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The advent of networked control systems urges the digital control design to incorporate communication constraints effi-
ciently. In order to accommodate this requirement, this article studies the joint design of controller and event-trigger for
linear stochastic systems in the presence of a resource-limited communication channel which exhibits packet dropouts and
time-delay. The event-trigger situated at the sensor decides at every sampling instance, whether to send information over
the communication channel to the controller. The design approach is formulated as a stochastic average-cost optimization
problem, where the communication constraints are reflected as an additional cost penalty of the average transmission rate.
Different conditions on the communication model are given where the joint optimal design can be split into a separate
control and event-trigger design. Based on these results, two suboptimal design approaches are developed. By using drift
criteria, stability guarantees of the closed-loop system for both approaches are derived in terms of bound moment stabil-
ity. Numerical simulations illustrate the efficacy of the event-triggered approach compared with optimal time-triggered
controllers.
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1 Introduction

With the emergence of networked control systems, where sensors, controllers and actuators can be viewed as self-contained
entities exchanging information over a common communication network, various benefits for the control system can be en-
visioned. These benefits comprising modularity, flexibility and ease of maintenance come at the price of various challenges
imposed by the digital communication system that have to be tackled in the digital control design. Besides facing time-
delays and packet dropouts introduced by packet-based transmission of data, the control design must take into account
that the communication medium is a sparse resource that needs to be used efficiently. Common digital control design
assumes that measurements are obtained periodically to update control inputs. However, various results in the litera-
ture show that substantial improvements are achieved, when replacing periodic sampling with event-triggered sampling
schemes [2, 6, 17,20]. The work in [2] shows that event-triggered control can reduce the state variance by a factor of 3
compared to a time-triggered periodic minimum variance controller with equal average transmission rate. This work is ex-
tended in [6,17] to multiple control loops sharing a common communication network, where it is shown that event-triggered
scheduling outperforms periodic scheduling schemes with respect to minimizing an LQ cost of each control system. The
work in [20] shows that an event-triggered task execution for control tasks can enlarge the maximum allowable transfer
interval that guarantees global asymptotic stability compared to periodic task execution.

Despite of the fact that time-delays and packet-dropout are unavoidable in digital communication networks, these effects
have merely been addressed by some works for the design of event-triggered control systems [5, 18,22, 24]. On the other
hand, the study of time-delay and packet-dropouts mainly focuses on periodic transmission schemes [8, 19] or on finding
upper bounds on the sampling period [10]. In [18] the design of optimal level-triggered impulse control under packet
dropouts with multiple loops sharing a common network is considered. The work in [5] derives the optimal event-based
controller in the presence of packet dropouts and under a constraint on the number of transmissions. In [24], optimal
event-based estimators are designed by imposing a penalty on sending updates over a communication network with a fixed
transmission delay. In the framework of model predictive control, the work in [22] designs an event-triggered controller
over a UDP-like communication channel with time-delay and packet dropouts. Rather than specifying the event-triggering
rule for transmitting information to the controller, the results specify an upper bound on consecutive transmissions.
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The contribution of this article is to develop numerically efficient algorithms for the optimization-based design of event-
triggered controllers for linear stochastic processes with time-delay and stochastic packet-dropouts in the feedback loop.
The event-trigger situated at the sensor decides upon current observations, whether a state update shall be transmitted over a
communication channel to the controller. The controller is situated at the actuator and adjusts the control inputs to stabilize
the plant. In contrast to other work, we assume that the control input may not be constant but is allowed to vary between
transmission times. Inspired by work in [24], the common design objective for the event-trigger and the controller is to
minimize a long-term average-cost criterion comprised of a quadratic control cost and a communication cost penalizing
transmissions over the digital communication system. The communication penalty reflects the awareness of the design
approach with respect to the communication constraint.

The occurrence of both time-delay and packet-dropouts in the feedback loop requires an innovative design approach for
the optimal design of event-triggered controllers, as the problem is generally very hard to solve. Because of the distributed
information pattern evoked by the time-delay and the packet droputs in the feedback-loop, it can not be separated into
tractable subproblems in contrast to the case of ideal communication systems as shown in [15]. This motivates us to
identify different conditions for the communication model, where the separate design of event-trigger and controller leads
to the optimal solution. For that reason a TCP-like communication system is assumed, i.e. the communication system is
equipped with an acknowledgement channel that informs the event-trigger, whether a transmission has been successful.
The acknowledgement channel is error-free, but may delay information.

