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A B S T R A C T

Despite continuous advances in computing technology, today’s brute for-
ce data processing approaches may not provide the necessary advantage
to win the race against the ever-growing amount of data that can be wit-
nessed over the last decades. In this thesis, we discuss novel methods
and algorithms that are capable of directing attention to relevant details
and analysing it in sequence to overcome the processing bottleneck and
to keep up with this data explosion.

In the first of three parts, a novel exploration technique for Policy Gradi-
ent Reinforcement Learning is presented which replaces traditional ad-
ditive random exploration with state-dependent exploration, exploring
on a higher, more strategic level. We will show how this new exploration
method converges faster and finds better global solutions than random
exploration can.

The second part of this thesis will introduce the concept of “data con-
sumption” and discuss means to minimise it in supervised learning
tasks by deriving classification as a sequential decision process and ma-
king it accessible to Reinforcement Learning methods. Depending on
previously selected features and the internal belief state of a classifier a
next feature is chosen by a sequential online feature selection that learns
which features are most informative at each given time step. In experi-
ments this attentive hybrid learning system shows significant reduction
in required data for correct classification.

Finally, the third major contribution of this thesis is a novel sequence
learning approach that learns an explicit contextual state while traver-
sing a sequence. This context helps distinguish the current input and
mitigates the need for a predictor capable of dealing with sequential
data. We show the close relationship to concepts from theoretical com-
puter science, in particular that of deterministic finite automata and re-
gular languages and demonstrate experimentally the capabilities of this
hybrid algorithm.

All three parts share in common a tight integration of Reinforcement
Learning and Supervised Learning which not only delivers an orthogo-
nal view onto this research but also establishes for the first time a general
framework of such hybrid algorithms.
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Z U S A M M E N FA S S U N G

Trotz des ständigen technischen Fortschritts in der Computertechnolo-
gie ist es durchaus möglich, dass die heutigen Holzhammer-Methoden
der Datenanalyse uns nicht den nötigen Vorteil bringen, um das Rennen
gegen das stetige Datenwachstum zu gewinnen, das in den letzten Jahr-
zehnten zu beobachten ist. In dieser Dissertation werden neue Methoden
und Algorithmen diskutiert, die in der Lage sind, ihre Aufmerksamkeit
auf die relevanten Details zu richten und diese sequentiell zu verarbei-
ten, um den Flaschenhals der Informationsverarbeitung zu überwinden
und mit der Datenexplosion Schritt zu halten.

Im ersten von drei Teilen wird eine neuartige Explorationsmethode für
Reinforcement Learning (bestärkendes Lernen) mit Policy Gradients vor-
gestellt, welches die traditionelle Art des additiven Explorierens durch
zustandsabhängige Exploration ersetzt und auf einem höheren und mehr
strategischen Level arbeitet. Wir zeigen, dass diese neue Form der Explo-
ration schneller konvergiert und bessere und globalere Lösungen finden
kann als zufällige Exploration.

Der zweite Teil dieser Arbeit stellt das Konzept des “Datenkonsums”
vor und diskutiert Mittel, um diesen für überwachte Lernvorgänge zu
minimieren. Dies wird ermöglicht indem Klassifizierung als sequenzi-
eller Entscheidungsprozess hergeleitet und dadurch bestärkenden Lern-
methoden zugänglich gemacht wird. Abhängig von vorherig ausgewähl-
ten Features und des internen Zustands eines Klassifizierers wählt eine
sequenzielle Komponente ein neues Feature in Echtzeit aus, indem es
lernt, welches Feature den höchsten Informationsgehalt zum jeweiligen
Zeitpunkt trägt. In Experimenten zeigt dieses hybride Lernsystem ei-
ne signifikante Verringerung der nötigen Datenmenge für die korrekte
Klassifizerung.

Der dritte bedeutende Beitrag dieser Dissertation beschreibt eine neue
sequenzielle Lernmethode, die während des Traversierens einer Sequenz
einen expliziten kontextuellen Zustand aufbaut. Dieser Kontext unter-
stützt die Charakterisierung der aktuellen Eingabe und ermöglicht das
Auseinanderhalten zeitlicher Eingabesignale ohne die Hilfe einer sequen-
tiellen Klassifikationsmethode. Wir zeigen die enge Verwandtschaft zu
Konzepten aus der Theoretischen Informatik auf, insbesondere zur Au-
tomatentheorie und Regulären Sprachen, und demonstrieren die Mög-
lichkeiten dieses hybriden Algorithmus experimentell.
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Alle drei Teile haben eine enge Integration von bestärkenden und über-
wachten Lernmethoden gemeinsam. Dies stellt nicht nur eine alternati-
ve Ansicht auf die hier vorgestellten Forschungsergebnisse dar, sondern
etabliert zum ersten Mal ein allgemeines Rahmensystem solcher kombi-
nierter Algorithmen.
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Part I

Overview
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1 I N T R O D U C T I O N

“In order to understand recursion,
one must first understand recursion.”

— Anonymous

Recognising patterns and predicting events based on previous observa-
tions is one of the main goals of Machine Learning. Because computer
processing power doubles roughly every 18 months — the rule known as
Moore’s Law — these techniques have now found their way beyond re-
search labs and into consumer electronics, social networks and the world
wide web. They are used in credit card fraud detection, face recognition
and product recommender systems, to name just a few examples. The
digital age also brings with it an ever-growing amount of processable
data, and trends over recent decades show that this rapid increase is,
in fact, far outpacing Moore’s Law. Although constant progress is be-
ing made in terms of developing new algorithms and refining methods
to improve prediction results, the growth of data — and with it the re-
dundancy of information — is starting to affect performance of such
algorithms. This means that we cannot just rely on faster computers
and continue to use brute force to crunch all available data regardless of
its usefulness. We need to find other, smarter, ways to keep up with this
“data explosion”.

Our brains do a tremendous job of ignoring noise and focusing on the
important and useful bits of information at each given moment. One
of the core research questions that this thesis will attempt to answer is
therefore:

How can Machine Learning methods overcome the data processing
bottleneck, focusing on relevant data and ignoring noise and useless
information? How can we apply the concepts of human attention
and selective cognition to learning algorithms?

This thesis addresses the question by training an attentive Reinforce-
ment Learning controller that over time learns which portions of data
seem relevant based on the current state of the underlying supervised
learning method. It selects small chunks of data from a bigger sample
that in the past were relevant to solving the supervised task. In doing
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4 introduction

so, this approach turns a static classification problem with a large in-
put dimensionality into a filtered sequence of relevant and less noisy
lower-dimensional data.

While this may address the processing bottleneck problem, it raises a
different issue, one that stems from the fact that sequence learning is in-
trinsically much harder to solve than classical static prediction. Sequen-
tial data contains temporal dependencies, for which the assumption of
identical and independently distributed samples no longer holds. Many
existing solutions to process sequence data have serious limitations in
their abilities to store information over a long time, which leads to a
second research question:

How can we learn an explicit representation of context independent
of sequence length? Are there any alternatives to sequence learning
that do not suffer from memory limitations?

Again, Reinforcement Learning offers a solution to this problem. In this
thesis, we lay the groundwork and demonstrate first results of learn-
ing an explicit contextual state during sequence processing, a context in
which the current sample can be uniquely evaluated. We also show the
close relationship between Context Learning and automata theory, de-
riving finite state machines as a special case of Context Learning.

Traditionally, Reinforcement Learning defines an environment in which
agents optimise their behaviour over time based on sparse feedback. It
is commonly used for control tasks in robotics, scheduling problems or
game play. By applying it to general supervised learning tasks, however,
we were able to create novel hybrid learning systems. Another, orthog-
onal goal of this thesis was to explore the possibilities of such hybrid
algorithms that integrate Reinforcement Learning controllers into exist-
ing methods to solve supervised learning problems. The final question
for this thesis is hence:

Can state-of-the-art Supervised Learning algorithms be improved
by infusing them with Reinforcement Learning? And will the
resulting hybrid algorithms perform qualitatively and/or quanti-
tatively better on established benchmarks than the standard algo-
rithms alone?

These are the driving questions that this thesis endeavours to answer,
and we will come back to them in the Discussion in Chapter 9 (page 137).



2 O U T L I N E

This thesis is grouped into 4 major parts: Overview, Literature Review,
Methods and Experiments, and Conclusion.

i overview
The Overview contains Chapters 1–3. The thesis is introduced in
Chapter 1, addressing the scientific problem and posing the key
research questions. Chapter 2 (this chapter) gives a brief outline
and structure of the thesis. Chapter 3 then details the scientific and
technical contributions of this thesis and lists previously published
work.

ii literature review
The Literature Review consists of Chapters 4 and 5. Chapter 4 dis-
cusses existing literature and state-of-the-art of relevant function
approximation (FA) methods. Due to its broad scope, this chapter
only contains a coarse overview of general FA and then focuses
on the need for FA in Reinforcement Learning (RL), followed by
some popular FA techniques commonly used in RL. In Chapter 5,
we then describe the current state in the field of Reinforcement
Learning and its various sub-fields. After a formal definition and
introduction of the notation, different types of RL algorithms both
for discrete and continuous state and action spaces are discussed.
The chapter ends with a review of RL exploration techniques.

iii methods and experiments
This part comprises the main contributions of this thesis, presented
in Chapters 6–8. Chapter 6 introduces a novel exploration tech-
nique for Policy Gradient (PG) methods, called State-Dependent
Exploration (SDE), that combines the benefits of both parameter-
based exploration and direct action perturbation. We derive SDE
theoretically and evaluate it on several benchmark tasks including
a complex robotics simulation. Chapter 7 presents Sequential On-
line Feature Selection (SOFS), a novel algorithm that learns which
features are most informative at any given time under a supervised
classification directive. An RL-based attention mechanism guides
the feature selection process online while concurrently minimising
data consumption. Experiments on handwritten digits and med-
ical data demonstrate its usefulness and superiority over existing
methods. Chapter 8 then reveals Context Learning, a novel con-
cept for sequential supervised learning that uses RL to build con-
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6 outline

text throughout a sequence in which current information is pro-
cessed. After introducing the key idea, its relations to Automata
Theory are discussed and differences to Hidden Markov Models
are pointed out. In experiments, Context Learning shows great
improvement over other deep memory algorithms both in conver-
gence speed and memory depth.

iv conclusion
The Conclusion includes Chapters 9 and 10. Where each chapter
from Part III has their own discussion of results, Chapter 9 ties
the individual topics together and concludes this thesis with point-
ers to human cognitive capabilities. Finally, directions for future
research building upon this work are discussed in Chapter 10.



3 C O N T R I B U T I O N S

This thesis is the result of over six years of research, most of which
was carried out at the Technische Universität München, Germany, with
some parts being developed during a research period at the University
of Western Australia in Perth, Australia. Below is a list of scientific (Sec-
tion 3.1) and technical (Section 3.2) contributions that this dissertation
adds to the current state of science.

3.1 scientific contributions

The main body of this thesis (for the most part Chapters 6–8) builds
upon a number of already published, peer-reviewed publications in in-
ternational journals and conference proceedings, which are listed below,
and includes text passages and figures from these publications. I’d like
to point out that most of these papers are based on joint work with my
colleagues, as indicated by the list of authors. For sake of completeness,
publications that I substantially contributed to are included in the list
below, even if I am not the main (first) author on some.

Chapter 6 “State-Dependent Exploration”, and the idea of parameter ex-
ploring RL algorithms is a joint work, mostly with Frank Sehnke, Martin
Felder and Christian Osendorfer and based on the following previously
published papers:

• T. Rückstieß, F. Sehnke, T. Schaul, D. Wierstra, S. Yi, J. Schmid-
huber. Exploring Parameter Space in Reinforcement Learning.
Paladyn Journal of Behavioral Robotics, 1(1):14–24, 2010.

• T. Rückstieß, M. Felder, and J. Schmidhuber. State-Dependent
Exploration for Policy Gradient Methods. European Conference on
Machine Learning and Principles and Practice of Knowledge Discovery
in Databases, 2008.

• F. Sehnke, C. Osendorfer, T. Rückstieß, A. Graves, J. Peters, and
J. Schmidhuber. Policy Gradients with Parameter-Based Explo-
ration for Control. Proceedings of the International Conference on Ar-
tificial Neural Networks ICANN, 2008.
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8 contributions

• F. Sehnke, C. Osendorfer, T. Rückstieß, A. Graves, J. Peters, and
J. Schmidhuber. Parameter-Exploring Policy Gradients. Neural
Networks, 23(4):551–559, 2010.

• T. Rückstieß, M. Felder, F. Sehnke, and J. Schmidhuber. Robot
learning with State-Dependent Exploration. 1st International Work-
shop on Cognition for Technical Systems, 2008.

• F. Sehnke, T. Rückstieß, and J. Schmidhuber. Parametric Policy
Gradients for Robotics. 1st International Workshop on Cognition for
Technical Systems, 2008.

Chapter 7 “Sequential Feature Selection”, is a joint work and based on
fruitful discussions with Christian Osendorfer, Justin Bayer and others.
The results (except for Chapter 7.4, which presents new, unpublished
findings) were published in the following papers:

• T. Rückstieß, C. Osendorfer, P. van der Smagt. Minimizing Data
Consumption with Sequential Online Feature Selection. Journal
of Machine Learning and Cybernetics, 2012.

• T. Rückstieß, C. Osendorfer, P. van der Smagt. Sequential Feature
Selection for Classification. Proceedings of the Australasian Confer-
ence on Artificial Intelligence, 2011.

In addition to the pre-published material, Chapter 8 “Context Learning”
contains unpublished ideas and results at the time of writing of this the-
sis that would warrant a scientific contribution. It is planned to release
the findings of Chapter 8 as a separate publication at a later stage.

