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Abstract

The introduction of prior knowledge into image analy-
sis algorithms is a central challenge in computer vision. In
this paper, we introduce prior knowledge about spatial re-
lations of objects. Instead of using absolute learned spatial
priors, i.e. that ’sky’ is always found in the upper half of
the image, we introduce relative spatial geometric relation-
ships, i.e. that specific objects are usually found above or
below other objects or that they appear close to each other
or far apart. We integrate such relative spatial object re-
lationships into a variational approach by means of mor-
phological operators and derive an exact convex relaxation
which can be minimized globally. Extensive validations on
an established semantic segmentation benchmark demon-
strate the improved performance of the proposed method.

1. Introduction

Image segmentation is an essential component in im-
age content analysis and one of the most investigated prob-
lems in computer vision. The goal is to partition the im-
age plane into ’meaningful’ non-overlapping regions. Espe-
cially for complex real-world images, however, the defini-
tion of meaningful depends on the application or the user’s
intention. Typically, the desired segmentation consists of
one region for each separate object or structure of the scene.
Due to strongly varying texture and color models within
and between different object classes, the segmentation task
is very complex and requires additional prior information.
For example animals such as horses, cows and sheep have
similar color models and similarly textured fur. Since most
segmentation algorithms only consider local color or tex-
ture information to assign each pixel to an object class, they
often generate incorrect segmentations, where e.g. part of
the cat is assigned the label ’road’ as shown in Figure 1b).

For humans the task of recognizing objects strongly re-
lies on their context and inter-relations with other objects.
Yet, up to now most segmentation approaches only contain

a) Input images

b) Co-occurrence prior by Ladicky et al. [4].

c) Non-metric prior by Strekalovskiy et al. [14].

d) Proposed geometric spatial proximity prior.

Figure 1: Morphological Proximity Priors. Statistics on
object co-occurrence probabilities provide strong priors for
semantic segmentation. Previous approaches fail since they
either entirely neglect spatial object relations (b) or only
consider directly adjacent object labels (c). The proposed
proximity priors impose spatial geometric relations between
objects such as distances, direction and relative location.

absolute priors on typical object locations in an image. We
believe that especially relative object relations describing
the distance and location of an object with respect to other
objects are of interest.

To cope with the above mentioned difficulties we, there-
fore, learn statistics on spatial geometric relationships of
objects, i.e. on their distance, direction and position with
respect to each other. Examples of such relative relations
are that cars do not appear above water or that cows and



sheep are usually not found in close proximity. The chal-
lenge we face in this paper is to find an efficient and con-
vex optimization approach for multilabel segmentation with
relative geometric spatial priors. Improved results based on
geometric spatial object relationships in comparison to re-
lated approaches are shown in Figure 1.

1.1. Related Work

In the past, the integration of label priors into multilabel
segmentation approaches has been a successful means for
improving segmentation results.

Global label priors impose prior knowledge on the
union of all pixel labels in the image. Examples are the
minimum description length (MDL) prior [5, 18, 17] and
the connectivity prior [16, 9]. Ladicky et al. [4] proposed a
global co-occurrence prior to penalize simultaneously oc-
curring label sets in the image. The use of higher-order
potentials for MRF optimization in this context was pro-
moted by Kohli et al. [3]. Global priors disregard the spa-
tial location of labels and the corresponding object sizes.
As a consequence, if more pixels vote for a certain label
then they may easily overrule penalties imposed by the la-
bel prior term – leading to segmentations such as the ones
in Figure 1b) with large adjacent regions despite large co-
occurrence cost for ’book’ and ’building’.

