate accesses to a peripheral model that is supposed to im-

90

SYSTEM-LEVEL SIMULATION OF MULTICORE ARCHITECTURES

plement this function in hardware. Since the trace simulation does
not involve processing of real data, the peripheral model can be ab-
stracted to pre-configured processing latencies. In this case, the de-
signer can still evaluate the impact of hardware acceleration on the
software execution time. Moreover, if the peripheral is shared by mul-
tiple cores, the designer can additionally investigate the additional
latencies caused by the contentions for the shared resource.

Abstract traces can be also augmented with additional primitives
for code profiling. The purpose of these primitives is to associate sec-
tions of the trace with respective functions of the target code. Partic-
ularly, profiling primitives denote points in the trace, at which func-
tions start or stop their execution. The boundaries of the target func-
tions can be obtained from the debugging information of the target
binary code. Given the function boundaries, the trace generation unit
can determine which function is currently being executed and insert
the profiling primitives in the generated trace.

5.1.1.3 Various abstraction levels

In Section 5.1.1.1, we introduced traces in the most abstract form. At
this level of abstraction, the behavior of local caches is completely hid-
den in the processing latencies, and the traces capture only memory
accesses caused by cache misses. If such traces are simulated in a new
environment, it is assumed the local caches of the core have the same
behavior as during the trace generation.

In some scenarios, the designer may want to involve local caches
into the design space exploration process, e.g. to study the impact
of cache parameters in the scope of multicore system-on-chip. In this
case, local cache have to be modeled and simulated in the multicore
environment. Moreover, simulation of caches is inevitable for consid-
ering the effects of cache coherency in the multicore environment.
In coherent caches, certain lines may be invalidated by other cores.
Consequently, a cache access resulted in a hit during the trace gen-
eration may result a miss in a multicore environment, producing an
additional communication request on the shared interconnect.

In order to enable simulation of caches, traces have to be defined at
finer granularity than the one assumed in Section 5.1.1.1. Particularly,
traces have to capture memory accesses before the local caches as
shown in Fig. 5.4. Afterwards, in the simulation phase, the captured
accesses can stimulate the cache models in order to determine hit or
miss events at run-time. The cache models do not need to hold real
data since the functionality of the target software is abstracted in TDS.
In fact, it is sufficient to store only the address tags of cache lines in
order to determine whether an access results in a hit or a miss. The
arguments of trace primitives have to be refined as well as shown in
Fig. 5.4. In contrast to a highly abstracted trace (left part), in which
READ and WRITE primitives specify amount of data to be transferred,

5.1 SIMULATION METHODS

Cycle-accurate
simulator
(single-core)

___i ________ $ _____ d, d, ds
M M

| Interconnect |

Figure 5.4: Different abstraction levels of captured traces. The lower trace
captures cache misses only, while the upper trace has higher
granularity and captures all cache accesses.

the refined trace (right part) must contain target memory addresses
that must be supplied to the cache models.

DELAY 3 WRITE Oxfffff200
READ 32 DELAY 3
DELAY 17 READ Oxfffff280
READ 32 DELAY 5
DELAY 11 READ Oxfffff284
DELAY 7
READ Oxfffff288
DELAY 5
READ 0x40000100
DELAY 6
WRITE 0x40000108
DELAY 5

Figure 5.5: Different abstraction levels of traces.

Fine-grained traces capture a larger amount of events. As a result,
they are significantly larger in size compared to abstract traces. Pro-
cessing of larger files and simulation of local caches inevitably slows
down the TDS performance. Therefore, the level of trace abstraction
has to be considered carefully depending on the goals and the context
of system-level design space exploration.

5.1.2 Binary-level simulation

In contrast to trace-driven simulation, the simulation of software ex-
ecution in BLS is based directly on the target code. Therefore, BLS is
execution-driven simulation. During the simulation, the target code (or
more precisely its equivalent C-representation) is co-executed with
the performance models of system-on-chip components. The simula-
tion of the target code in BLS is fully functional at the instruction
level. At the same time, the internal core’s components—which are

91

92

SYSTEM-LEVEL SIMULATION OF MULTICORE ARCHITECTURES

required for processing the instructions in the real processor, e.g.
the instruction pipeline or execution units—can be completely ab-
stracted. In BLS, the execution time of instructions is considered by
pre-annotating timing information in the code. The key aspects of
the BLS approach were discussed in detail in Chapters 3 and 4 (in
the scope of a single core). This section is primarily focused on the
employment of BLS for simulation of multicore architectures.

Translated target code

with timing annotations
I

cycle += host Generation of
icache(0x800); compilation applicati
_ ! > pplication
ri1] = r[2] - r3]; libraries
cycle +=5;
linking
Calls to Simulation
dcache() Core 0 Core 1l Core2 | oflibraries
cachel T T it
[Caches | | Caches | [Caches |
Y

4

A4

Memory |« Interconnect

Figure 5.6: Employment of BLS for simulation of multicore architectures.

SIMULATION OF MULTICORE Simulation of multicore architectures
based on BLS is shown in Fig. 5.6. To enable multicore BLS, the anno-
tated translated code of each target application has to be compiled as
a library. In the simulation phase, the libraries are dynamically linked
to the core models, where the basic block functions of the translated
code are executed. In addition, each abstracted core is attached to
the models of local instruction/data caches. The cache models are ac-
cessed by the compiled target code via icache() and dcache() func-
tions. If the core components have to simulate the out-of-order, ad-
ditional modeling is required. The structure and implementation of
out-of-order core models will be presented in Section 5.3.

Given the target memory address, the cache models dynamically
determine whether a current memory operation results in a hit or
a miss. In case of a miss, the cache models initiate a communication
request to the model of the shared on-chip interconnect. The intercon-
nect model arbitrates requests of multiple cores. The resulting arbitra-
tion latencies are added to the access latencies of the main memory re-
sulting in the total communication latency for each request. The mod-
els of the interconnect and memory are not functional. Therefore, real
data do not have to be transferred and stored in the memory model.

5.1 SIMULATION METHODS

The actual data needed for functional execution are stored internally
in the local arrays of the translated code as described in Section 3.1.1.

Note that the abstraction of functional data in the cache models
does not allow investigation of race conditions in MPSoC. A race con-
dition is an undesired situation when two or more execution threads
access shared data in an uncontrolled way due to improper synchro-
nization. As a result, a thread may retrieve wrong data from the main
memory and the application behavior may change in this case. Dur-
ing simulation of multicore architectures, parallel threads have to be
properly synchronized, e.g. using synchronization mechanisms of a
run-time system (see Section 5.2.2.3 as an example). In the proposed
approach, the actual data is acquired directly from the functional
model of the target memory. If the identification of race conditions on
the interconnect is desired, the models of caches and on-chip commu-
nication have to be correspondingly enhanced for considering func-
tional data. The associated modification efforts are marginal.

5.1.3 Summary

In the sections above, I discussed the employment of BLS and TDS
for simulation of multicore system-on-chip architectures. Both simu-
lation methods are similar to a certain extent:

1. They abstract the details of instruction execution in the core’s
microarchitecture to latencies. TDS offers the highest abstrac-
tion level, at which the complete microarchitecture can be hid-
den including caches. BLS similarly abstracts the execution of
instruction. However, it still requires co-simulation of caches.

2. The workflow of the both techniques consists of two separate
phases: derivation of processing latencies in the reference cycle-
accurate simulator and further simulation of the latencies in a
new multicore environment. In the simulation phase, the tar-
get software (represented as traces in TDS or translated code in
BLS) accesses the interfaces of the abstract core model to stim-
ulate the models of on-chip interconnect and memory in order
to obtain communication latencies at simulation run-time.

3. Both TDS and BLS are processor- and application-specific as
they reconstruct the execution of a particular target code on a
particular processing core. If the target code or the configura-
tion of the processing core changes, the abstract trace has to be
generated once again. Similarly, the translated target code has
to be re-annotated and re-compiled.

TDS and BLS have a number of differences as well. Monolithic
traces required by TDS capture the complete execution of programs.
In traces, the control flow of the target program is fixed and cannot be

93

94

SYSTEM-LEVEL SIMULATION OF MULTICORE ARCHITECTURES

changed at simulation run-time. Thus, in addition, traces are specific
to input data. In order to simulate the target code, which is applied
a different input, a new trace must be generated. In turn, the control
flow in BLS is determined at run-time and can be changed during
simulation. In this case, the derived timing of basic blocks can be
reused among multiple simulations with different input data.

Monolithic traces completely abstract the functionality of the target
code. This fact leads to certain restrictions in simulation of complex
applications, which may consist of multiple communicating tasks. For
this type of applications, the designer may want to generate separate
traces for each task and simulate them independently in a multicore
architecture. However, due to the abstraction of functionality, only
very simple synchronization between traces is possible. We will dis-
cuss synchronization mechanisms for traces in detail in Section 5.2.
In contrast, BLS is a functional simulation and, therefore, it allows for
more complex, data-dependent synchronization of multiple tasks.

Finally, TDS enables faster performance estimation compared to
BLS, since monolithic traces do not require co-simulation of caches
and co-execution of the target code. However, due to the complete
abstraction of the microarchitecture, memory accesses in TDS are al-
ways considered to be blocking. This simplification results in overes-
timation of software execution time in case of out-of-order cores. In
contrast, BLS can capture dynamic out-of-order effects (see Chapter 4)
and, therefore, it can achieve better accuracy than TDS.

I will thoroughly evaluate TDS and BLS techniques in terms of
performance and accuracy in Chapter 6. Nevertheless, some of the
key numbers for BLS and TDS are highlighted in Fig. 5.7. The figure
shows the results of abstracted system-level simulations performed
for different benchmarks using TDS and BLS. For both methods I
used sim-outorder* simulator from SimpleScalar to derive timing in-
formation of basic blocks for BLS and to generate abstract traces for
TDS. The goal of TDS and BLS was to reproduce the timing behavior
of sim-outorder as fast and accurate as possible.

Fig. 5.7a shows the error of TDS and BLS in estimating the exe-
cution time compared to the setup simulated in sim-outorder (single-
core). The performance numbers for TDS and BLS are presented in
Fig. 5.7a and expressed in millions of simulated instructions per sec-
ond (MIPS). As can be seen from the results, the simulation accu-
racy and speed are not permanent but rather benchmark-dependent.
Moreover, the experiments showed that none of BLS and TDS suits
best for system-level simulation. For some benchmarks, e.g. bitcount,
crc32, gsm_toast, gsm_untoast, mpeg2decode, pgp_encode, susan_smoothing,
TDS showed almost the same accuracy as BLS (or even slightly better

During the experiments, the same tool configuration was used as described in Sec-
tion 4.1.2. Both TDS and BLS were performed in SystemC environment. Further
details on the SystemC models employed for the simulation will be presented in
Section 5.3.

5.1 SIMULATION METHODS

25 Simulation error, % WBLS [©TDS

1% I WH I 1 QHW y W_ﬁ

e CRERECE Rt ,r”,rﬂ,r.f, :

yyyyyry.yvylyr.yyy

-5 I

-10

-15

-20
VU= E 0 ONS WO OFE OO EE VYUY OO= QYOO N YW
T T 8 ST TMBUTTVTHE T T g g E TT ETTT O H TT L wg Y c
O 0 E 3 00¢L E QOO o 0 3 o O 0O g OLC OERBOOWVw g c M=
© 0 53989 990G§5aT9 o Qo 2 2 O 08 05 0 5« 9 O 8 =T s
o c S o c | 9 € o ¢ Y E o € [I - o £ 15 9 B
T 02T O © T O T 8 g5 T O T o 0 ¢ T O o o
L == R R | s (BN} o < £ 7 1o [| I _l e IS5 €
EEC < £ 7] 2 .9 NG E 8o by] a 9 o 5c8E
S G £] X~ Q o ~ I~ @ gg g W 5 © © o 8 5 Y
e 8 G £ & = o o to b0 (Y 2 .2 o T T w 8 a e
T T G 2 3 b 13 c c W 3 H
® © © o o = £]

2 == =T £ 2
w
(@)

319 Simulation speed, MIPS EmBLS @TDS
240 397 584 347 231 522 548 264 624

160

120 || | - - |

80 - o »

NN W ? ﬂ>

0 ﬂﬂﬂﬂﬂﬂﬂﬂ
VU= E O ONS WO OE 0OREE QYUY 00=0 00 OO0 YW
T T B ESETTNEBITTETT L RET T ETTTBETT L g & c
O 0 g2 009 Eaoo 0 0 g o 00 g O T 9 ERBOOOWw g & M=
O 0 5989 9905 5TY O 0 o 2 O 0fB® 050 5« 9 0O S £ET S
o c S o ¢ \ o c o c " Ee [T 9w £ Y o € 16 9 ©
T O LD O © T O T3 g5 T QO T a9 p T O e o o
I s 2 1 4 (| oo £ 7 1o [1 1 _l S IS €
EE® £ < - Qo o NNME o0 oo Y] a 9 T 0 ;:3‘”
G G £ Q2 2 ~ a ‘o W s 28 I3 ¥ 5 © © 2839
Q 9 O T Y = o o 4 2 2 T T mgmc
T T G 3 3 5 € c c w 3 H
T 0 g o0 = £ @

2 3 = 2
"

Figure 5.7: Comparison of TDS and BLS methods for different benchmarks
executed in an out-of-order core: (a) timing error compared to
the reference cycle-accurate simulator SimpleScalar; (b) simula-
tion speed expressed in millions of simulated instructions per
second.

for sha) but achieves significantly better performance than BLS. At the
same time, for other benchmarks, e.g. lame, blowfish, epic, jpeg, rijndael
(both encoding and decoding parts), BLS achieves significantly better
accuracy compared to TDS at the same performance level. We will
discuss in detail why TDS and BLS exhibit this behavior for some
benchmarks in Chapter 6.

None of these simulation technique achieves the best trade-off be-
tween accuracy and performance in all benchmarks. Efficient design
space exploration requires consideration of the both methods. There-
fore, the SystemC simulation tool developed in the scope of this dis-
sertation supports both methods.

95

96

SYSTEM-LEVEL SIMULATION OF MULTICORE ARCHITECTURES

5.2 HIGH-LEVEL SCHEDULER MODEL

The workload of embedded systems-on-chip typically consists of mul-
tiple concurrent applications. For example, recent smartphones si-
multaneously process the communication protocol stack, provide the
graphical user interface and run several user applications, e.g. an e-
mail client, web browser or MP3-player. A common approach of man-
aging the execution of multiple applications is to employ an operating
system. The purpose of operating systems is to provide necessary ser-
vices to the applications and schedule their execution on the platform
in order to efficiently utilize the available hardware resources. Target
applications, in turn, may consist of one or multiple communicating
tasks. I use the term task to describe a thread of execution, which is
initiated by the target application and which can be managed by the
operating system’s scheduler. Thus, I refer to a target application as
single-task if it consists of one execution thread. In a more general
case, a target application can consist of several execution threads, i.e.
be comprised of several tasks.

There may be multiple strategies of employing an operating system
in a multicore system-on-chip. For example, a possible solution is to
execute an individual OS instance on each core. In this setup, the OS
instances operate in own private memory and work independently of
each other. An alternative configuration is to declare one processing
core as a master. The master core executes the OS code and schedules
the execution of tasks on the slave cores. In symmetric multiprocess-
ing (SMP) systems, all cores may cooperatively execute a single OS
instance which controls the execution of tasks in a centralized way.

Multicore operation and algorithms for task management differen-
tiate among various OS implementations. For comprehensive design
space exploration involving task management, the system designer re-
quires an abstracted scheduler model that would allow flexible evalu-
ation of different task mappings and scheduling policies without the
need of porting the application code to a specific operating system.
Moreover, having the abstracted scheduler model, it is still desirable
to simulate the execution of tasks, while capturing the hardware tim-
ing effects. Such timing effects may be caused by the behavior of local
caches or additional communication latencies caused by contentions
of the cores on the shared interconnect. For example, a task, which is
co-executed with other tasks on a processing core, may evict some of
the cache lines and, thus, cause higher miss rates for the other tasks
after the task switch. Consideration of these effects allows for more
accurate evaluation of tasks” execution time.

In this section, I address high-level OS modeling for system-level
DSE of multicore architectures while considering the hardware tim-
ing effects of tasks” execution. In particular, I present high-level mod-
els of a scheduler and user tasks. The simulation of tasks” workload is

5.2 HIGH-LEVEL SCHEDULER MODEL

based either on trace-driven (Section 5.1.1) or host-compiled binary-
level simulation (Section 5.1.2). The scheduler manages the task ex-
ecution on the underlying core models according to a certain pre-
configured policy. The proposed scheduler model is not intended to
identify the optimal task mapping on the given multicore architecture,
which is a NP-hard problem. The purpose of the scheduler model is
to validate the execution time and evaluate different scheduling poli-
cies and task migration strategies for a set of task mappings which
has been already provided by the designer. Thus, the designer is ca-
pable of assessing various load distributions at early stages of MPSoC
design when no concrete operating system is yet considered. The re-
sults of these estimations can guide the designer towards the final
implementation with a specific OS.

One of the key properties of the proposed model is the ability to
consider the workload that would be imposed by the scheduler in
the cores. The OS-related workload is represented in the form of ab-
stract traces which are simulated using the TDS method. The sched-
uler model supports various types of OS-related traces. For example,
context-save or context-load traces represent writing and reading the
core’s registers from the main memory during task switching. A sched-
uler trace represents the execution of the scheduling code itself. The
simulation of OS-related traces is interleaved with the simulation of
tasks, thus, allowing for more realistic reproduction of the OS-based
execution. In summary, the scheduler model has the following fea-
tures:

e it can handle both TDS- and BLS-based user tasks;

e it is highly configurable in terms of task mapping and schedul-
ing options in a multicore system-on-chip model;

e it allows preemptive scheduling of tasks. Moreover, it supports
both local (when tasks are pinned to specific cores) as well as
global scheduling (when tasks can be executed on any of the
available cores);

e it supports task priorities and can be easily extended with vari-
ous scheduling policies, e.g. earliest deadline first (EDF);

e it provides means for inter-task synchronization.
In the following sections, I discuss the models of the scheduler and

tasks in detail.

5.2.1 Task model

The scheduler model manages the simulation of tasks according to
the state diagram shown in Fig. 5.8. The tasks can be in one of four
possible states. The initial state of a task is Ready. At this state, a

97

98

SYSTEM-LEVEL SIMULATION OF MULTICORE ARCHITECTURES

task can immediately start executing. If there is an available core, the

scheduler starts the task’s execution and changes its state to Executing.
If during the execution another higher priority task needs to be exe-
cuted on that core, the scheduler preempts the low-priority task and

changes its state back to Ready. Hold is an intermediate state between

Ready and Executing. A user task is put into Hold state when OS-

related workload associated with this task is simulated, e.g. context

save or context load.

creation

Sleeping
termination
Figure 5.8: State diagram of tasks.

If an executing task has to be synchronized with another task and
has to wait for a synchronization event, its execution is blocked and
its state is set to Sleeping. When the event occurs, the state of the
sleeping task is set back to Ready and the task can continue executing.
Finally, the scheduler terminates a task when the task has finished
executing or when a termination signal has been fired while the task
was in the Sleeping state.

The parameters of a task as well as its invocation scenario are de-
fined in a task description. Task descriptions are stored in a configura-
tion file and contain the following data:

name Symbolic name of the task;
type TDS- or BLS-based task;
core ID of the processing core on which the task has

to be executed. If the value is not defined, the
task can be executed on any core;

priority Priority of the task (used for fixed priority
scheduling);

n Total number of times the task must be executed;

period Period of task invocation;

arg Path to an application trace (in case of a TDS-

task) or compiled library (in case of a BLS-task);

5.2 HIGH-LEVEL SCHEDULER MODEL

csave Path to an OS-related trace representing a con-
text save;

cload Path to an OS-related trace representing a con-
text load.

Although the workload of TDS- and BLS-tasks are simulated dif-
ferently, these tasks are handled equally by the scheduler. In Sec-
tion 5.2.3, we will discuss the details of the initialization, execution
and preemption of BLS- and TDS-tasks.

5.2.2 Scheduler model

5.2.2.1 Structure

The structure of the scheduler model is shown in Fig. 5.9. It is a
dedicated SystemC module that manages the execution of tasks on
core models. The scheduler requires a list of task descriptors in or-
der to decide when tasks have to be created and on which cores they
should be mapped. In addition to the task descriptions, the scheduler
model requires execution traces for TDS-tasks and compiled libraries
for BLS-tasks. They are used to simulate the actual workload of the
tasks in core models. To enable simulation of the OS-related work-
load, the scheduler has to be additionally provided with OS-related
traces, representing context save/load activity or the workload of the
scheduler itself.

Tasks Scheduler model OS traces

|| || N | Tick timer | ﬂ
4 4 - Queue context
traces libs with user save/load,

(TDS) (BLS) tasks OS scheduler

] Semaphore
Task of » database
descriptions| '8 ;

execute () terminate ()
preempt () sync ()

Abstracted core

models |Core0| |Core1| |Core2|---|CoreN|

Figure 5.9: Structure of the OS scheduler model

In the beginning of simulation, the scheduler analyzes the task de-
scriptions and configures the internal task timer. This timer stores in-
vocation times of all tasks. At the time point of task’s invocation, the
scheduler model creates a temporary task object and adds it to the task
queue (see Fig. 5.9). The task queue contains all current task objects
independently of their state. During task scheduling, the scheduler
traverses through this queue to determine Ready tasks that are eligi-
ble for execution. Depending on the tasks’ priorities, the scheduler

99

100

SYSTEM-LEVEL SIMULATION OF MULTICORE ARCHITECTURES

makes a decision whether to preempt currently executing tasks (if
they have lower priorities) or to allow their further execution till the
next scheduling phase. In addition to the task timer, the scheduler
model contains a tick timer. This timer triggers periodical reschedul-
ing of user tasks at pre-configured time intervals. Furthermore, in or-
der to support task synchronization, the scheduler contains a database
of semaphores. I will discuss the synchronization mechanisms of the
scheduler in detail in Section 5.2.2.3.

The scheduler has a defined interface to the underlying core mod-
els. The simulation of the tasks” workload is started by calling func-
tion execute() implemented in the core. The workload simulation is
preempted by the scheduler by calling function preempt(). In turn,
the core models access the scheduler if there is a need for task syn-
chronization (function sync()) or the simulation of the task’s work-
load has been completed (function terminate()). When the workload
simulation is completed, the corresponding task is terminated and the
scheduler removes the task object from the task queue. The following
sections describe the scheduler operations in more detail.

5.2.2.2 Scheduler operations

GENERATION OF TASK INSTANCES Generation of task objects in
the scheduler is triggered by the task timer. When the signal from
the timer is received, the scheduler iterates over the list with task
descriptions, thereby operating according to the algorithm shown in
Fig. 5.10. In the first step, the scheduler compares the invocation time
in each task description with the current simulation time. In case of
a match, the scheduler checks whether the previous object of that
task is still active. This situation may occur if the task is periodic
and the workload simulation from the previous task invocation is not
yet completed. In this case, the scheduler postpones the creation of a
new task object, notifying the designer that the deadline of the task
has been violated.

If no previous task object is found in the queue, the scheduler cre-
ates a new task object and inserts it into the task queue with state
Ready. Before switching to the next task description, the scheduler
calculates the next invocation time of the task and configures the task
timer correspondingly.

SCHEDULING OF USER TASKS The main steps performed during
scheduling of tasks are shown in Fig. 5.11. The process of task schedul-
ing (or re-scheduling) can be initiated in one of the following situa-
tions:

e A new task object has been created and inserted into the task
queue;

e Periodical rescheduling occurs (OS tick);

5.2 HIGH-LEVEL SCHEDULER MODEL

take next task
descrlptlon

|
‘

no

|nvocat|0n time
matches current

time?

yes

previous task
object active?
no more task
descriptions

postpone
creation of a
new task object

task into queue

create and insert }

[request schedulmg

invocation time and

calculate next
program task timer

Figure 5.10: Algorithm for generation of instances of user tasks

e One of the currently executing tasks has made a request for
synchronization,

e One of the tasks has finished its execution.

In the scheduling phase, the scheduler model iterates over the task
queue, searching for entries in Ready state. Ready tasks have to be
sorted according to their priorities first. In case of fixed priorities, the
entries must be sorted according to the static priority values config-
ured by the designer in the respective task descriptions.

For each ready task, the scheduling process starts with searching
for an idle core first. I refer to a core as idle if no workload is currently
simulated on this core. If an idle core is found, the scheduler then
checks whether this core is suitable for the current task. The core is
considered as suitable if:

e the current task has been pinned to this core by the designer
(partitioned scheduling) or

e the current task can be executed on any core (global schedul-
ing).

If an idle and suitable core is found, the scheduler assigns the OS-
related traces to this core first. These traces are simulated before the

101

102

SYSTEM-LEVEL SIMULATION OF MULTICORE ARCHITECTURES

take next ready task
in the queue

take next idle is sui
core is suitable?
core
NO MOré no more idle cores

busy cores no

take next busy
core

core available for
scheduling?

#yes

core is suitable and
executing task has
lower priority?

#yes

no more ready

tasks preempt
executing task

1

[insert OS traces]

start task
execution

Figure 5.11: Algorithm for scheduling of user tasks

end

actual task’s workload. They include a trace representing the work-
load of the scheduler itself and—if the current task has been pre-
empted before—the context-load trace for the task. Afterwards the
execution of the task can be started.