It turns out that the separate design is possible, if either (i) the acknowledgement channel is delay-free or (ii) the
feedback link is error-free or (iii) intervals between subsequent transmission times are restricted to be equal or greater
than the round-trip time. Inspired by these conditions, we develop two suboptimal design approaches. In this article,
the notion of suboptimality refers to optimal event-triggered controllers under certain assumptions in the design. The first
approach called waiting strategy assumes that the event-trigger is idle for the duration of a round-trip time after transmitting
information. This restriction enables an efficient solution algorithm separating control and event-trigger design into two
tractable problems. The controller is given by a certainty equivalence controller and the event-trigger can be calculated
by dynamic programming. The second approach is called dropout estimation strategy and assumes the controller to be
a certainty equivalence controller. In contrast to the waiting strategy, there are no restrictions on the duration between
subsequent transmissions. In such case, we show that the optimal event-trigger needs only to have finite memory, where
the number of variables to be taken into account scales linearly with the round-trip time.

The notion of drift criteria that have been introduced in [13] to analyze asymptotic properties of Markov chains, turns
out to offer appropriate mathematical tools to analyze closed-loop stability of the event-triggered system under time-delays
and packet dropouts. Under these criteria, we are able to derive sufficient conditions to guarantee bounded moment stability
for both design approaches.

Finally, numerical results indicate that the proposed suboptimal algorithms outperform standard time-triggered controller
and approach a lower bound of the cost closely.

A preliminary version of this work dealing with finite horizon problems first appeared in the conference paper [14].

The remainder of this article is organized into four sections. Section 2 introduces the problem statement. Conditions
for separating the underlying optimization problem into subproblems and the suboptimal design approaches are derived
in section 3. Stability analysis of the closed-loop behavior is conducted in section 4. Section 5 validates numerically the
efficacy of the suboptimal algorithm.

Notation. In this article, the operators tr[-] and (-)* denote the trace and the transpose operator of a square matrix,
respectively. The symbol *A’ denotes the logical AND-operation. The operator 1.y denotes the indicator function. The
expectation operator is denoted by E[-] and the conditional expectation is denoted by E[-|-]. Sans-serif variables, e.g. x,
indicate realizations of random variables. A sequence of a random process {xy } 1. is denoted by X k— [0, ..., 2] forits
complete history and X7 = [x;, ..., x| for a specific time interval {I, ..., k}. If I > k, then X} is an empty sequence.

2 Problem Statement

The system under consideration is illustrated in Fig. 1 and can be viewed as a control system with a resource-constrained
feedback link. The resource-constrained communication channel A/ delays and drops information. The control system
consists of a process P, an event-trigger £ and a controller C. The stochastic discrete-time process P to be controlled is
described by the following time-invariant difference equation

Trp+1 = Az, + Buy, + wi, (D
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where A € R™*", B € R"*?, The variables, xj, and uj, denote the state and the control input. They are taking values
in R” and RY, respectively. The system noise wy, takes values in R™ and is an i.i.d. (independent identically distributed)
zero-mean Gaussian distributed sequence with covariance matrix X,,. The initial state, zo is Gaussian with mean Zo and
covariance X, .

The event-trigger output &5, € {0, 1} is defined as follows.

1 update is sent
0k = . .
0 nothing transmitted

The system model for the communication system is given by an erasure channel in the forward link. When 6, = 1,
packet dropouts are modeled as a Bernoulli process { gy } 1 defined as

{1 update successfully transmitted
qk =

0 packet dropout occurred

with packet dropout probability 5 = P[gr = 0|0 = 1] and gy, takes a value of 0, if § = 0. We assume a TCP-like
communication protocol as introduced in [19] for networked control systems. The main feature of TCP-like communica-
tion protocols is that a binary acknowledgement is sent over the reverse link to the event-trigger, whenever a packet has
been transmitted successfully. It is assumed that the reverse link is error-free. Most point-to-point protocols for wired con-
nections fulfill this assumption. For example, the CAN-Bus protocol achieves such behavior by letting each transmitting
node compare its priority with the other nodes that want to access the bus. Forward and reverse link delay packets by the
duration of 7% and 75, respectively. Both, T} and 7%, are positive and non-negative integer values and are known apriori. If
only upper bounds on these delays are known, a buffering approach can be used to obtain constant time-delays equal to the
bounds and the subsequent analysis can still be carried out.

Let (2, A, P) denote the probability space generated by the random variables ¢, {wy, }; and {gx } . These variables are
also called primitive random variables. System parameters and statistics are known to the event-trigger and controller. The
event-trigger £ situated at the sensor side has access to the complete observation history and decides, whether the controller
C should receive an update.

