
Fakultät für Maschinenwesen
Lehrstuhl für Angewandte Mechanik

E�icient Algorithms for Biped Robots

Simulation, Collision Avoidance and Angular Momentum Tracking

Dipl.-Ing. Univ. Markus Schwienbacher

Vollständiger Abdruck der von der Fakultät für Maschinenwesen der
Technischen Universität München zur Erlangung des akademischen Grades eines

Doktors-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. dr. ir. Daniel Rixen

Prüfer der Dissertation:

1. Univ.-Prof. Dr.-Ing. habil. Heinz Ulbrich (i. R.)

2. Univ.-Prof. Dr.-Ing. Carlo L. Bottasso

Die Dissertation wurde am 24. 10. 2013 bei der Technischen Universität München
eingereicht und durch die Fakultät für Maschinenwesen am 22. 5. 2014 angenommen.

iii

Abstract
This PhD thesis covers efficient algorithms for biped robots. A multibody simulation
extends the O(n)-algorithm in order to cope with small kinematic loops inherent
in the modeling of mechatronic systems. Self-collision avoidance is based on the
efficient computation of distances between segments of the robot. Angular momentum
is typically not considered in the control of biped robots. A method for collision
avoidance and angular momentum tracking is presented which improves fast walking.
Simulations and experiments are shown with the biped robot Lola.

Keywords: Humanoid, Biped, Walking, Efficient Algorithms, Multibody Simulation,
Self-Collision Avoidance, Angular Momentum Tracking

Zusammenfassung
Thema der Arbeit sind effiziente Algorithmen für zweibeinige Roboter. Eine Mehr-
körpersimulation erweitert das O(n)-Verfahren zur Behandlung kleiner kinematischer
Schleifen, die bei der Modellierung mechatronischer Systeme auftreten. Ein Verfah-
ren zur Vermeidung von Selbstkollisionen basiert auf der effizienten Berechnung der
Distanzen zwischen Robotersegmenten. Es wird ein Verfahren vorgestellt, das die
Kollisionsvermeidung mit einer Drallregelung integriert und so insbesondere schnelle
Laufbewegungen verbessert. Simulationen und Experimente mit dem zweibeinigen
Roboter Lola werden gezeigt.

Stichworte: Humanoide, Zweibeiner, effiziente Algorithmen, Mehrkörpersimulation,
Kollisionsvermeidung, Drallregelung

v

Acknowledgments
This thesis summarizes a large part of my research carried out at the Institute of
Applied Mechanics, Technische Universität München. Many people have supported me
during the past six years and made this work possible.

First, I would like to thank my supervisor Professor Heinz Ulbrich for giving me the
opportunity to work on this research topic and providing such an excellent research
environment. The given freedom combined with his guidance and support made this
work possible. I would also like to acknowledge Professor Carlo Bottasso and Professor
Daniel Rixen for serving on my thesis defense committee. After becoming the new
head of the institute, Professor Rixen gave me the opportunity to finish my research
for which I am thankful.

I am deeply grateful for having had the chance to work with a number of very
talented and highly motivated people. I am especially thankful to the research group
working on the robot Lola. While still being a student I learned a lot on mechanical
design from Dr. Sebastian Lohmeier, who was responsible for Lola’s mechatronic system
architecture. He later encouraged me to join the team as a researcher and we continued
discussing mechanical designs. I would like to thank Dr. Thomas Buschmann, who was
responsible for the simulation and control of Lola. I learned so much about program
design and walking control from him. His knowledge in robotics and guidance during
his time as a group leader was invaluable. I warmly thank Valerio Favot, who worked
on the decentralized controllers and communication system. His skills as an electronics
wizard were greatly appreciated. Throughout the project we enjoyed good times but
also endured some hardship. I would like to thank the other robotics team members
Alexander Ewald, Robert Wittmann, Arne Hildebrand, Jörg Baur and Christoph Schütz
for the inspiring discussions on robotics research topics.

Quality hardware is crucial for experimental work. I would like to thank the insti-
tute’s electrical and mechanical workshops. I owe special thanks to Georg “Schorsch”
Mayr. His long experience with electronics on research projects enabled both smooth
experimental work with Lola and further developments on Lola. I would like to thank
Wilhelm Miller, Walter Wöß, Simon Gerer, Philip Schneider and Tobias Schmidt for
their terrific work in manufacturing parts for Lola. I am grateful to PD Dr. Thomas
Thümmel for managing project resources and his support throughout this thesis.

I would also like to thank my ex-colleagues Dr. Thomas Buschmann, Dr. Sebas-
tian Lohmeier and Robert Wittmann for proofreading this thesis and giving helpful
comments.

Finally, I would like to thank my family, my girlfriend Karina and my good friend Dr.
Reinhard Tschiesner for their continuous support and encouragement.

Munich, July 2014 Markus Schwienbacher

Contents

1 Introduction 1
1.1 Problem Statement . 1
1.2 Background and Related Work . 4
1.3 Overview of this Thesis . 6

2 AnO(n)-formalism for the Simulation of MBS with Small Kinematic Loops 9
2.1 Introduction . 9

2.1.1 Basic Dynamics Equation . 10
2.1.2 Related Work . 11

2.2 Rigid Body Kinematics . 13
2.3 Rigid Body Dynamics . 15
2.4 Relative Kinematics of Rigid Multibody Systems . 17

2.4.1 Topology of Multibody Systems . 17
2.4.2 Motion Constraints and Minimal Coordinates 19
2.4.3 Recursive Kinematics Calculation . 20
2.4.4 Recursive Kinematics using Spatial Vector Notation 21

2.5 Dynamics of Rigid Multibody Systems . 25
2.6 Sub-Systems . 26
2.7 Detailed Derivation of the O(n)-Algorithm with Sub-Systems 28
2.8 Resulting Formalism . 36
2.9 Automatic Sub-System Generation . 39
2.10 Results . 42

2.10.1 Run-Time Comparisons for the Dill Example 42
2.10.2 Run-Time Comparison for the Lola Model 45

2.11 Discussion . 51
2.12 Chapter Summary . 52

3 Kinematics 55
3.1 Harmonic Drive Gears . 55
3.2 Knee Joint Drive Kinematics . 55
3.3 Ankle Joint Drive Kinematics . 58
3.4 Camera Vergence Kinematics . 60
3.5 Kinematics Calibration . 62
3.6 Chapter Summary . 67

4 Inverse Kinematics 69
4.1 Problem Statement . 69
4.2 Position Based Inverse Kinematics . 70

vii

viii Contents

4.3 Differential Inverse Kinematics . 72
4.3.1 Resolved Motion Rate Control and Redundancy Resolution 72
4.3.2 Jacobian Transpose . 75
4.3.3 Resolved Acceleration Rate Control . 76
4.3.4 Hierarchical Approaches . 76

4.4 Singularities and Manipulability . 77
4.5 Task Description of Lola . 78
4.6 Chapter Summary . 78

5 Self-Collision Avoidance 81
5.1 Background and Related Work . 81
5.2 Self-Collision Avoidance . 82
5.3 Chapter Summary . 86

6 Real-Time Distance Computation using Swept-Sphere-Volumes 89
6.1 Background and Related Work . 89
6.2 Formal Aspects of Distance Computation . 91
6.3 SSV Primitives . 92

6.3.1 Point-Swept-Sphere Volume . 93
6.3.2 Line-Swept-Sphere Volume . 93
6.3.3 Triangle-Swept-Sphere Volume . 94

6.4 Distance Calculation between SSV Primitives . 94
6.4.1 Point to Point Distance Computation . 96
6.4.2 Point to Line-Segment Distance Computation 97
6.4.3 Point to Triangle Distance Computation . 98
6.4.4 Line-Segment to Line-Segment Distance Computation 99
6.4.5 Line-Segment to Triangle Distance Computation 105
6.4.6 Triangle to Triangle Distance Computation 110
6.4.7 General Framework of Minimization Using Inequality Constraints 110

6.5 Implementation Details and Run-Time Performance 113
6.6 Modeling of the Robot Segments . 114

6.6.1 Compounds of SSVs as Robot Segments . 114
6.6.2 A Versatile Modeling Tool . 114

6.7 Integration of Bounding Boxes . 117
6.8 System Overview . 118
6.9 Chapter Summary . 121

7 Use of Angular Momentum in Walking Control 123
7.1 Introduction . 123
7.2 Angular Momentum . 123
7.3 Angular Momentum Compensation via Null-Space Motion 124

7.3.1 Reference Method . 124
7.3.2 Proposed Method . 125
7.3.3 Simulations . 126
7.3.4 Experiments . 126

Contents ix

7.4 Angular Momentum Trajectory . 127
7.5 Angular Momentum Minimization . 129
7.6 Chapter Summary . 131

8 Conclusion and Outlook 133
8.1 Summary . 133
8.2 Recommendations for Future Work . 135

A Mathematical Toolbox 137
A.1 Notation and Operators . 137
A.2 Coordinate Transformations . 138
A.3 Partial Derivatives . 139

B Pseudo-Code for Distance Calculation Algorithms 141
B.1 Line-Segment to Line-Segment . 141

C Inverse Kinematics: Orientation Error in Task Space 145

List of Abbreviations 149

Bibliography 151

1 Introduction

The human-like structure and size makes biped robots ideal for operating in almost
every environment also accessible by humans. Cluttered environments such as uneven
ground, stairs, ladders, small spaces etc. are encountered in urban life which compli-
cates locomotion. On the other hand, wheel-based systems typically are less complex,
enable faster locomotion and are more stable. However, most of the mentioned sce-
narios are only viable for biped systems. This is one of the main motivations for the
research on biped walking technology.

It is only due to significant advancements in enabling technologies which facilitated
the realization of biped walking machines with fully actuated joints. These technologies
include computer systems, control theory, drives, etc. Although, the first systems were
already built about four decades ago, the research on humanoid robots is still an
active field and must be considered rather young. For this reason, we are far from
commercially available systems with capabilities comparable to humans. Moreover,
proposed solutions to some of the more complex scenarios are only of theoretical
significance.

Potential application fields for humanoids reach from entertainment to service
robotics. Thereby, the requirements expand in many directions including (among
others), perception, computer vision, high-level cognition, speech synthesis, speech
recognition, manipulation, whole body motion and biped locomotion etc. Most of
them are active research fields where further progress is required.

Also triggered by the FUKUSHIMA DAI-ICHI nuclear disaster in Japan early 2011, robots
are spotted to be ideal when deployed in harsh environments. In this vision, robots
could one day save lives by taking over extremely dangerous and high-stakes human
tasks like shutting off deep-water oil spills, or to put out large fires. They can be of
help in search, rescue and cleaning missions after devastating environmental events,
such as earthquakes, tsunamis and hurricanes.

Finally, findings from research on biped walking is also of great importance to other
fields like medical engineering, prosthetics, rehabilitation and therapy. All this is
expected to give robotic research higher importance for mankind in the future.

1.1 Problem Statement
This thesis covers the efficient handling of some important aspects for biped robots:
simulation, self-collision avoidance and angular momentum in walking control. The
main research platform for this work is the robot Lola, developed at the Institute of

1

2 1 Introduction

z

yx

Joint DoF

1× Head 3
2× Shoulder 2
2× Elbow 1
1× Pelvis 2
2× Hip 3
2× Knee 1
2× Ankle 2
2× Toe 1

Total 25

Figure 1.1: The biped humanoid robot Lola with 25 DoFs: Photograph and kinematic structure
of the system (illustration from [125]).

Applied Mechanics,1 Technische Universität München. Figure 1.1 shows a photograph
of Lola as well as the basic kinematic structure with 25 actuated degrees of freedom
(DoFs). The robot is 180 cm tall and weighs approximately 60 kg. The distinguishing
characteristics of Lola are the redundant kinematic structure with 7-DoF legs, an
extremely lightweight construction, and a modular joint design with high power
density based on brushless motors. A comprehensive overview of Lola’s hardware is
given in [85, 86, 88].

The methods described in this work, are not confined to Lola but apply to other biped
robots too. A necessary condition, however, is that the robot’s DoFs are redundant
with respect to the chosen task space.

Walking Control

The problem of walking control is challenging. A variety of constraints have to be
taken into account in order to obtain feasible walking patterns. During walking,
balance is maintained (almost) only by the unilateral contact of the robot with its
environment. Thereby, feasible contact forces must be generated while other body parts
are moving. Since contact forces are influenced by this motion, multibody dynamics
must be considered in the process. Unintended collisions between body parts and
the environment can destabilize the robot and/or damage the robot hardware (or
its environment). Constraints for minimal distances must be integrated to avoid

1 In prior works, SEBASTIAN LOHMEIER developed the mechatronic design concept and did the me-
chanical design of the robot (cf. [85]). Moreover, THOMAS BUSCHMANN developed a versatile
software infrastructure for dynamics simulation and control along with a walking controller for
Lola (cf. [28]). In ongoing work, VALERIO FAVOT is developing methods for lower-level control and
the communication infrastructure of Lola (cf. [50]).

1.1 Problem Statement 3

interpenetration. Furthermore, the joints of the robot have capability limits for both
velocity and acceleration as well as joint range boundaries. Additional constraints
might arise from specific tasks like manipulation etc. All those constraints —some of
which are nonlinear— have to be taken into account in order to obtain global stability
and robustness. Finally, the resulting optimization problem is high-dimensional and
nonlinear.

On the other hand, the robot has to be able to react to unforeseen changes of a dy-
namic environment which possibly invalidates a feasible solution obtained beforehand.
Therefore, walking patterns must be computed in real-time. It is quite obvious, how-
ever, that current computer systems are unable to solve the full optimization problem
in real-time. Furthermore, the iterative nature combined with uncertain convergence
rates of nonlinear optimization algorithms disagrees with real-time computation.

A practical approach to facilitate real-time execution is to neglect less important
constraints and plan stable trajectories for a simplified dynamics model. Because the
resulting solution only approximates the full system dynamics, planned trajectories
are perturbed during execution in order to regain stability. Thereby, perturbations are
based on sensor feedback and/or state estimation. This approach, combining global
optimization for a simplified model with local optimization of further constraints, is the
basis for all state-of-art real-time walking (and running) pattern generators [28, 102,
135–137]. Furthermore, in order to facilitate real-time execution efficient algorithms
have to be applied in all stages.

Simulation

Simulation is an important engineering tool in different stages of the development
process. The efficient simulation of a system enables faster and tighter development
loops, thereby, optimizing the system in an iterative manner. Efficiency is gained
on several levels of the simulation process: from modeling, over element-model
evaluation and time-integration to post-processing of results. Each of these levels
opens up potential for optimization. Ultimately, the degree of modeling depth depends
on the desired accuracy of the effects relevant to the system behavior.

The modeling of mechatronic systems often results in kinematic couplings leading
to loops in the structure. Especially the rigid modeling of drive mechanisms, like gears,
generates kinematic loops. This mechanical modeling both reduces the number of
degrees of freedom and the effort for time-integration at the same time. The latter is
mostly due to different time scales induced by high frequencies from low motor shaft
inertia combined with large drive mechanism/gear stiffness. As a consequence, the
step-size for time integration must be prohibitively small and degrades performance.

Such multi-domain models can also be integrated efficiently using mixed-mode
integration and multi-rate integration. By studying the eigenvalues of the system matrix,
both methods divide the model into a fast and a slow part. An explicit integrator is
applied for the slow part, while the fast part is either integrated using an implicit

4 1 Introduction

integrator or a lower step-size for the mixed-mode and multi-rate method, respectively.
Both methods are found in commercially available general purpose simulation software
such as DYMOLA2 [124].

1.2 Background and Related Work
The word “robot” is derived from the Czech word for forced labor and has its origin in
KAREL ČAPEK’s play “R.U.R.: Rossum’s Universal Robots” (published 1920). Therein,
human-shaped machines start to dominate the human race. Also influenced by other
critical writings about technology, a significant part of the general public perceive
humanoid robots as a threat. Science fiction films which include robots often provoke
unrealistic expectations about the abilities of such machines. Moreover, it seems
obvious that the military has interests in robotics technology even beyond defense
applications. However, this research often is not publicly available. All this generates
a human fear to possibly lose control over autonomously acting machines. The
perception of the society is an important factor for the acceptance of such machines
along with realistic expectations about their abilities in order to become commercially
successful.

On the other hand, humanoid robots open up a fascinating and interdisciplinary
research field. The large and growing body of literature in this field emphasizes the
scientific interest. Moreover, a large amount of scientific journals and conferences
about robotics in general and about humanoids in particular exist.

The following part is intended to give only a brief overview of relevant research on
biped walking robots. Surveys of legged walking (and running) robots can be found in
[84, 118, 119, 129]. GIENGER [60] and LOHMEIER [85] give detailed surveys of biped
robot hardware design while BUSCHMANN [28] focuses on both historical and control
aspects. Only more recent work, not found in the cited works above, are described
here in more detail. Finally, individual chapters contain detailed reviews to relevant
literature covering the according chapter topics.

In 1973, KATO developed at the Waseda University, Japan, the first full-scale human-
like robot WABOT-1. Thereby, modern research on biped walking was initiated. In
subsequent years a number of advanced robots with innovative hardware concepts
were developed at Waseda [106, 108].

At the JSK-LABORATORY, Tokyo University, the humanoid robots H6 and H7 were
designed and built in cooperation with KAWADA INDUSTRIES. Actuated toe joints en-
able the robots to knee down, climb stairs and enlarge the foot steps [104]. Using
vision systems, research on advanced path planning methods for discreet footholds in
unknown and dynamically changing environments is conducted [103]. Furthermore,
tendon-driven musculoskeletal humanoids with flexible spines are developed [101].

2 www.3ds.com/products-services/catia/capabilities/catia-systems-engineering/
modelica-systems-simulation/dymola

www.3ds.com/products-services/catia/capabilities/catia-systems-engineering/modelica-systems-simulation/dymola
www.3ds.com/products-services/catia/capabilities/catia-systems-engineering/modelica-systems-simulation/dymola

1.2 Background and Related Work 5

More recently, URATA et al. [149] developed the biped robot prototype HRP3La-JSK
with high power joints. An active cooling system and batteries combined with a high
capacitance capacitor providing instantaneously high current rates enables the robot
to walk at 5 km/h (cf. [150]).

Within the “Humanoid Robotics Project” (HRP) a number of sophisticated full-
sized humanoid walking robots, HRP-2 to HRP-4, have been developed jointly by the
NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST), KAWADA

INDUSTRIES and a number of Japanese universities. Copies of the HRP-2 are sold to
different research groups mostly working on software aspects. While the first robots
developed in the program (HRP-2 and HRP-3) had a “Transformers-like” appearance,
the newest models HRP-4 and HRP-4C presented in 2009 have a more slender shape
with both anthropometry and appearance of a young Japanese female. One goal of the
newest development HRP-4 is to reduce robot production costs significantly making
the robot more affordable to research groups [74].

While several years ago service robotics was considered being the main application
area for humanoid robots, a current trend is the research on robotic systems able to
work or help in harsh environments. This is, without doubt, a reaction to the problems
encountering after the FUKUSHIMA nuclear disaster.

In the DARPA ROBOTICS CHALLENGE3 (DRC), which is currently in process, a number
of teams develop new walking robots with manipulation abilities. The goal of DRC is
to initiate research for future humanoid robots able to perform hazardous activities
in disaster response operations, together with humans, in order to reduce casualties,
avoid further destruction, and save lives. The challenge is divided in three increasingly
demanding events (in June 2013, Dec. 2013 and Dec. 2014). The winning team will
be awarded with 2,000,000 US$ [41].

The U.S. company BOSTON DYNAMICS recently presented the biped robot Petman
capable of walking at 7 km/h. Unlike other robots with electrically driven joints, the
robots from BOSTON DYNAMICS use hydraulic actuation driven by a combustion engine.
Based on Petman, the company developed a robot named ATLAS specifically for DRC.
Like Petman, the project is funded by DARPA. Several copies of the robot are given to
DRC teams only working on software. The system has near-human anthropometry
with two arms and legs with 28 hydraulically actuated joints. The system is electrically
powered from off-board, weights 150 kg and is 188 cm tall. The head is equipped with
a laser range finder and a stereo vision system for perception [3].

Starting in 1986, the Japanese HONDA MOTOR CORPORATION developed a series of
advanced humanoid robots (E1 to E6 and P1 to P3). While research was secretly
conducted in the beginning, HONDA presented the first fully self-contained humanoid
robots in 1996. Starting in 2000, the company presented a series of autonomous
humanoids under the name ASIMO.4 Each generation has increasing capabilities and

3 DARPA is the U.S. Defense Advanced Research Project Agency
4 short for: “Advanced Step in Innovative Mobility”

6 1 Introduction

is amongst the most advanced biped robots of their time. All ASIMO models have arms
with hands and legs, are about 130 cm tall and weight approx. 50 kg. Being a company,
Honda usually releases details about their systems in patents rather than in scientific
papers. Only recently, more details of trajectory planning and control methods used for
the ASIMO robots where published as scientific papers [136–139]. However, Honda’s
approach to building and controlling biped robots has been both very influential and
successful, and hence, has been widely adopted. At 10 km/h, HONDA currently has the
fastest running biped robot [137].

Recently, the GERMAN AEROSPACE CENTER (DLR) presented a biped robot named
TORO.5 The arms and legs of TORO are based on DLR’s lightweight robots having joints
with torque sensors which enable the robot to react flexibly to its environment [111].

Research on biped robots at the INSTITUTE OF APPLIED MECHANICS (AM), Technische
Universität München, started with Johnnie [60, 84]. Using only on-board perception
and control, the robot was the first biped able to navigate autonomously in an unknown
environment. Based on experience gained from research on Johnnie and other robotics
projects at AM, LOHMEIER [85] and BUSCHMANN [28] developed the biped robot Lola.6

At 3.6 km/h, Lola is currently one of the fastest biped walking machine developed
at a university [30]. A vision system, developed by VON HUNDELSHAUSEN, enables
navigation among dynamically changing arbitrary obstacles without requiring color
coding, surface texture or explicit models of the environment [31].

1.3 Overview of this Thesis
The first objective of this thesis is the development of an efficient method for simulating
the multibody dynamics of mechatronic systems. Small kinematic loops inherent in
the modeling of mechatronic systems must be solvable with the approach.

The second objective is the development of some methods for walking control
contributing to both safety and human-like biped walking performance. The methods
must allow for real-time application. Furthermore, the system should be sufficiently
general to be applicable to biped robots similar to Lola. Thereby, the problem of
avoiding self-collisions in real-time is addressed. Moreover, angular momentum
tracking is integrated into walking control to reduce the modeling error of current
real-time walking pattern generators.

The main contributions of this thesis are:

• The development of an efficient multibody simulation algorithm which extends

5 short for: “TOrque controlled humanoid RObot”; Press release: http://www.dlr.de/dlr/en/
desktopdefault.aspx/tabid-10080/150_read-6601/year-2013/150_page-4/#gallery/
9208

6 Many other people contributed to the development of Lola: Valerio Favot, Georg Mayr, Mathias
Bachmayer, the author and students.

http://www.dlr.de/dlr/en/desktopdefault.aspx/tabid-10080/150_read-6601/year-2013/150_page-4/#gallery/9208
http://www.dlr.de/dlr/en/desktopdefault.aspx/tabid-10080/150_read-6601/year-2013/150_page-4/#gallery/9208
http://www.dlr.de/dlr/en/desktopdefault.aspx/tabid-10080/150_read-6601/year-2013/150_page-4/#gallery/9208

1.3 Overview of this Thesis 7

the most efficient O(n)-algorithms for handling small kinematic loops inherent
in the modeling of mechatronic systems.

• Provide run-time measurements, conducted on different computer systems,
comparing and showing the efficiency of the dynamics algorithms when applied
to a number of test systems including the multibody models of Lola.

• New and improved algorithms for real-time walking control for biped robots
with redundant configurations, including:

– Self-collision avoidance

– Angular momentum tracking

– Angular momentum minimization

• The development of a framework for fast distance computation between seg-
ments of the robot, thereby, enabling self-collision avoidance in real-time.

• Verifications showing the effectiveness of all methods applied to the robot Lola
using simulations and experiments.

The developed methods should extend and improve the frameworks developed by
BUSCHMANN (cf. [28]) for the robot Lola.

This thesis is structured as follows: In Chapter 2 anO(n)-algorithm for the simulation
of multibody systems with kinematic loops is derived. Equations for the calculation
of quantities for kinematics mostly specific to the robot Lola as well as the method
for kinematic calibration is described in Chapter 3. An introductory overview for
subsequent chapters about relevant inverse kinematics algorithms is given in Chapter 4.
The self-collision avoidance method developed in this work is presented in Chapter 5
and the used framework for distance computation in Chapter 6. Two methods for
incorporating the angular momentum into walking control are described in Chapter 7.
Chapter 8 concludes the thesis with a summary and suggestions for future work.

Finally, used mathematical operators and expressions, some implementation details,
and a list of abbreviations is found in the appendix.

2 AnO(n)-formalism for the Simulation of MBS
with Small Kinematic Loops

2.1 Introduction

The simulation of mechatronic systems such as humanoid robots is an important tool
for hardware and controller design in different stages of the development process. The
mechanical design provides model parameters and requires the knowledge of loads
to assess strains, analyze dynamic performance, support design decisions and enable
optimization. Model-based controllers such as walking controllers need kinematic
models and dynamic models. Finally, the evaluation of control system robustness
and performance is enabled by simulation. Each step requires for different modeling
depth and/or computational efficiency. BUSCHMANN developed in [28] a simulation
environment written in C++ which was extended in this work. The software was
developed to simulate the biped robots Johnnie and Lola. Therefore, it also contains
specialized modeling elements which cannot be found in commercially available
simulation software, neither for general purpose simulation nor for multibody system
(MBS) simulation. The main building blocks are a modeling library and different
integrators for Ordinary Differential Equations (ODE). Typically, they are combined to a
dynamics simulation coupled to a controller. The modeling library consists of different
rigid-body-types and special mechanisms, gear friction models for Harmonic Drive
gears and roller screw drives, electrical motor models, different contact models and
contact solvers as well as environment models. Although the library was developed to
simulate biped robots other ordinary MBS, i. e., with holonomic constraints, can be
simulated.

The growing computational power of computer systems enables the simulation of
more detailed models. In order to exploit parallel processors, co-simulation becomes
more important [38, 57]. Thereby, the evaluations of complex sub-models, such as
FEM-contacts, exceed the computational cost of many rigid body dynamics algorithms.
Obviously, in such cases the computational efficiency of MBS simulation is of secondary
interest. Current trends in commercial simulation software tools are therefore to
integrate the Functional Mock-up Interface1 (FMI) standard [18]. This enables multi-
physics co-simulation and model file-exchange via FMUs2 between FMI-conformant
software.

1 FMI specifies standardized interfaces used by simulation software www.fmi-standard.org
2 Functional Mockup Units are singular model components used by the FMI architecture.

9

www.fmi-standard.org

10 2 AnO(n)-formalism for the Simulation of MBS with Small Kinematic Loops

Initialize
system state

Update
sensor data

Call
controller

Exit
Integrate system until

next control cycle
Update

system input

Data output

Figure 2.1: Simulation of mechatronic systems.

2.1.1 Basic Dynamics Equation

Using the Newton-Euler-Jourdain principle [27, 148], the equations of motion (EoM)
for the rigid-body MBS can always be formulated as second order ordinary differential
equations (ODE) in the form

Mq̈ + h = Qext , (2.1)

with the mass-matrix M , the vector of generalized coordinates q and its second time
derivative q̈ , the vector of Coriolis, centrifugal and gravitational forces h and the
impressed generalized forces Qext.

For calculating the time evolution of the positions and velocities, (2.1) has to be
solved for q̈ and integrated with respect to time. Rewriting (2.1) as a standard first
order ordinary differential equation leads to

ż = f (z, u) , (2.2)

where vectors z and u denote state and input, respectively. Depending on the type
of simulation, z contains generalized positions and velocities and other states to
describe the system. On the other hand, for the EoM input u typically contains physical
quantities such as forces/torques, motor voltage/current etc. Assuming only dynamics
from (2.1) and holonomic constraints, (2.2) may be written as

żMBS :=
�

q̈
q̇

�
=
�

M−1(Qext− h)
q̇

�
. (2.3)

Integration finally leads to

z(t) = z0+
t∫

0

ż dτ , (2.4)

which is evaluated using a suitable numerical integrator.
Figure 2.1 illustrates the simulation of a mechatronic system using a feedback

2.1 Introduction 11

controller: the initialized system state is converted to sensor output used by the
controller. Data output by the controller is used as input quantities to the dynamic
system. After time integration until the next control cycle, sensor data is again given to
the controller. This loop is repeated until an exit-condition is met. For cascade control,
the block for time-integration contains multiple levels of this picture.

Solving the EoM for q̈ is also known as forward dynamics (FD) calculation.3 Different
efficient FD algorithms have been developed since the 1960’s, when computational
resources were a limiting factor. Some of them are briefly presented in the following
section.

2.1.2 Related Work

Traditionally, robotics researchers have focused on the computational efficiency of
their dynamics algorithms. In fact, many of the most efficient algorithms in dynamics,
that are applicable to a broad range of mechanisms, were developed with a focus on
robotics [1, 21, 54, 152]. A good overview of available algorithms can be found in
[53]. SCHIEHLEN [122] presents historical remarks on the development of MBS from
classical mechanics to modern aspects in MBS simulation. A detailed derivation of
relevant methods and further historical aspects of classical mechanics is presented
by BREMER in [25]. FEATHERSTONE gives a historical overview on the development of
dynamics algorithms specialized to computers [53].

Most FD algorithms can be classified into two main types: propagation algorithms
and inertia-matrix (mass-matrix) algorithms. The latter calculate the mass-matrix ex-
plicitly and solve for the accelerations. In contrast, propagation algorithms propagate
quantities over joints to calculate the accelerations in a recursive manner without
calculating the mass-matrix M of the system. Typically, for open-loop systems the
computational complexity of propagation algorithms is of O(n), i. e., the computation
time grows linearly with the number of degrees of freedom (DoF). On the other hand,
general inertia-matrix algorithms have O(n3) algorithmic complexity. The algorithmic
complexity becomes an important factor when dealing with a large number of DoFs.
Hence, the algorithms are also often called O(n) algorithms and O(n3) algorithms
respectively. However, the algorithmic complexity of some algorithms is highly depen-
dent on the kinematic configuration, or topology, of the MBS, i. e., O(n) algorithms
perform best with an open-loop structure without branches, i. e., a strict chain. On
the other hand, topologies containing closed loops are not directly supported by re-
cursive O(n)-algorithms. Several extensions to recursive O(n)-formalisms have been
developed to cope with such topologies [6, 22]. One possible solution is to convert the
loops into a tree by cutting the loops open at suitable joints and introducing Lagrange
multipliers. These Lagrange multipliers are equivalent to the joint constraint forces
which satisfy the kinematic constraints of the joint. However, this approach has some

3 In contrast to the inverse dynamics, where forces are computed from known accelerations.

12 2 AnO(n)-formalism for the Simulation of MBS with Small Kinematic Loops

drawbacks. First, depending on the loop dimension,4 the increased computational
complexity may become larger than O(n3) (cf. [22]) which cancels the advantage
of the method. More importantly, due to numerical drift, the resulting differential
algebraic equations (DAEs) become stiff which leads to an inefficient integration [122].
In order to overcome these inherent instabilities several methods such as BAUMGARTE

stabilization [9] and projection methods [2] have been developed.

The modeling process for mechatronic systems and mechanical systems with closed
kinematic loops is more efficient on the basis of implicit constraint equations for
coupling components and closing the loop [122].

BREMER presents in [26] a technique for the efficient modeling of large mechanical
systems with (ideally) repeating structures called sub-systems. The technique was
further developed as O(n) algorithm which is able to handle elastic bodies [24, 130]
and systems with contacts [59] (see Section 2.6).

Under certain conditions, mainly due to branches in the kinematic tree, the mass-
matrix M becomes sparse.5 FEATHERSTONE [52] proposes a specialized sparse matrix
solver for M . The method consists of a reversed order sparse Cholesky decomposition
such that M = LᵀL (instead of M = LLᵀ, cf. e. g., [116]). The sparsity is exploited
by using an index vector containing the child-parent relations. The resulting lower
left triangular matrix L then inherits the sparsity pattern of M . Depending on the
branching topology of the kinematic tree the algorithmic complexity is in the range of
O(n) (n decoupled pendulums) to O(n3) (unbranched chain). A strict chain topology
implies a fully dense mass-matrix. According to [52], for a robot with four limbs and
30 DoFs the computational cost is only approx. 15% higher when compared to an O(n)
algorithm.

Chapter Structure

Based on the rigid body kinematic quantities introduced in Section 2.2, the dynamics
equations of a single body are derived in Section 2.3. In Section 2.4 the relative
kinematics of rigid multibody systems is formulated and exploited in Section 2.5 to
derive the equations of motion of a multibody system. Furthermore, the concept of
sub-systems is introduced in Section 2.6 and a suitable O(n)-algorithm, able to cope
with kinematic loops, is derived in Section 2.7. Section 2.8 presents an algorithmic
form of the derivation. To facilitate a simplified modeling, a method to reconfigure
a MBS into sub-systems is presented in Section 2.9. Finally, a run-time comparison
studying certain effects is presented in Section 2.10.

4 term “loop dimension” refers to the number of bodies or joints involved in the loop
5 Zero elements are introduced systematically due to branches. Moreover, depending on the config-

uration and other mass parameters, other entries in the mass-matrix can become zero.

2.2 Rigid Body Kinematics 13

b
a r d

cFrame of reference

Property of body

Reference point, index, etc.

Other properties

Figure 2.2: Meaning of sub- and superscripts for a variable “r ”.

2.2 Rigid Body Kinematics
Throughout this thesis, sub- and superscripts for variables are used to define other
properties. Leading subscripts denote the frame of reference (FoR) and leading super-
scripts the reference body. Normal subscripts are used for reference points and indices
and normal superscripts for further descriptive properties. The meaning of sub- and
superscripts is illustrated in Figure 2.2. In this nomenclature, b

a ṙ o denotes the velocity
of body b’s origin o described in FoR a.

Positions With reference to Figure 2.3 the position of a rigid body can be expressed
using vector notation as

r = r O + r OP , r ∈ IR3. (2.5)

By letting point O and FoR K be fixed to the rigid body, we can rewrite above relation
using coordinate notation to

I r P = I r O + AIK K r OP , (2.6)

where matrix AIK defines the transformation from FoR K to an inertial FoR I . The logic
is illustrated in Figure 2.4. Thereby, axis unit-directions IeK ,i for i ∈ (x , y, z) of FoR K
represented in FoR I are the columns of AIK :

AIK =
�

IeK ,x IeK ,y IeK ,z

�
, ‖ eK ,i ‖= 1, eK ,i eK , j = 0 for i 6= j. (2.7)

Hence, AIK is orthonormal and the following useful identities hold:

AIK = A−1
KI = AᵀKI , (2.8)

AIK AᵀIK = E , (2.9)

where E ∈ IR3×3 is the unit matrix.

Velocities The absolute velocity of point P is the total derivative of position vector
r P with respect to time in (2.6)

I ṙ P =
d

d t I r P = I ṙ O + ȦIK K r OP + AIK K ṙ OP . (2.10)

14 2 AnO(n)-formalism for the Simulation of MBS with Small Kinematic Loops

r O

r OP

x
y

z

“I” “K”

P

O

Figure 2.3: Kinematics of a point in a rigid body (adopted from [27]).

The total derivative ˙() implies derivatives of the FoR, which obviously vanish for the
non-moving FoR I . However, this must be considered, when transforming to a moving
FoR, e. g., K in Figure 2.3. Since only rigid bodies are considered, we have K ṙ OP

!
= 0.

Additionally, using the transformation K r OP = AKI I r OP gives

I ṙ P = I ṙ O + ȦIK AKI I r OP . (2.11)

The term ȦIK AKI is a skew-symmetric tensor, which is easily shown by time derivation
of (2.9) yielding

ȦIK AᵀIK + AIK Ȧ
ᵀ
IK = 0 ⇔ ȦIK AKI =−(ȦIK AKI)

ᵀ . (2.12)

Moreover, it is related to the angular velocity vector ωKI , describing the angular
velocity of FoR K relative to FoR I , via

ȦIK AᵀIK = I eωKI and AᵀIK ȦIK = K eωIK =: eωK . (2.13)

The operator ea represents the matrix-equivalent to the cross-product, i. e., eab = a× b.
Equation (2.11) then becomes

I ṙ P = I ṙ O + I eωKI I r OP . (2.14)

Accelerations Repeating the time derivative of ṙ P from (2.11) and using (2.13) we
obtain the acceleration:

I r̈ P =
d I ṙ P

d t
= I r̈ O + I

�
˙̃ω+ eω eω

�
KI︸ ︷︷ ︸

ÄIK AᵀIK

I r OP . (2.15)

Transformation By applying a coordinate transformation, above quantities can al-
ways be expressed relative to a different FoR, e. g., for the body-fixed frame K we

2.3 Rigid Body Dynamics 15

I r = AIK K r
Figure 2.4: Notation for transformation matrix AIK transforming a vector from FoR K to I

have

K ṙ P = K ṙ O + K eωIK K r OP , (2.16)

K r̈ P = K r̈ O + K

�
˙̃ω+ eω eω

�
IK K r OP , (2.17)

with

K ṙ O = AKI I ṙ O , K eωIK = AKI I eωKI AIK ,

K r̈ O = AKI I r̈ O , K
˙̃ωIK = AKI I

˙̃ωKI AIK .

Since absolute velocities and accelerations are independent of the FoR, leading sub-
scripts are neglected in the following where appropriate.

2.3 Rigid Body Dynamics

The equations of motion (EoM) of a multibody system can be derived in various ways.
BREMER leads a detailed discussion about this topic including historical aspects on
dynamics equations in [25, 27]. Basically, two main approaches can be distinguished:
analytical methods work by analyzing energy [114], while synthetic methods start with
linear and angular momentum for each body [148]. Obviously, both ways lead to the
same result. The derivation effort, however, might differ. Since synthetic methods
are easier to represent in the form of an algorithm, they are dominant in computer
programs.

With reference to Figure 2.5, where impressed forces let a body move, the EoM of a
single rigid body are derived. Due to NEWTON translational motion is described using
the linear momentum theorem:

∫

B

r̈ P dm=
nl∑
k

F i
k , (2.18)

where F i
k are the nl impressed forces (denoted by superscript i). The integral over

body B in (2.18) is solved by substituting (2.15) and using both mass (m =
∫
B dm)

16 2 AnO(n)-formalism for the Simulation of MBS with Small Kinematic Loops

dm P

Rk

C
O

T i
k

F i
k

Figure 2.5: Impressed forces acting on a body (adopted from [56])

and CoG position (mr OC =
∫
B r OP dm) of a rigid body

m
�

r̈ O +
�

˙̃ω+ eω eω
�

r OC

�
=

nl∑
k

F i
k . (2.19)

This effectively transforms body B to a particle with mass m, located at CoG C where
all impressed forces are acting.

