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Abstract. We discuss a novel arrangement of second order systems in convenient state space
representations fulfilling E = ET > 0 and A+AT < 0, which has first been presented in [1].
In this contribution, the technique is motivated, analyzed from a system theoretical point of view,
and extensively illustrated at the example of a single mass oscillator. In the second part of the
article, the prerequisites for symmetric positive definite mass, damping, and stiffness matrices
are weakened in several ways. We firstly consider the presence of gyroscopic forces resulting
in a skew-symmetric component in the damping matrix. Secondly, algebraic constraints in the
form of a singular mass matrix are treated for two relevant scenarios. It is shown how under
each of these conditions a state space formulation with the above properties can be derived.

1 Introduction and Motivation

For the modeling of complex technical systems, finite element methods (FEM) are commonly
used to convert partial differential equations into systems of ordinary differential equations
(ODE) by spatial discretization on a given geometry. Typically—for instance in the context of
structural mechanics—this results in linear time invariant (LTI) systems of second order,

G(s) :

{
M z̈(t) +D ż(t) +K z(t) = Fu(t),

y(t) = S z(t),
(1)

where z(t) ∈ Rn, u(t) ∈ Rm, and y(t) ∈ Rp contain the n displacement variables, m inputs,
and p outputs of the system, respectively. F ∈ Rn×m and S ∈ Rp×n denote the input and output
matrix, respectively.1 M,D,K ∈ Rn×n are named mass, damping, and stiffness matrix and are
often symmetric positive definite:

M = MT > 0, K = KT > 0, D = DT > 0. (2)

With increasing demands on the accuracy of the model, the dimension n can grow dramati-
cally, as the number of degrees of freedom rises with finer spatial discretization. Thereby, the
increasing computational complexity can easily hinder the use of the model for the purpose of
simulation, control, or optimization of the technical system.
Model order reduction (MOR) offers one possible remedy by approximating the transfer be-
havior of the high fidelity model (1) with a reduced order model (ROM) of much smaller com-
plexity. To this end, two lines of action are basically viable. Either, the second order system is
firstly linearized, i. e. transformed into a state space model of the form

G(s) :

{
E ẋ(t) =A x(t) + B u(t),

y(t) = C x(t),
(3)

with x ∈ RN , A,E ∈ RN×N , B ∈ RN×m, and C ∈ Rp×N ; then, one can apply standard MOR
techniques like modal or balanced truncation, or KRYLOV subspace methods (cf. Section 2.2).

1Sometimes, y(t) also contains a summand Svż(t) which accounts for velocity-based output variables. Though
all results of this article carry over to the general case, we assume Sv = 0 for ease of presentation.



Or alternatively, the second order system is reduced directly by means of adaptations of the
given MOR methods—see, for instance, [2, 3, 4, 5, 6, 7], and references therein. In addition
to numerical simplifications, this procedure has the advantage that preservation of stability can
easily be guaranteed by one-sided projection.
The workaround using a state space model, however, is particularly advisable when—for simu-
lation purposes, the design of a controller, or similar—a first order system of ODEs is required
anyway after the reduction process. Also, the aforementioned preservation of stability can be
assured as well, if the linearization of the second order system into a state space model is ac-
complished judiciously. It has recently been shown how second order systems can even be
transformed into a strictly dissipative state space formulation [1], i. e. with the definiteness
properties

E = ET > 0 und A+AT < 0. (4)

Not only does this formulation guarantee preservation of asymptotic stability in one-sided re-
duction, but also it enables the application of novel error bounds for reduction using KRYLOV

subspace methods (cf. [8] and Section 2.2).

In this contribution, we first revise preliminaries related to state space models with the above
properties (4). In Section 3, the procedure in [1] is picked up, analyzed and illustrated in detail.
In Sections 4 and 5 we demonstrate how the prerequisites (2) can be relaxed to even transform
certain classes of systems with algebraic constraints—so-called differential-algebraic equations
(DAE)—into strictly dissipative state space models. Conclusions and an outlook are given at
the end of the article.

2 Preliminaries

In the following, we recall important preliminaries on systems in strictly dissipative state space
formulation and on their importance for MOR.

2.1 Logarithmic norm and the speed of contraction

Consider an asymptotically stable LTI state space model (3) with positive definite E = ET > 0,
possibly identity. Then, E induces a norm in which the state vector x(t) can be measured.
Define

f(t) := ‖x(t)‖E =
√
xTEx ≥ 0.

Although the system is known to be asymptotically stable, i. e. lim
t→∞

f(t) = 0 for u(t) ≡ 0, we

know little on the evolution of the norm in time. If no input is applied, its derivative is2

d

dt
f(t) =

xTEẋ+ ẋTEx

2 ‖x‖E
=

xTAx+ xTATx

2 ‖x‖E
=

xT A+AT

2
x√

xTEx
=

xT A+AT

2
x

xTEx
· f(t).

Obviously, the symmetric part of A, symA := A+AT

2
, has an important influence on the way

the norm decreases. If A +AT is negative definite, d
dt
f(t) < 0 holds where f(t) > 0, and the

norm decays strictly monotonically. If symA has at least one positive eigenvalue, this means
that the norm can temporarily increase before it eventually tends towards zero.

