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Abstract— In this paper, a simple variation of classical Slotted
Aloha is introduced and analyzed. The enhancement relies on
adding multiple receivers that gather different observations of
the packets transmitted by a user population in one slot. For each
observation, the packets transmitted in one slot are assumed to
be subject to independent on-off fading, so that each of them is
either completely faded, and then does not bring any power or
interference at the receiver, or it arrives unfaded, and then may
or may not, collide with other unfaded transmissions. With this
model, a novel type of diversity is introduced to the conventional
SA scheme, leading to relevant throughput gains already for
moderate number of receivers. The analytical framework that
we introduce allows to derive closed-form expression of both
throughput and packet loss rate an arbitrary number of receivers,
providing interesting hints on the key trade-offs that characterize
the system. We then focus on the problem of having receivers
forward the full set of collected packets to a final gateway
using the minimum possible amount of resources, i.e., avoiding
delivery of duplicate packets, without allowing any exchange
of information among them. We derive what is the minimum
amount of resources needed and propose a scheme based on
random linear network coding that achieves asymptotically this
bound without the need for the receivers to coordinate among
them.

I. INTRODUCTION

A renewed interest for Aloha-like random access (RA)

protocols led recently to the development of new high-

throughput uncoordinated multiple-access schemes [1]–[10].

These schemes share the feature of cancelling the interference

caused by a packet whenever (a portion of) it is successfully

decoded. Among the aforementioned works, a specific class

is based on the diversity slotted Aloha (DSA) protocol intro-

duced in [11] enhanced by successive interference cancelation

(SIC). In [4], [5] it was shown that the SIC process can be

well modeled by means of a bipartite graph. By exploiting

the graph model, a remarkably-high capacity (e.g., up to

0.8 [packets/slot]) can be achieved in practical implementa-

tions, whereas for large medium access control (MAC) frames

it was demonstrated that fully efficiency (1 [packets/slot]) can

be substantially attained [8], [10], [12]. A further key ingredi-

ent to attain large throughput gains deals with the exploitation

of diversity. As an example, the approaches proposed in [1],

[4]–[6], [9]–[11] take advantage of time diversity to resolve

collisions.

In this paper, we develop and analyze a simple yet powerful

relay-aided slotted Aloha (SA) scheme which enjoys space

diversity. More specifically, K independent observations of
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a slot are supposed to be available. The different observa-

tions are associated to K relays, and, for each of them,

the transmitted packets are subject to independent fading

coefficients. Collisions are regarded as destructive, and the

system is complemented by having relays deliver what they

have decoded to a centralized gateway.

SA with space (antenna) diversity was analyzed in [13]

under the assumption of Rayleigh fading and shadowing,

with emphasis on the two-antenna case. With respect to [13],

we introduce in our analysis a simplified channel model.

In particular, the uplink wireless link connecting user i and

relay j is described by a packet erasure channel with erasure

probability εi,j , following the on-off fading model [14]. The

fading is assumed to be independent for each pair of user-relay

pair. Despite its simplicity, the model is accurate enough for

some cases of interest. As an example, it captures the main

features of an interactive satellite network with satellite located

on different orbits, and where the line-of-sight link between

users and relays may be blocked whenever an obstacle lies

between a user and a satellite (here, the satellites play the role

of relays).

Under this fading model, elegant exact expressions for the

system throughput as a function of the number of relays

are derived, yielding deep insights in the gains provided by

diversity in SA protocols. We further provide an analysis on

how the link between the relays and the centralized gateways

(also referred to as downlink) shall be dimensioned, assuming

the relays to be uncoordinated. A bound on the downlink

capacity is derived, which is achieved by a random linear

coding approach based on Slepian-Wolf coding.

The rest of the paper is organized as follows. We start in

Section II by defining the system model that is used to develop

our framework. Section III provides a thorough analysis of

the system uplink, characterizing it in terms of throughput

and delivery reliability, whereas in Section IV we study how

to effectively deliver collected packets to a common gateway

without resorting to coordination and information exchange

among relays. In Appendix, we also investigate, for the two-

receiver case, an extension of the considered scheme that takes

advantage of successive interference cancellation techniques.

II. SYSTEM MODEL AND PRELIMINARIES

Throughout this paper, we focus on the topology depicted

in Fig. 1, where an infinite population of users want to deliver

information in the form of data packets to a collecting gateway

(GW). The transmission process is divided in two phases,

referred to as uplink and downlink, respectively. During the

former, data are sent in an uncoordinated fashion over a shared

wireless channel to a set of K receivers or relays, which, in

turn, forward collected information to the GW in the downlink.
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Fig. 1. Reference topology for the system under consideration.

As to the uplink, time is divided in successive slots, and

transmission parameters in terms of packet length, coding and

modulation are fixed such that one packet can be sent within

one time unit. Users are assumed to be slot-synchronized, and

Slotted Aloha (SA) [15] is employed as medium access policy.