3.2 technical contributions

In addition to the publications mentioned above, several software tools
and libraries were developed and used to conduct the experiments and
verify the hypotheses and algorithms of Part III. Of these software tools,
two were successfully used beyond this thesis and thus published in
journals for the benefit of other researchers and students.

PyBrain

PyBrain (Schaul et al., 2010; Kovacs and Egginton, 2011) is an open
source software library for machine learning, written in Python. Its



3.2 technical contributions 9

purpose is to provide an easy-to-use flexible platform for Neural Net-
works, Reinforcement Learning algorithms, optimisation methods and
other well-known supervised and unsupervised machine learning al-
gorithms. PyBrain was jointly created by two groups of researchers
at the Technische Universität München, Germany and IDSIA Institute
for Artificial Intelligence in Lugano, Switzerland. PyBrain has an ac-
tive community and a mailing list with over 1000 users to date. My
contributions to PyBrain include many of the Reinforcement Learning
algorithms, the core dataset structure and various additional internal
parts, as well as the development and maintenance of the PyBrain web-
site http://www.pybrain.org, the PyBrain logo and active and ongoing
support for the mailing list.

The main publication describing its features and giving an overview of
its structure is:

• T. Schaul, J. Bayer, D. Wierstra, S. Yi, M. Felder, F. Sehnke, T. Rück-
stieß, J. Schmidhuber. PyBrain. Journal of Machine Learning Re-
search, 11:743–746, 2010.

Python Experiment Suite

The Python Experiment Suite (PyExpSuite) is an open source software
tool written in Python, that supports scientists, engineers and others to
conduct automated generic software experiments on a larger scale with
numerous features: parameter ranges and combinations can be evalu-
ated automatically, where different experiment architectures (e.g. grid
search) are available. The suite also takes care of logging results into files
and can handle experiment interruption and continuation, for instance
in circumstances where the process is terminated due to power failure.
It also supports execution on multiple cores and contains a convenient
Python interface to retrieve the stored results. Configuration files ease
the setup of complex experiments without modifying code and various
run-time options allow for a variety of use cases.

PyExpSuite was implemented to facilitate the repeated execution of the
experiments in this thesis and to guarantee the reproducibility and cor-
rectness of their results. The publications describing PyExpSuite and its
source code are:

• T. Rückstieß, J. Schmidhuber. A Python Experiment Suite. The
Python Papers Journal 6(1):2, 2011.

• T. Rückstieß, J. Schmidhuber. Python Experiment Suite Imple-
mentation. The Python Papers Source Codes, 2:4, 2011.

http://www.pybrain.org




Part II

Literature Review

11





4 F U N C T I O N A P P R O X I M AT I O N

4.1 general

Function approximation refers to the selection of a function f from a
well-defined class of possible functions which most closely matches a
target function g. In the machine learning domain, the target function
g is usually not known but a finite number of values xi ∈ X from the
domain of g and their mappings g(xi) ∈ Y are known (called a dataset). It
is then the goal to find a function f , which interpolates g in the range of
x but also extrapolates on values lying outside the boundaries of x.

As there is an infinite number of such functions available that exactly
match g(xi) for all xi, another desirable property for function approxi-
mation is that of a simple model (or, in other words, a model of “low
complexity”). For example: if a dataset of n points is available, we can
always derive a polynomial of degree n− 1 to perfectly match those n
points. But this is often not desirable as we would over-fit the data and
interpolation for new points would result in large prediction error. A
lower degree polynomial would most likely not match the dataset per-
fectly but it would yield much better results for new, unknown points
because it has a lower complexity. Conversely, increasing the number
of samples in a dataset (while keeping the model complexity constant)
would also reduce the chance of over-fitting. Therefore, one could say
that one of the universal truths of machine learning is: the more data
available, the better the resulting model.

Function approximation is also a useful tool to overcome noisy data.
Most real-world problems suffer from noisy inputs, due to imperfect
sensors or non-deterministic processes. Function approximation can not
only abstract over such noisy data by averaging out the noise, but noise
can also be proactively modelled and estimated under some stochastic
FA methods.

Function approximation in machine learning is the key for making pre-
dictions about unseen (or unknown) data. In almost every aspect of
machine learning, function approximation plays an integral part in rep-
resenting knowledge based on past experiences or observations.

The field of general function approximation is too large to cover here
in all detail. In the following sections we will focus on its relation-

13
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ship and application to Reinforcement Learning and introduce some of
the most popular function approximation techniques used for Reinforce-
ment Learning, in particular those that will be used in later chapters of
this thesis.

4.2 function approximation in reinforcement
learning

Function approximation in the reinforcement learning context can be
useful in a number of different ways. Tabular reinforcement learning
covers problems with finite1, discrete states and actions. If the prob-
lem requires continuous states or continuous actions (or even both), as
it is often the case in robot control tasks, function approximation is re-
quired to cover the infinite number of cases. The function approximator
would then replace the value table and return an approximate value for a
state/action pair as input. While many of the strong convergence proofs
of tabular RL algorithms do not hold for the continuous case (Sutton,
1999), in practise this approach often works quite well.

Function approximation is not just needed for continuous state/action
spaces, it is also very useful in the discrete state/action problems as it
allows the transfer of knowledge to similar states and actions. This tech-
nique can be applied as long as the states/actions have a distance metric
defined on them, and similar states/actions (in terms of behaviour) lie
close by in their space. Then a function approximator can be used to
generalise over the executed states/actions and assign reward credit to
similar neighbouring states/actions.

Function approximation also plays and important role in direct, model-
free RL. Here, instead of learning values for state-action pairs, a dif-
ferentiable function approximator maps directly from states to actions
and errors are back-propagated through the function approximator to
change its parameters to values that yield more rewarding actions in the
future.

The following chapters discuss some of the function approximation al-
gorithms most often found in Reinforcement Learning and in particular
those required for later chapters in this thesis.

1 here, “finite” does not mean theoretically countably many, but finite in a practical sense.
Tabular RL algorithms with more than a few hundred states or actions will require a
very long time to converge.
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4.3 linear regression

Linear Regression is one of the most basic optimisation algorithms. As
the name suggests, data is modeled under a linear relationship between
input and model parameters, mapping a k-dimensional input to a 1-
dimensional target. Because of the linear nature, the mapping can be
calculated as a simple matrix multiplication and is therefore very fast
and efficient. The parameters to be trained correspond to the coeffi-
cient values θi, which can be calculated with the Moore-Penrose pseudo-
inverse.

Assuming a dataset of n inputs X = {(xi1, xi2, . . . , xik)}n
i=1 with xi ∈ Rk,

targets y = {yi}n
i=1 and noise terms εi, we are interested in the regression

coefficients (θ1, . . . , θk) to solve the linear equation system given as

y = Xθ + ε =




x11 . . . x1k
...

. . .
...

xn1 . . . xnk







θ1
...

θk


+




ε1
...

εn


 . (4.1)

As the equation system is usually overdetermined, i.e., we have n > k,
a least-squares approach is used to minimise the sum of squares of all
errors εi. The regression coefficients θi can be estimated by calculating

θ = (XTX)−1XTy = X+y, (4.2)

where X+ is called the Moore-Penrose pseudo-inverse (or simply pseudo-
inverse) of X. It is common practise to extend X with a constant column
vector of 1 (as a (k + 1)th dimension). This adds an additional element
θk+1 to the coefficient vector θ, called intercept, and acts as an offset to y,
allowing the regression function to return a non-zero value for y = fθ(x),
even if xi = 0 ∀i. Prediction of an unseen input x is then calculated as

y = fθ(x) = xTθ =
k+1

∑
i=1

xiθi, (4.3)

with x being concatenated with a constant 1 prior to calculation.

While both the calculation of the parameters θ from a known dataset
(X, y) and prediction of unseen inputs can be calculated very efficiently,
one big drawback of linear regression is its limitation to linear depen-
dencies between input and target variables. Figure 1(a) and (b) illustrate
examples on linear and quadratic data, respectively. While the result in
Figure 1(a) looks alright, the regression in 1(b) is clearly not what was
intended. One thing to note is that the linear assumption only needs to
hold for θ, while the inputs x can be non-linear. In fact, linear regression
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Figure 1: Linear regression examples with different basis functions. Identity
basis function plus added constant term works well for linear data (a)
but fails on more complex data (b). Using the correct basis functions,
ideally from the same family of functions that the original data stems
from, leads to good fits (c). With poorly choosen basis functions, the
fit is usually suboptimal (d).

is often formulated in terms of (non-linear) basis functions φ(x), where
φ(x) takes a vector x and maps it into a (usually) higher-dimensional
space. So instead of the equation system given in Eqn. (4.1), we can
solve the following:

y = Φθ + ε =




φ(x1)
T

...
φ(xn)T







θ1
...

θp


+




ε1
...

εn


 , (4.4)

with φ(x) ∈ Rp and Φ = [φ(xi)]
n
i=1 is an n× p matrix, called the de-

sign matrix. Choosing a good design matrix requires knowledge of the
data, ideally the basis function maps x into the same space as the data
originally came from. Figure 1(c) and (d) show the fit for a good and
suboptimal choice of basis functions.
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Figure 2: The logistic function is a sigmoid function, mapping continuous val-
ues from the domain of real numbers to the range [0, 1].

Linear regression is of use when data is very high-dimensional and ef-
ficient mapping is required or the family of functions that the data is
drawn from is known. For low-dimensional but complex, non-linear
data, other function approximation methods are prefered.

4.4 logistic and multinomial regression

Despite their names, both Logistic and Multinomial Regression are ac-
tually classification methods, where the outcome is no longer a contin-
uous variable but rather a categorical class (i.e., one of a finite number
of states). Logistic Regression is a binary classification algorithm, sep-
arating the input patterns in one of two output classes. Multinomial
Regression is the extension of this principle to multiple classes. In ei-
ther version, the probability of an input pattern belonging to one of the
resulting classes is modelled.

Below we will summarise the estimation of the parameters for Logis-
tic Regression (see e.g. MacKay (2003) or Bishop (2006) for a detailed
description). The logistic function is defined as

σ(x) =
1

1 + e−x (4.5)

which results in a sigmoid shape, see Fig. 2. The fact that this function’s
derivative with respect to x can be expressed in terms of the logistic
function itself makes it computationally more efficient:

∂σ

∂x
= σ(1− σ). (4.6)
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Maximum Likelihood estimation is used to solve for the parameters of
the model, leading to an error gradient

∇E(θ) =
n

∑
i=1

(xi − yi) φi (4.7)

where we use the same notation as before, denoting the inputs with x
and the targets with y, represented as 0 and 1, and basis functions φ.
Eqn. (4.7) can be applied in iterative manner, updating the parameters
θ for each presentation of input/target tuple. The output of the model
is the estimated probability of the input pattern belonging to the class.
It is common to use a threshold at 0.5 to distinguish between the two
classes. For Multinomial Regression, a Softmax transformation is used
to determine the winning class, where the output vector is

yi(φ) =
exp(ai)

∑k exp(ak)
, with ai = θT

i φ. (4.8)

4.5 neural networks

Neural Networks (or Artificial Neural Networks, to distinguish them from
their biological counterparts) consist of several layers (usually input, hid-
den and output layer for normal feed-forward networks) of processing
units (called neurons), which process information from the layer below
and propagate it to the layer above. Each connection between two neu-
rons is called a weight. Many architectures are possible, and neural net-
works are usually separated in two classes: those with recurrent connec-
tions, i.e. connections that connect neurons from the same layer with
each other or with neurons in lower layers, and those without such con-
nections. Members of the latter class are called feed-forward networks be-
cause the information only flows in one direction through the network,
from the bottom to the top.

Recurrent neural networks on the other hand contain circular informa-
tion flow. This property allows the network to have a memory because
circular connections can store information over several steps. One such
class, that is known to store information exceptionally well, is Long Short-
term Memory (LSTM) networks (Hochreiter and Schmidhuber, 1997). In
the sections below, we will introduce feed-forward networks and illus-
trate the training algorithm as well as briefly review LSTMs as an exam-
ple for recurrent networks.

A thorough overview of the the history of Neural Networks and Back-
propagation is given by Schmidhuber (2015). Some of the milestones are
described in the sections below.
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4.5.1 Feed-Forward Neural Networks

The first non-static, learning Neural Networks were published as early
as 1958 (Rosenblatt, 1958) and gained popularity in the following decades
(Widrow and Hoff, 1962; Narendra and Thathatchar, 1974). Chained
application of the gradient descent method (Hadamard, 1908) to mini-
mise errors in nonlinear NN-like systems was discussed as early as 1960

(Kelley, 1960; Bryson, 1961), with an elegant derivation published solely
based on the chain rule shortly after (Dreyfus, 1962).

Linnainmaa (1970) first described the algorithm now known as back-
propagation in its modern form for discrete sparse networks and pro-
vided a Fortran reference implementation. Dreyfus (1973) applied back-
propagation to adopt control paramters. Its explicit application to neural
networks was first published by Werbos (1981) with references to related
thoughts in his Ph.D. thesis (Werbos, 1974). Rumelhart et al. (1986) de-
scribes how back-propagation can be used to learn internal representa-
tions.

Feed-forward neural networks with at least one hidden layer have long
been shown to be universal function approximators (Kolmogorov, 1965;
Funahashi, 1989; Cybenko, 1989; Maxwell and White, 1989; Bishop, 1995),
being able to approximate any function, even non-linear, given enough
training data. Input patterns x are presented to the lowest layer. Each
neuron in higher layers has access to all the neurons in the layer below,
multiplying each input with the corresponding weight, summing up all
the weighted inputs, applying an activation function fact to the sum and
passing the result to the next layer (see Figure 3). The highest layer
outputs the network’s prediction for the given input.

