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The advent of networked control systems urges the digital control design to incorporate communication constraints effi-

ciently. In order to accommodate this requirement, this article studies the joint design of controller and event-trigger for

linear stochastic systems in the presence of a resource-limited communication channel which exhibits packet dropouts and

time-delay. The event-trigger situated at the sensor decides at every sampling instance, whether to send information over

the communication channel to the controller. The design approach is formulated as a stochastic average-cost optimization

problem, where the communication constraints are reflected as an additional cost penalty of the average transmission rate.

Different conditions on the communication model are given where the joint optimal design can be split into a separate

control and event-trigger design. Based on these results, two suboptimal design approaches are developed. By using drift

criteria, stability guarantees of the closed-loop system for both approaches are derived in terms of bound moment stabil-

ity. Numerical simulations illustrate the efficacy of the event-triggered approach compared with optimal time-triggered

controllers.
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1 Introduction

With the emergence of networked control systems, where sensors, controllers and actuators can be viewed as self-contained

entities exchanging information over a common communication network, various benefits for the control system can be en-

visioned. These benefits comprising modularity, flexibility and ease of maintenance come at the price of various challenges

imposed by the digital communication system that have to be tackled in the digital control design. Besides facing time-

delays and packet dropouts introduced by packet-based transmission of data, the control design must take into account

that the communication medium is a sparse resource that needs to be used efficiently. Common digital control design

assumes that measurements are obtained periodically to update control inputs. However, various results in the litera-

ture show that substantial improvements are achieved, when replacing periodic sampling with event-triggered sampling

schemes [2, 6, 17, 20]. The work in [2] shows that event-triggered control can reduce the state variance by a factor of 3
compared to a time-triggered periodic minimum variance controller with equal average transmission rate. This work is ex-

tended in [6,17] to multiple control loops sharing a common communication network, where it is shown that event-triggered

scheduling outperforms periodic scheduling schemes with respect to minimizing an LQ cost of each control system. The

work in [20] shows that an event-triggered task execution for control tasks can enlarge the maximum allowable transfer

interval that guarantees global asymptotic stability compared to periodic task execution.

Despite of the fact that time-delays and packet-dropout are unavoidable in digital communication networks, these effects

have merely been addressed by some works for the design of event-triggered control systems [5, 18, 22, 24]. On the other

hand, the study of time-delay and packet-dropouts mainly focuses on periodic transmission schemes [8, 19] or on finding

upper bounds on the sampling period [10]. In [18] the design of optimal level-triggered impulse control under packet

dropouts with multiple loops sharing a common network is considered. The work in [5] derives the optimal event-based

controller in the presence of packet dropouts and under a constraint on the number of transmissions. In [24], optimal

event-based estimators are designed by imposing a penalty on sending updates over a communication network with a fixed

transmission delay. In the framework of model predictive control, the work in [22] designs an event-triggered controller

over a UDP-like communication channel with time-delay and packet dropouts. Rather than specifying the event-triggering

rule for transmitting information to the controller, the results specify an upper bound on consecutive transmissions.
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2 A. Molin and S. Hirche: Suboptimal event-triggered control for NCS

The contribution of this article is to develop numerically efficient algorithms for the optimization-based design of event-

triggered controllers for linear stochastic processes with time-delay and stochastic packet-dropouts in the feedback loop.

The event-trigger situated at the sensor decides upon current observations, whether a state update shall be transmitted over a

communication channel to the controller. The controller is situated at the actuator and adjusts the control inputs to stabilize

the plant. In contrast to other work, we assume that the control input may not be constant but is allowed to vary between

transmission times. Inspired by work in [24], the common design objective for the event-trigger and the controller is to

minimize a long-term average-cost criterion comprised of a quadratic control cost and a communication cost penalizing

transmissions over the digital communication system. The communication penalty reflects the awareness of the design

approach with respect to the communication constraint.

The occurrence of both time-delay and packet-dropouts in the feedback loop requires an innovative design approach for

the optimal design of event-triggered controllers, as the problem is generally very hard to solve. Because of the distributed

information pattern evoked by the time-delay and the packet droputs in the feedback-loop, it can not be separated into

tractable subproblems in contrast to the case of ideal communication systems as shown in [15]. This motivates us to

identify different conditions for the communication model, where the separate design of event-trigger and controller leads

to the optimal solution. For that reason a TCP-like communication system is assumed, i.e. the communication system is

equipped with an acknowledgement channel that informs the event-trigger, whether a transmission has been successful.

The acknowledgement channel is error-free, but may delay information.

It turns out that the separate design is possible, if either (i) the acknowledgement channel is delay-free or (ii) the

feedback link is error-free or (iii) intervals between subsequent transmission times are restricted to be equal or greater

than the round-trip time. Inspired by these conditions, we develop two suboptimal design approaches. In this article,

the notion of suboptimality refers to optimal event-triggered controllers under certain assumptions in the design. The first

approach called waiting strategy assumes that the event-trigger is idle for the duration of a round-trip time after transmitting

information. This restriction enables an efficient solution algorithm separating control and event-trigger design into two

tractable problems. The controller is given by a certainty equivalence controller and the event-trigger can be calculated

by dynamic programming. The second approach is called dropout estimation strategy and assumes the controller to be

a certainty equivalence controller. In contrast to the waiting strategy, there are no restrictions on the duration between

subsequent transmissions. In such case, we show that the optimal event-trigger needs only to have finite memory, where

the number of variables to be taken into account scales linearly with the round-trip time.