2For better readability, we sometimes omit the time argument (t) in the following.



In fact, a worst-case bound on the decay rate of ‖x(t)‖E can be given in terms of the right-most
generalized eigenvalue of symA. Using the Cholesky decomposition of E = LTL, we can
reformulate the RAYLEIGH quotient [9] to derive

d

dt
f(t) =

xTLTL−T A+AT

2
L−1Lx

xTLTLx
· f(t) y=Lx

=
yTL−T A+AT

2
L−1y

yTy
· f(t)

≤ λmax

(
L−T A+AT

2
L−1

)
· f(t) = λmax

(
A+AT

2
E−1

)
· f(t).

Hence, the right-most solution of the generalized eigenvalue problem above, also known as the
(generalized) numerical abscissa or (generalized) logarithmic norm [1, 10]

µ := µE (A) := λmax

(
A+AT

2
,E

)
,

gives us some upper bound on the slope of f(t) over f(t): ḟ(t)
f(t)
≤ µ. In other words: µ is a

worst-case estimate on the speed of contraction the system exhibits. As it was shown in [11]
and [12], the norm of x decays at least as fast as an exponential function and can therefore be
upper bounded by

f(t) ≤ f(0) · eµ t for t ≥ 0. (5)

Accordingly, µ < 0 implies strictly monotonic decay of ‖x(t)‖E and asymptotic stability. If
µ = 0, the decay is only monotonic, i. e. the norm can not increase, at least. If µ > 0, however,
a phenomenon called ”the hump”, which is typical for non-normal system operators, can occur
in the norm signal [13].

Due to the importance of the property µ < 0, we make the following definitions.

Definition 1. A quadratic matrix A is called dissipative if A + AT ≤ 0. It is called strictly
dissipative, if A+AT < 0.

Definition 2. A state space model (3) is called dissipative, if E = ET > 0 and A+AT ≤ 0,
i. e. if µE(A) = 0.
It is called strictly dissipative, if E = ET > 0 and A+AT < 0, i. e. if µE(A) < 0.

Please note that these definitions are not directly related to the concept of dissipativity/passivity
in the sense of WILLEMS [14, 15], but constitute a realization-dependent property of a state
space model (cf. Section 2.3).

2.2 Order reduction of models in strictly dissipative state space formulation

Projection-based MOR in state space, as introduced above, typically involves the choice of two
matrices V,W ∈ RN×q with q � N to obtain a reduced order model Gr(s) of the form3

Gr(s) :





Er︷ ︸︸ ︷
WTEV ẋr(t) =

Ar︷ ︸︸ ︷
WTAV xr(t) +

Br︷ ︸︸ ︷
WTB u(t),

yr(t) = CV︸︷︷︸
Cr

xr(t).
(6)

3With the common abuse of notation, in this article we refer by G(s) to the transfer function in the LAPLACE
domain and to the corresponding dynamic system itself.



V and W can be computed by MOR methods like modal truncation, balanced truncation or
rational KRYLOV subspaces. The special case V = W is referred to as one-sided reduction.
For details, please refer to [16] and the references therein.

Lemma 1 (cf. [17, 18, 19, 20]). One-sided reduction of a strictly dissipative state space model (3)
including a projection matrix V of full column rank delivers an asymptotically stable ROM.

Proof. Er = VTEV is symmetric positive definite and Ar = VTAV fulfills µEr (Ar) < 0, as

Ar +AT
r = VTAV +VTATV = VT

(
A+AT

)
︸ ︷︷ ︸

<0

V < 0.

From our considerations above, this implies asymptotic stability of Gr(s).

A second advantage of strict dissipativity has recently been presented in [8]: when a strictly
dissipative state space model is reduced by rational KRYLOV subspace methods, upper bounds
on the H2 and H∞ norm of the resulting error can be derived. As the bounds only apply for
strictly negative µE (A) < 0, this is another motivation to model systems in such a form.

2.3 The influence of the system representation

It is important to note that µ = µE (A) is not a system invariant, but depends on the state
space representation. In particular, the transition towards A → E−1A and E → I typically
has a strong—but not the desired—effect on µ. The modal canonical form of an asymptotically
stable system with distinct poles, on the other hand, always fulfills µ < 0. But can any stable LTI
system also be transformed into a strictly dissipative realization when an eigen decomposition
is not feasible?
To answer this question, consider an asymptotically stable LTI system (3) with symmetric pos-
itive definite E and arbitrary A. In general, there are two ways to influence µ: After a state
transformation x = Tz, on the one hand, the coordinate basis is changed and the state vec-
tor z(t) is measured instead of x(t). If, on the other hand, the ODE system is multiplied from
the left by a matrix T, then the state vector x(t) remains unaffected but is measured in a different
norm ‖·‖TE

4.
In the following, we focus on the second scenario, as it is generally desirable not to change
the coordinate basis. One way to find a strictly dissipative realization is to choose a suitable
symmetric positive definite matrix P and set T := ETP:

ETPE ẋ(t) = ETPA x(t) + ETPB u(t),
y(t) = C x(t),

(7)

The new matrix Ê = ETPE obtained is symmetric positive definite—even if E is only regu-
lar, but not positive definite—, so the first condition (4) for a strictly dissipative realization is
fulfilled for all admissible P. In addition, however,

ETPA+
(
ETPA

)T
= ETPA+ATPE

!
< 0

must hold. This condition is a generalized LYAPUNOV inequality, which can always be solved
for an asymptotically stable model [16, 21], but requires tremendous numerical effort for high
order N . Accordingly, though a strictly dissipative system representation can always be found
in theory, the computational complexity is generally not affordable in practice.