If there are no idle/suitable cores available, the scheduler model
analyzes busy cores. First, the scheduler checks whether the current
core is available for scheduling. A core is not available for scheduling
if it is executing an OS-related trace. This situation can be compared
to the execution of a critical section. If the core is available for schedul-
ing, i.e. it is executing a task, the scheduler compares the priority of
the executing task with the priority of the current ready task. If the
executing task has a lower priority, it is preempted by the scheduler.
Afterwards, the scheduler assigns a set of OS-related traces to the
current core and the higher priority task can start executing. The pre-
emption mechanism will be discussed in detail in the next section.

If the ready task cannot start executing on any of the available cores
(e.g. because it has the lowest priority), it remains in Ready state and
the scheduler moves to the next ready task in the queue. The schedul-
ing process completes when all ready tasks have been processed.

PREEMPTION OF TASKS As mentioned earlier, a lower priority task
can be preempted by a higher priority task in the scheduling phase.

5.2 HIGH-LEVEL SCHEDULER MODEL

The time diagram of the preemption process is shown in Fig. 5.12.

In the beginning a core model executes low priority task T;. At time
t1, the task timer notifies the scheduler that a new object of high
priority task T, has to be created. After creating the task object, the
OS scheduler calls preempt () function in the core. At the same time
t1, the state of task T, is changed from Ready to Hold. The Hold state
remains until the beginning of T, execution. This intermediate state is
needed to avoid multiple rescheduling of T, by the scheduler model.
The state of T; is switched from Executing to Hold as well. In this
case, Hold state is required to avoid too early execution of the task,
since its context-save trace must be simulated first. The preemption
of T; may take additional time to complete (denoted in the figure as
preemption lag). This issue will be discussed in detail in Section 5.2.3.

preemption
Low priority «7 lag |
task T, - ‘ 1 i
J(—executmg —hold ¥ ready
4 T context save
b 1 Sched{ 1 :
state of T; % ' trace! | trace for T,
Scheduler ol L context load
Q, trace for T,
]] (O]
[| [
| | | 3
. " . | | | O
High priority b -
0]
task T2 Wf—;—holdﬁ [xecuting |
task timer event:”! ! oo
. | —
T,isreadyto t; t; 3 t4 ts time

execute
Figure 5.12: Preemption of user tasks

At time t,, the preemption of T; is completed. In the next step,
the scheduler assigns the scheduler trace representing the workload
imposed by the scheduler itself. Afterwards, the scheduler initiates
simulation of the context-save trace of task T; and context-load trace
of task T,. When the simulation of all OS-related traces is completed
(time ts), the preemption phase is finished and the execution of task
T> can start.

TERMINATION OF TASKS Tasks are terminated when the simula-
tion of its workload is completed. In case of TDS tasks, this situation
occurs when the end of the application trace is reached. In BLS tasks,
the workload simulation stops when the translated target code makes
an exit system call. Upon the termination, the core calls terminate()
function in the scheduler. Note that more than one tasks can termi-
nate at a time. Therefore, in a general case, the scheduler processes a
list of completed tasks as shown in Fig. 5.13.

In the first step, the object of the completed task is deleted from
the task queue. Afterwards, the scheduler checks whether the cre-
ation of a new instance has been previously postponed for this task.
If the result of the check is positive, the scheduler creates the post-

103

104 SYSTEM-LEVEL SIMULATION OF MULTICORE ARCHITECTURES

take next finished
task
{ remove task object
no more from the queue
finished
tasks

creation of succeeding |yes
task instance was
postponed?

task queue is empty
and no events in task request schedullng)
timer?

create and insert
task into queue

yes

terminate S|mulat|on j

Figure 5.13: Termination of user tasks

poned instance and inserts it into the queue (similarly to the normal
generation of task objects). When the task list is processed, the sched-
uler makes a decision whether to terminate the system simulation.
The system simulation terminates when the task queue is empty and
there are no entries task timer, i.e. no task invocations are planned in
the future. If these conditions are not satisfied, the simulation contin-

ues and tasks get rescheduled.

0s TICKS In some OS implementations, tasks are rescheduled peri-
odically during OS ticks, i.e. periodic, interrupt-triggered invocations
of the OS scheduler. In the proposed scheduler model, ticks are sim-
ulated using the internal tick timer. A special situation has to be con-
sidered when no rescheduling of user tasks occurs. In this case, the

scheduler trace still needs to be simulated as shown in Fig. 5.14.

preemption

lag
Aexecuﬁngq

Task f—executing——thold
7y 7y

Sched.
trace

—

tick timer: i >
event t; t t3 time

preempt
execute

Scheduler

Figure 5.14: Simulation of OS ticks without task switching

5.2 HIGH-LEVEL SCHEDULER MODEL

The figure shows an execution of a task in the core model. At time
t1, the scheduler model is notified by the tick timer about the OS
tick event. The execution of the task is temporarily stopped, however,
no task switch occurs at this moment. When the simulation of the
task is stopped at t;, the scheduler model triggers simulation of the
scheduler trace on the core model. At time t3, the trace simulation is
completed and the task can continue executing. Please note that no
context save/load traces are simulated on the core in this situation,
as no task switching has been occurred.

5.2.2.3 Task synchronization

The proposed scheduler model supports two synchronization mecha-
nisms between tasks: signals and semaphores. The purpose of the syn-
chronization mechanisms is to block the simulation of a task until
another task explicitly notifies a synchronization event, allowing the
first task to continue its execution.

Signal-based synchronization consists of two operations. In the first
operation, a task calls wait function implemented in the scheduler
model and specifies the ID of a signal it is waiting for. Please note
that multiple tasks can wait for a specific signal ID. During the sec-
ond operation, another task notifies the awaited signal by calling fire
function. At this time point, the task waiting for the signal can con-
tinue executing. An important detail of signal-based synchronization
is the fact that a waiting task reacts on the event of signal firing. In
other words, firing of the signal has to follow the wait call. A signal
fired before the wait call has no effect on the task waiting for this
signal.

Semaphores are another synchronization mechanism supported by
the scheduler. It is a very convenient method of synchronizing mul-
tiple tasks that process shared data. The semaphore-based synchro-
nization consists of three steps. In the first step, a task registers a
semaphore in the scheduler model by providing the semaphore’s ID
as well as its initial value. The value of the semaphore is stored in
the semaphore database (see Fig. 5.9). A task can start processing the
shared data only when it manages to decrement the semaphore value.
When the processing of shared data is completed, the semaphore’s
value has to be incremented.

Multiple user tasks may try to decrement a semaphore at a time.
However, these tasks can continue executing only if they can suc-
cessfully decrement the semaphore, i.e. the semaphore’s value is non-
negative afterwards. If a task tries to decrement a zero value, its exe-
cution is blocked until the semaphore is incremented by another task.
Semaphores initialized to 1 implement the functionality of mutexes.
Mutexes allows for mutually exclusive execution of user tasks, i.e.
they assure that only one task can process shared data at a time.

105

106

SYSTEM-LEVEL SIMULATION OF MULTICORE ARCHITECTURES

SYNCHRONIZATION PROCESS The synchronization process of tasks
is shown in Fig. 5.15. In this example, high priority task T; waits for
a signal which is fired by low priority task T>.

Task T, wait for signal 1
(hlgh prlo) | | |))))
| | | | | | |
J(:executing ; sleeping + hold ,]E xecuting:F
3 1 1 _ctx.save i 11 _ctx. save
Stcrg‘zg' i " trace for T i Stcrg‘zg" i " trace for T,
Scheduler . ' ! cxt. load ! ! ' _cxt. load
preemp 7] trace for T, trace for Ty
1 1 0 4 1 1 1
Task T, | Lo é sync Lo
; | | | | | |
(low prio) ! | | gy preempt b
ready 'v hold ' {—executing holdi ¢ ' ready.
| S i | S _>time
)
tl tz t3 slirenal 1| t6 t7 t8
g ts

Figure 5.15: Synchronization of user tasks

At time t;, task Ty makes a synchronization request to the sched-
uler model, specifying that it is waiting for a signal with ID 1. The
scheduler preempts the execution of this task and puts it into Sleeping
state. In addition, the scheduler internally stores the information on
the signal, which the task is waiting for. At the same time t;, the
core becomes available and the scheduler assigns ready task T, to the
core. The execution of T, does not start immediately. The scheduler
puts the task into Hold state, since the OS-related workload is not yet
simulated. The scheduler initiates simulation of the scheduler trace
followed by the context-save trace of T; and context-load trace of T>.
At time t4, the simulation of the OS-related traces is completed, and
task T, can start executing.

At time ts5, task T, performs a synchronization request to the sched-
uler model notifying fire of signal 1. The scheduler processes all tasks
in Sleeping state and compares the fired event with the event the
sleeping tasks are waiting for. Sleeping task T; matches the fired sig-
nal. Therefore, the scheduler changes its state to Ready and performs
rescheduling of the tasks. T has a higher priority than T,. Therefore,
the scheduler preempts T, and assigns T; to the core. At the same
moment ts, the scheduler sets the state of T; to Hold. After the simu-
lation of the OS-related traces, which is completed at time tg, Ty can
start executing.

The presented time diagram looks identical if the tasks would be
synchronized using a semaphore. If task Ty failed to decrement the
semaphore, its execution would get preempted and its state would be
set to Sleeping. Ty could continue executing only when the semaphore
had been incremented by T,.

5.2 HIGH-LEVEL SCHEDULER MODEL

TASK QUEUE The information on the event’s type (signal or sema-
phore), which a sleeping task is waiting for, as well as its ID are stored
in the task queue. In addition, the queue contains all relevant informa-
tion on the current task objects needed for the scheduler operations.
An example of the queue’s content is shown in Table 2.

Table 2: Content of the task queue

Name State Event | Evt ID | Prio | Core
Task 0 | SLEEP SIG 0 2 —
Task 1 | SLEEP SEM 2 2 —
Task 2 | EXECUTING | — — 1 0
Task 3 | SLEEP SEM 5 1 —
Task 4 | EXECUTING | — — 1 1
Task 5 | EXECUTING | — — 2 2
Task 6 | SLEEP SEM 10 2 —
Task 7 | READY — — 3 —

Each entry in the queue has several fields. In the first field the task
name is stored. The name is required for debugging purposes and
for interpretation of the simulation results. The next field stores the
current state of the task. The third and forth fields contain the type
of the synchronization event and its ID. These two fields are relevant
only if the task is currently in Sleeping state. The priority of the task
is contained in the fifth field. Finally, the ID of the core, which the task
is being executed on, is stored in the sixth field. This field is relevant
only when the task is in Executing state.

ADDING SYNCHRONIZATION MECHANISMS TO TASKS In order
to enable synchronization between tasks, the designer has to decide
which mechanism (signals or semaphores) is required in the target
scenario and where the synchronization points have to be inserted in
the tasks” workload. These decisions depend on the functionality of
the multi-tasking application as well as the target code.

The way how synchronization functions are inserted is different for
BLS- and TDS-tasks. In TDS-tasks, the workload is simulated using
an abstract trace. At simulation run-time, a core model reads the trace
file and interprets the trace commands, e.g. Delay, Read or Write as
shown in Listing 6. Synchronization in traces can be enabled by insert-
ing additional trace commands to the trace file prior to trace-driven
simulation. An example of adding signal-based synchronization to a
trace is shown in Fig. 5.16.

As shown in the figure, signal waiting is initiated by adding a
SIGWAIT command with the signal’s ID provided in the argument. In
turn, signal firing is initiated by a SIGFIRE command. The format of
the synchronization trace commands must be understandable by the

107

108

SYSTEM-LEVEL SIMULATION OF MULTICORE ARCHITECTURES

SIGWAIT 1 DELAY 4
DELAY 3 WRITE 32
READ 32 DELAY 3
DELAY 6 SIGFIRE 1

Figure 5.16: Adding signal-based synchronization to traces by employing
SIGWAIT and SIGFIRE trace commands.

trace decoder of core models. Semaphore-based synchronization can
be added in a similar way by inserting SEMINIT, SEMINC and SEMDEC
commands to the trace for initializing, incrementing or decrementing
a semaphore correspondingly.

Adding synchronization to BLS-tasks is more difficult compared to
TDS-tasks. BLS-tasks are based on functional simulation and, there-
fore, the use of synchronization mechanism may be data-dependent.
For example, a BLS-task may need to perform a synchronization re-
quest only if a certain local variable in the target source code has a
specific value. In this case, insertion of synchronization function calls
in the functionally equivalent C- code is particularly difficult because
of two reasons. First, it is difficult to precisely locate the synchroniza-
tion point in the binary code. If the binary code is compiled with com-
piler optimizations, the lines in the source code and the instructions
in the binary code cannot always be matched. Second, it is difficult
to determine the source code variables in the binary code, since the
binary code operates on the core’s registers.

void func() // translated code || // modified translated
{ // of function // code of function
if (var == 1) // sig_wait_1() // sig_wait_ 1()

sigwait _1();
void b_0x420a() { void b_0x420a() {
} PC = r[31]; // inserted sync.

} sched->sync(SIGWAIT, 1);
void sigwait_1() PC = r[31];
{ }
\\ empty function
}
J J

Figure 5.17: Adding signal-based synchronization to BLS tasks using a call
to an empty function sigwait_x().

To address the problems above, I propose a simple solution based
on calls to empty functions. This solution is shown in Fig. 5.17. Con-
sider a target application containing function func() (left part of
Fig. 5.17). Furthermore, assume that the execution of func() must
to be synchronized by waiting for a signal and the synchronization
has to take place only when local variable var equals 1. To enable
synchronization, the designer has to insert an if-condition and a call

5.2 HIGH-LEVEL SCHEDULER MODEL

to an empty function in the source code. The empty function has a
specific naming convention. For example, in case of signal waiting
the function name should be specified as sigwait_x(), where x is the
signal ID. The translated code of the empty function is shown in the
middle part of Fig. 5.17. It does not contain any processing instruc-
tions and consists only of a return (jump to the address stored in
register r31). The key idea is to configure the binary-to-C code trans-
lator such that it automatically inserts a synchronization request to
the scheduler model if the function name matches the proposed nam-
ing scheme. In the shown example, the generator inserts waiting for
signal 1 (right part of Fig. 5.17) after analyzing the name of the empty
function.

The reason of inserting a function call is the fact that position of
function calls cannot be changed by the compiler (otherwise it would
result in incorrect functional behavior). Moreover, the body of empty
functions can always be exactly located in the binary code. As a result,
synchronization requests to the scheduler model (i.e. calls to function
sync()) can be inserted very precisely in the translated code. In ad-
dition, there is no need in matching local variable var with the pro-
cessor’s registers in order to perform a synchronization request con-
ditionally. The if-condition added to the source code will be executed
as part of the target application. If the condition is not true at simula-
tion runtime, block function b_0x420a() (i.e. function sigwait_x() in
the source code) will not be invoked. Consequently, the synchroniza-
tion request to the scheduler model using sync() call will not take
place too (as intended). The semaphore-based synchronization can be
added to the translated target code in a similar way, i.e. by inserting
calls to empty functions semdec_x(), siminc_x() or seminit_x_y() in
order to decrement, increment a semaphore with ID=x and initialize
its to value y respectively.

5.2.3 Implementation details

The scheduler model in the simulator handles TDS- and BLS-tasks
equally. The exact simulation method of the workload (TDS or BLS) is
hidden from the scheduler, and the scheduling process is completely
decoupled from the actual workload simulation. To enable this decou-
pling, the tasks are implemented using a class hierarchy as shown in
Fig. 5.18.

BLS-tasks are implemented in class App. This class is specific for
each BLS-task and contains the actual implementation of the basic
block functions. In turn, class App is derived from generic class BLSlib,
which is common for all BLS-tasks. It defines common data structures
(e.g. register variables) and functions (e.g. initialization of the stack
memory). TDS-tasks are implemented in class Trace. From the simu-
lation perspective, TDS-tasks differentiate only in the trace file which

109

110

SYSTEM-LEVEL SIMULATION OF MULTICORE ARCHITECTURES

Class Task Independent of
simulation method

__________ B e —

- Specific to
Class BLSlib Class Trace simulation
? method
Class App
BLS-task TDS-task

Figure 5.18: Class hierarchy of TDS- and BLS-tasks.

is processed at simulation run-time. Therefore, class Trace is common
for all TDS-tasks since the data structures and functions required for
trace processing are similar among all TDS-tasks.

Although classes BLS1ib and Trace are specific for the respective
simulation method, they are derived from base class Task that does
not depend on the simulation method. The scheduler handles TDS-
and BLS-tasks (objects of App and Trace classes) by casting them to
class Task. Class Task defines member variables and functions re-
quired for the scheduling purposes only. Additionally, the class de-
clares virtual functions, e.g. execute() or preempt(), required by the
scheduler. The implementation of these functions is specific for each
simulation method.

The simulation of task workload is initiated in the context of a Sys-
temC process in an instance of the core model. The core instance is
selected by the scheduler as part of scheduling process. Because of dif-
ferent simulation methods, TDS- and BLS-tasks have different mech-
anisms for initialization, execution and preemption. In the following,
these mechanisms are discussed separately for TDS- and BLS-tasks.

5.2.3.1 TDS tasks

INITIALIZATION In the initialization phase, a TDS task opens a
trace file specified in the task description. The file is closed when
the simulation of the trace file is completed and the task object is
terminated in the scheduler.

EXECUTION To start the simulation of the trace file, the core model
calls execute() function which is implemented in class Trace. During
the simulation, the trace file is processed as shown in Fig. 5.19.
Processing of traces is performed using blocks of trace commands.
These blocks are read from the trace file at simulation run-time. Each
time the core model starts processing a trace command, it checks
whether the preemption? of the current TDS-task has been initiated

3 The preemption process will be discussed in detail in the next section

5.2 HIGH-LEVEL SCHEDULER MODEL

end of trace file
reached?

#no

read block of trace
commands

decode next
command from
the block

command is yes I .
delay? call sc_wait()

no
command is read/ | ves ma}ke communi-
write? _cation req. on the
interconnect model
no
call sync() in the
scheduler model

inform about
critical error

yes

offset

save current file ’

no
commands
left in block

synchronization
command, e.g.
sigfire?

Figure 5.19: Execution of a TDS task in SystemC.

by the scheduler. If the task has not been preempted, the core contin-
ues interpreting the current trace command. In case of a Delay com-
mand, the core model calls the sc_wait() function which is used to
simulate a processing latency. On Read or Write commands, the core
model makes a communication request to the model of on-chip inter-
connect. If the decoded command denotes a synchronization request,
i.e. firing of a signal, the core calls the respective synchronization
function in the scheduler model. A critical error occurs if the trace
decoder reveals an unknown command. In this case, the core model
informs the designer and the simulation is terminated. The trace sim-
ulation is completed when the end of the trace file is reached and
there are no more trace commands to be processed.

PREEMPTION In order to preempt a TDS-task, the scheduler model
has to set a special flag, which is polled in the beginning of the execu-
tion loop (Fig. 5.19). In certain situations, e.g. when the preemption
is initiated while a trace command is being simulated, an additional
time lag may appear as shown in Fig. 5.12. In this case, the task can be
preempted only after the simulation of the current trace command is
completed, thus, resulting in an additional delay or lag. The duration
of the lag is not constant and depends on the time required for the
current trace command to complete.

111

112

SYSTEM-LEVEL SIMULATION OF MULTICORE ARCHITECTURES

Despite the lag, the current preemption model is very efficient in
terms of simulation speed, since the preemption condition is checked
between trace commands only. The resulting lag can be neglected if
task switching occurs significantly less frequently compared to the
largest possible simulation time of a trace command. Moreover, the
lag can be neglected if tasks do not have hard real-time requirements
and the resulting timing error can be tolerated.

Nevertheless, the accuracy of preemption modeling can be still im-
proved if it is required in the target scenario. To accomplish this, an
additional SystemC event has to be added to all relevant SystemC
wait functions. This event must be additionally notified when the
scheduler wants to preempt the task’s execution. In this case, the
sc_wait() functions will return immediately after the notification of
the preemption event. However, this solution is less efficient in terms
of simulation speed because waiting for multiple events in SystemC
requires more computational efforts.

When the preemption flag has been set by the scheduler, the exe-
cution of the loop is stopped (Fig. 5.19). In the next step, the current
position in the trace file is stored in the task’s object. When the pre-
empted task will be executing again, the core will start to process the
trace file from the stored position.

5.2.3.2 BLS tasks

INITIALIZATION To a great extend, the initialization of BLS tasks
is related to the initialization of memory structures. First, the regis-
ter variables have to pre-initialized to the values as specified by the
target instruction set architecture. In addition, the program counter
variable has to be set to the entry point* of the target code. For the
correct program operation the arrays representing virtual heap and
stack memory needs to be initialized with data as discussed in Sec-
tion 3.1.1.

Modeling the target memory in case of multiple BLS tasks requires
careful consideration. As mentioned in Section 3.2.2, functional and
performance modeling of memory accesses is decoupled in BLS. The
organization of the memory models is shown in Fig. 5.20. Each target
application (consisting of one or multiple tasks) has its own virtual
memory for storing functional data. The memory is allocated locally
for each application using arrays data_mem and stack_mem (see List-
ing 2). This memory is private and cannot be directly accessed by
other applications. However, the virtual memory of tasks of one ap-
plication (e.g. tasks T;—T3 of application App1) is shared. To enable
this, arrays data_mem and stack_mem have to be common for these
tasks. In turn, performance modeling does not require a real transfer
of data and used solely to determine the timing of memory accesses.

4 The address of the first instruction to be executed.

5.2 HIGH-LEVEL SCHEDULER MODEL

) Virtual Virtual Virtual
functional memory memory memory
accesses to _

memory ————F i i

App: App;
timing accesses

to memory /"
Address Address
offset 2 offset 3

Figure 5.20: Functional and performance modeling of target memory in case
of multiple applications.

Apps

Address

offset 1
calls to local

cache model —

The timing simulation of memory accesses is initiated by invoking the
local cache models of the core, which the BLS task is assigned to. Us-
ing the target memory address provided by the application, the cache
model determines whether the current accesses is a hit or a miss and,
if necessary, initiates a communication request on the interconnect.

Many operating systems provide mechanisms for isolating user ap-
plications in the memory address space. The isolation is enabled by
mapping application’s virtual addresses to a different physical ad-
dress space by means of a processor’s memory management unit. Al-
though the isolation of address spaces is not required for timing sim-
ulation, consideration of the memory management is still necessary
because of the following reason. Assume two BLS tasks are mapped
to the same core and erroneously operate in the same address space.
In this case, the tasks will have an impact on each other by modi-
fying the state of the local caches, i.e. the cache models can gener-
ate wrong hits or misses. To address this issue, I perform shifting
of the address space for each application (using the address adders
shown in Fig. 5.20) to prevent aliasing of target addresses in the cache
model. The resulting space of physical memory addresses is shown
in Fig. 5.21. Each application has its own address offset and, there-
fore, the addresses spaces of multiple applications do not overlap.
The address offsets can be determined prior to simulation by ana-
lyzing the memory usage of the target applications. Please note that
more complex memory mapping schemes can be modeled, e.g. using
page tables, if it is required in the target scenario.

In addition to memory structures, BLS tasks require initialization of
the array with function pointers (see Section 3.1.2 for details). These
pointers are used to call basic block functions using the value of
the program counter variable. Finally, each BLS-task requires initial-
ization of an application-specific database with data dependencies
among the memory instructions. This information is used for mod-

113

114

SYSTEM-LEVEL SIMULATION OF MULTICORE ARCHITECTURES

virtual address virtual address virtual address
space of App 1 space of App 2 space of App 3

A A
- N - N N\

A A A

" physical

address
address address address space
offset 1 offset 2 offset 3

Figure 5.21: Simplified mapping of virtual address spaces into a physical
address space.

eling out-of-order cache effects as described in Section 4.5.1. I will
discuss modeling of out-of-order effects later in this chapter.

EXECUTION An example of BLS-task’s code adapted for the use in
the SystemC simulator is shown in Listing 7. The structure of basic
block functions and main execution loop are organized similarly to
the translated code shown in Listing 1. Each basic block function is
executed in the scope of the SystemC process of the core model. The
annotated execution delays are simulated using the SystemC wait
function, e.g. as shown line 9 in Listing 7. As mentioned previously,
performance simulation of memory accesses is decoupled from the
functional simulation and is started by calling the models of local
cache. Please note that the target addresses supplied to the cache
models are shifted by a constant value offset, which is automati-
cally set by the scheduler to support the addressing scheme shown in
Fig. 5.21.

Listing 7: The code of a BLS task adapted for the SystemC simulator.

