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Abstract—In this paper the two-receiver MIMO Gaussian
broadcast channel with private and confidential messages and
receiver side information is studied. In this communication
scenario, each receiver is interested in one private and one
confidential message having the other private message as side
information for decoding available. Each confidential message is
exclusively intended for one receiver and must therefore be kept
secret from the other receiver. A complete characterization of the
secrecy capacity region is established using channel enhancement
arguments and an extremal entropy inequality.

I. INTRODUCTION

Securing sensitive information in wireless networks from
unauthorized access is gaining in importance so that operators
of cellular systems are becoming increasingly interested in
providing secure services in coexistence with other non-secure
private services. Thus, the efficient physical layer implemen-
tation of multiple services such as simultaneous transmission
of private and confidential messages has attracted considerable
recent interest.

Secrecy techniques typically use cryptographic techniques
to keep information secret. Such techniques rely on the as-
sumption of insufficient computational capabilities of non-
legitimate receivers. Due to increasing computational power
and improved algorithms, these techniques are becoming less
and less secure.

In this context, the concept of physical layer security is
becoming attractive, since it uses only the properties of the
wireless channel in order to establish security. So, regardless
of the applied post-processing of non-legitimate receivers,
the confidential information cannot be reproduced. Physical
layer security was initiated by Wyner, who introduced the
wiretap channel [1]. Later this scenario was generalized by
Csiszár and Körner to the broadcast channel with confidential
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messages [2]. Recently, there has been growing interest in
physical layer security; for instance see [3–5].

Since multiple-input multiple-output (MIMO) techniques
can improve wireless performance significantly [6], they have
been identified as a key technology for future wireless systems.
Accordingly, physical layer security for MIMO systems is of
growing interest. The secrecy capacity of the MIMO Gaussian
wiretap channel has been established in [7–10] where the
latter applied channel enhancement arguments [11, 12] to
derive the secrecy capacity. Subsequently, by appropriately
extending the concept of channel enhancement, the secrecy
capacities of several MIMO multi-user scenarios have been
found. This includes the broadcast channel (BC) with common
and confidential messages [13], the BC with two confidential
messages [14], or the BC with common and two confidential
messages [15, 16].

In this paper we study the two-receiver MIMO Gaussian
BC with private and confidential messages and receiver side
information. Here, each receiver is interested in one private and
one confidential message having the other private message as
side information for decoding. Each confidential message is
solely intended for one receiver and must therefore be kept
secret from the other one. The corresponding communication
scenario is depicted in Figure 1. A similar work is [17],
which studies the BC with private messages and receiver side
information but for discrete memoryless channels and without
any secrecy constraints.

The problem at hand can be motivated by the concept of
bidirectional relaying in a three-node network, in which a
relay node establishes bidirectional communication between
two other nodes using a decode-and-forward protocol. The
capacity region of the bidirectional broadcast phase has been
established in [18] and [19] for discrete memoryless channels
and in [20] for MIMO Gaussian channels. Based on this result,
the optimal transmit strategies have been characterized in [21]
and [22]. In particular, if the relay transmits additional confi-
dential information to both receivers in the broadcast phase,
which has to be kept secret from the non-legitimate receiver,
this corresponds exactly to the communication scenario under
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Fig. 1. MIMO Gaussian broadcast channel with private and confidential
messages. Each receiver has one private message as side information available
for decoding.

investigation. The efficient integration of additional services
in bidirectional relay networks is further studied in [23–25].1

II. MIMO GAUSSIAN BROADCAST CHANNEL

In this paper we consider a MIMO Gaussian BC with two
receivers. We assume NT antennas at the transmitter and Ni

antennas at receiver i, i = 1, 2. Then the input-output relation
between the transmitter and receiver i is given by

yi =Hix+ zi, (1)

where yi ∈ RNi×1 is the output at receiver i, Hi ∈ RNi×NT

is the multiplicative channel matrix, x ∈ RNT×1 is the input
of the transmitter, and zi ∈ RNi×1 is independent additive
Gaussian noise having zero mean and identity covariance
matrix. As in [13, 15, 16] and [25] we consider the matrix
power constraint

1

n

n∑
k=1

xkx
T
k � S

where S � 0 is a positive semidefinite matrix. Note that this is
a general power constraint which subsumes the average power
constraint 1

n

∑n
k=1 x

T
k xk ≤ P as a special case.