4Please note that either way, the resulting matrix ET or TE, respectively, must be positive definite for the
logarithmic norm theory to apply.



3 Second order systems in state space

It turns out, however, that the structure inherent in the positive definiteness of the matrices
M,D, and K enables the inexpensive derivation of a strictly dissipative state space formulation.

3.1 Classical linearization

It has already been noted in [3], that for any regular matrix R ∈ Rn×n, equivalent realizations
of the second order system (1) were given by the N = 2n dimensional state space model

[
R 0
0 M

] [
ż(t)
z̈(t)

]
=

[
0 R
−K −D

] [
z(t)
ż(t)

]
+

[
0
F

]
u(t),

y(t) =
[

S 0
] [z(t)

ż(t)

]
.

(8)

Traditionally, R = I was a common choice in view of the little storage requirements introduced
by the identity matrix. In the light of the above results, however, we will consider the choice
R = K [3]. It is easy to see that the resulting matrix E is positive definite while the symmetric
part of A is negative semidefinite, which characterizes a (not strictly) dissipative realization.

3.2 The novel approach

We now review the novel approach first presented in [1]. One starts from the realization (8) and
multiplies the state equation in (8) from the left by a matrix

T :=

[
I αI

αMK−1 I

]
∈ R2n×2n (9)

which depends on the real positive scalar α ∈ R+. The result is

Ẽ︷︸︸︷
TE ẋ(t) =

Ã︷︸︸︷
TA x(t) +

B̃︷︸︸︷
TB u(t),

y(t) = C x(t),

(10)

with

Ã =

[
−αK K− αD
−K −D+ αM

]
, Ẽ =

[
K αM
αM M

]
, B̃ =

[
αF
F

]
. (11)

As was shown in [1], this state space representation is strictly dissipative if

0 < α < α∗ := λmin

[
D
(
M+ 1

4
DK−1D

)−1] (12)

is fulfilled, where α∗ is the smallest solution to the eigenvalue problem

Dv = λ ·
(
M+ 1

4
DK−1D

)
v, λ ∈ R, v ∈ Rn \ {0}.

Its computation does not require much numerical effort. In MATLAB, for instance, it can be
performed by the following code:

[L_K,~,P_K] = chol(sparse(K));
alpha_fun = @(x) (M*x + D*(P_K*(L_K\(L_K'\(P_K'*(D*x/4))))));
opts = struct('issym', true, 'isreal', true);
alpha_max = 1/eigs(alpha_fun, size(D,1), sparse(D), 1, 'LA', opts);

For the benchmark model of a butterfly gyroscope [22] with n = 17361 degrees of freedom,
this computation lasts 1.6 seconds5.

5All numerical computations for this article have been performed on an Intel Core2 Duo CPU running at 3 GHz.



3.3 Illustrating Example: Single Mass Oscillator

The simple example of a single mass harmonic oscillator can ideally assist to understand the
effect of the change of realization presented in the previous section.
The initial conditions z(0) and ż(0) and the second order ODE

m z̈(t) + d ż(t) + k z(t) = 0.

define an initial value problem to describe the position and velocity of the mass over time. In
our example, let the constants be given bym = 1, d = 1, k = 2, and assume z(0) = ż(0) = 0.5.
We will now compare two different linearizations of this model. The first one is the classical
formulation (8) with R = K. Secondly, we follow the procedure from Section 3.2 and ob-
tain α∗ = 0.889, so for simplicity we choose α := 0.5 (cf. Figure 3 in Section 3.4). In both
cases, the state vector of the state space model is given by x =

[
ż z

]T .

E =

[
2 0
0 1

]
, A =

[
0 2
−2 −1

]
Ẽ =

[
2 0.5
0.5 1

]
, Ã =

[
−1 1.5
−2 −0.5

]

⇒ µE (A) = 0 ⇒ µẼ

(
Ã
)
= −0.5
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a) standard norm ‖ · ‖E b) modified norm ‖ · ‖Ẽ
Figure 1: Dissipative vs. strictly dissipative state space realization

Figure 1 shows a phase portrait of the state vector x(t)—which is identical for both cases
(cf. Section 2.3)—overlaid by contour plots indicating sets of constant values w. r. t. the respec-
tive norm. In either case, the trajectories contract monotonically, yet in case a), one can see how
for ż(t) = 0 the decline is not strictly monotonic, but the norm can stand still for an instant.
This makes sense from a physical point of view, as

‖x‖E =
√
zTKz+ żTMż =

√
k z2 +m ż2 (13)

is closely related to the physical energy which is only dissipated by damping and hence constant
for any time t where ż(t) = 0. The modified norm, on the other hand, defines an energy pot
which is reshaped in such a manner that the trajectory never touches contour lines parallelly,
but always crosses them. In fact, the minimal (worst-case) angle between the trajectory and any
of the contour lines is related to the logarithmic norm µ: the more negative µ, the steeper is the
slowest decay rate of the trajectory.