1| void App::b_0x800() { /* function for basic block 0x800 x/
2 core->icache(READ, 0x800 + offset); /* performance access x/
3

4 r{31 = r[4] + r[3];

5 mem_access (WRITE, r[2], r[16] + 32); /* functional access x/
6 core->dcache(WRITE, r[16] + 32 + offset); /* perf. access x/
7

8 r(2] = r[2] + 1;

9 sc_wait(2, SC_NS); /* wait for processing latency */
10

11 | }

12 | void App::execute() {

13 while (!preempted) { /* main execution loop */
14 table[INDEX(pc)]I(); /* call to basic block functions =x/
15 }

16

17|}

5.3 SYSTEMC MODELS OF HARDWARE COMPONENTS

PREEMPTION In order to preempt a BLS task, the scheduler model
has to set a preemption flag. The flag is the object of the task’s class.
This flag is polled every time a new basic block function is going to
be executed (line 13 in Listing 7). If the flag is set, the execution of the
while loop is terminated and the program counter with the address
of the next basic block is temporarily stored. Please note that the
register variables do not have to be stored at the preemption. These
variables are the members of the task’s class and not of the core model.
Thus, each BLS task in the simulator has its own set of the register
variables. When the preempted task is set back to Executing after the
preemption, the execution of the basic block functions will resume
from the previously stored location.

Note that the preemption of BLS tasks is more coarse-grained com-
pared to TDS tasks, because BLS tasks can be preempted between
basic block functions only. This fact may result in a relatively large
preemption lag (see Fig. 5.12) comparable with the execution latency
of a complete basic block. Nevertheless, I use this preemption model
because of its simplicity. It is efficient in terms of simulation speed
and can be used as long as the resulting inaccuracy can be tolerated.
However, preemption at a finer granularity level is possible as well.
For example, basic block functions can be split into smaller parts. Us-
ing additional conditional statements, the execution of a block func-
tion can be preempted at each of these parts. However, this solution
results in a larger size of the translated code and additional compu-
tational efforts. This solution must be used only if a higher timing
accuracy of task preemptions is required.

5.3 SYSTEMC MODELS OF HARDWARE COMPONENTS

5.3.1 Qut-of-order core

In the SystemC simulator, out-of-order processing cores are modeled
as standalone SystemC modules. Each of these modules specifies a
SystemC process, in the scope of which tasks are simulated. When
the scheduler sends a command to execute a task, the core model
calls execute() function implemented in the task and the simulation
of the task’s workload is started>.

As discussed in Section 5.1, BLS and TDS methods presume differ-
ent abstraction levels of the core’s microarchitecture. Consequently,
the internal organization of the core model depends on the type of
a user task which is going to be simulated (see Fig. 5.22). In case of
TDS tasks, traces completely abstract the core’s microarchitecture and
describe the core’s timing behavior at the communication interface.
Therefore, during simulation of TDS tasks, communication requests
to instruction and data memory are directly forwarded to the external

5 See Section 5.2.3 for further details on simulation of BLS- and TDS-tasks.

115

116 SYSTEM-LEVEL SIMULATION OF MULTICORE ARCHITECTURES

Core model operating in Core model operating in
TDS mode BLS mode

TDS task | BLS task
A

A h
the module i\ . .
is disabled instruction
Non-blocking accesses
extension
t data
instruction v accesses
accesses Data Inst.
cache cache
data
r v accesses ¢ - ¢
Comm. interface | Comm. interface |
y A A Y
v v v A
to interconnect model to interconnect model

Figure 5.22: The internal structure of a core model. The model can operate
in two modes, depending on the type of a task.

communication port of the core’s model. In turn, BLS tasks presume
a lower abstraction level of the core’s microarchitecture and require
co-simulation of local caches. Therefore, to support the simulation of
BLS tasks (right part of Fig. 5.22), the core model incorporates mod-
els of local caches. In addition, it includes an non-blocking extension for
considering the non-blocking behavior of a data cache. In the follow-
ing sections, I discuss these internal components in detail.

5.3.1.1 Non-blocking extension

The purpose of the non-blocking extension of a data cache model is to
reconstruct the core’s timing behavior according to the principles de-
scribed in Section 4.5.1. Particularly, this extension allows simulation
of the core’s out-of-order behavior in the presence of active data cache
misses. If a data cache miss occurs, the extension unblock the execu-
tion of a BLS task and the task’s execution is simulated further in
the out-of-order mode. During the out-of-order execution, a BLS task
can continue accessing the data cache. In case of a hit, the simulation
of the task’s execution continues according to the hit-under-miss pol-
icy. The out-of-order execution of a BLS task is stalled in one of the
following situations:

1. The non-blocking cache extension discovers a memory instruc-
tion which depends on the active miss. In this case, the simu-
lation of the task’s execution is stalled till the simulation of the
miss penalty in the interconnect model is completed.

2. The non-blocking cache extension discovers a memory instruc-
tion whose sequential number is too large to fit into the instruc-
tion window. In this case, the task’s execution is stalled till the

5.3 SYSTEMC MODELS OF HARDWARE COMPONENTS

active miss is completed and the instruction caused the miss
can leave the instruction window.

The central element of the non-blocking extension is a queue shown
in Fig. 5.23. The queue contains the status of recent accesses to the
data cache. For each memory instruction, an entry in the queue is
created. This entry specifies the address of the memory instruction
as well as its sequential number. In addition, a queue entry may con-
tain a sequential number of another memory instruction, which the
current instruction depends on®. The information on instruction de-
pendencies has to be pre-initialized in the BLS task object. Finally,
each entry contains a ready flag indicating whether the memory op-
eration is completed or not. This flag is set when the corresponding
line in the data cache becomes available.

Inst. address | Seq. number | Depends on | Ready
0x1a0 134 - no
0x2b4 141 - yes
0x2bc 143 - yes
0x110 151 134 no
0x124 155 - yes

Figure 5.23: A queue employed in the non-blocking cache extension. The
queue contains the status of memory instructions.

The queue can be considered as a model of the instruction window
because of the following properties. Firstly, a new entry in the queue
is created each time when a BLS task accesses the data cache. Sec-
ondly, the queue is always sorted by the sequential numbers of the
entries, i.e. according to the program order of the memory instruc-
tions. Finally, the entries of the queue can be removed only in the
program order starting from the top of the queue and only when the
respective memory operations are completed. Thus, the operation of
the queue is similar to the operation of an instruction window, in
which instructions are committed in the program order as well.

FUNCTIONAL DESCRIPTION The execution of the non-blocking ex-
tension is invoked each time when a BLS task accesses the model of
the data cache. At each invocation, the extension operates according
to the algorithm shown in Fig. 5.24. In the first step, the sequential
number of the memory instruction is analyzed. If the difference be-
tween the sequential numbers of the current instruction and the top
instruction in the queue is smaller than the pre-configured parameter
(representing the size of the instruction window), the current mem-
ory instruction fits into the instruction window. In this case, a new
entry in the queue is created for this memory instruction.

Please refer to Section 4.5.2 for further information on the dependency analysis be-
tween memory instructions.

117

118

SYSTEM-LEVEL SIMULATION OF MULTICORE ARCHITECTURES

Is the sequential yes | Stall task’s execution
number too large to and wait till the earliest
fit into the queue? miss is ready \

yes

Insert current

Is the sequential
,\ memory operation

number still too large to

Is the other operation
in the queue and not

ready? into the queue fit into the queue?
‘ yes * ¢ no
Stall task’s execution and Does the curre{nt Simulate the
wait till the required &%Zﬁgyo%paegﬁtfenr preceeding delay
operation is ready operation?

] o
Simulate the Access the data cache:
preceeding delay cache hit?

L yes

- Mark as ready (after
cache hit latency)

Figure 5.24: Behavior of the non-blocking cache extension in a situation
when a BLS task accesses the local data cache.

Mark as not ready

If the difference is larger than the size of the instruction window,
the task’s execution will be stalled till the active miss becomes ready.
In a real core, this situation occurs when the instruction window is
full and no further instructions can be fetched. When the active miss
is ready, the ready entries in the queue can be removed starting from
the top of the queue. When the sequential number of the memory
instruction suits into the window, the non-blocking extension conser-
vatively simulates the delay preceding the current access”.

When a new entry was created, the extension checks whether the
current memory instruction depends on any other memory instruc-
tions in the queue. If such instruction exists and it is not yet ready
(see the left column in Fig. 5.24), the task’s execution is stalled till the
required memory operation is ready. Afterwards, the delay preced-
ing the current memory operation is conservatively simulated once
again®.

If the current memory instruction does not depend on any other
memory instructions in the queue (or the dependency has been al-
ready resolved as described above), the non-blocking extension calls
the data cache model, providing the target address of the memory
instruction. If the cache model generates a hit, the respective entry is
marked as ready after the interval of the cache hit latency. In case of a
miss, the current memory instruction remains in not ready state till the
simulation of the miss latency is completed. Please note that the BLS
task can further access the cache model in the presence of an active
miss. In case of a hit (i.e. hit-under-miss), the memory instruction is

7 See Section 4.5.1.3 and Fig. 4.19(c) for further details.
8 Refer to Section 4.5.1.1 as well as Fig. 4.16(c) for further details.

5.3 SYSTEMC MODELS OF HARDWARE COMPONENTS

marked as ready (after a hit latency). In case of a miss under miss,
the memory operation is marked as not ready and the simulation of
the second cache miss penalty is postponed till the simulation of the
first miss is completed.

Mark current
memory operation as
ready

'

yes
Remove the top Is the top memory
memory operation operation in the
from the queue queue ready

'

no more operations Perform the top
in the queue memory operation and
access the cache

Figure 5.25: Behavior of the non-blocking cache extension in a situation
when the simulation of a cache miss penalty in the interconnect
model is completed.

Fig. 5.25 shows the behavior of the non-blocking extension in a sit-
uation when the simulation of the miss penalty in the interconnect
model is completed. In the first step, the corresponding entry in the
queue is marked as ready. Afterwards, the queue is updated by re-
moving the ready entries starting from the queue’s top. If the top
queue’s entry is not ready after the update, it is a postponed miss
under miss. In this case, the non-blocking extension calls the data
cache once again, thereby starting the simulation of the postponed
miss in the interconnect model. The algorithm ends if there are no
more entries in the queue to be processed.

EXAMPLE TIMING DIAGRAM 1 In this section, I present an exam-
ple of the module’s operation and interaction of the module with
other components. The timing diagram in Fig. 5.26 shows a situation
when the execution of a BLS task is stalled due to the finite size of
the instruction window. The core model executes a BLS task by sim-
ulating the annotated processing latencies? and performing accesses
to the data memory as shown in the figure. Assume that the queue
in the non-blocking extension is empty at the beginning. At time t;,
the task performs the first access to the data memory and calls the
non-blocking extension. In the next step, the extension forwards the
memory access to the data cache model which generates a miss event.
The cache model makes the communication request to the intercon-
nect module, thereby starting the simulation of the miss penalty. At

The simulation of annotated processing latencies is performed using SystemC
sc_wait() function. For further details, please refer to Section 5.2.3.2.

119

120

SYSTEM-LEVEL SIMULATION OF MULTICORE ARCHITECTURES

the same time, the execution of the task is not stalled by the data
cache miss. The non-blocking extension immediately responses and
the task continues executing in parallel to the miss.

access1 access2 access3 access4

BLS task
I delay1 | delay2 | delay3 | delay 4 tall | delay 5
N A
Seq.
Non-blocking numbqer is
extension . | v too large delay 4
h h
Data Hit Hit : aci;ess
cache under(under !
module Miss miss miss i Miss
H j | \ F H
| ' ' i data '
Interconnect ! | : ! ready |
module [cache miss penalty
! ! ! ! , I
ty t, ts ty ts te time

Figure 5.26: Stalling of the task’s execution due to the finite size of the in-
struction window.

At time t; the simulation of the second execution delay in the out-
of-order mode is completed and the BLS tasks makes the second re-
quest to the data memory. The extension makes sure that this mem-
ory instruction does not depend on the active miss and accesses the
cache model in the presence of a miss. The access results in a hit
and the task can continue executing (hit-under-miss policy). At time
t3, the BLS task makes the third independent access to the cache re-
sulting in a hit under miss as well. At time t4, the task makes the
fourth request to the data memory. The extension checks the sequen-
tial number of the current memory instruction, which is too large to
fit into the queue. Therefore, the extension does not respond to the
task immediately and stalls the task’s execution. Moreover, the exten-
sion postpones the data cache call.

At time ts, the simulation of the first miss penalty is completed
and the data cache model correspondingly notifies the non-blocking
extension. As in the previous example, delay 4 is conservatively simu-
lated once again and the ready memory instructions is removed from
the queue. At time tg, the extension creates a new queue entry for
the fourth data accesses (which is now fitting into the queue) and
performs the postponed call to the data cache. The access results in
a miss and the simulation of the miss penalty in the interconnect is
started. At the same time, the core model continues simulating the
fifth delay of the BLS task in the out-of-order mode without blocking
the task’s execution.

As can be seen from this experiment, the non-blocking extension
allows reproducing the timing behavior of out-of-order cores, which
are capable of hiding cache miss latencies. The extension stalls the
execution of BLS tasks if the execution has to be blocked due to the fi-

5.3 SYSTEMC MODELS OF HARDWARE COMPONENTS

nite size of the instruction queue. The task’s execution continues only
when the sequential number of the upcoming memory instructions
fit in the suggested instruction window.

EXAMPLE TIMING DIAGRAM 2 The timing diagram in Fig. 5.27
shows the behavior of the non-blocking extension in a situation when
a BLS task performs a memory access depending on the currently
active miss. Similarly to the previous example, the queue in the ex-
tension is initially empty. At time t;, the task accesses the data cache
and the operation results in a miss. The cache makes a request to the
interconnect model and the simulation of the cache miss penalty is
started. At the same time, the task continues executing without being
stalled. At time t,, the task performs an independent access to the
data cache resulting in a hit. It is a hit under miss and, therefore, the
task’s execution continues.

dependency.
access1 access2 access 3
BLS task
| delay1 | delay2 | delay 3 stall delay 4
A
Non-blocking access 1
extension \ \ whot ready delay 3
access||
Data Hit 3
cache under
module Miss miss Hit
A
! ! data !
Interconnect I I ready i
module v cache miss penalty !
. ! ! . T
4 t, 13 ts ts time

Figure 5.27: Interaction of the non-blocking cache extension of a data cache
with other core’s components in a situation when the task’s ex-
ecution is stalled due to dependency on the active data cache
miss.

At time t3 the task performs the third access to the data cache
which depends on the first access. Since the first miss is not ready yet,
the non-blocking extension stalls the task’s execution. At time t4, the
simulation of the miss penalty is completed. In the next step, delay
3 is conservatively simulated once again and the third access to the
data cache is repeated. At the same time, the task continues executing
and the core model starts simulating the next delay. In this way, the
non-blocking extension allows reconstructing the behavior presented
in Section 4.5.1.1.

121

122

SYSTEM-LEVEL SIMULATION OF MULTICORE ARCHITECTURES

5.3.1.2 Cache

The purpose of a cache module is to generate a hit or miss event for
the given target memory address. The real data is not stored in the
cache model since the caches are employed for timing simulation only.
The central part of the cache model is a database shown in Fig. 5.28.
Each entry corresponds to a cache line and specifies the following
control information: the address tag of the line, valid bit as well as
the dirty bit. The amount of entries in the database is determined by
the total number of cache lines. This value can be configured by the
designer.

Database in the cache model

Way‘s/]!I- il [. I : . T ~
(Tag Valid | Dirty H
set _|] g
index HT
sets < H
Target memory address
\ ~ I\ ~ | G
ta set offset
g index

Figure 5.28: The structure of the database employed in the cache model.

The cache model can be employed for various configurations of
set-associative caches. For this, the entries of the database are orga-
nized in a two-dimensional array. The first dimension of the array
represents sets of a cache line. The second dimension of the array
represents ways within each set. On each access, the cache model an-
alyzes the given target memory address and extracts the tag and set
index values from the address as shown in Fig. 5.28. The set index de-
termines the position of the set in the database. In the next step, the
model iterates through the ways in the selected set and compares the
provided address tag with the tags stored in the set. If the tag of the
given target address matches one of the tags in the set and the asso-
ciated line is marked as valid, the cache model generates a hit event.
If the current access is a write, the cache model additionally sets the
dirty flag for the cache line. In this case, the line will be written back
to the main memory if it is going to be replaced by another line.

If none of the valid tags in the set matches the provided tag, the
memory access results in a miss. In this situation, the cache model
makes a communication request to the on-chip interconnect, which,
in turn, starts simulating the cache miss penalty. When the simulation

5.3 SYSTEMC MODELS OF HARDWARE COMPONENTS 123

is completed, the address tag of the line is placed into the set. During
this operation, the current line may replace another valid line in the
set'. Different algorithms for line replacement can be considered. For
example, the lines be replaced according the FIFO principle. Alterna-
tively, the least recently used (LRU) line in the set can be replaced.
Upon the replacement, the cache model overwrites the old address
tag and sets the dirty flag if the current access is a write.

5.3.2 Communication infrastructure and memory

In this section, I introduce a generic model of an arbitrated bus for ob-
taining communication latencies in the system-on-chip environment.
In addition, I present an extension to the bus model for considering
the effects of the snooping-based coherence mechanism employed in
local caches.

5.3.2.1 Arbitrated bus

The SystemC simulator incorporates a model of a generic arbitrated
bus shown in Fig 5.29. The model enables communication between
multiple masters and slaves components. To enable arbitration, the
interface of each bus master is assigned a fixed priority. Thus, when
multiple masters want to communicate simultaneously, the arbiter
grants access to the master having the highest priority. In this model,
I assume that the bus is blocked during the complete interval of data
transfer including the slave’s access latency.

Master 0 Master 1 Master N

|Comm. interface| |Comm. interface| Comm. interface

” prio=1 ” prio =2 l prio=x
Cache
| Arbitrated bus model |7_> coherency

H l extension

Comm. interface e Comm. interface

Slave 0 Slave N

Figure 5.29: A model of an arbitrated shared bus employed in the simulator.

The algorithm of bus arbitration is shown in Fig. 5.30. The arbitra-
tion process starts when a master makes a communication request to
the bus model. If the bus is currently occupied by another master, the
current request is added to an internal request queue. In this case, the
requesting master has to wait till the next arbitration, which will start
when the current communication is completed. If the bus is idle or
the communicating master has just completed the data transfer, the

10 This situation occurs if all lines in the set are valid.

124

SYSTEM-LEVEL SIMULATION OF MULTICORE ARCHITECTURES

bus arbiter checks the queue for all masters waiting to be granted. If
there are multiple pending requests available in the queue, the arbiter
selects a master with the highest priority and the other masters have
to wait for the next arbitration. Each time the simulation of commu-
nication is completed, the master which initiated the communication

is notified by the bus.
Is another master | yes | Add request to
communicating? the queue
no
Is the request
gqueue empty?
yves no—g
[Select the currentj [Select a master with}

bus master the highest priority

—

Start simulation
of the bus access

Figure 5.30: Bus arbitration process

5.3.2.2 Cache coherence support

The use of shared data by multiple processing cores with local caches
requires additional mechanisms for keeping the caches coherent among
each other. In most cases, the use of a specialized cache coherency
protocol results in additional traffic on the interconnect. As a result,
cache coherency may increase the execution time of target applica-
tions. In write invalidate coherency protocols, which according to [26]
are currently most common, the lines in other caches are invalidated
when a core writes to shared data. The other cores will experience
additional cache misses when they access this data at a later time.
Therefore, consideration of cache coherency is important for accurate
timing simulation, even if the cache models do not contain real tar-
get data and, in fact, there is no need for keeping the cache models
consistent.

In this section, I introduce an enhancement to the arbitrated bus
model which adds functionality of a snooping-based protocol. Par-
ticularly, the MESI coherency protocol [55] for write-back caches is
considered in the model. As described in [26], the protocol defines
four states of cache lines, which also determine the protocol’s name:
Modified, Exclusive, Shared and Invalid. J. Hennessy and D. Patter-
son in [26] provided a detailed description of the operation of the
MESI protocol. The states and their possible transitions are shown in

11

5.3 SYSTEMC MODELS OF HARDWARE COMPONENTS

Fig. 5.31. A cache line in shared state is present in multiple caches. A
cache line in exclusive state is present in one cache only. In both cases,
the data in caches and the main memory is same. However, when a
core writes data to an exclusive or shared line, the state of the line
is changed to modified. A modified cache line can be present only in
one cache and is dirty, i.e. the data in the line is different from the
data in the main memory. Although exclusive state is not necessarily
required in the protocol, it avoids unnecessary invalidations when a
core writes data to the exclusive line. Since the line is exclusive in
this core, writing to this line does not require invalidations in other
caches. Thus, the additional traffic caused by the invalidation can be
avoided. More information on the MESI protocol can be found in [26].

Modifie

Figure 5.31: States of cache lines and possible transitions between them in
the MESI cache coherency protocol [26].

In snooping-based protocols, the states of cache lines are locally
stored and managed in each cache controller™'. During the program
execution, the cache controllers monitor (or snoop) the activity on
the shared interconnect and correspondingly update the status of
the cache lines. For simplicity reasons, I implemented the cache co-
herency mechanism in the bus model. In this way, modeling complex-
ity can be reduced without changing the behavior of the coherency
protocol.

Implementation of the cache coherency protocol in the bus model
requires a separate database. It stores the coherency status of all
cache lines currently present in the system (thereby resembling the
directory-based coherency protocols). The database stores the owner
of cache lines in modified or exclusive state. The operation of the co-
herence extension is shown in Fig. 5.32. The behavior depends on the
type of communication performed by a core. In fact, two communica-
tion types in a write-back cache are possible:

This is in contrast to directory-based coherence protocols, in which the status of the
cache lines is stored in a central database.

125

126

SYSTEM-LEVEL SIMULATION OF MULTICORE ARCHITECTURES

e the core reads a line from the main memory due to a miss on a
read or write,

e the core writes a line back to the main memory due to a line

replacement.
Cache line in the no | Create entryin
database? the database
yes
Line fill on Line fill on Line fill on
read miss? write miss? read miss?

no (line fill
on write
miss)

yes yes

Line’s state is
modified?
yes

[Flush and invalidate ‘
no

Set line’s state
to exclusive

Line’s state is
modified?

Flush line from
the owner

Set line’s state to
modified and set
the owner

line in the owner

Line’s state is
shared?
yes

Llnvalidate the line

no (line
writeback)

Line’s state is

) no (state is
exclusive?

exclusive)

Set line’s state
to shared

in other caches

Invalidate the
line in the owner

Set line’s state to
modified

Remove
entry from
the database

Set the new
owner

Figure 5.32: Operation of the coherency mechanism in the bus model when
a core reads or writes a line on the bus. The operation is per-
formed according to the MESI coherency protocol [55].

When a core reads or writes a cache line to the main memory, the
bus model checks whether the description of this line is available in
the database. If not, it is a first miss on this line and none of the caches
contains this line yet. In this case, the bus model creates a new entry
in the database. The following step depends on whether the miss was
caused by a read or write operation. In case of a miss on a read, the
state of the line is set to exclusive, since other caches do not contain
this line. In case of a miss on a write, the line’s state is set to modified.
In addition, the bus model stores the ID of the line’s owner, which is
by a convention the ID of the core performing the access.

In the following, I discuss three cases when the line’s description
has been found in the database. In the first case, the cache line must
be read from the memory due to a write miss. If the line has been

12

5.3 SYSTEMC MODELS OF HARDWARE COMPONENTS

already set to modified state, this line is in another cache and the line
is dirty™. The current owner has to invalidate this line and flush
it back to the memory. However, if the cache line is in shared state,
the main memory contains correct data and no flushing is needed.
Nevertheless, the line in other caches must be still invalidated, since
the modified line can be only in one cache.

In the second case, the cache line is read from the main memory
due to a read miss. If the line is currently in modified state, the owner
has to flush the line and the state is then changed to shared without
line invalidation. If the line is currently in exclusive state, the main
memory contains updated data and no additional actions are needed
apart from just setting the state to shared.

In the last scenario (left part of Fig. 5.32), a core writes back a
dirty cache line. A dirty cache line is always in modified state, i.e. it
is present in this cache only. Therefore, when a dirty line is replaced
in the owner and is being written-back to the memory, none of the
caches contains this line any more. Therefore, upon a write-back the
line can be removed in order to keep the database as small as possible.

The implementation of the cache coherence mechanism in the bus
model requires an additional communication channel with cache mod-
els for transferring control information (not shown in Fig. 5.29). Par-
ticularly, the additional channel is used by caches to report write hits
to the bus model. In case of a write hit, a cache does not communicate
with the bus. Nevertheless, the bus model has to be still notified about
these events in order to update its internal database correspondingly.

start

shared? other caches, set
’ the new owner

i

., . Invalidate the line in
Line’s state is | yes

no (state is exclusive)

Set line’s state
to modified

l‘

Figure 5.33: Behavior of the cache coherency extension in case of a write hit.

The operation of the coherence extension in case of a write hit is
shown in Fig. 5.33. If a cache reports a write hit on a line that is cur-
rently in shared state, the bus model sends invalidation command to
other caches and stores the owner’s ID in the database. Afterwards,
the line’s state is changed to modified. However, if the line was in ex-

Note that the core requesting a line due to a write miss cannot be the owner of the
line. The owner of a modified line always experiences write hits.

127

128

SYSTEM-LEVEL SIMULATION OF MULTICORE ARCHITECTURES

clusive state, the line’s state is simply set to modified and invalidation
of other caches is not required (because the current cache is the only
owner of this line). It is the benefit of using exclusive state in the co-
herency protocol. The invalidation events can be propagated using
either the data bus itself or a separate medium. I assume that a sepa-
rate communication channel exist in the bus for sending invalidation
commands. However, the present bus model can be easily adjusted to
consider propagation of invalidation signals over the data bus.