Due to EULER rotational motion is described using the angular momentum theorem
with respect to the moving point O (cf. Fig. 2.5):

∫

B

�
er OP r̈ P

�
dm=

nl∑
k

�
er OR,k F i

k + T i
k

�
, (2.20)

where T i
k are the impressed moments and r OR,k denotes the vector from point O to

reference point Rk where force F i
k acts on the body. Again, the integral is solved by

substitution of (2.15) and assuming a rigid body:

mer OC r̈ O + IOω̇+ eωIOω=
nl∑
k

�
er OR,k F i

k + T i
k

�
, (2.21)

where IO :=−
∫
B(er OPer OP)dm is the mass-moment of inertia tensor of the rigid body

with respect to point O. Common 3-D CAD programs provide functionality to evaluate
the integral to calculate K IO with respect to an arbitrary point O and FoR K of a part
or an assembly. Similarly, the computation for mass and CoG position is provided by
CAD programs. Obviously, for a body-fixed FoR K these quantities are constant.

Combining (2.19) and (2.21) leads to the NEWTON-EULER equation of motion (EoM)
for a single rigid body:

�
IO merOC

mer ᵀOC mE3

��
ω̇
r̈ O

�
+
�
eωIOω

m eω eωrOC

�
=

nl∑
k

�
er OR,k F i

k + T i
k

F i
k

�
, (2.22)

2.4 Relative Kinematics of Rigid Multibody Systems 17

(a) (b) (c)
chain tree loop

root/env.

joint

node

Figure 2.6: Examples of mechanisms (le�) and their topological graph (right).

Ma+ h = f , (2.23)

where M ∈ IR6×6 is the mass-matrix, a ∈ IR6 contains the accelerations, h ∈ IR6 and
f ∈ IR6 are the vector of velocity-dependent inertial forces and impressed forces,
respectively.

2.4 Relative Kinematics of Rigid Multibody Systems
The special topology of robotic systems facilitate an efficient recursive calculation of
kinematic quantities. Thereby, bodies are connected by joints which exhibit motion
constraints.

2.4.1 Topology of Multibody Systems
Figure 2.6 illustrates different kinematic configurations of multibody systems. Formally,
topologies in Figure 2.6 are graphs where bodies and joints correspond to nodes and
edges, respectively. A tree is a directed acyclic graph where each node has exactly one
predecessor, called parent (cf. Fig. 2.6(b)). On the other hand, a loop is a cyclic graph
where the parent relations are not uniquely described (cf. Fig. 2.6(c)). Exactly one
node, the root node, exists which has no parent. Typically, the root node is fixed, i. e.,
the environment. For systems having only a single tree, the root node might also be
defined as the first body in the graph. In general, nodes can have multiple successors
or child nodes. The chain topology, shown in Fig. 2.6(a), is a special tree where nodes
have at most one child node. A branch is defined as a sub-graph of a tree spanned
by a node, that is, the root node of the branch. A leaf node is a node which has no
children, i. e., the “last” nodes of a tree. Loop topologies can be converted to a tree by
cutting one suitable joint of the loop open and replacing the joint by constraint forces.
In general, loops increase the computation effort compared to tree topologies.

18 2 AnO(n)-formalism for the Simulation of MBS with Small Kinematic Loops

Towards root node

k
pr PO

k
kr CoG

c

p

Other nodes

Other nodes
Reference body

parent body
b

Figure 2.7: Local description of tree structure with pointers to parent (p), child (c) and brother (b)
nodes and vectors to the center of gravity k

kr CoG and from parent to child node k
pr PO (adopted

from [28]).

Different methods for describing the connectivity relations suitable for computer
representation are known from graph theory [8, 19]. Most graph representations
for modeling MBS are based on continuous numbering of bodies i ∈ N where N =
{0, . . . , Nbodies−1} is the set of nodes from the whole system. By using the assigned
number as index in a list, provides easy access to bodies. The numbering works by
starting with 0 for the root node and assigning successors numbers in ascending order,
thereby, each node i ∈N has a larger number than its parent [25, 53, 68]. Additionally,
joints can be numbered in a similar fashion.

Based on the “lower body array”, proposed by HUSTON [68], a topology matrix can
be built [25]. Each body is associated to a column containing the path along parents
leading to the root node.

One of the simplest ways to describe arbitrary topologies is to generate an index list
of predecessors p ∈ INNbodies and successors s ∈ INNbodies [53, 59]. The parent of body i is
then easily obtained by p(i). On the other hand, each node i holds a set of children
denoted by c(i).

Another elegant way for describing tree topologies by means of C/C++ pointers6

is presented by YAMANE [156] and BUSCHMANN [28]. Locally, each node keeps three

6 A C/C++ pointer contains a memory address, hence it “points” to data (structures) located in
computer memory.

2.4 Relative Kinematics of Rigid Multibody Systems 19

Φ= 0

z

�
∂ Φ

∂ z

�ᵀ

(a) holonomic constraint

Φ(z, ż) = 0α

ṙω

(b) nonholonomic constraint

Figure 2.8: Graphical interpretation of allowed motion subject to constraints.

references: to a parent ‘p’, child ‘c’ and brother ‘b’ node. Thereby, ‘p’ points
towards the root node, ‘c’ points to leaf nodes and ‘b’ points to the next child of the
parent. Obviously, a node and its brother ‘b’ share the same parent node. Figure 2.7
illustrates the local pointer-based description of the tree structure.

In this thesis, the pointer approach is combined with a simple list of bodies, having
a strict ordering, i.e., each body appears always after its parent in the list. This enables
fast access to bodies in forward- and backward-recursions to evaluate quantities.

2.4.2 Motion Constraints and Minimal Coordinates
Typically, multibody mechanisms, such as robots, are subject to nonlinear constraints
induced by joints. Nonlinear constraints limit the motion represented by z:

Φ= 0 , Φ := Φ(z) : IR6 NBodies → IRNDoFs . (2.24)

Here, NBodies and NDoFs denote the number of bodies and DoFs, respectively. Vector
z ∈ IR6 NBodies contains position and orientation for each body. Figure 2.8a illustrates
this: motion is only allowed tangentially to the constraint manifold Φ on the current
configuration z. A set of minimal (or: generalized) coordinates q , which satisfy the
constraints implicitly, are found by eliminating the constraints. Therefore, minimal
coordinates q uniquely describe the motion in a non-redundant way. Since we typically
have dim(z) � dim(q) for constrained MBS, the computational effort is reduced
significantly by using a minimal representation.

For nonholonomic constraints Φ(z, ż) = 0, generalized velocities ṡ are introduced:

ṡ =
∂ s

∂ q
q̇ =

∂ ṡ

∂ q̇
q̇ . (2.25)

Nonholonomic constraints limit velocities without affecting positions [25]. A typical
example are rolling (non-slipping) wheels, where sufficient friction prohibits motion
orthogonal to the rolling direction (cf. Fig. 2.8b).

20 2 AnO(n)-formalism for the Simulation of MBS with Small Kinematic Loops

r O

p

Reference body i

parent body p(i)

I

P
O′

Op k
k′ r O′O

k
p
r PO′

k′

k
p r P

q i

Figure 2.9: Relative joint kinematics of successive bodies. Intermediate FoR k′ and point O′ are
thereby fixed to parent p(i).

In the special case of holonomic constraints Jacobian matrix ∂ s/∂ q degenerates
to the identity matrix E and hence, we get ṡ = q̇ and s = q [25, 27]. In this thesis,
only holonomic constraints are considered. However, by including relationship (2.25)
nonholonomic constraints can easily be integrated. For a detailed discussion of MBS
with nonholonomic constraints see [25, 53]. Furthermore, only scleronomic constraints
(without explicit time dependency) are considered in this thesis.

The parent-child-relations in tree structures (cf. Section 2.4.1) are used to generate
a strict ordering of q . Moreover, each joint i having nq,i DoFs is associated to a subset
of q such that

q i =
�

qi . . . qi+nq,i

�ᵀ ∈ IRnq,i and q i ∈ q . (2.26)

2.4.3 Recursive Kinematics Calculation
The minimal coordinate representation allows us to express kinematic quantities as
functions of generalized coordinates q and therefore via the relative motion between
parent and child bodies.

With reference to Figure 2.9, body i moves relative to a reference position O′ and
reference orientation k′ both located on parent p(i). Relative motion is prescribed
using the set of minimal coordinates q i. Depending on the joint type, q i might contain
a translational part q T,i and a rotational part qR,i. Hence, for the relative position and
orientation we have

r O′O = r O′O(q T,i) and Ak′k = Ak′k(qR,i) . (2.27)

Using the relative Jacobians of translation and rotation

J T,i =
∂ ṙ rel,i

∂ q̇ T,i
∈ IR3×nq,T and JR,i =

∂ ωrel,i

∂ q̇R,i
∈ IR3×nq,R , (2.28)

2.4 Relative Kinematics of Rigid Multibody Systems 21

we can rewrite kinematic quantities for velocity as

ωi =ωp(i)+ JR,i q̇R,i , ṙ P = ṙ P + eωp(i)r OP + J T,i q̇ T,i , (2.29)

and acceleration as

ω̇i = ω̇p(i)+ JR,i q̈R,i + J̇R,i q̇R,i + eωp(i) JR,i q̇R,i , (2.30)

r̈ O = r̈ P + ˙̃ωp(i) r PO + J T,i q̈ T,i + J̇ T,i q̇ T,i + eωp(i)

�
2 J T,i q̇ T,i + eωp(i) r PO

�
. (2.31)

2.4.4 Recursive Kinematics using Spatial Vector Notation
A closer look at the EoM (2.22) suggests the use of 6-D vectors and matrices to describe
dynamics quantities. This spatial vector notation uses 6-D vectors and 6-D tensors for
describing rigid-body velocity, acceleration and inertia. The notation can be extended
in a natural way to include other quantities, e. g., for elastic robots and/or sub-systems
(cf. [58, 130]).

Three-dimensional angular and translational quantities for velocity and acceleration
are combined to vectors in IR6 such that

v =
�
ω
ṙ

�
∈ IR6 and a =

�
ω̇
r̈

�
∈ IR6, (2.32)

where v and a are the spatial velocity and spatial acceleration, respectively.
This facilitates a compact formulation of the EoM. However, in a real implementation,

when computational performance is important, operations involving multiplications
with zeros may be pruned. This, in turn, leads to the classical representation with
separate vectors in IR3 describing translations and rotations.

Using spatial vector notation, kinematic quantities in (2.29) to (2.31) for the i-th
body denoted in FoR k write to

v i = C i v p(i)+ J i q̇ i , (2.33)

ai =
d v i

d t
= C iap(i)+ J i q̈ i + Ċ i v p(i)+ J̇ i q̇ i︸ ︷︷ ︸

bi

. (2.34)

Here, the subscripts denote the associated body i and its parent p(i), respectively.
Thereby, all quantities are written with respect to their own body-fixed FoR. The
relative Jacobian and its rate of change are defined as

J i :=
∂ v rel,i

∂ q̇ i
=
�

k′JR,i

k′J T,i

�
∈ IR6×Nqi , J̇ i :=

d J i

d t
=
∂ v rel,i

∂ q i
∈ IR6×Nqi , (2.35)

denoted here with respect to FoR k′ which is fixed to the parent (cf. Figure 2.9). Matrix

22 2 AnO(n)-formalism for the Simulation of MBS with Small Kinematic Loops

C i is the spatial transformation matrix

C i := C kp =
�

Akp 0
−Akp per PO Akp

�
, (2.36)

where Akp ∈ IR3×3 is the rotation matrix from parent FoR to body-fixed FoR, i.e.,
Akp = Akk′Ak′p, and vector r PO is the vector between the origins of parent and child
(cf. Fig. 2.7). The velocity-dependent part of the acceleration (2.34) is written using
identity (2.13) to

bi =

�
eωp(i) JR,i q̇ i

eωp(i)

�
2 J T,i q̇ T,i + eωp(i) r PO

�
�
+ J̇ J ,i q̇ i . (2.37)

Quantities v i and ai in (2.33) and (2.34) are absolute quantities denoted in the
body-fixed FoR k.

Joint Model Examples

Examples for the quantities used in Equations (2.33) – (2.36) are given here for some
joint types. Where appropriate, body index i is omitted for conciseness.

6-DoF Joint Unconstrained (free) motion is described using a 6-DoF joint with three
rotations and translations respectively. Different representations are known to describe
the orientation of a rigid body. An obvious way is to use a set of three parameters
(minimal coordinates) qR,i := [q1 q2 q3]ᵀ, e. g., representing angles of subsequent
elementary rotations about different axes. Some of the most widely used rotation
representations include

Euler angles three subsequent elementary rotations where the first and last (resulting)
axis of rotation are identical, e. g., AkI = Az(q3)Ax(q2)Az(q1)

Tait-Bryan angles (sometimes called Cardan angles, nautical angles, etc.) three sub-
sequent elementary rotations each about different axes (often used in flight
dynamics [120])

Since the use of three angle parameters inherently leads to singularities in the map-
ping between minimal velocities and angular velocities, alternative representations
with redundant parameters might be necessary.7 Some of them are rotation vector
representations (e. g., Euler-Rodrigues parameters and axis-angle representation) [25] or
six-parameter methods [120]. However, in dynamics applications the computational
cost is higher with increasing redundancy, as pointed out by ROBERSON et al. in [120].

7 Obviously, the dimension of qR,i increases with the degree of redundancy.

2.4 Relative Kinematics of Rigid Multibody Systems 23

On the other hand, translations typically have a direct mapping between coordinates
and parameters, i.e., I r = q T,i := [q4 q5 q6]ᵀ.

In this thesis, the Euler-ZXZ angle representation (cf. Appendix C, Fig. C.2) is used to
describe rotations for unconstrained motion. The set of minimal coordinates is then
defined by q i := [qᵀR,i qᵀT,i]

ᵀ, leading to the following quantities:

J =
�

kJR 0
0 AkI I J T

�
∈ IR6×6, (2.38)

with

kJR =
∂ ω

∂ q̇R,i
=




s2 s3 c3 0
s2 c3 − s3 0
s2 0 1


 , I J T =

∂ ṙ

∂ q̇ T,i
= E ∈ IR3×3, (2.39)

(2.40)

and

A= AkI = AᵀEulerZX Z(qR,i) =




c1 c3− s1 c2 s3 s1 c3+ c1 c2 s3 s2 s3

− c1 s3− s1 c2 c3 − s1 s3+ c1 c2 c3 s2 c3

s1 s2 − c1 s2 c2


 . (2.41)

Here, s j := sin(q j) and c j := cos(q j) for j = {1, 2, 3} are used as abbreviations.
Furthermore, for the time derivative of the joint Jacobian and velocity-dependent
acceleration we have

J̇ =




q̇2 c2 s3+q̇3 s2 c3 −q̇3 s3 0
q̇2 c2 c3−q̇3 s2 s3 −q̇3 c3 0
−q̇2 s2 0 0

0

0 0


 , (2.42)

b = J̇ q̇ i . (2.43)

Finally, by setting r PO = 0 and defining the initial position of the joint via q T,i, the
spatial transformation matrix C in (2.36) reduces to

C =
�

A 0
0 A

�
, (2.44)

which can be exploited for computational efficiency.

24 2 AnO(n)-formalism for the Simulation of MBS with Small Kinematic Loops

Revolute Joint The revolute joint has one rotational DoF about the z-axis denoted
by q. Hence, quantities used in (2.33) to (2.36) become

J =
�

0 0 1 0 0 0
�ᵀ
= const., ⇒ J̇ = 0 ∈ IR6×1, (2.45)

Akp = Az(q)Ak′p =




cos q sin q 0
− sin q cos q 0

0 0 1


Ak′p , (2.46)

where Ak′p is a constant initial transformation matrix (cf. Figure 2.9). Matrix Ak′p (and
vector r PO) can be obtained from given DENAVIT-HARTENBERG parameters.8

Prismatic Joint Similar to the revolute joint, the prismatic joint has one translational
DoF along the z-axis denoted by q and we get

J =
�

0 0 0 0 0 1
�ᵀ
= const., ⇒ J̇ = 0 ∈ IR6×1, (2.47)

A= Ak′p = const., (2.48)

b =

�
0

eωp(i)

�
2 J T,i q̇ T,i + eωp(i) r PO

�
�

. (2.49)

BUSCHMANN implemented some of above joint models used for the robots Johnnie
and Lola directly as body-type classes Body3R3T and Body1R having 6 DoFs and 1 DoF,
respectively [28]. These classes were extended in this work.

Further Reading

For more examples of joint types, the reader is referred to one of the many text books
about rigid body dynamics. Therein, the quantities might have different names, e. g.,
the columns of the relative spatial Jacobian J are called “mode vectors” [120] or
“motion subspace” [53]. Due to its formal derivation, however, the term “relative
spatial Jacobian” seems more accurate.

Moreover, in Chapter 3 quantities for special joint types used for the robot Lola are
presented.

8 1) rotation and translation about the x-axis of parent’s FoR using angle α and length a, respec-
tively; 2) translation along the new z-axis using length d. Hence, we also get vector r PO. For
details, see [40].

2.5 Dynamics of Rigid Multibody Systems 25

2.5 Dynamics of Rigid Multibody Systems

Using EoM (2.23) for each body i of the whole system leads to

M i ai + hi = f i
i + f c

i , for i = 1 . . . NBodies . (2.50)

Impressed forces f i include external forces such as from contacts, gravity, motor torque
and gear friction. Due to joint constraints, constraint forces f c

i can be separated from
impressed forces. Equation (2.50) involves solving for 12 unknowns in ai and f c

i for
each of the NBodies bodies of the system.

Rewriting (2.50) gives

Ď

ĎM s

sa− s

sf = 0 , (2.51)

with the mass-matrix Ď

ĎM = block diag
�
M i
� ∈ IR6Nb×6Nb and vectors

s

sa = stack
�
ai
�

, s

sf = stack
�

f i
i + f c

i − hi

�
, s

sa, ssf ∈ IR6Nb ,

where operator stack
�
ai
�
=
�

aᵀ1 aᵀ2 · · · aᵀNb

�ᵀ
stacks individual quantities above

each other.

By multiplying (2.51) from the left with the global Jacobian matrix

s

sJ =




∂ v1

∂ q
...

∂ vNb

∂ q


=




sJ1
...
sJNb


 ∈ IR6Nb×Nq , (2.52)

we obtain the minimal form

s

sJ
ᵀ�

Ď

ĎM s

sa− s

sf
∗�
= Q . (2.53)

Since the pre-multiplication of s

sJ
ᵀ

is a projection onto the unconstrained directions,
this effectively eliminates constraint forces:

s

sJ
ᵀ
s

sf
c
= 0 , with s

sf
c
= stack

�
f c

i

�
. (2.54)

Hence, the modified force vector s

sf
∗

becomes

s

sf
∗
=
�

f ᵀ1 f ᵀ2 · · · f ᵀNb

�ᵀ
, (2.55)

26 2 AnO(n)-formalism for the Simulation of MBS with Small Kinematic Loops

with

f i = f i
i − hi =

�
m r̃OC g e

m g e

�

i︸ ︷︷ ︸
f g,i

+

�∑NT

j T i
j +
∑NR

k r̃ OR,kF i
k∑NF

k F i
k

�

i

−
�
eωIOω

m eω eωrOC

�

i︸ ︷︷ ︸
hi

. (2.56)

Force vector f i combines different forces such as the gravity forces f g,i and other
impressed forces (cf. Fig. 2.5) as well as the velocity-dependent mass-forces hi.

The vector of generalized forces Q is used in (2.53) for convenience if the left
hand side of Q = s

sJ
ᵀ
s

sf
q

is calculated directly. Hence, forces are applied directly into
unconstrained directions, e. g., for drive and/or friction forces.

Formally, (2.53) can be derived using JORDAIN’S principle [27, 148] leading to9

Nb∑
i

���
∂ ω

∂ q̇

�ᵀ �∂ ṙ OC

∂ q̇

�ᵀ��
L̇+ eωIR L− T i

ṗ + eωIR p − F i

��

i

= Q , (2.57)

where L and p are the angular momentum about the CoG and the linear momentum,
respectively.

2.6 Sub-Systems
Multibody systems can often be modeled using sub-systems by combining several
neighboring nodes of the graph. BREMER introduces sub-systems to reduce the modeling
effort of repeating structures in a MBS [25, 27]. Formally, EoM (2.57) is brought into
sub-system form by splitting the sum on sub-system boundaries and applying the chain
rule of differentiation on the Jacobians leading to [25]

Nsub∑
n

�
∂ ẏn

∂ q̇

�ᵀ Nb,sub,i∑
i

���
∂ ω

∂ ẏn

�ᵀ �∂ ṙ OC

∂ ẏn

�ᵀ��
L̇+ eωIR L− T i

ṗ + eωIR p − F i

��

i

= Q . (2.58)

Here, ẏ are the non-minimal coordinates of a sub-system S containing associated
minimal velocities q̇S and reference velocities v p(S) from its parent (cf. [25] for more
details).

Sub-systems are used in this work to facilitate the application of O(n) algorithms
with (small) kinematic loops. In this context, kinematic loops are defined as a group of
joints which share a set of generalized coordinates qS. Formally, kinematic loops can
always be cut open to restore tree topology. Loop closure is then assured by introducing
Lagrangian multipliers equivalent to the joint constraint forces together with algebraic
loop-closure conditions. This, however, leads to EoMs in form of DAEs. On the other

9 This form is only introduced here for reference in Section 2.6.

2.6 Sub-Systems 27

Towards root node

Other nodes

Sub-system member nodes ∈NS

Sub-system node

Other nodes

c

p

rootp p

Children
outside
sub-
system︸ ︷︷ ︸
CS

Figure 2.10: Sub-system embedded into a MBS.

hand, if a closed form solution to the constraint equations exists, the loop can be
solved directly. This is achieved by building a sub-system “around” those DoF-sharing
joints, and hence, maintain the basic form of O(n)-algorithms by means of interface
quantities. Thereby, algebraic constraint equations are solved inside sub-systems,
which leads to a local O(N 3

q,sub) complexity, where Nq,sub := dim(qS) is the number of
DoFs associated to sub-system S. Therefore, both the size of the loop and the effort
for algebraic joint equations strongly influence the computational performance of the
O(n)-algorithm with sub-systems. A detailed derivation of this O(n)-algorithm with
sub-systems is presented in Section 2.7.

Section 2.9 gives an overview of how groups of joints, which share generalized
coordinates, can be converted into sub-systems. This step allows to reconfigure the
MBS structure in order to apply the O(n)-algorithm.

With reference to Figure 2.10, sub-systems are special bodies on MBS-level. Thereby,
sub-systems combine DoFs, and have an internal dynamics, i. e., are comparable to
elastic bodies. By following the pointer logic introduced in Section 2.4.1 and Figure 2.7,
sub-systems are both a body and a small MBS. Thereby, the first member body is the
root of the sub-system-MBS and the sub-system-body is the root’s parent. Successor
nodes of a sub-system are directly linked to bodies inside the sub-system. This is mainly

28 2 AnO(n)-formalism for the Simulation of MBS with Small Kinematic Loops

Towards root node

NS

PS

CS

sub-system node

Figure 2.11: Node-sets of a sub-system

to facilitate a recursive calculation of kinematic quantities. A more formal solution is
to let the sub-system provide necessary quantities for successors on MBS-level which
in turn, however, leads to unnecessary overhead.

With reference to Figure 2.11, each sub-system holds a number of node-sets. Analo-
gously to the node-set N of the MBS, each sub-system holds a set of member bodies
NS. In addition, a set of child nodes CS exists, which are not part of the sub-system
such that CS = {i ∈N ∧ i /∈NS | ∃ j ∈NS : i ∈ c(j)}. In Figure 2.10, nodes marked as
“Children outside sub-system” are in CS. Moreover, the parent nodes from nodes in CS

are collected in the set PS = { j ∈NS | ∃i ∈ CS : j ∈ p(i)}.

2.7 Detailed Derivation of theO(n)-Algorithm with
Sub-Systems

Figure 2.12a is key to a detailed derivation of an O(n) formalism for calculating the
accelerations of a MBS with integrated sub-systems. The system allows for showing:
(a) a sub-system embedded in a MBS, (b) a sub-system with an internal hierarchy,
(c) a sub-system with a predecessor and a successor, (d) a sub-system with multiple
DoFs, and, (e) a sub-system which contains a joint with multiple DoFs.

This abstract system can be seen as a generalization of the 4-link mechanism shown
in Figure 2.12b where the last body B5 is free. The relative motion of body B4 is related
to the joint angles q2 and q3 in a nonlinear fashion.

The vector of generalized coordinates q is defined as

q =




q∗1
q∗2
...

q∗NDoFs



=




q1

q2

q3

«
q4

q5


 , (2.59)

2.7 Detailed Derivation of theO(n)-Algorithm with Sub-Systems 29

Subsystem (2 DoFs)B1

B2

B3

B4

B5

non-linear coupling

root

B0

I

(a) Node representation of the example system.
The sub-system has 2 DoFs. The motion of body
B4 is somehow linked to the 2 DoFs in a nonlinear
fashion.

B1

B2 B3

B4 B5

q1

q2

q3

q4

(b) A possible real system: a 4-link mechanism
where body B4 is connected to B1 and B3, while
B5 is free. Relative motion of body B4 depends
on q2 and q3.

Figure 2.12: Example system used for deriving theO(n) formalism for a MBS containing a sub-
system.

where the relative motion of each body Bi is influenced by the set q i. By that logic,
q4 of body B4 is influenced by q2 and q3. Since we want to analyze the general case,
quantities q i are denoted in vector notation.

Using (2.34) the stacked absolute accelerations of the whole MBS are written as

s

sa = Cs

sa+Jq̈+b , s

sa, b ∈ IR6Nbodies , C ∈ IR6Nbodies×6Nbodies , J ∈ IR6Nbodies×NDoFs , (2.60)

where C is the “geometry matrix” which defines the parent-child-relations and J is
a block-matrix which contains all the relative Jacobian matrices J i. In the case of a
chain structure C is a block-matrix containing the spatial transformation matrices in
the lower secondary diagonal and J is a block-diagonal matrix. An example for a chain
structure can be found in [123]. Here, we have

parents

B1 B2 B3 B4 B5

C =




0
C2

0
C4

0

0
0
C3

0
0

0
0
0
0
C5

0
0
0
0
0

0
0
0
0
0




B1

B2

B3

B4

B5

ch
ild

re
n

gen. coord. sets

q1 q2 q3 q5

J =




J1

0
0
0
0

0
J2

0
J4,1

0

0
0
J3

J4,2

0

0
0
0
0
J5




B1

B2

B3

B4

B5

bo
di

es

The entries of J and C have a clear placement. In C relative relations are visible: B2

and B4 are children of B1, body B3 is a child of B2, etc. On the other hand, in J relative
Jacobians J i span along associated generalized coordinates q i for each body.

30 2 AnO(n)-formalism for the Simulation of MBS with Small Kinematic Loops

Solving the recursive form (2.60) for ssa yields the non-recursive form

s

sa = (E −C)−1 �J q̈ + b
�

(2.61a)

= (E −C)−1 J︸ ︷︷ ︸
s

sJ

q̈ +sb , (2.61b)

where E is the unit matrix with according dimensions. However, it is not intuitive to
see what the matrix (E −C)−1 is, especially for block-matrices. Here, we have

(E −C)−1 =




E6 0 0 0 0
C2 E6 0 0 0

C3C2 C3 E6 0 0
C4 0 0 E6 0

C5C3C2 C5C3 C5 0 E6




, (2.62)

which is necessary for calculating both sb = (E −C)−1 b in (2.61b) and matrix s

sJ :

gen. coord. sets

q1 q2 q3 q5

s

sJ = (E −C)−1 J =




J1

C2 J1

C3 C2 J1

C4 J1

C5 C3 C2 J1

0
J2

C3 J2

J4,1

C5 C3 J2

0
0
J3

J4,2

C5 J3

0
0
0
0
J5




sJ1
sJ2
sJ3
sJ4
sJ5 bo

dy
Ja

co
bi

an
s

(2.63)

where s

sJ is the global Jacobian matrix formally defined in (2.52). Here, the framed part
of the matrix marks the portion associated to the sub-system (which will be introduced
later) for future reference.

Again, both matrices from (2.62) and (2.63) have a clear structure related to the
system’s topology. In fact, the matrix (E −C)−1 must be seen as part of the formal
derivation. We will find recursive formulations, e. g., to calculate sb.

Substitution of (2.63) into (2.53) yields the EoM in block-matrix notation:




Jᵀ1 Jᵀ1Cᵀ
2 Jᵀ1Cᵀ

2Cᵀ
3 Jᵀ1Cᵀ

4 Jᵀ1Cᵀ
2Cᵀ

3Cᵀ
5

0 Jᵀ2 Jᵀ2 Cᵀ
3 Jᵀ4,1 Jᵀ2 Cᵀ

3 Cᵀ
5

0 0 Jᵀ3 Jᵀ4,2 Jᵀ3 Cᵀ
5

0 0 0 0 Jᵀ5




︸ ︷︷ ︸
s

sJ
ᵀ




M1 a1− f 1

M2 a2− f 2

M3 a3− f 3

M4 a4− f 4

M5 a5− f 5



=




Q1

Q2

Q3

Q4


 . (2.64)

The upper triagonal form of (2.64) facilitates some of the most efficient O(n) for-

2.7 Detailed Derivation of theO(n)-Algorithm with Sub-Systems 31

malisms for MBS, such as from BRANDL et al. [21]. These exploit the fact that: (a) the
impressed forces acting on leaf-nodes, i.e. f 5, contain only external forces, and, (b) the
motion of a reference body is known, i.e. a0 = 0 for the inertially-fixed environment.

Equation (2.64) can be solved for q̈ by successively evaluating each line. By starting
from the last line and substituting the acceleration from (2.34) on page 21 for body B5

a5 = C5a3+ J5q̈5+ b5, (2.65)

we get

Jᵀ5
�
M5

�
C5 a3+ J5 q̈5+ b5

�− f 5

�
= Q4 .

Solving above equation for q̈5 gives

q̈5 = P5 a3+ p5 ⇒ q̈ i = P i ap(i)+ p i , (2.66)

with

P5 =−(Jᵀ5 M5 J5)
−1Jᵀ5 M5 C5 ⇒ P i =−(Jᵀi ĎM i J i)

−1Jᵀi ĎM i C i , (2.67)

p5 =−(Jᵀ5 M5 J5)
−1
�

Jᵀ5(M5 b5− f 5)−Q4

�

⇒ p i =−(Jᵀi ĎM i J i)
−1
�

Jᵀi
�
ĎM i bi − sf i

�
−Qi

�
, (2.68)

where P i and p i are forward propagation quantities of body i. The boxed equations
on the right side are the derived general equations. Thereby, quantities which did not
appear yet are about to be derived later along the way, e. g., ĎM i and sf i. Equation (2.66)
is not solvable yet, since two unknown quantities q̈5 and a3 appear. By continuing
with the third line of (2.64) we have

Jᵀ3
�
M3 a3− f 3

�
+ Jᵀ4,2

�
M4 a4− f 4

�
+ Jᵀ3 Cᵀ

5

�
M5 a5− f 5

�
= Q3 ,

and substitution of (2.65) and (2.66) gives

Jᵀ3
�
ĎM3 a3− sf 3

�
+ Jᵀ4,2

�
M4 a4− f 4

�
= Q3 ,

with

ĎM3 = M3+Cᵀ
5 K 5 ⇒ ĎM i = M i +

∑
j∈c(i)C

ᵀ
j K j , (2.69)

sf 3 = f 3−Cᵀ
5 k5 ⇒ sf i = f i −

∑
j∈c(i)C

ᵀ
j k j . (2.70)

32 2 AnO(n)-formalism for the Simulation of MBS with Small Kinematic Loops

Body i
kin. quant. to all c(i)

ai to all c(i)

Children c(i)

add rel. kin.

calc q̈ i , ai

q̈ i

calc {ĎM , sf , P, p}i
calc {K , k}i

Parent p(i)
kin. quant.

accel. ap(i)

∑{K , k}c(i){K , k}i

1st fw. rec.

bw. rec.

2nd fw. rec.

Qiq i , q̇ i F i

System

Figure 2.13: Schematic local view of the propagation mechanism for quantities in forward,
backward and second forward recursion of theO(n)-formalism.

Here, ĎM i and sf are the projected mass-matrix and projected forces with the backward
propagation quantities

K 5 = M5

�
C5+ J5 P5

� ⇒ K i =ĎM i
�
C i + J i P i

�
, (2.71)

k5 = M5

�
J5 p5+ b5

�− f 5 ⇒ k i =ĎM i
�
J i p i + bi

�− sf i . (2.72)

This allows us to rewrite the global EoM (2.64) as a reduced system to




Jᵀ1 Jᵀ1 Cᵀ
2 Jᵀ1 Cᵀ

2 Cᵀ
3 Jᵀ1 Cᵀ

4

0 Jᵀ2 Jᵀ2 Cᵀ
3 Jᵀ4,1

0 0 Jᵀ3 Jᵀ4,2


 ·




M1 a1− f 1

M2 a2− f 2
ĎM3 a3− sf 3

M4 a4− f 4


=




Q1

Q2

Q3


 . (2.73)

Note that quantities associated to body B5 are now contained in ĎM3 and sf 3. The boxed
equations (2.66) to (2.72) are the basic building blocks for the O(n)-formalism from
BRANDL et al. [21], although, presented in a different notation. Figure 2.13 illustrates
the basic scheme of the algorithm. In a first forward recursion, kinematic quantities
dependent on q and q̇ are calculated for each body. Second, in a backward recursion
—that is, starting from leaf nodes iterating up to the root node— (2.67) to (2.72) are
evaluated. Finally, accelerations q̈ i and ai in (2.66) and (2.34) are computed in a
second forward recursion. However, the original O(n)-formalism cannot cope with
kinematic loops.

2.7 Detailed Derivation of theO(n)-Algorithm with Sub-Systems 33

Introducing Sub-Systems

By applying the relative kinematics (2.34) for the remaining spatial accelerations we
get

a4 = C4 a1+
�

J4,1 J4,2

�
︸ ︷︷ ︸

J4

·
�

q̈2

q̈3

�

︸ ︷︷ ︸
q̈4

+b4, (2.74a)

a3 = C3 a2+ J3 q̈3+ b3, (2.74b)

a2 = C2 a1+ J2 q̈2+ b2, (2.74c)

a1 = J1 q̈1+ b1 . (2.74d)

Since (2.74a) contains two sets of unknown generalized accelerations q̈2 and q̈3 (also
used by bodies B2 and B3 in (2.74b) and (2.74c), respectively), we have to find a
closed form solution for the last two lines of (2.73). Ultimately, this step leads to
equations to obtain the propagation quantities for a sub-system. Here, bodies B2 to B4

are combined into a sub-system.

Substitution of (2.74) into the last two lines of (2.73) and reordering gives the EoM
of the sub-system:

MS ·
�

q̈2

q̈3

�
=−BSa1− f S +

�
Q2

Q3

�

︸ ︷︷ ︸
QS

, (2.75)

with quantities specific to sub-system S:

MS =
Nb,S∑

j

bJ
ᵀ
j
cM j
bJ j MS ∈ IRNDoF, S×NDoF, S , (2.76a)

BS =
Nb,S∑

j

bJ
ᵀ
j
cM j
bC j BS ∈ IRNDoF, S×6, (2.76b)

f S =
Nb,S∑

j

bJ
ᵀ
j

�
cM j
bb j − bf j

�
f S ∈ IRNDoF, S . (2.76c)

Here, MS, BS and f S are the generalized quantities of the sub-system for mass-
matrices and forces, respectively. The dimension NDoF, S = dim(qS) is the number of
DoFs spanning the sub-system. Moreover, quantities denoted by c(·) are associated to

34 2 AnO(n)-formalism for the Simulation of MBS with Small Kinematic Loops

sub-system member bodies such that

cM j = M j +
∑

k∈{c(j)∧CS}
Cᵀ

k
ĎM k , (2.77a)

bf j = f j +
∑

k∈{c(j)∧CS}
Cᵀ

k
sf k . (2.77b)

In contrast to (2.69) and (2.70) the sum applies here only to member bodies having
children outside of the sub-system, i.e., j ∈ PS (cf. Figure 2.10 and Figure 2.12a, hence,
cM3 = ĎM3 and cM2 = M2).10 Moreover, for sub-system member body quantities we
have (in recursive form)

bb j = C j
bbp(j)+ b j for the sub-system: bbS = 0 , (2.78a)

bJ j =
∂ v j

∂ qS
= C j

bJ p(j)+ bJ rel, j for the sub-system: bJS = 0 , (2.78b)

bC j = C j
bC p(j) for the sub-system: bC S = E . (2.78c)

Note, that bJ j is the framed portion (associated to the sub-system) of sJ j in (2.63).

Solving (2.75) for
�

q̈ᵀ2, q̈ᵀ3
�ᵀ

and following the notation scheme of the propagation
quantities in (2.66) gives

�
q̈2

q̈3

�
= q̈S = PS a1+ pS, (2.79)

with

PS =−M−1
S BS , (2.80)

pS =−M−1
S (f S −QS) . (2.81)

Finally, by evaluating the first line of (2.73) and substituting the accelerations in
(2.74) and (2.79) we get

Jᵀ1 ĎM1 J1 q̈1+ Jᵀ1(ĎM1 b1− sf 1) = Q1 , (2.82)

10 c(·) quantities are related to Ď(·) quantities and only marked differently to distinguish quantities for
bodies inside sub-systems and normal bodies from MBS

2.7 Detailed Derivation of theO(n)-Algorithm with Sub-Systems 35

with

ĎM1 = M1+ K S , (2.83a)
sf 1 = f 1− kS . (2.83b)

This leads to the propagation quantities of the sub-system

K S =ĎMS + BᵀS PS , (2.84)

kS = BᵀS pS − sf S , (2.85)

with

ĎMS = Cᵀ
2(M2+Cᵀ

3
ĎM3 C3)C2+Cᵀ

4M4C4

⇒ ĎMS =
Nb,S∑

j

¦
bC
ᵀ
cM bC

©
j

ĎMS ∈ IR6×6,
(2.86)

sf S = Cᵀ
2

�
M2 b2− sf 2+Cᵀ

3

�
ĎM3

sb3− sf 3

��
+Cᵀ

4

�
M4 b4− f 4

�

⇒ sf S =
Nb,S∑

j

¦
bC
ᵀ �
cM bb− bf

�©
j

sf S ∈ IR6.
(2.87)

Generalized acceleration q̈1 is obtained from (2.66) using the known acceleration of
the environment, i.e. a0 = 0.