Relative spatial label priors impose constraints on spa-
tial relations between different objects. An example are the
’ordering constraints’ for geometric scene labeling (’sky’,
’ground’, ’left’, ’right’, ’center’) by Liu et al. [6] and by
Strekalovskiy et al. [12]. Relative relations concerning
the containment of regions within others or their exclusion
were introduced into a Markov Random Field approach by
Delong and Boykov [1]. For penalizing directly adjacent
pixel labels Strekalovskiy et al. [14] introduced a local non-
metric prior. The drawback of this approach is that the algo-
rithm can avoid costly label transitions simply by introduc-
ing infinitesimal ’ghost labels’ – see Figure 6. Furthermore,
due to the strong locality the prior allows for regions to ap-
pear close to each other despite high co-occurrence penal-
ties (see the labels ’sheep’ and ’cow’ in Figure 1c)). Consid-
ering more complex spatial relations between objects, i.e.
relative spatial priors, will allow for a better integration of
prior knowledge on label relations.

Learned relative location priors were already proposed
by Gould et al. [2] in 2008. The authors formulated a two
stage optimization problem, where they compute superpix-
els together with an occurrence based label likelihood in
the first step. Based on the most likely label each super-
pixel then votes for labels at other superpixels in the image
based on the relative location prior. In contrast we propose
a single stage optimization problem, which optimizes pres-
ence and relative location likelihoods at the same time. We

a) Original
b) Color-based
segmentation

c) Desired
segmentation

Figure 2: Purely color-based segmentation often fails.
The ears of the bear are assigned the label ’shoes’ instead
of being combined with the head.

directly work on the pixel level without superpixels and ex-
ceed the results by Gould et al. [2] on the MSRC benchmark
by more than 8%.

1.2. Contributions

In this paper, we propose morphological proximity priors
for semantic image segmentation. Specifically, we make the
following contributions:

• We integrate learned geometric spatial relationships be-
tween different objects into a variational multi-label seg-
mentation approach by means of morphological dilation
operations.

• The specific geometric prior can be determined by simply
defining the size and shape of the morphological structur-
ing element for each label.

• We do not rely on prior superpixel partitions but directly
work on the pixel level.

• We avoid the emergence of artificial ’ghost labels’.

• We give a convex relaxation which can be solved with
fast primal-dual algorithms [11] in parallel on graphics
hardware (GPUs).

2. Morphological Label Proximity Priors
We motivate the morphological proximity priors by

means of the simple artificial teddy bear example in Fig-
ure 2a). Common segmentation approaches group pixels
mainly according to their color, hence the ears of the bear
are associated with the region ’shoes’ (Figure 2b). The de-
sired result, however, would rather connect the ears to the
head instead of the shoes as shown in Figure 2c).

To obtain the desired solution, we make use of a dilation,
an operation from mathematical morphology. To examine if
two regions are close to each other in any direction we di-
late one of the regions and compute the overlap between the
dilation and the second region. For the teddy example, we
enlarge the region ’shoes’ and compute the overlap with the
region ’head’ as shown in Figure 3. We do not only consider



a) ’Head’ b) ’Shoes’ c) Dilation d) Overlap

Figure 3: ’Proximity’ of two labels. Proximity priors
penalize the ’closeness’ of two labels, in this example a)
’head’ and b) ’shoes’. c) Dilation of the indicator function
’shoes’, d) Overlap of the dilated region ’shoes’ and the re-
gion ’head’. Appropriate penalties for such overlap intro-
duce semantic information into the segmentation.

directly neighboring pixels as close but we consider prox-
imity with respect to arbitrary neighborhoods. The size and
shape of these neighborhoods is determined by the structur-
ing element of the dilation and can thus be easily adapted.

2.1. A Continuous Formulation of the Dilation

Dilation is one of the basic operations in mathematical
morphology. For general not necessarily binary images it
can be defined as follows:

Definition 2.1 (Dilation of an image) Let I : Ω → Rd be
an image and S ⊆ Ω a structuring element. The dilation
of I by S is then given by

(I ⊕ s)(x) = sup
y∈Ω

[I(y) + s(x− y)] = sup
z∈S

I(x+ z),

where s(x) =

{
0, x ∈ S,
−∞, otherwise.