Furthermore, the number of users accessing the channel in

a generic slot is modelled as a Poisson-distributed r.v. U of

intensity ρ, with:

Pr{U = u} =
ρue−ρ

u!
. (1)

The uplink wireless link connecting user i and receiver j is

described by a packet erasure channel with erasure probability

εi,j , where independent realizations for any (i, j) pair as

well as for a specific user-receiver couple across time slots

are assumed. For the sake of mathematical tractability, we

set εi,j = ε, ∀ i, j. Following the on-off fading description

[14], we assume that a packet is either completely shadowed,

not bringing any power or interference contribution at a

receiver, or it arrives unfaded. While, on the one hand, such a

model is especially useful to develop mathematically tractable

approaches to the aim of highlighting the key tradeoffs of the

considered scenario, it also effectively captures effects like

fading and short-term receiver unavailability due, for instance,

to the presence of obstacles. Throughout our investigation, no

multi-user detection capabilities are considered at the relays,

so that collisions among non-erased data units are regarded as

destructive and prevent decoding at a receiver.

Within this framework, the number of non-erased packets

that arrive at a relay when u concurrent transmissions take

place follows a binomial distribution of parameters (u, 1 −
ε) over one slot. Therefore, a successful reception occurs

with probability u(1 − ε)εu−1, and the average throughput

experienced at each of the K receivers, in terms of decoded

packets per slot, can be computed as:

Tsa =

∞∑

u=0

ρue−ρ

u!
u(1− ε)εu−1 = ρ(1− ε)e−ρ(1−ε) , (2)

corresponding to the performance of a SA system with

erasures. On the other hand, a spatial diversity gain can

be triggered when the relays are considered jointly, since

independent channel realizations may lead them to retrieve

different information units over the same time slot. In order

to quantify this beneficial effect, we label a packet as collected

when it has been received by at least one of the relays, and

we introduce the uplink throughput Tup,K as the average

number of collected packets per slot. Despite its simplicity,

such a definition offers an effective characterization of the

beneficial effects of diversity, by properly accounting for both

the possibility of retrieving up to min{u,K} distinct data units

or multiple times the same data unit over a slot, as will be

discussed in details in Section III-A. On the other hand, Tup,K
also quantifies the actual amount of information that can be

retrieved by the set of receivers, providing an upper bound for

the overall achievable end-to-end performance, and setting the

target for the design of any relay-to-GW delivery strategy.

For the downlink phase, we focus on a decode and for-

ward (D&F) approach, so that each receiver re-encodes and

transmits only packets it has correctly retrieved during the

uplink phase, or possibly linear combinations thereof. A finite

downlink capacity is assumed, and relays have to share a

common bandwidth to communicate to the GW by means of a

TDMA scheme. In order to get an insightful characterization

of the optimum achievable system performance, we assume

relay-to-GW links to be error free, and let resource allocation

for the D&F phase be performed ideally and without additional

cost by the central collecting unit.

We then complement our study in Appendix I by consid-

ering, for the simplified K = 2 scenario, an amplify and

forward (A&F) approach. In this case, relays simply deliver

an amplified version of the analog waveform (possibly the

outcome of a collision) they received, whereas the GW per-

forms decoding relying on successive interference cancellation

(SIC) techniques. The goal of such an investigation is to derive

a characterization of the gains that are achievable by jointly

processing signals incoming at different receivers. Along this

line of reasoning, we will focus on an idealized downlink, such

that information can be reliably delivered to the collecting unit

at no cost in terms of bandwidth.

A. Notation

Prior to delving into the details of our mathematical frame-

work, we introduce in the following some useful notation. All

the variables will be properly introduced when needed in the

discussion, and the present section is simply meant to offer a

quick reference point throughout the reading.

K relays are available, and, within time slot t, the countably

infinite set of possible outcomes at each of them is labeled as

Ωt := {ωt
0, ω

t
1, ω

t
2, . . . , ω

t
∞} for each t = 1, 2, . . . , n. Here,

ωt
0 denotes the erasure event (given either by a collision or

by an idle slot), while ωt
j indicates the event that the packet

of the j-th user arriving in slot t was received. According

to this notation, we define as Xt
k the random variables with

alphabet N, where Xt
k = j if ωt

j was the observation at relay k.

When needed for mathematical discussion, we let the uplink

operate for n time slots. In this case, let An
k be the set of

collected packets after n time slots at receiver k, where An
k (



⋃n
t=1{Ωt\ω

t
0}. That is, we do not add the erasure events to

An
k . The number of received packets at relay k after n time

slots is thus |An
k |.

In general, the complement of a set A is indicated as A.

We write vectors as lowercase underlined variables, e.g., w,

while matrices and their transposes are labeled by uppercase

letters, e.g., G and GT .

III. A CHARACTERIZATION OF SYSTEM UPLINK

With reference to the topology of Fig. 1, we first consider

the uplink phase. In order to gather a comprehensive descrip-

tion of the improvements enabled by receiver diversity, we

characterize the system by means of two somewhat comple-

mentary metrics: uplink throughput (Section III-A) and packet

loss rate (Section III-B).

A. Uplink Throughput

Let us focus on the random access channel, and, following

the definition introduced in Section II, let C be the number

of packets collected by the relays over one slot. C is a r.v.

with outcomes in the set {0, 1, 2, . . . ,K}, where the maximum

value occurs when the K receivers decode distinct packets due

to different erasure patterns. The average uplink throughput

can thus be expressed by conditioning on the number of

concurrent transmissions as:

Tup,K =EU [E[C |U ] ]=

∞∑

u=0

ρue−ρ

u!