If the event-trigger decides to update the controller, it transmits the current state over the erasure channel with delay
T7 to the controller. As we assume that the state measurements are noise-free, the received signal at the controller can be
defined as

e, =1Aq =1 @)
Ykt (),  otherwise
with yo = -+ = yp,—1 = 0. The admissible policies for the event-trigger and the controller at time k are defined as

Borel-measurable functions of their past available data, i.e.,
o = f(ZE),  wr=m(Zf).
The observation history I,f and I]g of the event-trigger and controller, respectively, are defined as
I,f _ {Xk,Qkalng}, 7¢ — vk
Let U be the set of all admissible policy pairs (f, ), where the event-triggering policies is given by f = {f;,fo,...} and

control policies is given by v = {71, 7¥2, . . .}. The cost function is defined as

N—-1

. 1
J(f,~) = limsup N E Z 2} Qg 4 up Ruy + Aoy | 3)

N —o00 k=0

where the weighting matrix Q € R"™*™ is positive semi-definite and R € R?*? is positive definite. The positive factor A
can be regarded as the weight of penalizing information exchange between sensor and controller.
Then, the design objective is to find the pair (f,~) € U that minimizes the long-term average-cost criterion .J

in J(f 4
(i (£,7), 4

where .J is defined in (3). In the following, we assume that the pair (A4, B) is controllable and the pair (A, Q% ) is observable
with Q = (Q%)"Q=.
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3 Design Approach

This section is consists of three main parts. First, conditions of the communication systems are derived that enable struc-
tural characterization of the optimal solution. These structural properties allow an efficient calculation of the optimal
event-trigger. As the conditions for the communication system are generally not satisfied, we develop two different sub-
optimal design procedures, a waiting strategy and a dropout estimation strategy, which are discussed in the two remaining
subsections.

3.1 Structural Properties

Finding the optimal solution by minimizing J given by (3) over all admissible pairs (f,~) is a hard problem. This is
mainly due to the fact that the event-trigger and the controller have different information available, which prevents the
direct application of dynamic programming. It is well known that such optimization problems with so-called distributed
information patterns generally lack of systematic solution algorithms [23]. However, in case of the absence of packet
dropouts and time-delays, it has been shown in [15] for finite horizon problems that the optimal solution exhibits structural
properties that allow an efficient design by separating the minimization into a set of subproblems.

This motivates us to ask whether there exist conditions for the communication system, where similar structural results
hold as for ideal communication. In order to give the precise statement on such structural result, we introduce the following
definition

Definition 3.1 (Dominating policies) A set of policy pairs U’ C U is called a dominating class of policies for the
optimization defined by (4), if for any feasible (f,) € U, there exists a feasible (f',7) € U’, such that

J({' ) < J(E,7),

where J is the cost function defined by (3).

Once a dominating class of policies is obtained, Definition 3.1 implies that we can restrict the solutions of the optimiza-
tion problem (4) to such policies. We will see that the set of policy pairs, where the controller is a certainty equivalence
controller is a dominating class of policies, if the information pattern is nested. A certainty equivalence controller is given
by the solution of the related deterministic control problem, where all primitive random variables are set to their means, and
replacing the state variable by its least squares estimate within the deterministic solution. Therefore, the optimal solution
splits into two problems, i.e. calculating the certainty equivalence controller and determining the optimal event-trigger. As
already indicated, the key feature that enables such separation is given by the fact that the information pattern is nested.
For the present problem, the nestedness property means that the information Ig at the controller at time k is available at the
event-trigger at time k + 1. In other words, the o-algebra o(Z{) generated by Z¢ is embedded in the o-algebra o(Z¢ 1)
generated by I;f 1- This observation is formalized in the following lemma.

Lemma 3.2 [f the information pattern is nested, i.e.
C £
o(Zy_y) € o(Zi),

then the set UE = {(f,+“F)|fis an admissible event-triggering policy} is a dominating class of policies, where v is
given by

up, =y F(I{) = — L Elzx|Z{]
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with
L= (BTPB+ R)™'BTPA,

®)
P=AY(P-PB(B"PB+R)"'BTP)A +Q.

Proof. Assume we are given a pair (f,) € U with finite costs .J. We define a reparameterization (g, ), where g =
{g,,85, ...} is the new event-trigger with g, defined as a function of these primitive random variables {zo, W*=1 QF —
Ty — 1} such that

g (zo, WF=L QF-"T1=1y = £,(ZE), k>0, P-as. (6)

when both systems are using a control law . As we assume that o(Z{ ;) C o(Z{) and v is known, the control inputs
U*~! and dropouts Q*~"1~1 can be fully recovered at the event-trigger. This implies also that zo, W*~! can be fully
recovered from X* and vice versa. Therefore, the event-triggering law f can always be replaced by g and vice versa
assuming o(ZS_|) C o(ZE). Notice that the pair (f,~) and (g,~) produce identical random variables u, and 5, almost
surely by (6) and therefore yield the same cost J.