The notion of drift criteria that have been introduced in [13] to analyze asymptotic properties of Markov chains, turns

out to offer appropriate mathematical tools to analyze closed-loop stability of the event-triggered system under time-delays

and packet dropouts. Under these criteria, we are able to derive sufficient conditions to guarantee bounded moment stability

for both design approaches.

Finally, numerical results indicate that the proposed suboptimal algorithms outperform standard time-triggered controller

and approach a lower bound of the cost closely.

A preliminary version of this work dealing with finite horizon problems first appeared in the conference paper [14].

The remainder of this article is organized into four sections. Section 2 introduces the problem statement. Conditions

for separating the underlying optimization problem into subproblems and the suboptimal design approaches are derived

in section 3. Stability analysis of the closed-loop behavior is conducted in section 4. Section 5 validates numerically the

efficacy of the suboptimal algorithm.

Notation. In this article, the operators tr[·] and (·)T denote the trace and the transpose operator of a square matrix,

respectively. The symbol ’∧’ denotes the logical AND-operation. The operator 1(·) denotes the indicator function. The

expectation operator is denoted by E[·] and the conditional expectation is denoted by E[·|·]. Sans-serif variables, e.g. xk,

indicate realizations of random variables. A sequence of a random process {xk}k is denoted by Xk = [x0, . . . , xk] for its

complete history and Xk
l = [xl, . . . , xk] for a specific time interval {l, . . . , k}. If l > k, then Xk

l is an empty sequence.

2 Problem Statement

The system under consideration is illustrated in Fig. 1 and can be viewed as a control system with a resource-constrained

feedback link. The resource-constrained communication channel N delays and drops information. The control system

consists of a process P , an event-trigger E and a controller C. The stochastic discrete-time process P to be controlled is

described by the following time-invariant difference equation

xk+1 = Axk +Buk + wk, (1)
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where A ∈ R
n×n, B ∈ R

n×d. The variables, xk and uk denote the state and the control input. They are taking values

in R
n and R

d, respectively. The system noise wk takes values in R
n and is an i.i.d. (independent identically distributed)

zero-mean Gaussian distributed sequence with covariance matrix Σw. The initial state, x0 is Gaussian with mean x̄0 and

covariance Σx0
.

The event-trigger output δk ∈ {0, 1} is defined as follows.

δk =

{

1 update is sent

0 nothing transmitted

The system model for the communication system is given by an erasure channel in the forward link. When δk = 1,

packet dropouts are modeled as a Bernoulli process {qk}k defined as

qk =

{

1 update successfully transmitted

0 packet dropout occurred

with packet dropout probability β = P[qk = 0|δk = 1] and qk takes a value of 0, if δk = 0. We assume a TCP-like

communication protocol as introduced in [19] for networked control systems. The main feature of TCP-like communica-

tion protocols is that a binary acknowledgement is sent over the reverse link to the event-trigger, whenever a packet has

been transmitted successfully. It is assumed that the reverse link is error-free. Most point-to-point protocols for wired con-

nections fulfill this assumption. For example, the CAN-Bus protocol achieves such behavior by letting each transmitting

node compare its priority with the other nodes that want to access the bus. Forward and reverse link delay packets by the

duration of T1 and T2, respectively. Both, T1 and T2, are positive and non-negative integer values and are known apriori. If

only upper bounds on these delays are known, a buffering approach can be used to obtain constant time-delays equal to the

bounds and the subsequent analysis can still be carried out.

Let (Ω,A,P) denote the probability space generated by the random variables x0, {wk}k and {qk}k. These variables are

also called primitive random variables. System parameters and statistics are known to the event-trigger and controller. The

event-trigger E situated at the sensor side has access to the complete observation history and decides, whether the controller

C should receive an update.

If the event-trigger decides to update the controller, it transmits the current state over the erasure channel with delay

T1 to the controller. As we assume that the state measurements are noise-free, the received signal at the controller can be

defined as

yk+T1
=

{

xk, δk = 1 ∧ qk = 1

∅, otherwise
(2)

with y0 = · · · = yT1−1 = ∅. The admissible policies for the event-trigger and the controller at time k are defined as

Borel-measurable functions of their past available data, i.e.,

δk = fk(I
E
k ), uk = γk(I

C
k ).

The observation history IE
k and IC

k of the event-trigger and controller, respectively, are defined as

IE
k = {Xk,Qk−T1−T2}, IC

k = Y k.

Let U be the set of all admissible policy pairs (f, γ), where the event-triggering policies is given by f = {f1, f2, . . .} and

control policies is given by γ = {γ1, γ2, . . .}. The cost function is defined as

J(f, γ) = lim sup
N→∞

1

N
E

[

N−1
∑

k=0

xTkQxk + uTkRuk + λδk

]

, (3)

where the weighting matrix Q ∈ R
n×n is positive semi-definite and R ∈ R

d×d is positive definite. The positive factor λ

can be regarded as the weight of penalizing information exchange between sensor and controller.