The effect of deforming the energy pot can be seen even better in the 3D-plots in Figure 2. They
result from the plots in Figure 1 by assigning the value of the norm to the vertical axes x3 of
the plots and looking at the resulting solid figures from the sides, i. e. from the directions of the
x1 = z axis and the x2 = ż axis. The trajectory x(t) as it were is projected along the vertical
axis x3 from the state space plane (x3 = 0) onto the respective energy pot.

a) standard norm ‖ · ‖E b) modified norm ‖ · ‖Ẽ
Figure 2: 3D view of standard vs. modified energy pot

Although the energy pots look similar at first sight, it is obvious that the transformation (9)
introduces a deformation which avoids the plateaus of the standard norm, and at the same time
balances and harmonizes the projected 3D curve of the trajectory in general.
Please note, finally, that the standard procedure of multiplying the classical ODE system from
the left by E−1 would have delivered a non-dissipative system matrix with µ = +

√
2−1
2

.

3.4 Optimal choice of α and the influence of damping

So far we have analyzed the effect of the transformation towards the modified state space rep-
resentation (10); we have also derived an easy way to determine the valid interval of α in which
the system representation (10) is strictly dissipative. But the question remains open how ex-
actly α should be chosen within this interval.
From our above considerations we can conclude that the minimization of the logarithmic norm
µẼ(Ã) is one meaningful objective: the smaller µ becomes, the tighter is the exponential
bound (5) and the more smoothly the system contracts. Although an analytic expression for
the optimal value of α minimizing µ could not yet be found, we will show how α can still be
suitably chosen to obtain small µ. To this end, we once more investigate the above example of a
single mass oscillator. Functions µ over α for various damping values d can be seen in Figure 3.
As it was predicted in Section 3.2, they all change their sign at α = 0 and at the respective
values of α∗, which have been computed according to (12) and marked by an orange spot.
It is interesting to observe that—although the exact relationship is more complicated—the
graphs resemble shifted absolute value functions, all the more, the smaller d gets. To high-
light this, Figure 3 also shows corresponding functions

∣∣α− α∗

2

∣∣ − α∗

2
in dashed orange. This

very behavior has also been observed for high-dimensional models, e. g. the benchmark model
of a butterfly gyroscope [22] whose damping matrix is given by D := 10−6K. The course of
the function µ(α) is visually indistinguishable from the shifted absolute value function.
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Figure 3: Logarithmic norm over α for one mass oscillator with various damping

Accordingly, for models in structural mechanics, which typically exhibit very little damping,
the choice α := α∗

2
is recommended. In all test cases treated so far, it delivered excellent

approximations of the true optimum, so the lack of an analytic expression to find the minimum
can be considered a minor drawback of the method. In fact, slight differences from the optimum
hardly change the resulting logarithmic norm anyway, therefore it is not of crucial importance
to find the optimum as accurately as possible. Besides, the initial choice α := α∗

2
can of course

be improved by means of optimization.
To compute the logarithmic norm, finally, the eigs command in MATLAB can be used. Its
standard convergence criteria, however, are quite strict and sometimes cannot be fulfilled in
practice. In such a situation, two measures can be taken: Either the convergence condition can
be relaxed by setting the tolerance to a larger number than the default (eps). Or the number
of LANCZOS vectors can be increased. The following lines present a possible implementation,
whose execution lasted 4.7 seconds for the butterfly gyroscope [22] with N = 34722.

alpha = alpha_max/2;

E = [K, alpha*M; alpha*M, M];
symA = [-alpha*K, -alpha/2*D; -alpha/2*D, -D+alpha*M];

p = 20; % number of Lanczos vectors
tol = 1e-10; % convergence tolerance
opts = struct('issym', true, 'p', p, 'tol', tol);
mu = eigs(symA, E, 1, 0, opts);

Please note that this code must only be used if µ < 0 is guaranteed as it is the case here. In
general, the code will deliver the eigenvalue closest to zero and not the largest (right-most) one.
For detailed information on large eigenvalue problems, please refer to [23].

The above procedure enables the approximate minimization of µ. One can, however, also
think of other optimization objectives: When the strictly dissipative state space model is re-
duced by means of KRYLOV subspace methods, for instance, the rigorous upper bounds on the
H2 andH∞ error norms derived in [8] apply. To keep the bounds as tight as possible, one might
also choose α such that one or both of the bounds become minimal instead of µ, but this is out
of the scope of this article.



3.5 Physical vs. modified energy norm

We have seen in Section 2.1 that a state space model in strictly dissipative form can allow for
an upper bound (5) on the state vector. Consequently, for the representation derived above,

‖x(t)‖Ẽ ≤ ‖x(0)‖Ẽ · eµẼ(Ã) t ∀ t ≥ 0 (14)

holds. As noted before, the Ẽ-norm is not directly related to a physical quantity, but amounts to

‖x‖Ẽ =
√

zTKz+ 2α zTMż+ żTMż.