(1)

Thus, the dilation result at a given location x in the image is
the maximum value of the image within the window defined
by the structuring element S, when its origin is at x. The
structuring element determines the type of geometric spatial
relationship we want to penalize, see Figure 4. Symmetric
structuring elements of specific sizes (Figure 4b)) consider
the proximity of two labels without preference of a specific
direction. By replacing the symmetric structuring element
for example by a line we can penalize the proximity of spe-
cific labels in specific directions, e.g. the occurrence of a
book below a sign by means of a vertical structuring ele-
ment (compare Figure 4c)). The larger S the more pixels
are considered as adjacent to x. The possibility to use struc-
turing elements of different sizes and shapes is one of the
major benefits of the proposed algorithm.

3. Variational Image Segmentation with Mor-
phological Proximity Priors

Let I : Ω → Rd denote the input image defined on the
image domain Ω ⊂ R2. The general multilabel image seg-

mentation problem with n ≥ 1 labels consists of the parti-
tioning of the image domain Ω into n regions {Ω1, . . . ,Ωn}
with Ω =

n⋃
i=1

Ωi and Ωi ∩ Ωj = ∅ ∀i 6= j. This task can

be solved by computing binary labeling functions ui : Ω→
{0, 1} in the space of functions of bounded variation (BV )
for i = 1, . . . , n indicating which of the n regions each
pixel belongs to. We obtain Ωi =

{
x
∣∣ ui (x) = 1

}
.

In order to assign each pixel to a specific label, we re-
quire some connection between the image and the different
labels. We use color likelihoods P (I(x)

∣∣ x ∈ Ωi), which
indicate the probability that a given pixel x with color I(x)
belongs to region Ωi. In this paper, we use the same color
likelihoods as Ladicky et al. [4].

Based on these color likelihoods, we compute a segmen-
tation of the image by minimizing the following energy

E(Ω1, ..,Ωn) =
λ

2

n∑
i=1

Perg (Ωi) +

n∑
i=1

∫
Ωi

fi (x) dx,

where fi (x) = − logP
(
I(x)

∣∣ x ∈ Ωi
)
. (2)

Perg (Ωi) denotes the perimeter of each set Ωi, which is
minimized in order to favor segments of shorter bound-
ary. These boundaries are measured with either an edge-
dependent or an Euclidean metric defined by the non-
negative function g : Ω→ R+. For example,

g (x) = exp

(
−|∇I (x) |2

2σ2

)
, σ2 =

1

|Ω|

∫
Ω

|∇I (x) |2dx

favors the coincidence of object and image edges.
To rewrite the perimeter of the regions in terms of the

indicator functions we make use of the total variation:

Perg(Ωi) =

∫
Ω

g(x)|Dui| = sup
ξi:|ξi(x)|≤g(x)

−
∫

Ω

ui div ξi dx.

Since the binary functions ui are not differentiable
Dui denotes their distributional derivative. Furthermore,
ξi ∈ C1

c

(
Ω;R2

)
are the dual variables and C1

c denotes the
space of smooth functions with compact support. We can
rewrite the energy in (2) in terms of the indicator functions
ui : Ω→ {0, 1}:

E(u1, .., un) = sup
ξ∈K

n∑
i=1

∫
Ω

(fi − div ξi)ui dx, (3)

where K =

{
ξ ∈ C1

c

(
Ω;R2×n) ∣∣∣ |ξi(x)| ≤ λg(x)

2

}
.

3.1. The Novel Proximity Prior

To introduce the proximity prior into the optimization
problem in (3), we define the proximity matrix A ∈ Rn×n≥0 .
Each entry A(i, j), i 6= j indicates the penalty for the oc-
currence of label j in the proximity of label i, which we



a) Original Image b) Symmetric SE c) Vertical SE d) Horizontal SE

Figure 4: Possible dilations. Different types of structuring elements (SE) incorporate different geometric spatial prior
knowledge. Their origin is marked by the gray pixel. b) Symmetric elements only consider object distances, but are indifferent
to directional relations. c) Vertical elements penalize vertical label co-occurrences such as the ’book’ below the ’sign’.
d) Horizontal elements penalize labels to the left and right. Using the symmetric element we obtain the result in Figure 1d).

denote by i ∼ j. For i = j we set A(i, i) := 0. The penal-
ties can be computed from co-occurrence probabilities of
training segmentations, e.g. by A(i, j) = − logP (i ∼ j).
An example for a proximity matrix is shown in Figure 5.