We consider the communication scenario as depicted in
Figure 1. The transmitter has two private messages Mp1 and
Mp2 and two independent confidential messages Mc1 and
Mc2. The private message Mp1 and the confidential message
Mc1 are intended for receiver 1, which has the private message
Mp2 as side information available for decoding. Accordingly,
Mp2 and Mc2 are intended for receiver 2, which has Mp1

available. The confidential message Mc1 (intended for receiver
1) has to be kept secret from receiver 2. Similarly, Mc2 (for
receiver 2) has to be kept secret from receiver 1. The secrecy
is measured using the information theoretic criteria [2]

1

n
I(Mc1;Y

n
2 |Mp1)→ 0 and

1

n
I(Mc2;Y

n
1 |Mp2)→ 0

as n → ∞ where Y n
i = (Y i,1,Y i,2, ...,Y i,n) is the output

at receiver i, i = 1, 2. Recall that the conditioning on the
private messages comes from the fact that the receivers have
side information.

1Notation: Mutual information and differential entropy are denoted by
I(·; ·) and h(·); (·)−1 and (·)T are the inverse and transpose; | · | denotes
the determinant; A � B means the matrix A−B is positive semidefinite.

III. SECRECY CAPACITY

The following theorem states the main result of this paper,
which is a complete characterization of the secrecy capacity
region of the MIMO Gaussian BC with private and confidential
messages under receiver side information.

Theorem 1: The secrecy capacity region C(S) of the
MIMO Gaussian BC with private and confidential mes-
sages and receiver side information under the matrix
power constraint S is given by the set of all rate tuples
(Rp1, Rp2, Rc1, Rc2) ∈ R4

+ that satisfy

Rpi ≤
1

2
log

∣∣∣∣∣ INi+HiSH
T
i

INi
+Hi(S −Qp)H

T
i

∣∣∣∣∣ , i = 1, 2

Rc1 ≤
1

2
log
∣∣∣IN1+H1QcH

T
1

∣∣∣− 1

2
log
∣∣∣IN2+H2QcH

T
2

∣∣∣
Rc2 ≤

1

2
log

∣∣∣∣∣IN2+H2(S −Qp)H
T
2

IN2
+H2QcH

T
2

∣∣∣∣∣
− 1

2
log

∣∣∣∣∣IN1+H1(S −Qp)H
T
1

IN1
+H1QcH

T
1

∣∣∣∣∣
for some Qp � 0, Qc � 0, and Qp +Qc � S.

Having [11, Lemma 1] in mind, the secrecy capacity under
the corresponding average power constraint follows immedi-
ately.

Corollary 1: The secrecy capacity region C(P ) of the
MIMO Gaussian BC with private and confidential messages
and receiver side information under the average power con-
straint P is given by

C(P ) =
⋃

S�0, tr(S)≤P

C(S).

IV. PROOF OF THEOREM 1

To prove the desired result, it is desirable to follow previous
works such as [13, 15, 16] and [25] and to consider first the
aligned case, in which the channel matrices H1 and H2

are square and invertible. Then, the channel model (1) can
equivalently be expressed as

yi = x+ zi (2)

where the additive Gaussian noise zi has now covariance
matrix N i = H−1

i H−T
i ∈ RNT×NT . The corresponding

secrecy capacity region of the aligned case is then specified
as follows.