To train a feed-forward neural network, the error between an actual out-
put y and the desired target d is calculated and back-propagated through
the output layer down to the input layer. By repeatedly applying the
chain rule, one can calculate how big each weight’s contribution to the
error was and by what amount it needs to be changed to compensate
for the error. A learning rate 0 < α ≤ 1 ensures slow but steady conver-
gence during the gradient descent.

Back-Propagation Algorithm in Detail

For neuron j, aj denotes the net input to the neuron, zj denotes the neu-
ron’s output, ej is the error of neuron j compared to the teaching input
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Figure 3: Illustration of a Feed-Forward Neural Network. From bottom to top:
each neuron from a lower layer connects to every neuron in the next
layer. Inputs zi are multiplied with weights θji and summed up for
each neuron in the upper layer, resulting in the net input aj. The net
input is then passed through an activation function fact which yields
the neurons activation zj that is passed to the next layer.

dj. E is the total error of the network and 4wji denotes the calculated
change for weight wji from neuron i to j.

aj = ∑
i

wji zi (4.9)

zj = fact(aj) (4.10)

ej = yj − dj (4.11)

E =
1
2 ∑

j
(ej)

2 (4.12)

4wji = α
∂E

∂wji
= α

∂E
∂aj︸︷︷︸
:=δj

∂aj

∂wji︸︷︷︸
=zi

= α δj zi (4.13)

To calculate the delta terms for output units, we start with the term
denoted δj in (4.13) and apply the chain rule to receive

δj =
∂E
∂aj

=
∂E
∂yj

∂yj

∂aj
. (4.14)
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Substituting (4.11) in (4.12) and differentiating with respect to yj, we
obtain

∂E
∂yj

=
∂

∂yj

(
1
2 ∑

k
(yk − dk)

2

)
= (yj − dj) (4.15)

with teaching input dj for an output neuron j. Now we can substitute
z by y in (4.10) (the outputs of output neurons are identical to the net
output) and rewrite the derivative as

∂yj

∂aj
= f ′(aj). (4.16)

Finally, substituting (4.15) and (4.16) into (4.14) yields

δj = f ′(aj) · (yj − dj). (4.17)

To calculate the δ terms for input and hidden units, we start with

δj =
∂E
∂aj

= ∑
k

∂E
∂ak

∂ak

∂aj
(4.18)

and apply the chain rule for partial derivatives. The first factor in the
sum is defined as δk, whereas the second one can be obtained by substi-
tuting equation (4.10) into (4.9) and differentiating:

ak = ∑
i

wki f (ai) (4.19)

∂ak

∂aj
= wkj f ′(aj). (4.20)

Substituting (4.19) and (4.20) in (4.18), we can write

δj = ∑
k

δk wkj f ′(aj) = f ′(aj) ∑
k

δk wkj. (4.21)

To apply the weight changes to each neuron in the output layer, we can
calculate the deltas 4wji according to

4wji = α δj zi, δj = f ′(aj) · (yj − dj)

with learning rate α.

For neurons in the input and hidden layer, we apply the following rule
recursively back from the output to the input layer, knowing all δk from
previous neurons already:

4wji = α δj zi, δj = f ′(aj) ∑
k

δk wkj.



22 function approximation

4.5.2 Recurrent Neural Networks and LSTMs
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Figure 4: Compound LSTM cell. A LSTM recurrent neural network is com-
prised of these cells, each containing an input unit (blue), several gate
units (green) that control how information can enter and leave the cell
and a linear unit at the core called a Constant Error Carousel (CEC).
The CEC is connected to itself and any signal “trapped” within the
CEC can cycle the carousel indefinitely without getting squashed by
an activation function.

Recurrent neural networks (RNN) differ from their non-recurrent (feed-
forward) counterparts in that they allow lateral connections from one
layer to itself or even back to previous layers, opposed to feed-forward
network layers, which strictly connect to higher layers. This small but
important difference allows recurrent networks to store information over
time and makes them capable of processing temporal signals. The idea
is that a temporal sequence is passed into the network time step by time
step, and information from past activations can cycle in loops in the
hidden layer until it is needed at a later time.

Recurrent networks come in different flavours each with certain restric-
tions on their architecture. Jordan networks (Jordan, 1986), for example,
only allow connections from the output layer back to the input layer as
so-called “context neurons”, while Elman networks (Elman, 1990) are a
variation of Jordan networks that connect only from the hidden layer
back to the input layer. Another, more recent type of recurrent net-
works are Long Short Term Memory (LSTM) networks (Hochreiter and
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t = 0 t = 1 t = 2

recurrent network unrolled over time

Figure 5: Recurrent neural network (left) with shaded hidden nodes and recur-
rent connections in red and the same network unrolled in time (right).
The hidden nodes fully connect to a a temporal copy of themselves
for each time step.

Schmidhuber, 1997) that use compound cells as neurons with a certain
fixed wiring inside these cells, illustrated in Figure 4. They have the
ability of storing information indefinitely while “plain” RNNs often for-
get any information after only a small number of time steps, due to the
vanishing gradient problem. LSTMs are also known for their ability to
count and learn precise timings of temporal events (Gers et al., 2002;
Hüsken and Stagge, 2003).

Applying back-propagation to recurrent networks is straight forward,
and the most prominent purely supervised algorithms are known as
Back-Propagation Through Time (BPTT) (Werbos, 1988, 1990), Real-Time
Recurrent Learning (RTRL) (Williams and Zipser, 1989) and a combina-
tion of both of these methods (Schmidhuber, 1992). The basic idea of all
these training algorithms is the same as the original Back-Propagation
algorithm: the gradient of the error with respect to each weight is calcu-
lated and the weights are changed in direction of minimised error. For
recurrent networks, one can imagine an “unrolled” network in time (Fig-
ure 5) that for each timestap has a copy of the complete architecture of
the equivalent recurrent network without cycles. The recurrent weights
connect each of these copies with the next. By eliminating the cycles this
way, we create a feed-forward network that can be trained with a slightly
modified Back-Propagation algorithm. The recurrent weights, however,
are only virtual shared weights and changes to one of them affects all
copies.

However, deep network architectures generally suffer from a problem
called the vanishing gradient. The repeated application of typical activa-
tion functions used for neural networks causes the error to shrink below
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(or explode beyond) computer floating point accuracy after only a few
layers of neurons (Hochreiter, 1991; Bengio et al., 1994). One popular
way to avoid the issue, which is still relevant today in its basic form,
is to train a stack of single-layer networks in unsupervised fashion as
Autoencoders (Ballard, 1987; Hinton and Salakhutdinov, 2006; Hinton
et al., 2006a,b), learning to compress information and re-creating it from
the compressed representation. Each additional layer learns to encode
some of the information that the previous layer was unable to learn.
This stack of pre-trained networks is then further fine-tuned with back-
propagation.

4.6 locally weighted projection regression

Locally Weighted Projection Regression (LWPR) is a non-parametric non-
linear function approximation method, that uses locally linear models at
its core which are spanned in selected directions in the input space (Vi-
jayakumar and Schaal, 2000). The algorithm is particularly well-suited
for large amounts of data and high-dimensional input spaces with the
data ideally lying on a lower-dimensional manifold. LWPR performs a
weighted variant of the Partial Least Squares (PLS) (Wold, 1975) regres-
sion algorithm in order to reduce the dimensionality of the data. LWPR
is very fast to compute as it has a linear computational complexity in
the number of input samples and works in an incremental online fash-
ion that adapts over time, serving as a fast method for incremental value
function approximation.

4.7 sequence learning

This section provides some remarks about Sequence Learning in general,
and how to deal with sequential data. This topic is closely related to
recurrent neural network algorithms, see Section 4.5.2.

One of the main difficulties of sequence learning are temporal long-term
(non-Markovian) dependencies (Sun and Giles, 2001). Many Machine
Learning algorithms cannot cope with these long-term dependencies,
where a state reaching back a long time has an effect on a state appear-
ing much later in the sequence. It is important that such dependencies
can be discovered, for example by providing the algorithm with long-
term accessible memory (see LSTM networks in section 4.5.2). Another
problem is hierarchy in sequences, where a sequence consists of sub-
sequences, which themselves can consist of smaller sub-sequences, and
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so forth. Discovering such hierarchies would be helpful for the learning
task, but is intrinsically difficult to achieve.

There are several types of sequence learning problems, due to the time-
dependent nature of data. Most commonly, a distinction exists between
sequence classification (mapping a full sequence to one of n classes), se-
quence prediction (predicting the next element in a sequence based on
all previous elements) and sequence generation (creating a sequence of
outputs based on a sequence of inputs). All problems can be generalised
into a single problem definition, if we allow the class labels to be numeri-
cal values and introduce an importance factor for each time step. Figure 6

illustrates this schematically.

The importance factor indicates how important it is to get the answer
right for the current time step. This factor is multiplied with the error
during back-propagation, therefore an importance of 0.0 will cause the
error not to have any influence on the weights for that time step. For
sequence classification, the importance factor is 0.0 for the full sequence
length except for the last element, where it is 1.0. Sequence prediction
and sequence generation are handled by having an importance factor of
1.0 for the full sequence.
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Figure 6: Different sequence learning types can all be handled with one unified
framework. a) Sequence classification assigns a full sequence to a
single class. b) Sequence prediction and sequence generation both
require an output at each time step. c) With an importance factor for
each time step, all three sequence learning problems can be mapped
to the same framework. For classification, all but the last importance
element are set to 0 and arbitrary targets (usually 0.0) can be used
during the sequence. For prediction and generation, the importance
is set to 1.0 throughout.



5 R E I N F O R C E M E N T L E A R N I N G

5.1 general remarks and notation

Generally speaking, Reinforcement Learning (RL) aims to optimise an
agent’s behaviour in an environment over time.

The Reinforcement Learning framework is defined in a very general mat-
ter. The term agent is used for any kind of program, algorithm, robot
or other system that can perceive inputs and react to them with out-
puts. We will call these inputs states and the outputs actions. The agent’s
behaviour—its mapping from states to actions—is called a policy and
can be manipulated via feedback to the agent. This feedback is com-
monly called reward and can be perceived by the agent as a separate
signal.

States can be actual states of a physical machine (e.g. on/off), an internal
representation of a virtual environment, or abstract concepts. An agent
could for example be in a state “I don’t know what this object is”. The
same is true for actions: They can be very concrete low-level motor com-
mands or high-level concepts, such as “going to lunch”. Time steps do
not have to refer to fixed intervals of real time, they can also be succes-
sive stages of decision making not related to a fixed time frame.

An environment is very similar to the concept of an agent. It, too, reacts to
inputs with certain outputs. As the environment takes the antagonistic
role to the agent’s, it will use the agent’s outputs (actions) as input and
will feed its outputs back to the agent as states. The difference is that
the environment’s mapping from inputs to outputs cannot be influenced
externally. Therefore, there is also no reward mechanism involved in the
environment. Figure 7 illustrates the cycle of interaction between agent
and environment.

Rewards can be seen as originating from an external source. In this case,
the environment has a passive, reactive role and is considered not to
have an intention or “plan” for the agent. However, it is not uncom-
mon to have the rewards originate directly from the environment. This
is certainly the case in real-life scenarios. Both versions are equivalent
from the agent’s perspective, which only cares about the amount of re-
ward and not its source. Optimisation in the above statement refers to
maximisation of received rewards over time.

27
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ENVIRONMENT

AGENT
action at

reward rt+1

state st

state st+1

new
time step reward rt

Figure 7: The Reinforcement Learning cycle. The agent receives the current
state st from the environment and reacts with action at. This changes
the environment to state st+1 and causes a reward of rt+1.

The concept of challenge/response in an agent can be found in super-
vised learning tasks as well. But unlike supervised learning, where the
correct answer is provided during training for each challenge, in Rein-
forcement Learning the agent is not told the correct actions directly, but
is only informed about how well it did, in terms of a scalar reward value,
which can arrive with an unknown delay. Thus, the available informa-
tion about the agent’s performance is much more scarce and it is not
immediately obvious how to utilise the scalar feedback to modify the
policy. This question is what RL tries to answer.

Applications for Reinforcement Learning are manifold, reaching from
robot control like flying (Abbeel et al., 2007), walking (Nakamura et al.,
2007) or grasping (Montesano and Lopes, 2009); playing games like
BackGammon (Tesauro, 1994), Go (Grüttner et al., 2010), or video games
like Super Mario (Mohan and Laird, 2009); face recognition (Harandi
et al., 2004); job scheduling (Zhang and Dietterich, 1995); financial trad-
ing (Moody and Saffell, 2001), to only name a few of the many areas.
This list is by no means complete, but gives an idea of the broad va-
riety of applications that Reinforcement Learning is being used for to
solve real-world problems. Further applications are pointed out in the
following sections where appropriate.

5.1.1 Formal Definition of Reinforcement Learning

Learning proceeds in a cycle of interactions between the agent and the
environment. In time t, the agent observes a state st ∈ S from the
environment, performs an action at ∈ A(st) and receives a reward rt+1 ∈
R. Rewards can be given in every time step or sparsely (e.g. only when
a goal state is reached), in which case rt = 0 for t 6= tgoal. Rewards
can further be probabilistic: the expected reward when transitioning
from state s to s′ via action a is denoted by Ra

ss′ . The environment
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then determines the next state st+1 where the probability of transitioning
from state s to s′ with action a is written as P a

ss′ .