In order to fit sub-systems into the propagation scheme illustrated in Figure 2.13
some properties are still missing. In (2.84) and (2.85) backward propagation quantities
K i and k i are already defined for sub-systems. By comparing (2.83) with (2.71) and
(2.72) we have

C S = E ∈ IR6×6. (2.88)

Therefore, the sub-system moves with its parent, i.e., FoRs are identical. Interestingly,
this results in a generic kinematic interface between a sub-system and its member
bodies which is independent of specific joint models. Analogously to the joint model
examples on pages 22 ff., we get the following quantities for a sub-system node S

vS = v p(S), aS = ap(S) ⇒ bS = 0 , J = J̇ = ; . (2.89)

Hence, velocities and accelerations are directly inherited from the parent of the sub-
system and joint Jacobians are empty, since there are no relative DoFs.

In order to evaluate (2.66) for bodies in CS, accelerations a j of a sub-system member

36 2 AnO(n)-formalism for the Simulation of MBS with Small Kinematic Loops

Algorithm 2.1: General form of theO(n)-algorithm.

Input: t , q , q̇
Output: q̈ , (if desired: λc)

Step 1: first forward recursion (cf. Algorithm 2.2):
update kinematic quantities for all bodies of the MBS

Step 2: compute impressed forces and torques F i , T i (e.g., from contacts) and
generalized forces Qext (e.g., from motor dynamics and gear friction)

Step 3: backward recursion (cf. Algorithm 2.3):
update propagation quantities P, p, K and k for bodies of the MBS

Step 4: second forward recursion (cf. Algorithm 2.4):
calculate generalized accelerations q̈ (and if desired: λc) for bodies of the MBS

body j are required:

a j = bC j aS + bJ j q̈S + bb j for j ∈ PS. (2.90)

Note that, (2.90) must only be evaluated for bodies in PS, which improves efficiency.

2.8 Resulting Formalism
This section summarizes the derived O(n)-algorithm into an implementation-friendly
form. The basic recursions of the O(n) formalism are shown in Algorithm 2.1 (cf. also
Figure 2.13 on page 32). Algorithms of the individual recursions are shown in Algo-
rithm 2.2 (forward 1), Algorithm 2.3 (backward) and Algorithm 2.4 (forward 2).

Evidently, the formulas for updating the formalism quantities are not identical for
sub-systems and rigid bodies. Therefore, the individual algorithms contain conditions

“if bodytype(i) = sub-system then . . . else . . . end if”

for choosing the respective evaluation paths. As a consequence, this adds additional
complexity and computational overhead. However, in object oriented programming
languages such as C++ this specialization can easily be achieved by overloading class-
specific member functions. Similarly, sub-system quantities which are summed from
member bodies can be specialized in the body-specific code to improve efficiency from
special structures of certain matrices.

2.8 Resulting Formalism 37

Algorithm 2.2: First forward recursion

Input: t , q , q̇
Output: updated kinematic quantities for each body of the MBS

for i← 1 to Nbodies do // first forward recursion
if bodytype(i) = sub-system then // sub-system

copy time-varying variables from parent Ȧkp,ω, ṙo, g , e. g., g i = g p(i)
sbi ← 0

5: for j← 1 to Nb,S do // iteration over all members of the sub-system
compute time-varying variables Akp, j , I r o, j , ṙ o, j ,ω j , g j , J j , J̇ j , C j , b j
bb j ← C j

bbp(j)+ b j
cM j ← M j
bC j ← C j bC p(j)

10: end for
else // rigid body

compute time-varying variables Akp,i , I r o,i , ṙ o,i ,ωi , g i , J i , J̇ i , C i , bi
end if

end for

38 2 AnO(n)-formalism for the Simulation of MBS with Small Kinematic Loops

Algorithm 2.3: Backward recursion

Input: updated kinematic quantities, impressed and generalized forces of the MBS
Output: propagation quantities P, p, K and k for each body/sub-system

for i← Nbodies, MBS to 1 do // backward recursion
if bodytype(i) = sub-system then // sub-system

for j← 1 to Nb,S do // recursion on sub-system member bodies
compute f j , bf j ← f j

5: end for
for all j ∈ CS,i do // border bodies outside sub-system
cMp(j)←cMp(j)+Cᵀj K j , bf p(j)← bf p(j)−Cᵀj k j

end for
M i ←

∑Nb,S

j
bJ
ᵀ
j
cM j bJ j , f i ←

∑Nb,S

j
bJ
ᵀ
j (cM j

bb j − bf j)

10: Bi ←
∑Nb,S

j
bJ
ᵀ
j
cM j bC j , sf i ←

∑Nb,S

j
bC
ᵀ
j (cM j

bb j − bf j)
ĎM i ←

∑Nb,S

j
bC
ᵀ
j
cM j bC j

P i ← M−1
i Bi , K i ←ĎM i + Bᵀi P i

p i ← M−1
i (f i −Qi) , k i ← Bᵀi p i + sf i

else // rigid body
15: compute f i

ĎM i ← M i +
∑

j∈Nchildren
Cᵀj K j , sf i ← f i −

∑
j∈Nchildren

Cᵀj k j

P i ← (Jᵀi ĎM i J i)−1(−Jᵀi ĎM i C i) , K i ←ĎM i(C i + Ji P i)
p i ← (Jᵀi ĎM i Ji)−1(−Jᵀi (ĎM i bi − sf i)−Qi) , k i ←ĎM i(bi + Ji p i)− sf i

end if
20: end for

Algorithm 2.4: Second forward recursion

Input: updated propagation quantities P, p, K and k
Output: q̈

for i← 1 to Nbodies do // second forward recursion
q̈ i ← Pi ap(i)+ p i
if bodytype(i) = sub-system then // sub-system

ai ← ap(i)
5: for all j ∈ PS do // recursion on sub-system member bodies with children outside

a j ← bCS, j ai + bJ j q̈ i + bb j
end for

else // rigid body
ai ← J i q̈ i + bi +C i ap(i)

10: end if
end for

2.9 Automatic Sub-System Generation 39

N0

N1

sub-system

Figure 2.14: Modification of the system node listN when nodes are replaced by a sub-system.

2.9 Automatic Sub-System Generation
In order to apply the O(n)-algorithm presented above to systems containing joints
with overlapping generalized coordinates, these joints (and respective bodies) must be
combined into sub-systems. However, it is favorable to generate only one model of a
system and be able to solve it with any implemented algorithm without thinking about
the modeling method used. Hence, an appropriate conversion scheme of a given MBS
into sub-systems is presented here.

The conversion process basically boils down to detecting groups of bodies with
overlapping sets of generalized coordinates qS, “wrapping” individual groups into a
sub-system S and replacing member bodies in the MBS by the sub-system. Depending
on the system representation used, the replacement task might be more complex. Since
in this work a body list and a pointer-based tree representation are deployed, these
two types are considered.

Figure 2.14 illustrates the process for a body list N . In an iterative process, for each
sub-system S an initial body list of the system N0 is modified by replacing all nodes
j ∈NS by the sub-system S leading to the new list N1. Since forward and backward
recursions rely on a correct ordering of N , sub-system S is inserted at the former
lowest position of its member bodies.

On the other hand, for the tree representation, all connections must be reconfigured
such that the pointer logic is correct. An example is presented in Figure 2.15: On
the left, a tree containing bodies with overlapping q -indices ∈ 1,2 is shown. The
corresponding MBS with a sub-system replacing those bodies is depicted on the right.
Thereby, the following steps are taken (N0 is the initial set of system nodes):

1. Find a group of nodes NS ∈N0 with overlapping q -indices.

2. Find a common parent pS ∈N ∧ pS /∈NS ∧ ∃ j ∈NS : pS = p(j).

3. Generate a sub-system node S from NS.

4. Set new parent node for direct children: p({ j ∈NS | p(j) = pS})← S.

5. Modify the pointer sequence to generate a continuous sequence of brothers for S
(cf. Algorithm 2.5 and Fig. 2.16).

6. Finally, replace member bodies by S in the pointer logic (cf. Figure 2.14).

40 2 AnO(n)-formalism for the Simulation of MBS with Small Kinematic Loops

child brotherparent

1 3 1 1,2 4

6 2

5

0

1

3

1 1,2

4

6

2

5

0

1, 2

Figure 2.15: Le�: Pointer-based tree of nodes where the numbers represent associated q -indices.
Nodes with overlapping q -indices are marked. Right: conversion result of a group of nodes
with overlapping q -indices (1,2) into a sub-system.

The first line of sub-system member bodies shown in Figure 2.15 is not a continuous
sequence of brother pointers, since it is interrupted by the node with index 3. Hence,
it must be moved after the sequence which closes the gap.

Algorithm 2.5 solves this problem for an arbitrary sequence of brother pointers with
multiple interrupting sequences by studying inward and outward borders Bi. Thereby,
bodies on both sides of the border, Bi,l and Bi,r for the left and right side, respectively,
are tracked and pointers are reset. Figure 2.16 illustrates the presented algorithm.

2.9 Automatic Sub-System Generation 41

sub-system

b6

sub-system

rl
B1 B2

rl
B3

rl

b1b0 b2 b3 b4 b5

root

b6

b6b1b0

b2 b3

b4 b5

B j,r = b(B j,l) for j ∈ 1,2, 3

b4 b5b1b0 b2 b3

Figure 2.16: Modification of the pointer sequence to generate a continuous line of brothers for a
given sub-system with only one inward and one outward boundary.

Algorithm 2.5: Generate a continuous sequence of brothers from a given set of sub-system
member bodiesNS cf. Figure 2.16

Input: NS
B1,l ←NS(0) // initialize with sub-system’s root
while B1,l 6= ; ∧B1,l ∈NS do

if b(B1,l) 6= ; ∧ b(B1,l) /∈NS then // outward boundary B1 found
B2,l ← B1,r ← b(B1,l)
while B2,l 6= ; ∧ b(B2,l) ∈NS do // find next inward boundary
B2,l ← b(B2,l)

end while
if B2,l 6= ; then // inward boundary B2 found
B3,l ← B2,r ← b(B2,l)
while b(B3,l) ∈NS do // find next outward boundary (including end)
B3,l ← b(B3,l)

end while
b(B1,l)← B2,r // remove the gap by . . .
b(B2,l)← b(B3,l) // resetting brother pointers
b(B3,l)← B1,r // cf. Fig. 2.16

end if
end if
B1,l ← b(B1,l) // study next node

end while

42 2 AnO(n)-formalism for the Simulation of MBS with Small Kinematic Loops

Figure 2.17: Resulting figure of Dill(7) with 128 DoFs.

2.10 Results
This section presents performance comparisons between the O(n3) and O(n)-algorithm
with sub-systems. The algorithms are applied to several test systems. Under certain
circumstances the mass-matrix M can become sparse. Therefore, a specialized solver
for MBS exploiting the sparsity of the mass-matrix as described by FEATHERSTONE and
ORIN (cf. [52]) is also implemented and added to the comparison where its application
makes sense. The performance was measured by sampling the run-time of one specific
FD-algorithm and taking the median value of the measurements. Finally, the results
are discussed.

2.10.1 Run-Time Comparisons for the Dill Example
This section presents the results of run-time measurements of different FD-algorithms
implemented in this work applied to the Dill(n) example. The Dill(n) example is
a fictitious robot mechanism which contains branches. It is adopted from [51] by
FEATHERSTONE:

‘Dill(n) is a fractal kinematic tree with 2n links and a maximum branching
factor of n. Dill(0) consists of a single link, connected to its parent (or
fixed base) by a revolute joint. The link inertia parameters are mass = 0.1,
CoM = (0.05, 0, 0), Ix x = 1/200000, and I y y = Izz = 403/1200000, which

2.10 Results 43

Table 2.1: Some numbers on the Dill(n) example with nD is the Dill-level, nDoFs is the number
of DoFs, nnz the number of non-zero elements, ndense the number of dense elements when a
Cholesky solver is used which doesn’t exploit the sparsity, the sparsity measure α and the
resulting “possible speedup” when using the sparse matrix solver described by FEATHERSTONE
in [52].

Dill number non-zero no. of ele. triangular possible
level of DoFs elements of tri. mat. sparsity speedup

n nq nnz ndense α 1/α2

1 2 3 3 1.000000 1.00
2 4 8 10 0.800000 1.56
3 8 20 36 0.555556 3.24
4 16 48 136 0.352941 8.02
5 32 112 528 0.212121 22.22
6 64 256 2080 0.123077 66.01
7 128 576 8256 0.069767 205.44
8 256 1280 32896 0.038911 660.49
9 512 2816 131328 0.021442 2174.95

10 1024 6144 524800 0.011707 7296.01

are the parameters of a cylinder of length 0.1 and radius 0.01, centered
on the x-axis. Dill(n), n > 0, consists of a Dill(0) mechanism scaled by
a factor of n (so the mass goes up by a factor of n3 and the moments of
inertia by a factor of n5), to which n sub-trees are attached. Sub-Tree i is
a Dill(i − 1) mechanism and is attached at a displacement of i × 0.1 along
the x-axis and a skew angle of i/3 about the x-axis.

In the test configuration, qi = π/6, which produces a treelike posture of
the mechanism, and q̇i = 1.’

While Dill(n) was originally developed to study the influence of the kinematic structure
on the numerical accuracy of different FD-algorithms, it is also suitable to benchmark
their performance.

Figure 2.17 shows the resulting mechanism for a Dill(7) with 128 DoFs and reveals
the structure and the origin of the name. Note that not all bodies are visible because
they are possibly enclosed inside of a larger body.

Figure 2.18 shows the branch induced sparsity pattern of the mass-matrix for the
Dill(n) example for different Dill-levels n ∈ IN from 1 to 7. All elements marked as �
are non-zero. In contrast to a strict chain topology —where the resulting mass-matrix
is fully dense— the Dill(n) features a high level of sparsity. Especially for larger n
we observe a growing number of zeros in the mass-matrix. Therefore, Dill(n) and
other real world mechanisms which comprise a larger level of sparsity would greatly
benefit from a sparse matrix solver. However, traditional sparse matrix solvers based

44 2 AnO(n)-formalism for the Simulation of MBS with Small Kinematic Loops

. . . number of DoFs . . .

. . . Dill level n . . .

2

1

4

2

8

3

16

4

32

5

64

6

128

7

Figure 2.18: Density plot of the mass-matrix for the Dill example for di�erent Dill levels. We have
2n−1(2+ n) non-zero elements, when only taking the lower or upper triangular matrix into
account. The di�erences in background color show the di�erent levels.

on Cholesky decomposition do not preserve the sparsity level in the resulting lower
left matrix L making them unusable for MBS.

FEATHERSTONE and ORIN present in [52] such a specialized sparse matrix solver for
MBS. Strictly speaking, the solver consists of a collection of algorithms for reversed
sparse Cholesky (RSC) decomposition and factorization which uses an index array
describing the child-parent relations of the kinematic tree.11 The index array is key

11 In this work the property of the preservation of the sparsity of the mass-matrix in the triangular
matrix L by reversing the order of the Cholesky decomposition was discovered independently

2.10 Results 45

Table 2.2: Equations to calculate the values found in Table 2.1.

nnz, Dill(n) = 2n−1(2+ n) ndense(nq) = (1+ nq)nq/2

nq, Dill = 2n ndense(n) = (1+ 2n)2n/2

α= nnz/ndense speedup= 1/α2

to exploit the sparsity in all stages of the decomposition and factorization of the
mass-matrix. Furthermore, the sparsity pattern is identical for the mass-matrix and the
lower triangular matrix L resulting from the Cholesky decomposition.

In Table 2.1 some properties of Dill(n) for different Dill-levels n are listed. Where nq

is the number of DoFs, nnz is the number of non-zero elements, ndense is the number
of elements of a lower (or upper) triangular symmetric matrix which a conventional
Cholesky decomposition and factorization algorithm would use, α ∈ [0, 1] is a number
describing the density of the lower triangular part of the symmetric mass-matrix
M ∈ IRnq×nq . According to [52] the theoretical speedup gained by the RSC solver when
compared to the conventional Cholesky decomposition and factorization (see e. g.,
[116]) can be calculated via 1/α2. The last column of Table 2.1 shows the theoretical
speedup for different Dill(n) levels. All values are calculated by the equations found in
Table 2.2.

In this work, the mentioned algorithms found in [52] have been implemented to
compare the run-time with the O(n)-algorithm. Figure 2.19 shows the resulting run-
times for different FD-algorithms over the Dill(n) levels. The magnification reveals that
the O(n)-algorithm is still the fastest method when applied to Dill(n). However, the
O(n3)-method greatly benefits from the RSC decomposition and factorization. It has
to be pointed out that the results depend strongly on the used computer architecture.
This not only affects the scaling but also the run-time of the individual algorithms due
to implementation details, compiler optimizations and different CPU optimizations
influencing the run-time of individual CPU instruction sets. This behavior will be
discussed in Section 2.11.

2.10.2 Run-Time Comparison for the Lola Model
In this section the FD-algorithms implemented in this work are applied to the Lola
models of Type 2 and Type 3 (cf. Table 2.3)12 originally developed by BUSCHMANN [28].
Furthermore, the run-time measurements are conducted on different computers with

from [52]. However, the observation was made years after the elegant method using the index
array described by FEATHERSTONE and ORIN in 2005.

12 The model Type 1 is incompatible with this study. The models Type 4 and Type 5 differ only in the
contact modeling and are therefore omitted in this study, since the contact solver is not influenced
by the method.

46 2 AnO(n)-formalism for the Simulation of MBS with Small Kinematic Loops

2 32 64 128 256 512

0

1

2

3

4

5

6

7
·10−4

number of DoFs

fu
nc

tio
n

ru
n-

tim
e

[s
]

O(n3) sparse O(n)

2 4 8 16 32
0

2

4

·10−5
Magnification

Figure 2.19: Run-time comparison for di�erent FD-algorithms of the Dill(n) example (cf. [51]).
Each mark corresponds to one Dill level nD such that the number of DoFs nDoFs = 2nD . The
magnification shows the DoFs from nDoFs = 2, . . . , 32 or Dill levels nD = 1, . . . , 5, respectively.
The run-time corresponds to one function call for calculating the accelerations q̈ of the system.
Beside the di�erent scaling of the y-values, the results depend on the computer architecture
used. The measurements were conducted on machine 2 (cf. Table 2.5).

Table 2.3: Overview of simulation models for Lola with di�erent modeling depth. Symbols�
and�mean “yes” and “no”, respectively (from: [28]).

Reduced model Full models

Model component Type 1 Type 2 Type 3 Type 4 Type 5
Rigid body dynamics � � � � �
Gear elasticity � � � � �
Drive dynamics � � � � �
Contact model Independent Indep. Indep. FEM FEM
Mechanical DoFs 6 30 46 30 46
Contact layer DoFs 48 48 48 864 864
Electrical DoFs 0 24 24 24 24
No. of 1st order ODEs 60 132 164 948 980

2.10 Results 47

1
1

6

6

10

10

20

20

30

30

40

40

46

46

nnz = 267

ndense = 465

nnz = 372

ndense = 1081

6 DoF root︷ ︸︸ ︷ DoFs of other Lola segments︷ ︸︸ ︷ DoFs from elastic gears︷ ︸︸ ︷

Lola model Type 2︷ ︸︸ ︷

Lola model Type 3︷ ︸︸ ︷

Figure 2.20: Sparsity pattern of the mass-matrix of Lola’s model Type 2 (gray background) and
Type 3. (HD-based gears from the head and roller screw drives from knees and ankle joints
are not modeled elastically, therefore, the number of additional DoFs is not 30− 6 but 16).

different Linux kernel and compiler versions and compared with each other. Finally,
some remarks on the influence of the computer architecture and the compiler are
given.

Figure 2.20 shows the branch induced sparsity pattern of the mass-matrix for both
Lola models investigated. The mass-matrix is notably sparser in areas assigned to the
motor-DoFs, only found in the Type 3 model. Since motor shafts have no children in
the kinematic tree and because of the decoupled modeling of motors and segments the
lower right part is the unit matrix. Furthermore, motor shafts are modeled mass-less

48 2 AnO(n)-formalism for the Simulation of MBS with Small Kinematic Loops

Table 2.4: Relevant values for calculating the possible speedup gained from RSC factorization
when applied on both Lola models.

model number triangle non-zero triangle possible
type of DoFs elements tri. elem. sparsity speedup

nq ndense(nq) nnz α 1/α2

Type 2 30 465 267 0.57419 3.0331
Type 3 46 1081 420 0.38853 6.6245

which only influences the rotational part of the 6-DoF root (the first 3 DoFs).13

Table 2.4 presents relevant values when applying the RSC factorization (see previous
section) on the sparse mass-matrices. The values for the number of triangle elements
ndense(nq), sparsity factor α ∈ [0,1] and the possible speedup are calculated with the
formulas shown in Table 2.2. The number of non-zero triangle elements nnz is gained
from the sparsity pattern in Figure 2.20. Especially for the Type 3 model a distinctive
solver speedup of more than 6.6 compared to the O(n3)-algorithm could be gained.

Figure 2.21 compares the run-times of the O(n3) and O(n)-methods when applied to
Lola model Type 2 and 3. Furthermore, the run-time of each individual step is shown.
The plot reveals several interesting facts about the algorithms. First, as expected the
overall run-times of the O(n3) increase with the larger model. However, this is not
the case for the O(n)-algorithm with sub-systems. Especially the run-time of the 1st

forward recursion (FW1) is significantly larger for the smaller model type 2. Hence,
the overhead due to the sub-systems is large. Furthermore, the speedup of the sparse
solver is approx. 2 and not 6.6 as expected from Table 2.4.

The computer system on which the calculations are conducted also play an important
role. Therefore, the performance measurements are conducted on five different
computers. Key specifications for each computer are listed in Table 2.5. All computers
run the GNU/Linux Operating System (OS). All programs were compiled using the
C++ compiler of the GNU Compiler Collection (GCC) with optimization enabled.

Table 2.6 shows the results gathered on these computers. In order to compare the
run-times of different FD-algorithms and study the influence of different computer
systems at the same time, a relative run-time measure or efficiency is used. The relative
run-time is normalized to the O(n)-method such that

η(X) :=
∆teval(X)
∆teval(O(n))

with X ∈ {O(n3), sparse O(n3)} ,

where η(X) is the relative efficiency of method X = {O(n3), sparse O(n3)} compared
to the O(n)-algorithm and ∆teval(Y) denotes the run-time of one function call using

13 FEATHERSTONE’s algorithm however, cannot exploit sparsity due to special mass and/or mass-
moment of inertia values and only sparsity from branching topology is considered.

2.10 Results 49

Table 2.5: Test System Specifications ordered by the product launch date of the CPU.

CPU So�ware

vendor and launch fre- cache Linux GCC
product name datea cores quency size RAM kernel compiler

M
ac

hi
ne

[-] [-] [GHz] [KB] [GB] version version

1 Intel
Core2 Duo E8600

Q3 2008 2 3.33 6144 8 3.5.0 4.7.2

2 Intel
Core i7 Q 820 Q3 2009 4 1.73 8192 4 3.5.0 4.7.2

3 AMD
Opteron 6172 Q1 2010 12 2.10 512 32 2.6.37 4.5.1

4 Intel
Core i7 2600

Q1 2011 4 3.40 8192 8 3.6.11 4.6.3

5 Intel
Core i7 3770K

Q2 2012 4 4.90b 8192 8 3.4.11 4.7.1

a The quarter the processor was first introduced.
b overclocked from nominal 3.90 GHz

Table 2.6: Comparison of the run-time of one FD-algorithm function call obtained with Lola’s
models Type 2 and 3 and on di�erent computer systems (cf. Table 2.5).

run-time relative relative
func. eval. run-timea run-timeb

∆teval(O(n)) η(O(n3)) η(sparse)

M
od

el

M
ac

hi
ne

[s] [-] [-]

1 8.916e-05 1.162 1.125
2 1.217e-04 1.054 1.038

Ty
pe

2

3 1.893e-04 1.005 0.952
4 7.771e-05 0.941 0.904
5 5.367e-05 1.011 0.979

1 7.517e-05 1.653 1.477
2 9.831e-05 1.561 1.417

Ty
pe

3

3 1.410e-04 1.671 1.437
4 6.403e-05 1.411 1.243
5 4.612e-05 1.472 1.247

50 2 AnO(n)-formalism for the Simulation of MBS with Small Kinematic Loops

0 0.2 0.4 0.6 0.8 1 1.2
·10−4

O(n)

sparseO(n3)

denseO(n3)

O(n)

sparseO(n3)

denseO(n3)

Lola Model Type 2 (30 DoFs, 22 Sub-Systems)

Lola Model Type 3 (46 DoFs, 6 Sub-Systems)

run-time [s]

O(n3)Mass matrix O(n) FW1 Contact Solver and Qext

O(n) BW O(n) FW2 O(n3) Solve

Figure 2.21: Run-time comparison of the FD-algorithms applied to Lola Models Type 2 and 3. The
individual steps of each algorithm are presented. This reveals several things: (a) the overhead
due to sub-systems is large in Type 2 especially in the 1st forward dynamics (FD1), (b) the
run-time of Model Type 3 is shorter for the O(n)-algorithm because of fewer sub-systems,
and, (c) the speedup due to the sparse solver on model Type 3 is approx. 2 not 6.6 as expected
from Table 2.4. The measurements were conducted on machine 1 (see Table 2.5).

method Y . For η(X) > 1 the O(n)-algorithm is faster and for η(X) < 1 method
X is faster than the O(n)-algorithm. Moreover, the absolute run-time of the O(n3)-
algorithms can simply by calculated by ∆teval(X) = η(X)∆teval(O(n)).

Discussion The relative run-times in Table 2.6 reveals an interesting factor. Since
the same computations are involved, all relative run-times in a column associated to
one model should be identical or at least in a close neighborhood due to measurement
errors. However, the efficiency varies significantly between computers. Hence, there
must be another influence on the run-time which also depends on the properties of the
computer itself —a fact that will be discussed in the next section.

The model Type 2 is too small to gain any distinctive speedup by the O(n)-algorithm
with sub-systems. In some cases, the O(n)-algorithm with sub-system is even slower
(cf. Table 2.6, machine 4). Evidently, by comparing absolute run-time values for both
models, the overhead caused by sub-system calculations is large. Therefore, for model
Type 3, which has fewer sub-systems, a distinctive speedup is visible. The speedup of

2.11 Discussion 51

the O(n)-algorithm could even become larger with more independent DoFs.
Finally, the numbers in the columns associated to the sparse O(n3) method are

always smaller than the O(n3) method. This is not surprising since the method exploits
the sparsity of the mass-matrix.

2.11 Discussion
The Influence of Di�erent Computer Platforms

Due to the observations made here, some components which influence the performance
most can be identified:

• CPU, with its frequency and cache memory size,

• compiler optimizations,14

• amount and bandwidth of the RAM.15

Moreover, if file I/O plays an important role, the OS and memory storage (along with
its file system) also influence the overall performance.

Modern CPUs have a series of dynamic frequency scaling technologies implemented.
This techniques enables the processor to better exploit the thermal capacity of the
cooling system by increasing both voltage and frequency of one core and throttling the
rest. This can lead to significantly faster execution of single threaded programs.

Due to Ohm’s law the dissipated power of a CPU can be approximated by:

P ≈ C V 2 f , (2.91)

where P is the power, C the capacitance, V the voltage, and f is the frequency [46].
In order to avoid damage due to a overheating CPU, the frequency and voltage are

lowered which in turn reduces the performance. Therefore, for real-time applications
and/or single threaded applications this technique can distort performance measure-
ments. The “Turbo Boost Technology”16 and “Turbo Core Technology”17 from Intel and
AMD, respectively, are examples for this technique.

A discussion of architectural differences of a diverse set of multicore CPU configura-
tions applied to high performance computing is found in [155]. The results therein
suggest that the memory bandwidth can become a significant performance bottleneck
for large models.

14 in this work, only the GCC C++ compiler was tested
15 RAM is important especially for larger systems, when the program does not fit into CPU cache
16 http://www.intel.com/technology/turboboost/
17 www.amd.com

http://www.intel.com/technology/turboboost/

52 2 AnO(n)-formalism for the Simulation of MBS with Small Kinematic Loops

Counting Operations

In earlier work on efficient dynamics algorithms, a classical approach to approximate
the run-time of a method —and hence, to compare the efficiency— was to count
operations for multiplications and additions [21, 53, 55, 152]. This approach still gives
valid ordinal numbers, i. e., O(n3)-algorithms will always take more time to compute
than O(n)-algorithms for sufficiently large n. However, with more refined computer
architectures the approximation is quite inaccurate for current (and probably future)
computer architectures.

Di�erences and Similarities to Bremer’s Sub-System Representation

Finally, some important differences to the method developed by BREMER are outlined
here. The method developed in this thesis uses 6-D vectors throughout. This enables
an easier integration to possibly existing O(n) or O(n3) algorithms. Moreover, fast
SIMD operations can be exploited more naturally. SIMD operations are used in this
work when reasonable, which gains approx. 20 % run-time performance. On the other
hand, BREMER and GATTRINGER use an extended state vector y with dim(y)> 6.

By using the automatic restructuring of MBS into sub-systems (cf. Section 2.9), sub-
systems are only created where necessary to resolve closed loops. Hence, no special
model must be built and the optimal O(n) algorithmic complexity is maintained when
no loops exist. On the other hand, BREMER’s method gains efficiency only when all
equations are pre-processed, e.g., using a computer algebra system (possibly with
automatic code export capabilities to reduce the implementation effort).

BREMER writes the EoM in a generalized form (cf. Eq. (2.58)) and gives examples.
Hence, it can be seen as a more formal approach.

2.12 Chapter Summary
This chapter gave an overview of the implemented O(n)-algorithm to solve the multi-
body system dynamics. The algorithm is able to handle (small) kinematic loops quite
efficiently. Sub-systems are used to group loop-bodies. This effectively restores tree
topology required by the O(n)-algorithm.

Since a system modeled with and without sub-systems exposes a different underlying
structure, an automatic conversion of an existing regular MBS into sub-systems is
applied. This drastically reduces the modeling effort to build a separate model using
sub-systems. The basic approach is based on grouping bodies with overlapping degrees
of freedom and converting these groups into sub-systems.

Finally, a study comparing the run-time performance for different dynamics al-
gorithms applied to different models is presented. For the algorithm developed in
this work the study shows good results, especially for systems comprising only few

2.12 Chapter Summary 53

sub-systems. Therefore, sub-systems must be seen as a compromise to enable the use
of the very efficient O(n)-algorithms to systems with closed kinematic loops with an
algebraic solution.

3 Kinematics

In this chapter some special kinematic calculations used for the robot Lola are given.
Here, we concentrate on the derivation of adequate quantities used in dynamics
calculations and/or inverse kinematics.

Drive kinematics for ankle joint and knee joint of Lola are described by LOHMEIER

[85] and according calculations of kinematic quantities by BUSCHMANN [28]. In order to
apply those joints mechanisms to the O(n)-algorithm using sub-systems (cf. Chapter 2)
additional time derivatives of quantities are needed and derived in this chapter.

Moreover, the kinematic calibration for Lola’s absolute angular encoders is described
here.

3.1 Harmonic Drive Gears

The quantities for Harmonic Drive gear kinematics are similar to the ones from revolute
joint kinematics presented on page 23.

The Jacobian J i for drive body i in (2.33) is

J =
�

0 0 N 0 0 0
�ᵀ
= const. ⇒ J̇ = 0 ∈ IR6×1, (3.1)

A= Az(Nq)Ak′p =




cos(Nq) sin(Nq) 0
− sin(Nq) cos(Nq) 0

0 0 1


Ak′p . (3.2)

Here, N is the gear ratio and Ak′p is a constant transformation matrix denoting the
initial orientation (cf. Fig. 2.9 on page 20)

3.2 Knee Joint Drive Kinematics

Lola’s knee joint rotates the lower leg segment relative to the thigh segment and is
actuated via the nonlinear mechanism illustrated in Figure 3.1. Rotation is generated
by the nonlinear 4-bar mechanism where linear motion from the planetary roller screw
drive is converted into knee joint rotation. A motor attached to the screw drive actuates
the mechanism. Since rotational dynamics about the screw axis is dominant, dynamic
effects of the rotation orthogonal to the screw axis are neglected.

The following derivation is adopted from [28] and extended here.

55

56 3 Kinematics

Thigh segment (t)

Planetary roller screw drive

t r b

sr a

Lower leg segment (s)

B

A

qknee

ϕscrew

(a) Knee joint drive kinematics (adopted from [28])

te y

tezte x

t

ez

qknee

α

A

B

(b) screw’s major
axis tilting motion α

Figure 3.1: Knee joint drive kinematics

The screw’s rotation is proportional to the screw lead Plead and planetary roller screw
drive length lscrew, which varies due to nut’s displacement:

ϕscrew =
2π

Plead︸︷︷︸
Nscrew = const.

lscrew . (3.3)

Calculating the relative kinematics therefore requires computing lscrew. The vector from
the hinging point on the thigh to the pivoting point on the lower leg (r screw) and the
distance between these two points (lscrew) and their time derivatives are given by:

r screw = t r b + Ats sr a , lscrew = ‖r screw‖=
p

r ᵀscrewr screw , (3.4)

ṙ screw = Ȧts sr a , l̇screw =
r ᵀscrew ṙ screw

lscrew
, (3.5)

r̈ screw = Äts sr a , l̈screw =
ṙ ᵀscrew ṙ screw+ r ᵀscrew r̈ screw− l̇screw

lscrew
. (3.6)

3.2 Knee Joint Drive Kinematics 57

This yields:

ϕ̇screw = Nscrew l̇screw , ϕ̈screw = Nscrew l̈screw , (3.7)

ωrel = ezϕscrew , (3.8)

and the spatial velocity vector becomes

v = C v p +
�
ωrel

0

�
, (3.9)

where C is the spatial transformation and v p the reference velocity from parent p.
Finally, the relative joint Jacobians are obtained by partial differentiation:

J =
�

ez

0

�
Nscrew

lscrew
r ᵀscrew ∇q̇ ṙ screw , (3.10)

J̇ =
�

ez

0

�
Nscrew

∇q lscrew
∇q r ᵀscrew ṙ screw , (3.11)

using the abbreviations

∇q̇ ṙ screw =
∂ ṙ screw

∂ q̇knee
=
∂ Ȧts

∂ q̇knee
sr a , (3.12)

∇q r screw =
∂ r screw

∂ qknee
=
∂ Ats

∂ qknee
sr a , (3.13)

∇q lscrew = ‖∇q r screw‖ . (3.14)

The tilting motion of the screw axis about pivot point B is neglected in the model
above, i.e., ez := te y = const. This is feasible for Lola since the geometric relations,
i.e., ‖r a‖/‖r b‖ � 1, and the high gear ratio Nscrew do allow for this simplification.

If, however, tilting motion is not negligible, angle α between screw major axis ez

and te y -axis in Figure 3.1b has to be considered:

α= atan

�
r screw, x

r screw, y

�
, (3.15)

α= tez α , (3.16)

α̇=
ṙ screw× r screw

l2
screw

, (3.17)

α̈=
r̈ screw× r screw

l2
screw

− 2 l̇screw

l3
screw

ṙ screw× r screw . (3.18)

58 3 Kinematics

sr top

sr screw

sr couplersr pc,a

ar pc, f
f r bot

qadd

qflx

Figure 3.2: Kinematics of the ankle drive mechanism to drive adduction and flexion motion of
the foot. (adopted from [28])

Which yields:

ωrel = α̇+ Az(α) te y ϕ̇screw , (3.19)

JR,rel =
∂ ωrel

∂ q̇knee
=
∇q̇ ṙ screw× r screw

l2
screw

+
Nscrew

lscrew
r ᵀscrew∇q̇ ṙ screw Az(α) te y , (3.20)

J̇R,rel =
∂ ωrel

∂ qknee
=

ṙ screw×∇q r screw�
∇q r screw

�2 +
Nscrew

∇q lscrew
∇q r ᵀscrew ṙ screw

∂ Az(α)
∂ qscrew

te y , (3.21)

where Az(α) is an elementary rotation matrix about z using α. Again, since gear ratio
Nscrew is quite large for Lola, i.e., Nscrew ≈ 1256.6 1

m
, the second term dominates above

equations.

3.3 Ankle Joint Drive Kinematics
Each ankle joint of Lola is driven by a pair of parallel, spatial slider-crank mechanisms
shown in Figure 3.2. The linear motion of a carriage is produced by planetary roller
screw drives. The movement of the coupler link connecting the linear carriage to the
foot segment relative to the lower leg is comparatively slow and the coupler link is very
lightweight. Inertial effects due to the coupler link’s motion are therefore neglected
and only the much larger effects due to the screw’s rotation are taken into account
[28].

Similar to the procedure for the knee joint drive, ankle joint kinematics requires

3.3 Ankle Joint Drive Kinematics 59

the displacement of the nut lscrew due to screw’s rotation ϕscrew as a function of the
generalized coordinates qankle =

�
qankle,flexion qankle,adduction

�ᵀ
:

ϕscrew =
2π

Plead︸︷︷︸
Nscrew

lscrew(qflx, qadd) . (3.22)

Referring to Figure 3.2, the vector chain along the closed kinematic loop can be
written as

sr coupler = sr pc, a + Asa

�
Aa f f r bot+ ar pc, f

�
− sr top︸ ︷︷ ︸

sr coupler,0

− lscrew sescrew︸ ︷︷ ︸
sr screw

. (3.23)

Here, sescrew is the unit vector along the screw’s major axis and indices s, a, f and c
denote the shank, ankle, foot and coupler link respectively. Vector ar pc, f connecting
ankle frame and foot frame, is zero for Lola and hence, shows up as loop in Figure 3.2.