Theorem 2: The secrecy capacity region Caligned(S) of the
aligned MIMO Gaussian BC with private and confidential
messages and receiver side information under the matrix power
constraint S is given by

Rpi ≤
1

2
log

∣∣∣∣ S +N i

(S −Qp) +N i

∣∣∣∣ , i = 1, 2 (3a)

Rc1 ≤
1

2
log

∣∣∣∣Qc +N1

N1

∣∣∣∣− 1

2
log

∣∣∣∣Qc +N2

N2

∣∣∣∣ (3b)

Rc2 ≤
1

2
log

∣∣∣∣ (S−Qp)+N2

Qc+N2

∣∣∣∣− 1

2
log

∣∣∣∣ (S−Qp)+N1

Qc+N1

∣∣∣∣ (3c)
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for some Qp � 0, Qc � 0, and Qp +Qc � S.
Having established the secrecy capacity region of the

aligned MIMO Gaussian BC, the secrecy capacity region
of the general MIMO Gaussian BC follows from standard
approximation and limiting arguments as in [11] and [13].

A. Proof of Achievability

Similarly to the analysis in [15] and [16], to prove the
achievability of the rate region given in Theorems 1 and 2, we
make use of an auxiliary result for the discrete memoryless
counterpart.

Lemma 1: An achievable rate region for the discrete
memoryless BC with private and confidential messages
and receiver side information is given by all rate tuples
(Rp1, Rp2, Rc1, Rc2) ∈ R4

+ that satisfy

Rpi ≤ I(U ;Y i), i = 1, 2

Rc1 ≤ I(V 1;Y 1|U)− I(V 1;V 2,Y 2|U)

Rc2 ≤ I(V 2;Y 2|U)− I(V 2;V 1,Y 1|U)

for random variables satisfying the Markov chain relationship
(U ,V 1,V 2)−X − (Y 1,Y 2).

Sketch of Proof: To achieve the desired rates we use a
coding scheme that combines superposition coding and double
binning similarly to the approach taken in [26]. Here, the aux-
iliary random variable U will carry the two private messages,
cf. for example [25], while V 1 and V 2 are designated for the
two confidential messages using a double binning technique.

Now, similarly to [15] and [16], the achievability for MIMO
Gaussian channels follows from Lemma 1 with the choices

U = U0 (4a)
V 1 = U1 + FU2, V 2 = U2 (4b)
X = U0 +U1 +U2 (4c)

with independent U0 ∼ N (0,Qp) for private messages Mp1

and Mp2, U1 ∼ N (0,Qc) for confidential message Mc1, and
U2 ∼ N (0,S −Qp −Qc) for Mc2, and further

F = QcH
T
1

(
IN1

+H1QcH
T
1

)−1
H1.

As the following converse shows, it turns out that such a
combination of superposition coding and secret dirty-paper
coding, cf. (4b), suffices to achieve the entire secrecy capacity
region.

B. Proof of Converse

The converse is shown by contradiction using channel
enhancement arguments as used in [13, 15] and [16]. To do
so, we construct a rate tuple (Ro

p1, R
o
p2, R

o
c1, R

o
c2) ∈ R4

+ that
lies outside the desired region Caligned(S) and assume that this
rate tuple is achievable.

First, we observe that the achievable private rates Ro
p1 and

Ro
p2 are bounded from above by Ro

pi ≤ 1
2 log

∣∣S+Ni

Ni

∣∣, i = 1, 2.
Note that for Ro

c1 = Ro
c2 = 0 with Qp = S and Qc = 0 in

(3), these rates are actually achievable.
For given achievable private rates Ro

p1 and Ro
p2, the maximal

achievable weighted secrecy sum-rate λ1R∗
c1+λ2R

∗
c2 for some

λ1, λ2 ≥ 0, can be characterized by the following optimization
problem:

max
Qp,Qc

λ1fc1(Qc) + λ2fc2(Qp,Qc) (5)

subject to fpi(Qp) ≥ Ro
pi, i = 1, 2,

Qp � 0, Qc � 0,

Qp +Qc � S

where

fpi(Qp) :=
1

2
log

∣∣∣∣ S +N i

(S −Qp) +N i

∣∣∣∣ , i = 1, 2

fc1(Qc) :=
1

2
log

∣∣∣∣Qc +N1

N1

∣∣∣∣− 1

2
log

∣∣∣∣Qc +N2

N2

∣∣∣∣
fc2(Qp,Qc) :=

1

2
log

∣∣∣∣ (S−Qp)+N2

Qc+N2

∣∣∣∣
− 1

2
log

∣∣∣∣ (S−Qp)+N1

Qc+N1

∣∣∣∣ .
Finally, we set Ro

c1 and Ro
c2 such that

λ1R
o
c1 + λ2R

o
c2 = λ1R

∗
c1 + λ2R

∗
c2 + δ (6)