In the following, we fix the event-trigger g and find the optimal law +* minimizing J. Using an identity represented by
lemma 6.1 of chapter 8 in [1], the cost can be rewritten as

N—-1
1
J =limsup — E| Y (ux + Lax)"(B"PB + R)(uy + Lay) | +
N —o00 N k=0
N—-1
+ E .I}gP.I}O + Z wgP(AJ}k + Buk) + (Axk + Buk)TPwk + wngk + A\, )
k=0

where L and P are given by (5). As wy, is zero-mean and statistically independent of z;, and u and as g is a function of
primitive random variables, the second expectation is a constant independent of the control law chosen for any N and can
therefore be omitted from the optimization. Let Ay, be the estimation error defined by Ay, = x3, — E[z1|Z¢] and the matrix
I be defined as I' = BT PB + R. By replacing x;, by Ay, + E[z4|Z{], we obtain

E [(uk + ka)Tl—‘k (uk + Ll’k)} =
= E [(ur, + LE[xx|Z{]) T (ur, + LE[wk|ZE])] + 2E [(ur, + LE[wk|ZE])TTLA] + E[ALLTTLA]

Because uy and E[xy, |I,f] are measurable functions with respect to Z¢, the cross term vanishes as shown in the following.

E [E[(ur, + LE[zx|Z{)) " TLAKIZE)] = E [(ur + L Efek|Z{]) " T L E[AL|Z(]]
=E [(ur + L E[zs|Z{ ) TT L E[A,|ZE]]
=E [(ux + L E[wx|Z{)) T L(E[wx|Z{] — E[E[ax|Z{]IZE])]
=0.

Similarly to the proof of lemma 5.2.1 in [4] and [15], it can be shown that the estimation error Ay, is a function of primitive
random variables that is independent of the control law . Hence, the term E [AELTI‘LA;J is a constant that is independent
of the control law . Therefore, we attain the minimum by choosing ~y to be vE.

Summarizing these results, we obtain

T(£,7) = J(g,7) 2 min J(g,7) = J(g, ") = J(t',7"), (7)

where " satisfies (6). The statement in (7) states that for any given pair (f,7) € U, we find another pair (f', v“F) where
J(f,7) > J(f',7E). Therefore, we have shown that the set of solutions given by (f’, v°E) is a dominating class of policies.
This concludes the proof. O

Based on the above Lemma, we are able to identify conditions for the communication system, where the set of pairs
UCE is a dominating class of policies. These conditions are given by the following three propositions.

Proposition 3.3 Let Ty > 0 and T» > 1. If the packet dropout probability 3 is 0, then UF is a dominating class of
policies.
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Proof. In case of 8 = 0, we observe that {gj} is deterministic and does not carry any information. As the
data Y*~72~1 can be reconstructed by I,f and equation (2), the information pattern is nested. By applying Lemma 3.2, the
proof is complete. O

Proposition 3.4 Let 3 € [0,1] and Ty > 0. If the delay Ty is equal to 1, then U is a dominating class of policies.

Proof. Incase of T, = 1, we are able to reconstruct Y*—72—1 by equation (2), as the event-trigger has the data 5k —1,
QF~T2~1 and X* are available at time k. Applying Lemma 3.2 concludes the proof. O

In order to formulate the next proposition, we define the number of unacknowledged packets in the communication
system denoted by M}, as

k—1

M, = Z 51

I=k-T1+T>

In TCP-like networks it is common to bound M}, by a so-called TCP window size [21]. The next proposition shows that
setting the TCP window size to 1 enables separation.

Proposition 3.5 Ler § € [0,1], Th > 0 and Ty > 1. If the communication system only allows one unacknowledged
packet, i.e. My < 1forall k > 1, then U is a dominating class of policies.

Proof. Suppose the event-trigger decides to transmit information at time k1, i.e. d, = 1. The subsequent sequence
of dj, is predefined as [0k, , ..., 0k, 41y +75—1] = [0,...,0]. Therefore, no decision are taken at the event-trigger during
this period. At time step k1 + 11 + T5, the event-trigger may again decide to transmit information. But as d; = 0 for
k€ {ky,...,ki+T1+T,—1},the event-trigger knows the history of Q¥*+71+72=1 and is able to reconstruct Y~ 71+T2~1
by the information available at the event-trigger. In case no transmissions occurred prior to time k the same arguments hold,
as 0; = 0 forl € {0,...,k — 1} By using Lemma 3.2, we find that /¥ is a dominating class of policies. O

The results in Proposition 3.5 motivate us to propose a special class of event-triggered controllers, which is studied in
the following section.

3.2 Waiting Strategy

The main idea of the waiting strategy is to wait for the acknowledgement before sending the next message to the controller.
Setting the TCP window size to 1 enforces the event-trigger to wait for the length of a round trip time 7 + 75, before
transmitting again information. The benefits of such approach are two-fold. Waiting for the acknowledgment before
sending the next packet enhances predictability of the event-trigger for communication and diminishes the possibility of
congestion in the communication network. Second, such restriction facilitates the solution of the optimization problem by
reducing it to numerically tractable subproblems. Besides the structural property due to Proposition 3.5, it turns out that
the optimal event-trigger is described by a decision function in R™ that can be found by value iteration.