The coupler length is known

l2
coupler = sr

ᵀ
coupler sr coupler = const. (3.24)

which is exploited to solve for the roller screw nut displacement lscrew:

lscrew = sr
ᵀ
coupler,0 sescrew

(±)

Æ
l2
coupler− sr

2
coupler,0+ (sr

ᵀ
coupler,0 sescrew)2 . (3.25)

Equation (3.2) solves the intersection between a line along sescrew and a sphere with
radius lcoupler centered at the according coupler point on the foot. Therefore, for the
individual vector directions defined in Figure 3.2 the minus sign gives the correct
solution.1

From lscrew the rotation relative to the shank ϕscrew and the relative angular velocity
ωscrew,rel are computed as:

ϕ̇screw = Nscrew l̇screw , ωscrew,rel = ez ϕ̇screw , (3.26)

ϕ̈screw = Nscrew l̈screw . (3.27)

By using the following abbreviations

e := sescrew , r := sr coupler,0 , (3.28a)

ls := lscrew , lc := lcoupler , (3.28b)

P := eeᵀ− E ⇒ P = Pᵀ , (3.28c)

1 The plus sign would give the point below the foot, which is infeasible.

60 3 Kinematics

where P is a symmetric matrix projecting a vector to be perpendicular to sescrew, (3.25)
is rewritten to

ls = eᵀr −
p

l2
c + r ᵀPr︸ ︷︷ ︸

d

, (3.29)

and velocity, accelerations and relative Jacobians are determined by straightforward
differentiation:

l̇s = pᵀ ṙ , (3.30)

l̈s = pᵀ r̈ + ṗᵀ ṙ , (3.31)

∂ l̇s
∂ q̇ankle

= pᵀ
∂ ṙ

∂ q̇a
, (3.32)

d

d t

�
∂ l̇s

∂ q̇ankle

�
= pᵀ

∂ ṙ

∂ qa
+ ṗᵀ

∂ r

∂ qa
. (3.33)

Here, p and ṗ are projection vectors defined as

p := e− Pr

d
, (3.34)

ṗ :=
d p

d t
=
(ṙ ᵀPr) Pr

d3 − P ṙ

d
. (3.35)

Finally, the Jacobians of the screw (which is driven by the motor) become

screwJR,rel =
∂ ωscrew, rel

∂ q̇ankle
= Nscrew

∂ l̇screw

∂ q̇ankle
, (3.36)

screw J̇R,rel =
∂ ωscrew, rel

∂ qankle
= Nscrew

∂ l̇screw

∂ qankle
. (3.37)

3.4 Camera Vergence Kinematics

Lola is equipped with a camera head with three degrees of freedom: pan, tilt and
camera vergence. Pan and tilt joints are Harmonic Drive based rotary joints. The
camera vergence angle qverg, denoting the angle between the viewing directions v r

and v l of the right and left camera respectively, however, is adjusted by a nonlinear
spatial crank mechanism shown in Figure 3.3. The mechanism is integrated in the
tilt segment t and designed to ensure symmetric motion of the camera angle using a
single actuator M (cf. [85] for a detailed description).

Since the vergence mechanism works in a symmetric fashion, only the left part of the

3.4 Camera Vergence Kinematics 61

ϕ0

ϕlever

t r k

k

t

kr b

B

A

M

qverg

qv /2

llever

r coupler

x

A′

v l

v r

t r a

z

y
x

Figure 3.3: Camera vergence drive kinematics

mechanism is illustrated in Figure 3.3. Actuator M drives the double lever arm about
the t x-axis. The camera is mounted on the receptacle k which can rotate about the

t y-axis. Two coupler links connect both ends of the double lever arm to the receptacles.
Thereby, rotation of the lever arm denoted by ϕlever is converted into camera vergence
motion.

Since vergence motion is slow in normal operation, dynamics effects are neglected
in simulation. For real-time control however, the nonlinear relation between desired
vergence angle qverg and actuator angle ϕlever must be known.

With reference to Figure 3.3 vectors t r a and t r b are the vectors from tilt segment
origin to pivot points A and B, respectively. The vector chain is closed by vector r coupler

connecting points A and B and we get

t r a =




ra,x

llever sin(ϕlever)
llever cos(ϕlever)


 , t r b = t r k + Atk(qverg) kr b , (3.38)

r coupler = r a − r b , lcoupler = ‖r coupler‖= const. (3.39)

Here, llever and lcoupler are the constant lengths of the lever arm and the coupler link,
respectively.

In order to get a symmetric motion of the viewing vectors with respect to the x-y-
plane, the mechanism is designed such that point A′, denoting the rotation center of A,
and point B are located on the x-z-plane. Hence, we have t rb,y = 0 and we get the
simplified solution

lcoupler =
Æ
(ra,x − rb,x)2+ l2

lever− 2 llever rb,z cosϕlever+ r2
b,z , (3.40)

⇒ ϕlever = arccos

�
s

2 llever rb,z

�
, (3.41)

62 3 Kinematics

where scalar s is introduced for abbreviation:

s := (ra,x − rb,x)
2+ l2

lever− l2
coupler+ r2

b,z . (3.42)

The motor angle ϕmot is calculated using the gear ratio Nverg from actuator M to

ϕmot = Nverg (ϕlever−ϕ0) , (3.43)

where ϕ0 is the lever angle obtained by solving (3.41) with qverg = 0.
The Jacobian acting as the transmission ratio of the mechanism is gained via straight-

forward differentiation to

∂ ϕlever

∂ qverg
=

2 rb,z (ra,x − rb,x)
�
∇qverg t r b

�
x
− s
�
∇qverg t r b

�
z

2 llever r2
b,z

È
1−
�

s
2 llever rb,z

�2
, (3.44)

with

∇qverg t r b =
∂ Atk

∂ qverg
kr b . (3.45)

Figure 3.4 shows the lever angle and its Jacobian as a function of the vergence angle
of the camera vergence joint drive.

3.5 Kinematics Calibration
Kinematics calibration is the process of finding correct physical kinematic parameters
for the robot’s joints. Geometric errors due to tolerances from manufacturing lead to
deviations of relative joint orientations and locations from ideal CAD data. Additionally,
sensor gain and bias errors exist. All these errors are amplified in a serial link configu-
ration leading to loss in manipulator accuracy.2 Obviously, accuracy greatly influences
walking performance and model based collision avoidance relies on a correct robot
description.

Since accuracy plays an important role in industrial manipulators such as serial
robots, many sophisticated methods for kinematic calibration have been developed with
a focus on manipulators. Typically, industrial robots are quite heavy-weight machines
whose stiff links combined with stiff gears provide a high degree of repeatability.3

However, according to MOORING et al. [95] manipulator accuracies are often several
orders of magnitudes worse than the repeatability. An adequate characterization of

2 Accuracy is a measure of how well a robot is able to reach a predefined position in task space.
3 Repeatability is a measure of how well a robot is able to return to a previously achieved pose.

3.5 Kinematics Calibration 63

1.5

2

2.5
le

ve
ra

ng
le
ϕ

le
ve

r
[ra

d]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

1.6

1.8

2

2.2

2.4

2.6

vergence angle qverg [rad]

ge
ar

ra
tio

∂
ϕ

le
ve

r
∂

q v
er

g
[-]

Figure 3.4: Nonlinear transmission of the camera vergence joint drive

kinematic modeling errors can improve accuracy up to the same order of magnitude
as the repeatability [95].

A good review of state-of-art methods for kinematic calibration is given in [67].
They can be categorized in two general methods:

Open-loop calibration an external metrology system, such as coordinate measure-
ment machines, theodolites, laser interferometers or vision systems, measures
the robot pose without physical contact

Closed-loop calibration physical constraints, such as contacts or end-effector position
fixtures, are applied forcing the robot into a predefined pose, hence, the name
“closed-loop”

Each joint of Lola contains an incremental rotary encoder mounted on the motor
shaft and an absolute angular encoder used as link position sensor (cf. [85] for more
information). The absolute angular encoder eliminates the need for a homing routine,
making start-up faster and easier4 [87]. Thereby, correct motor angles are set by

4 Only head joints have no absolute angular encoders and need a homing routine via limit switches.

64 3 Kinematics

Figure 3.5: Photograph of Lola mounted on the kinematic calibration jig.

measuring absolute joint angles which are then converted to incremental encoder
positions at start-up.5 Since absolute angular encoders are mounted in an arbitrary
angular position, sensor mounting misalignment must be calibrated.

The equipment for open-loop calibration requires high precision measurement sys-
tems which are very expensive [45]. Due to lack of such a high precision measurement
system a closed-loop calibration procedure using a calibration jig is chosen.

Several assumptions are made in the developed of the calibration jig:6

• Geometric deviations are negligible, since special care was taken in design,
manufacturing and assembly of the robot to ensure small geometric tolerances.

• Link and gear deformations due to dynamics and gravity effects during oper-
ation are assumed to be larger than geometric tolerances. Furthermore, load
dependent deformations can only be measured with large effort.

• Sensor gain from absolute angular encoders (digital interface) is calibrated by
the commercial manufacturer.

• Deformations due to thermal effects are negligible, since calibration is conducted
under laboratory conditions.

Figure 3.5 shows a photograph of Lola mounted on the developed calibration jig.
The jig is mostly made of aluminum alloy, is 1510 × 500 × 560mm3 in size and
weighs approx. 60 kg. It is designed to have a stiff and geometrically precise framing

5 For nonlinear joint mechanisms, such as knee and ankle joints, a Newton-Raphson based ap-
proach is used to find the according incremental encoder positions from given joint angles.

6 The calibration jig was developed in cooperation with SEBASTIAN LOHMEIER, cf. [85].

3.5 Kinematics Calibration 65

and provide easy mounting of the robot. Furthermore, it has swivel casters for fast
positioning on the floor and three threaded legs and a bubble level for leveling out the
jig before calibration (hidden in Fig. 3.5).

Six segments of the robot are fixed to the jig: pelvis, upper body, both feet and both
lower arms. Precision locating pins mounted on the robot, a receptacle mounted on
the pelvis prior to calibration and toggle clamps for the arms are used to position the
robot. Thereby, the robot is set into a unique pose. Moreover, additional jigs are used
to calibrate the toe and head joints.7

Since accuracy of the leg joints is vital for walking performance, the first six joints
can be set into three different poses. This enables the verification of the assumed low
geometric tolerances for the legs. As shown in Figure 3.6 the poses are set by mounting
the feet to different positions.8 Figure 3.7 shows the angles set by the poses for the
right leg along with the according joint workspaces. Except for the hip adduction and
flexion joints the workspace is covered quite well by the jig.

If, however, identification of geometric tolerances is desired, three poses are not
enough. Assuming four Denavit-Hartenberg parameters to define the relative position
and orientation for all six joint FoRs, at least 24 different foot positions per leg must
be set to identify them. In the case of nearly parallel neighboring axes, such as the
flexion joints from hip and knee, an additional parameter must be introduced [66],
further increasing the number of poses. Moreover, in order to avoid an ill conditioned
calibration problem, poses should be chosen carefully. The pose distribution can
be optimized on a relevant subset of the joint’s workspace by studying observability
and applying sensitivity analysis of parameters. Therefore, a much more complex
calibration jig has to be built to recover all parameters for the legs. On the other hand,
if adequate equipment is available, open-loop calibration might be the better solution
for the large set of free parameters. In any case, kinematic calibration effort increases
strongly when attempting to identify more parameters than just the absolute angular
encoder misalignment.

Experiments measuring sensor misalignment in all three poses show a good agree-
ment. Therefore, it can be assumed that geometric deviations due to tolerances are
negligible which was assumed initially. Furthermore, measurement uncertainties are
present from small misalignments while mounting the robot to the jig. Finally, a
one-pose calibration including mounting and dismounting of the robot takes about
one hour.

7 Relative limit switch positions used for the homing routine are identified by separate head joint
calibration jigs not presented here.

8 For conciseness the term “feet position” is used here to define position and orientation of the feet

66 3 Kinematics

Po
se

1
P o

se
2

Po
se

3

Side View Top View

Figure 3.6: CAD drawings viewing from the side and top of all three calibration poses for Lola’s
legs. Pose 3 is used to calibrate one leg at a time only.

3.6 Chapter Summary 67

hip
rotatio

n

hip
adductio

n

hip
fle

xion
knee

ankle
adductio

n

ankle
fle

xion

−1

0

1

2

right leg joints

jo
in

ta
ng

le
[ra

d]

pose 1
pose 2
pose 3

min / max
joint ranges

Figure 3.7: Joint angles of the right leg a�ected by the three calibration poses and the according
joint angle workspaces. Depending on the joint definition, the angles for the le� leg are
identical or symmetric.

3.6 Chapter Summary
In this chapter, equations for the joint kinematics of Lola have been presented. These
equations are used in both dynamics and inverse kinematics of the robot. Furthermore,
the calibration of the robot is addressed. A closed-loop kinematic calibration is
conducted by using a hardware jig.

4 Inverse Kinematics

This chapter reviews some existing methods to solve the inverse kinematics problem.
The information is also intended as an introduction to the next chapters. Good surveys
on the topic can be found in [40, 97, 128, 129, 145].

4.1 Problem Statement

Inverse Kinematics (IK) solvers are important tools in different fields like robotics,
motion capturing and computer animation.

Formally, the goal of IK is to map a desired task space x to generalized coordinates
q . Figure 4.1 illustrates this in the context of robotics. Typically, task space trajectories
x are the output of a planning and/or control stage and contain tasks like end-effector
positions/orientations, CoG positions, gaze directions etc. Finally, generalized positions
q obtained from inverse kinematics are sent to the robot hardware. Depending on the
setup, more (or other) quantities than positions might be interchanged, i. e., velocities,
accelerations (cf. Fig. 4.1, quantities in parentheses).

Formally, the relationship between task space trajectories x ∈ IRm and joint coordi-
nates q ∈ IRn is given by the direct kinematics equation

x = f (q) , (4.1)

where f : IRn→ IRm is the forward kinematics function. Especially if rotatory joints are
involved, f is nonlinear and a closed form solution to (4.1) exists only in rare cases.
Such solutions are based on algebraic and geometric methods [40, 97, 129] and hence,
are specific to a certain kinematic structure. Therefore, we focus on more generic
approaches [97]. Moreover, only open kinematic chains with holonomic constraints
are considered in this thesis. The general IK problem is given by

{q | f (q) = x} . (4.2)

Depending on the dimensions of dim(x) and dim(q) and the target pose x there may
be one, multiple or an infinite number of solutions [129]. Note that, due to numerous
physical constraints, e. g., joint angle/velocity/acceleration/torque limits, it is always
possible to define unfeasible tasks leading to singularities which degrade movement
abilities. The problem of singularities is discussed in Section 4.4.

Methods to solve the nonlinear problem (4.2) can be categorized in two general

69

70 4 Inverse Kinematics

planning
and/or
control

Inverse
Kinematics

robot
hardware

input x q

(ẋ , ẍ) (q̇)

Figure 4.1: Inverse kinematics in the context of real-time robot control.

groups: (a) position based algorithms and (b) algorithms based on differential kine-
matics, i. e., time derivatives of (4.1). Thereby, group (a) is solved in an iterative
manner while differential methods are often based on solutions to local optimization
problems.

4.2 Position Based Inverse Kinematics
Algorithm 4.1 outlines an approach based on Newton-Raphson root finding of a
residual r (q) := f (q)− x

!
= 0. Here, J#

k denotes the generalized inverse [14] of the
Jacobian matrix Jk := ∂ f (q k)/∂ q ∈ IRm×n:

J#
k :=

(
Jᵀk
�

JkJᵀk
�−1

if m< n
J−1

k if m= n .
(4.3)

Adequate stopping criteria, listed in Table 4.1, are combined via disjunction, i. e.,
σ = σ1 ∧ σ2. Moreover, q from the last time step is used for q0 as starting point.
PIEPER [115] was among the first to adopt this method to IK.

Especially when x is defined close to a singularity, Algorithm 4.1 might not converge,
since no root exists. However, it is still possible to minimize the residual leading to the
minimization problem

minimizeφ(q) with φ(q) :=
1

2
‖ f (q)− x‖2 . (4.4)

Algorithm 4.1: Inverse kinematics using Newton-Raphson root finding.

Input: x ∈ IRm, q0 ∈ IRn for m≤ n
Output: q

1: k← 0
2: while stopping criteriaσ not satisfied do
3: r k← f (q k)− x
4: q k+1← q k − J#

k r k
5: k← k+ 1
6: end while
7: q ← q k

4.2 Position Based Inverse Kinematics 71

Algorithm 4.2: Inverse kinematics as optimization problem.

Input: x ∈ IRm, q0 ∈ IRn for m≤ n
Output: q

1: k← 0
2: while stopping criteriaσ not satisfied do
3: direction dk from gradient∇ fk
4: determine step size αk
5: q k+1← q k +αk dk
6: k← k+ 1
7: end while
8: q ← q k

Algorithm 4.2 outlines an optimization based approach for solving (4.4). Again,
stopping criteria from Table 4.1 are combined and q0 is initialized with the result from
last time step.

Descent direction vector dk is generated in Algorithm 4.2:3 using any adequate
optimization method [105] (cf. [4] for examples). Optimization methods such as
Conjugate Gradient (CG), Levenberg-Marquardt (LM) or Quasi-Newton (QN) have
been applied to the inverse kinematics problem (CG [80], LM [98], QN [160]).
Thereby, the search direction often has the form

dk =−B−1
k ∇ fk , (4.5)

where Bk is a symmetric, positive definite matrix1 and ∇ fk is a gradient, e. g., ∇ fk :=
∂ φ(q k)/∂ q . For the Steepest Descent method Bk is simply the identity matrix E, while
for Newton’s method Bk is the exact Hessian ∇2 fk and for Quasi-Newton methods
B−1

k is approximated iteratively [105]. On the other hand, the Conjugate Gradient
method uses a different formula than (4.5) for updating direction dk. The convergence
rate as well as the computational effort depends on the optimization method used.
AYUSAWA et al. study in [4] the performance of some optimization methods applied
to IK. Thereby, an approach to efficiently calculate the gradient ∇ fk is presented.
The difference between x k and goal x is utilized to gain virtual generalized joint
forces used as gradient ∇ fk. Moreover, the method exploits fast dynamics algorithms
(cf. Chapter 2) to gain efficiency [4].

Finally, step size αk in Algorithm 4.2:4 is either set constant or obtained from line
search algorithms minimizing φ(q k+αkdk) exactly or inexactly by satisfying Armijo or
Wolfe-Powell conditions [105]. Simple experiments have shown that Wolfe conditions
(with α0 = 1) are superior to Armijo’s rule.

1 For the exact Newton’s method, Bk is the Hessian Bk := ∇2 fk = Jᵀk Jk. For redundant con-
figurations (m < n), however, matrix Jᵀk Jk is rank deficient. Adding a small diagonal matrix
Bk := Jᵀk Jk +δE facilitates convergence.

72 4 Inverse Kinematics

Table 4.1: Stopping criteria which can be combined viaσ := σ1 ∧σ2 ∧ . . .

Criterion Formulation

iteration limit exceeded σ1 = k ≥ kmax
convergence reached σ2 = ‖ f (q k)− x‖< εc for εc > 0
progress too small σ3 = ‖ f (q k+1)− f (q k)‖< εp for εp > 0
gradient too small σ4 = ‖∇ fk‖< εg for εg > 0

Moreover, BADLER et al. [5] propose the use of different potential functions (called
goals) whose gradients are combined and used to solve a nonlinear quadratic pro-
gramming problem with inequality constraints. Goals are defined for position and/or
orientation, aiming a vector towards a point as well as moving a point onto a line,
plane or half-space. The method is used in their software package JACK for simulating
human figures for ergonomic assessment [5]. The software is now sold by SIEMENS for
assembly planning and validation [69].

In summary, for typical robotic systems with less than 50 DoFs and when singularities
are not an issue, the Newton-Raphson based approach is the fastest method. Moreover,
Jk might be computed only each nth iteration which gains efficiency. On the other
hand, optimization based approaches are favorable for simulating human figures with
very many DoFs. However, since run-time of iterative methods is non-deterministic,
they are not directly applicable in real-time systems and are more importance for the
simulation of human figures.

4.3 Di�erential Inverse Kinematics

Differentiating (4.1) leads to a linear equation for q̇

ẋ = Jx q̇ , (4.6)

where Jx := ∂ f (q)/∂ q is the Jacobian matrix. Since (4.6) is linear, it can be solved
directly making it more suitable for real-time applications.

4.3.1 Resolved Motion Rate Control and Redundancy Resolution

The well-established resolved motion rate control method, originally proposed by
WHITNEY [154], solves a constrained quadratic programming problem

minimize
1

2
q̇ᵀWq̇

subject to ẋ − Jx q̇ = 0 ,
(4.7)

4.3 Di�erential Inverse Kinematics 73

Algorithm 4.3: E�icient evaluation of Equation (4.12), where W is positive definite.

Input: ẋ ∈ IRm, m≤ n
Output: q̇ ∈ IRn

1: z←−αN W−1
�
∇q H

�ᵀ
2: p ← ẋ − J x z
3: B← J x W−1Jᵀx
4: solve Bλ= p for λ
5: q̇ ← W−1Jᵀxλ+ z

which calculates (locally) minimal joint velocities q̇ required to track ẋ . Individual joint
speeds are weighted by the (usually diagonal) positive definite matrix W . Especially
for robots consisting of different joint types, such as mixed linear and rotary joints, W
is used to account for the different physical meaning of the joint variables (see [11] for
an example). Equation (4.7) is solved for q̇ using the method of Lagrange multipliers:

∂ L

∂ q̇
=
∂ L

∂ λ
= 0 with L :=

1

2
q̇ᵀWq̇ +λᵀ(ẋ − Jx q̇) , (4.8)

⇒ q̇ = J#
x ,W ẋ , (4.9)

where J#
x ,W is the W -weighted generalized inverse, i. e., J#

x ,W := W−1Jᵀx
�

Jx W−1Jᵀx
�−1

.
For redundant configurations, LIÉGEOIS proposed a modification for (4.7) to minimize

an additional cost function H(q) [81]. The change in H during one time step ∆t is:

∆H =∇q H(q) q̇ d t ≈∇q H(q) q̇∆t , (4.10)

which is used to get an augmented optimization problem:

minimize
1

2
q̇ᵀWq̇ + β∆t

�
∇q H(q)

�ᵀ
q̇

subject to ẋ − Jx q̇ = 0 .
(4.11)

The scalar parameter β > 0 determines the balance of priorities between both terms.
(4.11) is solved for q̇ using the method of Lagrange multipliers which gives:

q̇ = J#
x ,W ẋ −αN NW−1

�
∇q H(q)

�ᵀ
. (4.12)

Here, N := E−J#
x ,W Jx is the null-space projection matrix and αN := β∆t. As originally

proposed by KLEIN and HUANG (see [97]), it is significantly more efficient to compute
q̇ from the optimization problem and thereby, avoiding the calculation of J#

x ,W and
N (see [28, Appendix F] for an adaptation to the W -weighted Jacobian from (4.12)).
The method is outlined in Algorithm 4.3.

74 4 Inverse Kinematics

qmin qcmf qmax

HJ(q)

Hlimit(q)

Hcmf(q)

deceleration

out of range

Figure 4.2: Schematic representation of the cost function HJ = Hlimit+Hcmf (for a single joint)
used for Lola. Hlimit and Hcmf are the terms for joint limit avoidance and convergence towards
a preferred joint angle qcmf respectively (adopted from [28]).

In practical implementations, cost function H is used for joint limit avoidance
[40, 81], pose convergence [28], manipulability optimization [37, 158], momentum
minimization [126], collision avoidance [125, 133, 134] and obstacle avoidance
[77, 129]. Figure 4.2 illustrates the cost functions for joint limit avoidance and pose
convergence used for Lola.

Numerical Integration and Task Space Tracking

If generalized positions q are required, velocities q̇ can be integrated with respect to
time. Because of the digital implementation of robot control systems only discreet
time-samples are available, i. e., q̇ i = q̇(t i) and hence, numerical integration is used.
This, however, leads to an unbounded error in the resulting task trajectories:

∆x i = x i − f (q i) and ∆ẋ i = ẋ i − J x q̇ i , (4.13)

where ∆x i is an expression of such task space tracking errors at time t i and ∆ẋ
denotes the according error dynamics. Therefore, an adequate feedback term added to
the desired task trajectories ensures asymptotic tracking behavior:

q̇ i = J#
x

˙̂x i , (4.14a)
˙̂x i := ẋ i + K x∆x i

�
x i,q i

�
. (4.14b)

Here, (4.14a) is representative for a differential inverse kinematics solution, i. e., (4.9)
or (4.12). In (4.14b) task space velocities ẋ are modified by feedback term K x∆x
which leads to the equivalent linear error dynamics [128]:

∆ẋ i + K x∆x i = 0 , (4.15)

4.3 Di�erential Inverse Kinematics 75

N ∇qH

∆x
�
x ,q
�

K x J#
x

∫
(·)d t

d
d t
(·)

x q

f (q)

+ +

task space
trajectory tracking

null space
optimization

Figure 4.3: First order di�erential inverse kinematics with task space trajectory tracking and
null-space optimization.

where K x is a positive definite matrix which ensures asymptotic stability. Due to the
finite step size in discreet time domain, however, an upper bound of the gains in K x

exists. For a task defining positions the error simply calculates to∆x pos = x pos− fpos(q).
On the other hand, orientation errors ∆x rot are not gained straightforwardly. See
Appendix C for a discussion.

Finally, assuming sufficiently short time steps ∆t, a simple recursive explicit Euler
integration scheme is typically used to calculate joint positions q i+1 for the next time
instant t i+1:

q i+1 = q i + q̇ i∆t . (4.16)

FALCO and NATALE study the stability of the closed-loop inverse kinematics algorithm
for redundant robots in discreet time domain (presented above). Sufficient conditions
for the stability and an estimation of the region of convergence are provided [49].

Figure 4.3 illustrates the resulting inverse kinematics algorithm using Eqs. (4.12)–
(4.16) with task space trajectory tracking and null-space optimization. This scheme is
also used for Lola.

As an alternative to the feedback-based integration, CHENG and GUPTA [34] propose
the use of an Adams-Moulton predictor–corrector scheme for performing joint velocity
integration leading to a fourth-order trajectory following in joint space.

4.3.2 Jacobian Transpose

Instead of using the computationally expensive pseudoinverse J# in (4.9) or (4.12)
the simple Jacobian transpose is used in this approach leading to

q̇ = Jᵀx K x∆x . (4.17)

76 4 Inverse Kinematics

The justification for this approach is led by a Lyapunov stability analysis of the error
dynamics leading to its asymptotic convergence under certain conditions. Beside the
advantage of computational simplicity the method also does not suffer from local
singularities. However, this comes at the cost of bad tracking behavior (see SICILIANO

et al. [128]).

4.3.3 Resolved Acceleration Rate Control
Straightforward differentiation of (4.6) leads to the second-order differential kinemat-
ics:

ẍ = Jx(q) q̈ + J̇x(q , q̇) q̇ . (4.18)

Analogously to the optimization based derivation of the resolved motion rate control
method (see (4.6) to (4.12)), (4.18) is used to derive the resolved acceleration rate
control method, originally proposed by LUH et al. [89], in an optimization problem
similar to (4.11) and solved for q̈ :

q̈ = J#
W,x

�
ẍ − J̇x q̇

�
−αN NW−1

�
∇q̇ H(q , q̇)

�ᵀ
. (4.19)

Furthermore, by adding feedback terms on position and velocity level we get

q̈ = J#
W,x

�
ẍ + K ẋ∆ẋ + K x∆x − J̇x q̇

�
−αN NW−1

�
∇q̇ H(q , q̇)

�ᵀ
, (4.20)

which can be integrated using

q̇ i+1 = q̇ i + q̈ i∆t and q i+1 = q i +
1

2

�
q̇ i + q̇ i+1

�
∆t . (4.21)

Note that the trapezoidal rule is used to integrate q i+1 more accurately.
Joint space accelerations q̈ obtained from (4.20) are often used in conjunction with

torque controlled robots, where desired joint torques are computed from EoM [97].
BUSCHMANN et al. [29] propose a method for resolving a hybrid task description

consisting of generalized forces and task-space trajectories into q̈ . The authors apply
this inverse kineto-dynamics approach to walking control, since an exact tracking of
desired contact forces is enabled in real-time [29].

4.3.4 Hierarchical Approaches
In the presence of many simultaneous tasks, less significant tasks might exist whose
execution has a lower priority than others. NAKAMURA et al. present in [100] a
method for resolving tasks with ordered priority. The method works by minimizing a
secondary task in the null-space of the primary task. Analogously to solution (4.12) an

4.4 Singularities and Manipulability 77

additional cost function H can be minimized, which acts in the null-space of both tasks
simultaneously. The method has been extended to an arbitrary number of priority
levels in a recursive manner [7, 127]. Thereby, the QR-decomposition is exploited to
gain efficiency. More recently, ESCANDE et al. further refined the method towards faster
computation [48]. It is worth noting, however, that prioritizing control objectives
will often make lower tasks infeasible. Methods exist to reduce the effect of these
algorithmic singularities [75].

In addition to the equality constraints, e. g., in (4.7), inequality constraints have
been considered in optimization based IK [33, 75]. Recently, the hierarchical approach
is used to resolve linear, convex inequality constraints in a local manner [48, 75] (as
opposed to global optimization of trajectories in planning stage [99, 146]). Inequality
constraints are subject to collision avoidance [131], stability and local motions [75].

Based on these hierarchical methods MANSARD et al. present a graph based software
framework [92]. It allows a dynamic insertion and removal of predefined tasks into a
“stack of tasks” and provides a scripting interface. The framework is used to control
the humanoid robot HRP-2.

4.4 Singularities and Manipulability
In a robotics context, singularities represent reduced movement abilities mainly due
to extreme configurations which in turn disables task space tracking. Moreover, task
space representation singularities, e. g., inherent in some orientation definitions, exist.
Furthermore, in the neighborhood of a singularity, small task space velocities may
cause large velocities in joint space.

Since singularities are characterized by a rank deficient Jacobian J x , YOSHIKAWA

proposed in [158] a continuous measure of manipulability

w(q) :=
q

det
�

J x Jᵀx
�
=

m∏
i

σi , (4.22)

which equals to the product of the singular values σi of J x . Therefore, if J x is rank
deficient, at least one σi = 0 and hence, w→ 0 when approaching singularities. On
the other hand, the condition number c = σmax/σmin would be a good criterion too.
However, the

p
det (·)-form is computationally more efficient.

For redundant robots, PARK et al. propose in [113] the inclusion of the measure of
manipulability w into cost function H(q) (cf. (4.12)) to maximize w. CHIU presents a
similar method to maximize w along a predefined direction in task space [37].

By adopting the damped least squares solution to (4.9) robustness in the neighbor-
hood of singularities is obtained. This approach, independently proposed by NAKAMURA

et al. [98] and WAMPLER [153], minimizes the sum ‖ẋ − J x q̇‖2+λ2 ‖q̇‖2. Therefore,
the tracking error is weighted against the joint velocity norm using damping factor λ.

78 4 Inverse Kinematics

Table 4.2: Components of Lola’s task-space coordinates (adopted from: [28]).

Component Description

T r CoG−RF Right foot TCP relative to CoG in torso planning frame.
T r CoG−LF Le� foot TCP relative to CoG in torso planning frame.
T sTRF Orientation of right foot relative to upper body.
T sTLF Orientation of le� foot relative to upper body.
I r CoG Robot CoG in inertial planning frame.
ϕT Upper Body orientation relative to inertial planning frame.
r CoG,RACoG Right arm CoG relative to robot CoG in torso planning frame.
r CoG,LACoG Le� arm CoG relative to robot CoG in torso planning frame.
qJ ,PR Pelvis rotation.
qJ ,PA Pelvis adduction.
qJ ,RTF Right toe flexion.
qJ ,LTF Le� toe flexion.

The damped least squares solution of (4.9) is q̇ (λ) = Jᵀx(J x Jᵀx + λ
2E)−1 ẋ . However,

finding an optimal λ, which provides a good trade-off between robustness against sin-
gularities and tracking performance, is difficult [42]. Moreover, the null-space in (4.12)
is no longer orthogonal to the primary task for redundant robots [75]. CHIAVERINI et al.
propose the weighted damped least squares solution to achieve user-defined task-space
accuracy in the neighborhood of singular configurations [35, 36]. MACIEJEWSKI et al.
study in [91] the singular value decomposition (SVD) to compute an optimal λ for
the damped least squares solution. Furthermore, the truncated SVD (where rows and
columns, associated to critical singular values, i. e., σi < ε, are removed from the
decomposed matrices) is studied [90].

4.5 Task Description of Lola
For further reference in this thesis, the task description x (q) currently used for Lola is
briefly described. It includes feet position and orientations, robot CoG position, upper
body orientation, arm CoG positions and waist joint positions (see [28] for a detailed
description). If all tasks are defined active, we have a non-redundant system, i. e.,
dim(x) = dim(q). Obviously, tasks can be removed from x to obtain a redundant
configuration. Redundancy is exploited for the methods described in Ch. 5 and 7.

4.6 Chapter Summary
This chapter reviewed the nonlinear problem of IK and gave a brief overview to
some important solutions for real-time control. Position based approaches solve the

4.6 Chapter Summary 79

nonlinear problem in an iterative manner and are therefore not applicable to real-time
control. On the other hand, differential kinematics and local optimization give rise to
most real-time capable IK methods. Moreover, some important schemes for resolving
kinematic redundancies were presented. Furthermore, the issue of singularities was
addressed and some popular techniques were shown to enable singularity robustness.

Global optimization based methods were not considered, since they are subject
to offline planning. This, however, might change in the future when more powerful
computer systems become available enabling the integration of IK into real-time
planning.

5 Self-Collision Avoidance

This chapter describes the self-collision avoidance scheme developed for this thesis
[125]. Self-collisions occur when two segments of a robot come into contact. Therefore,
the main objective is to avoid damage to the expensive robot hardware due to colliding
motions. Moreover, computational efficiency is required to enable real-time execution.

The simplest approach for collision avoidance is to stop the motion when a collision
is predicted. For a walking robot, however, this is not a feasible approach since it
would destabilize and potentially damage the robot. Therefore, a more sophisticated
approach must be chosen to maintain balance.

5.1 Background and Related Work
Several strategies to avoid collisions for biped robots have been proposed, e. g. [61,
73, 78, 107, 131, 133, 146]. To speed up calculations, the robot geometry as well as
the collision pairs are typically reduced.

KUFFNER et al. propose a safe on-line walking pattern generation method which uses
fast distance calculation of the links of the robot H7 modeled as convex protective
hulls. Calculating three steps in advance, the method executes an emergency stopping
sequence if a new walking pattern would cause self-collision [78].

OKADA et al. experimentally evaluate the performance of different interference
detection libraries for a real-time self-collision detection applied to the robot HRP-2
[107]. They use as many collision pairs as possible with detailed geometric models of
the segments. The authors suggest the use of axis aligned bounding box-based methods
which are faster than conventional oriented bounding box-based methods.

In recent years many interesting approaches to reaching and grasping objects have
been proposed and applied to the robot Asimo [61, 133, 146]. SUGIURA et al. simplify
the geometry of the robot uses swept-sphere-volumes [79] enabling an efficient distance
calculation between robot links. The authors use the method to actively avoid collisions
on-line for reaching motions without stopping the robot. This is achieved by blending
the solution for the reaching motion to a collision-free pose when two segments are too
close [133]. The same collision avoidance scheme is used for offline optimization of a
sequence of attractors to generate collision-free trajectories of the arms for reaching
objects [61, 146].

Recently, KANEHIRO et al. proposed a fast offline walking pattern generation method
which also takes self-collisions into account to generate feasible and collision-free
walking trajectories [73].

81

82 5 Self-Collision Avoidance

The self-collision avoidance developed in this work, integrates to the resolved motion
rate control method. By recalling the method presented in (4.12) for a redundant
robot we have:

q̇ = J#
x ,W ẋ −αN NW−1

�
∇q H(q)

�ᵀ
,

where joint velocities q̇ are obtained from desired task space velocities ẋ . In the second
term ∇q H(q) minimizes a cost function H(q). Because of the projection via N (the
null-space matrix of J x) into joint space, it does not interfere with the main task x .

Consequently, the robot must be kinematically redundant, i. e., n> m. For Lola this
is the case for the 7-DoF legs and 2-DoF waist. However, kinematic redundancy can
also be achieved by removing certain tasks from x which also reduces m. Note that
it is possible to choose reference trajectories x (t), such that self-collisions cannot be
avoided. Special care is necessary when a dynamic modification of task x is desired
during motion. When changing the dimension or definition of x , the Jacobian J x

also changes, possibly resulting in velocity jumps on the joint level. To overcome this
problem GIENGER et al. propose to limit the jerk for null-space motion rates by scaling
down the null-space velocity vector accordingly [62].

5.2 Self-Collision Avoidance

The cost function HC and its gradient used for collision avoidance are derived in this
section. Formally, the robot R is modeled as a set of nS segments Si

R := {Si : 0≤ i < nS} . (5.1)

The collision environment C is defined as a set of nC collision pairs Pk, which in turn
consist of two different segments of the robot:

C := {Pk : 0≤ k < nC}, (5.2)

Pk := {SF,ST : (SF ∧ ST ∈R)∧ SF 6= ST} . (5.3)

Figure 5.1 illustrates the distance calculation between a collision pair Pk. An
adequate method is used to find the closest points pF and pT. We use the concept of
Swept Sphere Volumes presented in Chapter 6. The connecting vector r c is defined from
segment ‘F’ to segment ‘T’ and its length defines the separation distance

d =
p

r ᵀc r c with r c := pT(q)− pF(q) . (5.4)

By using the chain rule of differentiation, the gradient of the collision cost function

5.2 Self-Collision Avoidance 83

OT

‘T’

Segment

closest SSVs

r c pT

T r
P

T

pF

F
r PF

‘F’

‘I’ Ir OT

OF

OI

I
r PF Ir PT

I
r O

F

Figure 5.1: A collision pair with the definition of the shortest distance vector r c from segment
‘F’ to segment ‘T’ (from: [125]).

HC for a single pair Pk (with distance dk and omitting k) may be written as

∂ HC(d)
∂ q

=
∂ HC(d)
∂ d

∂ d

∂ q
. (5.5)

The two partial derivatives on the right hand side are derived separately. The scalar
function ∇d HC is derived further below. The second part is derived using (5.4) to

∂ d

∂ q
=

1

d

�
J T,T− J T,F

�ᵀ �
pT− pF

�
, (5.6)

where J T,TF denotes the translational Jacobian of the closest points. In general the
translational Jacobian for a point p is given by

J p
T :=

∂ p

∂ q
= J o

T + JR× r op , (5.7)

where J o
T and JR are the translational and rotational Jacobians of the segments,

respectively. In our implementation the Jacobians are calculated analytically in the
respective body-fixed frames ‘F’ and ‘T’. Therefore, it is computationally more efficient
to transform only r c and (5.6) becomes

∂ d

∂ q
=

1

d

�
TJᵀT Tr c − FJᵀT Fr c

�
. (5.8)

84 5 Self-Collision Avoidance

Finally, for the whole robot gradient ∇q HC is simply the sum of the contributions of
each pair Pk:

∂ HC
∂ q

=
nC∑
k

∂ HC(dk)
∂ q

, (5.9)

which is then added to ∇q H in (4.12).

Developing the Collision Cost Function

By studying (5.5) it is a good idea to directly design the scalar gradient function ∇d HC,
since HC is of no particular interest in the final result. Furthermore, local convergence
can be ensured by design.