The term history denotes the concatenation of all encountered states, ac-
tions and rewards up to time t as ht = {s0, a0, r1, . . . , st−1, at−1, rt, st}. RL
can be episodic, in which case at least one of the states in S is terminal
and the histories have finite length. On the other hand, continuous RL
(also called infinite-horizon RL) will have a history with infinite length.
In either case, the objective of RL is to maximise the long term return
Rt, which is defined as the (discounted) sum of future rewards, starting
from time t:

Rt = aΣ

T

∑
k=0

aD rt+k+1 (5.1)

Here, aΣ = (1− γ), aD = γk for discounted (possibly continuous) tasks
and aΣ = 1/T, aD = 1 for undiscounted (and thus necessarily episodic)
tasks. For infinite-horizon tasks with T = ∞ that do not have a foresee-
able end, γ < 1 prevents unbounded sums.

Actions are selected by a policy π that maps a history ht to a probabil-
ity of choosing an action: π(ht) = p(at|ht). For deterministic policies,
where p(a′|h) = 1 and p(a|h) = 0 ∀a∈A \ a′, the function fπ represents
the mapping from history to action: fπ(h) = a′.

Parameterised policies have a parameter vector θ through which the pol-
icy π(ht; θ) (or πθ(ht) in short) can be manipulated. In this thesis all
policies are parameterised, therefore the θ is sometimes omitted for clar-
ity.

Often, the environment fulfils the Markov assumption, i. e. the prob-
ability of the next state depends only on the last observed state and
the current action: p(st+1|ht) = p(st+1|st, at). Markovian environments
summarise all relevant information from the past in their current state.
A chess game is Markovian, because each constellation of pieces on a
board contains all the information required to make the next move. It
is not important how the pieces got there. A poker game, on the other
hand, violates the Markov assumption. The agent needs to remember,
how its opponent acted throughout the whole game, not just in the last
round, to make the best decision. If the environment is Markovian, it
has a stationary P a

ss′ and Ra
ss′ and it is sufficient to consider Markovian

policies that satisfy p(at|ht) = p(at|st). Unless stated otherwise, all de-
scribed environments are assumed to behave Markovian.

Further, the expectation operator is denoted as E{·} and the sample
mean is written as 〈·〉.
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Figure 8: Different Reinforcement Learning categories.

In this thesis, the large set of Reinforcement Learning algorithms is clus-
tered into three different sub-categories: model-based, value-based, and
policy search algorithms (also called direct RL algorithms), mainly due to
their different approach of handling data (illustrated in Fig. 8). This
view on the field of Reinforcement Learning may not necessarily cover
all existing algorithms, and neither should be seen as a strict taxonomy.
Many hybrid methods and extensions exist, that might not fit well in
either of these categories. For the work presented in this thesis, how-
ever, this distinction was chosen to better understand the presented re-
search.

Direct RL maps states directly to actions via a parameterised policy func-
tion. During learning, the parameters are changed towards a policy that
yields a better overall return. Value-based methods use a dual form, esti-
mating a value for each state (or state-action pair), which describes how
good it is to be in that situation. These algorithms make better use of
the data than policy search methods, since they build an internal repre-
sentation of the state-reward space. Model-based RL goes another step
towards efficient data usage by employing state-transition probabilities
and mean reward estimates to solve the problem efficiently, e.g. with
dynamic programming approaches. If these state-transition probabili-
ties are not known, they are estimated from experience.

These three categories of Reinforcement Learning algorithms are pre-
sented in more detail in Sections 5.2, 5.3 and 5.4.
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5.2 model-based reinforcement learning

Model-based RL aims to estimate the transition probabilities P a
ss′ =

p(s′|s, a) and the rewards Ra
ss′ = E{r|s, s′, a} going from state s to s′

with action a. Having a model of the environment allows one to use di-
rect or value-based techniques within the simulation of the environment,
or even for dynamic programming solutions.

For fully known models, e.g. in form of a completely described Markov-
Decision Process (MDP), one can use value iteration (Bellman, 1957) or
policy iteration (Howard, 1960). For large or continuous state spaces,
or where the underlying MDP model is not known, a solution is ap-
proximated by averaging over the collected samples, as the closed form
computation is usually infeasible. In this thesis, we will therefore focus
on value-based and direct RL methods instead.

5.3 value-based reinforcement learning

One approach to solve Reinforcement Learning problems as stated above
is given by value-based methods. Value-based RL assumes Markovian
environments and uses a value function to represent how “good” it is to
be in a certain situation. There are a number of different types of value
functions (Sutton and Barto, 1998), but here we will mostly deal with
action-value functions, which map each combination of state and action to
a Q-value. More precisely, an action-value function Qπ(s, a) with respect
to a policy π is a function of state s and action a, which describes the
expected future return Rt if the agent starts in state s, takes action a and
follows policy π thereafter:

Qπ(s, a) = Eπ{Rt|st = s, at = a}

= Eπ

{
aΣ

T

∑
k=0

aD rt+k+1|st = s, at = a
}

(5.2)

Another type of value functions are state-value functions, which are only
concerned about the current state, independent of the next action taken.
They are defined as Vπ(s) = Eπ{Rt|st = s}. It is straight-forward to
derive the state-value for any state given the action-values with Vπ(s) =
Qπ(s, a), a ∼ π(s). Figure 9 illustrates the difference between the two
value functions.

With the introduction of value functions, policies can be compared to
each other. A policy π is considered “better” than π′ if the expected
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Figure 9: Difference between state-value functions and action-value functions.
State-value function Vπ considers a state as its starting point after
which it follows policy π. Action-value function Qπ takes both the
current state and the current action into consideration before it fol-
lows policy π, thus carrying more detailed information. Vπ(s) can
always be derived from Qπ(s, a), but not vice versa.

returns of π are higher than or equal to the ones of policy π′ for all
states-action pairs: Qπ(s, a) ≥ Qπ′(s, a) ∀ s ∈ S , a ∈ A(s). The best
policy is denoted π∗ and its matching value function Qπ∗(s, a) or Q∗(s, a)
is called optimal value function. It is the goal of value-based RL to find
Q∗ and π∗, or a close approximation of them.

5.3.1 Discrete Value-Based RL

In discrete value-based RL, both states and actions are chosen from a fi-
nite, discrete set. Thus, the action-value function introduced in Eqn. (5.3)
can be expressed as a table. In addition, with a finite number of states
and actions, there is always a unique solution for Qπ but it may not be
tractable to calculate the optimal value function. Sutton and Barto (1998)
is an excellent resource for the different methods of approximating the
optimal value function. Below, some of the more important algorithms
are summarised.

Monte Carlo Policy Iteration

One way of finding a (close to) optimal value function and policy is
called the Monte Carlo policy iteration method, which is an approximation
to model-based policy iteration (see Chapter 5.2). It starts with a random
policy π0, executes a step of policy evaluation to get the matching value
function Qπ0 , followed by a step of policy improvement, that generates a
better policy π1 from the current value function, and so on. Eventually,
the cycle will produce a policy close to the optimal policy π∗. Figure 10

illustrates the cycle of policy iteration.
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The policy evaluation step can be executed by collecting real experiences
from following policy πk and averaging over all returns R whose histo-
ries included a certain state-action pair: Qπk(s, a) = 〈Rh〉 for all histo-
ries h containing (s, a). This is also called Monte Carlo policy evalua-
tion. The policy improvement step then uses the approximated value
function Qπk to create a policy πk+1 that is at least as good or bet-
ter than the original policy πk. This is done by defining a policy that
chooses the actions with maximum Q-value, also called a greedy policy:
πk+1(s) = arg maxa Qπk(s, a). Eventually, this cycle converges to the op-
timal policy π∗.

Temporal Difference Learning

One evident draw-back of policy iteration is the fact that one has to
wait for the episodes to finish to receive the returns. Even worse, in
infinite-horizon settings the episode never finishes and thus a return
can not be established. Temporal Difference algorithms use what is called
bootstrapping to approximate the returns while the current episode is
still ongoing. Bootstrapping basically uses a preliminary result of some
calculation within the same calculation. In this case, the returns (see
Eqn. (5.1) with aΣ = 1, aD = γk) required to calculate the Q-values are
approximated by the Q-values, which leads to this recursive definition,
called the Bellman equation for Qπ:

Qπ(s, a) = Eπ{Rt | st = s, at = a}

= Eπ

{
T

∑
k=0

γkrt+k+1 | st = s, at = a

}

= Eπ

{
rt+1 + γ

T

∑
k=0

γkrt+k+2 | st = s, at = a

}

= Eπ {rt+1 + γQπ(st+1, at+1) | st = s, at = a} , (5.3)

Eqn. (5.3) shows that in expectation, Rt can be approximated by rt+1 +
γQπ(st+1, at+1). Now, in order to update the estimate for Qπ(s, a), only
the next interaction step is required instead of the whole history.

A further disadvantage of policy iteration was the growing amount of
memory required to store all the returns in order to calculate the sample
mean. This problem can be avoided by using an exponential moving
average:

Qπ(st, at)← (1− α)Qπ(st, at) + α〈Rh〉 (5.4)
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Figure 10: The policy iteration cycle. Starting from an initial (random) policy
π0 it first applies a policy evaluation step, which produces a value
function Qπ from the current policy π followed by a policy improve-
ment step, which generates a new policy π′ from the value function
Qπ that is better or at least equal to π.

Combined with the results from eqn. (5.3), this leads to the well-known
SARSA algorithm (Rummery and Niranjan, 1994; Sutton, 1996):

Qπ(st, at)← (1− α)Qπ(st, at) + α
(

rt+1 + γQπ (st+1, at+1)
)

(5.5)

The name SARSA derives from the necessary “ingredients” to execute
one update step according to (5.5), namely the state, action, reward, next
state and next action. SARSA is an on-policy algorithm, because it up-
dates the Q-values while following the current policy π.

Probably even more prominent is a variation of the SARSA algorithm,
called Q-Learning (Watkins and Dayan, 1992). In Q-Learning, the term
Qπ(st+1, at+1) in (5.5) is replaced by maxa Qπ(st+1, a). Its update rule—
commonly presented in a slighly re-arranged form—then becomes:

Qπ(st, at)← Qπ(st, at)+ α
(

rt+1 +γ max
a

Qπ(st+1, a)−Qπ(st, at)
)

(5.6)

This small change transformed SARSA into an off-policy algorithm that
assumes a greedy policy for the calculation of the next-step Q-value.
It can update the value function for policy π while following another
policy. This is important for example if the environment bears certain
risks that policy π has not learned to master yet. A more safety-oriented
policy can be used to generate the interaction samples instead.

Both SARSA and Q-Learning can be executed online (which is not to be
confused with the term on-policy). The agent interacts with the world
and updates the value function after each interaction step. The policy
can be updated on the fly as well, in the same way as before, by using a
greedy policy for action selection:

π(s) = arg max
a

Qπ(s, a) (5.7)
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Figure 11: Difference between on-policy (left) and off-policy (right). On-policy
methods use the executed action a′ while following the policy. Off-
policy methods use the maximum of all available actions according
to the current value function. They can update a policy while fol-
lowing another.

However, the value function is initialised with random values and only
slowly converges while executing the learning loop. This means that
the actions chosen by a greedy policy can be poor early on. To avoid
getting stuck or running into dead ends repeatedly, some exploration
mechanism is usually included into the policy. One way of making sure
to visit all states (roughly) equal amounts of time is the idea of exploring
starts. The environment is initialised with a randomly selected state
for each episode. This of course only works with environments that
allow starting from random states, e.g. in simulations. Other forms
of exploration, suitable for real-world environments that do not allow
exploring starts, will be discussed in section 5.5.

5.3.2 Continuous Value-Based RL

Applying discrete Reinforcement Learning algorithms to real-world prob-
lems quickly reaches its limits and the number of states and actions be-
come too many to keep the problem tractable. Furthermore, in many
domains, including robotics and computer vision, one often deals with
strictly continuous domains in the first place. Finally, generalisation
between similar states—something that discrete methods are unable to
do—can be of great advantage to speed up the learning process. This is
where continuous RL methods shine. Continuous value-based methods
come in a great variety. First, we need to differentiate between the case of
continuous states with discrete actions and both continuous states and
actions. In what follows, we will call the former continuous state case
and the latter continuous action case, which will always include continu-
ous states as well. The combination of discrete states with continuous
actions is usually not covered separately and will be treated together
with the continuous-action case.
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The main issue with a continuous control signal is that action selection
becomes much harder, because the term arg maxa Qπ(s, a) from Eqn.
(5.7) is not easily computable. With a finite number of actions, it was
possible to compare all Q-values containing action a against each other
(simply by calculating Qπ(s, ai) for all ai ∈ A) and to pick the highest
one. With infinitely many actions, comparing all Q-values is not possi-
ble.

Using a general function approximator (FA) to estimate the Q-values
for state-action pairs, it is possible but expensive to follow the gradient
∂Q(s,a)

∂a towards an action that returns a higher Q-value. In actor-critic ar-
chitectures (Sutton and Barto, 1998), where the policy (the actor) is sepa-
rated from the learning component (the critic), one can back-propagate
the temporal difference error through the critic FA (usually implemented
as neural networks) to the actor FA and train the actor to output actions
that return higher Q-values (Riedmiller, 2005; van Hasselt and Wiering,
2007).

There are some alternatives, though, that will be mentioned further be-
low. For now, we will deal with discrete actions and tackle the problem
of continuous states.