Based on Proposition 3.5, we restrict our attention to find the optimal solution in UCE that satisfies M, < 1forall k > 0.
Therefore, the remaining problem reduces to finding

min JE, st M, <1, (®)
where
1 N—1
JE = limsup — E Z (z — ) Dz — 25) 4+ Ay, 9)
N—oo N k=0

with ig = E[zy |Ig] In order to embed the constraint M}, < 1 into the system evolution, we define the following variable
sk representing the state of the communication network

T1+T2—1 6k:1/\8k:0
Sp41 = s — 1 0, =0As,>0 (10)
0 0r,=0As,=0
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with so = 0 and the following modified interconnection relation which differs from Eq. (2)

(1)

)z, ok =1ANq =1As, =0,
Yk (),  otherwise.

Equation (11) implies that even if §;, = 1, the update will be blocked, when s; > 1. This reflects exactly the behavior of the

waiting strategy, as choosing 65, = 1 when s; > 0, will have no effect on the system evolution, although the communication

penalty X is paid. Therefore, the optimal event-triggering law always selects d;, = 0 for s;, > 0.

Since the least-squares estimate ig = E[zy |If] may depend explicitly on the choice of f, the optimization problem (8)
can not be formulated in the framework of dynamic programming directly and remains hard to solve. The work in [11]
and [9] show that for first-order systems and for random walks in arbitrary dimensions, respectively, the optimal event-
trigger exhibits certain symmetry properties that imply that the least-squares estimator is independent of f and given by a
linear predictor [11]. By assuming that the cost function is radially symmetric and that the the transition kernel is radially
symmetric and radially non-increasing, the proof techniques in [9] can be used to show that the linear predictor is optimal
also for higher-order systems. However, a rigorous proof in the general case for higher-order systems does not exist.
Nevertheless, we assume in the following that this symmetry property is also present for any arbitrary higher-order system.
Then, the least-squares estimate £ = E[x;|Z{] is given by

o ATigy = ST F AT=m=1BLG¢ - for 8 = 1A gy =1Asp =0 1)
T (A—BL)&{ 7, _4 otherwise

with initial condition

il =(A—BL)---(A—BL)Z, k=0,..., Ty — 1. (13)
Similar to [24], the optimization problem (8) can then be written as

N—1
min lim sup e E Z (1 =1y —orqrir)et (AT)TT AT e) + Moy,
e A (14)

ert1 = (1 — g0} qudk) Aex +wi, €o = o — To,

where the evolution of sj is given by (10). The variable e; can be considered as the estimation of a one-step ahead
prediction at the controller assuming a time-delay 7 = 0. It is interesting to see that this variable is crucial for the event-
trigger for arbitrary time-delay 77. Another important property that is attributed to the waiting strategy is that the signal
er can be calculated at the event-trigger, whenever s, = 0. For s # 0, it is easy to see that ; = 0. Therefore, the
optimization problem can be viewed as an average cost problem with full state information [ey, sx]. Such problem can be
solved numerically in the framework of dynamic programming by applying value iteration.

In summary, we have developed a numerically tractable algorithm for determining the optimal event-triggered controller.
By restricting the optimal policies to a waiting strategy, the initial optimization problem with distributed information pattern
reduces to the calculation of control gain L given by (5), a least-squares estimator defined by (12) and the solution of a
dynamic program stated by (14).

3.3 Dropout Estimation Strategy

The waiting strategy discussed in the last section is certainly suboptimal, as there are circumstances, where another update
should be sent, although the outstanding acknowledgement has not been received yet. For example, this would be the case,
if a significant state disturbance is observed, while the event-trigger has to wait. This fact motivates us to relax the waiting
strategy and allow update transmissions before an outstanding acknowledgement has been received.

In the following, we restrict our attention to policies in /“F. In other words, the control law is assumed to be the certainty
equivalence controller y“F given by Lemma 3.2. We assume a linear predictor as the suboptimal state estimator which is
similar to (12) that does not take into account the event-triggering law, i.e.,

y B ATlxk*ZQ;Ol AT1—m—1BLig+m ford, =1A q, =1, (15)
TR (A= BL)& 7 _4 otherwise

with initial conditions given by Eq. (13). The above state estimator differs from (12) merely by its independence of sy.
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Based on the least squares estimator (15), finding the optimal event-trigger is the solution of the following optimization
problem

N—-1

1
min limsup — E Z (1 — qrop)et (AT)TT AT ey, + Ay,
f N —o00 N k=0

1 = (1 — qudi) e, + wi,  eo = xo — To.

(16)

Although, the above optimization problem differs only slightly from the dynamic program for solving the optimal waiting
strategy given by (14), there is a major burden in solving problem (16), as the variable e, is generally not perfectly known
at the event-trigger.