In order to analyze x(t) in the physical E-norm, one can perform the following estimation:

‖x(t)‖E =
√
xTEx =

√
xT Ẽx ·

√
xTEx

xT Ẽx

≤
√

xT Ẽx ·
√
λmax

(
E, Ẽ

)
=
√
xT Ẽx ·

√
λmax

(
EẼ−1

)

≤ ‖x(0)‖Ẽ · eµẼ(Ã)t ·
√
λmax (T−1)︸ ︷︷ ︸

η

(15)

Accordingly, the bound (14) in the modified norm carries over to the standard norm (13) when
multiplied with the constant η. To compute the eigenvalue of T−1 from (9), one can avoid the
unfavorable term MK−1 in T by formulating a generalized eigenvalue problem

η2 = λmax
(
T−1

)
= λmax

([
I αI

αMK−1 I

]−1)
= λmax

([
K 0
0 I

] [
K αI
αM I

]−1)
(16)

and using an implementation like
I = speye(size(M));
O = sparse(size(M,1),size(M,2));
eta = sqrt(eigs([K, O; O, I], [K, alpha*I; alpha*M, I], 1));

whose execution lasted 2.6 seconds for the butterfly gyroscope [22]. Results for the one mass
oscillator and the benchmark model of a cantilever beam [24] with ten finite elements and length
L = 1 are given in Figure 4. The bounds are less tight for systems of higher complexity, but one
can see their potential and the basic effect of the transformation. Please note that the bound (5)
directly evaluated in the standard norm would have delivered ‖x(t)‖E ≤ ‖x(0)‖E (= const.).

0 1 2 3 4 5
0

0.5

1

t

‖x
(t
)‖
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Figure 4: Upper bounds on the norms of x(t)



4 Generalization to systems with gyroscopic forces

So far we have assumed M, D, and K to be symmetric and positive definite. In practice, these
conditions can be quite restrictive and will therefore be relaxed in the following two sections.
Firstly, we will concentrate on the case that M and K remain symmetric positive definite while
D contains not only a positive definite damping, but also a skew-symmetric component as it is
typical for systems with gyroscopic forces. For that reason, in this section we assume

D 6= DT but xTDx > 0 ∀x ∈ Rn \ {0}. (17)

Theorem 1. When D exhibits a skew-symmetric component, the state space representation (10)
with matrices as in (11) is strictly dissipative if α fulfills

α < α∗ := λmin

[
symD ·

(
M+ 1

4
DTK−1D

)−1]
. (18)

Proof. In the state space representation (10), the symmetric part of the matrix Ã according
to (11) now has to be expressed by

sym Ã =

[
−αK −α

2
D

−α
2
DT − symD+ αM

]
.

Formula (12) for α∗ is then no longer valid. It turns out, however, that the approach in [1] can
be adopted in a similar way to proof the theorem.
The first goal is to find the maximal value α∗ for which the matrix sym Ã is still strictly dissi-
pative. SCHUR’s Lemma [25] splits the definiteness condition into two matrix inequalities:

sym Ã < 0 ⇔
{

i) −αK < 0

ii) − symD+ αM−
(
−α

2
DT
)
(−αK)−1

(
−α

2
D
)
< 0

Condition i) is true by assumption. The second requirement leads to

α
(
M+ 1

4
DTK−1D

)
< symD

which is equivalent to (18). It remains to show that Ẽ is positive definite in the derived interval
of α. To this end, we define the matrix

W :=

[ 1√
α
I 0

2
√
αMK−1 −2√αMD−T

]
. (19)

We know that Y := W
(
− sym Ã

)
WT > 0 and want to show that Ẽ ≥ Y . Consider

Y =

[
K αM
αM 4αMD−T (symD− αM)D−1M

]
. (20)

Only the lower right block differs from Ẽ, so we have to make sure that the following holds:

DTM−1 ·
∣∣∣ M ≥ 4αMD−T (symD− αM)D−1M

∣∣∣ ·M−1D

⇐⇒ DTM−1D− 4α (symD− αM) ≥ 0

⇐⇒ DTM−1D− 2αD− 2αDT + 4α2M ≥ 0

⇐⇒
(
DT − 2αM

)
︸ ︷︷ ︸

=:XT

M−1 (D− 2αM)︸ ︷︷ ︸
=:X

≥ 0

The last line is true, so Ẽ ≥ Y holds, which is sufficient for Ẽ > 0.

Remark 1. Please note that (18) is a real generalization of the primary formula (12).



5 Generalization to systems with algebraic constraints

In this section we concentrate on systems with positive definite stiffness and positive semidefi-
nite mass matrices

M = MT ≥ 0.

For the damping, we consider two important cases: in Section 5.2, we assume D to be singular
and symmetric positive semidefinite and to share the null space of M, and in Section 5.3, we
assume D to be regular and symmetric positive definite—as in the first part of this paper.
These two special cases have been chosen due to their importance in the context of constrained
FEM models, which are firstly discussed in the following.