Value-Based RL for Continuous States

One solution (which is more of a work-around) for dealing with a con-
tinuous state space is to separate the states into discrete clusters and use
conventional discrete RL to solve the problem. If detailed information
about the structure of the state space is available, the separation of states
can be done manually. Tile Coding, for example, splits the state space into
disjunct tiles spread out to cover the complete state space. Each continu-
ous state covered by one tile is then assigned a single value and treated
as one discrete state. Sparse Coarse Coding is another technique of dis-
cretisation (Sutton, 1996). If the distribution of states and their limits is
unknown, however, the placement of tiles is not trivial. Clustering meth-
ods can help to find discrete state clusters. They are more flexible in a
way that they can cover large, only rarely visited areas of the state space
with only one or a few clusters, while putting the majority of clusters in
areas of dense and frequent states. If the given problem is benign and
small variations in states do not require drastically different actions, this
approach can work well. But often, especially with high-dimensional
problems, this is not the case and clustering the state space will fail, due
to the curse of dimensionality.

As an alternative, function approximation methods, as introduced in
Section 4, can be used to interpolate over the state space. The straight-
forward approach would be to observe the transition from state s to s′
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with action a and reward r and train the function approximator with the
one-step look-ahead target r+γ maxa Q(s′, a) to move the outputs closer
to the optimal value function Q∗, which would be the continuous exten-
sion of the Q-Learning algorithm. One would expect this to converge
just like in the tabular case. But the convergence proofs that guarantee
global convergence of the value functions to the optimum only hold for
the discrete case, where the exact values can be stored in a table. And
while there are some positive examples (Samuel, 1969; Tesauro, 1994;
Antos et al., 2008), where function approximation was successfully used
in Reinforcement Learning, it has been shown that even for simple toy
problems, the value function approximations can become unstable and
even diverge (Boyan and Moore, 1995; Baird, 1995). One possible reason
is a systematic over-estimation of the utility values by the function ap-
proximator (Thrun and Schwartz, 1993). Despite the lack of convergence
proof and numerous counter-examples, a number of continuous value-
based methods, together with some techniques to avoid divergence, have
been suggested.

Residual Gradient Methods (Baird, 1995) offer a solution to the issue of
divergence, by using a different target, derived from the mean squared
Bellman residual E = 1

n ∑s (〈R + γ max Q(s′, a)〉 −Q(s, a))2. The updates
for the parameters of the function approximator would then be:

∆θ = α
(

r + γ max
a

Q(s′, a)−Q(s, a)
)(

γ
∂

∂θ
max

a
Q(s′, a)− ∂

∂θ
Q(s, a)

)

While Baird could prove the convergence to the optimal value function
Q∗, he also pointed out that this class of algorithms might converge very
slowly. He then suggested a hybrid version, which he called Residual
Algorithms, that use batch training on a weighted average of the direct
update and the residual gradient to speed up the learning process while
at the same time not violating the convergence criteria.

An important aspect for successful continuous value-based training ap-
pears to be the batch update of the Q-function, which is also one key
element in Fitted Q-Iteration (Ernst et al., 2005). For this class of algo-
rithms the value function can be represented by any regression method
(including non-parametric ones), and it is trained by collected experi-
ence, stored as 4-tuples (s, a, r, s′), i.e. state, action, reward and the next
state. For the regression task, a dataset is prepared that consists of (s, a)
as input and (r + γ maxa Q(s′, a)) as target for each collected 4-tuple.
The Q-values for the targets come from the function approximator itself
(bootstrapping, just like the discrete case). After training the regres-
sion method until convergence, the procedure is repeated and a a new
dataset is created in the same way. Again, the outputs of the previous
function approximator are used as the Q-values for the targets to train
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the current one. This procedure is repeated until a satisfactory level of
performance is achieved.

Various types of non-linear function approximators have been success-
fully used with FQI, e.g. Neural Networks (Riedmiller, 2005; Hafner,
2009; Hafner and Riedmiller, 2011), CMACs (Timmer and Riedmiller,
2007), Gaussian Processes (Rasmussen and Williams, 2006; Deisenroth
et al., 2009), Advantage Weighted Regression (Neumann and Peters,
2009), and many others (Neumann et al., 2006). To avoid divergence,
many of these approaches use experience replay, where all the collected
transition tuples are constantly presented to the model again.

Value-Based RL for Continuous Actions

In a continuous action space, action selection is much harder, mainly
because calculating arg maxa Q(s, a) is not trivial. With discrete (and
more importantly finitely many) actions, action values for all actions in
a given state s can be calculated and compared to each other to pick
the highest one. With continuous (and therefore infinitely many) ac-
tions, another method of finding the action with the maximum value is
required. Corroborating this matter, Gaskett et al. (1999) present eight
properties that they believe to be necessary for value-based continuous
action RL, one of which is called “Action Selection: find action with the
highest expected value quickly”. They use a special type of value func-
tion approximator called wire fitting (Baird and Klopf, 1993). Wire-fitting
is a function approximation method designed to return the maximum
of all output values in constant time. This is done by interpolating a
function between a few given control points (or in higher dimensions
control wires), where the update rule for adding new samples will al-
ways ensure that one of the control points is located at the maximum
value. Finding the maximum is then merely a constant operation of
going through the set of control points.

Another technique of finding the maximum value is called Gradient As-
cent on the Value (GAV). This method uses an actor π(s) = a, mapping
states to actions, and a critic Q(s, a) = q that maps state and action to a
value (Prokhorov et al., 2002; Hafner, 2009). The changes to the parame-
ters θq of the critic can be calculated by back-propagating the temporal
difference error through the approximator as usual:

∆θq = α
(

rt + γ max
a

Q(st+1, a)−Q(st, at)
)∂Q(st, at)

∂θq
(5.8)

Regarding the update of the actor, the parameters θπ have to be changed
towards a higher Q-value, so the gradient information from the critic
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can be back-propagated down to the parameters of the actor, followed
by gradient ascent to increase the overall value:

∆θπ = α
∂Q(st, at)

∂A(st)

∂A(st)

∂θπ
(5.9)

One problem is here, that while the critic is not fully trained, the gra-
dient information will not be accurate yet, and the actor parameters
might be pushed in the wrong direction. significant improvement was
observed when the probability of updating the actor slowly increased
during experiments (van Hasselt and Wiering, 2007).

Hafner applied GAV to a neural network architecture in his PhD thesis
(Hafner, 2009), and called it Neural Fitted Q-Iteration with Continuous
Actions (NFQCA). Actor and critic are represented as neural networks,
entangled in a triangular architecture like shown in Figure 12. One up-
date step consists of forward-propagating the state through the actor
network to get an action, and then state and action together through
the critic network for a value. The temporal difference error is then
back-propagated, first through the critic network and then further back
through the actor.

Continuous Actor Critic Learning Automaton (CACLA), another actor-
critic architecture, only uses the sign of the gradient for updates of the
actor, and only positive improvements for updates to both actor and
critic, i.e. if the temporal difference error is positive (van Hasselt and
Wiering, 2007). Comparing it to wire-fitting and GAV, the authors re-
ceive overall better results with CACLA on common benchmarks.

A method has been proposed to use an incremental topology preserv-
ing map (ITPM), using units with adaptive resolution to cover the space
of continuous actions (Millán et al., 2002). These units are added in-
crementally, memorize a number of Q-values for certain areas of each
unit’s responsible action space area, and the resulting continuous action
is an average weighted by the Q-values over the discrete actions of a
unit.

Another interesting, yet quite different way of getting continuous ac-
tions is called Binary Action Search (Pazis and Lagoudakis, 2009). Here,
instead of retrieving an action for a given state directly, a binary policy
instead answers the question whether the current action should be in-
creased or decreased. A second key aspect of the idea is that the policy
is queried several times for one action, basically implementing a binary
search in action space. The state is augmented with the current action,
and the binary search starts at (amax−amin)/2. If the value for the action
increase is higher, the next query will be for the action in the middle of
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Figure 12: NFQCA network architecture. Left: The blue connections represent
the actor network, mapping states to actions. The red connections
show the critic network, mapping from state and action to a sin-
gle value. Back-propagation works in reverse order: the temporal
difference error is propagated back through the critic network to
the action and then further back through the actor network. Right:
Simplified network architecture.

(amax−amin)/2 and amax, and if the action value for decrease is higher, the
next query point will be between amin and (amax−amin)/2. This procedure
is repeated several times, each time halving the search interval, until
the desired accuracy of the action is achieved. Most continuous-state
Reinforcement Algorithms can be equipped with binary action search
to deliver continuous actions, the only requirements being that they use
continuous states and are able to produce a binary decision.

To summarise, it seems that the main issue with value-based RL with
continuous actions lies in selecting the action with maximum value,
as an exhaustive comparison of all actions is impossible. Several ap-
proaches to find arg maxa Q(s, a) have been suggested before, of which a
few were presented here: custom function approximators specifically de-
signed for fast access to the maximum action, gradient descent through
the critic approximator down to the actor and binary search in action
space. A different approach on continuous actions, albeit without the
need for value functions, will be presented in the next chapter “Direct
Reinforcement Learning”.
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5.4 direct reinforcement learning

Direct reinforcement learning methods, in particular Policy Gradient
methods (Williams, 1992; Peters and Schaal, 2006, 2008a,b), avoid the
problem of finding the action with maximum value arg maxa Q(s, a) al-
together, thus being popular for continuous action and state domains.
Instead, states are mapped to actions directly by means of a parame-
terised function approximator, without utilising Q-values (basically, this
is equivalent to the actor-critic architecture without a critic). The parame-
ters θ are changed by following a gradient representing the performance
of a given policy (Baird and Moore, 1999). Different approaches exist to
estimate this gradient (Peters and Schaal, 2008a).

5.4.1 Overall performance measure

First, an overall performance measure J(π) is defined for a given policy
π, independent of any history. It represents the expected return over all
histories hπ that are possible when following policy π:

J(π) = E{R(hπ)}
=
∫

p(hπ)R(hπ) dhπ (5.10)

In order to optimise policy π(s; θ), the parameters θ are moved along
the gradient of J towards an optimum. The gradient ∇θ J(π) is defined
as

∇θ J(π) = ∇θ

∫
p(hπ)R(hπ) dhπ

=
∫
∇θ p(hπ)R(hπ) dhπ (5.11)

Instead of J(π) for the performance of policy π parameterised with pa-
rameters θ, we also write J(θ) directly.

In order to calculate (or approximate) this gradient, two general di-
rections are possible: finite difference methods and likelihood ratio meth-
ods.

5.4.2 Finite Difference Methods

One way to calculate the gradient estimate are finite difference methods,
which perturb the policy parameterised by θ by some small amount δθ
and use the difference in performance to approximate the gradient. The
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new policy is compared to a reference point Jref, which can be equal to
J(θ) for forward difference methods or J(θ − δθ) for central difference
methods. The gradient is then approximated by the difference quotient:

∇θ J(θ) ≈ J(θ + δθ)− Jref

δθ
(5.12)

In order to get a more exact approximation, several parameter pertur-
bations are usually collected (one for each roll-out) and the gradient is
then estimated through linear regression. For this, several roll-outs are
generated by adding some exploratory noise to the policy parameters,
resulting in actions a = f (s; θ + δθ). From the roll-outs, the matrix Θ
is formed, which has one row for each parameter perturbation δθi. The
column vector J contains the corresponding performances J(θ + δθ) in
each row:

Θi = [ δθi 1 ] (5.13)
Ji = [ Ji(θ + δθ) ] (5.14)

The ones in the right column of Θ are needed for the bias in the linear
regression. With forward differences, the Jref from Eqn. (5.12) cancel
out and are are not present anymore in J. By least squares linear re-
gression, the gradient can now be estimated with the Moore-Penrose
pseudo-inverse:

β = (ΘTΘ)−1 ΘT J, (5.15)

where the first n elements of β are the n components of the gradient
∇θ J(θ), one for each dimension of θ.

5.4.3 Likelihood Ratio Methods

Rather than perturbing the policy directly, which usually requires a fair
amount of system knowledge, likelihood ratio methods perturb the re-
sulting action instead, leading to a stochastic policy such as

a = f (s; θ) + ε, ε ∼ N (0, σ2) (5.16)

In this case, the exploratory noise ε is normally distributed around zero
with a certain variance σ2. Unlike with finite difference methods, the
new policy that leads to the behaviour expressed in Eqn. (5.16) is no
longer known and J(θ + δθ) from Eqn. (5.12) and consequently the
whole difference quotient can no longer be calculated. Thus, likelihood
ratio methods use a different approach in estimating the gradient of J(π)
with respect to θ.
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Derivation of the Likelihood Ratio Gradient

For the derivation of the likelihood ratio gradient, the Markov assump-
tion is not needed. Therefore, the derivation is presented in its general
form, where actions can depend on the whole history.

The probability of observing a history hπ under policy π is given by the
probability of starting with an initial observation s0, multiplied by the
probability of taking action a0 under h0 (which equals s0), multiplied by
the probability of receiving the next observation s1, and so on. Thus,
Eqn. (5.17) gives the probability of encountering a certain history.

p(hπ) = p(s0)π(a0|hπ
0 )p(s1|hπ

0 , a0)π(a1|hπ
1 )p(s2|hπ

1 , a1) . . .