Then, the design objective is to find the pair (f, γ) ∈ U that minimizes the long-term average-cost criterion J

min
(f,γ)∈U

J(f, γ), (4)

where J is defined in (3). In the following, we assume that the pair (A,B) is controllable and the pair (A,Q
1

2 ) is observable

with Q = (Q
1

2 )TQ
1

2 .
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PC

Communication channel N

qk−(T1+T2)
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yk xkuk
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x0, wk
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δk

Fig. 1 System model of the networked control system with plant P , event-trigger E ,

controller C and a resource-constrained communication system N . The forward link is

an erasure channel and the reverse link carries the acknowledgement. Both links contain

transmission delays T1, T2.

3 Design Approach

This section is consists of three main parts. First, conditions of the communication systems are derived that enable struc-

tural characterization of the optimal solution. These structural properties allow an efficient calculation of the optimal

event-trigger. As the conditions for the communication system are generally not satisfied, we develop two different sub-

optimal design procedures, a waiting strategy and a dropout estimation strategy, which are discussed in the two remaining

subsections.

3.1 Structural Properties

Finding the optimal solution by minimizing J given by (3) over all admissible pairs (f, γ) is a hard problem. This is

mainly due to the fact that the event-trigger and the controller have different information available, which prevents the

direct application of dynamic programming. It is well known that such optimization problems with so-called distributed

information patterns generally lack of systematic solution algorithms [23]. However, in case of the absence of packet

dropouts and time-delays, it has been shown in [15] for finite horizon problems that the optimal solution exhibits structural

properties that allow an efficient design by separating the minimization into a set of subproblems.

This motivates us to ask whether there exist conditions for the communication system, where similar structural results

hold as for ideal communication. In order to give the precise statement on such structural result, we introduce the following

definition

Definition 3.1 (Dominating policies) A set of policy pairs U ′ ⊂ U is called a dominating class of policies for the

optimization defined by (4), if for any feasible (f, γ) ∈ U , there exists a feasible (f ′, γ′) ∈ U ′, such that

J(f ′, γ′) ≤ J(f , γ),

where J is the cost function defined by (3).

Once a dominating class of policies is obtained, Definition 3.1 implies that we can restrict the solutions of the optimiza-

tion problem (4) to such policies. We will see that the set of policy pairs, where the controller is a certainty equivalence

controller is a dominating class of policies, if the information pattern is nested. A certainty equivalence controller is given

by the solution of the related deterministic control problem, where all primitive random variables are set to their means, and

replacing the state variable by its least squares estimate within the deterministic solution. Therefore, the optimal solution

splits into two problems, i.e. calculating the certainty equivalence controller and determining the optimal event-trigger. As

already indicated, the key feature that enables such separation is given by the fact that the information pattern is nested.

For the present problem, the nestedness property means that the information IC
k at the controller at time k is available at the

event-trigger at time k + 1. In other words, the σ-algebra σ(IC
k ) generated by IC

k is embedded in the σ-algebra σ(IE
k+1)

generated by IE
k+1. This observation is formalized in the following lemma.

Lemma 3.2 If the information pattern is nested, i.e.

σ(IC
k−1) ⊂ σ(IE

k ),

then the set UCE = {(f, γCE)| f is an admissible event-triggering policy} is a dominating class of policies, where γCE is

given by

uk = γCE(IC
k ) = −LE[xk|I

C
k ]

Copyright line will be provided by the publisher
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with

L = (BTPB +R)−1BTPA,

P = AT(P − PB(BTPB +R)−1BTP )A+Q.
(5)

P r o o f. Assume we are given a pair (f , γ) ∈ U with finite costs J . We define a reparameterization (g, γ), where g =
{g1, g2, . . .} is the new event-trigger with gk defined as a function of these primitive random variables {x0,Wk−1,Qk −
T1 − 1} such that

gk(x0,W
k−1,Qk−T1−1) = fk(I

E
k ), k ≥ 0, P -a.s. (6)

when both systems are using a control law γ. As we assume that σ(IC
k−1) ⊂ σ(IE

k ) and γ is known, the control inputs

Uk−1 and dropouts Qk−T1−1 can be fully recovered at the event-trigger. This implies also that x0,W
k−1 can be fully

recovered from Xk and vice versa. Therefore, the event-triggering law f can always be replaced by g and vice versa

assuming σ(IC
k−1) ⊂ σ(IE

k ). Notice that the pair (f , γ) and (g, γ) produce identical random variables uk and δk almost

surely by (6) and therefore yield the same cost J .

In the following, we fix the event-trigger g and find the optimal law γ∗ minimizing J . Using an identity represented by

lemma 6.1 of chapter 8 in [1], the cost can be rewritten as

J = lim sup
N→∞

1

N

(

E

[

N−1
∑

k=0

(uk + Lxk)
T(BTPB +R)(uk + Lxk)

]

+

+ E

[

xT0 Px0 +

N−1
∑

k=0

wT
k P (Axk +Buk) + (Axk +Buk)

TPwk + wT
k Pwk + λδk

])

where L and P are given by (5). As wk is zero-mean and statistically independent of xk and uk and as g is a function of

primitive random variables, the second expectation is a constant independent of the control law chosen for any N and can

therefore be omitted from the optimization. Let ∆k be the estimation error defined by ∆k = xk − E[xk|I
C
k ] and the matrix

Γ be defined as Γ = BTPB +R. By replacing xk by ∆k + E[xk|IC
k ], we obtain

E
[

(uk + Lxk)
TΓk(uk + Lxk)

]

=

= E
[

(uk + LE[xk|I
C
k ])

TΓ(uk + LE[xk|I
C
k ])
]

+ 2E
[

(uk + LE[xk|I
C
k ])

TΓL∆k

]

+ E
[

∆T
kL

TΓL∆k

]

Because uk and E[xk|IC
k ] are measurable functions with respect to IC

k , the cross term vanishes as shown in the following.