Collision cost function HC can be seen as a repulsive potential function to avoid
collisions. Therefore, in order to maximize the distance between two segments,
a continuously decreasing, positive gradient is required. Furthermore, since the
term “avoidance” implies a predictive character, we require an activation of collision
avoidance already at a distance d ≤ da for da > 0. The gradient function is zero for
d ≥ da and hence, only active below the activation distance da

A general approach is, therefore, to have a piece-wise function

∂ HC
∂ d

=

(
g(d) if d < da

0 else ,
(5.10)

where g(d) is a positive, continuously decreasing function with g(da)
!
= 0. The simplest

approach, shown in Figure 5.2, is to use a linear function

g(d) = gl(d) := m (d − da) , (5.11)

where m< 0 defines the gradient’s slope. In order to handle large velocities, m must
have a sufficiently large negative value. The joint speed integration in (4.16), however,
possibly leads to oscillations in the neighborhood of the kink at da.

As previously proposed by the author in [125] and others, e. g., [146], a higher
order function is used to get a Cn, continuity (n> 0) at da. For a quadratic function,
illustrated in Figure 5.2, we get:

g(d) = gq(d) := s (d − da)
2 , (5.12)

where s is a scaling factor, which is (along with da) subject to tuning. Further ex-
periments involving higher velocities, however, revealed that this approach leads to
oscillations in joint space due to the simple Euler integration (cf. (4.16)). In order to
avoid collisions in the presence of high joint velocities either s or da have to be chosen

5.2 Self-Collision Avoidance 85

0 da

0

∇d HC(gl(d))

∇d HC(gq(d))

inactive

active

collision

Figure 5.2: Collision avoidance cost function gradient candidates: linear function gl and
quadratic gq function.

large enough which in turn leads to degraded behavior with slower motion. On the
other hand, by choosing higher order polynomials in (5.12) the situation gets even
worse.1

Therefore, the use of a piece-wise function is proposed which mixes both gradients
from (5.11) and (5.12). A parameter t ∈ [0, 1[defines the blending position, such
that gm(d, t = 0) = gq(d) and gm(d, t = 1) = gl(d). Rewriting (5.11) to

gl,2(d) := m d + s0 , (5.13)

and letting

gl,2

��
d=t da

= gq

��
d=t da

and
∂ gl,2

∂ d

����
d=t da

=
∂ gq

∂ d

����
d=t da

, (5.14)

to get a C1-continuous junction at d = t da gives

g(d) = gm(d) :=





− 2 s0
da (t + 1) d + s0 if d < t da

−s0(da − d)2

d2
a (t

2− 1)
else .

(5.15)

The resulting gradient ∇d HC(d, t) is illustrated in Figure 5.3 for different values
of t. We use t = [0.4 . . . 0.6] which is a good compromise. Parameter s0 defines the
intersection with the y-axis. It is chosen sufficiently large to prevent self-collision in
the presence of other null-space motions.

1 This is due to the simple Euler integration with fixed time step.

86 5 Self-Collision Avoidance

0 da

0

s0

t = 1
t = 0.5

t = 0 ∇d HC(d, t = 0)

∇d HC(d, t = 0.5)

∇d HC(d, t = 1)

inactive

active

collision

Figure 5.3: Schematic representation of the potential function HC(d) for collision avoidance.

5.3 Chapter Summary
In this chapter a model-based approach for self-collision avoidance for redundant
robots is presented. Figure 5.4 shows a video frame sequence of Lola while walking
sideways. Thereby, the approach presented in this chapter avoids collisions between
arms and upper legs. More experimental results are shown in the next chapters. The
method works by minimizing a repulsive collision cost function in the null-space of
the inverse kinematics. The cost function uses the closest points on two segments
and applies a distance-based repulsive law to keep the segments separated. Different
strategies for designing an adequate repulsive law of the cost function are discussed.
The overall method proved to work reliably and effective in simulation and experiments
for different redundant robots, including Lola (cf. [11, 125]).

5.3 Chapter Summary 87

0.0 s 0.2 s 0.4 s

0.6 s 0.8 s 1.0 s

1.2 s 1.4 s 1.6 s

Figure 5.4: Video frame sequence when walking sideways: the collision avoidance keeps the
arms separated from the upper legs. The e�ect is especially visible at times 0.6 s and 1.4 s
(see encircled regions).

6 Real-Time Distance Computation using
Swept-Sphere-Volumes

To facilitate collision avoidance in the inverse kinematics algorithm, presented in
Chapter 5, the closest points on the surface of two robot-segments must be calculated
in real-time. This chapter provides a suitable method to accomplish this task.

6.1 Background and Related Work
Many applications, such as robotics, multibody contact dynamics, computer graphics,
virtual reality, CAD/CAM, and others, require the knowledge of the minimum distance
between two geometric objects. Most applications need a fast and reliable distance
computation. In order to handle collisions in robot control, distances must be computed
(among other things) within one control cycle, and hence, run faster than real-time.

A topic closely related to distance computation is the detection of collisions. Many
algorithms and software libraries have been developed in this field. The GAMMA-group1

at the University of North Carolina have designed and implemented many collision
detection and proximity query2 software packages. The libraries have been applied
to large-scale interactive environments and simulations [132]. For a good review on
available approaches, applicable for several geometric representations of objects, see
[82, 83]. Overall, the geometric representation used has a strong influence on the run-
time and accuracy of the applied method. In [32] the minimum distance computation
between implicit algebraic surfaces, which is the basis for many CAD applications, is
presented. Polygons are dominant in computer graphics and modeling, since they
are versatile, have a simple representation and hardware-accelerated rendering is
widely available [28]. Polygonal objects are either obtained by direct modeling or
by tessellation of other representations. On the other hand, the convexity of shapes
plays an important role. Some collision detection algorithms rely on the distance
computation of convex, polygonal objects [70]. Hence, they are also applicable for
distance calculation for that class of objects.

Simplex based algorithms calculate the distance between two convex polytopes by
iteratively finding closer simplices. The Gilbert-Johnson-Keerthi (GJK) algorithm is
one of the most widely used among them [63]. A “Revised GJK” (RGJK) algorithm

1 Geometric Algorithms for Modeling, Motion, and Animation (GAMMA) website: http://gamma.
cs.unc.edu/research/collision/

2 Distance computation between two objects is referred as “proximity query” by some authors.

89

http://gamma.cs.unc.edu/research/collision/
http://gamma.cs.unc.edu/research/collision/

90 6 Real-Time Distance Computation using Swept-Sphere-Volumes

exists [109] which gains performance by exploiting the adjacency of the vertices of
the polytopes.3 The adjacency mapping can be generated in a pre-processing step and
reused efficiently.

VORONOI-CLIP, or V-CLIP, is a more recent algorithm which tracks the closest pair
of features between convex polyhedra to facilitate collision detection [94]. Once
identified, these closest features can be used in minimal distance calculation between
both objects.4 When applied solely to collision detection, V-Clip can be computationally
more efficient than the original GJK algorithm [94]. On the other hand, RGJK is faster
than V-Clip, as studied in [109].

Many algorithms exploit the temporal coherence of the closest points on convex
shapes. Based on a former solution, the location of the closest point is updated only
locally. This approach works efficiently if the difference in relative object orientation
within subsequent distance calculations is small.

OKADA et al. evaluate in [107] several publicly available collision detection libraries
on the robot HRP-2 and study their run-time performance in a manipulation scenario.

Popular methods to reduce computational cost in collision detection and distance
computation are space partitioning algorithms, bounding volume hierarchies and sweep
and prune approaches. A common idea of these algorithms is to sort out potentially
closest component-pairs which are then processed. This corresponds to a so called
“broad-phase” algorithm combined with a “narrow-phase” distance (or collision) com-
putation.

Space partitioning algorithms, such as kd-tree [16], Binary Space Partitioning Trees
(BSP trees) [144], Octrees [93], etc., work by partitioning the space or complex
geometry in a pre-processing step and later avoid most complex distance computations
between the components of the shape. Hence, these methods are mostly applied
in conjunction with direct distance computation algorithms. Similarly, bounding
volume hierarchies (BVH) [157] are another elegant way to reduce computational
cost. A hierarchy of bounding volumes with decreasing size contains gradually smaller
portions of the geometry. A simple search routine finds closest bounding volumes on
each hierarchy level. Consequently, the lowest level contains only smaller components
of the full geometry. The final distance is then computed only between pairs of convex
components. Efficiency is improved by: (a) the fast distance computation of the
bounding volume primitives used, e. g., spheres, and, (b) by ignoring most pairs of
components in distance computation in the narrow-phase [117]. The sweep and prune
algorithm limits the number of collision checks by first testing overlapping bounding
volumes projected into sub-spaces, i. e., individual axes or planes. Furthermore,
temporal coherence of relatively slowly moving rigid bodies is exploited [39].

The Computational Geometry Algorithms Library (CGAL) [143] is a versatile library

3 RGJK software implementations are publicly available from:
Fortran language: http://serve.me.nus.edu.sg/mpeongcj/?id=downloads
C language: http://www.cs.ox.ac.uk/people/stephen.cameron/distances/

4 V-Clip software implementation in C language: http://www.merl.com/areas/vclip/

http://serve.me.nus.edu.sg/mpeongcj/?id=downloads
http://www.cs.ox.ac.uk/people/stephen.cameron/distances/
http://www.merl.com/areas/vclip/

6.2 Formal Aspects of Distance Computation 91

for processing geometry which also contains components for distance computation
of n-dimensional convex polytopes in IRn [76]. MUJA et al. [96] present a software
library to approximately find the nearest neighbors of components called “Fast Library
for Approximate Nearest Neighbors” (FLANN).5 Although, originally developed for 2-D
computer vision, the algorithm is general enough to work also in IRn. FLANN is used
in outlier filtering and feature extraction from point clouds, obtained from laser scans
(see also: Point Cloud Library (PCL)6 [121]).

For robotics applications, a C1-continuity of the distance function is desired, since its
gradient continuity ensures also continuity of low level velocity control while tracking
tasks using proximity distance. ESCANDE et al. present in [47] the concept of “Sphere-
Torus-Patches Bounding Volumes” (STP-BV) satisfying C1-continuity of the distance
function. This approach produces a tight bounding volume representation composed of
convex patches of spheres and toruses. A distance computation from STP-BV to other
convex polyhedra using the GJK algorithm is presented in [15] by the same authors.

More recently, TÄUBIG et al. proposed the concept of “sphere swept convex hulls”
(SSCH) [141]. The main idea of SSCH is to increase the polygonal convex bounding
volume hull by a buffer radius. The method is applied on the humanoid manipulation
platform JUSTIN to avoid collisions on joint torque level for manipulation tasks and to
catch a ball thrown by a human [10, 43].

Strategies for collision detection involving deformable objects in computer graphics
are discussed in [142]. Approaches using the graphics processing unit (GPU) for
deformable objects are found in [112, 140]. Methods exploiting the computational
power of GPUs can be orders of magnitudes faster than other CPU-based approaches.
However, since time spent for data compaction and data transfer from CPU to GPU
and back are substantial, only large models with over 105 triangles benefit from
these methods. However, since computer architectures are evolving and GPU-based
approaches are an active research field, this might change in the future.

6.2 Formal Aspects of Distance Computation
Finding the minimal distance d between two manifolds S0 and S1 can be formulated
by the minimization problem in the form

d = min
SC,0 ∈S0
SC,1 ∈S1

‖SC,1−SC,0‖ , (6.1)

where SC,i are the closest manifold subsets of Si. Depending on the shape and
configuration of the manifolds Si the solution regions SC,i can be surfaces, curves or
points in IR3.

5 FLANN is publicly available from: http://mloss.org/software/view/143/
6 PCL is publicly available from: http://pointclouds.org

http://mloss.org/software/view/143/
http://pointclouds.org

92 6 Real-Time Distance Computation using Swept-Sphere-Volumes

In many practical applications, such as collision avoidance, it is also important to
know SC,i. Hence, problem (6.1) is cast to find the manifolds SC,i where the distance
d is minimal

S∗C,i =
�
S∗C,1
S∗C,0

�ᵀ
= arg min

SC,0∈S0
SC,1∈S1

1

2

�
SC,1−SC,0

�2
, (6.2)

⇒ d = ‖S∗C,1−S∗C,0‖ .

Solving problem (6.2) can be an extremely complex task. In most practical appli-
cations, however, when run-time is a critical factor and the exact knowledge of the
solution manifolds is not important, a common practical approach is to reduce the
problem to finding two singular points p i ∈ SC,i for i = {0,1}. Moreover, for convex
manifolds which are rotating relative to each other, the solution SC,i almost always
contains singular points. The reduced problem is then defined by

x ∗ =
�

p∗0
p∗1

�
= arg min

p0∈S0
p1∈S1

1

2

�
p1− p0

�2 , (6.3)

⇒ d = ‖p∗1− p∗0‖ ,

where p i ∈ SC,i ∈ Si are the closest points between the manifolds Si.

6.3 SSV Primitives

Unlike some other biped robots, the surface geometry of Lola’s segments is quite
complex, because there is no smooth protective cover. Moreover, since not all cabling
is modeled in CAD, the approximation of the geometry with a triangulated CAD-mesh
is difficult. However, for collision avoidance the exact knowledge of the distances
is not required. Therefore, the shape of the robot can be greatly simplified. In this
work the concept of swept-sphere-volumes (SSV) [79, 125, 133] is adopted, since it is
computational efficient, sufficiently accurate and allows for non-convex geometries.

Formally, a SSV is the result of the Minkowski sum obtained by adding a sphere to
an underlying manifold. Hence, the resulting geometry inherits the C1-continuity of
the sphere and convexity properties from the manifold.

The SSV modeling library developed in this work7 consists of a family of three
geometric primitives: the point-, line- and triangle-SSV. The use of the triangle-SSV
(TSS) to model robotic segments for collision avoidance is proposed by the author in
[125]. In contrast to the rectangle-SSV proposed by other researchers [79], complex
shapes such as free-form surfaces can only be modeled using TSS.

7 The SSV modeling library is based on a prototype implementation by MATTIAS TRÄGER (cf. [147]).

6.3 SSV Primitives 93

Properties and algorithms to compute the distance between each class is derived in
the following sections.

6.3.1 Point-Swept-Sphere Volume

A Point-Swept-Sphere (PSS) Volume is defined by

• the radius r of the PSS

• the position vector describing the center-point p

p

y

z

x

r

6.3.2 Line-Swept-Sphere Volume

A Line-Swept-Sphere (LSS) Volume is defined by

• the radius r of the LSS

• two vertices (v0, v1) which define the start and end points of the line-segment

r

e

v 0

v 1

y

z

x

Each point on the line-segment is described by

L(s) = p(s) = v0+ se , (6.4)

with the parameter s ∈ [0,1] and the edge vector e := v1− v0.

94 6 Real-Time Distance Computation using Swept-Sphere-Volumes

6.3.3 Triangle-Swept-Sphere Volume

A Triangle-Swept-Sphere (TSS) Volume is defined by

• the radius r of the TSS

• three vertices v i for i ∈ {0,1,2} of the triangle

r

e0

e1

v0

v 1

v 2

y

z

x

Each point p on the triangle is described by a linear combination of the edge vectors e i

T (s) = p(s0, s1) = v0+ s0e0+ s1e1 , (6.5)

using the parameters si which satisfy the conditions

0≤ s0 ≤ 1 ∧ 0≤ s1 ≤ 1 ∧ s0+ s1 ≤ 1 . (6.6)

Here, the edge vectors are defined as e0 = v1− v0 and e1 = v2− v0.

6.4 Distance Calculation between SSV Primitives

In this section, the efficient computation of the minimal distance between all three
classes of SSV is addressed. Since a SSV is defined as the surface obtained by offsetting
points, lines or triangles by its radius, we use those constructing primitives as the
manifolds Si to solve the minimization problem (6.3). Due to the parameterizations
of the manifolds, e. g., L(s) and T (s) in (6.4) and (6.5), we have Si = Si(x i). The
minimization problem is then reformulated as:

φ =
1

2
cᵀc , with c = S1(x 1)− S0(x 0) , (6.7)

x ∗ =
�

x ∗0 x ∗1
�ᵀ
= argmin

x
φ(x) , (6.8)

6.4 Distance Calculation between SSV Primitives 95

r c

c∗

p∗0
p∗1

pSSV,1

pSSV,0
10

r0 r1

Figure 6.1: Definitions and relations of resulting points and vectors from distance computation
in the form of (6.11). Here, the distance is calculated from SSV “0” to SSV “1”.

where φ is the objective function, c is a vector connecting any two feasible points
p0 ∈ S0(x 0) and p1 ∈ S1(x 1) and x ∗i denotes the parameters of the manifold Si where
φ is minimal. The resulting closest points on the manifolds are then calculated by:

p∗0 = S0(x
∗
0) , p∗1 = S1(x

∗
1) , (6.9)

c∗ = p∗1− p∗0 , d∗ = ‖c∗‖ , (6.10)

where c∗ is the vector describing the shortest distance d∗. Finally, the quantities defined
on the surface of both SSVs are obtained via offsets along c∗ by their radii ri:

pSSV, 0 = p∗0+
c∗

‖c∗‖ r0 , pSSV, 1 = p∗1−
c∗

‖c∗‖ r1 ,

r c = pSSV, 1− pSSV, 0 , d = d∗− r0− r1 = ‖r c‖ ,
(6.11)

where pSSV, i are the closest points located on the surface of SSV i, r c is the connecting
vector and d the minimal distance. Figure 6.1 illustrates the individual quantities
presented above and their relations.

Therefore, the problem of finding the minimal distance between SSVs is effectively
transformed into the problem of calculating the distance between points, lines and
triangles. While the former problem may suffer from discontinuities or singularities in
the SSV surface parameterizations, the latter problem uses simple geometric objects
and can therefore be formulated in an efficient manner.

For the n = 3 SSV primitives n2 = 9 distance calculation functions, listed in Table 6.1,
are required to cope with any combination.

Given a function to calculate the quantities in (6.11) from SSV class A to class B:
�

d pA pB
�ᵀ← dist(A, B) ,

96 6 Real-Time Distance Computation using Swept-Sphere-Volumes

Table 6.1: Distance calculation functions needed for the SSV library. Section and page where
the specific derivation is found.

from to point p1 line L1(t) triangle T1(t)

point p0
PP(p0, p1) PL(p0, L1(t)) PT(p0, T1(t))

Sec. 6.4.1, p. 96 Sec. 6.4.2, p. 97 Sec. 6.4.3 p. 98

line L0(s)
LP(L0(s), p1) LL(L0(s), L1(t)) LT(L0(s), T1(t))

Sec. 6.4.4, p. 99 Sec. 6.4.5, p. 108

triangle T0(s)
TP(T0(s), p1) TL(T0(s), L1(t)) TT(T0(s), T1(t))

Sec. 6.4.6, p. 110

solving for the reversed problem is trivial, since the relation

(d pA pB r c) ← dist(A, B)

(d pB pA −r c) ← dist(B, A)
−

between the results holds. The reversed problem can therefore be solved by swapping
pSSV,0 and pSSV,1 and reversing r c in the result obtained from the known function
dist(A, B). By exploiting this anti-symmetric property in Table 6.1 the implemen-
tation effort reduces to n(n+ 1)/2= 6 functions. Hence, only functions listed in the
upper (or lower) triangular part must be implemented while the remaining functions
use their existing symmetric counterpart and modify the result.

For the same reason, the derivations of the minimal distance calculation for the off-
diagonal functions in Table 6.1 are given only for one variant. The objective function
φ(x) in (6.7) is the basis for all derivations. The result is always given as points p∗ on
the manifolds point, line or triangle in the form of (6.9) which is then used to evaluate
(6.11) to get the offset quantities.

The problem of finding the closest points between two manifolds usually is subject to
domain restrictions in the form of inequality constraints (see, e. g., (6.6)). Therefore,
in Section 6.4.7 a general framework using a minimization with inequality constraints
is presented. The framework can be used to verify the implementations or as an
alternative distance calculation method if explicit functions are too complex.

6.4.1 Point to Point Distance Computation
Since the point is not parameterized, p i are already the closest points in (6.9), i. e.,
p∗i = p i. Hence, we have the solution to the minimal distance given as

c∗ = p1− p0 ⇒ d = ‖c‖− r0− r1 . (6.12)

6.4 Distance Calculation between SSV Primitives 97

e

v1

p0

p1

p2

0 1 2

v0

c0
c1

c2

s

Figure 6.2: Definitions for the point to line segment minimal distance computation.

6.4.2 Point to Line-Segment Distance Computation

Referring to Figure 6.2, vector c to calculate the minimal distance from line-segment
to point is given by

c = p − (v0+ se) , (6.13)

where p is the center point of the sphere, v0 and is the first point, e the edge vector
and s ∈ [0, 1] is the parameter of the line. The optimization problem then writes to

s = arg min
1

2
cᵀc = arg min

1

2

�
p − (v0+ se)

�2

︸ ︷︷ ︸
φ(s)

. (6.14)

The problem is solved by finding the root of the partial derivative of the objective
function φ(s)

∂ φ

∂ s
=−(p − v0− se)ᵀe

!
= 0 , (6.15)

⇒ s =
(p − v0)ᵀe

eᵀe
. (6.16)

Since s ∈ [0,1], the three cases illustrated in Figure 6.2 must be considered for s∗:

s∗ =





0 if w ᵀe ≤ 0

1 if w ᵀe ≥ eᵀe

(w ᵀe)/(eᵀe) otherwise ,

with w = p − v0 . (6.17)

98 6 Real-Time Distance Computation using Swept-Sphere-Volumes

6

e0

e1

v1v0

v2

n t

1
2

3

4

5

0
s 0
+ s 1

> 1

s0 > 0

s 1
>

0

Figure 6.3: Top view of the triangle showing solution regions 0-6 and important vector definitions
for the point to triangle distance computation.

Finally, for the quantities used in (6.11) to get the SSV specific vectors, we have

p∗line = v0+ s∗ e and p∗point = p . (6.18)

6.4.3 Point to Triangle Distance Computation

The point to triangle distance computation is derived in two steps. First, the solution
on an unbound plane spanned by the triangle is derived. Second, if necessary, the
solution is modified to be within the feasible region of the triangle.

Minimal Distance between Point and Plane

Using point p and T (s) from (6.5) defining all points of plane P(T) spanned by
triangle T (s) we get

c = T (P(s))− p = v0+ e0 s0+ e1 s1− p

= v0+
�

e0 e1

��
s0 s1

�ᵀ− p

= v0+ Ds − p . (6.19)

The resulting optimization problem

1

2

�
v0+ Ds − p

�2→min! (6.20)

6.4 Distance Calculation between SSV Primitives 99

Table 6.2: Point to triangle distance calculation: Region specific solution strategies to obtain the
closest point on the triangle p∗T . The regions are defined in Figure 6.3. The function denoted
by “PL” is the point-line distance function found in Section 6.4.2.

Region Location of p∗T ∈ T Condition Strategy to get p∗T
0 inside triangle s0 ≥ 0 ∧ s1 ≥ 0 ∧ s0+ s1 < 1 v0+ Ds
1 on vertex s0 < 0 ∧ s1 < 0 v0
2 on edge s0 ≥ 0 ∧ s1 < 0 ∧ s0+ s1 < 1 from PL(p, v0, v1)
3 on vertex s1 < 0 ∧ s0+ s1 ≥ 1 v1
4 on edge s0 ≥ 0 ∧ s1 ≥ 0 ∧ s0+ s1 ≥ 1 from PL(p, v1, v2)
5 on vertex s0 < 0 ∧ s0+ s1 ≥ 1 v2
6 on edge s0 < 0 ∧ s1 ≥ 0 ∧ s0+ s1 < 1 from PL(p, v2, v0)

is solved for s which gives

s = (DᵀD)−1 Dᵀ(p − v0) = S (p − v0) . (6.21)

The resulting point pP ∈ P defined on plane P calculates to

pP = T (s) = v0+ e0 s0+ e1 s1 . (6.22)

Since D and S in (6.21) are constant for one triangle configuration, they can be
pre-computed to gain efficiency. D becomes singular if e i are either parallel or zero,
which is the result from a triangle degenerated to a line or a point.

Here, pP ∈ P might be outside the feasible region of triangle T , and therefore, the
inequality constraints (6.6) for s are not satisfied. In the following section, strategies
to obtain a point p∗T ∈ T are presented.

Minimal Distance between Point and Triangle

Figure 6.3 shows seven independent regions about the triangle where pP can be
located. Which region pP lies in can be determined by studying s . The different cases
along with a strategy to obtain p∗T ∈ T are summarized in Table 6.2. If, e. g., region 4
is identified, the distance calculation between point and line segment presented in
Section 6.4.2 is used.

Finally, in order to calculate the solution defined on the surface of the SSVs
(cf. (6.11)), p∗T is obtained by following a strategy from Table 6.2 based on s and
p∗point = p.

100 6 Real-Time Distance Computation using Swept-Sphere-Volumes

v

u

p01p00

c

s

t

p10

p11

w

Figure 6.4: Definitions for the distance computation of Line to Line.

6.4.4 Line-Segment to Line-Segment Distance Computation

Referring to Figure 6.4 each point on the two line-segments can be described by

L0(s) = p00+ su and L1(t) = p10+ tv , (6.23)

where s ∈ [0,1] and t ∈ [0,1] are the line parameters and

u = p01− p00 and v = p11− p10 (6.24)

are the edge vectors. In the following sections, first, the distance calculation between
two infinite lines is derived and second, the domain restrictions for s and t are
incorporated.

Distance Between Two (Infinite) Lines

With the vector w = p10− p00 connecting the base points of the lines we have

c = w − su + tv = w + D x , (6.25)

where D =
�−u v

�
∈ IR3×2 and x =

�
s t

�ᵀ
is the vector of line parameters. The

objective function φ(x) in (6.7) to minimize the distance then writes to

φ(x) =
1

2
(w + D x)2 . (6.26)

Minimization leads to

∂ φ

∂ x
= Dᵀ (w + D x)

!
= 0 . (6.27)

6.4 Distance Calculation between SSV Primitives 101

Solving (6.27) for x yields parameters x ∗ which minimize φ:

x ∗ =−(DᵀD)−1Dᵀw . (6.28)

Interestingly, when rewriting (6.27) by reusing (6.25) as

cᵀD =
�−cᵀu

cᵀv

�ᵀ
= 0 , (6.29)

and applying the well-known relation aᵀb = 0 ⇔ a ⊥ b, it is clear, that c is also
perpendicular to both u and v and hence,

c ⊥ u ⇔ cᵀu = 0 ⇒ uᵀw − su2+ tuᵀv = 0 ,
c ⊥ v ⇔ cᵀv = 0 ⇒ vᵀw − svᵀu + tv2 = 0 . (6.30)

Obviously, this orthogonality condition can always be exploited as a starting point
to derive any distance function between two manifolds, i. e., by constraining c to
be perpendicular to both manifolds. However, the cases arising from the boundary
conditions restricting feasible regions are often far more complex to derive.

Finally, (6.28) can be written explicitly as:

x ∗ =
�

s∗

t∗

�
:=

1

u2v2− (uᵀv)2
�

v2 uᵀw − uᵀv vᵀw
uᵀv uᵀw − u2 vᵀw

�
=

1

N

�
sZ

tZ

�
. (6.31)

If the denominator N = 0, both lines are parallel. On the other hand, in the non-parallel
case, s and t may not be bound to [0, 1]. General solutions to both cases are derived
in the following sections. In this case, s0 = s∗ and t0 = t∗ from (6.28) or (6.31) are
used.

Distance Between Non-Parallel Line Segments

The feasible parameter-space s, t ∈ [0,1] and nine possible domains where s0 and t0

can be located are shown in Figure 6.5. If s0 or t0 are outside their boundaries, further
steps are required. Table 6.3 and Table 6.4 summarize all possible solutions for the
two-step algorithm presented here. First, t is saturated to [0,1] and s is recalculated
using the equations found in Table 6.3. In a second step, s is saturated to [0,1] and t
is recalculated using Table 6.4.

The equations in Table 6.3 are obtained by substituting one boundary condition into
(6.30) and solving for the other boundary condition. In Table 6.3 solutions 1 and 2
correspond to lines 1 and 2 of (6.30), respectively. Obviously, both solutions are equal
and only a matter of the implementation. The equations found in Table 6.4 are the
bounded version of the equations found in Table 6.3.

Figure 6.6 shows an example of the algorithm Table 6.3 and Table 6.4. For clear

102 6 Real-Time Distance Computation using Swept-Sphere-Volumes

s

t

0 1

1

0 1

234

5

6 7 8

Figure 6.5: Non-parallel line-segment to line-segment distance: feasible parameter space (s, t) ∈
[0,1] in gray for line segments and the nine cases for closest point locations.

Table 6.3: Equations for the first step to obtain a feasible solution when calculating the closest
points between two line segments. Solution 1 and 2 are obtained from (6.30) from line 1
and line 2 by substitution of the saturation. The “Methods” are shown for consistency with
Table 6.4.

Case Saturation Solution 1 Solution 2

t0 < 0 t1 = 0 s1 =
uᵀw

u2 s1 =
vᵀw

uᵀv

t0 > 1 t1 = 1 s1 =
uᵀ(u − w)

u2 s1 =
vᵀ(u − w)

uᵀv
else t1 = t0 s1 = s0 s1 = s0

Table 6.4: Equations for the second step to obtain a feasible solution when calculating the
closest points between two line segments (cf. Table 6.3).

Case Sat. Solution 1 Solution 2

s1 < 0 s2 = 0 t2 =





0 −uᵀw < 0

1 −uᵀw > uᵀv
−uᵀw
uᵀv

otherwise
t2 =





0 −vᵀw < 0

1 −vᵀw > v2

−vᵀw
v2 otherwise

s1 > 1 s2 = 1 t2 =





0 uᵀ(u − w)< 0

1 uᵀ(u − w)> uᵀv
uᵀ(u−w)

uᵀv
otherwise

t2 =





0 vᵀ(u − w)< 0

1 vᵀ(u − w)> v2

uᵀ(v−w)
v2 otherwise

else s2 = s1 t2 = t1 t2 = t1

6.4 Distance Calculation between SSV Primitives 103

u

c

s

t
v

0

1

0 1(s0, t0)

t1

t2

s1

s2

�
s0
t0

�
⇒
�

s1
t1

�
⇒
�

s2
t2

�
=

�
s
t

�∗

Action resulting s and t Status

evaluate 0< s0 < 1 3

(6.31) t0 < 0 7

Step 1 saturation: t1 = 0
Table 6.3 ⇒ s1 =

uᵀw
u2 =

vᵀw
uᵀv

> 1 7

Step 2 saturation: s = 1 final
Table 6.4 (u2− uᵀw < 0)⇒ t = 0 result

Figure 6.6: Example showing the steps involved in the distance computation between two non-
parallel line segments. For clear visual appearance both line segments are defined in a plane.

visual appearance both lines are defined at the same plane.8 Equation (6.31) gives
0< s < 1 and t < 0. Therefore, in step 1, t is saturated to t1 = 0. By choosing one of
the two solutions, Table 6.3 gives the shortest distance on u with s > 1. In step 2, s is
saturated to s2 = 1 and, according to Table 6.4, t is set to t2 = 0. Therefore, the final
result equals to (s t)ᵀ = (1 0)ᵀ which can be proved visually from Figure 6.6.

Distance Between Parallel Line Segments

By projecting the vectors v and w onto u the problem of finding the parameters s and
t is effectively transformed into a one-dimensional problem which is solved graphically
by studying distances along u. Table 6.5 summarizes all 11 independent solutions9 for
the parallel case.

If edge vectors u and v overlap, the correct solution of the closest points would
expand to a line segment. However, the parallel case is expected to be rare and appear
only for a short time period. Therefore, the resulting closest points are calculated to
be located in the center of the result region. Hence, the result degenerates to a point
representing the average value of the solution.

Numerical Considerations to Identify the Parallel Case

To distinguish the parallel and non-parallel cases one could simply test the denominator
in (6.31) for non-zero value to avoid division by zero. However, for numerical reasons
it is unlikely to get an exact zero value. Therefore, since N is always positive, a
common approach is to simply test for N < ε. Here, ε is a small number, which,

8 Otherwise, the dashed line leading to the intersection point of u and v might not be parallel to v .
9 Note that cells 1.1 and 2.2 contain two solutions for t.

104 6 Real-Time Distance Computation using Swept-Sphere-Volumes

Table 6.5: Solution table for s and t to compute the minimal distance between two parallel
line segments. The results depend only on dot products between u, v and w . The vectors
u = p01−p00 and v = p11−p10 correspond to the first and second line segment respectively.
Vector w connects the starting points p i,0 (i ∈ {0,1}) of both lines. In the outermost ring of
the table are the descriptions of the mathematical conditions (inner ring) which lead to the
solution cell. The solutions are obtained by projections on u. If two fields overlap (the last
column and last row), the connecting vector c is located in the center of the solution field.

u
ᵀ
v
+

u
ᵀ
w
<

0

uᵀw < 0 uᵀw > u2 otherwise

p10 le� of p00 p10 right of p01 p10 over u

p
11

ov
er

u
p

11
le

�
of

p
00

p
11

rig
ht

of
p

01

ot
he

rw
is

e
u
ᵀ
v
+

u
ᵀ
w
>

u
2

⇒ resulting connecting vector c pointing from u to v

u

v

w

u

v

w

u

v0

w

t = 0 t = 1
v1

s = 0

1.1

1.2

1.3

s = 0.5

s = (v2+ vᵀw)/2 uᵀv

t =

(
0 if uᵀv < 0

1 otherwise

t = (uᵀv − uᵀw)/2 uᵀv

t = (u2− 2 uᵀw)/2 uᵀv

u

v
w

2.1

2.2

2.3

s = 0.5

s = 1

s = uᵀv+v2+vᵀw
2 uᵀv

t =

(
1 if uᵀv < 0

0 otherwise

t = uᵀv+u2−uᵀw
2 uᵀv

t = (u2− 2 uᵀw)/2 uᵀv

u

v0

w

t = 1 t = 0
v1

u

v

w

u

v

w

u

v
w

u

v0

w

v1

3.1

3.2

3.3

s = vᵀw/2 uᵀv

s = (uᵀv + vᵀw)/2 uᵀv

s = (v2+ 2 vᵀw)/2 uᵀv

t = 0.5

t =−uᵀw/2 uᵀv

t = (u2− uᵀw)/2 uᵀv

6.4 Distance Calculation between SSV Primitives 105

depending on the working precision of the operation/computer, is usually defined
in the range of 10−15 ≤ ε ≤ 10−6. However, under certain circumstances this test
will fail and select the code path for the parallel lines. Hence, a modified criterion is
investigated.

Two vectors u and v are co-linear if we have

u

‖u‖ ·
v

‖v‖ = 1 .

Squaring and bringing the fraction to the other side gives

1− (u
ᵀv)2

u2 v2 = 0 .

Which finally leads to

u2 v2− (uᵀv)2
u2 v2 =

N

u2 v2 = 0 (6.32)

⇔ N = 0 . (6.33)

From a mathematical point of view, (6.32) and (6.33) are equal and using N < ε
should be good to test for co-linearity. However, from a numerical point of view (6.32)
is favorable. A simple numerical example reveals the problem:

v =
�

0.03
0.03

�
m

u =
�

0.03
0

�
m

The two vectors shown on the left are definitely not parallel
and (for a real-world example) have a reasonable length of
a few cm. Evaluating the denominator N in (6.31) (resp.
nominator N in (6.33)) and using ε = 10−6 to test for near-
zero value of N gives
N = u2 v2− (uᵀv)2 = 16.2 · 10−7− 8.1 · 10−7

= 8.1 · 10−7 < 10−6 = ε.
Here, the numerical criterion from (6.33) fails and the vectors are identified to be
co-linear, which is obviously wrong. Decreasing ε resolves the problem in this case but
would lead to numerical instabilities for very long vectors.

However, when applying the numerical criterion from (6.32) we get N/(u2 v2) =
0.5≥ 10−6 = ε and the non-parallel case is correctly identified. �

Therefore, replacing the simple criterion (N < ε) by adopting (6.32)

u2v2− (uᵀv)2
u2 v2 =

N

u2 v2 < ε (6.34)

to identify the parallel case is numerically more robust.
A pseudo-code for the calculation of the minimum distance between two line-

segments is presented in Algorithm B.1 (Section B.1 on page 141).

106 6 Real-Time Distance Computation using Swept-Sphere-Volumes

v l1 v t2

v t1v t0

v l0

e l e t1

e t0

w

n t

Figure 6.7: Quantities needed for the line-segment to triangle distance calculation.

6.4.5 Line-Segment to Triangle Distance Computation

With reference to Figure 6.7 each point on line L(t) and triangle T (s) is described by

L(t) := v l0+ t e l and T (s) := v t0+ s0 e t0+ s1 e t1 , (6.35)

where

e l := v l1− v l0 , e t0 := v t1− v t0 , e t1 := v t2− v t0 , (6.36)

are the edge vectors of the line and triangle respectively.

Intersection Point Between (Infinite) Line and Plane

A line and a plane always intersect each other in IR3, unless they are parallel. In order
to find that intersection point, we define the unified connection vector

c = T (s)−L(t) (6.37)

= w + D x with D =
�

e t0 e t0 −e l

�
∈ IR3×3. (6.38)

Here, vector w = v t0− v l0 connects the base points, x =
�

sᵀ t
�ᵀ
=
�

s0 s1 t
�ᵀ

is

the vector of parameters and matrix D =
�

e t0 e t0 −e l

�
∈ IR3×3. Objective function

φ(x) from (6.7) to minimize the distance then is written as:

φ(x) =
1

2
(w + D x)2. (6.39)

Minimization x ∗ = arg min
x
φ leads to

∂ φ

∂ x
= Dᵀ (w + D x)

!
= 0 , (6.40)

6.4 Distance Calculation between SSV Primitives 107

0 1

s0

0 1

t

s1

1

s0 +
s1 =

1

s0+ s1 > 1

Feasible Region

Line-Segment t-Parameter

Triangle s0-s1-Plane

Figure 6.8: Feasible regions for the line-segment (parameter t) to triangle distance calculation
(parameters s0, s1).

and solving for x obtains the parameters x ∗ which minimize φ:

x ∗ =−D−1 w (6.41)

=
1

nᵀt e l

�
e l × e t,1 e t,0× e l n t

�ᵀ
w with n t := e t0× e t1 , (6.42)

were n t is the normal vector of the triangle. Equation (6.42) is singular, if the
denominator becomes zero:

nᵀt e l = 0 ⇔ n t ⊥ e l ⇔ L(t) ‖ T (s) , (6.43)

in which case line L and plane T are parallel.10 Similar to the line to line distance
calculation (see page 103), it is more robust to directly test for parallelism instead of
watching for near-zero denominator in (6.42) to avoid division by zero.