= p(s0)
T

∏
t=1

π(at−1|hπ
t−1) p(st|hπ

t−1, at−1) (5.17)

Taking Eqn. (5.11) as a starting point, it can be rewritten by making use
of the fact that 1/x · ∇x = ∇ log(x), which is sometimes referred to as
the log trick in the literature. By multiplying with 1 = p(hπ)/p(hπ) inside
the integral we get

∇θ J(π) =
∫ p(hπ)

p(hπ)
∇θ p(hπ)R(hπ) dhπ, (5.18)

which yields after applying the log trick:

∇θ J(π) =
∫

p(hπ)∇θ log p(hπ)R(hπ) dhπ (5.19)

The next few steps only consider the gradient ∇θ log p(hπ). Substituting
the probability p(hπ) according to Eqn. (5.17) gives

∇θ log p(hπ) = ∇θ log
[

p(s0)
T

∏
t=1

[π(at−1|hπ
t−1) p(st|hπ

t−1, at−1)]
]

(5.20)

which, by the rules of the log, transforms into

∇θ log p(hπ) = ∇θ

[
log p(s0) +

T

∑
t=1

log π(at−1|hπ
t−1)+

T

∑
t=1

log p(st|hπ
t−1, at−1)

]
(5.21)

On the right side of Eqn. (5.21), only the policy π is dependent on θ, so
the gradient can be simplified to

∇θ log p(hπ) =
T

∑
t=1
∇θ log π(at−1|hπ

t−1) (5.22)
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We can now re-substitute this term into Eqn. (5.19) and get

∇θ J(π) =
∫

p(hπ) ·
T

∑
t=1
∇θ log π(at−1|hπ

t−1) · R(hπ) dhπ

= E

{
T

∑
t=1
∇θ log π(at−1|hπ

t−1) · R(hπ)

}
(5.23)

Unfortunately, the probability distribution p(hπ) over the histories pro-
duced by π is not known in general. Thus, we need to approximate
the expectation, e.g. by Monte-Carlo sampling. Therefore, we collect N
samples through world interaction, where a single sample comprises a
complete history hπ (one episode or roll-out) to which a return R(hπ)
can be assigned and sum over all samples. This leads to the well-known
REINFORCE (Williams, 1992) gradient estimate:

∇θ J(π) ≈ 1
N ∑

hπ

T

∑
t=1
∇θ log π(at−1|hπ

t−1) · R(hπ) (5.24)

Variance Reduction Techniques

Because the integral
∫
∇θ p(hπ) dhπ = ∇θ1 = 0 always yields zero, a

constant baseline in the policy gradient estimate does not bias the esti-
mator but can reduce the variance significantly. When adding a baseline
value b, Eqn. (5.23) becomes

∇θ J(π) = E

{
T

∑
t=1
∇θ log π(at−1|hπ

t−1) (R(hπ)− b)

}
(5.25)

For the baseline b a moving average of recent returns can be used, with
the update rule b← (1− α)b+ α(Rt) and α ∈ [0, 1]. However, an optimal
baseline should minimise the variance of the gradient estimate as much
as possible, and can be done explicitly (Peters and Schaal, 2008a). The
baseline is given for each dimension d of the gradient as:

bd =

〈(
∑T

t=1∇θd log π(at−1|hπ
t−1)

)2
R(hπ)

〉

〈(
∑T

t=1∇θd log π(at−1|hπ
t−1)

)2
〉 (5.26)

So far, the gradient estimate uses the full return as the sum over all
rewards of an episode R(hπ) = ∑T

t=1 rt for an update (discounting ig-
nored). Assuming that the policy does not change during an episode,
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and important observation is that past rewards do not influence the cur-
rent and future actions. This is called the Policy Gradient Theorem (Sut-
ton et al., 2000) or G(PO)MDP (Baxter and Bartlett, 2001). Including this
idea in REINFORCE, the gradient estimate can be rewritten as:

∇θ J(π) = E

{
T

∑
t=1
∇θ log π(at−1|hπ

t−1)

(
T

∑
k=t

rt − b

)}
(5.27)

5.5 exploration

Exploration is a critical component of RL, affecting both the number of
trials required and the quality of the solution found. Novel solutions
can be found only through effective exploration. Preferably, exploration
should be broad enough not to miss good solutions, economical enough
not to require too many trials and intelligent in the sense that the infor-
mation gained through it is high. Clearly, those objectives are difficult
to trade off, a problem known as the exploration / exploitation dilemma:
without exploration, the agent can only go for the best solution found
so far, not learning about potentially better solutions. Too much explo-
ration leads to mostly random behaviour without exploiting the learned
knowledge. A good exploration strategy carefully balances exploration
and greedy policy execution. Below we will look at a few common
exploration techniques for discrete (section 5.5.1) and continuous (sec-
tion 5.5.2) action spaces, explain the key differences of action-based
vs. parameter-based exploration (section 6.2) and finally introduce a
methodology for bridging the gap between these two approaches, called
state-dependent exploration (section 6.3).

5.5.1 Exploration in Discrete Action Spaces

Many exploration techniques have been developed for the case of dis-
crete actions (Sutton, 1990; Schmidhuber, 1991b; Thrun, 1992; Cohn et al.,
1994; Wiering and Schmidhuber, 1998; Milano et al., 2001; Abbeel and
Ng, 2005), commonly divided into undirected and directed exploration.
The most popular—albeit not the most effective—undirected exploration
method is ε-greedy exploration, where some of the actions are selected
randomly, and the probability of choosing a random action decreases
over time. In practice, a random number r is drawn from a uniform
distribution r ∼ U (0, 1), and action selection follows this rule:

π(s) =

{
arg maxa Q(s, a) if r ≥ ε

random action from A(s) if r < ε
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where A(s) is the set of valid actions from state s and 0 ≤ ε ≤ 1 is
the trade-off parameter, which is reduced over time to slowly transition
from exploration to exploitation.

The problem with ε-greedy exploration is that the random actions could
be really bad choices and would ruin an otherwise well-performing
episode. Think of a balancing task, where a robot has to carefully bal-
ance a pole on its actuator, by moving the actuator in the horizontal
plane. One little mishap would tip over the pole and the whole episode
would be penalised with a negative reward.

One way to prevent such unwanted exploratory accidents is Boltzmann
exploration. This exploration technique never follows the policy in a
completely greedy fashion, but instead always chooses an action with a
probability that is proportional to its value given by the current state s
and the action value function Q.

p(at|st) =
eQ(st,at)/τ

∑a eQ(st,a)/τ
.

This means that the better an action is under the current policy, the more
likely it is chosen. Very bad actions are much less likely to be explored
under Boltzmann exploration, but it is still possible, particularly in the
beginning. Just as with ε-greedy exploration, Boltzmann exploration
has a temperature parameter τ that starts at an initially high value, so
that all actions are equally likely to be chosen. Over time, τ is slowly
reduced during learning for greedier selection towards the end.

Another interesting category of exploration mechanisms is that of Artifi-
cial Curiosity (Schmidhuber, 1991a, 1999, 2007; Graziano et al., 2011),
or Intrinsical Reinforcement Learning (Singh et al., 2005), where (at
least a part of) the policy goal is to explore the yet unknown areas of
the state space to gain knowledge and increase predictability of future
states.

In the next section we will concentrate on continuous actions.

5.5.2 Exploration in Continuous Action Spaces

In the case of continuous actions, exploration is often neglected. If the
policy is considered to be stochastic, a Gaussian distribution of actions
is usually assumed, where the mean is often selected and interpreted as
the greedy action:

a ∼ N (agreedy, σ2) = agreedy + ε, where ε ∼ N (0, σ2) (5.28)

During learning, exploration then occurs implicitly — almost as a side-
effect — by sampling actions from the stochastic policy. While this is
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convenient, it conceals the fact that two different stochastic elements
are involved here: the exploration and the stochastic policy itself. This
becomes most apparent if we let σ adapt over time as well, following
the gradient ∂J(θ)

∂σ , which is well-defined if the policy is differentiable. If
the best policy is in fact a deterministic one, σ will decrease quickly and
therefore exploration comes to a halt as well. This clearly undesirable
behaviour can be circumvented by adapting the variance manually, e.g.
by decreasing it slowly over time.

Another disadvantage of this implicit additive exploration is the inde-
pendence of samples over time. In each time step, we draw a new ε
and add it to the actions, leading to a very noisy trajectory through
action space (see Figure 14 top). A robot controlled by such actions
would exhibit a very shaky behaviour, with a severe impact on the per-
formance. Imagine an algorithm with this kind of exploration control-
ling the torques of a robot end-effector directly. Obviously, the trembling
movement of the end-effector will worsen the performance in almost
any object manipulation task. And we ignore the fact that such consec-
utive contradicting motor commands might even damage the robot or
simply cannot be executed. Thus applying such methods requires the
use of motion primitives (Schaal et al., 2004) or other transformations.
Despite these problems, many current algorithms (Williams, 1992; Ried-
miller et al., 2007; Peters and Schaal, 2008b) use this kind of Gaussian,
additive action-perturbing exploration, see Eqn. (5.28). Alternatives,
that avoid the above problems by sampling in parameter space rather
than action space, are presented in Chapter 6.
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6 S TAT E - D E P E N D E N T E X P LO R AT I O N

6.1 introduction

As discussed in chapter 5.5, exploration is indispensable in order to suc-
cessfully learn through reinforcement. To put it in a nutshell: Without
trying out new behaviour, the agent would be unable to improve. Most
real-world examples are continuous in nature, and exploration for con-
tinuous action spaces is often limited to adding some form of random
noise (usually from a Gaussian distribution centred at the deterministic
action value) to the action. This kind of exploration is unsubstantiated
and random at best, and can have severe negative impact on learning
performance at worst. The amount of exploration is usually chosen ar-
bitrarily with a decay factor decreasing the variance of the normal dis-
tribution over time. This approach requires a fair amount of system
knowledge to fine-tune the amount of exploration and to avoid that the
exploratory part of the final action dominates the actual deterministic
part (i.e., the learned part). Even worse, in situations where actions have
a temporal dependency, for example in robot control tasks, adding ran-
dom noise to each consecutive step of the controller signal results in
jitter and can not only cause poor performance but also damage to the
hardware. Adding this kind of uninformed random noise to the actions
also causes an increase in variance and makes credit assignment very
difficult.

Driving to Work – An Example

Imagine you moved to another, unfamiliar city for a new job. Each
morning, you take your car to work and try to find the shortest way
to the office. On the first day (Monday), it took you 25 minutes to get
there but you think you can do better. For the sake of this example, let’s
assume you don’t have access to any maps but must find the way simply
by driving there. How would you improve your daily route to the office
to get there quicker?

If on Tuesday you take the same way as on Monday, you would get there
in 25 minutes (neglecting any change in traffic). Obviously you’re not off
worse than yesterday, but you also didn’t improve. This is called exploita-
tion in Reinforcement Learning jargon, and it means that you used your
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previously acquired knowledge to get an acceptable result. However, in
order to improve in the future, you need to do the opposite: exploration.
So on Tuesday, you decide to drive another way. The equivalent of ex-
ploring by adding random noise to actions, is to choose a random action
each time you’re forced to make a decision. So at each intersection, you
draw a random number (by rolling dice, flipping a coin or some other
means that gives you a uniform number between 1 and the number of
streets to choose from) and follow the street determined by the drawn
number. Does that procedure get you to work? Most likely not, because
your actions have a temporal dependency. The action you took at the
first intersection influences the choices you have at the next intersection.
Many Reinforcement Learning problems are of such nature, and adding
random, independent noise to each action is not helpful in such cases.
But there is a second caveat: Let assume that you did in fact reach your
office and even improved and made it in 22 minutes. In order to learn
from this experience, you need to somehow associate the positive out-
come with the actions you took. In Reinforcement Learning language,
this is called “credit assignment”. The problem here is though, that
any of the choices you made that differed from the last trial could have
caused this effect. Even worse, maybe some of the choices you took
would have lead to a worse outcome, but were cancelled out by some
really good choices. Here, the second problem of random exploration
shows: It is very difficult to assign the credit back to actions which were
overlaid with independent random noise. One solution is, to keep a list
of all the choices ever made and store the return of every single episode
(here: the time for one trip to work), and average over the results. So in
our case, we would append “22 min” to each of the streets we took on
Tuesday. If we drive often enough, we might be able to see some trends
in the averages for each street, but it would take many episodes before
they stand out from the noise.

In the following sections, we will describe an alternative to adding in-
dependent noise to actions. One method has already been introduced
in Section 5.4.2: Finite differences explore by adding noise to the pa-
rameters of the controller, rather than the resulting action. We will talk
more about parameter-exploring algorithms in Section 6.2 and discuss
advantages and disadvantages, and then introduce a novel method that
behaves like parameter exploration but is in fact manipulating actions.
Why this is desirable and how it can be achieved will be subject of Sec-
tion 6.3.
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6.2 exploration in parameter space

A significant problem with policy gradient algorithms such as REIN-
FORCE (Williams, 1992), as described in section 5.4.3, is that the high
variance in the gradient estimation leads to slow convergence. In the
“Driving to Work” example, this equated to having to drive to work
many times before we would be able to notice a trend in the different
street return averages.

Various approaches have been proposed to reduce this variance (Baxter
and Bartlett, 2000; Sutton et al., 2000; Aberdeen, 2003; Peters and Schaal,
2006). However, none of these methods address the underlying cause of
the high variance, which is that repeatedly sampling from a probabilistic
policy has the effect of injecting noise into the gradient estimate at every
time step. Furthermore, the variance increases linearly with the length
of the history (Munos, 2006), since each state may depend on the entire
sequence of previous samples. An alternative to the action-perturbing
exploration described (see section 5.5.2), is to alter the parameters θ of
the policy directly.

Instead of manipulating the resulting actions as we saw with additive
Gaussian exploration, parameter exploration adds a small perturbation
δθ directly to the parameter θ of the policy before each episode, and fol-
low the resulting policy throughout the whole episode. An example of
such a parameter-exploring algorithm is the Finite Differences method
from section 5.4.2.