E
[

E[(uk + LE[xk|I
C
k ])

TΓL∆k|I
C
k ]
]

=E
[

(uk + LE[xk|I
C
k ])

TΓLE[∆k|I
C
k ]
]

=E
[

(uk + LE[xk|I
C
k ])

TΓLE[∆k|I
C
k ]
]

=E
[

(uk + LE[xk|I
C
k ])

TΓL(E[xk|I
C
k ]− E[E[xk|I

C
k ]|I

C
k ]])
]

=0.

Similarly to the proof of lemma 5.2.1 in [4] and [15], it can be shown that the estimation error ∆k is a function of primitive

random variables that is independent of the control law γ. Hence, the term E
[

∆T
kL

TΓL∆k

]

is a constant that is independent

of the control law γ. Therefore, we attain the minimum by choosing γ to be γCE.

Summarizing these results, we obtain

J(f, γ) = J(g, γ) ≥ min
γ
J(g, γ) = J(g, γCE) = J(f ′, γCE), (7)

where f′ satisfies (6). The statement in (7) states that for any given pair (f, γ) ∈ U , we find another pair (f ′, γCE) where

J(f, γ) ≥ J(f ′, γCE). Therefore, we have shown that the set of solutions given by (f ′, γCE) is a dominating class of policies.

This concludes the proof.

Based on the above Lemma, we are able to identify conditions for the communication system, where the set of pairs

UCE is a dominating class of policies. These conditions are given by the following three propositions.

Proposition 3.3 Let T1 ≥ 0 and T2 ≥ 1. If the packet dropout probability β is 0, then UCE is a dominating class of

policies.
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6 A. Molin and S. Hirche: Suboptimal event-triggered control for NCS

P r o o f. In case of β = 0, we observe that {qk}k is deterministic and does not carry any information. As the

data Yk−T2−1 can be reconstructed by IE
k and equation (2), the information pattern is nested. By applying Lemma 3.2, the

proof is complete.

Proposition 3.4 Let β ∈ [0, 1] and T1 ≥ 0. If the delay T2 is equal to 1, then UCE is a dominating class of policies.

P r o o f. In case of T2 = 1, we are able to reconstruct Yk−T2−1 by equation (2), as the event-trigger has the data δk − 1,

Qk−T2−1 and Xk are available at time k. Applying Lemma 3.2 concludes the proof.

In order to formulate the next proposition, we define the number of unacknowledged packets in the communication

system denoted by Mk as

Mk =

k−1
∑

l=k−T1+T2

δl

In TCP-like networks it is common to bound Mk by a so-called TCP window size [21]. The next proposition shows that

setting the TCP window size to 1 enables separation.

Proposition 3.5 Let β ∈ [0, 1], T1 ≥ 0 and T2 ≥ 1. If the communication system only allows one unacknowledged

packet, i.e. Mk ≤ 1 for all k ≥ 1, then UCE is a dominating class of policies.

P r o o f. Suppose the event-trigger decides to transmit information at time k1, i.e. δk1
= 1. The subsequent sequence

of δk is predefined as [δk1
, . . . , δk1+T1+T2−1] = [0, . . . , 0]. Therefore, no decision are taken at the event-trigger during

this period. At time step k1 + T1 + T2, the event-trigger may again decide to transmit information. But as δk = 0 for

k ∈ {k1, . . . , k1+T1+T2−1}, the event-trigger knows the history of Qk1+T1+T2−1 and is able to reconstructYk1+T1+T2−1

by the information available at the event-trigger. In case no transmissions occurred prior to time k the same arguments hold,

as δl = 0 for l ∈ {0, . . . , k − 1} By using Lemma 3.2, we find that UCE is a dominating class of policies.

The results in Proposition 3.5 motivate us to propose a special class of event-triggered controllers, which is studied in

the following section.

3.2 Waiting Strategy

The main idea of the waiting strategy is to wait for the acknowledgement before sending the next message to the controller.

Setting the TCP window size to 1 enforces the event-trigger to wait for the length of a round trip time T1 + T2, before

transmitting again information. The benefits of such approach are two-fold. Waiting for the acknowledgment before

sending the next packet enhances predictability of the event-trigger for communication and diminishes the possibility of

congestion in the communication network. Second, such restriction facilitates the solution of the optimization problem by

reducing it to numerically tractable subproblems. Besides the structural property due to Proposition 3.5, it turns out that

the optimal event-trigger is described by a decision function in R
n that can be found by value iteration.

Based on Proposition 3.5, we restrict our attention to find the optimal solution in UCE that satisfies Mk ≤ 1 for all k ≥ 0.