A line defined along e l and a plane with the normal vector n t are parallel if

n t

‖n t‖
· e l

‖e l‖
= 0 , (6.44)

and hence, a numerically robust criterion to identify the parallel case is given by

− ε ≤ n t

‖n t‖
· e l

‖e l‖
≤ ε ⇒

����
n t

‖n t‖
· e l

‖e l‖

����≤ ε , (6.45)

where ε is a small, positive number (typically: 10−15 ≤ ε ≤ 10−6).

10 Obviously, in the trivial case of a degenerated line or triangle we also get n te l = 0.

108 6 Real-Time Distance Computation using Swept-Sphere-Volumes

Table 6.6: Minimal enumeration of possible cases and corresponding constraint states for the
non-parallel line-triangle distance function. The cases are combined from table Line and
Triangle giving a total of 3 × 7 = 21 cases. Constraint-state symbols are defined below,
i. e., active means violation of the constraint.

Line

Cases Conditiona)

[a-c] t ≤ 0 t ≥ 1

a � �
b �
c �

Triangle

Cases Conditiona)

[0-6] s0 ≤ 0 s1 ≤ 0 s0+ s1 ≥ 1

0 � � �
1 � � �
2 � � �
3 � �
4 � � �
5 � �
6 � � �

a) constraint violation symbols: �→ active,�→ inactive, “ ”→ implicitly inactive

For the distance calculation between an infinite line parallel to a plane the reader is
referred to Section 6.4.3 and using the first vertex of the line v l0 as point p therein.

Line-Segment to Triangle Distance Calculation

Since (6.41) gives the unbound parameters x ∗ of the intersection point between line
and plane, the boundaries of the geometry are considered in this section for the
non-parallel and parallel case, respectively.

Non-Parallel Line and Triangle Referring to Section 6.4.2 and 6.4.3, a total of
ncases, PL× ncases, PT = 3× 7= 21 cases must be considered here. Table 6.6 enumerates
these based on the constraint states. If one of the three parameters in x is outside
their feasible region, a two-step approach is developed —analogously to the line-line
distance calculation in Section 6.4.4. First, t0 is calculated from (6.42) to

t0 =
nᵀt w

nᵀt e l
. (6.46)

If t0 is within the feasible region t ∈ [0,1], t0 is accepted (⇒ t1 = t0) and s1 is also
calculated using (6.42) to

s1 =
�

s0

s1

�

1

=
1

nᵀt e l

�
e l × e t,1 e t,0× e l

�ᵀ
w . (6.47)

6.4 Distance Calculation between SSV Primitives 109

Table 6.7: Line-segment to triangle distance calculation: Region specific solution strategies to
obtain the closest points pL and pT on the line and triangle respectively. The regions are
defined in Figure 6.3 on page 98. Here, the solution from step 1, i. e., s1 is used. The function
denoted by “LL” is the line-line distance function found in Section 6.4.4. For regions 1, 3 and 5,
which are close to vertices of the triangle, the line-line distance is computed to both edges
originating on that vertex and the result with the smaller distance is used.

Region Condition based on s1 Strategy for the closest points

0 s0 ≥ 0 ∧ s1 ≥ 0 ∧ s0+ s1 < 1
pT = v t0+

�
e t0 e t1

�
s1

pL= v l0+ te l

1 s0 < 0 ∧ s1 < 0 min
d

�
LL(v t0, v t1, v l0, v l1)
LL(v t0, v t2, v l0, v l1)

�

2 s0 ≥ 0 ∧ s1 < 0 ∧ s0+ s1 < 1 LL(v t0, v t1, v l0, v l1)

3 s1 < 0 ∧ s0+ s1 ≥ 1 min
d

�
LL(v t1, v t0, v l0, v l1)
LL(v t1, v t2, v l0, v l1)

�

4 s0 ≥ 0 ∧ s1 ≥ 0 ∧ s0+ s1 ≥ 1 LL(v t1, v t2, v l0, v l1)

5 s0 < 0 ∧ s0+ s1 ≥ 1 min
d

�
LL(v t2, v t0, v l0, v l1)
LL(v t2, v t1, v l0, v l1)

�

6 s0 < 0 ∧ s1 ≥ 0 ∧ s0+ s1 < 1 LL(v t0, v t2, v l0, v l1)

Now, if also candidate s1 is located in the feasible region of the triangle, the line-
segment intersects the triangle and the distance is zero. Since the shortest connection
vector c∗ = 0, the closest points pSSV,i on the SSV surfaces are not uniquely defined
(cf. (6.11)).11

If, on the other hand, t0 from (6.46) is outside its bounds we set t1 = sat(t0, 0, 1)
to saturate t on [0, 1]. Now, (6.21) from page 99 to calculate the distance between
point

p =

(
v l0 for t1 = 0

v l1 for t1 = 1
(6.48)

and plane P(T) is applied to obtain s1.
By studying s1, seven independent regions about the triangle must be considered.

Table 6.7 summarizes strategies to obtain the closest points pL and pT on the line and
triangle respectively. The function denoted by “LL” is the line-line distance function
from Section 6.4.4. For regions 1, 3 and 5, which spread out from the vertices of the

11 Note that this problem exists also for all other SSV-based distance computations. For SSVs with
radii of ri > 0 their volumes overlap —and collision is detected— before intersection between the
primitive geometry occurs. In the context of robot control, however, a safety policy to switch of
the robot becomes active. Therefore, the problem of intersecting primitives is only of theoretical
interest.

110 6 Real-Time Distance Computation using Swept-Sphere-Volumes

triangle, the line-line distance is computed to both edges originating on that vertex
and the result giving the smaller distance is used.

The presented approach can be summarized as follows:

Initialize t0 from (6.46)

Step 1 t1 =





0 for t0 < 0
1 for t0 > 1

�
⇒ s1 from (6.21) using p = v l0+ t1e l

t0 otherwise ⇒ s1 from (6.47)

Step 2 Finally, apply strategy from Table 6.7 using s1 to identify the region

Parallel Line and Triangle Several strategies to cope with all possible cases arising
for the parallel case can be developed. By e. g., applying the point-triangle distance
calculation using the end points of the line-segment, seven cases for both points are
to be considered resulting in a total of 72 = 49 cases. Since the amount of cases
becomes quite large, an exhaustive search approach is quite efficient in this case, i. e.,
by calculating the distances between all possible edge to edge combinations (three in
this case) and using the result with the shortest distance. Hence, the line-segment to
line-segment distance calculation from Section 6.4.4 is used.

Unified Approach A unified approach, to cope with the parallel and non-parallel case
at the same time, is to calculate the edge-edge and point-triangle distances and use
the result giving the shortest distance.

6.4.6 Triangle to Triangle Distance Computation

Since the combinational space of cases to be considered for the triangle-triangle
distance computation is very large, the functions derived so far can be applied to
generate an efficient algorithm. One approach is to calculate all nine possible edge-
edge and six vertex-triangle combinations and use the result which gained the shortest
distance.

6.4.7 General Framework of Minimization Using Inequality
Constraints

The problem of finding the closest points between two manifolds can always be defined
as an optimization problem in the form of (6.3). In this section, a more formal
approach based on a minimization with inequality constraints is developed. The goal
is to have a general framework for distance computation which is usable for both
development and verification.

6.4 Distance Calculation between SSV Primitives 111

∇g3(x 2)

g3 = 0

g2 = 0

g 1
= 0

−∇φ(x 2)
∇g2(x 1)

−∇φ(x 2)
∇g1(x 1) ∇g2(x 2)

x 2

x 1

Constraint g ≤ 0

φ =
const.

Unconstrained minimum

Figure 6.9: Geometric illustration of the Karush-Kuhn-Tucker optimality conditions with the
gradients on two points x 1 and x 2.

For this purpose, the manifolds S are defined more rigorous in the form of

S(x) =
�
x ∈ X : gi(x)≤ 0 for i = 1, . . . , m

	
, (6.49)

where the inequality constraints gi(x) : IRn→ IR for i = 1, . . . , m specify the feasible
region and X is an open set in IRn.

Strictly speaking, the mathematical representation of the manifold depends on a
finite set of parameters x . The manifold class plane P := T (x), for example depends on
the parameters x = (s0, s1)ᵀ (cf. (6.5), Section 6.3.3). Additional inequality constraints
g (x) ≤ 0 define the boundary of the manifold, e. g., the sub-manifold triangle T is
obtained from plane P using (6.6) to g (x) = (−s0, −s1, s0+ s1− 1)ᵀ ≤ 0.

Problem (6.8) —which was the basis for all our derivations so far— is now cast as
an optimization problem with inequality constraints. We define the objective function

φ(x) :=
1

2
cᵀc with c := S1(x 1)− S0(x 0) . (6.50)

Here, x = (x 0, x 1)ᵀ is the parameter vector combining the parameter set from both
manifolds Si(x i). The inequality constraint problem (ICP) is now written as:

minimize φ(x)
subject to g (x)≤ 0 .

(6.51)

Using the method of Lagrange multipliers, we obtain the Lagrange function:

L(x ,µ) = φ(x) +µᵀg (x) , (6.52)

112 6 Real-Time Distance Computation using Swept-Sphere-Volumes

where µ = (µ1, . . . ,µr)ᵀ is a Lagrange multiplier vector. By following the Karush-Kuhn-
Tucker (KKT) necessary conditions for a local minimum, x ∗ is a local minimum of
above problem (6.51) if

∇x L(x ∗,µ∗) = 0

µ∗j ≥ 0, j ∈
¦

j | g j(x
∗) = 0

©
,

µ∗j = 0, j ∈
¦

j | g j(x
∗)< 0

©
.

(6.53)

This effectively transforms the inequality constraints into equality constraints for which
sophisticated solver strategies exist (cf. one of the many textbooks on optimization
e. g., [13, 17, 20, 105]).

Figure 6.9 illustrates the Karush-Kuhn-Tucker optimality conditions on two points
x 1 and x 2. Evaluation of (6.53) at x 1 suggests that it is not a local minimum, due to
µ1∇g1(x 1)< 0. Point x 2, however, satisfies the KKT criterion, which is obvious from
the figure: vector −∇φ is located between ∇g2 and ∇g3 and hence, µ≥ 0 holds.

In the field of optimization several algorithms have been developed which are able
to solve ICP (6.51). Depending on the properties of the manifolds and their boundaries
different algorithms must be applied. For e. g., a non-convex problem the KKT criterions
may fail and a global search of the minimum is required. In most cases, however, ICP
(6.51) can be solved by a sequence of quadratic programming problems (SQP). Many
modern numerical software packages, such as MATLAB,12 SCILAB,13 MATHEMATICA14 and
MAPLE,15 are able to solve SQPs quite efficiently. Table 6.8 summarizes algorithms
applicable to different classes of manifolds and inequality constraints.

Since above ICP, in general, can’t be solved directly, an iterative approach must be
chosen. Starting from an initial guess {x 0, µ0} a feasible search direction d is calculated
to obtain x i = x i−1 + d i such that φ(x i) decreases in each iteration i until {x ∗, µ∗}
is reached. In order to test for convergence, the KKT conditions are applied in each
iteration i. Finding a feasible direction d i leads to a complementary problem, which
is solved in each iteration. In [159] an optimization based approach to calculate the
minimal distance between polyhedra is presented. Therein, the feasible direction d is
calculated by considering geometry.

However, for simple geometries, such as points, line segments or triangles, geometri-
cal considerations and vector calculus is usually enough to derive a minimal distance
algorithm. On the other hand, in order to obtain an efficient algorithm, sometimes

12 MATLAB is a commercial numerical computing environment, developed by THE MATHWORKS, INC.
(http://www.mathworks.com/)

13 SCILAB is an open source software for numerical computation (http://www.scilab.org/)
14 MATHEMATICA is a commercial product for technical computing, developed by WOLFRAM RESEARCH

(http://www.wolfram.com/mathematica/)
15 MAPLE is a commercial computer algebra system, developed by MAPLESOFT

(http://www.maplesoft.com/products/maple/)

http://www.mathworks.com/
http://www.scilab.org/
http://www.wolfram.com/mathematica/
http://www.maplesoft.com/products/maple/

6.5 Implementation Details and Run-Time Performance 113

Table 6.8: Classification of the resulting optimization problem depending on the type of manifold
and inequality constraints.

Manifold Function Inequality Constraint Solver Strategy

linear, convex linear, convex active set algorithms, line search, SQP
linear, convex nonlinear, convex active set algorithms, line-search, SQP

nonlinear nonlinear global minimization

many different algorithms must be explored or combined, which may also subject to
tuning code for a specific computer platform.

Basically, the algorithms presented in Sections 6.4.2 . . . 6.4.6 are solvers to a specific
optimization problem. Therein, the complementary problems are solved in an implicit
manner and the number of “iterations” is fixed (e. g., two for the two-step algorithm of
the line-line distance computation). Numerical experiments conducted with different
optimization software packages show good convergence behavior. However, the
general framework of optimization usually takes many iterations to find the minimal
distance. Furthermore, the number of iterations is not predictable, which limits the
usability in a real-time scenario. On the other hand, for some combinations of even
simple shapes no analytic distance function is known and numerical solutions are the
only option left [151].

6.5 Implementation Details and Run-Time Performance
Since the distance calculation is performed in real-time on the on-board PC of Lola,
the implementation must be computationally efficient. Therefore, vector and matrix
calculations are implemented using the SIMD16 units of the CPU. Table 6.9 compares
the run-time of the implemented distance computation functions between the three
types of SSV. The measurements were performed on the on-board PC under the 32-bit17

real-time OS QNX 6.4.1 on an Intel Core2 Duo T7600 mobile CPU running at 2.33 GHz.
Depending on the level of detail the distance computation takes 50− 500µs for the
whole collision model (see Figure 6.15) which makes the integration in real-time
control possible.

It is obvious that the complexity of the primitive also influences the computational
effort of the distance calculation, i. e., the relative run-time trel,i := tabs,i/tabs,PP for
TSS-TSS is over 10 times higher compared to PSS-PSS. Therefore, a good trade off
between geometric representation and computational efficiency should be found.

16 Single Instruction Multiple Data: an efficient way of performing one instruction on more than one
number.

17 The run-time improves significantly in 64-bit mode. However, currently no 64-bit QNX version for
x64 hardware is available.

114 6 Real-Time Distance Computation using Swept-Sphere-Volumes

Table 6.9: Run-time comparison for the implemented distance calculation functions. The num-
bers are obtained from Lola’s on-board PC.

Distance
calculation
functiona

abs.
run-time

(tabs)
stdev(tabs)

rel.
run-time

(trel)
stdev(trel)

[µs] [ns] [−] [−]

PP 0.0886 0.136 1.00 0.000
PL, LP 0.1256 0.155 1.42 0.001

LL 0.1555 0.624 1.76 0.007
PT, TP 0.1392 0.821 1.57 0.010
LT, LT 0.3614 1.519 4.08 0.015

TT 0.8887 0.300 10.03 0.015
a Point-, Line- and Triangle-swept-sphere volume, e. g., PL = distance computation func-

tion from a Point-SSV to a Line-SSV

Moreover, run-time performance is greatly influenced by the computer platform and
compiler (cf. Section 2.10 for a discussion of the topic). Run-time experiments con-
ducted on more recent Intel-CPU-based 64-bit computer systems using the GNU/Linux
OS show results which are by an order of magnitude faster compared to Table 6.9.
However, relative run-times are larger on Linux.

6.6 Modeling of the Robot Segments

6.6.1 Compounds of SSVs as Robot Segments
The complex shape of the robot’s segments is simplified by a set of SSVs. Using
triangulated high-resolution CAD models of the segments as templates, the segments
are remodeled manually. Figure 6.10 illustrates the manual remodeling process for
the upper and lower leg. Non-convex simplified shapes of the segments are created
with this method. The SSV representations are then used to calculate the closest
points and distances between a pair of segments by computing the minimal distances
between each SSV from both sets. Since several segments of the robot are symmetric,
only one version has to be modeled while the opposite version is gained by affine
transformations. This greatly reduces the manual modeling effort.

6.6.2 A Versatile Modeling Tool
In order to remodel the complex CAD geometry using SSVs a versatile, simple to
use modeling tool is developed. The tool is designed as plug-in for the simulation
result viewer application. The viewer was developed in cooperation with THOMAS

BUSCHMANN and provides software interfaces for animation and visualization usable

6.6 Modeling of the Robot Segments 115

Figure 6.10: The complex CAD-geometry (upper and lower leg shown on the le�) is remodeled
using swept-sphere-volumes (center) enabling an e�icient distance computation (adopted
from [125]).

1

2

3

4

Figure 6.11: The SSV modeling tool (dialog on the right) integrated into the simulation results
viewer ANIM, shown on the le�. 1) interactive 3-D-viewport; 2) file handling and drawing
appearance; 3) tools to create, copy, delete and select SSVs; 4) SSV class specific properties,
like name, radius, vertex coordinates and mirror options.

116 6 Real-Time Distance Computation using Swept-Sphere-Volumes

1 2 3

4 5 6

Figure 6.12: Interactive and intuitive modeling of the SSVs by moving the handles for (3) radius,
(4-5) vertices and (6) SSV using the mouse pointer. The visual appearance changes in selection
mode (1→ 2). Handles are highlighted when hovering over their location (3-6).

by the plug-ins. This modular approach simplifies the development of small, self-
contained and problem-specific plug-ins for all kinds of graphical visualizations. Other
plugins include animation and visualization of results gathered during simulation,
planning or experiments, as well as a real-time visualization of the robot’s state. The
interactive 3-D-viewport is based on OpenGL18 and libQGLviewer19 and provides basic
functions for panning, zooming, object selection and manipulation, exporting still
images, movies and static 3-D scenes [28].

Figure 6.11 shows a snapshot of the viewing application with the SSV modeling
plug-in loaded. The tool provides functionality to:

• Load and save SSV compound files.20

• Load and render tesselated 3-D CAD-geometry files in VRML97/WRL21 file format
used as template for modeling.

18 OpenGL is a platform-independent API for developing 2-D and 3-D graphics applications
(http://www.opengl.org)

19 libQGLViewer is a C++ library based on Qt that eases the creation of OpenGL 3-D viewers
(http://www.libqglviewer.com)

20 The simple and compact libconfig C/C++ library is used to process text-based configuration files
(http://www.hyperrealm.com/libconfig/).

21 Virtual Reality Modeling Language is a file format for 3-D models standardized as ISO/IEC 14772
(http://www.web3d.org/x3d/specifications/vrml/ISO-IEC-14772-VRML97). The loader
developed in this work implements a relevant subset of the full ISO standard to load WRL-files
exported from CATIA V5. CATIA was used to design Lola.

http://www.opengl.org
http://www.libqglviewer.com
http://www.hyperrealm.com/libconfig/
http://www.web3d.org/x3d/specifications/vrml/ISO-IEC-14772-VRML97

6.7 Integration of Bounding Boxes 117

• Render and control the visualization of SSVs.

• Create, manipulate, copy and delete SSVs.

• Intuitively manipulate SSVs via handles in the 3-D-viewport using the mouse.

• Exploit symmetries within the segment by mirroring individual SSVs about
axis-planes.

The intuitive concept for the handle-based modeling is illustrated in Figure 6.12. Visual
appearance changes when a SSV is selected (2) and manipulation handles are enabled.
Handle indicators are highlighted (3-6) when the mouse pointer approaches their
location in the 3-D-viewport. Additional numerical entry fields in the configuration
dialog of the plug-in enable a precise positioning of vertices and selection of radius
values (see Figure 6.11-4).

6.7 Integration of Bounding Boxes
Computing the distance between SSV segments having m and n SSV objects is of
O(mn) algorithmic complexity, since it is an exhaustive search algorithm. Hence,
pruning distance calculations between sufficiently separated segments by a computa-
tionally cheap pre-selection can reduce costs significantly. Common collision detection
libraries use space partitioning methods or bounding volume hierarchies to reject most
of the time-consuming collision checks between complex geometries. For distance
computation, however, these approaches can’t be adopted efficiently and reliably [132].
On the other hand, methods like GJK can’t be used either, since the SSV representation,
in general, has a non-convex shape. In [117] a bounding sphere based hierarchical
approach is presented for proximity queries.

A feasible approach, however, is to generate a bounding box (BB) for each segment
enlarged by a tolerance and test for box-intersection prior to distance computation. In
order to reliably compute distances below a predefined threshold value, or tolerance,
da, the BB must be enlarged by da/2. Since collision avoidance becomes active only
if segments are closer than a predefined threshold distance, i. e., da, this is a viable
approach. A similar approach is used in the collision detection libraries SWIFT and
SWIFT++22 [44].

Axis-aligned bounding boxes (AABB) are computationally efficient, since overlap
testing reduces to one-dimensional problems in each axis direction. However, AABBs
must be refitted after each configuration change. More importantly, the volume for po-
tential overlap might increase substantially leading to more false positive intersection
tests and distances are calculated unnecessarily [109]. On the other hand, oriented

22 Swift++ is publicly available: http://gamma.cs.unc.edu/SWIFT++

http://gamma.cs.unc.edu/SWIFT++

118 6 Real-Time Distance Computation using Swept-Sphere-Volumes

da da/2da/2

Figure 6.13: Tight oriented bounding boxes are enlarged by da/2 to reliably compute distances
below a threshold distance da when intersection occurs.

bounding boxes (OBB) usually have a tighter fit to the wrapped geometry, but intersec-
tion tests are more complex [109]. Since the segments of the robot are relatively close
to each other during walking motion, OBBs are implemented to increase chances of
non-intersecting BBs. Figure 6.13 illustrates the approach of enlarging each OBB by
da/2 to reliably compute distances below da.

The computational cost for OBB intersection testing is about 2 to 3 times higher than
line-line distance computation in Table 6.9. Therefore, this approach is well suited
for more complex SSV-models. Depending on the threshold da, however, the state of
intersection might not be left, i. e., da is too large, and the approach is useless.

6.8 System Overview
The SSV library is implemented using the object oriented programming language C++.
Figure 6.14 shows the structure and integration of the framework as a UML-diagram.23

The basic framework consists of three classes of SSVs: PSS, LSS and TSS (point,
line and triangle SSV, respectively) which can be used to model an SSV_Segment
(cf. Section 6.6.1). Each segment is therefore composed of several SSVs and one
BoundingBox which surrounds the SSVs (cf. Section 6.7). A SegmentPair is an
aggregation of two SSV_Segments. A segment-pair defines between which segments
distances are to be calculated. The main difference between aggregation, denoted by
“ ”, and composition, denoted by “ ”, is that objects in a composition are created
and destructed by the composition, and hence, do not exist without the composition.

23 Unified Modeling Language (http://www.uml.org/) is developed and standardized by the
Object Management Group (http://www.omg.org)

http://www.uml.org/
http://www.omg.org

6.8 System Overview 119

SSV library InvKinematics

1

1

1..*

2
11..*

1

1 1

2..*
1 1

11..*
1

2..*

DistCalcResult

SegmentPair

SSV_Segment

BoundingBoxPSS

SSV_DistCalculator

SSV

LSS TSS

IKRobot

IK_ColAvoid

Segment

DKRobot

imports/uses from composition of association

inherit from aggregation of constraint

Figure 6.14: UML class diagram of the SSV library framework implementation and its integration
into the inverse kinematics.

The inverse kinematics module implements a collision avoidance scheme denoted
by IK_ColAvoid which is described in Chapter 5. During initialization, individual
SSV-segments are created and linked to their direct kinematics counterpart Segments.
A DKRobot object is composed of multiple segments and provides a mapping between
joint positions to link positions and orientations. If collision between two segments
is likely to happen, segment-pairs are predefined manually. Since collision between
e. g., head and toes are impossible, such pairs can be excluded which reduces com-
putational cost. SSV-segments are loaded from files produced by the modeling tool
described in Section 6.6.2. This approach makes it easy to define multiple SSV versions
of a segment enabling optimization. Therefore, if only a subset of the segment can
collide in a segment-pair, a specialized version of the SSV-segment containing only this
subset is built for inclusion in this segment-pair. E.g., since upper legs will only collide
on the inside and arms collide only with the outside part of the upper legs, either the
outside or the inside geometry is irrelevant for a segment-pair. Hence, the thigh is mod-
eled in two versions each applied to a different segment-pair. Such model-reduction
decreases the computational effort in real-time operation substantially.24

24 The concept could even be extended by defining groups of SSVs inside a SSV-segment and only
assign specific groups to a segment-pair. This approach reduces the number of files needed.

120 6 Real-Time Distance Computation using Swept-Sphere-Volumes

Figure 6.15: Visualization showing the collision robot model with the underlying CAD-geometry.
The collision model is based on Swept-Sphere-Volumes (SSV). The closest SSVs within a
segment are drawn opaque and the color indicates the distance. The colorbar on the right
ranges from zero to the largest gap. The red indicator is dynamically changing and displays
the smallest gap.

During real-time operation, the inverse kinematics module calls the collision avoid-
ance module which updates SSV-segment positions and orientations from direct kine-
matics. Each SSV-segment holds a constant non-transformed state of the SSVs, which is
then transformed to a common FoR, where distance computation is executed. Currently,
the planning FoR of the inverse kinematics module is used. The SSV_DistCalculator
contains all functions for SSV distance computation presented in this chapter. The
SSV_DistCalculator is used by the SSV-segments to find the shortest connecting
vector between a segment-pair. Each segment-pair then holds a distance result saved
in a DistCalcResult structure. Collision avoidance then works based on these results
(cf. Chapter 5).

Figure 6.15 presents a simulation snapshot showing the collision model of Lola
while walking forwards.

The SSV library is used also in other current robotics projects at the Institute of
Applied Mechanics. Figure 6.16 shows the collision avoidance model of a robot
manipulator with nine DoFs [11, 12]. The manipulator is developed as a research
platform for fruit harvesting and spraying within the research project CROPS25 funded
by the European Commission. The programming integration work took only a few
hours, which demonstrates the flexibility of the framework.

25 Clever Robots for Crops (http://www.crops-robots.eu)

http://www.crops-robots.eu

6.9 Chapter Summary 121

Figure 6.16: The CROPS robot manipulation arm uses SSV models for collision detection and
avoidance. The lines represent shortest distances between segment-pairs.

6.9 Chapter Summary
This chapter gave an overview of the framework for computing the minimal distance
between the robot’s segments. Since distances are used in real-time for collision
avoidance, only a very short amount of time is permissible for distance calculation.
Hence, all distance computations are designed for efficiency. The concept of Swept-
Sphere-Volumes (SSVs) is adopted to model the segments of the robot. In this work,
three classes of SSVs are implemented to enable flexibility in the modeling process
and efficient computation. Equations and strategies for distance computation between
all classes are derived. Furthermore, a general optimization based approach using
inequality constraints to calculate the minimal distances between arbitrary manifolds is
presented. The method can be used both as development tool and for implementation
verification.

Since the complex outer shape of Lola’s segments can be greatly simplified for
collision avoidance, the presented modeling approach works surprisingly well. An
intuitive 3-D program is developed for fast creation of SSV-representation of the robot
segments by using triangulated high-resolution CAD-meshes as templates. The program
provides a simple to use graphical user interface with an interactive 3-D-viewport
where new SSVs can be added, shaped and positioned with the mouse. Additionally,
symmetries within the link as well as between its left and right version can easily be
exploited. This greatly reduces the manual modeling effort.

Finally, the framework integration into the collision avoidance module, along with
an application in another current robotics research project is presented. This shows
the flexibility of the framework.

7 Use of Angular Momentum in Walking Control

7.1 Introduction
In order to enable real-time execution, current real-time walking pattern generators
(WPG) employ simplified dynamics models of the robot. A classical approach is to
reduce the dynamics of the whole robot to a point mass. This “inverted pendulum”
model of the robot can further be enhanced by using additional point masses for the
feet (see [136] for a detailed review). The model is typically used to compute stable
trajectories for the robot’s CoG and zero-moment-point for several steps in advance,
which are then tracked during walking. However, mainly due to the differences
between the simple mass model and the real robot, the walking pattern must further
be stabilized using sensor feedback. Methods to compensate for these dynamics errors
exist [29, 136].

Since the mass model used in planning neglects the angular momentum of the robot
—and therefore, its full dynamics— several researchers proposed to incorporate the
angular momentum into walking control to obtain improvements [64, 71, 72, 125].
Especially for running robots the conservation of angular momentum during flight
phases is important [135, 137].

In this chapter, two different methods which incorporate the angular momentum into
walking control are presented. The methods are designed to work in combination with
the WPG algorithm presented by BUSCHMANN [28]. Therein, the angular momentum
of the robot is not considered and, therefore, implicitly assumed to be zero. The
methods proposed here, are embedded in the inverse kinematics framework of Lola
and enable better tracking of the planned trajectories. Due to the integration into
inverse kinematics, it is not confined to BUSCHMANN’s WPG but can be adapted to any
kinematically redundant walking machine.

Furthermore, a simple method to plan vertical angular momentum trajectories is
presented in this chapter.

7.2 Angular Momentum
The overall angular momentum of a rigid-body system about its CoG is given by

LCoG, sys =
nBodies∑

i

IC
i ωi +mi r i × ṙ i ∈ IR3 . (7.1)

123

124 7 Use of Angular Momentum in Walking Control

Here ωi is the angular velocity and IC
i is the inertia matrix with respect to the CoG of

the ith body. Vectors r i and ṙ i denote position and velocity of the body CoG relative to
the system’s CoG, respectively.

Since tree-structured mechanisms, such as a biped walking robot, can be described
using generalized coordinates q , we can rewrite the right hand side of (7.1) as:

LCoG, sys = J Lq̇ , (7.2)

where J L := ∂ LCoG, sys/∂ q̇ ∈ IR3×nq is the angular momentum Jacobian. Therefore, the
angular momentum is linear to generalized velocities of the mechanism.

7.3 Angular Momentum Compensation via Null-Space
Motion

With the collision avoidance presented in Chapter 5 it is possible to remove specific
tasks from task-space vector x which is used in the inverse kinematics. Rewriting the
solution of the resolved motion rate control for redundant robots given in (4.12) we
have

q̇ = J#
W ẋ − NW−1y . (7.3)

Here, y is an arbitrary vector, which is projected via matrix N into the null-space of task
x . Usually, y consists of the gradient to an optimization criterion H (see Section 4.3.1
for more details).

Especially at higher walking speeds, fast leg motion produces fast changes in total
angular momentum. The resulting vertical contact torques can lead to foot-ground-
contact slippage, which in turn can destabilize the robot. A common approach (also
observed in human beings) is to use the arms to reduce this effect. However, in general
this approach is limited by physical constraints, mainly due to the mass ratio between
legs and arms as well as joint limits.

Lola has no batteries on-board and the arms are quite lightweight, since they have
only three drives and an end-mass. Therefore, the overall mass and inertia of the
upper body is low compared to other biped robots. Consequently, it is not possible to
completely compensate the influence of the heavier legs on the angular momentum
over a full gait cycle.

7.3.1 Reference Method
In order to compare the performance of the newly developed method, a reference
scheme is briefly described. The method was developed by BUSCHMANN to control Lola
and is described in [28].

7.3 Angular Momentum Compensation via Null-Space Motion 125

The center of gravity (CoG) of the arms is controlled relative to the robot CoG.
Reference values are calculated from CoG position of the opposite leg relative to the
robot CoG. Since the arms are shorter than the legs, the compensating motion is
scaled down accordingly. This approach is implemented in task-space of the inverse
kinematics and works efficiently. Because of its task-space implementation, however,
singularities occur close to workspace boundaries. This has proved to be an issue,
especially for larger step lengths.

7.3.2 Proposed Method

This section describes an extended algorithm to a method previously presented by the
author in [125]. The method is extended to set a reference angular momentum about
the vertical axis. For this approach the arm CoG positions are removed from task space
description x .

The main idea of the method is to split the robot DoFs into two groups: DoFs
which produce and DoFs which reduce angular momentum, denoted by qp and q r

respectively. Here, motion of the unconstrained DoFs is used to cancel the vertical
angular momentum produced by the remaining DoFs, i. e., q r := q free. The scalar
equation for the angular momentum with respect to the robot CoG about the z-axis
then becomes

LCoG
d,z = LCoG

p,z − LCoG
r,z , (7.4)

where LCoG
d,z is a desired reference angular momentum. Again, indices ‘p’ and ‘r’ denote

producing and reducing DoFs, respectively. For the sake of readability reference point
‘CoG ’ is omitted in the following. Using (7.2), (7.4) is rewritten as:

Ld,z = JL,p,z q̇p− JL,r,z q̇ r . (7.5)

The optimization problem

minimize ‖q̇ r‖2

subject to JL,p,z q̇p− JL,r,z q̇ r− Ld,z = 0 ,
(7.6)

is solved to obtain minimal q̇ r which gives

q̇ r = J#
L,r,z (JL,p,z q̇p− Ld,z) , (7.7)

with the generalized inverse of a vector a# := aᵀ/‖a‖2. The resulting q̇ r lead to
strange arm motions when executed directly. Therefore, arm movement is removed

126 7 Use of Angular Momentum in Walking Control

from the task description x and added to the null-space of (7.3) instead:

y = α
�
∂ H

∂ q

�ᵀ
+ q̇ r , (7.8)

where α is a gain and ∂ H/∂ q contains other optimization criteria to account for joint
limit avoidance, posture drift compensation and collision avoidance (cf. Chapters 4
and 5).

On the other hand, due to physical constraints, we typically have Lp− Ld > Lr for
Lola. Hence, it is not possible to satisfy the equality constraint in (7.6) at all times
which leads to a singularity and q̇ r → ∞. Therefore, solution (7.7) is replaced by
introducing an adequate normalization which proved to be stable:

q̇ r = ‖JL,r,z‖ J#
L,r,z (JL,p,z q̇p− Ld,z) . (7.9)

This relatively simple approach works surprisingly well when combined with the
presented joint limit avoidance and self-collision avoidance in the null-space of the
inverse kinematics. Results from both simulation and experiments are shown in the
following sections.

7.3.3 Simulations

The simulations are conducted with the multibody system (MBS) simulation framework
presented in Chapter 2. Figure 7.1 compares the resulting vertical angular momentum
L and its rate of change L̇ for the reference method and the proposed method. The
effective angular momentum peaks are reduced by approximately 20 % and those for
L̇ by approximately the same amount. Especially the proposed approach proved to be
effective when walking with larger step lengths.

7.3.4 Experiments

This section shows experimental results with two examples showing both the effec-
tiveness of the collision avoidance and the angular momentum compensation with the
arms during walking.

Walking Forwards

The angular momentum about the CoG of the robot cannot be measured directly and
calculation is difficult due to unknown or uncertain parameters. However, angular
momentum compensation about the vertical axis should effectively reduce the reaction
torque about the z-axis, τz. Therefore, τz is used to evaluate effectiveness of the
proposed compensation. In order to obtain comparable results, Lola executes a

7.4 Angular Momentum Trajectory 127

−2

0

2
L z

[k
g

m
2 /s]

LCoG
z,ref

LCoG
z,amc

7 7.5 8 8.5 9 9.5 10 10.5 11

−20

0

20

time [s]

L̇ z
[N

m
]

L̇CoG
z,ref

L̇CoG
z,amc

Figure 7.1: Vertical angular momentum Lz (top) and its rate of change L̇z (bottom) evaluated
from MBS about the center of gravity in simulation. Indices ‘ref’ and ‘amc’ denote the re-
sults with the arm motion from the reference implementation and the proposed method
respectively (step length: 0.4 m, step time: 0.8 s).

pre-defined step sequence. Figure 7.2 shows a frame sequence from a video of
an experiment. The sequence consists of a full step cycle. Figure 7.3 shows the
measured torque τz during this gait cycle for the proposed method and the reference
implementation.

7.4 Angular Momentum Trajectory
When incorporating the angular momentum into walking control a fundamental
problem is to find an appropriate reference angular momentum trajectory Lref(t).
KAJITA et al. develop an offline walking controller based on the total momentum of
the robot [72]. Similar to the proposed method described above only the vertical
component of the angular momentum is considered. The vertical angular momentum
reference is set to zero to let the robot HRP-2 walk [72] and run forwards [71].

128 7 Use of Angular Momentum in Walking Control

0.0 s 0.2 s 0.4 s 0.6 s 0.8 s

1.0 s 1.2 s 1.4 s 1.6 s 1.8 s

Figure 7.2: Video frame sequence when walking forwards with the proposed angular momentum
tracking combined with collision avoidance.

TAJIMA et al. adopt the method to develop a running controller for the Toyota Partner
Robot [135]. The angular momentum reference is calculated in planning stage from
the linear inverted pendulum model of the robot CoG. In order to avoid unusual
stepping motion, it is assumed that the robot is solid and has a diagonal inertia matrix.
The angular momentum reference about the sagittal axis is then obtained from planned
CoG velocities [135].

In the proposed approach presented above a simple cubic function is used for the
angular momentum reference trajectory Lref,z for the duration of the current step Tstep:

Lref,z(t) =
3∑

i=0

ai (t − tb)
i for t ∈ [tb, te], Tstep = te − tb . (7.10)

Here, times tb and te denote the beginning and ending times of a step, respectively.
Coefficients ai are calculated from boundary values of Lref,z and its rate of change
L̇ref,z, respectively. Thereby, current values for Lref,z and L̇ref,z are used as initial values.
Moreover, boundary end values are defined by:

Lref,z(te) := ICoG
z,z ϕ̇u(te) and L̇ref,z(te) := 0 . (7.11)

Here, ICoG
z,z := ICoG

z,z (q0) is the constant vertical mass moment of inertia of the whole
robot, calculated from an initial configuration q0, e. g., while standing still before

7.4 Angular Momentum Trajectory 129

−30

−20

−10

0

10

20

τ
z,

r
[N

m
]

τz,r,ref

τz,r,amc

7 8 9 10 11 12 13
−20

−10

0

10

20

time [s]

τ
z,

l
[N

m
]

τz,l,ref

τz,l,amc

Figure 7.3: Vertical contact torques for the right (top) and le� (bottom) foot when walking
forwards with 1.4 km/h in experiment. Indices ‘ref’ and ‘amc’ denote the results with the
arm motion from the reference implementation and the proposed method respectively (step
length: 0.4 m, step time: 1 s).

walking. The vertical rotation rate ϕ̇u of the upper body is approximated by

ϕ̇u(te)≈∆ϕu/Tstep , (7.12)

where ∆ϕu is the relative cornering angle of the upper body during one step and
input to the walking controller. Effectively, this approach sets the reference value for
the vertical angular momentum to zero while walking forwards (∆ϕu = 0 in (7.12)).
When cornering, however, a rigid robot is assumed which achieves a constant rotation
rate ϕ̇u at the end of each step. This relatively simple approach works surprisingly well
when combined with the walking controller presented by BUSCHMANN in [28].