K∑

c=0

c Pr{C = c |U = u}.

(3)

While Eq. (3) formula holds for any K , the computation of the

collection probabilities intrinsically depends on the number of

available relays. In this perspective, we articulate our analysis

by first considering the two-receiver case, to then extend the

results for an arbitrary topology.

1) The Two-Receiver Case: Let us first then focus on

the case in which only two relays are available. Such a

scenario allows a compact mathematical derivation of the

uplink throughput, as the events leading to packet collection

at the relays set can easily be expressed. On the other hand,

it also represents a case of practical relevance, as it can be

instantiated by simply adding a receiver to an existing SA-

based system. When K = 2, the situation for C = 1 can easily

be accounted for, since a single packet can be collected as soon

as at least one of the relays does not undergo an erasure, i.e.,

with overall probability 1−ε2. On the other hand, by virtue of

the binomial distribution of U , the event of collecting a single

information unit over one slot occurs with probability

Pr{C = 1 |U = u} =2u(1− ε)εu−1
[
1− u(1− ε)εu−1

]

+ u(1− ε)2ε2(u−1), (4)

where the former addend accounts for the case in which one

relay decodes a packet while the other does not (either due to

erasures or to a collision), whereas the latter tracks the case

of having the two relays decoding the same information unit.

Conversely, a reward of two packets is obtained only when the

receivers successfully retrieve distinct units, with probability

Pr{C = 2 |U = u} = u(u− 1)(1− ε)2ε2(u−1). (5)
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Fig. 2. Average uplink throughput vs channel load under different erasure
probabilities. Black markers indicate the performance in the presence of two
receivers, whereas white markers report the behavior of pure SA.

Plugging these results into (3) we get, after some calculations,

a closed-form expression for the throughput in the uplink and

thus, as discussed, also for the end-to-end D&F case with

infinite downlink capacity:

Tup,2 = 2ρ(1− ε) e−ρ(1−ε) − ρ(1− ε)2 e−ρ(1−ε2). (6)

The trend of Tup,2 is reported in Fig. 2 against the channel

load ρ for different values of the erasure probability, and

compared to the performance in the presence of a single

receiver, i.e., Tsa. Eq. (6) conveniently expresses Tup,2 as twice

the throughput of SA in the presence of erasures, reduced by

a loss factor which accounts for the possibility of having both

relays decode the same information unit. In this perspective,

it is interesting to evaluate the maximum throughput T ∗
up,2(ε)

as well as the optimal working point ρ∗(ε) achieving it for

the system uplink. The transcendental nature of (6) does not

allow to obtain a closed formulation of these quantities, which,

on the other hand, can easily be estimated by means of

numerical optimization techniques. The results of this analysis

are reported in Fig. 3, where the peak throughput T ∗
up is

depicted by the black curve as a function of ε and compared

to the performance of SA, which clearly collects on average

at most 0.36 pkt/slot regardless of the erasure rate. In ideal

channel conditions, i.e., ε = 0, no benefits can be obtained

by resorting to multiple relays, as all of them would see the

same reception set across slots. Conversely, higher values of

ε favour a decorrelation of the pattern of packets that can be

correctly retrieved, and consequently improve the achievable

throughput at the expense of higher loss rates. The result

is a monotonically increasing behavior for T ∗
up,2(ε), prior to

plummeting with a singularity to a null throughput for the

degenerate case ε = 1. Fig. 3 also reports (circled-white

markers) the average throughput obtained for ρ = 1/(1−ε), i.

e., when the uplink of the system under consideration operates

at the optimal working point for a single-receiver SA, showing

a tight match. In fact, even though the abscissa of maximum

ρ∗(ε) may differ from this value (they coincide only for

the ideal case ε = 0), the error which is committed when
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Fig. 3. Maximum uplink throughput vs erasure rate. The black continuous
line reports the performance T ∗

up,2 of a two-receiver scheme, while white

circled markers indicate Tup,2(1/(1 − ε)), and the dotted line shows the
behavior of pure SA. Gray curves and markers are to be referred to the amplify

and forward case, that will be treated in Appendix I.

approximating T ∗
up,2 with Tup,2(1/(1−ε)) can easily be shown

numerically to never exceed 0.6%, due to the very small slope

of the function in the neighborhood of ρ∗(ε). We can thus

provide a very precise estimate of the peak uplink performance

for a specific erasure rate as:

T ∗
up,2(ε) ≃

2

e
− (1− ε) e−1−ε, 0 ≤ ε < 1. (7)

which once again compactly captures the behavior of a two-

receiver scenario by quantifying the loss with respect to twice

the performance of SA. In this perspective, two remarks shall

be made. First of all, in order to approach the upper bound, the

system has to be operated at very high load, as ρ∗ ≃ 1/(1−
ε)). These working points are typically not of interest, since

very low levels of reliability can be provided by a congested

channel with high erasure rates. Nevertheless, the presence of a

second receiver triggers remarkable improvements already for

loss probabilities that are of practical relevance, e.g., under

harsh fading conditions or for satellite networks. Indeed, with

ε = 0.1 a ∼ 15% raise can be spotted, whereas a loss rate

of 20% already leads to a 50% throughput gain. Secondly,

the proposed framework highlights how no modifications in

terms of system load are needed with respect to plain SA for

a two-receiver system to be very efficiently operated. Such

a result is particularly interesting, as it suggests that a relay

node can be seamlessly and efficiently added to an already

operating SA uplink when available, triggering the maximum

achievable benefit without the need to undergo a re-tuning of

the system which might be particularly expensive in terms of

resources.