Therefore, the remaining problem reduces to finding

min
f
JE , s.t. Mk ≤ 1, (8)

where

JE = lim sup
N→∞

1

N
E

[

N−1
∑

k=0

(xk − x̂Ck)
TΓ(xk − x̂Ck) + λδk

]

(9)

with x̂Ck = E[xk|IC
k ]. In order to embed the constraint Mk ≤ 1 into the system evolution, we define the following variable

sk representing the state of the communication network

sk+1 =











T1 + T2 − 1 δk = 1 ∧ sk = 0

sk − 1 δk = 0 ∧ sk > 0

0 δk = 0 ∧ sk = 0

(10)
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with s0 = 0 and the following modified interconnection relation which differs from Eq. (2)

yk+T1
=

{

xk, δk = 1 ∧ qk = 1 ∧ sk = 0,

∅, otherwise.
(11)

Equation (11) implies that even if δk = 1, the update will be blocked, when sk > 1. This reflects exactly the behavior of the

waiting strategy, as choosing δk = 1 when sk > 0, will have no effect on the system evolution, although the communication

penalty λ is paid. Therefore, the optimal event-triggering law always selects δk = 0 for sk > 0.

Since the least-squares estimate x̂Ck = E[xk|IC
k ] may depend explicitly on the choice of f , the optimization problem (8)

can not be formulated in the framework of dynamic programming directly and remains hard to solve. The work in [11]

and [9] show that for first-order systems and for random walks in arbitrary dimensions, respectively, the optimal event-

trigger exhibits certain symmetry properties that imply that the least-squares estimator is independent of f and given by a

linear predictor [11]. By assuming that the cost function is radially symmetric and that the the transition kernel is radially

symmetric and radially non-increasing, the proof techniques in [9] can be used to show that the linear predictor is optimal

also for higher-order systems. However, a rigorous proof in the general case for higher-order systems does not exist.

Nevertheless, we assume in the following that this symmetry property is also present for any arbitrary higher-order system.

Then, the least-squares estimate x̂Ck = E[xk|IC
k ] is given by

x̂Ck+T1
=

{

AT1xk −
∑T1−1

m=0 A
T1−m−1BLx̂Ck+m for δk = 1 ∧ qk = 1 ∧ sk = 0

(A−BL)x̂Ck+T1−1 otherwise
(12)

with initial condition

x̂Ck = (A−BL) · · · (A−BL)x̄0, k = 0, . . . , T1 − 1. (13)

Similar to [24], the optimization problem (8) can then be written as

min
f

lim sup
N→∞

1

N
E

[

N−1
∑

k=0

(1− 1{sk=0}qkδk)e
T
k (A

T1)TΓAT1ek + λδk

]

ek+1 =
(

1− 1{sk=0}qkδk
)

Aek + wk, e0 = x0 − x̄0,

(14)

where the evolution of sk is given by (10). The variable ek can be considered as the estimation of a one-step ahead

prediction at the controller assuming a time-delay T1 = 0. It is interesting to see that this variable is crucial for the event-

trigger for arbitrary time-delay T1. Another important property that is attributed to the waiting strategy is that the signal

ek can be calculated at the event-trigger, whenever sk = 0. For sk 6= 0, it is easy to see that δk = 0. Therefore, the

optimization problem can be viewed as an average cost problem with full state information [ek, sk]. Such problem can be

solved numerically in the framework of dynamic programming by applying value iteration.

In summary, we have developed a numerically tractable algorithm for determining the optimal event-triggered controller.

By restricting the optimal policies to a waiting strategy, the initial optimization problem with distributed information pattern

reduces to the calculation of control gain L given by (5), a least-squares estimator defined by (12) and the solution of a

dynamic program stated by (14).

3.3 Dropout Estimation Strategy

The waiting strategy discussed in the last section is certainly suboptimal, as there are circumstances, where another update

should be sent, although the outstanding acknowledgement has not been received yet. For example, this would be the case,

if a significant state disturbance is observed, while the event-trigger has to wait. This fact motivates us to relax the waiting

strategy and allow update transmissions before an outstanding acknowledgement has been received.

In the following, we restrict our attention to policies in UCE. In other words, the control law is assumed to be the certainty

equivalence controller γCE given by Lemma 3.2. We assume a linear predictor as the suboptimal state estimator which is

similar to (12) that does not take into account the event-triggering law, i.e.,

x̂Ck+T1
=

{

AT1xk −
∑T1−1

m=0 A
T1−m−1BLx̂Ck+m for δk = 1 ∧ qk = 1,

(A−BL)x̂Ck+T1−1 otherwise
(15)

with initial conditions given by Eq. (13). The above state estimator differs from (12) merely by its independence of sk.
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Based on the least squares estimator (15), finding the optimal event-trigger is the solution of the following optimization

problem

min
f

lim sup
N→∞

1

N
E

[

N−1
∑

k=0

(1− qkδk)e
T
k (A

T1 )TΓAT1ek + λδk

]

ek+1 =
(

1− qkδk
)

Aek + wk, e0 = x0 − x̄0.

(16)

Although, the above optimization problem differs only slightly from the dynamic program for solving the optimal waiting

strategy given by (14), there is a major burden in solving problem (16), as the variable ek is generally not perfectly known

at the event-trigger.