5.3.2.3 Memory

In the SystemC simulator, the actual functional data in caches is ab-
stracted. Therefore, for simulation simplicity, the memory component
is abstracted as well. The memory component is modeled by adding
an additional memory access latency to the communication latency
on the arbitrated bus. The value of the latency can be configured by
the designer prior to simulation.

EXPERIMENTAL RESULTS

This chapter presents experimental results of the proposed host-com-
piled binary-level simulation method that considers complex timing
behavior of out-of-order cores. Particularly, in Section 6.1 I evaluate
context-aware simulation introduced in Chapter 4 and investigate the
optimization techniques proposed in Section 4.6. The evaluations in
this section are performed in C++ environment. In Section 6.2, host-
compiled simulation and trace-driven simulation techniques are com-
pared. The experiments in this sections are performed using models
from Section 5.3 and considering the overhead of SystemC-based sim-
ulation. Finally, I demonstrate system-level design space exploration
of a multi-tasking JPEG application on a multicore platform in the
SystemC simulator. The exploration is carried out by means of the
scheduler model introduced in Section 5.2.

6.1 CONTEXT-AWARE HOST-COMPILED SW SIMULATION

6.1.1 Experimental setup

6.1.1.1 Reference core simulator and target applications

As described in Section 4.3.2.1, context-aware host-compiled simula-
tion requires a reference cycle-accurate simulation of the target pro-
cessing core to obtain execution time of basic blocks. As a reference
simulator, I used sim-outorder tool from the SimpleScalar suite [5] with
memory extensions [14]. It is a cycle-accurate simulator implement-
ing PISA instruction set' [13] and supporting out-of-order execution,
branch prediction and non-blocking cache behavior. The SimpleScalar
tool allows simulation of different processing cores and is highly con-
figurable. The configuration of the processing core simulated during
the experiments is shown in Table 3. The simulator was additionally
extended with a monitoring unit for capturing timing information of
basic blocks.

As target software, I used a set of 32 different embedded appli-
cations from MiBench [23] and MediaBench [37] benchmark suites
as well Embedded JPEG Codec Library [92]. The benchmarks rep-
resent different application domains and include the following pro-
grams: basicmath (small workload), bitcount, gsort (small workload),
susan.corners, susan.edges, susan.smoothing, jpeg (encoding and decod-
ing), ejpeg, lame, mpeg2 (decoding), epic (encoding and decoding), rasta,

1 A slightly modified version of the MIPS instruction set architecture

129

EXPERIMENTAL RESULTS

Table 3: Configuration of the core simulated in the SimpleScalar.

Amount of integer ALU’s 4
Amount of integer multiplier/dividers 1
Amount of floating point ALU’s 4
Am : : TR

diVi(;l;rrl;f of floating point multiplier/ 1
Amount of L1 cache ports 2
Register update unit size 64
Load/store queue size 64
Instruction fetch queue size 4 inst

Ratio of front-end speed relative to ex-
ecution core

1

Maximum instruction issue width

4 inst./cycle

Issue after a misspeculation

yes

Instruction decode width

4 inst./cycle

Instruction commit width

4 inst./cycle

Branch predictor type

Bimodal predictor using
a branch target buffer
with 2-bit counters

Bimodal predictor table size 2048
Sets in branch target buffer 512
Associativity of branch target buffer 4
Return address stack size 8
Extra branch mis-prediction latency 3 cycles

stringsearch (large), dijkstra (small), patricia, blowfish (encode and de-
code), pgp (encoding), rijndael (encoding and decoding), sha, crc32, fft,
ifft, adpcm (encoding and decoding), g721 (encoding and decoding),
gsm (toast and untoast).

The benchmarks were executed using standard input data provided
with the application’s code. The code of the applications was com-
piled with gcc cross-compiler v.2.7.2.3 provided in the SimpleScalar
suite with enabled compiler optimizations.

6.1.1.2 Workflow of experiments

The evaluation of the proposed host-compiled simulation was per-
formed separately for each target application according to the work-
flow shown in Fig. 6.1. The experiments were carried out in two
phases. Firstly, in the generation phase the binary code of the target
applications was executed in SimpleScalar in order to obtain context-
dependent timing of basic blocks. As discussed in Section 4.2, the
block’s timing was derived assuming perfect instruction and data
caches in the reference simulator. Afterwards, the target binary code

6.1 CONTEXT-AWARE HOST-COMPILED SW SIMULATION

was translated into the equivalent C code and annotated with the tim-
ing information obtained in the previous step. The annotation was
performed under consideration of multiple execution contexts of ba-
sic blocks to enable context-aware compiled simulation as described
in Section 4.3.3. Afterwards, the annotated code was compiled and
executed on the host computer. For the host compilation of the trans-
lated code, I employed gcc compiler v4.4.3 with enabled compiler
optimizations. The result of the compilation was an executable pro-
gram. The execution of this program produced an estimation of the
execution time of the target application assuming the performance
characteristics of the target processing core.

Target binary l'
code

Target binary l'
code

Derivation of basic
blocks’ timing in
SimpleScalar ISS

!

Binary-to-C
translation of the
target code

'

Out-of-order core
simulated in
SimpleScalar ISS

|

Comparison of
simulation results

t

Context-aware Context-aware
annotation of compiled SW
timing information simulation
'
’ Host-compilation ‘ T
| [Application-specific}]]
' host executable

Application-specific
host executable Evaluation phase:

two setups

Generation phase

Figure 6.1: The workflow of experiments consisting of two phases. In gen-
eration phase, the target binary code is translated to C-code,
annotated with context-dependent timing information of basic
blocks and compiled on the host computer. In the evaluation
phase, the resulting executable was employed to perform host-
compiled binary-level compiled simulation. The results of this
simulation were then compared to the reference cycle-accurate
simulation in SimpleScalar.

In the evaluation stage, the produced executable file was employed
to perform context-aware host-compiled simulation. In the next step,
the results of compiled simulation are compared with the reference
simulation of the same target code in SimpleScalar. Two different se-
tups are used in the evaluation phase. In the first setup, both Sim-
pleScalar reference simulation and host-compiled simulation are per-
formed assuming perfect instruction and data caches. In this setup,
the following investigations are conducted:

131

132

EXPERIMENTAL RESULTS

e First, I evaluate the efficiency of the optimization of translated
code introduced in Section 4.6.1. The results of this evaluation
are presented in Section 6.1.2 of this chapter.

o Afterwards, I investigate the impact of employing multiple exe-
cution contexts per basic block in host-compiled simulation (see
Section 4.3 for further details), while considering the above opti-
mization of the translated code. The results of this investigation
are presented in Section 6.1.3.

e Finally, I evaluate averaging of basic block timings described in
Section 4.6.2. This technique is evaluated in Section 6.1.4.

In the second setup, compiled SW simulation and SimpleScalar sim-
ulation are performed assuming a realistic data cache and perfect in-
struction cache. In this setup, I focus on the behavior of non-blocking
data caches and perform the following investigations:

e Firstly, I evaluate modeling of the non-blocking cache behavior
discussed in Section 4.5. The results of these investigations are
presented in Section 6.1.5.

e Secondly, I assess the technique of static reordering of cache
accesses described in Section 4.6.3. The corresponding results
are presented in Section 6.1.5.1.

All experiments presented in the next sections were performed on
a host computer with an Intel Core iy 870 2.93 GHz processor and 16
GB of RAM running a 64-bit Linux Ubuntu 10.04 operating system.

6.1.2 Optimization of binary-to-C translation

As discussed in Section 4.6.1, with a larger length of context signa-
tures (i.e. with larger considered sequences of previously executed
basic blocks), more contexts of basic blocks can be differentiated in
context-aware host-compiled simulation. In Section 4.6.1, I already
presented some experimental results showing that the total amount of
contexts differentiated by signatures significantly increases at larger
signature lengths. Fig. 6.2 shows the total percentage of identical
block timings at various signature lengths. At a signature length of 16,
almost 60% of context-dependent timings are identical and, therefore,
redundant. This observation provides an opportunity for an optimiza-
tion of the translated code.

In Section 4.6.1 I presented a solution to this problem. This solu-
tion relies on the fact that even if the total amount of block timings
increases with the signature length, the amount of unique basic block
timings does not increase at the same rate. In other words, a large
portion of context-dependent timings of a basic block are identical,
i.e. at many contexts the basic block has the same execution delays

6.1 CONTEXT-AWARE HOST-COMPILED SW SIMULATION

70 ‘ ‘ ‘ I I
60 /a
/
Il
50 A .
4* =
40
el
30 d;é"
]

20 ,l// —o—Percentage of redundant basic block timings, %

"/ / ~#-Reduction of source code size, %
10 // Reduction of compile time, %

,/ ‘ ‘ ‘ ‘ ‘ avefaged fver axl ben#hmarl*s

0 T T T T T T T T T T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Signature length

Figure 6.2: Results of the proposed optimization of binary-to-C translation
of the target code. Elimination of redundant basic block timings
allows for significant reduction of the size and compilation time
of the translated code. The plots represent average values for all
benchmarks.

and the same order of memory accesses. In fact, the unique timings
can be reused among multiple contexts as proposed in Section 4.6.1,
thereby reducing the size of the translated code as well as its com-
pilation time. The results of this optimization are shown in Fig. 6.2.
On average, for all benchmarks the size of the translated code could
be reduced by 11% at a signature length of 1 and 66% at a signature
length of 16.

The absolute number of block timings annotated in the translated
code after optimization is shown in Fig. 6.3. The higher the signa-
ture length is, the more timings are redundant and hence can be
eliminated. Compared to a case with non-optimized translated code
shown in Fig. 4.21, the amount of annotated basic block timings is
significantly reduced. At a signature length of 16, the optimization
is most efficient. For example, for lame benchmark the amount of an-
notated timings was reduced from 55085 to 8723 (see Fig. 4.21 for
comparison). However, for some benchmarks the optimization is less
efficient. For example, in crc_32 he amount of annotated block timings
was reduced only from 1130 to 88o.

Fig. 6.4 shows the size of translated code assuming the optimiza-
tion above as well as the reduction of context signatures for identi-
cal contexts introduced in Section 4.6.1. Despite the optimization, the
code size still significantly increases with a signature length. Notably,
the size changes differently for benchmarks. For crc32 benchmark,
which is the smallest one in terms of the context count, the size of the
translated code increased from 1.02 MByte (at a signature length of 1)
to only 1.15 MByte (at a signature length of 16). At the same time, for
benchmark lame the code size increased significantly from 4.93 MByte
to 46.44 MByte.

133

134

EXPERIMENTAL RESULTS

=¥=adpcm_decode =@-adpcm_encode —+=basicmath_small - bitcount
———blowfish_decode = —#—blowfish_encode —l-crc32 ~A—dijkstra_small
—>=gejpeg —#=epic_decode ~@-epic_encode et it
——g721decode ~—-g721encode ~o—gsm_toast ~@-gsm_untoast
ifft ~><=jpeg_decode ~l~jpeg_encode lame
mpeg2decode patricia pgp_encode gsort_small
rasta rijndael_decode rijndael_encode sha
stringsearch_large —#—susan_corners —l-susan_edges —A—susan_smoothing
10000 r T r T T :
Total amount of unique basic } } ‘ ‘
8000 - block timings =
o -
6000 { } - | | } |
] e vl il I
4000 - [T I | v e
2000
e i B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Signature length

Figure 6.3: Total amount of unique basic block timings after optimization
(see Fig. 4.21 for comparison).

=¥=adpcm_decode
———Dblowfish_decode

=8-adpcm_encode
—o—blowfish_encode

stringsearch_large —#—susan_corners

—+=basicmath_small
~ii-crc32

~i-susan_edges

- bitcount
~a—dijkstra_small

=>é=ejpeg =epic_decode ~0—epic_encode =t fft

——g721decode ———g721encode —o—gsm_toast ~i-gsm_untoast
ifft —>jpeg_decode —l~—jpeg_encode lame
mpeg2decode patricia pgp_encode qsort_small
rasta rijndael_decode rijndael_encode sha

=A—susan_smoothing

50 T T T

30

Size of translated code
40 - after optimization, MByte

T T

5 6 7 8
Signature length

9 10

11 12 13

14 15 16

Figure 6.4: Size of translated code after optimization.

==adpcm_decode
- blowfish_decode

=8-adpcm_encode
—&—blowfish_encode

—+=basicmath_small
~i-crc32

- bitcount
=#—dijkstra_small

—>ejpeg =#=epic_decode ~0-epic_encode et fft
——g721decode ~—-g721encode ~0-—gsm_toast ~#-gsm_untoast
ifft —>jpeg_decode ~f~jpeg_encode lame
mpeg2decode patricia pgp_encode qsort_small
rasta rijndael_decode rijndael_encode sha
stringsearch_large —#—susan_corners —l-susan_edges —h—susan_smoothing
300 T T T T T T T
Compilation time after optimization, s /
T s s s ; | /
[|
100 - —
0

1 2 3

5 6 7 8

9 10 11

Signature length

12

13 14 15 16

Figure 6.5: Compilation time of translated code after optimization.

6.1 CONTEXT-AWARE HOST-COMPILED SW SIMULATION

The compilation time of the translated code on the host computer
is shown in Fig. 6.5. Despite the optimization, the host-compilation
failed for some benchmarks at large signatures. The failures were
caused due to an internal error in the compiler. For example, the
compilation failed for pgp_encode at signature lengths of 10, 11 and
jreg_encode at the length of 15. Nevertheless, the compilation of these
benchmarks at larger signatures was again successful even if the
amount of contexts was higher. I presume that this issue is related
to limitations of the compiler and further clarification is required.
The compilation time was smallest for benchmarks adpcm_decode, ad-
pcm_encode, crc32 and sha at signature length of 1, taking in total 16
s. As can be seen in Fig. 6.5, despite the optimization the compilation
time still increases with a signature length as well. The highest com-
pilation time of 265 s was measured for jpeg_encode benchmark at a
signature length of 16.

6.1.3 Context-aware compiled simulation

In this section, I evaluate the efficiency of employing context-aware
timing of basic blocks (see Section 4.3) and run-time reordering of
memory accesses (see Section 4.4.2). The goal of these techniques is
to improve the accuracy of host-compiled simulation in case of out-of-
order processors, i.e. to reconstruct the execution time and the order
of memory accesses as close to the reference simulation as possible.
As mentioned earlier, in this section instruction and data caches are
assumed to be perfect.

6.1.3.1 Estimation of execution time

First, I evaluate the accuracy of execution time estimation using con-
text-aware host-compiled simulation. For this, I compare the execu-
tion time of benchmarks estimated using the reference cycle-accurate
simulation in SimpleScalar and the execution time produced by con-
text-aware host-compiled simulation at various lengths of context
signatures. In the following, the timing error of context-aware host-
compiled simulation for i" benchmark is defined as

;I (17)

where t.; is the execution time of the benchmark estimated using
context-aware host-compiled simulation and ts; is the benchmark’s
execution time estimated using in SimpleScalar.

The timing error is shown in Fig. 6.6. As anticipated, the error de-
creases with larger signature lengths. Moreover, the experimental re-
sults show that for some benchmarks the error may even slightly in-
crease at higher signature lengths, e.g. for dijkstra_small, epic_decode or
susan_smoothing benchmarks. The reason for this is the fact that only

135

136 EXPERIMENTAL RESULTS

300 - - —#—adpcm_decode —>=adpcm_encode —¥=basicmath_small
Simulation error, ——bitcount —+=blowfish_decode = ——blowfish_encode
% e CPC32 —o—dijkstra_small ~i—ejpeg
250 + ——| —#A—epic_decode —=epic_encode =t fft
—=0-g721decode —=g721encode = gsm_toast
«——gsm_untoast == ifft ~i—jpeg_decode
200 jpeg_encode —>=lame —#-mpeg2decode
patricia pgp_encode gsort_small
rasta rijndael_decode rijndael_encode
150 /\ sha stringsearch_large susan_corners
LN \\
100 T-é
S0 | \‘sx:_géﬁg At
= D - =
0 \;4——' ey _— —q
2 3 4 5 6 7 8 9 (10 11
-50 Signature length

Figure 6.6: Timing error of context-aware host-compiled simulation relative
to the reference simulation in SimpleScalar.

100 : . . . ; . .
Average simulation error, %
[§
N ‘
50 B
\.\ —IL
T——
T —» .
0 Signature length
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 6.7: Average timing error of context-aware host-compiled simulation
over multiple benchmarks compared to the reference simulation
in SimpleScalar.

300

250

200

150

100

50

T T

Simulation
| speed, MIPS

—#—adpcm_decode
=8—Dbitcount

w—crc32

i epic_decode
~0-g721decode
= gsm_untoast
jpeg_encode
patricia
rasta

sha

=>=adpcm_encode
—+—blowfish_decode
—o—dijkstra_small
=>=epic_encode
—+=g721encode
—o—ifft
=>=lame
pgp_encode
rijndael_decode
stringsearch_large

=#=basicmath_small
——blowfish_encode
~i—ejpeg
—p=fft
———gsm_toast
~@—jpeg_decode
~-mpeg2decode
gsort_small
rijndael_encode
susan_corners

7

8

9 10 11 12

Signature length

13

14 15 16

Figure 6.8: Speed of context-aware host-compiled simulation expressed in
millions of simulated target instructions per second of real time.

150 — ——— — ‘

- Average simulation speed, MIPS
100 :."Iﬁz.__._

T ——— -
*—._+_.

50
0 Signature length

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 6.9: Average speed of context-aware host-compiled simulation over
multiple benchmarks.

6.1 CONTEXT-AWARE HOST-COMPILED SW SIMULATION

the first observed timing is annotated in the translated code. In reality,
the signature length can be too small for considering all possible tim-
ings of basic blocks. If the first observed timing occurs infrequently
and differs significantly from the other timings. As a result, a timing
error is produced. This error can be positive as well as negative, be-
cause the first observed timing of a context can be smaller or larger
than the average timing.

In addition, I evaluate the mean error of context-aware host-com-
piled simulation over all benchmarks shown in Fig. 6.7. The mean
error E; at signature length j is defined using the following formula:

1 n
] n . 1’/)
i=0

where e ; is the simulation error for i benchmark at signature length
j, and n is the total amount of benchmarks.

As can be seen in the figure, the average error of context-aware host-
compiled simulation was gradually reduced from 76% at signature
length of 1 to 12.7% at signature length of 16. The reduction was
at largest for signature lengths between 1 and 6. However, starting
from a signature length of 7 the decrease of simulation error was
only marginal. This is due to the fact that the diversity of basic block
timing is affected by the previous blocks executed most recently. In
turn, consideration of more than 6 blocks as a context signature does
not have further significant impact on simulation accuracy.

The speed of context-aware host-compiled simulation is presented
in Fig. 6.8. The simulation speed is expressed in millions of simulated
instructions of the target code per second of real time (MIPS). As can
be seen from the experimental results, the speed decreases with a sig-
nature length. This is due to the fact that with a larger amount of
contexts per basic block, more conditions have to be checked at simu-
lation run-time. Moreover, the speed of context-aware host-compiled
simulation differentiates among benchmarks. The reason for this is
the fact that each benchmark is different in terms of the code struc-
ture and the total amount of contexts that have to be simulated. At a
signature length of 1, the largest speed of 184 MIPS was measured for
susan_smoothing and the lowest speed of 60 MIPS was measured for
gsort_small. In turn, at a signature length of 16, the largest speed of
109 MIPS was measured for rijndael_encode and the lowest speed of 13
MIPS was observed for adpcm_decode benchmark. The average speed
of context-aware host-compiled simulation over all benchmarks is
shown in Fig. 6.9. The average speed gradually decreased from 115
MIPS at a signature length of 1 to 60 MIPS at a signature length of 16.

, (18)

6.1.3.2 Order of memory accesses

In this section, I evaluate the correctness in reconstructing the order
of memory accesses in context-aware host-compiled simulation. Par-

137

138

EXPERIMENTAL RESULTS

ticularly, I investigate the impact of memory reordering at simulation
run-time introduced in Section 4.4.2.

REORDER DEPTH Estimation of an error of a memory access order
is a challenging task. There is no straightforward approach for a quan-
titative assessment of the error. For this purpose, I introduce a new
metric which is called reorder depth. The reorder depth characterizes
the degree at which memory accesses are reordered in an out-of-order
processor. The reorder depth is determined for every memory access.
For explanation purposes, let us assume a sequence of memory ac-
cesses shown in Fig. 6.10. The numbers labeled on the axis denote
the sequential numbers of the respective memory instructions. In the
presented example, memory instructions 4, 5 and 3 are simulated out-
of-order. In the following explanation, I use terms memory access and
memory instruction interchangeably.

reorder depth of the 4"
memory instruction search
rs=3 window memory
accesses

4 5 3 2 6 7 8

sequential numbers of
memory instructions

Figure 6.10: Determination of reorder depth for memory accesses observed
in a simulation.

The reorder depth of a memory access is determined by analyzing
subsequent memory accesses within a certain search window. The
size of this window corresponds to the size of the instruction window
of the target processing core. The reorder depth of a given instruction
is defined by the most distant memory instruction in the window
with a sequential number lower than the one of the given instruction.
As shown in the example, for instruction 4 there are two memory in-
structions in the search window, whose sequential number is lower
than 4 (instructions 2 and 3). The reorder depth of instruction 4 is de-
termined by instruction 2 since it is most distant. The actual value of
the reorder depth is calculated as the amount of memory accesses sim-
ulated between instructions 4 and 2 plus one. There are two accesses
between instruction 2 and 4, hence the reorder depth of instruction
4 (r4) equals 3. Similarly in the shown example, the reorder depth of
instruction 5 equals 2 and the reorder depth of instruction 3 equals 1.
The following instructions 2, 6, 7 and 8 are simulated in the program
order and, therefore, their reorder depth equals o.

6.1 CONTEXT-AWARE HOST-COMPILED SW SIMULATION

Taking these assumptions into consideration, for each benchmark,
we can determine a vector of reorder depths for a complete sequence
of memory accesses simulated in a host-compiled simulation as

c=I[r1, 12, .., Tnl, (19)

where n is the total amount of simulated memory accesses.

Similarly, for the same benchmark, we can define a vector of reorder
depths for memory accesses if the benchmark is simulated in the
reference simulator SimpleScalar as

s=1[r1, T2, ..., Tnl. (20)

The difference between these two vectors determines the error of
reconstructing the memory access order in host-compiled simulation
relative to the reference SimpleScalar simulation. The error can be
quantitatively estimated by determining the root mean square error
(RMSE) of the vectors” elements as follows:

e — \/ZE—O (Ck - Sk)zl (21)
n

where cy and sy are the reorder depth of kth memory access in com-
piled simulation and SimpleScalar correspondingly, n is the total
number of simulated memory accesses. In addition, we can calcu-
late the mean RMSE of reorder depths over all benchmarks using the
following formula:

e — \/Z?lo ZE:O (cix— Si,k)z (22)

Ziﬂlo ni '

where c;) and si) are the reorder depth of k™ memory access for
ih benchmark in compiled simulation and SimpleScalar correspond-
ingly, n; is the number of simulated memory accesses of i" bench-
mark and m is the total amount of benchmarks evaluated during the
experiments.

The estimation results of the RMSE of reorder depths for each
benchmark at different signature lengths are shown in Fig. 6.11. For
most benchmarks, the RMSE does not change significantly with the
signature length. This behavior has been also observed for the mean
RMSE over all benchmarks shown in Fig. 6.12. However, for some
benchmarks the signature length had a notable impact on the RMSE
values. For crc32 benchmark, the RMSE value could be significantly
decreased with the signature length. For epic_decode benchmark, the
RMSE decreased at smaller signature lengths and then increased at
larger lengths. For dijkstra_small benchmark, a highly distinguishable
peak could be observed at a signature length of 9. I anticipate that the
reason for these non-typical RMSE curves is the fact that only the first
timing and memory access order is captured for each context during

139

140

EXPERIMENTAL RESULTS

Root mean square error of reorder depths

~i-adpcm_decode —4—adpcm_encode ~#—basicmath_small =>=bitcount
=»=blowfish_decode = —~@—blowfish_encode —+=crc32 ——dijkstra_small
—ejpeg —o—epic_decode ~i-epic_encode e fft
—>g721decode =¥=g721encode ~0-gsm_toast —+=gsm_untoast
—ifft jpeg_decode ———jpeg_encode ~i-lame
mpeg2decode —><=patricia pgp_encode qsort_small
15 - rasta rijndael_decode rijndael_encode sha
stringsearch_large susan_corners susan_edges susan_smoothing
= e . "
—~A
10
/ \\4\ A
SIAN / \ —
A L .! \ N " / 4 4 "
s - a v Y _ — 1—7;
0 N . e L S

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Signature length

Figure 6.11: Root mean square error of reorder depths of memory accesses
simulated in context-aware host-compiled simulation compared
to the reference cycle-accurate simulation in SimpleScalar.

measurements, while the others are ignored. If the captured memory
access order occurs infrequently during the benchmark’s execution
and significantly differentiates from the ignored ones, the resulting
error will be accumulated during the simulation.

25 | B—un
2 ‘.5—./’.\

‘.—~.__r*~.—+—.
1.5

1 -— Root mean square error of reorder depths
0.5 (among all benchmarks)

o O O e e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Signature length

Figure 6.12: Root mean square of reorder depths averaged over all bench-
marks.