Another interesting alternative is Policy Gradients with Parameter-Based
Exploration (PGPE) (Sehnke et al., 2008a), where a distribution over the
parameters of a controller is maintained and updated. Therefore PGPE
explores purely in parameter space. The parameters are sampled from
this distribution at the start of each sequence, and thereafter the con-
troller is deterministic. Since the reward for each sequence depends
only on a single sample, the gradient estimates are significantly less
noisy, even in stochastic environments.

PGPE addresses the variance problem by replacing the probabilistic pol-
icy with a probability distribution over the parameters θ, i.e.

p(at|st, ρ) =
∫

Θ
p(θ|ρ)δFθ(st),at dθ, (6.1)

where ρ are the parameters determining the distribution over θ, Fθ(st) is
the (deterministic) action chosen by the model with parameters θ in state
st, and δ is the Dirac delta function. The advantage of this approach is
that the actions are deterministic, and an entire history can therefore be
generated from a single parameter sample. This reduction in samples-
per-history is what reduces the variance in the gradient estimate. As an
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Figure 13: Parameter Exploration. Both PGPE and Finite Differences perturb
the parameters of the controller directly, but differ in their approach
to estimate the return gradient with respect to the controller param-
eters. Finite Differences sometimes uses a uniform rather than a
normal distribution to sample the deltas, but the outcome is similar.

added benefit the parameter gradient is estimated by direct parameter
perturbations, without having to back-propagate any derivatives, which
allows the use of non-differentiable controllers.

Parameter-based exploration can have several advantages. First, we no
longer need to calculate the derivative of the policy with respect to its pa-
rameters, since we already know which choice of parameters has caused
the changes in behaviour. Therefore policies are no longer required to be
differentiable, which in turn provides more flexibility in choosing a suit-
able policy for the task at hand. Second, when exploring in parameter
space, the resulting actions come from an instance of the same family
of functions. This contrasts with action-perturbing exploration, which
might result in actions that the underlying function could never have
delivered itself. In the latter case, gradient descent could continue to
change the parameters into a certain direction without improving the
overall behaviour. For example, in a neural network with sigmoid out-
puts, the exploratory noise could push the action values above +1.0.
Third, parameter exploration avoids noisy trajectories that are due to
adding i.i.d. noise in each time step. This fact is illustrated in Figure
14. Each episode is executed entirely with the same parameters, which
are only altered between episodes, resulting in much smoother action
trajectories. Furthermore, this introduces much less variance in the roll-
outs, which facilitates credit assignment and generally leads to faster
convergence (Rückstieß et al., 2008a; Sehnke et al., 2008a).

But perturbing parameters instead of actions is not always possible or
desired. With no system knowledge, changing parameters directly can
lead to undefined behaviour of the controller, especially if it is non-linear.
Small changes to the parameters of a non-linear system can lead to very
big changes in the outcome. This could result in actions outside of the
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safe working space of the system, or actions that simply cannot be exe-
cuted by the system due to hardware constraints.

Another reason to avoid parameter perturbation is to optimize, or fine-
tune, an already existing controller. The space of actions is likely flat and
smooth around a good solution: A robot hand almost able to grasp an
object will probably find a better solution by making small local changes
to the end effector’s trajectory. There is no guarantee, however, that the
space of (non- linear) controller parameters is similarly smooth and flat
around a solution. Small modifications could potentially be very de-
structive to an existing sub- optimal solution. This issue is particularly
relevant for the robotics domain. Many manipulation tasks benefit from
an initial teaching signal, for example a human leading an impedance-
controlled robot (Urbanek et al., 2004) to seed the search for the con-
troller parameters.

The next section introduces State-Dependent Exploration, a method that
was developed to bring most of the benefits of parameter exploration to
tasks where pure parameter perturbing methods, like PGPE or genetic
algorithms are not an option.

6.3 state-dependent exploration

Now we will look at an alternative to parameter-based exploration, that
addresses most of the shortcomings of action-based exploration. State-
Dependent Exploration (SDE) (Rückstieß et al., 2008a) is compatible with
standard policy gradient methods like REINFORCE in a way that it can
simply replace or augment the existing Gaussian exploration described
in Section 5.5. Since it is technically an additive action-based exploration
method, it also circumvents the above mentioned problem of perturbing
parameters in non-linear controllers. SDE, therefore, sits in between
parameter-based and action-based exploration and inherits some of the
positive aspects of both methods. It can be seen as an adapter for Like-
lihood Ratio Reinforcement Learning to behave more like parameter-
based exploration, without actually modifying the parameters.

First, we will go beyond the introduction of REINFORCE from Sec-
tion 5.4.3 by deriving the general case for multi-dimensional differen-
tiable function approximators. Then we will modify REINFORCE’s ex-
ploration technique and turn the algorithm into what we call State-
Dependent Exploration.
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Figure 14: Illustration of the main difference between action (top) and param-
eter (bottom) exploration. Several roll-outs in state-action space of
a task with state x ∈ R2 (velocity and angle axes) and action a ∈ R

(torque axis) are plotted. While exploration based on action pertur-
bation follows the same trajectory over and over again (with added
noise), parameter exploration instead tries different strategies and
can quickly find solutions that would take a long time to discover
otherwise.

6.3.1 REINFORCE for General Multi-Dimensional Function Approxi-
mation

Here we describe how the results above, in particular Eqn. (5.24) from
page 44, can be applied to general parametric function approximation.
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Because we are dealing with both multi-dimensional states s and actions
a, we will now use bold font for (column) vectors in the notation for
clarification.

Furthermore, to avoid the issue of a growing history length and to sim-
plify the equations, we will assume the world to be Markovian for the
remainder of this chapter, i.e. the current action only depends on the
last state encountered, so that π(at|hπ

t ) = π(at|st). But due to its general
derivation, the idea of SDE is still applicable to non-Markovian environ-
ments.

The most general case would include a multi-variate normal distribution
function with a covariance matrix Σ, but this would square the number
of parameters and required samples. Also, differentiating this distribu-
tion requires calculation of Σ−1, which is time-consuming. We will in-
stead use a simplification here and add independent uni-variate normal
noise to each element of the output vector separately. This corresponds
to a covariance matrix Σ = diag(σ1, . . . , σn).1 The action a can thus be
computed as

a = f (s, θ) + e =




f1(s, θ)
...

fn(s, θ)


+




e1
...

en


 (6.2)

with θ = [θ1, θ2, . . .] being the parameter vector and f j the jth controller
output element. The exploration values ej are each drawn from a nor-
mal distribution ej ∼ N (0, σ2

j ). The policy π(a|s) is the probability
of executing action a when in state s. Because of the independence
of the elements, it can be decomposed into π(a|s) = ∏k∈O πk(ak|s)
with O as the set of indices over all outputs, and therefore log π(a|s) =
∑k∈O log πk(ak|s). The element-wise policy πk(ak|s) is the probability of
receiving value ak as kth element of action vector a when encountering
state s and is given by

πk(ak|s) =
1√

2πσk
exp

(
− (ak − µk)

2

2σ2
k

)
, (6.3)

where we substituted µk := fk(s, θ). We differentiate with respect to the
parameters θj and σj:

∂ log π(a|s)
∂θj

= ∑
k∈O

∂ log πk(ak|s)
∂µk

∂µk

∂θj

= ∑
k∈O

(ak − µk)

σ2
k

∂µk

∂θj
(6.4)

1 A further simplification would use Σ = σI with I being the unity matrix. This is
advisable if the optimal solution for all parameters is expected to lay in similar value
ranges.
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∂ log π(a|s)
∂σj

= ∑
k∈O

∂ log πk(ak|s)
∂σj

=
(aj − µj)

2 − σ2
j

σ3
j

(6.5)

For the linear case, where f (s, θ) = Θs with the parameter matrix Θ =
[θji] mapping states to actions, (6.4) becomes

∂ log π(a|s)
∂θji

=
(aj −∑i θjisi)

σ2
j

si (6.6)

An issue with nonlinear function approximation (NLFA) is a parameter
dimensionality typically much higher than their output dimensionality,
constituting a huge search space for FD methods. However, in combi-
nation with LR methods, they are interesting because LR methods only
perturb the resulting outputs and not the parameters directly. Assuming
the NLFA is differentiable with respect to its parameters, one can easily
calculate the log likelihood values for each single parameter.

The factor ∂µk
∂θj

in (6.4) describes the differentiation through the function
approximator. It is convenient to use existing implementations, where
instead of an error, the log likelihood derivative with respect to the mean,
i.e. the first factor of the sum in (6.4), can be injected. The usual back-
ward pass through the NLFA then results in the log likelihood deriva-
tives for each parameter (Williams, 1992).

6.3.2 Derivation from REINFORCE to SDE

Looking back at Eqn. (5.28) on page 46, it is obvious that for every
time step, Gaussian exploration adds noise to the action a in order to
explore different behaviour in the current situation. This is somewhat
inefficient as it adds a lot of variance to the gradient estimates. Especially
when encountering the same state s a second time, we will end up doing
something different from what we did when we observed s for the first
time. Generally, the reinforcement signal only covers the episode in total,
returning an overall reward (called the return) for the complete trajectory
which does not take into account single rewards at each time step. Here,
the credit assignment does not work for state s because two different,
possibly opposite actions, have been carried out. The information, which
one (if any) had an effect on the return value, is not accessible.

Reducing the variance of the exploratory noise ε in Eqn. (5.28) does not
solve this problem because the agent has to act differently in order to
learn something new. An alternative to adding random noise is to add
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Figure 15: Difference between standard Gaussian exploration (top) and state-
dependent exploration (bottom), explained graphically. Gaussian
exploration adds a random value ε to the output of the deterministic
controller at each time step. State-dependent exploration uses an
exploration function ε(s, Θ̂) that takes the state as input. Its output
is added to the controller output. The parameters Θ̂ are drawn
randomly. Without loss of generality, the controller is illustrated as a
nonlinear feed-forward neural network and the exploration function
as a linear mapping from the state. Other functions are possible as
well.

state-dependent noise for exploration, which can still carry the necessary
randomness but will always return the same value in the same state.
This is achieved by a pseudo-random function ε(s; Θ̂) that takes the state
s as input. The randomness comes from the parameters θ̂ji which build
the matrix Θ̂ and which are drawn from a normal distribution

θ̂ji ∼ N (0, σ̂2
ji).

As illustrated visually in Fig. 15, bottom graphic, the action is calculated
as follows, where f is the parameterised function approximator:

a = f (s, Θ) + ε(s, Θ̂), θ̂ji ∼ N (0, σ̂2
ji). (6.7)

Instead of adding i.i.d. noise in each time step (cf. Equation 5.28), we
introduce a pseudo-random function ε(s), that takes the current state as
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Algorithm 1 State-Dependent Exploration (SDE)
1: repeat
2: for n = 1 to N do
3: draw random θ̂ji ∼ N (0, σ̂2

ji), Θ̂ = [θ̂ji]
4: for t = 1 to T do
5: observe state sn

t
6: calculate an

t ← f (sn
t , Θ) + ε(sn

t , Θ̂)
7: execute action an

t
8: receive reward rn

t
9: store (sn

t , an
t , rn

t )
10: end for
11: end for
12: update π with collected samples (sn

t , an
t , rn

t )
∣∣n=1..N
t=1..T

according to Eqn. (5.24)
13: until convergence

input and is itself parameterised with parameters θ̂. These exploration
parameters are in turn drawn from a Normal distribution with zero
mean. The exploration parameters are varied between episodes (just like
introduced in Section 6.2) and held constant during the roll-out. There-
fore, the exploration function ε can still carry the necessary exploratory
randomness through variation between episodes, but will always return
the same value in the same state within an episode. Algorithm 1 shows
a pseudo-code algorithm for state-dependent exploration.

Effectively, by drawing θ̂, we actually create a policy delta, similar to finite
difference methods. In fact, if both f (s; Θ) with Θ = [θji] and ε(x, Θ̂)

with Θ̂ = [θ̂ji] are linear functions, we see that

a = f (s; Θ) + ε(s; Θ̂)

= Θs + Θ̂s
= (Θ + Θ̂)s, (6.8)

which shows that direct parameter perturbation methods (cf. Equation
(5.12)) are a special case of SDE and can be expressed in this more gen-
eral framework.

In effect, state-dependent exploration can be seen as a converter from
action-exploring to parameter-exploring methods. A method equipped
with the SDE converter does not benefit from all the advantages men-
tioned in Section 6.2, e.g. actions are not chosen from the same family of
functions, since the exploration value is still added to the greedy action.
It does, however, cause smooth trajectories and thus mitigates the credit
assignment problem (as illustrated in Figure 14).
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6.3.3 Adaptive Exploration Variance

For a linear exploration function ε(s; Θ̂) = Θ̂s it is also possible to cal-
culate the derivative of the log likelihood with respect to the variance.
This allows the system to automatically adapt the amount of exploration,
following the same optimisation gradient. Not only will this slowly re-
duce the variance towards the end of the learning process, when less
exploratory behaviour is required, it can also adjust exploration for each
parameter dimension individually. This improves the convergence be-
cause some parameters may converge quicker than others and therefore
require different exploration variances.

First, we need the distribution of the action vector elements aj:

aj = f j(s, Θ) + Θ̂js = f j(s, Θ) + ∑
i

θ̂jisi (6.9)

with f j(s, Θ) as the jth element of the return vector of the deterministic
controller f and θ̂ji ∼ N (0, σ̂2

ji). We now use two well-known properties
of normal distributions: First, if X and Y are two independent random
variables with X ∼ N (µa, σ2

a ) and Y ∼ N (µb, σ2
b ) then U = X + Y is

normally distributed with U ∼ N (µa + µb, σ2
a + σ2

b ). Second, if X ∼
N (µ, σ2) and a, b ∈ R, then aX + b ∼ N (aµ + b, (aσ)2).