Remark 3.6 It should be noted that the cases of no packet dropouts, i.e. β = 0, or one-step delayed acknowledgement

channel, i.e. T2 = 1, constitute special situations, where ek can be fully recovered at the event-trigger. Due to Proposi-

tion 3.3 and 3.4, respectively, the optimal event-triggered controller (f∗, γ∗)is given by γ∗ = γCE with a state estimator

given by (15) and f∗ is the solution of the dynamic program stated in (16).

Problems with partial state information can be restated as problems with perfect state information by considering the

information available as the current state as described in chapter 5 in [4]. As the information state IE
k increases with time,

such approach is not suitable for the above infinite horizon problem. Due to this fact, we need to reduce the data in IE
k

to its essential quantities, which are known as sufficient statistics. The main feature of a sufficient statistic I red
k is that the

optimal policy f∗ can be rewritten as

f∗k(I
E
k ) = f̃k(I

red
k ).

A well known sufficient statistic is given by the conditional distribution Pek|IE

k

for the above problem with partial state

information, see also section 5.4 in [4].

The subsequent paragraph is concerned with the calculation of Pek|IE

k

. Such problem can be posed in the framework of

optimal filtering of discrete-time Markov jump linear systems, which is studied in [7], with unknown discrete mode qk and

observation Pek|IE

k

. In this case it is well known that the optimal nonlinear filter can be described by a bank of Kalman

filters, which requires exponentially increasing memory and computation with time [3]. However, the event-trigger receives

a delayed version of the discrete mode qk through the acknowledgement channel. Based on results by [12], such additional

information leads to nonlinear filters that require merely finite memory and their computation has a polynomial complexity

that does not increase over time. This fact is stated formally in the subsequent lemma.

Lemma 3.7 A sufficient statistics for the optimal event-trigger f∗ solving the optimization problem (16) is given by the

information

Ired
k = {ek−T1−T2+1,X

k
k−T1−T2+1, δ

k
k−T1−T2+1},

where Ired
k = {e0,Xk} for k < T1 + T2. The σ-algebra of Ired

k is a subset of σ(IE
k ).

P r o o f. The initial value of ek is given by x0 − x̄0 and is therefore known by the event-trigger, i.e. σ(I red
k ) ⊂ σ(IE

k )
for k ≤ T1 + T2 − 1. On the other hand, I red

k = {e0,Xk} is the complete information available at the event-trigger at time

k ≤ T1 + T2 − 1. This implies σ(I red
k ) = σ(IE

k ) for k ≤ T1 + T2 − 1.

For k ≥ T1 + T2, the event-trigger obtains additional information Qk−T1+T2 that enables us to determine ek−T1−T2+1

from the difference equation of ek defined in the optimization problem (16), where the noise sequence Wk−T1−T2 can be

recovered from knowledge of Xk−T1−T2+1 and the control inputs Uk−T1−T2 .

As the sequence δk−1 is known at the event-trigger, the state ek conditioned on δk−1 has the Markov property , i.e. given

the current state ek and the sequence δk−1, the future evolution of ek is statistically independent of past observations.

Therefore, we obtain

Pek|I red
k

= Pek|IE

k

(17)

As Pek|IE

k

is in general a sufficient statistics for problems with partial state information, equation (17) implies that I red
k is

also a sufficient statistics. This completes the proof.

The resulting event-trigger is called dropout estimation strategy as it internally estimates the unknown discrete modes

that have not been acknowledged at the event-trigger in order to determine the conditional distribution of ek. This suggests
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that Pek|IE

k

is given by a finite set of point masses increasing with T2. For the calculation of the conditional distribution,

we define the discrete mode ik at time step k as

ik = qkδk =

{

1, successful state update

0, no update

We also define the probability matrix of ik conditioned on δk as

T =

[

1 0
1− β β

]

which satisfies

P[ik = j|δk = l] = Tl+1,j+1, j, l ∈ {0, 1}.

In the following, we assume that T1 = 1 for illustrative purposes, but the main principles for computing Pek|I
red
k

also carry

over to arbitrary forward delays T1. We further define x̂
C,ik−1

k−T2

k as the state estimate at time k given the sequence ik−1
k−T2

with initial condition x̂Ck−T2
. The term x̂

C,ik−1

k−T2

k can be calculated recursively by Equation (15). With the estimator

x̂Ck+1 = g(x̂Ck , xk, ik) =

{

Axk −BLx̂Ck for ik = 1

(A−BL)x̂Ck for ik = 0

this yields for T1 = 1

x̂
C,ik−1

k−T2

k = g(·, xk−1, ik−1) ◦ · · · ◦ g(x̂
C
k−T2

, xk−T2
, ik−T2

)