In Section 6.1.4, the above problem will be solved by averaging
timings of a basic block at a certain context.

OVERHEAD OF DYNAMIC MEMORY REORDERING As discussed in
Section 4.4.2, the order of memory accesses is reconstructed at simu-
lation run-time by means of a queue. The queue temporarily holds
the memory accesses performed within basic blocks which are classi-
fied as out-of-order prior to simulation using the algorithm presented
Section 4.4.1 .

6.1 CONTEXT-AWARE HOST-COMPILED SW SIMULATION

Percentage of detected out-of-order basic blocks

—l-adpcm_decode —o—adpcm_encode —aA—basicmath_small =>«bitcount
=%=blowfish_decode = —®—blowfish_encode =—t=—crc32 —dijkstra_small
——ejpeg —o—epic_decode ~l-epic_encode —A—fft
—>g721decode =¥=g721encode gsm_toast —+=—gsm_untoast
—ifft jpeg_decode —o—jpeg_encode ~i-lame
mpeg2decode —><=patricia pgp_encode gsort_small
rasta rijndael_decode rijndael_encode sha
stringsearch_large susan_corners susan_edges susan_smoothing
100 ; 5 ; ; ;
 ~—— —— ————
L 3 - - i o e w— —
920 1
80 -
70 -
60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Signature length

Figure 6.13: Percentage of out-of-order basic blocks® discovered using the
classification algorithm from Section 4.4.1.

The share of out-of-order blocks in different benchmarks is shown
in Fig. 6.13. As can be seen from the results, the percentage of out-of-
order blocks slightly increases with the signature length. The reason
for this is the fact that with larger signature lengths a larger amount of
diverse basic block timings can be captured. Consequently, the chance
that a basic block will be classified as out-of-order increases at larger
signature lengths because more potentially overlapping basic blocks
can be discovered. The employment of the memory access queue de-
creases the speed of context-aware compiled simulation, since addi-
tional efforts are required for reading and writing values into the
queue as well as keeping the queue sorted at simulation run-time. I
define the deterioration of simulation time (i.e. wall-clock time) as

W= (23)
where tg4, and tg is correspondingly a simulation time with and with-
out queue-based reordering of memory accesses at simulation run-
time. The deterioration of simulation time for each benchmark at dif-
ferent signature lengths is shown in Fig. 6.14. In addition, we can de-
termine the mean deterioration of the simulation time over all bench-
marks at signature length i as follows:

] n
Wi=—) |wi;
n«

j=0

, (24)

where w ; is deterioration of the simulation time of j™ benchmark
at signature length 1, and n is the total amount of benchmarks. The
mean deterioration is shown in Fig. 6.15.

141

142 EXPERIMENTAL RESULTS

Deterioration of simulation time, %

~i-adpcm_decode ———adpcm_encode —&—basicmath_small =><bitcount
=x=blowfish_decode = —@-blowfish_encode =—+=crc32 = dijkstra_small
—ejpeg —4—epic_decode ~ii-epic_encode e fft
—>=g721decode =¥=g721encode =0-gsm_toast ==gsm_untoast
e jfft jpeg_decode ~o—jpeg_encode ~-lame
mpeg2decode =>=patricia pgp_encode gsort_small
rasta rijndael_decode rijndael_encode sha
stringsearch_large susan_corners susan_edges susan_smoothing

100

[y
N
w
H
w
o

7 8 9 10 11 12 13 14 15 16
Signature length

Figure 6.14: Deterioration of simulation time of context-aware host-
compiled simulation due to dynamic reordering of memory ac-
cesses.

60
50 —a—T——8—8—a—p_
40 i —

20 - Average deterioration of simulation time, %
10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Signature length

Figure 6.15: Mean deterioration of simulation time for all benchmarks at
different context signature lengths.

As can be seen in the experimental results, at shorter signature
lengths the deterioration does not significantly change and remains
at the level of 50% for all benchmarks on average. However, at larger
signatures, the deterioration slightly decreases to 30%. This is due to
the fact that at larger signatures the simulation efforts for memory ac-
cess reordering are getting relatively smaller compared to the efforts
required for context-aware host-compiled simulation. Nevertheless,
the simulation overhead of access reordering is still significant at all
signature lengths. Addressing this issue, in Section 6.1.5.1 we will ap-
ply and evaluate an optimization technique based on static-memory
reordering introduced in Section 4.6.3.2.

6.1 CONTEXT-AWARE HOST-COMPILED SW SIMULATION

6.1.4 Averaging of basic block timing

The length of context signatures selected by the designer may not
be sufficient for considering all possible deviations of a basic block’s
execution. In the previous section, I assumed that only first timing
observed for a context in the measurement phase is captured and
annotated in the translated code. In this section, I evaluate an opti-
mization method, in which timings of a basic block observed within
at a certain context are averaged and not dropped as assumed before.
Details of this technique can be found in Section 4.6.2. For the follow-
ing experiments, I use the same simulation setup and benchmarks as
employed in previous Section 6.1.3.

6.1.4.1 Estimation of SW execution time

—&—adpcm_decode =>=adpcm_encode =#=basicmath_small —=8—Dbitcount
—+=—blowfish_decode ——blowfish_encode e crc32 —&—dijkstra_small
~i—ejpeg —#—epic_decode =>=epic_encode == fft
g721decode —t=—g721encode ———gsm_toast gsm_untoast
—o—ifft ~i—jpeg_decode jpeg_encode «>=lame
mpeg2decode patricia pgp_encode gsort_small
rasta rijndael_decode rijndael_encode sha
string: ch_large susan_corners susan_edges —&—susan_smoothing
15 T T T
10 - Simulation
error, % X
> T .v e A e »
0 "“‘;A—h* ~——o—
-5 c'wr_;‘yv:{v \:‘:A:;:/
-10 Signature length
_15 1 1 1 1

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 6.16: Timing error of context-aware host-compiled simulation with
averaged basic block timing relative to the reference simulation
in SimpleScalar.

The error of context-aware simulation with enabled averaging is
presented in Fig. 6.16. The error is determined according to Eq. (17).
Compared to the results without averaging shown in Fig. 6.6, the
error of context-aware simulation can be significantly reduced with
the proposed optimization technique. Notably, the simulation error is
negative for many benchmarks at certain signature lengths. The un-
derestimation of execution time is caused by rounding of annotated
timing values to the next integer number according to Eq. (16). The
timing values annotated in the basic block functions can be rounded
in both directions. Consequently, the resulting rounding error accu-
mulated over the complete simulation can be both positive and nega-
tive.

Fig. 6.16 shows the simulation result starting from a signature length
of 0. At a zero signature length, all timings of a basic block observed
in the measurement phase are averaged, and host-compiled simula-
tion is performed without signatures. Surprisingly, averaging of basic

143

144

EXPERIMENTAL RESULTS

2 T T T T T T T
N Average simulation error, %

1.5 g

1 . =S

~—— T~
B Y

0.5 iy

0 Signature lengt

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 6.17: Mean timing error of context-aware host-compiled simulation
with averaged basic block timing relative to the reference simu-
lation in SimpleScalar.

block timing at signature length of 0 resulted in accurate estimations
of the execution time as well. In general, the experiments showed that
with averaging the simulation error does not significantly change at
larger signature lengths. The largest error of -7.7% was observed for
benchmark susan_smoothing at signature length of 1.

In addition, I determined the mean simulation error among all
benchmarks using Eq. (18). The mean error of host-compiled simu-
lation at different signature lengths is shown in Fig. 6.17. As can be
seen in the figure, the mean error decreased from 1.6% at a length
of 0 to 0.5% at a length of 16. Although the decreasing rate of the er-
ror is low, the use of signatures still improves the accuracy of timing
estimation.

350 —#—adpcm_decode =>=adpcm_ d basicmath_small
I I I =8—bitcount —+=blowfish_decode —blowfish_encode
Simulation e €132 —o—dijkstra_small —#—ejpeg
300 — speed, MIPS ~—epic_decode —>=epic_encode =he=fft
g721decode —t=g721encode = gsm_toast
gsm_untoast —o—ifft ~i—jpeg_decode
250 jpeg_encode —>=lame mpeg2decode
patricia pgp_encode gsort_small
rasta rijndael_decode rijndael_encode
200 AN N sha stringsearch_large susan_corners

150

100

50

0

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Signature length

Figure 6.18: Speed of context-aware host-compiled simulation with aver-
aged basic block timing expressed in millions of simulated tar-
get instructions per second.

The speed of context-aware host-compiled simulation with aver-
aged basic block timing is shown in Fig. 6.18. For all benchmarks, the
simulation speed gradually decreased with larger lengths of context
signatures. Notably, the reduction of simulation speed from a signa-
ture length of 0 to a length of 1 is higher compared to the remaining

6.1 CONTEXT-AWARE HOST-COMPILED SW SIMULATION

200 —_——————
Average simulation speed, MIPS
150
_
100 s
i ——

50 ~—

Signature length
0 ——t ——rt

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 6.19: Mean speed of context-aware compiled simulation with aver-
aged basic block timing.

part of the curves. This is due to the fact that there is no overhead in
host-compiled simulation caused by signatures at a signature length
of 0 . Particularly at a signature length of 0, the highest simulation
speed of 242 MIPS was in ejpeg benchmark and the lowest speed of
68 MIPS was in gsort_small benchmark. On average, the simulation
speed decreased from 143 MIPS at a length of 0 to 59 MIPS at a
length of 16 as shown in Fig. 6.19.

6.1.4.2 Order of memory accesses

In addition to the estimation of execution time, the accuracy of com-
piled SW simulation is determined by the order of simulated memory
accesses. In this section, I evaluate the impact of averaging on the er-
ror in the order of memory accesses. For this purpose, I employ the
reorder depth metric3 and calculate the RMSE relative to the reference
simulation in SimpleScalar using Eq. (21). The resulting RMSE for dif-
ferent benchmarks at different signature lengths is shown in Fig. 6.20.
As can be seen in the figure, averaging of basic block timing allows for
significant reduction of the RMSE compared to the scenario without
averaging (see Fig. 6.11). If no signatures are employed, i.e. the signa-
ture length is o, the RMSE of reorder depths is still high for several
benchmarks, e.g. for crc32, gsm_toast, gsm_untoast or lame. However,
the error for these benchmarks could be already significantly reduced
at a signature length of 1.

Furthermore, the experiments showed that the RMSE of reorder
depths gradually decreases with the signature length. Fig. 6.21 shows
the average RMSE values over multiple benchmarks at different sig-
nature lengths. Signature-based simulation with a signature length of
1 could reduce the average RMSE from 2.8 to 1.3. However, further
increasing of the signature length did not have a significant impact
on the RMSE. The value of RMSE reached 0.8 at a signature length of
16.

3 See Section 6.1.3.2 for further details

145

146

EXPERIMENTAL RESULTS

Root mean square error of reorder depths

—i-adpcm_decode —&—adpcm_encode —a—basicmath_small =>&bitcount
=x=blowfish_decode = —@—blowfish_encode —+—crc32 ——dijkstra_small
—ejpeg —o—epic_decode ~-epic_encode = fft
—>g721decode —¥=g721encode gsm_toast —+=—gsm_untoast
—ifft jpeg_decode —o—jpeg_encode ~-lame
mpeg2decode —>¢=patricia pgp_encode qsort_small
rasta rijndael_decode rijndael_encode sha
stringsearch_large susan_corners susan_edges susan_smoothing

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Signature length

Figure 6.20: Root mean square error of reorder depths in context-aware com-
piled simulation with averaging compared to the reference Sim-
pleScalar simulation.

3 T T T T T T T 1

2.5 \ Root mean square error of reorder depths
2 (average among all benchmarks)

1 *‘.—*;.:;._

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Signature length

Figure 6.21: Root mean square error of reorder depths in context-aware com-
piled simulation averaged over all benchmarks

6.1.4.3 Summary

So far we have seen the impact of employing multiple context timings
per basic block in host-compiled simulation under an assumption of
perfect instruction and data caches. Consideration of multiple con-
texts per basic block allows for more accurate simulation of the target
software. Moreover, the experiments showed that averaging of basic
block timing can further reduce the simulation error. The impact of
the averaging technique is large. Employment of context signatures
for averaged timings still allows for a small accuracy improvement.
However, already at a zero signature length, the timing error could
be reduced to 1.6% (on average for all benchmarks), which is a reason-
able accuracy for system-level simulations. Furthermore, simulations
at a zero signature length are preferable in terms of simulation speed
and offer an acceptable performance/accuracy ratio. Therefore, in the
following experiments, I employ context-aware host-compiled simu-

6.1 CONTEXT-AWARE HOST-COMPILED SW SIMULATION

lation with averaged basic block timings assuming a zero signature
length.

6.1.5 Consideration of a data cache

In this section, I evaluate context-aware host-compiled simulation
while considering non-blocking behavior of a data cache. For this,
I assume simulations with a realistic data cache and a perfect instruc-
tion cache as mentioned in Section 6.1.1.2. The configuration of the
data cache used during simulations is shown in Table 4.

Table 4: Configuration of a data cache employed in simulations

Size 4 kByte
Line size 32 Byte
Associativity (ways) 2
Hit latency 1
Miss penalty 16
Amount of sub-blocks o
Replacement policy FIFO
Virtually Indexed,
Address translation Virtually Tagged
(VIVT)
Pre-fetching no
Number of miss status holding L
registers (MSHRs)
Number of pre-fetch MSHRs 1
Number of targets per MSHR 1

In addition, the data cache module requires a non-blocking extension
to consider the non-blocking behavior. The purpose of this extension
is to adjust the simulated time according to the rules specified in Sec-
tion 4.5.1 and, thus, to reconstruct the timing behavior observed in the
reference cycle-accurate simulation as accurate as possible. The simu-
lation accuracy is assessed by comparing the results of host-compiled
simulation and the results of the reference SimpleScalar simulation.

Before accessing the data cache module, it essential to obtain the
desired order of memory accesses. In the following experiments, I
investigate two scenarios shown in Fig. 6.22.

In the first scenario, simulation is performed with dynamic reorder-
ing of memory accesses based on the memory access queue (see Sec-
tion 4.4.2 for the details on this method). The queue is employed to
reconstruct the order of memory accesses captured in the measure-
ment phase. In the second scenario, simulation is performed with
statically reordered memory accesses as proposed in Section 4.6.3. By
exchanging the order of memory accesses at compile time, I intention-

147

148

EXPERIMENTAL RESULTS

Context-aware Context-aware
compiled compiled simulation
simulation (statically reordered
Cycle-accurate memory accesses)
instruction set t
i i Memory access -
simulation y Non-blocking
queue ;
extension
t i Data cache
Non-blocking
¢ extension
’ Data cache ‘ Data cache
Reference SimpleScalar Dynamic memory Static memory access
simulation access reordering reordering

Figure 6.22: Simulation considering non-blocking behavior of a data cache.
Two method of performing compiled simulation are evaluated:
with dynamic and static memory access reordering. The results
of the both methods are then compared with the reference Sim-
pleScalar simulation.

ally introduce an error in host-compiled simulation. However, in this
way host-compiled simulation can be performed more efficiently as
will be shown in the next section.

6.1.5.1 Comparison of static and dynamic reordering

The purpose of static reordering of memory accesses is to simplify
context-aware host-compiled simulation and eliminate costly dynamic
reordering based on the memory access queue. This technique aims at
improving the simulation performance, while having only a marginal
difference in the produced simulation results. As discussed in Sec-
tion 4.6.3.1, not always the exchange of memory accesses performed
out-of-order will result in a visible timing error. In Section 6.1.5.2,
I will analyze in detail the pattern of memory accesses of different
benchmarks in order to reveal the situations when such an error can
occur. In this section, I compare dynamic and static reordering of
memory accesses under consideration of a realistic data cache.

First, I compare estimated execution time produced by the both
types of compiled simulation. The experimental results are shown
in Fig. 6.23. The execution time is expressed as the amount of clock
cycles required to execute the target code on the processing core. As
can be seen in the figure, with static reordering, the estimated number
of clock cycles was almost the same as in case of dynamic reordering.
Both techniques produced results that are very close to the reference
simulation in SimpleScalar.

In some cases, simulation with static reordering resulted in a lower
cycle count compared to dynamic reordering, e.g. in crc32, rijndael_de-

6.1 CONTEXT-AWARE HOST-COMPILED SW SIMULATION

code or rijndael_encode benchmarks. For some benchmarks, e.g. in g721-
decode, g721encode or rijndael_encode, the estimated cycle count was
higher. The reason for this inaccuracy was explained in Section 4.6.3.1.
In fact, the static exchange of memory accesses may result in a pos-
itive as well as in a negative timing error. Thus, when accumulated
over the complete simulation, these errors can result either in a small
underestimation or overestimation of the total execution time.

140

120 Estimated execution time, Mcycles B SimpleScalar W Dynamic [Static
100
80
60
40
20 -
o,

0®=“UWN=M00£00‘;“;£0ﬂ)d)ﬂ)mﬂ):fﬂﬂ)wﬂ!ﬂl“’_’mm

T T ® ST T M B UT T TV R BRET T ETTT BHELTTL wg 2 c

OO0 E300¢LEQOOQ 003 8T 00 KGO T-CO0OEBBOOW 5 2 =

© 0 59 90§54 TY C o o 2 2 O 0% 05 0 F - OO 8 =T S

o c S 9 c \ o < o c Y e o < 9w £ 9 9 ¢ 15 9%

T 0o T O © - o T3 g5 T o - ° o £ 0o .o

B & JdY HAEgY Wl B o8 FF ELEE

§§E s s 2 Bw5a NN OE o o o 6 2 23 859

& = o bo [oo o [Qw2

298G 5% = [T & Z 2 £ T T A I~

TRE 55 ° £S5 £° §

2 T3 = 2

Figure 6.23: Comparison of dynamic or static reordering of memory ac-
cesses in context-aware host-compiled simulation compared to
the reference SimpleScalar simulation, while assuming a realis-
tic data cache.

18

1 0 . . .

16 Data cache miss rate, % B SimpleScalar M Dynamic [Static
14
12
10
8
6
4

2 -

VU= R O ONT WO OEOOEEE VO UURO= 00O RO NN oW

TT B8 STTMBUUTTETT g e ETTETGTT BELTT L g O c

O 0E300YELQ0 Q0 0038 co05o020ERoOo0w 5 2 ws

O 0 59 9005 5T 9 oo 8 8 O 0o f® o505 200 & £ T S

Q£ S aoc | o ¢ o c ¥ E o ¢ o ® € Q c 16 9 B

T o LT O © o 0 T3 g5 T O T a T & T o =S a8

I 1% 2 71 | = (.t} - - | 11 N | = Il o | £

EE® < < = o 9 NN 2 [T) a O T = ¢ 8 E

S o E 2 2 2 2 ‘a N 2 9 g @ 5 © © 3839

285 = = T o (VIR &a o o o a%® 33 Y a3

B 2 3 S oo == 3 c c w 3 s

ggw 2 o = e c v b4

8 =53 =T £ 3

“7, w

Figure 6.24: Comparison of data cache miss rates produced by the reference
SimpleScalar simulation and context-aware host-compiled sim-
ulation with either dynamic or static reordering of memory ac-
cesses.

In addition to the execution time of the benchmarks, the accuracy
of cache simulation has to be evaluated for the both methods. For
this, we can compare the data cache miss rates produced by context-
aware host-compiled simulation and the reference simulation in Sim-

149

150

EXPERIMENTAL RESULTS

pleScalar. The experimental results are shown in Fig. 6.24. As can be
seen in the figure, compiled simulation with static reordering pro-
duced identical miss rates of the data cache as simulation with dy-
namic reordering. Moreover, the results of the both simulation meth-
ods are very close to the reference SimpleScalar simulation.

160

140 Simulation speed, MIPS B SimpleScalar W Dynamic [Static
120
100
80
60 =
40 -
20
0 T o e oy o L e e o e ye- e e e Lo L Y
R AR EEEREREEEEEEREEEEE R R EEEEEE LR
c8EzcecelEEge " 888 e E8 et Ee»s
] < | Y 9 £ o c ¥ E o < O " e NT @ c 16 98
PR] © E
33279 58 BTS¢ 59 Tadge 7T 8.8
® << = oY NN8cd ww W o8 T3 s E
£ E % % 1] ‘3 ‘3 NKN % E o Iy S 2 v o 850G
g g & & £ = a2 Y & o o o a T [} Q3 3
€82 23 § °©° w== 28 ®32"g
w — t— “w o
rEg 88 £& £ g
] I

Figure 6.25: Comparison of speed of the reference SimpleScalar simula-
tion and context-aware compiled simulation with dynamic and
static reordering of memory accesses.

Finally, the speed of the both simulation methods is shown in
Fig. 6.25. As can be seen in the figure, context-aware host-compiled
simulation with static reordering has indisputable advantage over the
simulation with dynamic reordering in terms of simulation speed.
The average speed of compiled simulation with static reordering was
8o MIPS versus 60.9 MIPS with dynamic reordering. Thus, due to the
elimination of the memory access queue, the speed of context-aware
compiled simulation could be improved by 31% with the proposed
optimization at almost no deterioration of simulation accuracy. The
average speed of cycle-accurate simulation in SimpleScalar was only
2.7 MIPS, which is almost 30 times slower than the average speed of
compiled simulation with static reordering.

6.1.5.2 Analysis of memory accesses

In this section, we will see why static reordering of memory accesses
provides almost the same level of accuracy as dynamic reordering
based on the queue. Reordering of memory accesses is strongly corre-
lated with the structure of the binary code and, hence, is different for
each of the target applications. In addition, the way in which memory
access are reordered is also specific for the target processing core.
First, let us quantitatively analyze the degree of memory accesses
reordering in an out-of-order processing core for different benchmarks.
Fig. 6.26 shows the percentage of memory accesses at a certain re-
order depth. As can be seen in the figure, in all benchmarks the ma-

6.1 CONTEXT-AWARE HOST-COMPILED SW SIMULATION

jority of memory accesses have a reorder depth of o, i.e. most mem-
ory instructions were performed in the program order. The remain-
ing memory accesses were performed out-of-order at a reorder depth
ranging from 1 up to 46. Notably, the share of memory accesses hav-
ing large reorder depths is relatively small.

Percentage of reorder depths, %
E0 m1 m2 =3 m4 N5 m6 N7 m8 N9 m10 m1l m12 m13 m14 m15
16 m17 =18 W19 mW20 W21 m22 w23 W24 W25 W26 W27 w28 w29 m30 m3l
32 m33 w34 w35 w36 w37 38 m39 40 41 42 43 44 145 46

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

ﬂ)w:"‘ﬂ)ﬂ)N:W00£0033£0000N0=NO0NUQ‘“M
T T ® ST T M®B YT T T B g @ £ T £T T T 8 H T T £ Wwg 9 €
OO0 E 2 000¢C E Q0O o o 8 & O 0§ 9O Ff 0 ERQQ W F g =
© 0 590 005 a9 9 0O 0 23 8 © o8k o 5 O 5 = 9 O 8 £ET S
Q c S o ¢ | o c o c Y e o C Q ® € 9 o c 16 9 B
T O £ T 0 © T O T 9 g 3 T O T o 0 g T 9 £ o o
(I =~ R N 4 1l o o | of ol ~ | 1 _l S 15 ¢
EEC S 5 v 2 .2 NN 13 s 2 T T s £ 8
S & E 2 4 2 a ‘a o s 29 g ¥ 5 T © o 839
££: 33 5 °° & &8 g £ 5%°¢
c 68 o8 == £ “ 2

8 =3 = 2

a
Benchmarks

Figure 6.26: Percentage of reorder depths of memory accesses observed in
the reference SimpleScalar simulation for multiple benchmarks.

For a better representation, let us additionally evaluate the percent-
age of reorder depths averaged over all benchmarks. For this, we can
add all memory accesses having a certain depth among all bench-
marks and determined their share in the total sum of memory ac-
cesses performed by all benchmarks. The results of this evaluation
are presented in Fig. 6.27. On average, 56.5% of all memory accesses
were performed in the program order. The majority of our-of-order
memory accesses (14% of all accesses) had a reorder depth of 1. The
share of accesses with reorder depth of 2 was only 6%.

In Section 4.6.3.1, I performed analysis of possible timing errors
due to static reordering for memory accesses with a reorder depth
of 1. It was identified that the resulting timing error is hidden due
to spatial locality of data in the cache. Furthermore, it was identified
that exchanging the position of an out-of-order cache access with a
reorder depth of 1 will not result in a timing error in the following
situations:

1. If the target addresses of the exchanged accesses are located in
the same cache line. In this situation, it is irrelevant whether
these accesses result in a cache hit or a miss. In both cases, there
will be no timing error.

151

152 EXPERIMENTAL RESULTS

60

TT T T T T T T T T T T T T T 11711
Percentage of reorder depths
(averaged over all benchmarks), %

50

40

30

20

10

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46
Reorder depth of memory accesses

Figure 6.27: Percentage of reorder depths of memory accesses observed in
the reference SimpleScalar simulation averaged over multiple
benchmarks.

2. When the target addresses are located in different cache lines,
however, both of the accesses result in a cache hit.

3. If the target addresses are located in different cache lines, both
of the accesses are independent and result in a miss, and the
following third memory access is also independent.