2) The General Case, K > 2: Let us now focus on the

general topology reported in Fig. 1, where K relays are avail-

able. While conceptually applicable, the approach presented

to compute the uplink throughput in the two-receiver case be-

comes cumbersome as K grows, due to the rapidly increasing

number of events that have to be accounted for. In order to

characterize Tup,K , then, we follow a different strategy. With

reference to a single slot t, let Ωt := {ωt
0, ω

t
1, ω

t
2, . . . , ω

t
∞} for

each t = 1, 2, . . . , n be the countably infinite set of possible

outcomes at each relay, where ωt
0 denotes the erasure event

while ωt
j indicates the event that the packet of the j-th user

arriving in slot t was received. Let us furthermore define as

Xt
k the random variables with alphabet X = {0, 1, 2, . . . ,∞},

where Xt
k = j if ωt

j was the observation at relay k, so that

X1
k , X

2
k , . . . , X

n
k is an i.i.d. sequence for each relay k. We let

the uplink operate for n time slots, and indicate as An
k the set

of packets collected at receiver k over this time-span, where

An
k (

⋃n
t=1{Ωt\ω

t
0} (i.e., we do not add the erasure events

to An
k ). The number of received packets at relay k after n

time slots is thus |An
k | and, with reference to this notation, we

prove the following result:

Proposition 1: For an arbitrary number of K relays, the

throughput Tup,K is given by

Tup,K =

K∑

k=1

(−1)k−1

(
K

k

)

ρ(1− ε)ke−ρ(1−εk) (8)

Proof: We have |An
k | =

∑n
t=1 1{Xt

k
6=0}, where 1{E}

denotes the indicator random variable that takes on the value 1
if the event E is true and 0 otherwise. The throughput seen by

a single relay can then be written as Tup,1 = E[1{Xt
k
6=0}] =

Pr{Xt
k 6= 0}, and does not depend on the specific receiver

being considered. By the weak law of large numbers,

Tup,1 = lim
n→∞

|An
k |

n
(9)

or, more formally,

lim
n→∞

Pr

{∣
∣
∣
∣

|An
k |

n
− Tup,1

∣
∣
∣
∣
> ǫ

}

= 0 for some ǫ > 0. (10)

Similarly, for K relays we have

Tup,K = lim
n→∞

|
⋃K

k=1 A
n
k |

n
(11)

By the inclusion-exclusion principle (see, e.g., [16]), we have
∣
∣
∣
∣
∣

K⋃

k=1

An
k

∣
∣
∣
∣
∣
=

∑

S⊆{1,...,K},S6=∅

(−1)|S|−1 |In
S | (12)

with In
S =

⋂

k∈S

An
k (13)

Here, In
S denotes the set of packets that all the relay nodes

specified by S = {k1, k2, . . . , k|S|} have in common:

|In
S | =

∣
∣
∣
∣
∣

⋂

k∈S

An
k

∣
∣
∣
∣
∣
=

n∑

t=1

1{06=Xt
k1

=Xt
k2

=...=Xt
k|S|

} (14)

Due to symmetry in the setup, the value of |In
S | only depends

on the cardinality of S but not the explicit choice, so that

|In
S | = ank for k = |S|, and,

∣
∣
∣
∣
∣

K⋃

k=1

An
k

∣
∣
∣
∣
∣
=

K∑

k=1

(−1)k−1

(
K

k

)

ank .

As X1
k , X

2
k , . . . , X

n
k are i.i.d., by the weak law of large

numbers we have:

lim
n→∞

|In
S |

n
= Pr[{0 6= Xt

k1
= Xt

k2
= . . . = Xt

k|S|
}]. (15)
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Fig. 4. Average uplink throughput vs channel load for different number of
relays K . The erasure probability has been set to ε = 0.5.

We can compute the latter probability as

Pr{0 6= Xt
k1

= . . . = Xt
k|S|

}

=
∑

u

Pr{0 6= Xt
k1

= . . . = Xt
k|S|

|U = u}Pr{U = u}

=

∞∑

u=1

e−ρρu

u!

(
u

1

)
(
(1− ε)εu−1

)|S|

=(1− ε)|S|ρe−ρ(1−ε|S|) (16)

As limn→∞
an
k

n
= (1−ε)kρe−ρ(1−εk), the proposition follows.

The performance achievable by increasing the number of

relays is reported against the channel load in Fig. 4 for a ref-

erence erasure rate ε = 0.2. As expected, Tup,K benefits from

a higher degree of spatial diversity, showing how the system

can collect more than one packet per uplink slot as soon as

more than four receivers are available, for the parameters under

consideration. Such a result stems from two main factors. On

the one hand, increasing K enables larger peak throughput

over a single slot, as up to K different data units can be simul-

taneously retrieved. On the other hand, broader receivers sets

improve the probability of decoding packets in the presence of

collisions even when less than K users accessed the channel,

by virtue of the different erasure patterns they experience.