5.1 Modeling of algebraic constraints

In most applications, a FEM model is subjected to given constraints, for instance when certain
degrees of freedom are connected through massless elements or forced to zero. In either case,
the constraints can be formulated with the help of a rectangular selector matrix H ∈ Rn×r,
where r denotes the number of constraints. Oftentimes, H is composed of unity vectors; in the
following, we assume w. l. o. g. that H is orthogonal so that HTH = Ir×r holds.
The constrained model is then given by

MU z̈(t) +DU ż(t) +KU z(t) +H λ(t) = FU u(t) (21)
HTz(t) = 0, (22)

where (22) describes the algebraic constraints, while the term Hλ(t) in (21) accounts for the re-
active forces that provide for the abidance by the constraints with the LAGRANGE multiplier λ.
MU ,DU ,KU , and FU are the matrices of the unconstrained second order system.
Let H⊥ ∈ Rn×(n−r) be a basis of the orthogonal complement of H, so that

[H⊥ H]T︸ ︷︷ ︸
QT

· [H⊥ H]︸ ︷︷ ︸
Q

= [H⊥ H]︸ ︷︷ ︸
Q

· [H⊥ H]T︸ ︷︷ ︸
QT

= I (23)

holds. Then, the solution z(t) can be transformed and partitioned into

ẑ(t) := QTz(t) =

[
HT
⊥z(t)

HTz(t)

]
=

[
ẑ1(t)
ẑ2(t)

]
. (24)

Due to the algebraic constraints (22),
ẑ2(t) ≡ 0 (25)

holds and
z(t) = Q ẑ(t) = [H⊥ H] ẑ(t) = H⊥ ẑ1(t) (26)

lives in the subspace spanH⊥. Inserting (26) into (21) and multiplying from the left by HT
⊥

reduces the system to n− r independent purely differential equations (cf. [5]):

HT
⊥MUH⊥︸ ︷︷ ︸
=:M̂11

¨̂z1(t) +HT
⊥DUH⊥︸ ︷︷ ︸
=:D̂11

˙̂z1(t) +HT
⊥KUH⊥︸ ︷︷ ︸
=:K̂11

ẑ1(t) +HT
⊥H︸ ︷︷ ︸
0

λ(t) = HT
⊥FU︸ ︷︷ ︸
=:F̂1

u(t). (27)

The constraints (25) can then again be incorporated to create a complete set of n DAEs:
[
M̂11 0
0 0

]
¨̂z(t) +

[
D̂11 0
0 0

]
˙̂z(t) +

[
K̂11 0
0 Ir

]
ẑ(t) =

[
F̂1

0

]
u(t). (28)



Substituting ẑ(t) by QTz(t) and multiplying the equation from the left by Q yields a DAE
model (1) in the original basis z. The respective matrices read

M = Q

[
M̂11 0
0 0

]
QT , D = Q

[
D̂11 0
0 0

]
QT , K = Q

[
K̂11 0
0 Ir

]
QT , F = Q

[
F̂1

0

]
. (29)

M and D are symmetric positive semidefinite and share the same null space, while K is sym-
metric positive definite (→Sec. 5.2).

Sometimes, when damping cannot be easily modeled by means of finite elements, one uses
RAYLEIGH damping by assigning to D a linear combination of M and K. This is often denoted
by D = αM+βK, but please note that this α is not related to the variable α as it is defined in the
rest of this article. When the constraints are added after computing the RAYLEIGH damping,
then the final matrix D is semidefinite as in (28), as we have just seen. When RAYLEIGH

damping is, however, defined after introducing the constraints, D is usually positive definite as
it contains a scalar multiple of the regular stiffness matrix (→Sec. 5.3).

Those two cases are therefore treated in the following subsections. We will formulate strictly
dissipative state space formulations of models with the respective properties.

5.2 Singular, symmetric, positive semidefinite damping D with the same null space as M

Let us first assume D = DT ≥ 0 in our second order system (1) is positive semidefinite and
fulfills

kerD = kerM ⇐⇒ Dx = 0 ∀x with Mx = 0. (30)

Then there exists an orthogonal matrix Q ∈ Rn×n with

M̂ := QTMQ =

[
M̂11 0
0 0r×r

]
and D̂ := QTDQ =

[
D̂11 0
0 0r×r

]
, (31)

where M̂11, D̂11 ∈ R(n−r)×(n−r); r denotes the column rank of the null space kerM. Define

K̂ := QTKQ,=

[
K̂11 K̂12

K̂T
12 K̂22

]
, F̂ := QTF =

[
F̂1

F̂2

]
, and Ŝ := QS =

[
Ŝ1 Ŝ2

]
. (32)

Please note that the block-diagonal structure of K̂ in (29) is a special case of (32), which is not
necessarily implied by our conditions (31) on Q. We therefore use this general formulation.

Theorem 2. The original DAE model is equivalent to the purely ODE system

M̂C︷ ︸︸ ︷
M̂11

¨̂z1(t) +

D̂C︷︸︸︷
D̂11

˙̂z1(t) +

K̂C︷ ︸︸ ︷(
K̂11 − K̂12K̂

−1
22 K̂

T
12

)
ẑ1(t) =

F̂C︷ ︸︸ ︷(
F̂1 − K̂12K̂

−1
22 F̂2

)
u(t) (33)

with the output equation

y(t) =
(
Ŝ1 + Ŝ2K̂

−1
22 K̂

T
12

)

︸ ︷︷ ︸
ŜC

ẑ1(t) +
(
Ŝ2K̂

−1
22 F̂2

)
u(t), (34)

whose constrained mass, damping, and stiffness matrices are symmetric positive definite. The
system can therefore be transformed into a strictly dissipative state space model according to
Section 3; the resulting order is N = 2(n− r).