To detect if two regions i and j are close to each other,
we compute the overlap between the dilation of the indica-
tor function ui denoted by di and the indicator function uj .
According to (1), the dilation of ui can be formulated as:

di : Ω→ {0, 1} di (x) = max
z∈S

ui (x+ z) ∀ x ∈ Ω

(4)
with the respective structuring element S.

For each two regions i and j we can now penalize their
proximity by means of the following energy term∑

1≤i<j≤n

∫
Ω

A(i, j) di (x)uj (x) dx. (5)

3.2. A Convex Relaxation

In the following we will propose a convex relaxation of
the segmentation problem (3) combined with the proposed
proximity prior in (5). To obtain a convex optimization
problem, we require convex functions over convex domains.

Figure 5: Proximity matrix A. Learned penalty matrix for
21 regions and a symmetric structuring element (SE) of size
9×9. The lighter the color the more likely is the occurrence
of the corresponding labels within the relative spatial con-
text given by the SE, and the lower is the corresponding
penalty.

Relaxation of the Binary Functions ui The general mul-
tilabeling problem is not convex due to the binary region
indicator functions ui : Ω → {0, 1}. To obtain a convex
problem we will relax these conditions to ui : Ω → [0, 1].
Since each pixel should be assigned to exactly one label,
optimization is carried out over the convex set

U =

{
u ∈ BV (Ω; [0, 1]n)

∣∣∣ n∑
j=1

uj (x) = 1 ∀ x ∈ Ω

}
.

Relaxation of the Dilation Constraints The dilation
constraints in (4) are not convex. To obtain a convex for-
mulation we relax the constraints to

di (x) ≥ ui (x+ z) ∀ x ∈ Ω, z ∈ S. (7)

By simultaneously minimizing over the functions di we can
assure that at the optimum di fulfills the constraints in (4)
exactly. The inequality (7) can easily be included in the
segmentation energy by introducing a set of Lagrange mul-
tipliers βiz and adding the following energy term:

min
d∈D

max
β∈B

n∑
i=1

∑
z∈S

∫
Ω

βiz (x)
(
di (x)−ui (x+ z)

)
dx, (8)

B =
{
βiz
∣∣ βiz : Ω→ [−∞, 0] ∀ z ∈ S, i = 1, .., n

}
,

D = BV (Ω; [0, 1]n) .

Relaxation of the Product in (5) The product of the di-
lation di and the indicator function uj is not convex. A
convex, tight relaxation of such energy terms was given by
Strekalovskiy et al. [13]. To this end, we introduce addi-
tional dual variables qij and Lagrange multipliers αij :

Q =
{
qij
∣∣ qij : Ω→ R4, 1 ≤ i < j ≤ n

}
, (9)

A =
{
αij

∣∣ αij : Ω→ [−∞, 0]
4
, 1 ≤ i < j ≤ n

}
.



min
u∈U
d∈D
α∈A

max
ξ∈K
β∈B
q∈Q

n∑
i=1

{∫
Ω

(fi − div ξi)ui dx+
∑
z∈S

∫
Ω

βiz (x)
(
di (x)− ui (x+ z)

)
dx (6)

+

n∑
j=i+1

∫
Ω

q1
ij(1− di) + q2

ijdi + q3
ij(1− uj) + q4

ijuj

+ α1
ij

(
q1
ij + q3

ij

)
+ α2

ij

(
q1
ij + q4

ij

)
+ α3

ij

(
q2
ij + q3

ij

)
+ α4

ij

(
q2
ij + q4

ij −A(i, j)
)
dx
}
.

Resulting Optimization Problem After carrying out
these relaxations we finally obtain the convex energy mini-
mization problem in (6).

The projections onto the respective convex sets of ξ, d, β
and α are done by simple clipping while that of the primal
variable u is a projection onto the simplex in Rn [8].