where δ > 0 ensures that (Ro
p1, R

o
p2, R

o
c1, R

o
c2) actually lies

outside the region Caligned(S).
Then, the Lagrangian for the corresponding minimization

problem of (5) is

L(Qp,Qc,µ,Mp,Mc1,Mc2)

= −λ1fc1(Qc)− λ2fc2(Qp,Qc)

+
2∑

i=1

µi

(
Ro

pi − fpi(Qp)
)
− tr(MpQp)

− tr(Mc1Qc) + tr((Qp +Qc − S)Mc2)

with Lagrange multipliers µ = (µ1, µ2) ∈ R2
+ and

Mp,Mc1,Mc2 � 0. We know from the Karush-Kuhn-Tucker
(KKT) conditions that the derivatives of the Lagrangian must
vanish at an optimal (Q∗

p ,Q
∗
c ) which yields

(µ1+λ2)
[
(S−Q∗

p )+N1

]−1
+ µ2

[
(S−Q∗

p )+N2

]−1
+Mp

= λ2
[
(S−Q∗

p )+N2

]−1
+Mc2 (7)

(λ1 + λ2)(Q
∗
c +N1)

−1 +Mc1

= (λ1 + λ2)(Q
∗
c +N2)

−1 +Mc2 (8)

while the optimal (Q∗
p ,Q

∗
c ) further have to satisfy the com-

plementary slackness conditions

µi

(
Ro

pi − fpi(Q
∗
p )
)
= 0, i = 1, 2 (9)

Q∗
pMp = 0, Q∗

cMc1 = 0, (S−Q∗
p −Q

∗
c )Mc2 = 0. (10)

Then, from (5), (6), and (9) it follows that the weighted secrecy
sum-rate for the rate tuple (Ro

p1, R
o
p2, R

o
c1.R

o
c2) is given by

µ1R
o
p1 + µ2R

o
p2 + λ1R

o
c1 + λ2R

o
c2

=
µ1

2
fp1(Q

∗
p ) +

µ1

2
fp1(Q

∗
p )

+ λ1fc1(Q
∗
c ) + λ2fc2(Q

∗
p ,Q

∗
c ) + δ. (11)

In the following, we will find a contradiction to (11).
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1) Splitting up the receivers: Next, we reinterpret the
original communication scenario by splitting each receiver into
two virtual receivers: one for the private message and one for
the confidential message. Then the aligned MIMO Gaussian
BC (2) can be equivalently represented by

y1a = x+ z1a y1b = x+ z1b (12a)
y2a = x+ z2a y2b = x+ z2b (12b)

with z1a, z1b ∼ N (0,N1) and z2a, z2b ∼ N (0,N2). Now,
each (virtual) receiver is interested in only one message. The
private messages Mp1 and Mp2 are intended for receivers 1b
and 2b respectively. The confidential message Mc1 is intended
for receiver 1a and needs to be kept secret from receiver 2b,
and Mc2 is intended for receiver 2a and needs to be kept
secret from receiver 1b, i.e., 1

nI(Mc1;Y
n
2b|Mp1) → 0 and

1
nI(Mc2;Y

n
1b|Mp2)→ 0 as n→∞.

We observe that receivers 1a and 1b in (12a) are statistically
identical to receiver 1 in (2), and similarly, receivers 2a and
2b in (12b) are statistically identical to receiver 2 in (2).
Therefore, any strategy that achieves a certain rate tuple for (2)
will do likewise for (12), and vice versa, so that we conclude
that both scenarios have the same secrecy capacity region.