Proof. An equivalent formulation of the second order system is given by
[
M̂11 0
0 0

] [
¨̂z1(t)
¨̂z2(t)

]
+

[
D̂11 0
0 0

] [
˙̂z1(t)
˙̂z2(t)

]
+

[
K̂11 K̂12

K̂T
12 K̂22

] [
ẑ1(t)
ẑ2(t)

]
=

[
F̂1

F̂2

]
u(t),

y(t) =
[
Ŝ1 Ŝ2

] [ẑ1(t)
ẑ2(t)

]
.

(35)

The algebraic constraints are

K̂T
12 ẑ1(t) + K̂22 ẑ2(t) = F̂2 u(t) ⇐⇒ ẑ2(t) = −K̂−122 K̂

T
12 ẑ1(t) + K̂−122 F̂2 u(t). (36)

The inverse exists because K̂22 is positive definite since K̂ = QTKQ is positive definite.
Eq. (36) can be inserted into (35) and yields the purely differential ODE system (33) with the
output equation (34)—which can also contain a feedthrough term. K̂C is symmetric positive
definite due to SCHUR’s Lemma.
Accordingly, this new formulation fulfills all requirements of Section 3.2 and can hence be
rewritten in a strictly dissipative state space formulation.

We complete this subsection with two remarks on numerical properties of the procedure.

Remark 2. Q might for instance result from an eigen- or SCHUR decomposition in theory,
but from a numerical point of view one must note that such transformations are no longer
feasible when n is very large. However, in many practical cases the null space of M and D
is composed of unity vectors, in which case Q can be chosen as a permutation matrix and the
transformation (31) can be easily performed.

Remark 3. Even though the sparsity of K is often retrieved by K̂ due to the previous remark,
the matrix K̂C is typically large and dense. However, judicious implementation can partially
avoid the related drawbacks; in fact, K̂C does not have to be computed explicitly. Multiplication
with a vector, for instance, can be performed using the distributive and associative property

K̂C x = K̂11x− K̂12

(
K̂−122

(
K̂T

12 x
))

. (37)

For division by K̂C , one can use WOODBURY’s identity [26]

K̂−1C =
(
K̂11 − K̂12K̂

−1
22 K̂

T
12

)−1
= K̂−111 − K̂−111 K̂12

(
K̂−122 + K̂T

12K̂
−1
11 K̂12

)−1
K̂T

12K̂
−1
11 . (38)

5.3 Symmetric positive definite damping matrix D

Let us now consider the case that D and K are symmetric positive definite and M is symmetric
positive semidefinite. As above, we use a suitable orthogonal matrix Q ∈ Rn×n to transform
the system to a representation where

M̂ =

[
M̂11 0
0 0r×r

]
(39)

holds and K̂, F̂, and Ŝ read as in (32). The transformed damping matrix, however, is now given
by

D̂ = QTDQ =

[
D̂11 D̂12

D̂T
12 D̂22

]
> 0. (40)



This time, we directly arrange the matrices in a state space model according to (11). In fact, the
resulting matrix Ã is then strictly dissipative for all α in the interval defined by (12), because M̂
only affects the lower right entry of Ã and the considerations from Section 3.2 carry over. The
eigenvalue problem (12), for instance, is still well-defined, as

M̂+ 1
4
D̂K̂−1D̂

is positive definite and hence regular even though M̂ loses rank. For that reason, Ã + ÃT < 0
can still be fulfilled under the weakened condition of a semidefinite mass matrix.
However, the resulting matrix Ẽ is singular and does not satisfy the second requirement for a
strictly dissipative state space representation. It has rank 2n− r and the following structure:

Ẽ =

[
K̂ αM̂

αM̂ M̂

]
=




K̂11 K̂12 αM̂11 0

K̂T
12 K̂22 0 0

αM̂11 0 M̂11 0

0 0 0 0



=

[
Ẽ11 0

0 0

]
.

Similarly to the procedure in the previous subsection, we can therefore partition the state vector
of the first order state space model

[
Ẽ11 0
0 0

] [
ẋ1(t)
ẋ2(t)

]
=

[
Ã11 Ã12

Ã21 Ã22

][
x1(t)
x2(t)

]
+

[
B̃1

B̃2

]
u(t),

y(t) =
[
C̃1 C̃2

] [x1(t)
x2(t)

] (41)

with x1 ∈ R2n−r, x2 ∈ Rr. The matrices Ã, B̃, and C̃ are partitioned appropriately, for instance

Ã =




−αK̂11 −αK̂12 K̂11 − αD̂11 K̂12 − αD̂12

−αK̂T
12 −αK̂22 K̂T

12 − αD̂T
12 K̂22 − αD̂22

−K̂11 −K̂12 −D̂11 + αM̂11 −D̂12

−K̂T
12 −K̂22 −D̂T

12 −D̂22



=

[
Ã11 Ã12

Ã21 Ã22

]
.