4. Implementation
In order to find the globally optimal solution to this re-

laxed convex optimization problem, we employ the primal-
dual algorithm published in [11]. Optimization is done by
alternating a gradient descent with respect to the functions
u, d and α and a gradient ascent for the dual variables ξ, β
and q interlaced with an over-relaxation step on the primal
variables. The step sizes are chosen optimally according to
[10]. We stopped the iterations when the average update of
the indicator function u(x) per pixel was less than 10−5.

By allowing the primal variables ui to take on intermedi-
ate values between 0 and 1 we may end up with non-binary
solutions. In order to obtain a binary solution to the original
optimization problem, we assign each pixel x to the label L
with maximum value after optimizing the relaxed problem:

L (x) = arg max
i

{ui (x)} , x ∈ Ω. (10)

During our experiments we observed that the computed re-
laxed solutions u are binary almost everywhere except at
region boundaries, with more or less sharp transitions.

5. Experiments and Results
We have developed a novel approach for improving cur-

rent segmentation algorithms by making use of morpholog-
ical operations in order to introduce relative spatial rela-
tions between object labels. One of the major advantages
of the proposed algorithm is that we can utilize structur-
ing elements of different sizes and shapes which allow us
to take into account larger neighborhoods of pixels in spe-
cific directions. In the following we will show results on the
MSRC database and compare our segmentations to state-of-
the-art approaches for semantic labeling. The penalty ma-
trix A defined in Section 3.1 is learned from training data
based on the relative frequencies of label occurrences within
the local range defined by the structuring element. For a
symmetric 9 × 9 element we obtain the penalty matrix in
Figure 5.

5.1. Preventing Ghost Labels

’Ghost labels’ denote thin artificial regions which are
easily introduced if label distances are learned from train-
ing data, see for example [14].

If the distance function does not obey the triangle in-
equality ’ghost labels’ can appear. They reduce costs of
direct label transitions by taking a ’detour’ over a third, un-
related but less expensive label. Examples are given in Fig-
ure 6b) with a closeup in c). The segmentation result ob-
tained by [14] e.g. contains very thin ’boat’ regions at the
edge of the ’grass’ label, because the transition between the
labels ’water’ and ’boat’ and ’boat’ and ’grass’ is in sum
less costly than the direct transition between ’water’ and
’grass’. Such ’ghost labels’ can be prevented by consider-
ing larger neighborhood sizes of e.g. 15× 15 pixels as done

a) Input images

b) Segmentation by Strekalovskiy et al. [14].

c) Zoom of b) showing ghost labels

d) Segmentations with proximity priors

Figure 6: Proximity priors avoid ghost labels. If the tran-
sition of two labels is cheaper via a third label artificial la-
bels will be introduced into the segmentation as shown in
b) and as closeup in c). The proposed proximity priors con-
sider regions with more than one-pixel distance still as ad-
jacent and thus avoid ghost labels.



by the proposed proximity priors in Figure 6d). The larger
the neighborhood size the more expensive becomes the in-
troduction of ’ghost labels’.

5.2. MSRC Segmentation Benchmark

To evaluate the proposed segmentation algorithm we ap-
ply it to the task of object segmentation and recognition
on the MSRC benchmark. This benchmark comprises 591
images which contain 21 different labels such as ’cow’,
’book’, ’building’ or ’grass’. To conduct experiments on
this benchmark, we follow Ladicky et al. [4] and divide the
image set randomly into 60% training and 40% test images.
The proximity matrix A is learned from the training set as
described above in Section 3.1. For the experiments we
chose a symmetric structuring element of size 9 × 9 and
set λ equal to 0.3.

To evaluate the segmentation accuracy of the proposed
method, in Table 1 we compare the benchmark scores of
our method to the approaches by Gould et al. [2] with rel-
ative location priors, Ladicky et al. [4] with co-occurrence
prior (with and without hierarchical prior), Lucchi et al. [7]
for the data pairwise global and local models, Vezhn-
evets et al. [15] for the weakly and fully supervised ap-
proach and to Strekalovskiy et al. [14] with the non-metric
distance functions for multi-label problems. The scores
denote the average accuracy on the benchmark given as

True Positives · 100
True Positives + False Negatives per pixel and per class.