Remark 3.6 It should be noted that the cases of no packet dropouts, i.e. 5 = 0, or one-step delayed acknowledgement
channel, i.e. T5 = 1, constitute special situations, where ey, can be fully recovered at the event-trigger. Due to Proposi-
tion 3.3 and 3.4, respectively, the optimal event-triggered controller (f*,v*)is given by v* = 7F with a state estimator
given by (15) and f* is the solution of the dynamic program stated in (16).

Problems with partial state information can be restated as problems with perfect state information by considering the
information available as the current state as described in chapter 5 in [4]. As the information state I;f increases with time,
such approach is not suitable for the above infinite horizon problem. Due to this fact, we need to reduce the data in I,f
to its essential quantities, which are known as sufficient statistics. The main feature of a sufficient statistic I,rfd is that the
optimal policy f* can be rewritten as

£ (ZF) = Tu(Zi).

A well known sufficient statistic is given by the conditional distribution Pek\ff for the above problem with partial state
information, see also section 5.4 in [4].

The subsequent paragraph is concerned with the calculation of P, e+ Such problem can be posed in the framework of
optimal filtering of discrete-time Markov jump linear systems, which is studied in [7], with unknown discrete mode ¢ and
observation Pek\zg- In this case it is well known that the optimal nonlinear filter can be described by a bank of Kalman
filters, which requires exponentially increasing memory and computation with time [3]. However, the event-trigger receives
a delayed version of the discrete mode g, through the acknowledgement channel. Based on results by [12], such additional
information leads to nonlinear filters that require merely finite memory and their computation has a polynomial complexity
that does not increase over time. This fact is stated formally in the subsequent lemma.

Lemma 3.7 A sufficient statistics for the optimal event-trigger t* solving the optimization problem (16) is given by the
information

! = {ex-m-my+1, Xz—Tl—Tg-i—la 51@—T1—T2+1}a
where Ij** = {eq, X*} for k < T\ + Ts. The o-algebra of ;" is a subset of o(Z§).

Proof. The initial value of e, is given by xg — Z and is therefore known by the event-trigger, i.e. o(Zi*) C o(Z¢)
for k < T} + 15 — 1. On the other hand, I{fd = {eo, Xk} is the complete information available at the event-trigger at time
k <Ty + Ty — 1. This implies U(Z';fd) = U(I,f) fork <Ti+Ty—1.

For k > T} + T5, the event-trigger obtains additional information Q"”’*TlJrT2 that enables us to determine ey_7, —7,+1
from the difference equation of e, defined in the optimization problem (16), where the noise sequence W*~71=72 can be
recovered from knowledge of X*~71=T2+1 and the control inputs UF~T1 =72,

As the sequence %! is known at the event-trigger, the state ej, conditioned on 6! has the Markov property , i.e. given
the current state e;, and the sequence 6!, the future evolution of ey, is statistically independent of past observations.
Therefore, we obtain

Pek|Irked = Peﬂl’,f (17)

As Pek\zg is in general a sufficient statistics for problems with partial state information, equation (17) implies that I,rfd is
also a sufficient statistics. This completes the proof. O

The resulting event-trigger is called dropout estimation strategy as it internally estimates the unknown discrete modes
that have not been acknowledged at the event-trigger in order to determine the conditional distribution of ej. This suggests
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that Pek|z,§ is given by a finite set of point masses increasing with 75. For the calculation of the conditional distribution,
we define the discrete mode 7, at time step k as

1
0, no update

. , successful state update
ik = qrlx =

We also define the probability matrix of i) conditioned on dy, as
1 0
T =
125 5]
which satisfies

Plir = jlox = 1] = Tix1,541, 4,1 €{0,1}.

In the following, we assume that 7} = 1 for illustrative purposes, but the main principles for computing P, |7 also carry

Coing . . . ,
over to arbitrary forward delays T7. We further define £, -T2 a5 the state estimate at time & given the sequence zﬁ:sz
k—1
k—Ty

Cyi . . . .
with initial condition i’ngz. The term &, can be calculated recursively by Equation (15). With the estimator

Aack — BL,@% for ik =1

~C ~C ;
T = g\Tr, Tk, 1) = I 1
k1 = 9(Tg, T, ik) (A—BL)i${ foriy =0

this yields for 77 =1

C, zZ ;, . c )
:Ek ? = g(a Tk—1, ’Lk—l) O0---0 g(l'kaZ,ZCk_TQ,’Lk_TQ)

According to [12], we then have

P B (zk T ,Ired)
T T _ red
2 ZiZ:l ('Lk T Lk )

1 1
where ) . = denotes the sum over all possible permutations of ¢ zk T ,1.e. oL = Zi,ﬁm -0 " Zik%:O and
Tzfl
ed _
(k Ty Ir - H 7:31@471+Likfr,71+1pk7t($k7t)
t=0

where py._+(-) is probability density function of the conditional probability distribution of x;,_; given {zx—+—1, €415, zk Tz .
k t—2
which is described by the multivariate normal distribution N'(Azy_¢—1 — BL&, ’; 1 ,%,). Finally, we obtain Pel e by
computing the points
k—1

Gy
k*zk*zk

which have a probability P. e The number of point masses can be reduced by taking into account that a(z P T ,I“"d)

is zero whenever iy_; 1 = 1 and 0k—t—1 = 0, which corresponds to 77 2 = 0. Hence, the number of point masses depends
on the number of transmission attempts during a round trip time. In case no transmissions occurred during this period, we
recover the waiting strategy as there is no ambiguity for e; with probability one.