Then the following holds.

Theorem 3. The given second order system is equivalently expressed by the state space model

ẼC︷︸︸︷
Ẽ11 ẋ1(t) =

ÃC︷ ︸︸ ︷(
Ã11 − Ã12Ã

−1
22 Ã21

)
x1(t) +

B̃C︷ ︸︸ ︷(
B̃1 − Ã12Ã

−1
22 B̃2

)
u(t), (42)

y(t) =
(
C̃1 − C̃2Ã

−1
22 Ã21

)

︸ ︷︷ ︸
CC

x1(t) +
(
C̃2Ã

−1
22 B̃2

)
u(t), (43)

which is strictly dissipative for all α fulfilling (12) and whose order is N = 2n− r.

Proof. We first show the equivalence of this realization to the state space model (41), and its
existence. To this end, we identify the algebraic conditions

Ã21 x1(t) + Ã22 x2(t) = B̃2 u(t) ⇐⇒ x2(t) = −Ã−122 Ã21 x1(t) + Ã−122 B̃2 u(t). (44)



Reinserting (44) into (41) yields the purely differential system (42), (43). The inverse Ã−122

exists because Ã is strictly dissipative—therefore, Ã22 is strictly dissipative, too, which implies
that all eigenvalues of Ã22 have strictly negative real part and are hence different from zero.
To show the strict dissipativity of the state space model, we must firstly prove that the strict
dissipativity of Ã carries over to its SCHUR complement ÃC . Secondly, we must show that ẼC

is positive definite in the relevant range of α.
We admit values of α for which Ã+ ÃT < 0 holds. For the partitioned matrix Ã, this means

sym Ã = sym

[
Ã11 Ã12

Ã21 Ã22

]
=


 sym Ã11

1
2

(
Ã12 + ÃT

21

)

1
2

(
ÃT

12 + Ã21

)
sym Ã22


 < 0.

SCHUR’s Lemma yields

sym Ã11 − 1
2

(
Ã12 + ÃT

21

)(
sym Ã22︸ ︷︷ ︸

=Ã22

)−1
1
2

(
ÃT

12 + Ã21

)
< 0

=⇒ 1
2
Ã11 − 1

4
Ã12Ã

−1
22 Ã21 +

1
2
ÃT

11 − 1
4
ÃT

21Ã
−1
22 Ã

T
12 <

1
4
Ã12Ã

−1
22 Ã

T
12 +

1
4
ÃT

21Ã
−1
22 Ã21

=⇒ sym ÃS = sym
(
Ã11 − Ã12Ã

−1
22 Ã21

)
< 1

4

(
Ã12 − ÃT

21

)
Ã−122︸︷︷︸
<0

(
Ã12 − ÃT

21

)T
< 0.

Accordingly, ÃS + ÃT
S < 0 is fulfilled. It remains to prove that Ẽ11 > 0 is also true. We

proceed similarly to the proof of Theorem 1. Let a truncation matrix Z be defined as

Z =

[
In−r
0r×n

]
∈ Rn×(n−r),

such that M̂ = ZM̂11Z
T and M̂11 = ZTM̂Z holds. Similarly to above, define

W :=

[
1√
α
I 0

2
√
αZTM̂K̂−1 −2√αZTM̂D̂−T

]
=

[
1√
α
I 0

2
√
αM̂11ZK̂

−1 −2√αM̂11ZD̂
−T

]
(45)

and

Y := W
(
− sym Ã

)
WT =

[
K αZM̂11

αM̂11Z
T 4αM̂11Z

T D̂−1
(
D̂− αM̂

)
D̂−1ZM̂11

]
> 0.

(46)
Again, Y equals Ẽ11 except for the lower right entry, and we need to show

M̂11 ≥ 4αM̂11Z
T D̂−1

(
D̂− αM̂

)
D̂−1ZM̂11

⇐⇒ M̂−1
11 ≥ 4αZT D̂−1Z− 4α2ZT D̂−1M̂D̂−1Z

⇐⇒ M̂−1
11 − 4αZT D̂−1Z+ 4α2ZT D̂−1ZM̂11Z

T D̂−1Z ≥ 0

⇐⇒
(
I− 2αZT D̂−1ZM̂11

)
M̂−1

11

(
I− 2αZT D̂−1ZM̂11

)T
≥ 0

which is true. So, Ẽ11 is positive definite for all α in the valid range.



6 Conclusions and Outlook

We have shown how a second order system can be formulated in a strictly dissipative state space
representation. Although its state vector is identical to the one of classical state space formu-
lations, a modified norm is introduced in which the state norm decays steadily when no input
is applied. This formulation enables stability preservation in model order reduction as well as
error bounds when KRYLOV subspace methods are employed. The original requirements in [1]
have also been weakened to admit systems with gyroscopic forces and algebraic constraints.

The case of semidefinite damping, however, which often occurs in the modeling of electrical cir-
cuits, remains unsolved. The presented approach can in fact be shown to be generally unsuited
for solving this problem; and to date, no alternative approach has yet been found. Another open
question is the effect of the choice of α on the aforementioned error bounds in KRYLOV-based
MOR.
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