According to [12], we then have

P
i
k−1

k−T2
|I red

k

=
α(ik−1

k−T2
, I red

k )
∑

i
k−1

k−T2

α(ik−1
k−T2

, I red
k )

where
∑

i
k−1

k−T2

denotes the sum over all possible permutations of ik−1
k−T2

, i.e.
∑

i
k−1

k−T2

=
∑1

ik−T2
=0 · · ·

∑1
ik−1=0 and

α(ik−1
k−T2

, I red
k ) =

T2−1
∏

t=0

Tδk−t−1+1,ik−t−1+1pk−t(xk−t)

where pk−t(·) is probability density function of the conditional probability distribution of xk−t given {xk−t−1, ek−T2
, ik−t−1

k−T2
},

which is described by the multivariate normal distribution N (Axk−t−1 −BLx̂
C,ik−t−2

k−T2

k−t−1 ,Σw). Finally, we obtain Pek|I red
k

by

computing the points

ek = xk − x̂
C,ik−1

k−T2

k

which have a probability P
i
k−1

k−T2
|I red

k

. The number of point masses can be reduced by taking into account that α(ik−1
k−T2

, I red
k )

is zero whenever ik−t−1 = 1 and δk−t−1 = 0, which corresponds to T1,2 = 0. Hence, the number of point masses depends

on the number of transmission attempts during a round trip time. In case no transmissions occurred during this period, we

recover the waiting strategy as there is no ambiguity for ek with probability one.

Remark 3.8 In contrast to the initial problem stated by (16), the information state I red
k does not increase in time,

but is bounded by the round-trip time T1 + T2. Therefore, finding the optimal event-trigger f is feasible for practical

implementation in the case of infinite horizon problems with a moderate round-trip time.
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4 Stability Analysis

This section is concerned with the asymptotic behavior of the resulting closed-loop system. The notion of stability is

defined in terms of bounded moment stability. The dynamical system described by a time-homogeneous Markov chain is

said to be bounded moment stable, if it is ergodic with a stationary distribution whose second-order moment is bounded.

In the following, we assume that the event-trigger being of the type of a waiting strategy is stationary, i.e. fk = fS, and

satisfies

fS(ek, sk) = 1 for ‖ek‖2 > c̄, sk = 0. (18)

This assumption does not put severe restrictions on the design, as c̄ may be chosen arbitrarily large. When Γ is not

positive definite, but only non-negative definite, optimal solutions of (14) generally violate assumption (18) for any c̄ as is

shown in [16]. But as c̄ can be arbitrarily large, there always exists an ǫ-optimal event-triggering law taking assumption (18)

into account. The following lemma gives a sufficient condition for bounded moment stability of the process ek, when using

the waiting strategy. This result will also enable implications for the asymptotic behavior of the state xk for both the waiting

strategy and the dropout estimation strategy.

Lemma 4.1 Let the event-trigger be of the type of a waiting strategy satisfying constraint (18). If the packet dropout

probability β and the round-trip time T1 + T2 satisfy

β <
1

‖A‖
2(T1+T2)
2

, (19)

then the process ek evolving by the difference equation defined in (14) is bounded moment stable.

P r o o f. Based on results in chapter 14 in [13], we use Lyapunov-like drift criteria to show bounded moment stability

of the process ek. The drift operator is defined as

∆h(ek, sk) = E[h(ek+1, sk+1)|ek, sk]− h(ek, sk), ek ∈ R
n, sk ∈ {0, 1, . . . , T1 + T2 − 1},

where h is a real-valued function of the state (ek, sk). Let us fix an arbitrary stationary event-trigger f = [fS, fS, . . .] which

satisfies assumption (18). Then, it is straight forward to prove that the drift of quadratic functions of {ek, sk} inside a

compact set O. is bounded. Thus, it suffices to consider the set of states {ek, sk} outside of the compact set O [13]. As the

compact set can be chosen arbitrarily large, we assume that

{{ek, sk}|‖ek‖2 ≤M, sk ∈ {0, 1, . . . , T1 + T2 − 1}} ⊂ O.

By taking assumption (18) into account, the evolution of ek for ‖ek‖2 > c̄ is given by

ek+T1+T2
= (1− qk)A

T1+T2ek +

k+T1+T2−1
∑

l=k

Ak+T1+T2−1−lwl, k ∈ {m+ l(T1 + T2)|l = 0, 1, . . .}.

(20)

where m is the first exit-time of O. It is clear that the underlying sampled Markov chain evolving by (20) is ψ-irreducible

and aperiodic. As sk does not appear in (20) anymore, it can be omitted in the following. According to theorem 14.01

in [13], in order to have bounded moment stability, we need to ensure that

∆h(ek) ≤ −ǫ‖ek‖
2
2, ek ∈ R

n\Ō, (21)

where ǫ > 0 and Ō ⊃ {ek|‖ek‖2 ≤ c̄} is compact. Let us take h(ek) = ‖ek‖22. The drift ∆h(ek) can be written as

∆h(ek) = E[‖(1− qk)Aek + wk‖
2
2|ek]− ‖ek‖

2
2

Due to mutual statistical independence of wk, qk and ek and the fact that wk is i.i.d. and zero-mean with covariance matrix

Σw, the drift term can be written as

∆h(ek) = E[1− qk]‖A
T1+T2ek‖

2
2 + tr[

k+T1+T2−1
∑

l=k

(Ak+T1+T2−1−l)TAk+T1+T2−1−lΣw]− ‖ek‖
2
2. (22)
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The term E[1 − qk] is the average packet drop probability given by β. On the other hand, we have ‖AT1+T2ek‖2 ≤
‖A‖T1+T2

2 ‖ek‖. Therefore, the drift is bounded by

∆h(ek) ≤ (β‖A‖
2(T1+T2)
2 − 1)‖ek‖

2
2 + c1,

where c1 is a constant summarizing the trace-term in (22). Condition (19) ensures that we can find appropriate ǫ and Ō,

such that the drift criteria given by (21) is satisfied. This completes our proof.