In other situations, changing the order of cache accesses may poten-
tially but not necessarily result in an error. In fact, the timing error
due to static reordering depends on the rate at which the above con-
ditions occur. I performed analysis of all data cache accesses with a
reorder depth of 1 in the reference simulation to identify how often
such conditions occur during the benchmarks” execution. The respec-
tive evaluation results for all benchmarks are shown in Fig. 6.28.

M Accesses to the same cache line

 Accesses to different cache lines, all hits

M Accesses to different cache lines, two independent misses

M Accesses to different cache lines that potentially lead to a timing error

100% -
90% -
80% -
70% -
60% -
50% -
40% -
30% -
20% -
10% -

0% - "

g w

=I

€

&%

£
Figure 6.28: Evaluation of cache accesses with a reorder depth of 1 for dif-
ferent benchmarks.

f [—

g721decode
4

ges

sha
susan_smoothin

lame
stringsearch_large

mpeg2decode
rasta
rijndael_decode

ejpeg
rijndael_encode

bitcount
epic_decode
patricia
pgp_encode

blowfish_decode

blowfish_encode
gsm_toast

adpcm_decode
adpcm_encode
dijkstra_small
epic_encode
g721encode
jpeg_decode
jpeg_encode
gsort_small
susan_corners
susan_ed

basicmath_small

Benchmarks

6.2 SYSTEM-LEVEL SIMULATION BASED ON SYSTEMC

As can be seen from the experimental results, the majority of ac-
cesses to the data cache were performed either to the same cache
line or to different lines with two consecutive hits. The percentage
of two independent misses was very low almost for all benchmarks.
The share of accesses potentially leading to an error was relatively
low for all benchmarks, with an exception of epic_encode benchmark.
This benchmark had the largest data cache miss rate of 16.7% among
all the benchmarks. Consequently, the occurrence of two consecutive
dependent misses is more probable for this benchmark. Taking these
experimental results into account, it can be anticipated that the proba-
bility of a timing error caused static reordering is also small for mem-
ory accesses with a reorder depth larger than 1. This hypothesis was
tested by the experiments in the previous section.

6.1.5.3 Summary

In this section, accuracy of context-aware compiled simulation under
consideration of a realistic data cache was investigated. In particular,
we evaluated the efficiency of static reordering of memory accesses.
The experimental results showed that simulation with static reorder-
ing can estimate the execution time and data cache miss rates almost
as accurate as simulation in which memory access are reordered dy-
namically based on a memory queue. At the same time, with static
memory reordering, the simulation speed could be increased by 31%.
Thus, simulation with static reordering is more efficient in terms of
the speed/accuracy ratio.

6.2 SYSTEM-LEVEL SIMULATION BASED ON SYSTEMC

In this part of the chapter, I evaluate and compare binary-level host-
compiled simulation (BLS) and trace-driven simulation (TDS) meth-
ods at the system level. Both of these methods are employed to re-
construct the timing behavior of out-of-order cores in the scope of a
complete system-on-chip.

6.2.1 Experimental setup

In contrast to Section 6.1, in this part the simulation methods are eval-
uated in a SystemC environment. To enable this, the target software
is represented as either BLS or TDS tasks. Moreover, simulation em-
ploys the SystemC models of out-of-order cores, caches and arbitrated
bus and main memory introduced in Section 5.3. In this section, it is
assumed that both instruction and data caches are realistic. The use of
SystemC environment allows concurrent simulation of multiple cores.
However, at the same time, SystemC introduces additional overhead
due to its simulation kernel.

153

154

EXPERIMENTAL RESULTS

For the following experiments, I assume the same configuration of
an out-of-order processing core as specified in Table 3 and the same
benchmarks as described in Section 6.1.1.1. Furthermore, I assume
that instruction and data caches have a similar configuration as de-
scribed in Table 4. The communication latencies, including both the
memory access time and data transfer time, are equal to 16 clock cy-
cles without contentions on the bus. In case of a bus contention, the
communication latencies are correspondingly increased depending
on the current utilization of the bus.

Reference Abstract trace- Context-aware
SimpleScalar driven simulation compiled simulation
simulation (TDS) using SystemC (BLS) using SystemC
Abstract model of Abstract model of
Cvel ¢ out-of-order core out-of-order core
ycle-accurate executing a TDS task executing a BLS task
model of out-of-
order core 4 [}
Non-blocking
extension
! ! ! ,
Data Inst. Data Inst.
CaChe Cache Cache Cache
! b ! !
Interconnect ‘ Interconnect ‘
e

Figure 6.29: Experimental setup for evaluating BLS and TDS methods in a
SystemC environment. The evaluation is performed using mul-
tiple benchmarks, which are simulated as standalone applica-
tions in the scope of a complete system-on-chip as either BLS
or TDS task. The simulation results are then compared to the
reference simulation of the same benchmarks in SimpleScalar.

In the next section, I evaluate and compare TDS and BLS meth-
ods (see Fig. 6.29). TDS method employs highly abstracted execu-
tion traces, which specify the sequence of bus accesses as well as
the time intervals between them. The traces are derived using the ref-
erence cycle-accurate simulation in SimpleScalar and then simulated
in SystemC in the form of a TDS task. The traces completely abstract
the internal microarchitecture of the processing core (including local
caches). Therefore, no dynamic models of caches are needed in TDS,
since the bus requests captured in the trace stimulate the model of
the interconnect directly. Further details on the TDS workflow can be
found in Section 5.1.1.

In case of BLS (right part of Fig. 6.29), I employ context-aware host-
compiled simulation with all enabled optimizations investigated in
the previous section. Particularly, it is context-aware simulation with

6.2 SYSTEM-LEVEL SIMULATION BASED ON SYSTEMC

a zero signature length, with enabled averaging of basic block timings
and with static reordering of memory accesses. Compiled simulation
is performed in the form of a BLS task. This method requires dynamic
models of instruction/data caches as well as the non-blocking data
cache extension for considering the non-blocking cache behavior at
simulation run-time.

In the next step, the TDS and BLS results are compared with the
reference cycle-accurate simulation in SimpleScalar. The intention of
the TDS and BLS methods is to reproduce the timing behavior of
benchmarks on the reference SimpleScalar simulator as accurately
and as fast as possible. For comparability reasons, the configuration
of instruction/data caches (for BLS) and the parameters of the inter-
connect and main memory are same. In the following experiments,
independent buses for instructions and data are considered.

6.2.2 Evaluation of BLS and TDS methods

The speed of BLS and TDS methods in SystemC environment for dif-
ferent benchmarks is shown in Fig. 6.30. The largest speed of BLS was
measured during the simulation of bitcount benchmark (72.5 MIPS),
while the lowest speed of 9.0 MIPS was measured for rijndael_decode.
The average BLS speed over all benchmarks was 31.8 MIPS. In all
benchmarks, the BLS method was slower compared to TDS because of
the several reasons. First, BLS requires co-simulation of caches mod-
els as well as non-blocking data cache extension. These components
slow down the simulation performance. Moreover, BLS is fully func-
tional simulation based on the execution of the translated target code.
The speed of the reference simulation in SimpleScalar was also dif-
ferent for the benchmarks and ranged from 1.1 MIPS to 3.8 MIPS
with the average value of 2.5 MIPS. Please note that the reported
speed of BLS includes the overhead of the SystemC simulation ker-
nel, which is required for simulation of multicore architectures. Thus,
in SystemC environment BLS achieves an average speedup of 12.7
times*. At the same time, this speedup does not consider the over-
head of one-time derivation of the execution delays in the reference
simulation. In fact, this overhead spreads over multiple binary-level
compiled simulations performed during system-level design space
exploration. In [60], it was shown that at 10000 iterations the corre-
sponding overhead can be neglected.

In contrast to BLS, TDS completely abstracts the functionality of the
target software and the core’s internal microarchitecture including
data and instruction caches. The largest speed of TDS was measured

In contrast, SimpleScalar simulator was written in C and designed for evaluation
of single-core processors only. If BLS is also implemented in C (i.e. without calling
SystemC functions), its average speedup compared to SimpleScalar is approximately
25 times.

155

156

EXPERIMENTAL RESULTS

for susan_smoothing benchmark (623.9 MIPS), while the lowest speed
of 13.6 MIPS was measured for rijndael_encode benchmark. Over all
benchmarks, the average simulation speed of TDS in SystemC envi-
ronment was approximately 169.3 MIPS, resulting in a speedup of
67 compared to SimpleScalar. Similarly to BLS, this speedup does
not consider the efforts of generating traces in the reference cycle-
accurate simulator. The associated overhead is spread over multiple
trace-driven simulations performed during design space exploration.
As can be seen in the figure, the speed is not permanent but depends
on a benchmark being simulated. The reason for the diverse values
of simulation speed is the fact that the benchmarks impose different
loads on the interconnect. Higher access rates on the instruction and
data buses result in more frequent calls to SystemC functions, e.g.
sc_wait(), and more frequent stimulation of the interconnect model.
Consequently, the overhead of SystemC simulation increases and the
overall simulation performance deteriorates.

319 Simulation speed, MIPS EmBLS @TDS
240 397 584 347 231 522 548 264 624
160 57— - - E— r
120 o = ——
80 (| — 11—

"1l W_ ﬂ‘¥j ﬂ
wcu=¢-'cuwN:uwwuwwgﬁgwwwwmw=mmwmm2wnn
TTEBET T NGB IUTDTET T L OBETT ETTT BHELT T L g 2 c
OO0 g2 00¢L g0 O © 0 3 o Q0 g 9 E Q9 ERBOQ VW EF X
O 0 g9 9005 aPDY o o 0O =5 5 O 08 05 0 5 = 00O 8 ET S
o c S o c \ o C o c Ve o C o T £ 9 o c 16 9 B
T O £ T O © T O T o g5 T, O T o O 4 T, O = o 1o
I 1s 2 71 j (] odd £ 7 1l [15 1 S 1S E
EET® < < < Qv NN B e o0 8o o0 o 9 3 o 5c8E
S 6 E ol 2 S o INELY s g3 2 - c © o 35 Y
£8: 33 5 °° & S5 £ 83°¢
c © @ o0 22 £ a

] o s 2

Figure 6.30: Simulation speed of BLS and TDS expressed in millions of tar-
get instructions simulated per one second of real time (MIPS).

The timing error of TDS and BLS methods compared to the refer-
ence simulation in SimpleScalar is shown in Fig. 6.31. TDS is a very
abstract simulation approach, in which data read operations are al-
ways considered blocking. In TDS, communication latencies are sim-
ply added to the computational latencies and, as a result, TDS always
overestimates the execution time. In some benchmarks, the timing er-
ror of TDS is larger than 15%, e.g. in blowfish_decode, blowfish_encode,
jpeg_decode or rijndael_decode benchmarks. In turn, BLS method con-
siders the effects of out-of-order execution and, therefore, achieves
better simulation accuracy on average. For example, for jpeg_decode
benchmark, BLS showed a considerably smaller error of 4.2% (BLS)
compared to 16.5% in TDS. With the exception of sha benchmark, in
which the execution time was notably underestimated, BLS achieves
an average error of 2.6% in contrast to 6.7% in TDS.

6.2 SYSTEM-LEVEL SIMULATION BASED ON SYSTEMC

30
25 Simulation error, % WBLS [©TDS
20
15 1 1
10 — 1
: FmIFIr N N Jdh
o e Mg s gl AT 0 AN Y DA
-5 I
-10
-15
-20
VU= R O ONS WO OFE OO EE VLU0V CU N YW
T T 8 ST T MBUTTET T g g E DT ETTT 8H T T L g Y c
O 0E 23009 EQOO o 0 g o 00 g O L O ERBOQOvw g DdE
9 O 59 005 5T QO O 0 32 2 O 0% 05 0 35 s OO0 S T =
o c S o ¢ \ 9 © o ¢ YN E 9 ¢ o ®m € 9 o < e 9 B
T 02T O © T O T 8 g 5 T O T o0 ¢ T O = o o
I 1s e 1 | = (I} o o | [~ | 1l o 1 £
EE® £ c 2 [SRNS) NN Y oo bo) a O — = S & c £
S 5 17 — = ’\'\ME U O k) W D v o © [Z Y
S8 E £¢& X 22 W% 84 28 a2 &5 s&8 0337
Q Q O = v o oo _— o T T w 5 uw c
- T % 2 3 - 13 c c w 2 H
© © © o o = £]
2 =53 =% 2
]

Figure 6.31: Timing error of BLS and TDS compared to the reference Sim-
pleScalar simulation.

Although BLS achieves better accuracy, it is not always the best sim-
ulation method in terms of the speed-accuracy ratio. For many bench-
marks, e.g. adpcm (decode and decode), bitcount, crc32, gsm (toast and
untoast), gsm_untoast, pgp_encode, sha and susan_smoothing, TDS could
produce accurate results as well (the timing error for these bench-
marks is below 5%). At the same time, compared to BLS, the TDS
method could achieve significantly higher simulation speed for these
benchmarks. The reason why the TDS method can be both accurate
and fast can be explained by analyzing the amount of bus accesses
performed during the simulation of a benchmark. Fig. 6.32 shows the
rate of interconnect accesses per target instruction for all simulated
benchmarks. This rate is defined as the total amount of accesses to the
data and instruction buses divided by the total number of simulated
instructions in the respective benchmarks.

0.3
0.25 Accesses to interconnect B SimpleScalar EBLS
: per instruction
0.2 H
0.15 - ||
0.1 - Ir H
0.05 - I H
o imm il HI] ‘Ilﬂ‘llll L ‘Illl ~H_NNNN_NDE
R R E E R EEE R EE E R R E E E R E EE EEEE EE- RN
S8 EZS8LELBS BS838 858 fcERcEsERE
w Qo v o - — - [— -
9 c S @ c | o c o c Y e o c 9 ®m c 9 o ¢ 15 @ B
T O E T O © T O T 3 g3 T O T o 9y T O £ o o
I 1s 2 "1 s o o4 £ % 1 N 'S 1 glgE
EE® S 5 7] = = QAN »E ¥ ¥ ¥ e 2 v o 8 5 35
g gk € & = s o 6o & =Y % a T 58 o3 3 0
52 33 5 w oSS g 2 wz°¢g
©c &8 © 09 =22 £ 2 8
E-1 i .E 2

Figure 6.32: Rate of accesses to on-chip interconnect, which is the number of
line fills and line write-backs in the instruction and data caches,
per simulated target instruction.

157

158

EXPERIMENTAL RESULTS

As can be seen in the figure, the benchmarks mentioned above have
a very low access rate. The reason for this is the low miss rates in in-
struction and data caches. Because of the low cache miss rates, the
execution latencies captured by traces abstract larger portions of the
executed code. Thus, the efficiency of the trace abstraction increases,
resulting in a higher speed in terms of simulated target instructions
per second. Moreover, since the amount of bus accesses is low, the
sum of the timing errors produced during these bus accesses is also
low relative to the overall execution time of the benchmark. Therefore,
for these benchmarks, TDS achieves both high accuracy and high sim-
ulation speed and, therefore, is more efficient than BLS. However, it
is important to mention the use of TDS may be limited because of its
abstraction level. For example, TDS abstracts the behavior of caches
and, therefore, this method cannot be employed in a scenario when
the cache lines in the simulated core can be invalidated by other cores.

18
16 Data cache n W SimpleScalar @ BLS
miss rate, %
14 T
12 H
10 H
8]
6 I h ||
4]
zfﬂ I L
o MEN NN NENNm ;lllSl KNS o.
QY= R0 ONS MO OE OO EEYYUYEUE 8L RO NS W
SEECEEOTiccTEeEEcie ettt
UUEOUU"E'—‘UU oo 8 8 uu‘“u"uEEuu © £ 3T S
Q c YO e P MU g e o c ¥ € Qe Ow ¥ Q C s @ B
12 [(] © | S 9 %o
%59 % g 99 3I3JES %Y [t B 98
EE® << -] oY NN8d ww W ad T3 £ e E
5SS E] ° aa KN 9E v o o w 2 s 3 S g 2 &
T & =) 80 8o &a o o o o T 2w 3
S52 =% 3 WSS g 2 B3°¢g
CRL o o e c“ 2
2 s 3 = 2

Figure 6.33: Estimation of the data cache miss rate in BLS. The results are
compared with the reference simulation in SimpleScalar.

The BLS method involves the simulation of local caches. Therefore,
it is essential to evaluate the accuracy of estimated cache miss rates.
The experimental results are shown in Fig. 6.33 and Fig. 6.34. As can
be seen in the figures, the BLS method achieves very close estimation
results compared to the reference simulation in SimpleScalar for all
benchmarks.

6.2.2.1 Validation of BLS with random communication latencies

Out-of-order processing cores exhibit very complex timing behavior
because of the capability of hiding long memory access latencies. BLS
considers the out-of-order capabilities of cores and allows for more
accurate reconstruction of their timing behavior in the presence of
data cache misses. So far, we have tested the BLS approach assuming
single-core architectures and fixed memory access latencies. However,
in case of a multicore architecture, the communication latencies do

6.2 SYSTEM-LEVEL SIMULATION BASED ON SYSTEMC

25
Instruction cache miss rate, % B SimpleScalar EBLS
20 (]
15 B
10 i H
5 I] —
o ——M_HH Hm_ WHllon ‘l]‘.:‘ll.:‘ ~DNUN NDE
UV 0= ¥ 0 o0oaN = MWW“UU‘;‘;“WW@QN@:NUWW@&“‘M
TTES5T0TMEUTTETTRRETT ETTT EHRLITTL Wg I C
SS9 EZ3S 9 ELS S 0063 8 Q0 gQEQERBRQQWwEF E&X=
0 O & UUUE’IQJQQ QO O S 5 O QO o 0 5 0 5 = OV O -_— =}
o c 8 0 ¢ | o c o c e Qo € o ® £ 9 Q€ 16 9 B
T 0T O © T o T &g 5 T o T o U & T O £ 0o o
rgs28 £ JJ [SE D oo D o5 ! S 5 E
EEE] 2 aa NN %E g 9 v W 5 R Sﬁ‘sm.
2 8 G £ g =) 0o o & a2 2 o o - T a2 %
g 8w 33 © E S P32 g
& == TE g 3
2 "

Figure 6.34: Estimation of the instruction cache miss rate in BLS. The results
are compared with the reference simulation in SimpleScalar.

not remain constant but depend on the activity of other cores. The
aim of this section is to validate the BLS approach assuming a multi-
core environment, in which communication latencies can alternate.

SimpleScalar tool was designed for simulation of single-processor
systems only and cannot be extended for multiprocessor architectures
easily. Nevertheless, this section presents a simple and efficient solu-
tion based on artificial random traffic that causes alternating commu-
nication latencies. From the timing perspective, for each processing
core the presence of other cores results in increased communication
latencies due to contentions on the shared bus. Thus, the artificial
traffic can be additionally simulated on the communication bus in
order to mimic the activity on the bus with multiple cores. The artifi-
cial traffic is highly abstracted and does not represent any particular
data. Its purpose is to increase the percentage of time when the bus
is considered as occupied by other masters. If the artificial traffic can
be equally reproduced both in SimpleScalar and BLS simulation, we
can compare the results and assess the accuracy of the BLS method.
The advantage of this approach is the capability of validating the BLS
accuracy in different load scenarios, since the artificial traffic can be
changed easily.

For this purpose, the bus models in SimpleScalar and BLS were
extended to enable artificial traffic. An example of simulation with
the extended bus model is shown in Fig. 6.35. At time t;, the core
model simulating the execution of real target software makes a com-
munication request on the bus. Starting from this moment, the bus is
considered as occupied. After a certain time, which includes a data
transfer latency and memory access latency (labeled as service time in
the figure), the transaction is completed and the bus changes back to
the idle state. At time t,, the core model makes the second request.
During the service time of the second request, a dummy bus master

159

160 EXPERIMENTAL RESULTS

access requests from artificial access random inter-

simulated core requests arrival time
1/ 2 (3)/ ﬁ% 78
[) p p p
¥ ' 4y Sy 6y ¥ v
=
v, R

77 0 |

t, t, t th ts e t7 ts simulated
service time time

Figure 6.35: Simulation of random bus traffic in SimpleScalar and BLS. The
bus requests of the simulated core are interleaved with synthetic
access requests made by dummy bus masters. The inter-arrival
time of the synthetic requests is a random Poisson process.

Utilization of data bus, % Utilization of instruction bus, %
adpcm_decode O MIT 128
adpcm_encode
basicmath_small m MIT 64
bitcount = MIT 48
blowfish_decode e
blowfish_encode HMIT 32

crc32
dijkstra_small
ejpeg
epic_decode
epic_encode

fft

g721decode
g721encode
gsm_toast
gsm_untoast
ifft
jpeg_decode
jpeg_encode
lame
mpeg2decode
patricia
pgp_encode
qsort_small
rasta
rijndael_decode
rijndael_encode
sha
stringsearch_large
susan_corners
susan_edges
susan_smoothing

0 20 40 60 80 100 0 20 40 60 80 100

Figure 6.36: Utilization of data and instruction bus in SimpleScalar under
consideration of synthetic access requests with a mean inter-
arrival time (MIT) of 128, 64, 48 and 32 bus cycles.

makes the third request on the bus. However, since the bus is occu-
pied, this request can be processed only after the second request is
completed. The service time of the synthetic request is denoted by a
striped rectangle. At time t4, the dummy master makes another re-
quest followed by the request of the simulated core. In this situation,
the simulated core has to wait till the synthetic request is completed.
Finally, at times tg and t7, two synthetic requests precede the request
of the simulated core at time tg. In this case, the simulated core has to

6.2 SYSTEM-LEVEL SIMULATION BASED ON SYSTEMC

wait till the service time of the first two requests is completed. Thus,
it is assumed that the simulated core has a low priority on the bus.

The time interval between any two consecutive synthetic requests
is a Poisson random variable. The expected value of the variable rep-
resenting the mean inter-arrival time (MIT) between two synthetic re-
quests can be modified by the user. By decreasing the expected value,
the amount of synthetic requests within a certain time interval and,
thus, the load on the bus is increased. The use of artificial traffic al-
lows achieving various utilization of the data and instruction bus as
shown in Fig. 6.36. Here, four values of mean inter-arrival time are
selected: 128, 64, 48 and 32. The presented results were obtained in
SimpleScalar assuming a service time of 16 bus cycles for the simu-
lated core and for synthetic requests.

The execution time of all benchmarks in SimpleScalar with the arti-
ficial bus traffic is shown in the left part of Fig. 6.37. For each bench-
mark and for each MIT value, 8 simulations were performed with
different artificial traffic by using different seeds in the random gen-
erator. The estimated execution time shown in the figure represents
the average time over these 8 simulations. As expected, with smaller
values of MIT, the overall bus utilization is increased, resulting in
larger execution time of the benchmarks. Notably, for some bench-
marks, e.g. adpcm_decode, adpcm_encode or crc32, the estimated time
did not significantly change. This is due to the fact that these bench-
marks impose small miss rates in the data and instruction caches.
Consequently, memory access latencies do not have a significant im-
pact on the execution time. In contrast, the execution time of basic-
math_small, g721decode or g721encode benchmarks increased signifi-
cantly at smaller values of MIT.

In the next step, the benchmarks were simulated using BLS. For this
simulations, identical configuration was employed as in SimpleScalar,
including the parameters of the instruction and data buses, MIT val-
ues and seeds of the random generator. Thus, exactly the same arti-
ficial bus traffic could be reproduced in BLS as in SimpleScalar. Sim-
ilarly to SimpleScalar, 8 simulations per benchmark and MIT value
were performed. The resulting average execution time was then com-
pared with SimpleScalar. The timing error of BLS at different MIT
values is shown in the right part of Fig. 6.37. Remarkably, for many
benchmarks, e.g. dijkstra_small, epic_decode or epic_encode, the timing
error decreased with higher bus utilization. This is because the ab-
solute timing error in BLS remains constant. If the communication
latencies increase, the percentage of this error in the total execution
time of the benchmark decreases. As a result, the overall timing er-
ror of BLS decreases as well. In general, the BLS timing error did
not significantly changed at different artificial bus traffics. Thus, BLS
achieves accurate results with alternating communication latencies as
well.

161

162 EXPERIMENTAL RESULTS

Estimated time in SimpleScalar, Mcycles Simulation error of BLS, %
adpcm_decode O MIT 128
adpcm_encode

basicmath_small EMIT 64
bitcount
blowfish_decode
blowfish_encode
crc32
dijkstra_small
ejpeg
epic_decode
epic_encode

fft

g721decode b
g721encode
gsm_toast
gsm_untoast

ifft

jpeg_decode
jpeg_encode
lame
mpeg2decode
patricia
pgp_encode
gsort_small
rasta
rijndael_decode
rijndael_encode
sha
stringsearch_large
susan_corners
susan_edges
susan_smoothing

B MIT 48
HMIT 32

mqtmmﬂﬂ-mm-Nmmmml‘ﬂm-ﬂwmﬂmmmm_mﬂ

o

200 400 600 800 1000 -15

[
[%,]
[%,]

15

Figure 6.37: Left: Estimated execution time of benchmarks in SimpleScalar
under consideration of synthetic access requests with different
mean inter-arrival time. Right: Timing error of BLS relative to
the reference SimpleScalar simulation under the same condi-
tions.