The uplink throughput characterization is complemented by

Fig. 5, which reports the peak value for T ∗
up,K (solid black

curve), obtained by properly setting the channel load to ρ∗K
(whose values are shown by the gray dashed curve), for an

increasing relay population.1 The plot clearly highlights how

the benefit brought by introducing an additional receiver to the

scheme, quantified by Eq. (17), progressively reduces, leading

to a growth rate for the achievable throughput that is less than

1As discussed for the K = 2 case, a mathematical derivation of the
optimal working point load ρ∗

K
is not straightforward, and simple numerical

maximization techniques were employed to obtain the results of Fig 5.
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linear and that exhibits a logarithmic-like trend in K .

∆Tup
= Tup,K − Tup,K−1

=

K∑

k=1

(−1)k−1

(
K − 1

k − 1

)

ρ(1− ε)keρ(1−εk) (17)

B. Packet loss probability

The aggregate throughput derived in Section III-A repre-

sents a metric of interest towards understanding the potential

of SA with diversity when aiming at reaping the most out

of uplink bandwidth. On the other hand, operating an Aloha-

based system at the optimal load ρ∗K exposes each transmitted

packet to a loss probability that may not be negligible. In the

classical single-receiver case without fading, for instance, the

probability for a data unit not to be collected evaluates to 1−
e−1 ≃ 0.63. From this standpoint, in fact, several applications

may resort to a lightly loaded random access uplink, aiming

at a higher level of delivery reliability rather than at a high

throughput. This is the case, for example, of channels used

for logon and control signalling in many practical wireless

networks. In order to investigate how diversity can improve

performance in this direction, we extend our framework by

computing the probability ζK that a user accessing the channel

experiences a data loss, i.e., that the information unit it sends

is not collected, either due to fading or to collisions, by any

of the K relays.

To this aim, let O describe the event that the packet of the

observed user sent over time slot t is not received by any

of the receivers. Conditioning on the number of interferers i,
i.e., of data units that were concurrently present on the uplink

channel at t, the sought probability can be written as:

ζK =

∞∑

i=0

Pr[O|I = i] Pr[I = i]. (18)

Here, the conditional probability can easily be determined

recalling that each of the K relays experiences an independent

erasure pattern, obtaining Pr[O|I = i] = (1− (1− ε)εi)K for
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Fig. 6. Probability ζK that a packet sent by a user is not received by any of
the relays. Different curves indicate different values of K , while the erasure
probability has been set to ε = 0.2.

an individual packet and K relays with independent erasures

on all individual links. By resorting to the binomial theorem,

such an expression can be conveniently reformulated as:

Pr[O|I = i] =

K∑

k=0

(−1)k
(
K

k

)
(
(1− ε)εi

)k
. (19)

On the other hand, the number of interferers seen by a user

that accesses the channel at time t still follows a Poisson

distribution of intensity ρ, so that, after simple calculations

we finally get:

ζK =
K∑

k=0

(−1)k
(
K

k

)

(1− ε)ke−ρ(1−εk). (20)

Fig. 6 reports the behavior of ζK as a function of ρ when the

erasure rate over a single link is set to ε = 0.2. Different lines

indicate the trend when increasing the number of receivers

from 1 to 10. As expected, when ρ → 0, a user accessing the

channel is not likely to experience any interference, so that

failures can only be induced by erasures, leading to an overall

loss probability of εK . In this perspective, the availability of

multiple receivers triggers a dramatic improvement, enabling

levels of reliability that would otherwise not be possible

irrespective of the channel configuration. On the other hand,

Eq. (20) turns out to be useful for system design, as it allows

to determine the load that can be supported on the uplink

channel while guaranteeing a target loss rate. Also in this

case diversity can significantly ameliorate the performance. As

shown in Fig. 6, for example, a target loss rate zeta = 5·10−2

is achieved by a three- and four-receiver scheme under 6- and

10-fold larger loads compared to the K = 2 case, respectively.

IV. DOWNLINK STRATEGIES

The analysis carried out in Section III has characterized

the average number of packets that can be decoded at the

relay set when SA is used in the uplink. We now instead

consider the complementary task of delivering what has been

collected to a central GW. In doing so, we aim at employing

the minimum number of resources in terms of transmissions

that have to be performed by the relays, while not allowing any

information exchange among them. In particular, we consider

a finite-capacity downlink, where the K receivers share a

common bandwidth to communicate with the GW by means

of a time division multiple access scheme, and we assume that

each of them can reliably deliver exactly one packet, possibly

composed of a linear combination of what has been collected,

over one time unit. We once again focus on a horizon of n
slots to operate the uplink, after which the downlink phase

starts.

We structure our analysis in two parts. First, in Section IV-

A, we derive lower bounds for the rates (in terms of downlink

slots allocated per uplink slot) that have to assigned to re-

ceivers in order to deliver the whole set of data units collected

in the uplink over the n slots. Then, Section IV-B shows how

a simple forwarding strategy based on random linear network

coding suffices to achieve optimality, completing the downlink

phase in Tup,K slots for asymptotically large values of n.