The results indicate that we outperform the other co-
occurrence based methods in average class and pixel accu-
racy. The hierarchical co-occurrence prior by Ladicky et al.
is added for completeness but not comparable since it uses
potentials of order |Ω| and additional label hierarchy priors.
Note that the high score of the approach by Strekalovskiy et
al. [14] does not reflect the ghost label problem since these
regions contain only very few pixels. However, the intro-
duction of entirely unrelated objects, albeit small ones, is
often problematic for subsequent applications.

The benchmark results in general suggest rather small
improvements for the integration of geometric spatial pri-
ors. This is somewhat surprising since the images show
strong improvements and the prior corresponds to typical
human thinking. As already mentioned by Lucci et al. [7]
who stated similar findings this is probably due to the rather
crude ground truth of the benchmark with large unlabeled
regions (see the black regions in Figure 8b)). These regions
are not counted in the score, but nevertheless leave a lot of
room for misclassification or improvements. Therefore, we
think that the benchmark score should not be overstressed
here.

Qualitative comparisons with the two best scoring of the
above mentioned methods by Ladicky et al. [4] with hierar-
chical prior and by Strekalovskiy et al. [14] on the MSRC
database are given in Figures 1 and 7. The results show

a) Input images

b) Segmentation by Ladicky et al. [4]

c) Segmentation by Strekalovskiy et al. [14]

d) Segmentation with proximity priors

Figure 7: Improved results on the MSRC benchmark.
The results with proximity priors (d) are based on the in-
troduction of geometric spatial label priors. We compare
our results to other state-of-the-art methods based on co-
occurrence priors.

that the proposed method reduces the number of mislabeled
objects. For example, our approach is the only one which
correctly detects the boat in Figure 7 without assigning part
of it to the label ’bird’. Another example is the head of the
sheep in the middle column of Figure 7 which is correctly
labeled without any ’cow’ pixels. The result of the cat in
Figure 1 shows that we can avoid problems which appear
due to prior superpixel segmentations.

5.3. Direction Dependent Proximity

Some object pairs only appear in specific spatial con-
stellations, for example cars do not appear above water or
books on top of buildings. Such relations can be encoded
by applying directional structuring elements, e.g. horizon-
tal or vertical lines. The corresponding penalties can either
be defined or learned from training data. For the leftmost
image in Figure 8 showing the head of the woman we used
a learning based approach for a horizontal structuring ele-
ment as shown in Figure 4d). We derive the penalty from
the relative frequencies of objects appearing up to 40 pix-
els left and right of the label ’face’ in the training images.
For the bench and cat images we used a vertical structuring
element directed up-/downwards (compare Figure 4c)) to
penalize the label ’bird’ below ’chair’ and the label ’water’
above ’street’.
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Gould et al. [2] CRF + rel. loc. 76.5 64.38 72 95 81 66 71 93 74 70 70 69 72 68 55 23 82 40 77 60 50 50 14
Ladicky et al. [4] co-oc. 80 67.76 77 96 80 69 82 98 69 82 79 75 75 81 85 35 76 17 89 25 61 50 22
Lucchi et al. [7], DPG local 75 68.62 54 88 83 79 82 95 87 70 85 81 97 69 72 27 88 46 60 74 27 49 28
Lucchi et al. [7], DPG loc.+glob. 80 74.62 65 87 87 84 75 93 94 78 83 72 93 86 70 50 93 80 86 78 28 58 27
Vezhnevets et al. [15], weak sup. 67 66.52 12 83 70 81 93 84 91 55 97 87 92 82 69 51 61 59 66 53 44 9 58
Vezhnevets et al. [15], full sup. 72 71.71 21 93 77 86 93 96 92 61 79 89 89 89 68 50 74 54 76 68 47 49 55
Strekalovskiy et al. [14] 84.85 77.52 70 97 92 89 85 96 81 83 90 82 92 83 66 45 92 63 86 80 51 73 32
Proposed Proxmity Priors 84.97 78.19 69 97 92 87 87 97 87 82 91 83 94 84 62 44 93 67 86 83 57 74 26
Ladicky et al. [4] co-oc. + hier. 87 76.76 82 95 88 73 88 100 83 92 88 87 88 96 96 27 85 37 93 49 80 65 20