6.2.2.2 Scalability

This section presents evaluation of the scalability of the BLS approach’
during simulation of multicore architectures. In the following exper-
iment, an architecture with multiple identical cores attached to a
shared bus is simulated. All cores execute the same instance of epic_en-
code benchmark that has the highest data cache miss rate among all
benchmarks (see Fig. 6.33). Two scenarios are considered: with coher-
ent and non-coherent data caches.

The speed of the BLS approach changes with a number of cores
as shown in Fig. 6.38. The speed is determined as the total number
of target instructions simulated in the multicore architecture divided
by the wall-clock time of the simulation. As can be seen in the fig-
ure, the simulation speed decreases with the number of simulated
cores, from 23,1 MIPS in a single-core architecture to 17,4 MIPS in
an architecture with 128 cores. With coherent caches, the speed of

5 The scalability of BLS is evaluated only since this simulation technique requires more
computational resources on the host computer compared to TDS.

63 MULTICORE DESIGN SPACE EXPLORATION: A USE CASE

25
Speed of BLS method, MIPS
20 ‘\\ peed o metho
\‘\a—_‘

15
10 ——\Without coherency

5 = \With coherency

0 T T T T T T T T T T T T T T T T

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

Number of simulated processing cores

Figure 6.38: Speed of the BLS method during the simulation of a multicore
architecture (epic_encode benchmark).

BLS decreases from 21,6 MIPS to 14.3 MIPS. The simulation speed
does not remain constant because of the increasing efforts for sim-
ulating the shared interconnect, as the amount of simulation events
due to higher contention on the bus increases. Nevertheless, the ex-
perimental results show that the BLS approach can be still applied for
evaluation of multicore architectures with a large number of cores.

6.3 MULTICORE DESIGN SPACE EXPLORATION: A USE CASE

In this section, I demonstrate an example of design space exploration
of a JPEG encoding application. The application consists of multiple
tasks and some of the tasks can be executed in parallel. The aim of
the exploration is to evaluate the execution time of different task map-
pings on the underlying multicore platform by means of system-level
simulations based on BLS.

6.3.1 Experimental setup

For the design space exploration, a target application that performs
encoding of bitmap images into the JPEG format was selected. The
application is based on the embedded JPEG Codec library [92]. The
JPEG encoding algorithm consists of the following operations. Firstly,
a macroblock of 16x16 pixels is read from the input bitmap file. Af-
terwards, the color space of the macroblock is converted from RGB
to YCbCr and represented as four Y blocks (luminance components),
one Cr and one Cb block (color-difference components) with a size of
4x4 pixels. In the next step, discrete cosine transform (DCT) is per-
formed for each of the 6 blocks. The values of the block elements are
then quantized and reordered. Finally, the blocks are encoded using
Huffman coding and the result is written to the output JPEG file.

In the original form, the embedded JPEG Codec application con-
sisted of a monolithic code which performs encoding of macroblocks

163

164

EXPERIMENTAL RESULTS

sequentially. For the exploration purposes, the application was de-
composed into a larger number of dependent tasks. The tasks were
defined using the function boundaries in the target code. Moreover,
to represent the application in the multi-tasking form, a number of
small modifications in the original source code had to be performed.
Firstly, the function interfaces were adapted to ensure that data is
transferred to the functions via global variables and not by using
function arguments. Thus, after being encapsulated in tasks, the func-
tions can communicate with each other while executing on different
cores.

Secondly, the main execution loop of the application was changed
such that the functions constituting tasks are called sequentially in the
target code. In this way, the execution of task functions can be clearly
separated in the measurement phase and the execution time of basic
blocks belonging to different tasks can be obtained independently of
each other. During the generation of the translated code, the code of
each task function was encapsulated into a separate BLS task.

Figure 6.39: Task graph of the modified JPEG encoding application used for
design space exploration.

The resulting task graph of the modified application is shown in
Fig. 6.39. Init task opens the input bitmap and output JPEG file and
analyzes the header of the bitmap image. The remaining execution of
the application is organized in a loop. GetMB task reads a macroblock
from the input bitmap file. The four Color tasks perform conversion
of the RGB space of a respective part of the macroblock into YCbCr
space. The computational results of these task are stored in 6 blocks

63 MULTICORE DESIGN SPACE EXPLORATION: A USE CASE

(4 luminance and 2 color-difference components). DCT task applies
discrete cosine transform to each of the 6 blocks. ZZQ task performs
quantization and reordering of the block elements. When the first
block is ready, the Huffman task encodes of the resulting data and
Write task stores the data in the output JPEG file. When encoding
and storing of all 6 blocks is completed, GetMB task reads the next
macroblock from the input bitmap file. When the input bitmap file is
completely processed, final task Done writes the concluding data into
the output JPEG file and closes the files.

In total, 8 different tasks are required to encode a bitmap image.
However, since each of Color and DCT tasks operate on different
blocks, a separate task instance for each of the block is considered,
and the task instances are treated separately in the simulator. Thus,
the JPEG encoding application is decomposed in 21 BLS tasks. The
tasks operate in the same address space. The virtual memory for stor-
ing functional data is allocated in Init task and shared among the
tasks as described in Section 5.2.3.2.

6.3.1.1 Inter-task synchronization

Decomposition of the application into multiple dependent tasks re-
quires additional inter-task synchronization mechanisms. For this pur-
pose, I employ a set of mutexes which are implemented as semaphores
initialized to value 1. The mutexes are required in order to guarantee
the correctness of the producer-consumer relations between the tasks.
In the initial state, the mutexes are locked. A consumer has to success-
fully lock the mutex before reading and processing the input data. In
turn, the mutex is unlocked by the producer right after it writes the
output data to the shared memory. At this moment of time, the con-
sumer can successfully lock the semaphore and start processing the
input data. Thus, it can be assured that the consumer does not read
wrong data in the shared memory.

The synchronization operations are inserted in the BLS tasks by
means of empty synchronization functions (see Section 5.2.2.3). First,
the empty functions were manually inserted into the target source
code using the naming conventions described in Section 5.2.2.3. These
functions do not change the functionality of the application in the
measurement phase. In fact, in the measurement phase the tasks are
executed sequentially without the need for actual synchronization.
However, the inserted functions allow the translation unit to precise
determine the synchronization points in the target binary code. Dur-
ing the generation of the translated code, the tool automatically in-
serts calls to the scheduler model with the parameters specified in
the synchronization functions” names.

165

166

EXPERIMENTAL RESULTS

6.3.1.2 Hardware platform

As a target hardware platform, a generic symmetric multiprocessing
(SMP) architecture is considered, consisting of multiple homogeneous
processing cores with local instruction/data caches, arbitrated shared
bus and main memory. In the exploration phase, 7 architecture types
are evaluated. They differentiate in the number of processing cores
from 2 to 8. The cores has identical configuration as specified in Sec-
tion 6.2. Furthermore, for these experiments a fixed memory access
latency of 16 cycles is assumed (however, not including dynamic arbi-
tration delays). The local caches of the processing cores are coherent.
During the simulation, the BLS tasks of the application are sched-
uled on the cores using the high-level OS scheduler introduced in
Section 5.2.2.

6.3.2 Results

The purpose of these experiments is to estimate performance of dif-
ferent task mappings of the JPEG application on each of the 7 mul-
ticore architectures. For each architecture, 1000 randomly generated
task mappings are evaluated. Thus, during the exploration 7000 task
mappings were evaluated. The experimental results for each architec-
ture are shown in Fig. 6.40. As can be seen in the figure, mapping of
tasks has a large impact on the overall execution time of the appli-
cation. Notably, a larger amount of processing core does not always
improve the application performance. In fact, an unfavorable map-
ping can even increase the total execution time.

The figure shows a Pareto front for task mappings with the lowest
execution time. Notably, the largest steps in the front can be observed
at a smaller amount of cores (from 1 to 5). However, the execution
time does not further decrease with a larger amount of cores and
saturates at the value of 20 Mcycles. Thus, the experimental results
resemble the effect of Amdahl’s law [4], which postulates that the
largest speedup achievable on a multiprocessor system is generally
limited by the sequential part of the application.

The evaluation of 7000 mappings took g hours and 8 minutes on the
host computer. Some of the key data from the experiments are pre-
sented in Table 5. As can be seen in the table, the simulation speed
was approximately constant for all architectures with a value of 16.5-
17.0 MIPS®. The simulation time did not significantly change with the
number of cores because efforts required for simulating the process-
ing cores dominated the simulation efforts for the communication
infrastructure and cache coherence. As the total amount of simulated

The simulation speed is expressed in millions of target simulated instructions per
second of real time.

45

6.3 MULTICORE

DESIGN SPACE EXPLORATION: A USE CASE

Execution time, Mcycles

10

4 5
Number of cores

6

Figure 6.40: Estimated time of different task mappings on a SMP platform
with a variable number of processing cores.

Table 5: Evaluation results of the JPEG application

No. of | Min. execution | Max. execution | Average exec.| Average sim.
cores time, Mcycles time, Mcycles time, Mcycles | speed, MIPS

2 28.2 41.5 33.4 16.9

3 23.6 39.6 29.6 16.7

4 222 36.6 27.1 16.5

5 20.2 34.7 25.5 16.5

6 20.2 37.7 24.4 16.5

7 19.5 31.5 23.5 16.6

8 19.3 32.5 22.8 16.7

target instructions did not change among the architectures, the over-
all wall-clock time required for simulation did not change as well.
The distribution of execution time for all evaluated task mappings
in each simulated architecture is shown Fig. 6.41. The figures show
the frequency of execution time values observed during the explo-
ration. Notably, in architectures with a smaller amount of cores, the
values of execution time are spread over a larger interval of execu-

tion times compared to architectures with a larger amount of cores.
The average execution time over all task mappings decreased from
33.4 Mcycles in the 2-core architecture to 22.8 Mcycles in the 8-core
architecture.

167

168

EXPERIMENTAL RESULTS

150 150
> >
2 100} 2 100}
[(U
= =
9 50 @ 50f
w w
0 i i - f 0 i i L I
20 25 30 35 40 45 20 25 30 35 40 45
Execution time, Mcycles Execution time, Mcycles
(a) (b)
150 T T T T T T 150
> >
2 100} 2 100}
[[
= =
S| £l
; ; [t
0 i I i i 0 i 1 i i I
20 25 30 35 40 45 20 25 30 35 40 45
Execution time, Mcycles Execution time, Mcycles
(c) (d)
150 150
> >
2 100} 2 100
[0)
= =
w w
0 L | L L I 0 e i L I
20 25 30 35 40 45 20 25 30 35 40 45
Execution time, Mcycles Execution time, Mcycles
(e) ()
150
>
2 100
[
=
@ 50
'
0 i i i I
20 25 30 35 40 45
Execution time, Mcycles
(®

Figure 6.41: Frequency of the execution time values of the JPEG application
on the HW platform with: (a) 2 cores, (b) 3 cores, (c) 4 cores,
(d) 5 cores, (e) 6 cores, (f) 7 cores, (e) 8 cores.

The simulation tool implemented in the scope of this dissertation
additionally has a graphical user interface (GUI). The interface allows
for more detailed evaluation of simulation results. The tool gener-
ates a large number of graphical plots providing information on the
utilization of cores, miss rates of instruction/data caches, execution
time of target SW functions (profiling information), utilization of the
data/instruction buses and main memory, amount of memory access
to particular addresses, amount of invalidations in data caches as well
as the scheduling-related information.

An example of the scheduling diagram is shown in Fig. 6.42. The
diagram shows the execution flow of BLS tasks of the JPEG applica-
tion on a 4-core architecture. By means of this diagram, the user can
visually assess the distribution of the application’s workload on the
cores. Moreover, the use can prove the correctness of the inter-task
synchronization mechanisms. To support this, the diagram can be
additionally extended with labels showing the time points at which

6.3 MULTICORE DESIGN SPACE EXPLORATION: A USE CASE 169

Scheduler
'S21+ ; 5214 : D os21+

zzq3| ; ; ; ; ; ; ;]

on Colre %‘+,56+I.s + © S7+,56+,5I1+ © S7+,56+,SI1+
color. 8 8 8 8 8 8

on core 3 El] : : EI : E |:|

515+ , , 'S15+ 515+

dct3| . : : .
on core 3 570+ : : 570
2292 . [l : : : [l

0+
on core 2[s10+ S10+

+

14+ I -
color2 : : : : : : :
on core 2 514+ : : S14+ : : . Sl14+

o ml, m =
on core 2 + : : + : : ' +

detl{ = E E q E E ‘:_l _
on core 1 qg+ : : LS : f : Lar

Z e I n

oncorelfggy: S9+: S9+
on core 1 . S23+ ¢ § . S23+ § § S23H+

colorl

zzq5| : u : : : ﬂ : : : i
oncorell’ . sij+ | : L su+ : - st
C | B B B B . . . i
meer EH o H =

done : : : : : :
on core 0 E S25 $2 SRR : S25925 A5HETHH-
write E E E E ' ,
on core 0 . S24+ "iS2 : . S24+ US2 . S244

Ko I M- - - = -

zzq4 , : : : , : :
on core 0 518+ 0 : S18+ : : . S18+
7290 : : : : : : 5
on core 0 : S164 : : S16+

detdl : : : : : B
on core 0 S12+ : : $12+ : : L S12+
dct0 g g g g

on core 0| s&+— : : S8+ : : S8
color0 : : : : : : :

on aye 64
get_mb
on core 0
init

on core 0

+!13+,sz+ § ss+,s4+!l3+,sz+ § Ess+,s4+!1f3+,sz+

i i i i i i i
12.12 12.14 12.16 12.18 12.20 12.22 12.24
Time, ms

Figure 6.42: Scheduling diagram of the tasks running on a 4-core platform.
The diagram is produced automatically by the GUI of the sim-
ulation tool.

Invalidations per master
T T

100%|- |3 MSI |
] MESI
80% - 1
6 %
60% - i 1
40% L PP N .
31.2% 5
20% PP N % ° .
0%
? Core 0 Corel Core 2 Core 3

Masters

Figure 6.43: Percentage of data cache invalidations per processing core on a
4-core platform. The diagram is produced automatically by the
GUI of the simulation tool.

170 EXPERIMENTAL RESULTS

the semaphores have been incremented. If necessary, the plot may
include the states of the tasks as well as their deadlines.

Fig. 6.43 shows an example of a plot with coherency-related infor-
mation generated by the tool. The figure shows the percentage of data
cache invalidations per processing core. Note that two coherency pro-
tocols can be evaluated at a time by the tool: MSI and MESI”. Thus, by
means of the generated plots, the designer can not only evaluate the
execution time of the target software but also identify possible bot-
tlenecks in the hardware architecture. Due to space limitation, this
section presents only the two examples of the plots generated by the
tool.

7 The MESI protocol reduces the amount of invalidation signals because of the addi-
tional exclusive state.

CONCLUSIONS AND FUTURE WORK

7.1 CONCLUSIONS

In this thesis, a novel method of compiled software simulation at the
binary-level was introduced. The method is intended to support hard-
ware and software developers during performance evaluation of MP-
SoC architectures incorporating out-of-order processing cores. The
proposed simulation technique considers the effects of out-of-order
instruction execution in a target processor, such as context-dependent
timing of instructions and reordering of memory accesses. Further-
more, the thesis presented a SystemC-based simulation framework
for performance design space exploration of multiprocessor system-
on-chip. In order to offer a better trade-off between accuracy and
speed of performance estimations, the framework supports two sim-
ulation methods: compiled binary-level simulation (BLS) mentioned
above and trace-driven simulation (TDS) based on abstract applica-
tion traces. The framework allows the developers to evaluate diverse
SW partitioning options and scheduling strategies of the target soft-
ware on multicore hardware architectures. This chapter concludes the
thesis with key findings and presents advantages and limitations of
the presented approaches.

COMPILED BINARY-LEVEL SIMULATION The proposed method
of context-aware compiled simulation can accurately reproduce the
out-of-order processor behavior at the system-level at a speed much
higher than cycle-accurate ISS. As a reference cycle-accurate simula-
tor, the SimpleScalar tool was used, which is a highly configurable
and widely adopted processor simulator'. The method was evalu-
ated using 32 different embedded benchmarks. The experimental re-
sults showed that in SystemC environment the proposed method
achieves an average speedup of 12.7 with an average timing error
of 2.6% compared to the reference cycle-accurate ISS*. Thus, the sug-
gested method improves the simulation efficiency and, thus, acceler-
ates system-level design space exploration. The acceleration is achieved
by creating application-specific cycle-approximate models of the tar-
get processing core, which are then employed during performance
simulation of multicore architectures. The accuracy of the approach

According to the developer’s website [96], “in 2000 more than one third of all papers
published in top computer architecture conferences used the SimpleScalar tools to
evaluate their designs”.

This speedup is obtained assuming a large number of DSE iterations and already
considers the overhead of SystemC simulation kernel.

171

172

CONCLUSIONS AND FUTURE WORK

in a multicore environment was validated against the cycle-accurate
simulation by means of varying communication latencies.

The proposed simulation method is not intended to completely sub-
stitute cycle-accurate ISS in the design flow. Its purpose is to avoid
repetitive cycle-accurate ISS during multiple iterations of system-level
design space exploration. Thus, having explored a large set of possi-
ble design solutions, the designer can still validate the performance
of a smaller set of the most promising candidates using cycle-accurate
ISS.

Simulation of the target code at the binary level has many advan-
tages compared to higher abstraction levels, e.g. source-level simula-
tion. Particularly, binary-level simulation is always instruction-accura-
te and considers all optimizations of the target compiler by construc-
tion of the translated code. Moreover, it allows simulation of target
software that makes use of the C standard library or third-party li-
braries, for which the source code has not been provided. However,
the proposed method of binary-level simulation has a number of lim-
itations as well.

Firstly, translated binary-level code contains a large amount of C-
operations. Consequently, compilation of the code in the host compu-
ter—even after optimizing the structure of the code—takes consider-
ably more time than compilation of the target code at the source level.
If a target application has a large size of the code, compilation can be-
come a bottleneck in this workflow. Secondly, during the derivation
of execution time, the proposed method assumes typical input data
to be applied to the target application. However, if compiled simula-
tion reveals a previously undiscovered part of the code, the execution
time of the undiscovered part must be derived once again, followed
by the recompilation of the entire translated code. Finally, the method
is currently not suited for rapid development of target software code.
When even only a small part of the code has been changed, the com-
plete translated code must be recompiled. These issues are subjects
of the future work, which will be discussed later in this chapter.

TRACE-DRIVEN SIMULATION Compared to compiled BLS, trace-
driven simulation allows for significantly higher average speedup of
68 times. However, the faster simulation speed is achieved at the ex-
pense of lower average accuracy. The average timing error of TDS in
all tested benchmarks was 6.7% versus 2.6% in BLS. Nevertheless, for
a certain class of applications, TDS is still preferable solution in terms
of the speed/accuracy ratio. If a target application imposes low traffic
on the communication interconnect, i.e. the share of communication
requests for all executed instructions is low, TDS achieves faster sim-
ulation speed while providing the same level of accuracy as the BLS
method. It can be explained as follows. If the target application gen-
erates a large amount of cache hits (and hence lower traffic on the

7.1 CONCLUSIONS

interconnect), processing latencies captured by traces cover a larger
portion of target instructions. Consequently, the share of timing error
produced during data cache misses3 decreases relative to the over-
all execution time of the application. As a result, the timing error of
TDS tends to be low for applications generating small miss rates in
instruction and data caches.

Traces completely abstract the functionality of applications and
internal details of the core’s microarchitecture and, hence, they ef-
ficiently reconstruct the traffic produced by the core at the output
interfaces. Thus, if the designer is interested in the exploration of the
on-chip interconnect, traces can be employed to exercise the appli-
cation workload in the interconnect model by reproducing the same
traffic pattern over multiple iterations. The advantage of traces is a
possibility to reconstruct the workload in situations when the target
code is not available or cannot be exposed to the designer due to pro-
tection of intellectual property (IP). Traces can be co-simulated with
functional processor models, thereby recreating a typical background
traffic in the MPSoC. Another advantage of traces is deterministic
simulation. TDS can be easily reproduced from any point without
the need of reconstructing the microarchitectural state of the process-
ing core. Finally, traces can be easily modified to adjust the traffic ac-
cording to the designer’s needs, e.g. for studying corner cases which
cannot be easily revealed using execution-driven simulation.

However, due to the high level of trace abstraction, the use of TDS
can be restricted in certain scenarios. For example, TDS cannot be
employed if the functionality of the target software has to be repro-
duced. Furthermore, traces completely abstract the behavior of local
instruction and data caches. Therefore, cache coherency cannot be
evaluated by TDS, as the cache behavior captured in traces at this
abstraction level is fixed and invalidation of cache lines with shared
data at simulation time is not possible. Another principal limitation
of TDS is a fixed execution flow of the application captured in a trace.
Abstract traces are always generated at a certain input data applied
to the application. If the input data has been changed, a trace must be
generated once again introducing additional overhead into the simu-
lation. Thus, trace-driven simulation is restricted to repetitive design
space exploration of target applications, for which the behavior does
not change among iterations.

HIGH-LEVEL SCHEDULING The purpose of the presented high-
level scheduler model is to enable code partitioning on a multicore
architecture at early development stages. The scheduler model lever-
ages BLS and TDS techniques for fast and yet accurate simulation
of application tasks and thereby considers the timing effects in hard-

Trace-driven simulation assumes data accesses to be blocking and, hence, it overesti-
mates the execution time for out-of-order processors.

173

174

CONCLUSIONS AND FUTURE WORK

ware. The model can be employed in a situation when the designer
needs to investigate various task mapping and scheduling strategies
on a target multicore architecture, but the target application has not
yet been ported to any existing embedded OS implementations. Par-
ticularly, the designer can investigate the implications of task map-
ping such as performance gain due to parallelization of the appli-
cation execution or additional execution delays due to the usage of
shared resources. At the end, the designer can identify task mappings
which are most beneficial in terms of the application performance.

The proposed scheduler model is generic and not tailored to any
specific RTOS implementation. It provides a minimum set of basic
services to support a synchronized execution of concurrent tasks and,
thus, to enable simulation of distributed application execution on
multiple cores. At this level of abstraction, the focus lies on the de-
pendency relations between tasks. Thus, the scheduler allows the de-
signer to validate the correctness of task synchronization and identify
possible deadlocks in synchronization. Meanwhile, the OS-specific de-
tails of the synchronization mechanisms are abstracted.

Furthermore, the scheduler provides means for considering the
coarse-grained execution time of RTOS services by employing ab-
stract traces of OS-related workload. The traces are intended for a
what-if analysis of a possible RTOS impact on the timing of the tar-
get application. By modifying the traces, the designer can investigate
multiple scenarios of the RTOS workload timing behavior and deter-
mine a maximum time budget available for an RTOS. In this way,
the scheduler can be employed to obtain timing requirements for fu-
ture RTOS candidates. This approach follows the refinement process
in platform-based design, in which the parameters of virtual compo-
nents, as formulated in [67], “are set by the requirements rather than
by the implementation” and “have to be considered as constraints for
the next level of refinement”.

In the next step of the design flow, which is not covered in this the-
sis, the scheduler model can be substituted with a configurable RTOS
model which can accurately reproduce the behavior of real RTOS im-
plementations. Creation of configurable generic RTOS models is an
on-going research topic [89, 25, 52]. A generic RTOS model needs to
have a common set of properties from multiple RTOS implementa-
tions. The model has to accurately reflect the behavior of many ser-
vices, e.g. rescheduling policies, inter-process communication meth-
ods (message passing or shared memory), IO services, methods for
memory protection. Therefore, validation of generic RTOS models
against the real counterparts is of a great importance. Refinement of
the proposed high-level scheduler to one or several specific RTOS im-
plementations is an open issue left for the future work.

7.2 OUTLOOK FOR FUTURE WORK 175

7.2 OUTLOOK FOR FUTURE WORK

There are several open issues which identify directions for possible
future research:

e The employment of the BLS method during testing and debug-
ging of the target SW is currently hindered because the com-
plete translated code has to be recompiled even if only a small
part of it has been changed. New methodology is required for
enabling partial recompilation of the code that would reduce
the compilation overhead during the debugging process. More-
over, the timing of the modified part of the code has to be ob-
tained using cycle-accurate simulation in an efficient way. New
techniques are required that would allow the measurement of
only selected parts of the target code. A particular challenge is
to accurately reconstruct the microarchitectural state of the core
at the beginning of basic blocks that have to be measured.

¢ An interesting approach for reducing the compilation overhead
would be to adopt dynamic binary translation techniques, which
rely on dynamic compilation of the code at simulation run-time.
This approach will introduce many challenges. For example,
current techniques do not differentiate instances of an instruc-
tion in the target code, as they primarily focus on functional
simulation of the code. However, the same instruction executed
in different parts of the code has different timing, as it is exe-
cuted at different contexts of the core’s microarchitecture.

e Another possible research topic would be to apply the proposed
compiled simulation method at higher abstraction levels of the
target code, e.g. during source-level simulation. Direct employ-
ment of the source code instead of translated binary code can
significantly improve the simulation speed. However, it is also
a challenging task as the instruction details are not available at
the source level.

e Refinement of the current high-level model of the scheduler
to a configurable generic RTOS model is also a subject of fu-
ture work. Possibility for reconstructing the behavior of exist-
ing RTOS implementations would improve the accuracy of per-
formance evaluation and allow for more comprehensive design
space exploration.

e Finally, the complexity of embedded processing cores will likely
increase in the future. They may implement further techniques
for optimizing the application performance, e.g. hardware multi-
threading, or incorporate advanced caches that allow multiple
outstanding misses. Consideration of these techniques may be-

176 CONCLUSIONS AND FUTURE WORK

come necessary for performance evaluation of target software
in the next generations of embedded processors.