Prior to delving into the details, let us introduce some useful

notation. We denote the L-bit data part of packet of the j-th

user arriving in time slot t as W t
k ∈ W , with W = F2L ∪

e, where e is added as the erasure symbol. We furthermore

assume that the receiver can determine the corresponding user

through a packet header, i.e., the receiver knows both j and t
after successful reception. As the uplink operates over n time

slots, relay k observes the vector wk = [W 1
k , . . . ,W

n
k ]. In

each time slot, the tuple (W t
1 ,W

t
2 , . . . ,W

t
K) is drawn from a

joint probability distribution PW1...WK
which is governed by

the uplink, and different relays might receive the same packet.

A. Bounds for Downlink Rates

Each relay k transmits a packet in each of its nRk downlink

slots. We are interested in the set of rates (Rk)
K
k=1 such that

the gateway can recover all packets (with high probability).

This is essentially the problem of distributed source cod-

ing (SW-Coding [17]), with the following modification: SW-

coding ensures that the gateway can recover all K observed

strings wk, k = 1, 2, . . . ,K perfectly. In this setup, the gate-

way should be able to recover every packet that was received

at any relay. However, neither is the gateway interested in

erasures symbols at the relays, i.e. whenever W t
k = e for any

k, t, nor in reconstructing each relay sequence perfectly. The

authors in [18] overcame this problem by assuming that the

decoder knows all the erasure positions of the whole network.

This assumption applies in our case as packet numbers are

supposed to be known via a packet header. Let all erasure

positions be represented by Γ.

The rates (R1, . . . , RK) are achievable [17] if
∑

k∈S

Rk ≥ H(WS |WS ,Γ), ∀ S ⊆ [1, 2, . . . ,K] (21)

where WS = (W t
k1
,W t

k2
, . . . ,W t

k|S|
), denotes the observa-

tions at some time t at the subset of receivers specified by

S = {k1, k2, . . . , k|S|}. Γ has the effect of removing the

influence of the erasure symbols on the conditional entropies.

Computing the entropies however requires the full probability

distribution PW1...WK
which is a difficult task in general. By

different means, we can obtain the equivalent conditions:



Proposition 2: The rates (Rk)
K
k=1 have to satisfy

∑

k∈S

Rk≥ Tup,K+

K−|S|
∑

k=1

(−1)k
(
K − |S|

k

)

ρ(1− ε)ke−ρ(1−εk),

∀S ⊆ {1, . . . ,K}
(22)

Proof: Consider a subset of relays S ⊆ {1, . . . ,K} and

their buffer contents
⋃

k∈S An
k after n time slots. In order to

satisfy successful recovery at the gateway, at least all packets

that have been collected only by nodes in the set S and not

by anyone else have to be communicated to the gateway. That

is,

∑

k∈S

n ·Rk ≥

∣
∣
∣
∣
∣
∣

⋃

k∈S

An
k\

⋃

k∈S

An
k

∣
∣
∣
∣
∣
∣

, (23)

with S = {1, . . . ,K}\S. Note that
⋃

k∈S

An
k\

⋃

k∈S

An
k = An\

⋃

k∈S

An
k ,

so by the inclusion-exclusion principle and due to |S| = K −
|S|

∣
∣
∣
∣
∣
∣

⋃

k∈S

An
k\

⋃

k∈S

An
k

∣
∣
∣
∣
∣
∣

= |An
K |+

K−|S|
∑

k=1

(−1)k
(
K − |S|

k

)

ank

(24)

with |In
S | = ank for k = |S| as before. By plugging in the

value for limn→∞
an
k

n
, the proposition follows.

B. Random Linear Coding

By means of Proposition 2, we have derived a characteriza-

tion of the rates that have to be assigned to relays in order to

deliver the whole set of collected packets to the GW. In this

section, we complete the discussion by proposing a strategy

that is capable of matching such conditions, thus achieving

optimality. The solution that we employ is based on a straight-

forward application of the well-known random linear coding

scheme in [19], and will therefore only briefly sketched in the

following.

Each relay k generates a matrix Gk ∈ FnRk×n
2L

and obtains

the data part of its nRk transmit packets by cTk = Gkw
T
k .

Whenever an element of wk was an erasure symbol, the

corresponding column of Gk is an all-zero column. Erasure

symbols thus have no contributions to the transmit packets ck.

All other elements of Gk are drawn uniformly at random from

F∗
2L , where F∗

2L denotes the multiplicative group of F2L .

The gateway collects all incoming packets and obtains the

system of linear equations







cT1
cT2
...

cTK








︸ ︷︷ ︸

cT

=








G1 0 . . . 0
0 G2 . . . 0

0 0
. . . 0

0 0 . . . GK








︸ ︷︷ ︸

G








wT
1

wT
2
...

wT
K








︸ ︷︷ ︸

wT

(25)

where G ∈ F
n
∑

k
Rk×nK

2L
. Note that some elements of w can

be identical because they were received by more than one relay

and thus are elements of some wk1
, wk2

, . . .. One can merge

these entries in w that appear more than once. Additionally,

we drop all erasure-symbols in w and delete the corresponding

columns in G to obtain the reduced system of equations

cT = G̃w̃T (26)

where w̃ ∈ F
|An|
2L contains only distinct received packets and

no erasure symbols. Clearly, there are
∣
∣
⋃

k∈S An
k

∣
∣ elements in

w̃.