130 7 Use of Angular Momentum in Walking Control

7.5 Angular Momentum Minimization

Another approach to integrate the angular momentum into walking control, previ-
ously presented by the author in [126] and developed in cooperation with THOMAS

BUSCHMANN, is presented in this section. The main idea here is to reduce the foot-
ground slippage torque τz by minimizing the angular momentum Lz, since its rate of
change is L̇z ∝ τz.

By combining problem (4.11) and property (7.2) we obtain the optimization problem
which fits the resolved motion rate control method [154] extended with the framework
of redundancy resolution proposed by LIÉGEOIS [81] (cf. (4.11), pp. 73)

minimize
1

2
q̇ᵀ(δE + JᵀL,z JL,z︸ ︷︷ ︸

W ∈ IRn×n

) q̇ +αN(∇q H)ᵀq̇

subject to ẋ − Jx q̇ = 0 .

(7.13)

Since the weighting matrix W must be invertible and (JᵀL,z JL,z) is rank deficient, we
add an additional term δE. The variable δ is a positive constant and E is the unit
matrix.

Analogously to (4.12) on page 73 solving (7.13) for q̇ gives

q̇ = J#
x ,W ẋ −αN NW−1

�
∇q H(q)

�ᵀ
,

with N := E−J#
x ,W Jx is the null-space projection matrix of the W -weighted generalized

inverse J#
x ,W := W−1Jᵀx

�
Jx W−1Jᵀx

�−1
.

Since W is dense, computing its inverse is not trivial. However, the special structure
of the weighting matrix W can be seen as a rank-1 update of a matrix A = δE with
the dyadic product uvᵀ = JᵀJ . The inversion of W then fits the Sherman-Morrison-
Woodbury identity [65]:

(A+ u vᵀ)−1 = A−1− A−1 u vᵀ A−1

1+ vᵀ A−1 u
. (7.14)

Substitution of uvᵀ = JᵀJ and the trivial inverse of A−1 = (δ E)−1 = (1/δ)E into
(7.14) and simplification leads to

W−1 =
1

δ

�
E − JᵀL,z J L,z

δ+ J L,z JᵀL,z

�
. (7.15)

Therefore, W−1 can be computed quite efficiently.1

1 Thanks to Prof. dr. ir. DANIEL RIXEN for pointing out the relation between W−1 and (7.14).

7.5 Angular Momentum Minimization 131

−2

−1

0

1

2

L z
[k

g
m

2 /s]

LCoG
z,ref

LCoG
z,min

6.5 7 7.5 8 8.5 9 9.5
−40

−20

0

20

time [s]

τ
z

[N
m

]

τz,r,ref

τz,r,min

Figure 7.4: Simulation results comparing the vertical angular momentum about the CoG (above)
and the vertical slippage torque acting on the right foot in experiment (below) of a reference
solution (blue line; no arm motion) and the proposed method (red line).

Experiments

The plots in Figure 7.4 compare the proposed method with a reference solution (i.e.
W = E). The vertical angular momentum about the CoG is obtained in simulation.
The slippage torque τz is measured from the force-torque sensor in the foot during
experiment. Figure 7.5 was taken during the experiment using the proposed method
(walking parameters: step time: 0.8 s, step length: 0.4 m). It can clearly be seen, that
not only the angular momentum is reduced about 40 % but also the slippage torque
peaks are lower by approximately 15 %.

Although, the method works in principle, the exact selection of parameter δ is
subject to tuning. In the experiments shown here we chose δ = 0.5. The weighting
of the joint velocities can also degrade the motion capabilities in general. Moreover,
the collision avoidance in null-space is not guaranteed to work in all situations. The
reason for this seems the dense weighting matrix W , which also changes the relative
weighting.

Overall, the method presented in Section 7.3 works more efficiently.

132 7 Use of Angular Momentum in Walking Control

0.0 s 0.2 s 0.4 s 0.6 s 0.8 s

1.0 s 1.2 s 1.4 s 1.6 s 1.8 s

Figure 7.5: Video frame sequence when walking forwards with the proposed angular momentum
minimization scheme combined with collision avoidance

7.6 Chapter Summary
This chapter deals with the important aspect of angular momentum in walking control.
Two methods are presented.

The first method explicitly splits the robot into joints which produce and joints which
can be used to track a desired reference. The former are typically important for the
task, i. e., walk and maintain balance, while the latter are part of the null-space.

The second method is the output from a local optimization problem which attempts
to minimize the joint velocities as well as their contribution to the total vertical angular
momentum.

For both methods simulations and experiments are shown in this chapter. Especially
the first method works effectively to track a desired angular momentum reference and
produces natural looking arm movements at the same time.

The problem of choosing an adequate reference angular momentum which should
be tracked during walking is discussed and a simple, general approach to generate a
reference trajectory is presented.

Due to physical constraints (ratios between masses and between inertias of the robot
segments and joint constraints) of the robot and the difficult nature of the angular
momentum, a real tracking of a reference is not possible with Lola.

8 Conclusion and Outlook

Humanoid robots have great potential to operate in cluttered environments. In this
scenario, bipedal locomotion is considered one of the core technologies, since wheel-
based locomotion is often unfeasible. A brief summary and discussion of key ideas and
contributions is given in the following section. The final section provides suggestions
for future research based on the methods presented in the preceding chapters.

8.1 Summary
This thesis covered three aspects important to biped robots. In the first part, an efficient
algorithm for the simulation of multibody systems (MBS) with small kinematic loops is
presented. The modeling of mechatronic systems typically introduces (small) kinematic
loops, since drive mechanisms are modeled as rigid elements. Rigid drive mechanisms
reduce both the number of degrees of freedom (DoF) and the effort of time integration
simultaneously (cf. Introduction). A straightforward implementation for solving the
equations of motion (EoM) of MBS leads to an asymptotic algorithmic complexity of
O(n3). Specifically for tree-structured MBS, O(n)-algorithms have been developed
in the past decades. Since the algorithmic complexity grows only linearly with the
number of DoFs, these algorithms are superior toO(n3)-algorithms even for a moderate
number of DoFs.

In this work, a novel O(n)-algorithm based on sub-systems is derived which is able
to cope with kinematic loops. Sub-systems are only used to group loop-bodies and
solve kinematic loops in a closed form. Hence, sub-systems can be interpreted as
meta-bodies which effectively restore the tree-topology of the MBS. Consequently, this
approach enables a unified application of the O(n)-algorithm.

In order to reduce the modeling effort, an automatic conversion of existing MBS
with kinematic loops into sub-systems is presented. Sub-systems are instantiated only
where loops are detected. This reduces the computational overhead from sub-systems
to a minimum. From a practical point of view, this conversion process is key to facilitate
a unified application of both O(n3) and O(n)-algorithm.

The proposed method is implemented in the framework for simulating biped robots
developed by BUSCHMANN [28]. The original implementation uses an O(n3)-method
already optimized for tree-like structures. Especially for small kinematic loops —found
in mechatronic systems, such as Lola— the proposed algorithm works quite efficiently.
The computational efficiency is also shown in a comparative study applied to different
test systems.

133

134 8 Conclusion and Outlook

The second part of this thesis presents approaches for self-collision avoidance and
angular momentum tracking for biped robots. Both methods exploit the kinematic
redundancy of Lola with respect to the chosen task space description. The framework
proposed by LIÉGEOIS is adopted for local optimization of redundancy.

Self-collision avoidance works by minimizing a repulsive collision cost function in
the null-space of the inverse kinematics. The cost function uses the closest points
on two segments of the robot and applies a distance-based repulsive law to keep the
segments separated. A new formulation for the repulsive law is developed which works
effectively for both fast and slow motions. Because of the local optimization, a general
global minimization of the cost function, and therefore, global collision free motion,
is not guaranteed. However, simulations and experiments with Lola have shown the
effectiveness of the system for a wide range of conditions.

To facilitate real-time execution of the proposed self-collision avoidance, a framework
to compute the closest points between two segments efficiently is developed. The
method adopts the concept of swept-sphere-volumes (SSV) to remodel the segments
of the robot. Distance computation between three classes of SSVs is derived. The use
of triangle SSVs is proposed which allows for a more versatile geometric modeling
process. In addition, a general methodology based on optimization with inequality
constraints is derived for effective distance computation for arbitrary shapes.

Due to run-time restrictions for real-time execution, the evaluation of a full dynamics
model of the robot along with inverse kinematics during planning stage is not possible
with current computer systems. Typically, reduced robot models which approximate
the system dynamics using point masses are used for this purpose. As a consequence,
angular momentum of the full model is neglected. To satisfy this approximation
during trajectory tracking, two methods to incorporate the angular momentum into
walking control are developed. Both methods work cooperatively with the proposed
self-collision avoidance.

The first method explicitly splits the robot’s joints into two groups where one group
is used for tracking a vertical angular momentum reference trajectory. Moreover, an
efficient method to generate feasible vertical angular momentum reference trajectories
is presented. The second method solves a local optimization problem which minimizes
both the joint velocities and their contribution to the total vertical angular momentum
of the robot.

For both methods simulations and experiments are presented. Especially the first
method works effectively to track a desired angular momentum reference. Interestingly,
the kinematic redundancy chosen for these methods improves walking performance in
general and produces more natural looking arm movements at the same time.

Due to physical constraints of the robot and the difficult nature of the angular
momentum, a real tracking of a reference is not possible with Lola.

8.2 Recommendations for Future Work 135

8.2 Recommendations for Future Work
Based on the experience gained during this thesis, several suggestions for future
research in the field can be made. Especially future generations of more powerful
computer systems could meet the requirements for the application of most methods
developed in this work into real-time planning of biped walking robots.

Efficient simulation enables refined dynamics models of the robot used in walking
pattern generation. This would reduce errors due to dynamics approximation and
hence, lead to increased walking stability. However, the resulting global optimization
problem is computationally heavy.

It is predicted that future generations of computer systems enable faster computation
only through parallelism. Therefore, branches of the robot model, i. e., branches due
to robot limbs, could be exploited to facilitate parallelism in simulation. Moreover,
for globally optimal walking pattern generation (see above), computing the inverse
kinematics and dynamics simulation in parallel improves run-time execution. This is
feasible, since there is typically a delay in communication between gathered sensor
data and control commands. Moreover, run-times for inverse kinematics and dynamics
computation are almost identical for Lola.

The self-collision avoidance along with the fast distance computation developed in
this work, can be extended towards environment obstacle avoidance. An adequate
sensor system to gather a sufficiently accurate environment model would be required
in this scenario.

Since the presented methods for self-collision avoidance and vertical angular mo-
mentum tracking are local methods, a global optimum is typically not achieved. Thus,
self-collision avoidance is not guaranteed. Semi-global optimization which predicts
system behavior for a certain time interval improves the situation.

On the other hand, hierarchical inverse kinematics could be applied to hierarchize
tasks including collision avoidance.

In order to further develop walking pattern generators towards running controllers,
tracking of angular momentum seems to be important, as already pointed out by
others (cf. [71, 135, 137]). Especially during free-flight phases, conservation of
angular momentum is key to control the robot’s attitude while running. Ultimately,
further research in this field might contribute also to advancements in walking control.

Finally, in order to improve angular momentum tracking, modifications to Lola’s
hardware would be favorable. Especially a heavier upper body and/or heavier arms
could improve tracking significantly.

Appendix A

Mathematical Toolbox

A.1 Notation and Operators
Notations and mathematical operators used in this thesis are defined in this section.

Notation In this work scalars, vectors and matrices are denoted by the following type
face notation

Type Denoted by Example

scalar normal face type x , L ∈ IR
vector bold face type, lower case r ∈ IR3×1

matrix bold face type, upper case A ∈ IR3×3

Transposed Vectors and Matrices Vectors are always defined as column-vectors,
while row-vectors are denoted by the transposed (·)ᵀ version:

a =




a1
...

an


 ∈ IRn, aᵀ =

�
a1 a2 · · · an

�
∈ IR1×n,

A=




A1,1 A1,2 · · · A1,m

A2,1 A2,2 · · · A2,m
...

...
. . .

...
An,1 A1,2 · · · An,m


 ∈ IRn×m, Aᵀ =




A1,1 A2,1 · · · An,1

A1,2 A2,2 · · · A1,2
...

...
. . .

...
A1,m A2,m · · · Am,n


 ∈ IRm×n.

Dot-Product denoted by “·” of two vectors a ∈ IRn and b ∈ IRn

c = a · b = aᵀb :=
n∑

i=1

ai bi = a1 b1+ a2 b2+ · · ·+ an bn , (A.1)

where c ∈ IR is the resulting scalar value. Furthermore, the form

a2 := a · a (A.2)

137

138 Appendix A Mathematical Toolbox

is used for brevity.

Cross-Product of two vectors a ∈ IR3 and b ∈ IR3:

a× b :=




a2 b3− a3 b2

a3 b1− a1 b3

a1 b2− a2 b1


 . (A.3)

Tilde-Operator of a vector a ∈ IR3 generates a skew-symmetric matrix in the form

ã =




a1

a2

a3



∼

:=




0 −a3 a2

a3 0 −a1

−a2 a1 0


 , (A.4)

such that the multiplication with a vector b ∈ IR3

ãb = a× b , (A.5)

resembles the cross-product. The tilde operator is often used for brevity.
Moreover, the following useful identities hold [23]

eab = eb
ᵀ
a =−eba , (A.6)

eaa = a× a = 0 , (A.7)

eaeb = baᵀ− bᵀaE , (A.8)

Ý
eab = baᵀ− abᵀ = eaeb− ebea , (A.9)

Ý
eabc = eceba , (A.10)

eaeaea =−ea ‖a‖2 , (A.11)

eaebeba = ebeaᵀeab , (A.12)

eaebc+ ebeca+ eceab = 0 . (A.13)

2-Norm of a vector a ∈ IRn

‖a‖2 = ‖a‖ :=
p

a · a =
s

n∑
i=1

a2
i =
p

a2
1 + a2

2 + · · ·+ a2
n . (A.14)

A.2 Coordinate Transformations
Rotation matrix AKI ∈ IR3×3 is used to transform a vector denoted in frame of reference
(FoR) I into FoR K . Since rotation matrices are orthonormal, following useful identities

A.3 Partial Derivatives 139

can be exploited:

AKI = A−1
IK = AᵀIK , (A.15)

AKI AᵀKI = E, (A.16)

with the unit matrix E ∈ IR3×3

Vectors vector K a ∈ IR3 is transformed from FoR I to FoR K using the transformation
matrix AKI ∈ IR3×3 to

K a = AKI I a and I a = AᵀKI K a . (A.17)

Tensor Matrices tensor matrix K T ∈ IR3×3 is transformed from FoR K to FoR I using
the transformation matrix AKI ∈ IR3×3 to

I T = AᵀKI K T AKI . (A.18)

A.3 Partial Derivatives

In this section, s ∈ IR is a scalar, a ∈ IRm and b ∈ IRn are vectors of functions and
vectors of variables, respectively.

Derivative of a Vector with Respect to a Scalar

∂ a

∂ s
:=




∂ a1

∂ s
...
∂ am

∂ s


 , (A.19)

where a = a(s) : IR→ IRm is a vector valued function

Derivative of a Scalar with Respect to a Vector

∂ s

∂ b
:=
h
∂ s
∂ b1

· · · ∂ s
∂ bn

i
, (A.20)

where s = s(b) : IRn→ IR is a function of multiple variables b ∈ IRn.

140 Appendix A Mathematical Toolbox

Derivative of a Vector with Respect to a Vector – Jacobian Matrix The derivative of a
vector using a vector is obtained by subsequently applying (A.19) and (A.20) yielding

∂ a

∂ b
:=




∂ a1

∂ b
...
∂ am

∂ b


=




∂ a1

∂ b1
· · · ∂ a1

∂ bn
...

. . .
...

∂ am

∂ b1
· · · ∂ am

∂ bn


 , (A.21)

where a = a(b) : IRn → IRm is a vector field. The resulting matrix is called Jacobian
matrix due to CARL GUSTAV JACOB JACOBI.

Derivative of a Matrix Using a Scalar Analogously to (A.19), for a matrix A(s) ∈ IRm×n

we have

∂ A

∂ s
:=




∂ A1,1

∂ s
· · · ∂ A1,n

∂ s
...

. . .
...

∂ Am,1

∂ s
· · · ∂ Am,n

∂ s


 . (A.22)

Gradient Notation The gradient notation is used for brevity and is equivalent to the
partial derivative from (A.21):

∇b a :=
∂ a

∂ b
, (A.23)

where a = a(b) : IRn→ IRm for n, m ∈ IN.

Quadratic Equations The partial derivative of a quadratic form

s = x ᵀAx , A ∈ IRn×n, A is symmetric (A.24)

is

∂

∂ x
(x ᵀAx) = x ᵀA+ x ᵀAᵀ = 2x ᵀA for A= Aᵀ , (A.25)

and for the second partial derivative we have

∂ 2

∂ x ∂ x ᵀ
(x ᵀAx) =

∂

∂ x ᵀ
(2x ᵀA) = 2A . (A.26)

Appendix B

Pseudo-Code for Distance Calculation
Algorithms

This chapter refers to Chapter 6 and contains pseudo-code for some distance calculation
algorithms of the swept-sphere-volume library developed in this work.

B.1 Line-Segment to Line-Segment
In Algorithms B.1, B.2 and B.3 the pseudo-code for one possible solution to the
calculation of the minimum distance between two line segments is shown. A detailed
derivation can be found in Section 6.4.4 on page 99.

Algorithm B.1: Line to Line Distance calculation algorithm with references to Algorithms B.2
and B.3 below.

Input: r0, p00, p01, r1, p10, p11
Output: d, c, p0, p1

1: u ← p01− p00 // precalculations
2: v ← p11− p10
3: w ← p10− p00
4: N ← (u2)(v2)− (uᵀv)2
5: if parallel e. g., Eq. (6.34) then
6: call Alg. B.2 for parallel case

7: else // skewed lines
8: call Alg. B.3 for non-parallel case
9: end if

10: pres,0← p00+ s u // final calculations
11: pres,1← p10+ t v
12: c← pres,1− pres,0
13: d ← ‖c‖− r0− r1

141

142 Appendix B Pseudo-Code for Distance Calculation Algorithms

Algorithm B.2: Line to Line Distance calculation algorithm — parallel case in Algorithm B.1

Input: u, v , w
Output: s, t

N ← 2uᵀv
if uᵀw < 0 then

if uᵀv + uᵀw < 0 then
s← 0

5: t ←
(

0 if uᵀv < 0

1 otherwise
else if uᵀv + uᵀw > u2 then

s← 0.5
t ← (u2− 2uᵀv)/N

else
10: s← (v2+ vᵀw)/N

t ← (uᵀv − uᵀw)/N
end if

else if uᵀw > u2 then
if uᵀv + uᵀw < 0 then

15: t ← 0.5
t ← (u2− 2uᵀw)/N

else if uᵀv + uᵀw > u2 then
s← 1

t ←
(

1 if uᵀv < 0

0 otherwise
20: else

s← (uᵀv + v2+ vᵀw)/N
t ← (uᵀv + u2− uᵀw)/N

end if
else

25: if uᵀv + uᵀw < 0 then
s← vᵀw/N
t ←−uᵀw/N

else if uᵀv + uᵀw > u2 then
s← (uᵀv + vᵀw)/N

30: t ← (u2− uᵀw)/N
else

s← (v2+ 2vᵀw)/N
t ← 0.5

end if
35: end if

Algorithm B.3: Line to Line Distance calculation algorithm — non-parallel case in Algorithm B.1

Input: u, v , w , N
Output: s, t

tZ ← uᵀv uᵀw − u2 vᵀw
tN ← N
if tZ < 0 then // 1) saturate t

tZ ← 0
5: sZ ← uᵀw

sN ← u2

else if tZ > tN then
tZ ← tN
sZ ← uᵀv + uᵀw

10: sN ← u2

else
sZ ← v2uᵀw − uᵀv vᵀw
sN ← N

end if

15: if sZ < 0 then // 2) saturate s
s← 0

t ←





0 −vᵀw < 0

1 −vᵀw > v2

(−vᵀw)/v2 otherwise
else if sZ > sN then

s← 1

20: t ←





0 uᵀv − vᵀw < 0

1 uᵀv − vᵀw > v2

uᵀv − vᵀw
v2 otherwise

else
s← sZ/sN
t ← tZ/tN

end if

Appendix C

Inverse Kinematics: Orientation Error in Task
Space

For the closed-loop inverse kinematics algorithm in (4.14) on page 74 the position
error ∆x at time instant t i is required. For linear positions, this is simply the difference
between desired and current position in task space, i. e., ∆x pos(t i) = x pos− fpos(q(t i)).
Where fpos(q) denotes the task space position gained via forward kinematics from
current generalized positions q . On the other hand, the orientation error of an
orientation task depends on the specific orientation definition in task space. Since
orientations can be defined in several ways (see also: Section 2.4.4, 6-DoF joints), it is
a good idea to calculate ∆x rot in a unified way from rotation matrices.

Figure C.1 illustrates a feasible approach to calculate ∆x rot for an orientation
task using equivalent angle-axis representation [40, 97]. Essentially, the misalignment
between two FoRs, is expressed by an axis ee and an angle γ:

∆x rot = γee , (C.1)

which are calculated from axis directions of the desired and current orientation,
respectively. These axis directions are the column vectors of the corresponding rotation
matrices Ad := (e x ,d , e y,d , ez,d) and A := (e x , e y , ez) describing the desired and current
FoR orientations. Moreover, Ad is calculated from task space, i. e., Euler angles, and A
is gained through forward kinematics from q .

eeγ e y,d

ez,d

e x ,d

e x

ez

e y

γ= acos
�

1

2

�
eᵀxe x ,d + eᵀye y,d + eᵀz ez,d − 1

��

ee =
1

2sinγ

�
e x × e x ,d + e y × e y,d + ez × ez,d

�

(ee = 0 for γ= 0)

Figure C.1: Equivalent angle-axis representation is used to calculate the misalignment between
two FoRs.

143

144 Appendix C Inverse Kinematics: Orientation Error in Task Space

x y

z = z′

z′′ = z′′′

x ′ = x ′′

x ′′′

y ′

y ′′
y ′′′

ϕ̇

ϑ̇

ψ̇

ϑ̇

ψ̇

ϕ̇

x y

z

ω

ϑ

ψ
ϕ

Figure C.2: Euler Z-X-Z angles to rotate FoR (x , y, z) to FoR (x ′′′, y ′′′, z′′′); le�: rotation sequence:
angle ϕ about z, angle ϑ about rotated x ′ and angle ψ about rotated z′′; right: resulting
angular velocity vectorω= ϕ̇ + ϑ̇+ ψ̇, where ϕ̇ points along z-axis, ϑ̇ points along x ′-axis
and ψ̇ points along z′′-axis.

If a task defines desired orientations by means of three successive, independent
elementary rotations, e. g., Euler Z-X-Z angles, the axes of rotation (and hence, also
according angular velocities) are not orthogonal to each other. Figure C.2 illustrates
this for the Euler Z-X-Z angles, where we have

x rot =



ϕ
ϑ
ψ


 and ẋ rot =



ϕ̇

ϑ̇

ψ̇


 . (C.2)

The rotation matrix Ad projecting FoR d into reference FoR I is written as1

AId(x rot) =




cϕ cψ− sϕ cϑ sψ − cϕ sψ− sϕ cϑ cψ sϕ sϑ

sϕ cψ+ cϕ cϑ sψ − sϕ sψ+ cϕ cϑ cψ − cϕ sϑ

sϑ sψ sϑ cψ cϑ


 . (C.3)

Which can be used to recalculate the angles

ψ=

(
0 if A3,1 = 0 ∧ A3,2 = 0

atan2 (A3,1, A3,2) otherwise ,
(C.4a)

ϑ = atan2 (A3,1 sψ+ A3,2 cψ, A3,3) , (C.4b)

ϕ = atan2 (A2,1 cψ− A2,2 sψ, A1,1 cψ− A1,2 sψ) . (C.4c)

1 s(·) := sin(·) and c(·) := cos(·)

145

Since the components of ẋ rot are defined along their specific axis of rotation (cf. Fig-
ure C.1), a transformation is required in order to add feedback term K x∆x . With
reference to Figure C.1, the individual angular velocity vectors are transformed via

ω(x , ẋ) =




0 cϕ sϕ sϑ
0 sϕ − cϕ sϑ
1 0 cϑ




︸ ︷︷ ︸
T(x rot)



ϕ̇

ϑ̇

ψ̇




︸ ︷︷ ︸
ẋ rot

, (C.5)

where matrix T projects ẋ rot into reference FoR I . Conversely, ẋ is obtained from ω by



ϕ̇

ϑ̇

ψ̇


= 1

sϑ



− sψ cϑ cψ cϑ sϑ
cψ sϑ sψ sϑ 0

sψ − cψ 0


ω , (C.6)

which has a singularity for sinϑ = 0. For other orientation definitions see, e. g., [25].
With (C.5) we can now rewrite the differential kinematic equation (4.6) for a single

orientation task to

T ẋ rot = T∂ frot(q)/∂ q q̇ , (C.7)

or more general:

ω= JR q̇ , (C.8)

where JR := ∂ ω

∂ q̇
is the Jacobian matrix of rotation. Note that (C.8) is now independent

from the specific definition of the orientation task, since it uses angular velocity ω.
Therefore, (C.1) and (C.8) fit also to orientation tasks defined by unit quaternions (see
[128]), since a rotation matrix Ad and desired angular velocity ω can be calculated.

Example For a task defining positions and an orientation suitable for a manipulator,
i. e., x := (x pos x rot)ᵀ, the differential kinematic equation (4.6) writes to

�
ẋ pos

ω

�

︸ ︷︷ ︸
ẋω

=
�

J T (q)
JR(q)

�

︸ ︷︷ ︸
Jω

q̇ , (C.9)

where ω is calculated from (C.5) and J T := ∂ fpos(q)/∂ q is the Jacobian of translation.
Because of the geometric interpretation of the task velocity ẋω the Jacobian Jω is
often referred to as “geometric Jacobian”. An efficient computation of Jω for this
manipulator example is presented in [110]. Solving (C.9) for q̇ (cf. (4.14) on page 74)

146 Appendix C Inverse Kinematics: Orientation Error in Task Space

leads to

q̇ i = J#
ω

˙̂x i , (C.10)
˙̂x i := ẋω(t i) + K x∆x i

�
x i,q i

�
, (C.11)

∆x i :=
�
∆x pos ∆x rot

�ᵀ
. (C.12)

Notes on Trajectory Generation for Orientation Tasks Defining orientations or more
importantly: orientation trajectories2 is not always intuitive. Therefore, the framework
using (C.1) and (C.8) is well suited in order to get a unified base for solving the IK
problem.

Moreover, the equivalent angle-axis representation can be adopted for orientation
interpolation purposes. The orientation between two FoRs, whose orientations are
given by rotation matrices A0 and A1 valid at time instances t0 and t1, can easily be
interpolated using equivalent angle-axis representation and interpolating angle γ. This
approach, known as SLERP3, is letting points move along circular paths about the
axis of rotation. On the other hand, simple interpolation of angles from subsequent
elementary rotations, i. e., Euler angles, lead to strange motion, especially around
singular points.

2 That is, how a FoR should rotate during time.
3 SLERP: spherical linear interpolation

List of Abbreviations
CAD Computer Aided Design
CAM Computer Aided Manufacturing
CLI Command Line Interface
CoG Center of Gravity
CoM Center of Mass
CPU Central Processing Unit
CROPS Clever Robots for Crops (research project funded by the

European Commission in the 7th Framework Programme)
DAE Differential Algebraic Equation
DoF Degree of Freedom; “DoFs” often synonymous for “number of DoFs”
EoM Equation of Motion
FD Forward Dynamics
FMI Functional Mock-up Interface
FMU Functional Mock-up Unit
FoR Frame of Reference
GCC GNU Compiler Collection
GNU GNU’s Not Unix
GPU Graphics Processing Unit
GUI Graphical User Interface
HD Harmonic Drive (gear)
ID Inverse Dynamics
IK Inverse Kinematics
I/O Input and/or Output
ISO International Organization for Standardization
MBS Multibody System
ODE Ordinary Differential Equation
RAM Random Access Memory
RSC Reverse Sparse Cholesky

(includes decomposition and/or factorization)
SSV Swept Sphere Volume

147

Bibliography

[1] ARMSTRONG, W. W. “Recursive solution to the equations of motion of an n-
link manipulator”. In: Proc. 5th World Congress on Theory of Machines and
Mechanisms. Vol. 2. 1979, pp. 1343–1346.

[2] ASCHER, U. M., CHIN, H., PETZOLD, L. R., and REICH, S. “Stabilization of
constrained mechanical systems with DAEs and invariant manifolds”. In:
Journal of Structural Mechanics 23, 2 (1995), pp. 135–157.

[3] Atlas - The Agile Anthropomorphic Robot. Boston Dynamics. Oct. 2013. URL:
www.bostondynamics.com/robot_Atlas.html.

[4] AYUSAWA, K. and NAKAMURA, Y. “Fast Inverse Kinematics Algorithm for Large
DOF System with Decomposed Gradient Computation Based on Recursive
Formulation of Equilibrium”. In: Proc. IEEE Int. Conf. Intell. Robots Syst. (IROS).
2012, pp. 3447–3452.

[5] BADLER, N. I., PHILLIPS, C. B., and WEBBER, B. L. Simulating Humans: Computer
Graphics, Animation, and Control. Oxford University Press, 1999.

[6] BAE, D.-S. and HAUG, E. J. “A Recursive Formulation for Constrained Mechan-
ical System Dynamics: Part II. Closed Loop Systems”. In: Mechanics Based
Design of Structures and Machines 15 (1987), pp. 481–506.

[7] BAERLOCHER, P. and BOULIC, R. “Task-Priority Formulations for the Kinematic
Control of Highly Redundant Articulated Structures”. In: Proc. IEEE Int. Conf.
Intell. Robots Syst. (IROS). Vol. 1. IEEE. 1998, pp. 323–329.

[8] BALAKRISHNAN, R. and RANGANATHAN, K. A Textbook of Graph Theory. Springer,
2012. DOI: 10.1007/978-1-4614-4529-6.

[9] BAUMGARTE, J. “Stabilization of constraints and integrals of motion in dynami-
cal systems”. In: Computer methods in applied mechanics and engineering 1, 1
(1972), pp. 1–16.

[10] BÄUML, B., BIRBACH, O., WIMBÖCK, T., FRESE, U., DIETRICH, A., and HIRZINGER, G.
“Catching flying balls with a mobile humanoid: System overview and design
considerations”. In: Proc. IEEE Int. Conf. Humanoid Robots (Humanoids). 2011,
pp. 513–520. DOI: 10.1109/Humanoids.2011.6100837.

[11] BAUR, J., PFAFF, J., ULBRICH, H., and VILLGRATTNER, T. “Design and development
of a redundant modular multipurpose agricultural manipulator”. In: Advanced
Intelligent Mechatronics (AIM), 2012 IEEE/ASME International Conference on.
2012, pp. 823–830. DOI: 10.1109/AIM.2012.6265928.

149

www.bostondynamics.com/robot_Atlas.html
http://dx.doi.org/10.1007/978-1-4614-4529-6
http://dx.doi.org/10.1109/Humanoids.2011.6100837
http://dx.doi.org/10.1109/AIM.2012.6265928

150 Bibliography

[12] BAUR, J., PFAFF, J., SCHÜTZ, C., and ULBRICH, H. “Dynamic modeling and
realization of an agricultural manipulator”. In: Proc. of XV International
Symposium on Dynamic Problems of Mechanics, DINAME. ABCM. Buzios, RJ,
Brazil, Feb. 2013.

[13] BAZARAA, M. S., SHERALI, H. D., and SHETTY, C. M. Nonlinear Programming:
Theory and Algorithms. Wiley-interscience, 2006.

[14] BEN-ISRAEL, A. and GREVILLE, T. N. Generalized inverses: theory and applications.
Vol. 15. Springer, 2003.

[15] BENALLEGUE, M., ESCANDE, A., MIOSSEC, S., and KHEDDAR, A. “Fast C1 proximity
queries using support mapping of sphere-torus-patches bounding volumes”.
In: Proc. IEEE Int. Conf. Robot. Autom. (ICRA). IEEE. 2009, pp. 483–488.

[16] BENTLEY, J. L. “Multidimensional Binary Search Trees Used for Associative
Searching”. In: Communications of the ACM 18, 9 (1975), pp. 509–517.

[17] BERTSEKAS, D. P. Nonlinear programming. Athena Scientific, 1999.

[18] BLOCHWITZ, T., OTTER, M., ÅKESSON, J., ARNOLD, M., et al. “Functional Mockup
Interface 2.0: The standard for tool independent exchange of simulation
models.” In: Proc. of the 9th International Modelica Conference. Ed. by OTTER,
M. and ZIMMER, D. Munich, Germany, Sept. 2012. DOI: DOI:10.3384/
ecp12076173.

[19] BONDY, J. A. and MURTY, U. S. R. Graph Theory. Graduate texts in mathematics
Vol. 244. New York: Springer, 2008.

[20] BONNANS, J. F., GILBERT, J. C., and LEMARÉCHAL, C. Numerical optimization.
Springer, 2007.

[21] BRANDL, H., JOHANNI, R., and OTTER, M. “A Very Efficient Algorithm for the
Simulation of Robots and Similar Multibody Systems without Inversion of the
Mass Matrix.” In: IFAC/IFIP/IMACS Symposium on Theory of Robots. 1986,
pp. 95–100.

[22] BRANDL, H., JOHANNI, R., and OTTER, M. “An Algorithm for the Simulation of
Multibody Systems with Kinematic Loops”. In: Proc. of the IFToMM Seventh
World Congress on the Theory of Machines and Mechanisms. 1987, pp. 407–411.

[23] BREMER, H. Dynamik und Regelung mechanischer Systeme. Leitfäden der
angewandten Mathematik und Mechanik; Bd. 67. (German). Stuttgart:
Teubner Verlag, 1988.

[24] BREMER, H. “Dynamik von Mehrkörpersystemen mit elastischen Bauteilen”. In:
Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM) 65, 12 (1985),
pp. 613–621. DOI: 10.1002/zamm.19850651208.

http://dx.doi.org/DOI: 10.3384/ecp12076173
http://dx.doi.org/DOI: 10.3384/ecp12076173
http://dx.doi.org/10.1002/zamm.19850651208

Bibliography 151

[25] BREMER, H. Elastic Multibody Dynamics – A Direct Ritz Approach. Ed. by
TZAFESTAS, S. G. Vol. 35. Intelligent Systems, Control, and Automation: Science
and Engineering. Springer, 2008. DOI: 10.1007/978-1-4020-8680-9.

[26] BREMER, H. “Subsystem Computation of Large Mechanical Systems”. In:
Proc. 7th World Congress on Theory of Machines and Mechanisms. Mar. 1987,
pp. 413–16.

[27] BREMER, H. and PFEIFFER, F. Elastische Mehrkörpersysteme. (German). Teubner
Verlag, 1992.

[28] BUSCHMANN, T. “Simulation and Control of Biped Walking Robots”. Disserta-
tion. Technische Universität München, 2010. URL: http://nbn-resolving.
de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20101201-997204-1-6.

[29] BUSCHMANN, T., WITTMANN, R., SCHWIENBACHER, M., and ULBRICH, H. “A
Method for Real-Time Kineto-Dynamic Trajectory Generation”. In: Proc. IEEE
Int. Conf. Humanoid Robots (Humanoids). 2012.

[30] BUSCHMANN, T., FAVOT, V., LOHMEIER, S., SCHWIENBACHER, M., and ULBRICH, H.
“Experiments in Fast Biped Walking”. In: Proc. IEEE Int. Conf. Mechatronics
(ICM). Apr. 2011.

[31] BUSCHMANN, T., LOHMEIER, S., SCHWIENBACHER, M., FAVOT, V., ULBRICH, H.,
HUNDELSHAUSEN, F. von, ROHE, G., and WÜNSCHE, H. “Walking in Unknown
Environments—a Step Towards More Autonomy”. In: Proc. IEEE Int. Conf.
Humanoid Robots (Humanoids). IEEE. 2010, pp. 237–244.

[32] CHEN, X.-D., YONG, J.-H., ZHENG, G.-Q., PAUL, J.-C., and SUN, J.-G. “Computing
minimum distance between two implicit algebraic surfaces”. In: Computer-
Aided Design 38, 10 (2006), pp. 1053–1061. DOI: 10.1016/j.cad.2006.04.
012.

[33] CHENG, F.-T., CHEN, T.-H., and SUN, Y.-Y. “Resolving manipulator redundancy
under inequality constraints”. In: IEEE Trans. Robot. Autom. 10, 1 (1994),
pp. 65–71. ISSN: 1042-296X. DOI: 10.1109/70.285587.

[34] CHENG, H. and GUPTA, K. “A Study of Robot Inverse Kinematics Based upon
the Solution of Differential Equations”. In: J. Robot. Systems 8, 2 (1991),
pp. 159–175.

[35] CHIAVERINI, S., SICILIANO, B., and EGELAND, O. “Review of the damped least-
squares inverse kinematics with experiments on an industrial robot manipu-
lator”. In: Trans. IEEE Control Systems Technology 2, 2 (1994), pp. 123–134.
ISSN: 1063-6536. DOI: 10.1109/87.294335.

[36] CHIAVERINI, S., EGELAND, O., and KANESTROM, R. K. “Weighted damped least-
squares in kinematic control of robotic manipulators”. In: Advanced Robotics
7, 3 (1992), pp. 201–218. DOI: 10.1163/156855393X00122.

http://dx.doi.org/10.1007/978-1-4020-8680-9
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20101201-997204-1-6
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20101201-997204-1-6
http://dx.doi.org/10.1016/j.cad.2006.04.012
http://dx.doi.org/10.1016/j.cad.2006.04.012
http://dx.doi.org/10.1109/70.285587
http://dx.doi.org/10.1109/87.294335
http://dx.doi.org/10.1163/156855393X00122

152 Bibliography

[37] CHIU, S. L. “Control of redundant manipulators for task compatibility”. In:
Proc. IEEE Int. Conf. Robot. Autom. (ICRA). Vol. 4. 1987, pp. 1718–1724. DOI:
10.1109/ROBOT.1987.1087795.

[38] CLAUBERG, P. J. “Methoden zur parallelen Berechnung von nicht-glatten dy-
namischen Systemen”. (German). Dissertation. München: Technische Univer-
sität München, 2013.

[39] COHEN, J. D., LIN, M. C., MANOCHA, D., and PONAMGI, M. “I-COLLIDE: An
interactive and exact collision detection system for large-scale environments”.
In: Proc. Symposium on Interactive 3D graphics. ACM. 1995, 189–ff.