BIBLIOGRAPHY

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

H. AbdElSalam, S. Kobayashi, K. Sakanushi, Y. Takeuchi, and
M. Imai. Towards a higher level of abstraction in Hardware /Soft-
ware co-simulation. In Proceedings of the 24th International Confer-
ence on Distributed Computing Systems Workshops, pages 824-830,
2004.

R. D. Acosta, J. Kjelstrup, and H. C. Torng. An instruction issu-
ing approach to enhancing performance in multiple functional
unit processors. In IEEE Transactions on Computers, C-35(9): 815—
828, Sept. 1986.

O. Almer, I. Bohm, T. von Koch, B. Franke, S. Kyle, V. Seeker,
C. Thompson, and N. Topham. Scalable multi-core simulation
using parallel dynamic binary translation. In Proceedings of In-
ternational Conference on Embedded Computer Systems (SAMOS),
pages 190—-199, 2011.

G. M. Amdahl. Validity of the single processor approach to
achieving large scale computing capabilities. In Proceedings of
the AFIPS conference, pages 483-485, ACM, 1967 (Spring).

T. Austin, E. Larson, and D. Ernst. SimpleScalar: An infrastruc-
ture for computer system modeling. In Computer, 35(2): 590-67,
Feb. 2002.

J. Bammi, E. Harcourt, W. Kruitzer, L. Lavagno, and
M. Lazarescu. Software performance estimation strategies in a
system-level design tool. In Proceedings of the 8th International
Workshop on Hardware/Software Codesign (CODES), pages 82-86,
2000.

E. Bellard. QEMU, a fast and portable dynamic translator. In Pro-
ceedings of the USENIX Annual Technical Conference, ATEC 2005,
page 41, USENIX Association, 2005.

L. Benini, D. Bertozzi, A. Bogliolo, F. Menichelli, and M. Olivieri.
MPARM: Exploring the multi-processor SoC design space with
SystemC. In Journal of VLSI Signal Processing, 41(2): 169-182,
2005.

N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen,
K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood. The
gems simulator. In SIGARCH Computer Architecture News, 39(2):
1-7, Aug. 2011.

177

178

BIBLIOGRAPHY

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

N. Binkert, R. Dreslinski, L. Hsu, K. Lim, A. Saidi, and S. Rein-
hardt. The ms simulator: Modeling networked systems. In IEEE
Micro, 26(4):52—60, 2006.

I. Bohm, B. Franke, and N. Topham. Cycle-accurate performance
modelling in an ultra-fast just-in-time dynamic binary transla-
tion instruction set simulator. In Proceedings of the International
Conference on Embedded Computer Systems (SAMOS), pages 1-10,
2010.

A. Bouchhima, P. Gerin, and F. Pétrot. Automatic instrumen-
tation of embedded software for high level hardware/software
co-simulation. In Proceedings of Asia and South Pacific Design Au-
tomation Conference (ASP-DAC), pages 546—551, 2009.

D. Burger and T. M. Austin. The SimpleScalar tool set, version
2.0. In SIGARCH Computer Architecture News, 25(3): 13—25, June

1997.

D. Burger, A. Kédgi, and M. S. Hrishikesh. Memory hierarchy
extensions to the SimpleScalar tool set. Technical report, 2000.

E. Cheung, H. Hsieh, and F. Balarin. Fast and accurate perfor-
mance simulation of embedded software for MPSoC. In Proceed-
ings of Asia and South Pacific Design Automation Conference (ASP-
DAC), pages 552—-557, 2009.

J. Chevalier, O. Benny, M. Rondonneau, G. Bois, E. M. Aboul-
hamid, and E-R. Boyer. Space: A Hardware/Software SystemC
modeling platform including an RTOS. In Languages for system
specification: Selected contributions on UML, SystemC, System Ver-
ilog, mixed-signal systems, and property specification from FDL'03,
pages 91—-104. Kluwer Academic Publishers, 2004.

L. Eeckhout, R. H. Bell Jr., B. Stougie, K. De Bosschere, and L. K.
John. Control flow modeling in statistical simulation for accurate
and efficient processor design studies. In SIGARCH Computer
Architecture News, 32(2): 350, Mar. 2004.

S. Fytraki and D. Pnevmatikatos. ReSim, a trace-driven, reconfig-
urable ILP processor simulator. In Proceedings of Design, Automa-
tion and Test in Europe Conference (DATE), pages 536541, 2009.

L. Gao, K. Karuri, S. Kraemer, R. Leupers, G. Ascheid, and
H. Meyr. Multiprocessor performance estimation using hybrid
simulation. In Proceedings of 45th ACM/IEEE Design Automation
Conference (DAC), pages 325-330, 2008.

A. Gerstlauer. Host-compiled simulation of multi-core platforms.
In Proceedings of the 21st IEEE International Symposium on Rapid
System Prototyping (RSP), pages 1-6, 2010.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

BIBLIOGRAPHY

A. Gerstlauer, H. Yu, and D. Gajski. RTOS modeling for sys-
tem level design. In Proceedings of Design, Automation and Test in
Europe (DATE), pages 130-135, 2003.

T. Grotker, S. Liao, G. Martin, and S. Swan. System Design with
SystemC. Kluwer Academic Publishers, 2002.

M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and
R. Brown. MiBench: A free, commercially representative embed-
ded benchmark suite. In Proceedings of IEEE International Work-
shop on Workload Characterization, pages 3—14, 2001.

G. Hamerly, E. Perelman, J. Lau, and B. Calder. Simpoint 3.0:
Faster and more flexible program analysis. In Journal of Instruc-
tion Level Parallelism, 2005.

Z. He, A. Mok, and C. Peng. Timed RTOS modeling for embed-
ded system design. In Proceedings of the 11th IEEE Real Time and
Embedded Technology and Applications Symposium (RTAS), pages

448-457, 2005.

J. L. Hennessy and D. A. Patterson. Computer Architecture: A
Quantitative Approach. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, sth edition, 2011.

M. A. Holliday and C. S. Ellis. Accuracy of memory reference
traces of parallel computations in trace-drive simulation. In [EEE
Transactions on Parallel and Distributed Systems, 3(1): 97-109, 1992.

Y. Hwang, S. Abdi, and D. Gajski. Cycle-approximate retar-
getable performance estimation at the transaction level. In
Proceedings of Design, Automation and Test in Europe Conference
(DATE), pages 3-8, 2008.

T. Isshiki, D. Li, H. Kunieda, T. Isomura, and K. Satou. Trace-
driven workload simulation method for multiprocessor system-
on-chips. In Proceedings of the 46th Annual Design Automation
Conference (DAC), pages 232—237, ACM, 2009.

M. Johnson. Superscalar microprocessor design. Prentice Hall series
in innovative technology. Prentice Hall, 1991.

D. Jones and N. Topham. High speed CPU simulation using
LTU dynamic binary translation. In Proceedings of the 4th Interna-
tional Conference on High Performance Embedded Architectures and
Compilers (HiPEAC), pages 50-64, Springer-Verlag, 2009.

T. Kempf, M. Doerper, R. Leupers, G. Ascheid, H. Meyr, T. Kogel,
and B. Vanthournout. A modular simulation framework for spa-
tial and temporal task mapping onto multi-processor SoC plat-
forms. In Proceedings of Design, Automation and Test in Europe

179

180

BIBLIOGRAPHY

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Conference (DATE), Vol. 2, pages 876-881, IEEE Computer Soci-
ety, 2005.

T. Kempf, K. Karuri, S. Wallentowitz, G. Ascheid, R. Leupers,
and H. Meyr. A SW performance estimation framework for
early system-level-design using fine-grained instrumentation. In
Proceedings of Design, Automation and Test in Europe Conference
(DATE), pages 468-473, European Design and Automation As-
sociation, 2006.

S. Kraemer, L. Gao, J. Weinstock, R. Leupers, G. Ascheid, and
H. Meyr. HySim: A fast simulation framework for embedded
software development. In Proceedings of the 5th IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS), pages 75-80, 2007.

M. Krause, D. Englert, O. Bringmann, and W. Rosenstiel. Com-
bination of instruction set simulation and abstract RTOS model
execution for fast and accurate target software evaluation. In
Proceedings of the 6th IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis, pages 143-148,
ACM, 2008.

M. Lazarescu,]J. Bammi, E. Harcourt, L. Lavagno, and M. Lajolo.
Compilation-based software performance estimation for system
level design. In Proceedings of IEEE International High-Level Design
Validation and Test Workshop, pages 167-172, 2000.

C. Lee, M. Potkonjak, and W. Mangione-Smith. MediaBench: a
tool for evaluating and synthesizing multimedia and communi-
cations systems. In Proceedings of 30th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, pages 330-335, 1997.

H. Lee, L. Jin, K. Lee, S. Demetriades, M. Moeng, and S. Cho.
Two-phase trace-driven simulation (TPTS): A fast multicore pro-
cessor architecture simulation approach. In Software: Practice and
Experience, 40(3): 239-258, 2010.

J.-Y. Lee and I.-C. Park. Timed compiled-code simulation of em-
bedded software for performance analysis of SOC design. In
Proceedings of the 39th Design Automation Conference (DAC), pages
293-298, 2002.

K. Lee, S. Evans, and S. Cho. Accurately approximating su-
perscalar processor performance from traces. In Proceedings of
IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS), pages 238-248, 2009.

R. Leupers, J. Elste, and B. Landwehr. Generation of interpretive
and compiled instruction set simulators. In Proceedings of the Asia

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

BIBLIOGRAPHY

and South Pacific Design Automation Conference (ASP-DAC), Vol.1,
pages 339-342, 1999.

R. Leupers, F. Schirrmeister, G. Martin, T. Kogel, R. Plyaskin,
A. Herkersdorf, and M. Vaupel. Virtual platforms: Breaking new
grounds. In Proceedings of Design, Automation Test in Europe Con-
ference (DATE), pages 685-690, 2012.

K.-L. Lin, C.-K. Lo, and R.-S. Tsay. Source-level timing annota-
tion for fast and accurate TLM computation model generation.
In Proceedings of the 15th Asia and South Pacific Design Automation
Conference (ASP-DAC), pages 235-240, 2010.

K. Lu, D. Miiller-Gritschneder, and U. Schlichtmann. Hierarchi-
cal control flow matching for source-level simulation of embed-
ded software. In Proceedings of International Symposium on System
on Chip (50C), pages 1-5, 2012.

P. Magnusson, M. Christensson,]J. Eskilson, D. Forsgren, G. Hall-
berg, J. Hogberg, F. Larsson, A. Moestedt, and B. Werner. Simics:
A full system simulation platform. In Computer, 35(2): 50-58,
2002.

P. S. Magnusson, F. Dahlgren, H. Grahn, M. Karlsson, F. Lars-
son, F. Lundholm, A. Moestedt, J. Nilsson, P. Stenstrém, and
B. Werner. SimICS/sungm: A virtual workstation. In Proceedings
of the annual conference on USENIX Annual Technical Conference
ATEC, USENIX Association, 1998.

S. Mahadevan, F. Angiolini, J. Sparsg, L. Benini, and J. Madsen.
A reactive and cycle-true IP emulator for MPSoC exploration. In
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 27(1): 109—122, 2008.

S. Mahadevan, K. Virk, and]. Madsen. ARTS: a SystemC-Based
framework for multiprocessor systems-on-chip modelling. In De-
sign Automation for Embedded Systems, 11(4): 285-311, Dec. 2007.

T. Meyerowitz, A. Sangiovanni-Vincentelli, M. Sauermann, and
D. Langen. Source-level timing annotation and simulation for a
heterogeneous multiprocessor. In Proceedings of Design, Automa-
tion and Test in Europe Conference (DATE), pages 276—279, 2008.

C. Mills, S. C. Ahalt, and J. Fowler. Compiled instruction set
simulation. 1991.

R. L. Moigne, O. Pasquier, and].-P. Calvez. A generic RTOS
model for real-time systems simulation with SystemC. In Proceed-
ings of Design, Automation and Test in Europe Conference (DATE),
Vol. 3, pages 82-87, 2004.

181

182

BIBLIOGRAPHY

[52]

[53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

M. Miiller, J. Gerlach, and W. Rosenstiel. RTOS-aware modeling
of embedded hardware/software systems. In Proceedings of IEEE
International Conference on Computer Design (ICCD), pages 179—
186, 2010.

T. Nakada, T. Tsumura, and H. Nakashima. Design and imple-
mentation of a workload specific simulator. In Proceedings of the
39th Annual Symposium on Simulation, pages 230-243. IEEE Com-
puter Society, 2006.

A. Nohl, G. Braun, O. Schliebusch, R. Leupers, H. Meyr, and
A. Hoffmann. A universal technique for fast and flexible
instruction-set architecture simulation. In Proceedings of the 39th
Annual Design Automation Conference (DAC), pages 22—27, 2002.

M. S. Papamarcos and J. H. Patel. A low-overhead coherence
solution for multiprocessors with private cache memories. In
SIGARCH Computure Architecture News, 12(3): 348—354, Jan. 1984.

D. A. Patterson and J. L. Hennessy. Computer Organization and
Design: The Hardware/Software Interface (Revised Fourth Edition). El-
sevier, Nov. 2011.

A. Pimentel, C. Erbas, and S. Polstra. A systematic approach
to exploring embedded system architectures at multiple abstrac-
tion levels. In IEEE Transactions on Computers, 55(2): 99—112, 2006.

A. D. Pimentel, M. Thompson, S. Polstra, and C. Erbas. Cali-
bration of abstract performance models for system-level design
space exploration. In Journal of Signal Processing Systems, 50(2):
99—114, 2008.

R. Plyaskin and A. Herkersdorf. A method for accurate high-
level performance evaluation of MPSoC architectures using fine-
grained generated traces. In Proceedings of Architecture of Comput-
ing Systems Conference (ARCS), pages 199—210, 2010.

R. Plyaskin and A. Herkersdorf. Context-aware compiled simu-
lation of out-of-order processor behavior based on atomic traces.
In Proceedings of IEEE/IFIP International Conference on VLSI and
System-on-Chip (VLSI-50C), pages 386—391, 2011.

R. Plyaskin, A. Masrur, M. Geier, S. Chakraborty, and A. Herk-
ersdorf. High-level timing analysis of concurrent applications
on MPSoC platforms using memory-aware trace-driven simula-
tions. In Proceedings of IEEE/IFIP International Conference on VLSI
and System-on-Chip (VLSI-SoC), pages 229—234, 2010.

R. Plyaskin, T. Wild, and A. Herkersdorf. System-level software
performance simulation considering out-of-order processor ex-

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

BIBLIOGRAPHY

ecution. In Proceedings of International Symposium on System on
Chip (SoC), pages 1-7, 2012.

D. C. Powell and B. Franke. Using continuous statistical machine
learning to enable high-speed performance prediction in hybrid
instruction-/cycle-accurate instruction set simulators. In Proceed-
ings of the 7th IEEE/ACM International Conference on Hardware/-
Software Codesign and System Synthesis (CODES+ISSS), pages 315—

324, 2009.

C. A. Prete, G. Prina, and L. Ricciardi. A trace-driven simulator
for performance evaluation of cache-based multiprocessor sys-
tems. In IEEE Transactions on Parallel and Distributed Systems, 6(9):

915-929, 1995.

M. Reshadi, P. Mishra, and N. Dutt. Hybrid-compiled simula-
tion: An efficient technique for instruction-set architecture simu-
lation. In ACM Transactions in Embedded Computing Systems, 8(3):
20:1-20:27, Apr. 2009.

B. Sander, J. Schnerr, and O. Bringmann. ESL power anal-
ysis of embedded processors for temperature and reliability
estimations. In Proceedings of the 7th IEEE/ACM International
Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), pages 239—248, ACM, 2009.

A. Sangiovanni-Vincentelli. Quo vadis, SLD? Reasoning about
the trends and challenges of system level design. In Proceedings
of the IEEE, 95(3): 467506, Mar. 2007.

S. Schliecker,]J. Rox, M. Negrean, K. Richter, M. Jersak, and
R. Ernst. System level performance analysis for real-time auto-
motive multicore and network architectures. In IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 28(7):

979-992, 2009.

J. Schnerr, O. Bringmann, and W. Rosenstiel. Cycle accurate bi-
nary translation for simulation acceleration in rapid prototyping
of SoCs. In Proceedings of Design, Automation and Test in Europe
Conference (DATE), Vol. 2, pages 792-797, 2005.

J. Schnerr, O. Bringmann, A. Viehl, and W. Rosenstiel. High-
performance timing simulation of embedded software. In Pro-
ceedings of the 45th Annual Design Automation Conference (DAC),
pages 290—295, ACM, 2008.

S. W. Sherman and J. C. Browne. Trace driven modeling: Review
and overview. In Proceedings of the 1st Symposium on Simulation of
Computer Systems, pages 200—207, IEEE Press, 1973.

183

184

BIBLIOGRAPHY

[72]

(73]

[74]

[75]

[76]

[77]

[78]

[79]

[8o]

[81]

T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automat-
ically characterizing large scale program behavior. In SIGARCH
Computer Architecture News, 30(5): 45-57, Oct. 2002.

G. S. Sohi. Instruction issue logic for high-performance, inter-
ruptible, multiple functional unit, pipelined computers. In IEEE
Transactions on Computers, 39(3): 349—359, Mar. 1990.

S. Stattelmann, O. Bringmann, and W. Rosenstiel. Dominator ho-
momorphism based code matching for source-level simulation
of embedded software. In Proceedings of the 7th IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS), pages 305-314, ACM, 2011.

S. Stattelmann, G. Gebhard, C. Cullmann, O. Bringmann, and
W. Rosenstiel. Hybrid source-level simulation of data caches us-
ing abstract cache models. In Proceedings of Design, Automation
Test in Europe Conference (DATE), pages 376—381, 2012.

S. Stattelmann, S. Ottlik, A. Viehl, O. Bringmann, and W. Rosen-
stiel. Combining instruction set simulation and WCET analysis
for embedded software performance estimation. In Proceedings
of the 7th IEEE International Symposium on Industrial Embedded Sys-
tems (SIES), pages 295-298, 2012.

D. Thach, Y. Tamiya, S. Kuwamura, and A. Ike. Fast cycle estima-
tion methodology for instruction-level emulator. In Proceedings of
Design, Automation Test in Europe Conference (DATE), pages 248-
251, 2012.

R. M. Tomasulo. An efficient algorithm for exploiting multiple
arithmetic units. In IBM Journal of Research and Development, 11(1):

25-33, Jan. 1967.

R. A. Uhlig and T. N. Mudge. Trace-driven memory simulation:
A survey. In ACM Computing Surveys, 29(2): 128-170, June 1997.

A. Viehl, M. Pressler, and O. Bringmann. Bottom-up perfor-
mance analysis considering time slice based software schedul-
ing at system level. In Proceedings of the 7th IEEE/ACM Interna-
tional Conference on Hardware/Software Codesign and System Synthe-
sis (CODES+ISSS), pages 423—432, ACM, 2009.

Z. Wang and]. Henkel. HyCoS: Hybrid compiled simulation of
embedded software with target dependent code. In Proceedings
of the 8th IEEE/ACM/IFIP International Conference on Hardware/-
Software Codesign and System Synthesis (CODES+ISSS), pages 133—
142, ACM, 2012.

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]
[94]

BIBLIOGRAPHY

Z. Wang and A. Herkersdorf. An efficient approach for system-
level timing simulation of compiler-optimized embedded soft-
ware. In Proceedings of the 46th Annual Design Automation Confer-
ence (DAC), pages 220—225, ACM, 2009.

Z. Wang, A. Sanchez, and A. Herkersdorf. SciSim: A software
performance estimation framework using source code instru-
mentation. In Proceedings of the 7th international workshop on soft-
ware and performance, pages 33—42, ACM, 2008.

T. Wild, A. Herkersdorf, and G.-Y. Lee. TAPES—Trace-based
architecture performance evaluation with SystemC. In Design
Automation for Embedded Systems, 10(2):1 57-179, 2006.

M.-H. Wu, P-C. Wang, C.-Y. Fu, and R.-S. Tsay. An extended
SystemC framework for efficient HW/SW co-simulation. ACM
Transactions on Design Automation of Electronic Systems, 17(2): 11:1—
11:16, Apr. 2012.

R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and]J. C. Hoe.
SMARTS: accelerating microarchitecture simulation via rigorous
statistical sampling. In SIGARCH Computer Architecture News,

31(2): 84-97, May 2003.

Y. Yi, D. Kim, and S. Ha. Fast and time-accurate cosimulation
with OS scheduler modeling. In Design Automation for Embedded
Systems, 8(2-3): 211—228, June 2003.

Y. Yi, D. Kim, and S. Ha. Fast and accurate cosimulation of MP-
SoC using trace-driven virtual synchronization. In IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
26(12): 2186—2200, 2007.

S. Yoo, G. Nicolescu, L. Gauthier, and A. Jerraya. Automatic gen-
eration of fast timed simulation models for operating systems in
SoC design. In Proceedings of Design, Automation and Test in Eu-
rope Conference (DATE), page 620. IEEE Computer Society, 2002.

J. Zhu and D. Gajski. A retargetable, ultra-fast instruction set
simulator. In Proceedings of Design, Automation and Test in Europe
Conference (DATE), pages 298—302, 1999.

ARM1136JF-S and ARM1136]-S, technical reference manual (re-
vision r1ps5), 2009.

Embedded JPEG codec library, available on
http:/ /www.sourceforge.net, 2009.

e5500 core reference manual (rev. 3), Nov. 2012.

Intel CoFluent technology overview, available on
http:/ /www.intel.com, 2013.

185

186 BIBLIOGRAPHY

[95] OVPsim, open virtual platforms, available on
http:/ /www.ovpworld.org, 2013.

[96] The website of SimpleScalar simulation tool,
http:/ /simplescalar.com, 2013.

[97] VaST systems, available on
http:/ /www.synopsys.com, 2013.

COLOPHON

This document is based on classicthesis template developed by An-
dré Miede. The template is available on http://code.google.com/p/
classicthesis/.

http://code.google.com/p/classicthesis/
http://code.google.com/p/classicthesis/

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Scope of the thesis
	1.2 Problem statement
	1.3 Contributions
	1.4 Outline

	2 Prior Art
	2.1 Instruction Set Simulation
	2.1.1 Interpretive ISS
	2.1.2 Compiled ISS
	2.1.3 Sampled simulation
	2.1.4 ISS-based simulation of multicore architectures

	2.2 Simulation based on target code
	2.2.1 Source-level simulation
	2.2.2 Simulation based on intermediate representation
	2.2.3 Instruction-level simulation

	2.3 Trace-driven simulation
	2.4 High-level OS modeling
	2.5 Summary

	3 Background of compiled SW simulation at binary level
	3.1 Functional behavior
	3.1.1 Binary-to-C translation
	3.1.2 Organization of translated code
	3.1.3 Modeling of target memory

	3.2 Timing behavior
	3.2.1 Annotation of timing information
	3.2.2 Modeling of caches

	4 Compiled SW simulation considering out-of-order instruction execution
	4.1 System-level effects of out-of-order execution
	4.1.1 Classification of out-of-order effects
	4.1.2 Limitations of conventional host-compiled simulations

	4.2 Derivation of basic block timing
	4.2.1 ISS enhancements
	4.2.2 Identification of basic block boundaries

	4.3 Context dependency of basic block timing
	4.3.1 Concept
	4.3.2 Derivation of context-dependent timing
	4.3.3 Context-aware host-compiled simulation

	4.4 Reordering of memory accesses
	4.4.1 Classification of basic blocks
	4.4.2 Simulation of memory reordering

	4.5 Non-blocking behavior of data cache
	4.5.1 Modeling of non-blocking behavior
	4.5.2 Dependency analysis of memory instructions

	4.6 Optimizations
	4.6.1 Optimization of binary-to-C translation
	4.6.2 Averaging of basic block timings
	4.6.3 Static reordering of memory accesses

	5 System-level simulation of multicore architectures
	5.1 Simulation methods
	5.1.1 Trace-Driven Simulation
	5.1.2 Binary-level simulation
	5.1.3 Summary

	5.2 High-level scheduler model
	5.2.1 Task model
	5.2.2 Scheduler model
	5.2.3 Implementation details

	5.3 SystemC models of hardware components
	5.3.1 Out-of-order core
	5.3.2 Communication infrastructure and memory

	6 Experimental results
	6.1 Context-aware host-compiled SW simulation
	6.1.1 Experimental setup
	6.1.2 Optimization of binary-to-C translation
	6.1.3 Context-aware compiled simulation
	6.1.4 Averaging of basic block timing
	6.1.5 Consideration of a data cache

	6.2 System-level simulation based on SystemC
	6.2.1 Experimental setup
	6.2.2 Evaluation of BLS and TDS methods

	6.3 Multicore design space exploration: A use case
	6.3.1 Experimental setup
	6.3.2 Results

	7 Conclusions and future work
	7.1 Conclusions
	7.2 Outlook for future work

	Bibliography