We partition the entries in w̃ into 2K−1 vectors w̃S for each

nonempty subset S ⊆ {1, 2, . . . ,K}: Each vector w̃S contains

all packets that have been received only by all relays specified

by S and not by anyone else. That is, w̃S corresponds to the

set Pn
S =

⋂

k∈S An
k\

⋃

k∈S An
k , its length is |Pn

S |.

The columns in G̃ and rows in w̃T can be permuted such

that one can write

cTk = G̃kw̃ :=
∑

S⊆{1,2,...,K}

G̃k,S · w̃S , ∀ k = 1, . . . ,K.

(27)

Each of the matrices G̃k,S ∈ F
nRk×|Pn

S |

2L contains only ele-

ments from F∗
2L if k ∈ S and is an all-zero matrix otherwise.

A compact representation for K = 3 is shown in (28) at the

bottom of next page.

The variables that are involved only in n
∑

k∈S Rk equa-

tions are those in w̃L, L ⊆ S, for each subset S ⊆
{1, 2, . . . ,K}. For decoding, the number of equations has to be

larger or equal to the number of variables, so a necessary con-

dition for decoding is that n
∑

k∈S Rk ≥
∑

L⊆S |Pn
L|. This is

satisfied by (23), since
∑

L⊆S |Pn
L| =

∣
∣
⋃

k∈S An
k\

⋃

k∈S An
k

∣
∣,

as we show in Appendix II

A sufficient condition is that the matrix G̃k, k ∈ S
representing n

∑

k∈S Rk equations has rank
∑

L⊆S |Pn
L| for

each subset S ⊆ {1, 2, . . . ,K}. Denote the set of indices of

nonzero columns of matrix G̃k as the support of G̃k. Note

that a row of matrix G̃k has a different support than a row of

matrix G̃l, for k 6= l. These rows are thus linearly independent.

It thus suffices to check that all rows of matrix G̃k are

linearly independent. As all nonzero elements are randomly

drawn from F∗
2L , the probability of linear dependence goes

to zero as L grows large, completing our proof, and showing

that the presented forwarding scheme achieves the bounds of

Proposition 2.

V. CONCLUSIONS

In this paper, a simple and practical extension of Slotted

Aloha in the presence of multiple receivers, or relays, has

been presented and thoroughly discussed. By means of an

analytical framework, closed-form expression for the uplink

throughput (defined as the average number of packets per

slot collected by the set of K relays), as well as for the

probability that a data unit is not retrieved by any of the

receivers, have been derived for an arbitrary value of K
under the assumption of on-off fading. Remarkable gains have

been shown and discussed already for a moderate number



of receivers. The study is complemented by considering the

problem of delivering the set of collected packets to a common

gateway without allowing any information exchange among

receivers. Theoretical bounds for the amount of resources that

have to be allocated to achieve this task have been derived,

and a simple scheme based on random linear network coding

has been shown to match such bounds.

APPENDIX I

AMPLIFY AND FORWARD WITH SIC AT THE GATEWAY

The framework developed in this paper has focused on

characterizing the performance achievable by a SA system

with receiver diversity when a D&F scheme is implemented

at intermediate nodes. On the other hand, restricting relays

to simply forward what they have successfully retrieved in

the uplink prevents the GW from performing joint decoding

on possibly uncorrelated signals. In order to go beyond this

limitation, we consider in this appendix the possibility for

receivers to send in the downlink, on a slot-basis, an amplified

version of the analog waveform they perceive even in the

presence of a collision, following an amplify and forward

(A&F) approach. For the sake of mathematical tractability,

we focus on the K = 2 case, and we model relays to instantly

and reliably deliver information to the GW. The advantage of

such an assumption is twofold. On the one hand, it will allow

us once more to identify elegant closed-form expressions for

the throughput of A&F with spatial diversity, highlighting the

fundamental tradeoffs that arise in the presence of multiple

receivers. On the other hand, despite its ideality, the model

under consideration is representative for several scenarios of

practical interest, in which the bandwidth available in the

downlink is much larger than the one of the uplink. Satellite

networks, as well as topologies where multiple base stations

or access points are connected to a coordinating unit via a

wideband backbone may be examples in this direction.

At the gateway side, successive interference cancellation

(SIC) is applied to the collected signals. This approach offers

an improvement whenever the waveform forwarded by one of

the relays allows decoding of a packet, say x, while the other

reports a collision given by the superposition of x and one

other packet. In this condition, the set of relays would be able

to collect only one information unit, whereas, with A&F, the

gateway can subtract the interference contribution of x from

the collision-corrupted waveform and successfully collect the

second packet as well. Details on the accuracy of this model

on noisy channels with actual signal processing techniques can

be found in [1], [4].
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Fig. 7. End-to-end throughput vs uplink channel load with infinite downlink
capacity and ε = 0.2. The black-marked curve reports the behavior with
A&F; the gray-marked curve indicates D&F; the white-marked curve shows
the behavior of SA with a single receiver.