Table 1: MSRC benchmark results. We compare the segmentation accuracy to state-of-the-art segmentation algorithms
with co-occurrence priors on the MSRC benchmark. The proposed proximity priors outperform the other methods with
respect to average accuracy per pixel and per class. The approach by Ladicky et al. in the last row is added for completeness
but is not comparable since it includes hierarchical label priors and uses potentials of the highest order |Ω| instead of order
two as in our approach.

a) Input images

b) Ground Truth images

c) Segmentation by Ladicky et al. [4]

d) Segmentation by Strekalovskiy et al. [14]

e) Segmentation Based on Directional Proximity Priors

Figure 8: Directional proximity priors. The introduction
of specific natural spatial relationships such as: ’bird’ does
not appear below ’chair’ or ’water’ does not appear above
’street’ allows for improved segmentations of difficult im-
ages.

The results show strong improvements compared to pre-
vious approaches and thus show that proximity priors facil-
itate the segmentation of complex images.

5.4. Runtimes

Due to the inherent parallel structure of the optimiza-
tion algorithm [11] the approach can be easily parallelized
and implemented on graphics hardware. We used a parallel
CUDA implementation on an NVIDIA GTX 680 GPU.

Since the number of terms in the optimization functional
depends on the size of the structuring element S, the run-
time increases for larger elements. To make the computa-
tion feasible we randomly selected only very few entries in
the structuring element and neglected the others. Figure 9
shows the development of the solution for an increasing
number of entries together with the corresponding runtime
for a structuring element of size 15× 15. We can conclude
that already very sparse elements containing around ten en-
tries yield results very similar to full structuring elements.
The average runtime on the benchmark for a sparse element
of 15× 15 containing 15 entries is about three minutes. For
comparison, the approach by Gould et al. [2] takes 31 sec-
onds and the approach by Ladicky et al. [4] 16 seconds on
average on the MSRC benchmark. Yet, these approaches
require a prior partitioning of the image into a few hun-
dred superpixels (200 to 400). Instead, our computations
are carried out directly on the pixel level with image sizes
of 320× 240 pixels and thus tens of thousands of pixels.

6. Conclusion
We introduced proximity priors for semantic segmenta-

tion using morphological operations in a variational mul-
tilabel approach. Instead of introducing co-occurrence



Original Ground Truth |S| = 0 |S| = 2 |S| = 5 |S| = 7 |S| = 10 |S| = 225
0.21 min 2.41 min 2.54 min 2.72 min 2.94 min 15.24 min

Figure 9: Minimizing runtime. To minimize runtime we use sparse structuring elements (SE). The development of the
solution for an increasing number of entries in a structuring element S of size 15 × 15 shows that very few entries (here 10
entries in a 15 × 15 SE) are already sufficient to obtain accurate results. The runtimes denote the average runtime on the
benchmark with the respective number of entries |S|.

probabilities of label combinations proximity priors allow
for the introduction of geometric spatial relationships of
label pairs, i.e. direction and distance specific label pair
probabilities. This prior is relative since it describes the
spatial relationship between two labels (e.g. ’sky’ appears
above ’grass’) in contrast to commonly used absolute spa-
tial priors which impose knowledge on where a single la-
bel usually appears in an image (e.g. ’sky’ appears in the
upper half of the image). The specific spatial relation-
ships are determined by the size and shape of the struc-
turing element. Based on this geometric spatial prior both
the computation of superpixels and the emergence of one
pixel wide ’ghost labels’ can be prevented. Furthermore,
the label cost penalty is proportional to the size of the la-
beled regions and also affects object labels at larger spatial
distances. We proposed a multilabel variational approach
where neighborhood information is determined using mor-
phological dilation. Subsequently, we derived an exact con-
vex relaxation which can be solved optimally. The method
outperforms previous co-occurrence based approaches on
the MSRC benchmark.