[40] CRAIG, J. J. Introduction to Robotics – Mechanics and Control. Pearson Prentice
Hall, 1986.

[41] DARPA Robotics Challenge. U.S. Defense Advanced Research Project Agency.
Oct. 2013. URL: http://www.theroboticschallenge.org.

[42] DEO, A. S. and WALKER, I. D. “Robot subtask performance with singularity
robustness using optimal damped least-squares”. In: Proc. IEEE Int. Conf. Robot.
Autom. (ICRA). 1992, 434–441 vol.1. DOI: 10.1109/ROBOT.1992.220301.

[43] DIETRICH, A., WIMBÖCK, T., ALBU-SCHAFFER, A., and HIRZINGER, G. “Integration
of Reactive, Torque-Based Self-Collision Avoidance Into a Task Hierarchy”.
In: IEEE Trans. Robot. 28, 6 (2012), pp. 1278–1293. ISSN: 1552-3098. DOI:
10.1109/TRO.2012.2208667.

[44] EHMANN, S. A. and LIN, M. C. “Accurate and fast proximity queries between
polyhedra using convex surface decomposition”. In: Computer Graphics Forum
(Proc. of Eurographics). Vol. 20. 3. Wiley Online Library. 2001, pp. 500–511.

[45] ENGLISH, K., HAYES, M. J. D., LEITNER, M., and SALLINGER, C. “Kinematic
Calibration of Six-Axis Robots”. In: Proc. of the CSME Forum. Kingston
(Canada), 2002.

[46] Enhanced Intel SpeedStep Technology for the Intel Pentium M Processor. Edi-
tion: Order Number: 301170-001. Note: Order Number: 301170-001. Intel
Corporation. Mar. 2004.

[47] ESCANDE, A., MIOSSEC, S., and KHEDDAR, A. “Continuous gradient proximity
distance for humanoids free-collision optimized-postures”. In: Proc. IEEE Int.
Conf. Humanoid Robots (Humanoids). 2007, pp. 188–195. DOI: 10.1109/ICHR.
2007.4813867.

[48] ESCANDE, A., MANSARD, N., and WIEBER, P.-B. “Fast resolution of hierarchized
inverse kinematics with inequality constraints”. In: Proc. IEEE Int. Conf. Robot.
Autom. (ICRA). 2010, pp. 3733–3738.

http://dx.doi.org/10.1109/ROBOT.1987.1087795
http://www.theroboticschallenge.org
http://dx.doi.org/10.1109/ROBOT.1992.220301
http://dx.doi.org/10.1109/TRO.2012.2208667
http://dx.doi.org/10.1109/ICHR.2007.4813867
http://dx.doi.org/10.1109/ICHR.2007.4813867

Bibliography 153

[49] FALCO, P. and NATALE, C. “On the Stability of Closed-Loop Inverse Kinematics
Algorithms for Redundant Robots”. In: Robotics, IEEE Transactions on 27, 4
(2011), pp. 780–784. ISSN: 1552-3098. DOI: 10.1109/TRO.2011.2135210.

[50] FAVOT, V., BUSCHMANN, T., SCHWIENBACHER, M., EWALD, A., and ULBRICH, H.
“The Sensor-Controller Network of the Humanoid Robot LOLA”. In: Proc. IEEE
Int. Conf. Humanoid Robots (Humanoids). Osaka, Japan, 2012.

[51] FEATHERSTONE, R. “A divide-and-conquer articulated-body algorithm for paral-
lel O (log (n)) calculation of rigid-body dynamics. Part 2: Trees, loops, and
accuracy”. In: Int. J. Robot. Research 18, 9 (1999), pp. 876–892.

[52] FEATHERSTONE, R. “Efficient Factorization of the Joint Space Inertia Matrix for
Branched Kinematic Trees”. In: Int. J. Robot. Research 24, 6 (2005), pp. 487–
500.

[53] FEATHERSTONE, R. Rigid Body Dynamics Algorithms. Springer Berlin, 2008.

[54] FEATHERSTONE, R. “The calculation of robot dynamics using articulated body
inertias.” In: Int. J. Robot. Research 2, I (1983), pp. 13–30.

[55] FEATHERSTONE, R. and ORIN, D. E. “Robot dynamics: Equations and algorithms”.
In: Proc. IEEE Int. Conf. Robot. Autom. (ICRA). Vol. 1. 2000, pp. 826–834.

[56] FÖRG, M. “Mehrkörpersysteme mit mengenwertigen Kraftgesetzen: Theorie
und Numerik”. (German). PhD thesis. Technische Universität München, 2007.

[57] FRIEDRICH, M. “Parallel Co-Simulation for Mechatronic Systems”. PhD thesis.
Technische Universität München, 2011.

[58] GATTRINGER, H. Starr-elastische Robotersysteme: Theorie und Anwendungen.
(German). Springer Verlag Berlin Heidelberg, 2011. DOI: 10.1007/978-3-
642-22828-5.

[59] GATTRINGER, H., BREMER, H., and KASTNER, M. “Efficient dynamic modeling for
rigid multi-body systems with contact and impact. An O(n) formulation”. In:
Acta Mechanica 219, 1 (2011), pp. 111–128.

[60] GIENGER, M. “Entwurf und Realisierung einer zweibeinigen Laufmaschine”.
(German). Dissertation. München: Technische Universität München, 2005.

[61] GIENGER, M., TOUSSAINT, M., and GOERICK, C. “Task Maps in Humanoid Robot
Manipulation”. In: Proc. IEEE Int. Conf. Intell. Robots Syst. (IROS). 2008,
pp. 2758–2764. DOI: 10.1109/IROS.2008.4651027.

[62] GIENGER, M., JANSSEN, H., and GOERICK, C. “Task-Oriented Whole Body Motion
for Humanoid Robots”. In: Proc. IEEE Int. Conf. Humanoid Robots (Humanoids).
2005, pp. 238–244. DOI: 10.1109/ICHR.2005.1573574.

[63] GILBERT, E. G., JOHNSON, D. W., and KEERTHI, S. S. “A fast procedure for
computing the distance between complex objects in three-dimensional space”.
In: IEEE J. Robot. Autom. 4, 2 (1988), pp. 193–203.

http://dx.doi.org/10.1109/TRO.2011.2135210
http://dx.doi.org/10.1007/978-3-642-22828-5
http://dx.doi.org/10.1007/978-3-642-22828-5
http://dx.doi.org/10.1109/IROS.2008.4651027
http://dx.doi.org/10.1109/ICHR.2005.1573574

154 Bibliography

[64] GOSWAMI, A. and KALLEM, V. “Rate of change of angular momentum and
balance maintenance of biped robots”. In: Proc. IEEE Int. Conf. Robot. Autom.
(ICRA). 2004.

[65] HAGER, W. W. “Updating the Inverse of a Matrix”. In: SIAM Review 31, 2 (1989),
pp. 221–239.

[66] HAYATI, S. and MIRMIRANI, M. “Improving the absolute positioning accuracy of
robot manipulators”. In: Journal of Robotic Systems 2, 4 (1985), pp. 397–413.
DOI: 10.1002/rob.4620020406.

[67] HOLLERBACH, J., KHALIL, W., and GAUTIER, M. “Springer Handbook of Robo-
tics”. In: ed. by SICILIANO, B. and KHATIB, O. Springer, 2008. Chap. Model
Identification, pp. 321–344.

[68] HUSTON, R. L. “Useful Procedures in Multibody Dynamics”. In: Dynamics of
Multibody Systems. Ed. by G., B. and W., S. IUTAM/IFToMM Symposium.
Udine, Italy: Springer, Sept. 1985, pp. 69–77.

[69] Jack and Process Simulate Human. Siemens PLM Software. Sept. 2013.
URL: http://www.plm.automation.siemens.com/en_us/products/
tecnomatix/assembly_planning/jack/.

[70] JIMENEZ, P., THOMAS, F., and TORRAS, C. “3D collision detection: a survey”. In:
Computers & Graphics 25 (2001), pp. 269–285.

[71] KAJITA, S., NAGASAKI, T., KANEKO, K., YOKOI, K., and TANIE, K. “A Running
Controller of Humanoid Biped HRP-2LR”. In: Proc. IEEE Int. Conf. Robot.
Autom. (ICRA). 2005, pp. 616–622. DOI: 10.1109/ROBOT.2005.1570186.

[72] KAJITA, S., KANEHIRO, F., KANEKO, K., FUJIWARA, K., HARADA, K., YOKOI, K., and
HIRUKAWA, H. “Resolved Momentum Control: Humanoid Motion Planning
based on the Linear and Angular Momentum”. In: Proc. IEEE Int. Conf. Intell.
Robots Syst. (IROS). 2003, pp. 1644–1650.

[73] KANEHIRO, F., SULEIMAN, W., MIURA, K., MORISAWA, M., and YOSHIDA, E. “Feasible
Pattern Generation Method for Humanoid Robots”. In: Proc. IEEE Int. Conf.
Humanoid Robots (Humanoids). 2009, pp. 542–548.

[74] KANEKO, K., KANEHIRO, F., MORISAWA, M., AKACHI, K., MIYAMORI, G., HAYASHI, A.,
and KANEHIRA, N. “Humanoid robot HRP-4-humanoid robotics platform with
lightweight and slim body”. In: Proc. IEEE Int. Conf. Intell. Robots Syst. (IROS).
IEEE. 2011, pp. 4400–4407.

[75] KANOUN, O. “Real-time prioritized kinematic control under inequality con-
straints for redundant manipulators”. In: Robotics: Science and Systems VII
(2012), pp. 145–152.

http://dx.doi.org/10.1002/rob.4620020406
http://www.plm.automation.siemens.com/en_us/products/tecnomatix/assembly_planning/jack/
http://www.plm.automation.siemens.com/en_us/products/tecnomatix/assembly_planning/jack/
http://dx.doi.org/10.1109/ROBOT.2005.1570186

Bibliography 155

[76] KETTNER, L., MEYER, A., and ZOMORODIAN, A. “Intersecting Sequences of dD
Iso-oriented Boxes”. In: CGAL User and Reference Manual. 4.2. CGAL Editorial
Board, 2013. URL: http://doc.cgal.org/4.2/CGAL.CGAL/html/packages.
html#PkgBoxIntersectionDSummary.

[77] KHATIB, O. “Real-Time Obstacle Avoidance for Manipulators and Mobile
Robots”. In: Int. J. Robot. Research 5, 1 (1986), pp. 90–98. DOI: 10.1177/
027836498600500106.

[78] KUFFNER, J., NISHIWAKI, K., KAGAMI, S., KUNIYOSHI, Y., INABA, M., and INOUE, H.
“Self-Collision Detection and Prevention for Humanoid Robots”. In: Proc. IEEE
Int. Conf. Robot. Autom. (ICRA). 2002, pp. 2265–2270. DOI: 10.1109/ROBOT.
2002.1013569.

[79] LARSEN, E., GOTTSCHALK, S., LIN, M. C., and MANOCHA, D. “Fast distance queries
with rectangular swept sphere volumes”. In: Proc. IEEE Int. Conf. Robot. Autom.
(ICRA). Vol. 4. 2000, pp. 3719–3726. DOI: 10.1109/ROBOT.2000.845311.

[80] LENARČIČ, J. “An efficient numerical approach for calculating the inverse
kinematics for robot manipulators”. In: Robotica 3 (1 Jan. 1985), pp. 21–26.
DOI: 10.1017/S0263574700001430.

[81] LIÉGEOIS, A. “Automatic Supervisory Control of the Configuration and Behavior
of Multibody Mechanisms”. In: IEEE Trans. Syst., Man, Cybern. 7, 12 (1977),
pp. 868–871. DOI: 10.1109/TSMC.1977.4309644.

[82] LIN, M. C. and GOTTSCHALK, S. “Collision Detection Between Geometric Models:
A Survey”. In: Proc. of IMA Conference on Mathematics of Surfaces 7 (1998),
pp. 1–20.

[83] LIN, M. C. and MANOCHA, D. “Collision and Proximity Queries”. In: (2003).

[84] LÖFFLER, K. “Dynamik und Regelung einer zweibeinigen Laufmaschine”. (Ger-
man). Dissertation. München: Technische Universität München, 2006.

[85] LOHMEIER, S. “Design and Realization of a Humanoid Robot for Fast and Au-
tonomous Bipedal Locomotion”. Dissertation. München: Technische Universität
München, 2010. URL: http://nbn-resolving.de/urn/resolver.pl?urn:
nbn:de:bvb:91-diss-20101126-980754-1-4.

[86] LOHMEIER, S., BUSCHMANN, T., and ULBRICH, H. “Humanoid robot LOLA”.
In: Proc. IEEE Int. Conf. Robot. Autom. (ICRA). 2009, pp. 775–780. DOI:
10.1109/ROBOT.2009.5152578.

[87] LOHMEIER, S., BUSCHMANN, T., ULBRICH, H., and PFEIFFER, F. “Modular Joint
Design for Performance Enhanced Humanoid Robot LOLA”. In: Proc. IEEE Int.
Conf. Robot. Autom. (ICRA). 2006, pp. 88–93. DOI: 10.1109/ROBOT.2006.
1641166.

http://doc.cgal.org/4.2/CGAL.CGAL/html/packages.html#PkgBoxIntersectionDSummary
http://doc.cgal.org/4.2/CGAL.CGAL/html/packages.html#PkgBoxIntersectionDSummary
http://dx.doi.org/10.1177/027836498600500106
http://dx.doi.org/10.1177/027836498600500106
http://dx.doi.org/10.1109/ROBOT.2002.1013569
http://dx.doi.org/10.1109/ROBOT.2002.1013569
http://dx.doi.org/10.1109/ROBOT.2000.845311
http://dx.doi.org/10.1017/S0263574700001430
http://dx.doi.org/10.1109/TSMC.1977.4309644
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20101126-980754-1-4
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20101126-980754-1-4
http://dx.doi.org/10.1109/ROBOT.2009.5152578
http://dx.doi.org/10.1109/ROBOT.2006.1641166
http://dx.doi.org/10.1109/ROBOT.2006.1641166

156 Bibliography

[88] LOHMEIER, S., BUSCHMANN, T., and ULBRICH, H. “System Design and Control of
Anthropomorphic Walking Robot LOLA”. In: IEEE/ASME Trans. on Mechatronics
14, 6 (2009), pp. 658–666. ISSN: 1083-4435. DOI: 10.1109/TMECH.2009.
2032079.

[89] LUH, J. Y. S., WALKER, M. W., and PAUL, R. P. C. “Resolved-acceleration control of
mechanical manipulators”. In: IEEE Trans. Autom. Control 25, 3 (June 1980),
pp. 468–474. ISSN: 0018-9286. DOI: 10.1109/TAC.1980.1102367.

[90] MACIEJEWSKI, A. A. and KLEIN, C. A. “Numerical filtering for the operation
of robotic manipulators through kinematically singular configurations”. In:
Journal of Robotic Systems 5, 6 (1988), pp. 527–552.

[91] MACIEJEWSKI, A. A. and KLEIN, C. A. “The Singular Value Decomposition:
Computation and Applications to Robotics”. In: Int. J. Robot. Research 8, 6
(1989), pp. 63–79.

[92] MANSARD, N., STASSE, O., EVRARD, P., and KHEDDAR, A. “A versatile General-
ized Inverted Kinematics implementation for collaborative working humanoid
robots: The Stack Of Tasks”. In: Advanced Robotics, 2009. ICAR 2009. Interna-
tional Conference on. 2009, pp. 1–6.

[93] MEAGHER, D. “Geometric modeling using octree encoding”. In: Computer
Graphics and Image Processing 19, 2 (1982), pp. 129–147. DOI: 10.1016/0146-
664X(82)90104-6.

[94] MIRTICH, B. “V-Clip: Fast and robust polyhedral collision detection”. In: ACM
Transactions on Graphics (TOG) 17, 3 (1998), pp. 177–208.

[95] MOORING, B. W., ROTH, Z. S., and DRIELS, M. R. Fundamentals of Manipulator
Calibration. John Wiley & Sons, 1991.

[96] MUJA, M. and LOWE, D. G. “Fast approximate nearest neighbors with automatic
algorithm configuration”. In: International Conference on Computer Vision
Theory and Applications (VISSAPP’09). 2009, pp. 331–340.

[97] NAKAMURA, Y. Advanced Robotics: Redundancy and Optimization. 1st ed. Boston,
MA, USA: Addison-Wesley Pub. Co., 1991.

[98] NAKAMURA, Y. and HANAFUSA, H. “Inverse Kinematic Solutions With Singularity
Robustness for Robot Manipulator Control”. In: J. Dyn. Sys., Meas., Control
108 (3 1986), pp. 163–171. DOI: doi:10.1115/1.3143764.

[99] NAKAMURA, Y. and HANAFUSA, H. “Optimal Redundancy Control of Robot
Manipulators”. In: Int. J. Robot. Research 6 (1987), pp. 32–42. DOI: 10.1177/
027836498700600103.

[100] NAKAMURA, Y., HANAFUSA, H., and YOSHIKAWA, T. “Task-Priority Based Redun-
dancy Control of Robot Manipulators”. In: Int. J. Robot. Research 6, 2 (1987),
pp. 3–15. DOI: 10.1177/027836498700600201.

http://dx.doi.org/10.1109/TMECH.2009.2032079
http://dx.doi.org/10.1109/TMECH.2009.2032079
http://dx.doi.org/10.1109/TAC.1980.1102367
http://dx.doi.org/10.1016/0146-664X(82)90104-6
http://dx.doi.org/10.1016/0146-664X(82)90104-6
http://dx.doi.org/doi:10.1115/1.3143764
http://dx.doi.org/10.1177/027836498700600103
http://dx.doi.org/10.1177/027836498700600103
http://dx.doi.org/10.1177/027836498700600201

Bibliography 157

[101] NAKANISHI, Y., NAMIKI, Y., HONGO, K., URATA, J., MIZUUCHI, I., and INABA, M.
“Design of the musculoskeletal trunk and realization of powerful motions using
spines”. In: Proc. IEEE Int. Conf. Humanoid Robots (Humanoids). IEEE. 2007,
pp. 96–101.

[102] NISHIWAKI, K., KAGAMI, S., KUNIYOSHI, Y., INABA, M., and INOUE, H. “Online
generation of humanoid walking motion based on a fast generation method
of motion pattern that follows desired zmp”. In: Proc. IEEE Int. Conf. Intell.
Robots Syst. (IROS). Vol. 3. IEEE. 2002, pp. 2684–2689.

[103] NISHIWAKI, K., KUFFNER, J., KAGAMI, S., INABA, M., and INOUE, H. “The experi-
mental humanoid robot H7: a research platform for autonomous behaviour”.
In: Philosophical Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences 365, 1850 (2007), pp. 79–107.

[104] NISHIWAKI, K., KAGAMI, S., KUNIYOSHI, Y., INABA, M., and INOUE, H. “Toe joints
that enhance bipedal and fullbody motion of humanoid robots”. In: Proc. IEEE
Int. Conf. Robot. Autom. (ICRA). Vol. 3. IEEE. 2002, pp. 3105–3110.

[105] NOCEDAL, J. and WRIGHT, S. J. Numerical optimization. Springer Science+
Business Media, 2006.

[106] OGURA, Y., AIKAWA, H., LIM, H.-O., and TAKANISHI, A. “Development of a human-
like walking robot having two 7-DOF legs and a 2-DOF waist”. In: Proc. IEEE
Int. Conf. Robot. Autom. (ICRA). Vol. 1. IEEE. 2004, pp. 134–139.

[107] OKADA, K., INABA, M., and INOUE, H. “Real-time and Precise Self Collision
Detection System for Humanoid Robots”. In: Proc. IEEE Int. Conf. Robot. Autom.
(ICRA). 2005, pp. 1060–1065.

[108] OMER, A. M. M., OGURA, Y., KONDO, H., MORISHIMA, A., CARBONE, G., CECCARELLI,
M., LIM, H.-o., and TAKANISHI, A. “Development of a humanoid robot having
2-DOF waist and 2-DOF trunk”. In: Proc. IEEE Int. Conf. Humanoid Robots
(Humanoids). IEEE. 2005, pp. 333–338.

[109] ONG, C. J. and GILBERT, E. G. “Fast Versions of the Gilbert-Johnson-Keerthi
Distance Algorithm: Additional Results and Comparisons”. In: IEEE Trans.
Robot. Autom. 17, 4 (Aug. 2001), pp. 531–539. DOI: 10.1109/70.954768.

[110] ORIN, D. E. and SCHRADER, W. W. “Efficient Computation of the Jacobian for
Robot Manipulators”. In: Int. J. Robot. Research 3, 4 (1984), pp. 66–75. DOI:
10.1177/027836498400300404.

[111] OTT, C., BAUMGARTNER, C., MAYR, J., FUCHS, M., BURGER, R., LEE, D., EIBERGER,
O., ALBU-SCHAFFER, A., GREBENSTEIN, M., and HIRZINGER, G. “Development of a
biped robot with torque controlled joints”. In: Proc. IEEE Int. Conf. Humanoid
Robots (Humanoids). IEEE. 2010, pp. 167–173.

http://dx.doi.org/10.1109/70.954768
http://dx.doi.org/10.1177/027836498400300404

158 Bibliography

[112] PABST, S., KOCH, A., and STRASSER, W. “Fast and scalable cpu/gpu collision
detection for rigid and deformable surfaces”. In: Computer Graphics Forum.
Vol. 29. 5. Wiley Online Library. 2010, pp. 1605–1612.

[113] PARK, J., CHUNG, W., and YOUM, Y. “Computation of Gradient of Manipulabil-
ity for Kinematically Redundant Manipulators Including Dual Manipulators
System”. In: Trans. Control, Automation and Systems Engineering 1, 1 (1999),
pp. 8–15. URL: http://www.ijcas.com/admin/paper/files/7641.pdf.

[114] PFEIFFER, F. Mechanical System Dynamics. Vol. 40. Lecture Notes in Applied
and Computational Mechanics. Springer-Verlag Heidelberg, 2008. DOI: 10.
1007/978-3-540-79436-3.

[115] PIEPER, D. L. “The kinematics of manipulators under computer control”. PhD
thesis. Stanford University, 1968.

[116] PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T., and FLANNERY, B. P. Numerical
Recipes in C: The Art of Scientific Computing. 2nd ed. Press Syndicate of the
University of Cambridge, 2002.

[117] QUINLAN, S. “Efficient distance computation between non-convex objects”. In:
Proc. IEEE Int. Conf. Robot. Autom. (ICRA). Vol. 4. 1994, pp. 3324–3329. DOI:
10.1109/ROBOT.1994.351059.

[118] RAIBERT, M. H. Legged Robots that Balance (Artificial Intelligence). Cambridge:
MIT Press, 1986.

[119] RAIBERT, M. H. “Legged robots”. In: Communications of the ACM 29, 6 (1986),
pp. 499–514.

[120] ROBERSON, R. E. and SCHWERTASSEK, R. Dynamics of multibody systems.
Springer-Verlag Berlin, 1988.

[121] RUSU, R. B. and COUSINS, S. “3D is here: Point Cloud Library (PCL)”. In: Proc.
IEEE Int. Conf. Robot. Autom. (ICRA). 2011, pp. 1–4. DOI: 10.1109/ICRA.
2011.5980567.

[122] SCHIEHLEN, W. “Multibody System Dynamics: Roots and Perspectives”. In:
Multibody System Dynamics 1 (1997), pp. 149–188.

[123] SCHIEHLEN, W. and EBERHARD, P. Technische Dynamik. (German). Teubner
Verlag, 2004.

[124] SCHIELA, A. and OLSSON, H. “Mixed-mode Integration for Real-Time Simulat-
ion”. In: Modelica Workshop. Lund, Sweden, 2000, pp. 69–75.

[125] SCHWIENBACHER, M., BUSCHMANN, T., LOHMEIER, S., FAVOT, V., and ULBRICH, H.
“Self-Collision Avoidance and Angular Momentum Compensation for a Biped
Humanoid Robot”. In: Proc. IEEE Int. Conf. Robot. Autom. (ICRA). Shanghai,
China, May 2011, pp. 581–586. DOI: 10.1109/ICRA.2011.5980350.

http://www.ijcas.com/admin/paper/files/7641.pdf
http://dx.doi.org/10.1007/978-3-540-79436-3
http://dx.doi.org/10.1007/978-3-540-79436-3
http://dx.doi.org/10.1109/ROBOT.1994.351059
http://dx.doi.org/10.1109/ICRA.2011.5980567
http://dx.doi.org/10.1109/ICRA.2011.5980567
http://dx.doi.org/10.1109/ICRA.2011.5980350

Bibliography 159

[126] SCHWIENBACHER, M., BUSCHMANN, T., and ULBRICH, H. “Vertical Angular Mo-
memtum Minimization for Biped Robots with Kinematically Redundant Joints”.
In: The 23rd International Congress of Theoretical and Applied Mechanics. IU-
TAM. Aug. 2012.

[127] SICILIANO, B. and SLOTINE, J.-J. E. “A general framework for managing multiple
tasks in highly redundant robotic systems”. In: Advanced Robotics, 1991.
’Robots in Unstructured Environments’, 91 ICAR., Fifth International Conference
on. 1991, 1211–1216 vol.2. DOI: 10.1109/ICAR.1991.240390.

[128] SICILIANO, B., SCIAVICCO, L., VILLANI, L., and ORIOLO, G. Robotics: Modelling,
Planning and Control. Springer, 2009.

[129] SICILIANO, B. and KHATIB, O. Springer Handbook of Robotics. Springer, 2008.

[130] SORGE, K. “Mehrkörpersysteme mit starr-elastischen Subsystemen”. (German).
PhD thesis. TU München, July 1992.

[131] STASSE, O., ESCANDE, A., MANSARD, N., MIOSSEC, S., EVRARD, P., and KHEDDAR, A.
“Real-Time (Self)-Collision Avoidance Task on a HRP-2 Humanoid Robot”. In:
Proc. IEEE Int. Conf. Robot. Autom. (ICRA). 2008.

[132] SUD, A., GOVINDARAJU, N., GAYLE, R., KABUL, I., and MANOCHA, D. “Fast prox-
imity computation among deformable models using discrete Voronoi dia-
grams”. In: ACM Trans. Graph. 25, 3 (July 2006), pp. 1144–1153. DOI:
10.1145/1141911.1142006.

[133] SUGIURA, H., GIENGER, M., JANSSEN, H., and GOERICK, C. “Real-Time Collision
Avoidance with Whole Body Motion Control for Humanoid Robots”. In:
Proc. IEEE Int. Conf. Intell. Robots Syst. (IROS). 2007, pp. 2053–2058. DOI:
10.1109/IROS.2007.4399062.

[134] SUGIURA, H., GIENGER, M., JANSSEN, H., and GOERICK, C. “Real-Time Self
Collision Avoidance for Humanoids by means of Nullspace Criteria and Task
Intervals”. In: Proc. IEEE Int. Conf. Intell. Robots Syst. (IROS). 2006, pp. 575–
580.

[135] TAJIMA, R., HONDA, D., and SUGA, K. “Fast running experiments involving
a humanoid robot”. In: Proc. IEEE Int. Conf. Robot. Autom. (ICRA). 2009,
pp. 1571–1576. DOI: 10.1109/ROBOT.2009.5152404.

[136] TAKENAKA, T., MATSUMOTO, T., and YOSHIIKE, T. “Real time motion generation
and control for biped robot -1st report: Walking gait pattern generation-”. In:
Proc. IEEE Int. Conf. Intell. Robots Syst. (IROS). 2009, pp. 1084–1091. DOI:
10.1109/IROS.2009.5354662.

http://dx.doi.org/10.1109/ICAR.1991.240390
http://dx.doi.org/10.1145/1141911.1142006
http://dx.doi.org/10.1109/IROS.2007.4399062
http://dx.doi.org/10.1109/ROBOT.2009.5152404
http://dx.doi.org/10.1109/IROS.2009.5354662

160 Bibliography

[137] TAKENAKA, T., MATSUMOTO, T., YOSHIIKE, T., and SHIROKURA, S. “Real time
motion generation and control for biped robot -2nd report: Running gait
pattern generation-”. In: Proc. IEEE Int. Conf. Intell. Robots Syst. (IROS). 2009,
pp. 1092–1099. DOI: 10.1109/IROS.2009.5354654.

[138] TAKENAKA, T., MATSUMOTO, T., and YOSHIIKE, T. “Real time motion generation
and control for biped robot -3rd report: Dynamics error compensation-”. In:
Proc. IEEE Int. Conf. Intell. Robots Syst. (IROS). 2009, pp. 1594–1600. DOI:
10.1109/IROS.2009.5354542.

[139] TAKENAKA, T., MATSUMOTO, T., YOSHIIKE, T., HASEGAWA, T., SHIROKURA, S.,
KANEKO, H., and ORITA, A. “Real time motion generation and control for
biped robot -4th report: Integrated balance control-”. In: Proc. IEEE Int. Conf.
Intell. Robots Syst. (IROS). 2009, pp. 1601–1608. DOI: 10.1109/IROS.2009.
5354522.

[140] TANG, M., MANOCHA, D., LIN, J., and TONG, R. “Collision-Streams: Fast GPU-
based collision detection for deformable models”. In: I3D ’11: Proc. of the
2011 ACM SIGGRAPH symposium on Interactive 3D Graphics and Games. San
Fransisco, CA, 2011, pp. 63–70.

[141] TÄUBIG, H., BÄUML, B., and FRESE, U. “Real-time swept volume and distance
computation for self collision detection”. In: Proc. IEEE Int. Conf. Intell. Robots
Syst. (IROS). IEEE. 2011, pp. 1585–1592.

[142] TESCHNER, M., KIMMERLE, S., HEIDELBERGER, B., ZACHMANN, G., RAGHUPATHI, L.,
FUHRMANN, A., CANI, M.-P., FAURE, F., MAGNENAT-THALMANN, N., STRASSER, W.,
et al. “Collision Detection for Deformable Objects”. In: Computer Graphics
Forum. Vol. 24. 1. Wiley Online Library. 2005, pp. 61–81.

[143] THE CGAL PROJECT. CGAL User and Reference Manual. 4.2. CGAL Editorial
Board, 2013. URL: http://doc.cgal.org/4.2/CGAL.CGAL/html/packages.
html.

[144] THIBAULT, W. C. and NAYLOR, B. F. “Set operations on polyhedra using binary
space partitioning trees”. In: SIGGRAPH Comput. Graph. 21, 4 (Aug. 1987),
pp. 153–162. DOI: 10.1145/37402.37421.

[145] TOLANI, D., GOSWAMI, A., and BADLER, N. I. “Real-Time Inverse Kinematics
Techniques for Anthropomorphic Limbs”. In: Graphical Models 62, 5 (2000),
pp. 353–388.

[146] TOUSSAINT, M., GIENGER, M., and GOERICK, C. “Optimization of sequential
attractor-based movement for compact behaviour generation”. In: Proc. IEEE
Int. Conf. Humanoid Robots (Humanoids). 2007, pp. 122–129. DOI: 10.1109/
ICHR.2007.4813858.

[147] TRÄGER, M. Echtzeitfähige Kollisionserkennung mit Swept-Sphere-Volumes in
einer Robotikanwendung. Term Project. May 2010.

http://dx.doi.org/10.1109/IROS.2009.5354654
http://dx.doi.org/10.1109/IROS.2009.5354542
http://dx.doi.org/10.1109/IROS.2009.5354522
http://dx.doi.org/10.1109/IROS.2009.5354522
http://doc.cgal.org/4.2/CGAL.CGAL/html/packages.html
http://doc.cgal.org/4.2/CGAL.CGAL/html/packages.html
http://dx.doi.org/10.1145/37402.37421
http://dx.doi.org/10.1109/ICHR.2007.4813858
http://dx.doi.org/10.1109/ICHR.2007.4813858

Bibliography 161

[148] ULBRICH, H. Maschinendynamik. (German). Teubner Verlag, 1996.

[149] URATA, J., NAKANISHI, Y., OKADA, K., and INABA, M. “Design of high torque and
high speed leg module for high power humanoid”. In: Proc. IEEE Int. Conf.
Intell. Robots Syst. (IROS). 2010, pp. 4497–4502. DOI: 10.1109/IROS.2010.
5649683.

[150] URATA, J., NISHIWAKI, K., NAKANISHI, Y., OKADA, K., KAGAMI, S., and INABA, M.
“Online decision of foot placement using singular LQ preview regulation”. In:
Proc. IEEE Int. Conf. Humanoid Robots (Humanoids). 2011, pp. 13–18. DOI:
10.1109/Humanoids.2011.6100894.

[151] VRANEK, D. “Fast and accurate circle-circle and circle-line 3d distance compu-
tation”. In: Journal of graphics tools 7, 1 (2002), pp. 23–31.

[152] WALKER, M. W. and ORIN, D. E. “Efficient Dynamic Computer Simulation of
Robotic Mechanisms”. In: Journal of Dynamic Systems, Measurement, and
Control 104, 3 (1982), pp. 205–211. DOI: 10.1115/1.3139699.

[153] WAMPLER, C. W. “Manipulator Inverse Kinematic Solutions Based on Vector
Formulations and Damped Least-Squares Methods”. In: IEEE Trans. Syst., Man,
Cybern. 16, 1 (1986), pp. 93–101. ISSN: 0018-9472. DOI: 10.1109/TSMC.
1986.289285.

[154] WHITNEY, D. E. “Resolved Motion Rate Control of Manipulators and Human
Prostheses”. In: IEEE Trans. Man-Mach. Syst. 10, 2 (1969), pp. 47–53. DOI:
10.1109/TMMS.1969.299896.

[155] WILLIAMS, S., OLIKER, L., VUDUC, R., SHALF, J., YELICK, K., and DEMMEL, J.
“Optimization of sparse matrix–vector multiplication on emerging multicore
platforms”. In: Parallel Computing 35, 3 (2009), pp. 178–194.

[156] YAMANE, K. Simulating and Generating Motions of Human Figures. Vol. 9.
Springer Tracts in Advanced Robotics. Springer, 2004.

[157] YOON, S.-E. and MANOCHA, D. “Cache-Efficient Layouts of Bounding Volume
Hierarchies”. In: Computer Graphics Forum (Proc. of Eurographics). 2006.

[158] YOSHIKAWA, T. “Manipulability of Robotic Mechanisms”. In: The Interna-
tional Journal of Robotics Research 4, 2 (1985), pp. 3–9. DOI: 10.1177/
027836498500400201.

[159] ZEGHLOUL, S., RAMBEAUD, P., and LALLEMAND, J. P. “A fast distance calculation
between convex objects by optimization approach”. In: Proc. IEEE Int. Conf.
Robot. Autom. (ICRA). Vol. 3. 1992, pp. 2520–2525. DOI: 10.1109/ROBOT.
1992.220062.

[160] ZHAO, J. and BADLER, N. I. “Inverse kinematics positioning using nonlinear
programming for highly articulated figures”. In: ACM Trans. Graph. 13, 4 (Oct.
1994), pp. 313–336. DOI: 10.1145/195826.195827.

http://dx.doi.org/10.1109/IROS.2010.5649683
http://dx.doi.org/10.1109/IROS.2010.5649683
http://dx.doi.org/10.1109/Humanoids.2011.6100894
http://dx.doi.org/10.1115/1.3139699
http://dx.doi.org/10.1109/TSMC.1986.289285
http://dx.doi.org/10.1109/TSMC.1986.289285
http://dx.doi.org/10.1109/TMMS.1969.299896
http://dx.doi.org/10.1177/027836498500400201
http://dx.doi.org/10.1177/027836498500400201
http://dx.doi.org/10.1109/ROBOT.1992.220062
http://dx.doi.org/10.1109/ROBOT.1992.220062
http://dx.doi.org/10.1145/195826.195827

	Titlepage
	Introduction
	Problem Statement
	Background and Related Work
	Overview of this Thesis

	An O(n)-formalism for the Simulation of MBS with Small Kinematic Loops
	Introduction
	Basic Dynamics Equation
	Related Work

	Rigid Body Kinematics
	Rigid Body Dynamics
	Relative Kinematics of Rigid Multibody Systems
	Topology of Multibody Systems
	Motion Constraints and Minimal Coordinates
	Recursive Kinematics Calculation
	Recursive Kinematics using Spatial Vector Notation

	Dynamics of Rigid Multibody Systems
	Sub-Systems
	Detailed Derivation of the O(n)-Algorithm with Sub-Systems
	Resulting Formalism
	Automatic Sub-System Generation
	Results
	Run-Time Comparisons for the Dill Example
	Run-Time Comparison for the Lola Model

	Discussion
	Chapter Summary

	Kinematics
	Harmonic Drive Gears
	Knee Joint Drive Kinematics
	Ankle Joint Drive Kinematics
	Camera Vergence Kinematics
	Kinematics Calibration
	Chapter Summary

	Inverse Kinematics
	Problem Statement
	Position Based Inverse Kinematics
	Differential Inverse Kinematics
	Resolved Motion Rate Control and Redundancy Resolution
	Jacobian Transpose
	Resolved Acceleration Rate Control
	Hierarchical Approaches

	Singularities and Manipulability
	Task Description of Lola
	Chapter Summary

	Self-Collision Avoidance
	Background and Related Work
	Self-Collision Avoidance
	Chapter Summary

	Real-Time Distance Computation using Swept-Sphere-Volumes
	Background and Related Work
	Formal Aspects of Distance Computation
	SSV Primitives
	Point-Swept-Sphere Volume
	Line-Swept-Sphere Volume
	Triangle-Swept-Sphere Volume

	Distance Calculation between SSV Primitives
	Point to Point Distance Computation
	Point to Line-Segment Distance Computation
	Point to Triangle Distance Computation
	Line-Segment to Line-Segment Distance Computation
	Line-Segment to Triangle Distance Computation
	Triangle to Triangle Distance Computation
	General Framework of Minimization Using Inequality Constraints

	Implementation Details and Run-Time Performance
	Modeling of the Robot Segments
	Compounds of SSVs as Robot Segments
	A Versatile Modeling Tool

	Integration of Bounding Boxes
	System Overview
	Chapter Summary

	Use of Angular Momentum in Walking Control
	Introduction
	Angular Momentum
	Angular Momentum Compensation via Null-Space Motion
	Reference Method
	Proposed Method
	Simulations
	Experiments

	Angular Momentum Trajectory
	Angular Momentum Minimization
	Chapter Summary

	Conclusion and Outlook
	Summary
	Recommendations for Future Work

	Mathematical Toolbox
	Notation and Operators
	Coordinate Transformations
	Partial Derivatives

	Pseudo-Code for Distance Calculation Algorithms
	Line-Segment to Line-Segment

	Inverse Kinematics: Orientation Error in Task Space
	List of Abbreviations
	Bibliography