The gain offered by SIC can thus be computed for the K =
2 case by simply adding to the uplink throughput derived in

Section III-A one additional collected data unit each time the

described collision condition is met. Hence, we can write:

GSIC =

∞∑

u=2

ρu e−ρ

u!
2u(u− 1) εu−1(1 − ε) · εu−2(1− ε)2

=2ρ2ε(1− ε)3 e−ρ(1−ε2), (29)

where, within the summation, εu−1(1 − ε) accounts for the

correct reception at one relay while εu−2(1 − ε)2 enforces a

collision of exactly two packets at the other relay, for a total

of 2u(u− 1) configurations that can be solved with SIC. The

average number of collected packets at the GW per uplink

slot, which we refer to as TA&F , is thus simply expressed as

TA&F = Tup,2 + GSIC :

TA&F =2ρ(1− ε) e−ρ(1−ε) − ρ(1− ε)2 e−ρ(1−ε2)

+2ρ2ε(1− ε)3 e−ρ(1−ε2). (30)

The obtained trend is plotted in Fig. 7 against the channel

load ρ for an erasure probability of ε = 0.2, showing a

20% and 66% improvement in peak throughput compared to

the performance achieved under the same conditions in the

uplink (i.e., without SIC) and by a SA scheme with single

receiver, respectively. As discussed in Section III-A, a closed-

form evaluation of the maximum throughput T ∗
A&F is not

straightforward, due to the transcendental nature of the terms

that define the metric. Nevertheless, in the two-receiver case, a





cT1
cT2
cT3



 =





G̃1

G̃2

G̃3



 w̃T =





G̃1,{1} 0 0 G̃1,{1,2} G̃1,{1,3} 0 G̃1,{1,2,3}

0 G̃2,{2} 0 G̃2,{1,2} 0 G̃2,{2,3} G̃2,{1,2,3}

0 0 G̃3,{3} 0 G̃3,{1,3} G̃3,{2,3} G̃3,{1,2,3}


















w̃T
{1}

w̃T
{2}

w̃T
{3}

w̃T
{1,2}

w̃T
{1,3}

w̃T
{2,3}

w̃T
{1,2,3}














(28)



good approximation is once again offered by evaluating TA&F

at ρ = 1/(1− ε), obtaining, after some calculations:

T ∗
A&F (ε) ≃

2

e
− e−1−ε (1− 3ε+ 2ε2), (31)

where a loss factor of e−1−ε(1−ε)(1−2ε) ≤ e−1−ε(1−ε) is

exhibited with respect to the upper bound provided by twice

the throughput of SA. The behavior of T ∗
A&F (ε) is reported in

Fig. 3, where the dashed-gray curve indicates the actual peak

throughput values computed numerically, whereas the white-

squared markers report the proposed approximation. The plot

highlights how, as opposed to what discussed for the non-SIC

case, the introduction of joint processing modifies the shape of

the curve, identifying an optimal (albeit not practical for many

applications) erasure probability where the throughput is more

than doubled over SA. On the other hand, it is remarkable to

point out that the most relevant improvements over a non-SIC

multi-receiver uplink are triggered exactly for values of ε that

may indeed be experienced in practical scenarios, boosting the

peak throughput by up to 25%.

As a concluding observation, notice how the two-relay A&F

solution that we discussed requires rather simple interference

cancellation procedures compared to other advanced random

access schemes [1], [4], as only two observations need to

be considered for joint decoding. The presented architecture,

thus, represents an interesting tradeoff between complexity

and performance gain, and triggers interest in more advanced

scenarios where more receivers are available.

APPENDIX II

We derive that
∑

L⊆S |Pn
L| =

∣
∣
⋃

k∈S An
k\

⋃

k∈S An
k

∣
∣. We

need the following lemma.

Lemma 1: For a collection of sets B1,B2, . . . ,BK and a

subset S ⊆ {1, . . . ,K},

⋃

k∈S

Bk =
⋃

L⊆S




⋂

l∈L

Bl\
⋃

s∈S\L

Bs



 , (32)

where the sets on the RHS do not intersect and thus form a

partition of the LHS.

Proof: We first show that any element b ∈
⋃

k∈S Bk

is also included in the RHS: Pick an element b ∈
⋃

k∈S Bk.

Assume L is the subset of largest cardinality such that b ∈
Bl, ∀l ∈ L. Clearly, b ∈

⋂

l∈L Bl but b 6∈
⋃

s∈S\L Bs. It

follows that b ∈
⋂

l∈L Bl\
⋃

s∈S\L Bs. This is true for some

subset L ⊆ S. Second, we show that this subset is unique.

Let again L be the subset of largest cardinality such that b ∈
Bl, ∀l ∈ L and choose a different subset V ⊆ S, V 6= L.

Then, either b 6∈
⋂

l∈L Bl or b ∈
⋃

s∈S\L Bs. The element b
is thus only included in

⋂

l∈L Bl\
⋃

s∈S\L Bs.

By choosing Bk = An
k\

⋃

k∈S̄ An
k , the result follows by

elementary set operations.
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