2) Channel enhancement: Based on this conclusion, we
construct an enhanced MIMO Gaussian BC to introduce some
degradedness. Therefore we define the real symmetric matrix

Ñ :=
(
N−1

1 +
1

λ1 + λ2
Mc1

)−1

so that 0 ≺ Ñ � N1. Since Mc1Q
∗
c = 0, we know from

[11, Lemma 11] that

(λ1 + λ2)(Q
∗
c + Ñ)−1 = (λ1 + λ2)(Q

∗
c +N1)

−1 +Mc1

and ∣∣∣∣∣Qc + Ñ

Ñ

∣∣∣∣∣ =
∣∣∣∣Qc +N1

N1

∣∣∣∣ . (13)

Similarly as in [15], we also obtain with (8)

(λ1+λ2)(Q
∗
c +Ñ)−1 = (λ1+λ2)(Q

∗
c +N1)

−1+Mc2 (14)

so that 0 ≺ Ñ �N2 and similarly[
(S−Q∗

p )+Ñ
]
(Q∗

c +Ñ)−1 =
[
(S−Q∗

p )+N2

]
(Q∗

c +N2)
−1

as well as ∣∣∣∣∣ (S −Q∗
p ) + Ñ

Q∗
c + Ñ

∣∣∣∣∣ =
∣∣∣∣ (S −Q∗

p ) +N2

Q∗
c +N2

∣∣∣∣ . (15)

In addition, (7) and (14) imply

(λ1 + λ2)
[
(S −Q∗

p ) + Ñ
]−1

= (λ2 + µ1)
[
(S −Q∗

p ) +N1

]−1

+ (λ1 + µ2)
[
(S −Q∗

p ) +N2

]−1
+Mp. (16)

This allows us to construct an enhanced MIMO Gaussian
BC by replacing the noise covariance matrices N1 and N2

of the (virtual) receivers 1a and 2a by the enhanced version
Ñ . Then, (2) becomes

ỹ1a = x+ z̃1a y1b = x+ z1b (17a)
ỹ2a = x+ z̃2a y2b = x+ z2b (17b)

with z̃1a, z̃2a ∼ N (0, Ñ), z1b ∼ N (0,N1), and z2b ∼
N (0,N2). Since Ñ � N i, i = 1, 2, the secrecy capacity
region of the enhanced channel (17) is at least as large as of
the aligned channel (12).

The induced degradedness can be expressed in terms of the
Markov relationships X− Ỹ 1a− (Y 1b,Y 2b) and X− Ỹ 2a−
(Y 1b,Y 2b) and we obtain for the corresponding discrete mem-
oryless counterpart the following single-letter outer bound.

Lemma 2: An outer bound on the secrecy capacity region
of the discrete memoryless degraded BC with private and con-
fidential messages and receiver side information with Markov
chains X − Ỹ 1a − (Y 1b,Y 2b) and X − Ỹ 2a − (Y 1b,Y 2b)
is given by

Rpi ≤ I(U ;Y ib), i = 1, 2

Rc1 ≤ I(X; Ỹ 1a|U)− I(X;Y 2b|U)

Rc2 ≤ I(X; Ỹ 2a|U)− I(X;Y 1b|U).

Sketch of proof: Following [15, Lemma 4] or [16, Lemma
4], the proof is straightforward and omitted due to space
constraints.

3) Outer bound: Finally, it remains to combine the previous
results to contradict (11). Therefore, we bound the weighted
secrecy sum-rate of the enhanced MIMO Gaussian BC as
follows. From Lemma 1 we know

µ1Rp1 + µ2Rp2 + λ1Rc1 + λ2Rc2

= µ1I(U ;Y 1b) + µ2I(U ;Y 2b)

+ λ1
(
I(X; Ỹ 1a|U)− I(X;Y 2b|U)

)
+ λ2

(
I(X; Ỹ 2a|U)− I(X;Y 1b|U)

)
= µ1h(X +Z1b) + µ2h(X +Z2b)

+ λ1
(
h(Z2b)− h(Z̃1a)

)
+ λ1

(
h(Z1b)− h(Z̃2a)

)
+ η

≤ µ1

2
log |2πe(S +N1)|+

µ2

2
log |2πe(S +N2)|

+
λ1
2

log

∣∣∣∣2πeN2

2πeÑ

∣∣∣∣+ λ2
2

log

∣∣∣∣2πeN1

2πeÑ

∣∣∣∣+ η (18)

with

η := λ1h(X; Z̃1a|U) + λ2h(X; Z̃2a|U)

− (λ2 + µ1)h(X;Z1b|U)− (λ1 + µ2)h(X;Z2b|U).