References

[1] A. Delong and Y. Boykov. Globally optimal segmentation of
multi-region objects. In IEEE Int. Conf. on Computer Vision,
Kyoto, 2009. 2

[2] S. Gould, J. Rodgers, D. Cohen, G. Elidan, and D. Koller.
Multi-class segmentation with relative location prior. Int. J.
of Computer Vision, 2008. 2, 6, 7

[3] P. Kohli, L. Ladicky, and P. H. S. Torr. Robust higher order
potentials for enforcing label consistency. Int. J. of Computer
Vision, 82(3):302–324, 2009. 2

[4] L. Ladicky, C. Russell, P. Kohli, and P. Torr. Graph cut based
inference with co-occurrence statistics. In Proceedings of
ECCV, 2010. 1, 2, 3, 6, 7

[5] Y. Leclerc. Region growing using the MDL principle. In
Proc. DARPA Image Underst. Workshop, pages 720–726,
April 6-8 1990. 2

[6] X. Liu, O. Veksler, and J. Samarabandu. Order-preserving
moves for graph-cut-based optimization. IEEE Trans. on
Patt. Anal. and Mach. Intell., 32(7):1182–1196, 2010. 2

[7] A. Lucchi, Y. Li, X. Boix, K. Smith, and P. Fua. Are spatial
and global constraints really necessary for segmentation? In
IEEE Int. Conf. on Computer Vision, 2011. 6, 7

[8] C. Michelot. A finite algorithm for finding the projection of a
point onto the canonical simplex of Rn. Journal of Optimiza-
tion Theory and Applications, 50(1):195–200, July 1986. 5

[9] S. Nowozin and C. Lampert. Global connectivity potentials
for random field models. In IEEE Int. Conf. on Computer
Vision and Pattern Recognition, 2009. 2

[10] T. Pock and A. Chambolle. Diagonal preconditioning for
first order primal-dual algorithms in convex optimization. In
IEEE Int. Conf. on Computer Vision, 2011. 5

[11] T. Pock, D. Cremers, H. Bischof, and A. Chambolle. An
algorithm for minimizing the Mumford-Shah functional. In
IEEE Int. Conf. on Computer Vision, Kyoto, 2009. 2, 5, 7

[12] E. Strekalovskiy and D. Cremers. Generalized ordering con-
straints for multilabel optimization. In IEEE Int. Conf. on
Computer Vision, 2011. 2

[13] E. Strekalovskiy, B. Goldluecke, and D. Cremers. Tight con-
vex relaxations for vector-valued labeling problems. In IEEE
Int. Conf. on Computer Vision, 2011. 4

[14] E. Strekalovskiy, C. Nieuwenhuis, and D. Cremers. Non-
metric priors for continuous multilabel optimization. In Eu-
ropean Conference on Computer Vision, 2012. 1, 2, 5, 6,
7

[15] A. Vezhnevets, V. Ferrari, and J. M. Buhmann. Weakly su-
pervised semantic segmentation with a multi-image model.
In IEEE Int. Conf. on Computer Vision, 2011. 6, 7

[16] S. Vicente, V. Kolmogorov, and C. Rother. Graph cut based
image segmentation with connectivity priors. In Int. Conf.
on Computer Vision and Pattern Recognition, Anchorage,
Alaska, June 2008. 2

[17] J. Yuan and Y. Boykov. TV-based multi-label image seg-
mentation with label cost prior. In British Machine Vision
Conference, pages 1–12, 2010. 2

[18] S. C. Zhu and A. Yuille. Region competition: Unifying
snakes, region growing, and Bayes/MDL for multiband im-
age segmentation. IEEE Trans. on Patt. Anal. and Mach.
Intell., 18(9):884–900, 1996. 2