Remark 3.8 In contrast to the initial problem stated by (16), the information state I,rfd does not increase in time,
but is bounded by the round-trip time 77 + 75. Therefore, finding the optimal event-trigger f is feasible for practical
implementation in the case of infinite horizon problems with a moderate round-trip time.
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4 Stability Analysis

This section is concerned with the asymptotic behavior of the resulting closed-loop system. The notion of stability is
defined in terms of bounded moment stability. The dynamical system described by a time-homogeneous Markov chain is
said to be bounded moment stable, if it is ergodic with a stationary distribution whose second-order moment is bounded.

In the following, we assume that the event-trigger being of the type of a waiting strategy is stationary, i.e. f, = £S5, and
satisfies

£5(en, s1) = 1 for ||ex|l2 > & s = 0. (18)

This assumption does not put severe restrictions on the design, as ¢ may be chosen arbitrarily large. When I" is not
positive definite, but only non-negative definite, optimal solutions of (14) generally violate assumption (18) for any ¢ as is
shown in [16]. But as ¢ can be arbitrarily large, there always exists an e-optimal event-triggering law taking assumption (18)
into account. The following lemma gives a sufficient condition for bounded moment stability of the process ey, when using
the waiting strategy. This result will also enable implications for the asymptotic behavior of the state x, for both the waiting
strategy and the dropout estimation strategy.

Lemma 4.1 Let the event-trigger be of the type of a waiting strategy satisfying constraint (18). If the packet dropout
probability 5 and the round-trip time Ty + T3 satisfy

1

© AT "

then the process ey, evolving by the difference equation defined in (14) is bounded moment stable.

Proof. Based on results in chapter 14 in [13], we use Lyapunov-like drift criteria to show bounded moment stability
of the process ej. The drift operator is defined as

Ah(ek, Sk) = E[h(ek_,_l, 5k+1)|€k, Sk] — h(ek, Sk), er € R", s, € {0, 1,....7 + T — 1},

where h is a real-valued function of the state (e, si). Let us fix an arbitrary stationary event-trigger f = [fs, £5, .. .| which
satisfies assumption (18). Then, it is straight forward to prove that the drift of quadratic functions of {ey, s} inside a
compact set O. is bounded. Thus, it suffices to consider the set of states {ex, s, } outside of the compact set O [13]. As the
compact set can be chosen arbitrarily large, we assume that

{{ex, se}lllexllz < M, s, € {0,1,.... Tv + To —1}} C O.
By taking assumption (18) into account, the evolution of ey, for ||ey||2 > € is given by

k+T1+To—1
ertri+T = (1 — qp) AT T 2e), + Z AR =y - e {m + Ty + To)|1 = 0,1,...}.

I=k
(20)

where m is the first exit-time of O. It is clear that the underlying sampled Markov chain evolving by (20) is -irreducible
and aperiodic. As sy, does not appear in (20) anymore, it can be omitted in the following. According to theorem 14.01
in [13], in order to have bounded moment stability, we need to ensure that

Ah(er) < —€llexll?, exr € R™MO, (21)
where ¢ > 0 and O D {e]|lex||2 < &} is compact. Let us take h(ey.) = ||ex||3. The drift Ah(ey) can be written as
Ah(ex) = E[ll(1 — qr) Aex + wr3ler] — llex3

Due to mutual statistical independence of wy, g and e and the fact that wy, is i.i.d. and zero-mean with covariance matrix
>iw, the drift term can be written as

k+Th+T>—1
Ahle) = E[l = gl ATH BBl S0 (ABTTIT AT Iy 2 (22)
=k
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The term E[1 — gy] is the average packet drop probability given by 3. On the other hand, we have ||AT1+ 2¢; || <
| A|| 22+ 72||e,||. Therefore, the drift is bounded by

Ah(er) < (BIATH) —1)lesl? + e,

where c; is a constant summarizing the trace-term in (22). Condition (19) ensures that we can find appropriate ¢ and O,
such that the drift criteria given by (21) is satisfied. This completes our proof. O

Bounded moment stability of e, implies that the cost .J defined by 3 is finite, as we assumed that (A, B) to be controllable

and the pair (A4, Q%) to be observable. This in turn means that the process state zj, is bounded moment stable, when the
condition (19) in Lemma 4.1 is satisfied.