Since 0 ≺ Ñ � {N1,N2}, 0 ≺ Q∗
p � S, and Q∗

pMp = 0,
we get from [12, Corollary 4] and (16)

η ≤ λ1 + λ2
2

log
∣∣2πe((S −Q∗

p ) + Ñ
)∣∣

− λ2 + µ1

2
log
∣∣2πe((S −Q∗

p ) +N1

)∣∣
− λ1 + µ2

2
log
∣∣2πe((S −Q∗

p ) +N2

)∣∣.
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Inserting this into (18) yields

µ1Rp1 + µ2Rp2 + λ1Rc1 + λ2Rc2

≤ µ1

2
log

∣∣∣∣ S +N1

(S−Q∗
p )+N1

∣∣∣∣+ µ2

2
log

∣∣∣∣ S +N2

(S−Q∗
p )+N2

∣∣∣∣
+ λ1

(
1

2
log

∣∣∣∣∣ (S−Q∗
p )+ Ñ

Ñ

∣∣∣∣∣− 1

2
log

∣∣∣∣ (S−Q∗
p )+N2

N2

∣∣∣∣
)

+ λ2

(
1

2
log

∣∣∣∣∣ (S−Q∗
p )+ Ñ

Ñ

∣∣∣∣∣− 1

2
log

∣∣∣∣ (S−Q∗
p )+N1

N1

∣∣∣∣
)

=
µ1

2
log

∣∣∣∣ S +N1

(S−Q∗
p )+N1

∣∣∣∣+ µ2

2
log

∣∣∣∣ S +N2

(S−Q∗
p )+N2

∣∣∣∣
+ λ1

(
1

2
log

∣∣∣∣Q∗
c +N1

N1

∣∣∣∣− 1

2
log

∣∣∣∣Q∗
c +N2

N2

∣∣∣∣)
+ λ2

(
1

2
log

∣∣∣∣ (S−Q∗
p )+N2

Q∗
c +N2

∣∣∣∣− 1

2
log

∣∣∣∣ (S−Q∗
p )+N1

Q∗
c +N1

∣∣∣∣)
=
µ1

2
fp1(Q

∗
p ) +

µ1

2
fp1(Q

∗
p )

+ λ1fc1(Q
∗
c ) + λ2fc2(Q

∗
p ,Q

∗
c ) (19)

where the equality follows from (13) and (15).
This gives us an upper bound on the weighted secrecy sum-

rate of the enhanced MIMO Gaussian BC. Since the secrecy
capacity region of the original aligned MIMO Gaussian BC (2)
is contained the corresponding region of the enhanced MIMO
Gaussian BC (17), it is clear that the upper bound (19) for the
enhanced MIMO Gaussian BC is also an upper bound for the
non-enhanced aligned MIMO Gaussian BC. But since δ > 0,
this is a contradiction to (11) which completes the proof of the
converse and thereby establishes the secrecy capacity region.

V. CONCLUDING REMARKS

In this paper we have studied the two-receiver MIMO
Gaussian BC with private and confidential messages and
receiver side information. We have established a complete
characterization of the secrecy capacity region. Interestingly, a
combination of superposition coding and secrecy dirty-paper
coding is sufficient to achieve the entire secrecy capacity re-
gion. The converse is shown by applying channel enhancement
arguments [10, 11] and an extremal entropy inequality [12].

The superposition structure of the optimal coding strategy
reveals that the private and confidential messages are encoded
each on its on “level”. This allows us to further include a
common message intended for both receivers similarly as done
in [23] and [25]. The common message M0 with rate R0 will
affect only the two private messages and not the confidential
messages. The details are omitted due to space constraints.
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