Bounded moment stability of ek implies that the cost J defined by 3 is finite, as we assumed that (A,B) to be controllable

and the pair (A,Q
1

2 ) to be observable. This in turn means that the process state xk is bounded moment stable, when the

condition (19) in Lemma 4.1 is satisfied.

Remark 4.2 As the class of event-triggers described by the waiting strategy is a subset of the collection of event-

triggers described by the dropout estimation strategy, the solution of the optimization problem (16) will not be worse than

the solution of (14) for identical system parameters. Therefore, we can conclude that whenever condition (19) is satisfied,

stability is guaranteed for the closed-loop system resulting from the optimal solution in (16).

5 Numerical Simulations

Suppose a scalar process P defined by (1) with A = 1, B = 1 and variances Σw = 1, Σx0
= 1 and mean x̄0 = 0. The

cost function J is defined by (3), where Q and R are selected apriori to Q = 1 and R = 10. Subsequently, we analyze

the performance with respect to diverse settings of the communication network. We consider three different packet dropout

probabilities β ∈ {0, 0.25, 0.5}, a forward delay T1 = 1 and two different reverse delays T2 ∈ {1, 2}. The proposed

suboptimal algorithms are compared with the optimal time-triggered controller. The time-triggered strategy does not need

an acknowledgement channel and is therefore independent of T2. The optimal transmission timings of the time-triggered

controller are calculated by the deterministic dynamic programming algorithm. In addition, a lower bound on the cost is

determined by assuming that packet dropouts are instantaneously known at the event-trigger after transmission. Besides

implying that UCE is a dominating class of policies due to Lemma 3.2, the variable ek defined in (16) is known at the event-

trigger at time k. Therefore, the solution of optimization problem (16) can be solved directly by dynamic programming,

which will then yield a lower bound. It should be noticed that this bound is not tight for non-zero packet dropout probability

β and T1 + T2 ≥ 2. It can not be attained by any event-triggered controller, as it imposes that the event-trigger guesses qk
at any time step k + 1 correctly with probability 1.

For all event-triggered controllers it turns out that γ is a certainty equivalence controller given in Lemma 3.2 with a

linear control gain L = 0.27. The weighting Γ in (9) is given by Γ = 1. The least-squares estimator is given by (12) for

the waiting strategy and by (15) for all other approaches. According to Lemma 4.1, we attain bounded moment stability for

any packet dropout probability β smaller than 1.

The difference in cost between the approaches is reflected in JE defined by (9). The objective function JE consists of a

weighted mean squared error MSE(Γ) given by

MSE(Γ) = lim sup
N→∞

1

N
E

[

N−1
∑

k=0

(xk − x̂Ck)
TΓ(xk − x̂Ck)

]

and the weighted average transmission rate λr, where r is defined as

r = lim sup
N→∞

1

N
E

[

N−1
∑

k=0

δk

]

.

A comparative study is illustrated in Fig. 2 for different qualities of the communication system, where we are interested

in the trade-off between the weighted mean squared error and the average transmission rate. Fig. 2 draws the achievable

cost pairs [MSE(Γ), r] for varying communication penalty λ, where cost pairs with r close to 0 corresponds to large λ and

pairs with a transmission rate r close to 1 corresponds to a vanishing λ.

In all depicted scenarios in Fig. 2, the dropout estimation strategy outperforms the optimal time-triggered scheme and

approaches the lower bound very closely. For the case of no packet dropouts, i.e. β = 0, the dropout estimation strategy is

equal to the lower bound, as both optimal solutions coincide, because qk is deterministic in this case. The waiting strategy

also outperforms the optimal time-triggered scheme and deviates only slightly from the lower bound for low transmission

rates. Fig. 2 also reveals the natural upper bound on the transmission rate r given by 1
T1+T2

. Evidently, the dropout

estimation strategy shows better performance than the waiting strategy at the cost of additional computations due to the

filtering procedure.
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Fig. 2 Performance comparison: without packet dropouts (top,

left); for packet dropout probability β = 0.25 (top, right); for

packet dropout probability β = 0.5 (bottom, left).

6 Conclusion

Due to its distributed information structure, the optimal design of event-triggered control is a challenging problem in the

field of networked control systems. This article addresses this problem for controlling linear stochastic systems in the

presence of time-delays and packet-dropouts within the feedback loop. By using an acknowledgement channel, conditions

for the communication system can be identified that enable a structural characterization of the optimal event-triggered

controller. The structural properties allow an efficient optimal design of the event-triggered controller. These conditions do

not hold for a general communication system, but restrictions on the communication protocol may recover these conditions.

Despite of these restrictions, which facilitate the design procedure significantly, numerical simulations indicate that the

suboptimal procedures outperform time-triggered control systems, while marginally deviate from a lower bound on the

system performance.

For future investigations, it is of interest to analyze the proposed algorithms in a setting with multiple control loops

sharing a common communication network, where time-delays are varying and packet-dropouts have more complicated

statistical models.
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