Remark 4.2 As the class of event-triggers described by the waiting strategy is a subset of the collection of event-
triggers described by the dropout estimation strategy, the solution of the optimization problem (16) will not be worse than
the solution of (14) for identical system parameters. Therefore, we can conclude that whenever condition (19) is satisfied,
stability is guaranteed for the closed-loop system resulting from the optimal solution in (16).

5 Numerical Simulations

Suppose a scalar process P defined by (1) with A = 1, B = 1 and variances ¥,, = 1, ¥,, = 1 and mean Zo = 0. The
cost function J is defined by (3), where @) and R are selected apriori to ) = 1 and R = 10. Subsequently, we analyze
the performance with respect to diverse settings of the communication network. We consider three different packet dropout
probabilities 8 € {0, 0.25, 0.5}, a forward delay 773 = 1 and two different reverse delays 75 € {1,2}. The proposed
suboptimal algorithms are compared with the optimal time-triggered controller. The time-triggered strategy does not need
an acknowledgement channel and is therefore independent of 75. The optimal transmission timings of the time-triggered
controller are calculated by the deterministic dynamic programming algorithm. In addition, a lower bound on the cost is
determined by assuming that packet dropouts are instantaneously known at the event-trigger after transmission. Besides
implying that Z/“F is a dominating class of policies due to Lemma 3.2, the variable e;, defined in (16) is known at the event-
trigger at time k. Therefore, the solution of optimization problem (16) can be solved directly by dynamic programming,
which will then yield a lower bound. It should be noticed that this bound is not tight for non-zero packet dropout probability
B and T7 + T5 > 2. It can not be attained by any event-triggered controller, as it imposes that the event-trigger guesses gy,
at any time step k + 1 correctly with probability 1.

For all event-triggered controllers it turns out that «y is a certainty equivalence controller given in Lemma 3.2 with a
linear control gain L = 0.27. The weighting I" in (9) is given by I' = 1. The least-squares estimator is given by (12) for
the waiting strategy and by (15) for all other approaches. According to Lemma 4.1, we attain bounded moment stability for
any packet dropout probability S smaller than 1.

The difference in cost between the approaches is reflected in J€ defined by (9). The objective function J€ consists of a
weighted mean squared error MSE(T") given by

N—-1
1
MSE(T) = lim sup - E [Z (zp — 2 D (zp — 25)

N—o00 k=0

and the weighted average transmission rate \r, where r is defined as

1 N—-1
rfh]{]njBOpN E [;) 5k] .

A comparative study is illustrated in Fig. 2 for different qualities of the communication system, where we are interested
in the trade-off between the weighted mean squared error and the average transmission rate. Fig. 2 draws the achievable
cost pairs [MSE(T"), ] for varying communication penalty A, where cost pairs with r close to 0 corresponds to large A and
pairs with a transmission rate 7 close to 1 corresponds to a vanishing A.

In all depicted scenarios in Fig. 2, the dropout estimation strategy outperforms the optimal time-triggered scheme and
approaches the lower bound very closely. For the case of no packet dropouts, i.e. 8 = 0, the dropout estimation strategy is
equal to the lower bound, as both optimal solutions coincide, because gj, is deterministic in this case. The waiting strategy
also outperforms the optimal time-triggered scheme and deviates only slightly from the lower bound for low transmission
rates. Fig. 2 also reveals the natural upper bound on the transmission rate r given by ﬁ Evidently, the dropout
estimation strategy shows better performance than the waiting strategy at the cost of additional computations due to the
filtering procedure.

Copyright line will be provided by the publisher



12 A. Molin and S. Hirche: Suboptimal event-triggered control for NCS

7 T T T 7 T T T
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Fig. 2 Performance comparison: without packet dropouts (top,

o 01 02 03 04 05 06 07 08 08 1 left); for packet dropout probability 5 = 0.25 (top, right); for

0 I

average transmission rate r packet dropout probability 5 = 0.5 (bottom, left).

6 Conclusion

Due to its distributed information structure, the optimal design of event-triggered control is a challenging problem in the
field of networked control systems. This article addresses this problem for controlling linear stochastic systems in the
presence of time-delays and packet-dropouts within the feedback loop. By using an acknowledgement channel, conditions
for the communication system can be identified that enable a structural characterization of the optimal event-triggered
controller. The structural properties allow an efficient optimal design of the event-triggered controller. These conditions do
not hold for a general communication system, but restrictions on the communication protocol may recover these conditions.

Despite of these restrictions, which facilitate the design procedure significantly, numerical simulations indicate that the
suboptimal procedures outperform time-triggered control systems, while marginally deviate from a lower bound on the
system performance.

For future investigations, it is of interest to analyze the proposed algorithms in a setting with multiple control loops
sharing a common communication network, where time-delays are varying and packet-dropouts have more complicated
statistical models.
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