Applied to (6.9), we see that θ̂jisi ∼ N (0, (siσ̂ji)
2), that the sum is dis-

tributed as ∑i θ̂jisi ∼ N (0, ∑i(siσ̂ji)
2), and that the action element aj is

therefore distributed as

aj ∼ N
(

f j(s, Θ), ∑
i
(siσ̂ji)

2
)

, (6.10)

where we will substitute µj := f j(s, Θ) and σ2
j := ∑i(siσ̂ji)

2.

Therefore, differentiation of the policy with respect to the free parame-
ters σ̂ji yields:

∂ log π(a|s)
∂σ̂ji

= ∑
k

∂ log πk(ak|s)
∂σj

∂σj

∂σ̂ji

=
(aj − µj)

2 − σ2
j

σ4
j

s2
i σ̂ji, (6.11)

which can directly be inserted into the gradient estimator of REINFORCE.
For more complex exploration functions, calculating the exact derivative
for the sigma adaptation might not be possible and heuristic or manual
adaptation (e.g. with slowly decreasing σ̂) is required.
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6.3.4 Stochastic Policies

The original policy gradient setup as presented in e.g. (Williams, 1992)
conveniently unifies the two stochastic features of the algorithm: the
stochastic exploration and the stochasticity of the policy itself. Both were
represented by the Gaussian noise added on top of the controller. While
elegant on the one hand, it also conceals the fact that there are two differ-
ent stochastic processes. With SDE, randomness has been taken out of
the controller completely and is represented by the separate exploration
function. So if learning is switched off, the controller only returns deter-
ministic actions. But in many scenarios the best policy is necessarily of
stochastic nature.

It is possible and straight-forward to implement SDE with stochastic
policies, by combining both random and state-dependent exploration in
one controller, as in

a = f (s; θ) + ε + ε̂(s; θ̂), (6.12)

where εj ∼ N(0, σj) and θ̂j ∼ N(0, σ̂j). Since the respective noises are
simply added together, none of them affects the derivative of the log-
likelihood of the other and σ and σ̂ can be updated independently. In
this case, the trajectories through state-action space would look like a
noisy version of Figure 14, bottom plot.

6.3.5 Negative Variances

For practical applications, we also have to deal with the issue of nega-
tive variances. Obviously, we must prevent σ from falling below zero,
which can happen since the right side of (6.5) can become negative. We
therefore designed the following smooth, continuous function and its
first derivative:

expln(σ) =

{
exp(σ) σ ≤ 0
ln(σ + 1) + 1 else

(6.13)

expln′(σ) =

{
exp(σ) σ ≤ 0

1
σ+1 else

(6.14)

Substitution of σ∗ := expln(σ) will keep the variance above zero (expo-
nential part) and also prevent it from growing too fast (logarithmic part).
In order to use this substitution, the derivatives in (6.5) and (6.11) have
to be multiplied by expln′(σ). In the experiments in section 6.4, this
factor is included.
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6.3.6 State-Dependent Exploration for Value-Based RL

State-Dependent Exploration has been formulated here for direct Rein-
forcement Learning, in particular as an extension to William’s REIN-
FORCE algorithm. The basic ideas, however, can be carried over to
value-based Reinforcement Learning (Section 5.3) as well. Two aspects
need to be handled differently: Value-based RL has a value estimator in-
stead of a parameterised controller, and the actions are usually discrete,
with the exception of the methods presented in Section 5.3.2. The latter
algorithms can be handled the same way as the continuous-action direct
RL methods above, using a separate exploration generator that takes the
state as input, as shown in Figure 15, bottom graphic.

As a quick reminder for how discrete value-based RL determines the
action to take in a given state: The value estimator usually consists of
a simple table that stores the value for each state/action combination.
To find the greedy action that needs to be executed, a row look-up2

for the given state, followed by a maximum operation over that row, is
performed. The winning cell represents the action to execute.

State-Dependent exploration requires that exploration happens at the
beginning of an episode, then is held constant throughout the episode.
Furthermore, running into the same state during one episode needs to
cause the exact same action to be taken. It would be tedious to choose a
random action for each new state, then remember the action throughout
the episode for each state. There is a much simpler way to achieve this:
At the beginning of an episode, we store the original value table, then
permute the columns for each row of the table. Because the maximum
is now at a different index for each such permuted row, a seemingly
random action is executed instead of the original action. The chosen
action is consistent with each state because the table is fixed during
the episode. After the episode is completed, the original table can be
restored.

Continuous SDE used the variance of the Gaussian distribution to con-
trol the amount of exploration. For more fine-grained control for dis-
crete SDE (rather than just on or off ), we can employ an ε-greedy scheme:
Choose 0 ≤ ε ≤ 1, then iterate through each row of the value table and
draw a random number r ∼ U(0, 1) between 0 and 1. If r < ε, permute
the columns of that row. If not, leave it as is. Over time, ε can be reduced
from 1 (maximum exploration) towards 0 (no exploration).

State-Dependent Exploration for value-based algorithms will play an im-
portant role in the final Chapter of Part II: Context Learning. We finish

2 We assume that states are arranged in rows and actions are arranged in columns.
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this chapter with the results of experiments comparing SDE’s perfor-
mance to random exploration.

6.4 experiments

Two different sets of experiments are conducted to investigate both the
theoretical properties and the practical application of SDE. The first
looks at plain function minimisation and analyses the properties of SDE
compared to random exploration (REX). The second demonstrates SDE’s
usefulness for real-world problems with a simulated robot hand trying
to catch a ball.

As SDE was specifically designed for problem domains which do not
lend themselves for parameter exploration (see Section 6.2), for exam-
ple local optimization, or tasks where system knowledge is insufficient
or unavailable, direct comparison between parameter-exploring alterna-
tives, like PGPE or neuro-evolution are not in scope of this work.

6.4.1 Function Minimisation

The following sections compare SDE and random exploration (REX)
with regard to sensitivity to noise, episode length, and parameter dimen-
sionality. We chose a very basic setup where the task was to minimise
g(x) = x2. This is sufficient for first convergence evaluations since pol-
icy gradients are known to only converge locally. The agent’s state x lies
on the abscissa, its action is multiplied with a step-size factor s and the
result is interpreted as a step along the abscissa in either direction. To
make the task more challenging, we always added random noise to the
agent’s action. Each experiment was repeated 30 times, averaging the
results. Our experiments were all episodic, with the return R for each
episode being the average reward as stated in section 5.1. The reward
per time step was defined as rt = −g(xt), thus a controller reducing the
costs (negative reward) minimises g(x).

For a clean comparison of SDE and REX, we used the SDE algorithm
in both cases, and emulated REX by drawing new exploration function
parameters θ̂ after each step (see Section 6). Unless stated otherwise,
all experiments were conducted with a REINFORCE gradient estima-
tor with optimal baseline (Peters and Schaal, 2006) and the following
parameters: learning rate α = 0.1, step-size factor s = 0.1, initial param-
eter θ0 = −2.0, episode length EL = 15 and starting exploration noise
σ̂ = e−2 ≈ 0.135.
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(a) σnoise = 0.5 (b) σnoise = 1.0 (c) σnoise = 1.5

Figure 16: Convergence for different levels of noise, averaged over 30 runs per
curve. The upper solid curve shows SDE, the lower dotted curve
REX.

Noise Level

First, we investigated how both SDE and REX deal with noise in the
setting. We added normally distributed noise with variance σ2

noise to
each new state after the agent’s action was executed: xt+1 = xt + sut +
N (0, σ2

noise), where s is the step-size factor and ut is the action at time t.
The results of experiments with three different noise levels are given in
Figure 16 and the right part of Table 1.

The results show that SDE is much more robust to noise, since its advan-
tage over REX grows with the noise level. This is a direct effect of the
credit assignment problem, which is more severe as the randomness of
actions increases.

An interesting side-effect can also be found when comparing the con-
vergence times for different noise levels. Both methods, REX and SDE,
ran at better convergence rates with higher noise. The reason for this
behaviour can be shown best for a one-dimensional linear controller. In
the absence of (environmental) noise, we then have:

xt = xt−1 + sut−1

ut = θxt + εexplore

Adding noise to the state update results in

x′t = xt + εnoise = xt−1 + sut−1 + εnoise

u′t = θ(xt−1 + sut−1 + εnoise) + εexplore

= θ(xt−1 + sut−1) + θεnoise + εexplore

= θxt + ε′explore

with ε′explore = θεnoise + εexplore. In our example, increasing the environ-
mental noise was equivalent to increasing the exploratory noise of the
agent, which obviously accelerated convergence.
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Figure 17: Left: Results for different episode lengths, from top to bottom:
5, 15, 30. Right: Nonlinear controller with 18 free parameters on
a 2-dimensional task. With REX, the agent became stuck in a local
optimum, while SDE found the same optimum about 15 times faster
and then converged to a better solution.

Episode Length

In this series of experiments, we varied only the episode length and
otherwise used the default settings with σnoise = 0.5 for all runs. The
results are shown in Figure 17 on the left side and Table 1, left part.
Convergence speed with REX only improved marginally with longer
episodes. The increased variance introduced by longer episodes almost
completely outweighed the higher number of samples for a better gra-
dient estimate. Since SDE does not introduce more noise with longer
episodes during a single roll-out, it could profit from longer episodes
enormously. The speed-up factor rose almost proportionally with the
episode length.

Table 1: Noise and episode length (EL) sensitivity of REX and SDE. σnoise is the
standard deviation of the environmental noise. The steps designate
the number of episodes until convergence, which was defined as Rt >
Rlim (a value that all controllers reached). The quotient REX/SDE is
given as a speed-up factor.

# steps
σnoise EL Rlim REX SDE speed-up

0.5

5

-1.8

9450 3350 2.82

15 9150 1850 4.95

30 9700 1050 9.24

45 8800 650 13.54

60 8050 500 16.10

0.5
15 -1.6

9950 2000 4.98

1.0 9850 1400 7.04

1.5 7700 900 8.56 899
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Parameter Dimensionality

Here, we increased the dimensionality of the problem in two ways: In-
stead of minimising a scalar function, we minimised g(x, y) = [x2, y2]T.
Further, we used a nonlinear function approximator, namely a multi-
layer perceptron with 3 hidden units with sigmoid activation and a bias
unit connected to hidden and output layer. We chose a single parameter
σ̂ for exploration variance adaptation. Including σ̂ the system consisted
of 18 adjustable parameters, which made it a highly challenging task
for policy gradient methods. The exploration variance was initially set
to σ̂ = −2 which corresponds to an effective variance of ∼ 0.135. The
parameters were initialised with θi ∈ [−1, 0[ because positive actions
quickly lead to high negative rewards and destabilised learning. For
smooth convergence, the learning rate α = 0.01 needed to be smaller
than in the one-dimensional task.

As the right-hand side of Figure 17 shows, the agent with REX became
stuck after 15, 000 episodes at a local optimum around R = −70 from
which it could not recover. SDE on the other hand found the same local
optimum after a mere 1, 000 episodes, and subsequently was able to
converge to a much better solution.

6.4.2 Catching a Ball

This series of experiments is based on a simulated robot hand with realis-
tically modelled physics. We chose this experiment to show the predom-
inance of SDE over random exploration, especially in a realistic robot
task. We used the Open Dynamics Engine3 to model the hand, arm,
body, and object. The arm has 3 degrees of freedom: shoulder, elbow,
and wrist, where each joint is assumed to be a 1D hinge joint, which lim-
its the arm movements to forward-backward and up-down. The hand
itself consists of 4 fingers with 2 joints each, but for simplicity we only
use a single actor to move all finger joints together, which gives the
system the possibility to open and close the hand, but it cannot control
individual fingers. These limitations to hand and arm movement reduce
the overall complexity of the task while giving the system enough free-
dom to catch the ball. A 3D visualisation of the robot attempting a catch
is shown in Fig. 18. First, we used REINFORCE gradient estimation with
optimal baseline and a learning rate of α = 0.0001. We then repeated the
experiment with Episodic Natural Actor-Critic (ENAC), to see if SDE
can be used for different gradient estimation techniques (Amari, 1998)
as well.

3 The Open Dynamics Engine (ODE) is an open source physics engine, see http://www.
ode.org/ for more details.

http://www.ode.org/
http://www.ode.org/
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Figure 18: Visualisation of the simulated robot hand while catching a ball. The
ball is released 5 units above the palm, where the palm dimensions
are 1 x 0.1 x 1 units. When the fingers grasp the ball and do not
release it throughout the episode, the best possible return (close to
−1.0) is achieved.

Experiment setup

The information given to the system are the three coordinates of the ball
position, so the robot “sees” where the ball is. It has four degrees of
freedom to act, and in each time step it can add a positive or negative
torque to the joints. The controller therefore has 3 inputs and 4 outputs.
We map inputs directly to outputs, but squash the outgoing signal with
a tanh-function to ensure output between -1 and 1.

The reward function is defined as follows: upon release of the ball, in
each time step the reward can either be −3 if the ball hits the ground
(in which case the episode is considered a failure, because the system
cannot recover from it) or else the negative distance between ball centre
and palm centre, which can be any value between −3 (we capped the
distance at 3 units) and −0.5 (the closest possible distance considering
the palm heights and ball radius). The return for a whole episode is the
mean over the episode: R = 1

N ∑N
n=1 rt. In practice, we found an overall

episodic return of −1 or better to represent nearly optimal catching be-
haviour, considering the time from ball release to impact on palm, which
is penalised with the capped distance to the palm centre.

One attempt at catching the ball was considered to be one episode,
which lasted for 500 time steps. One simulation step corresponded to
0.01 seconds, giving the system a simulated time of 5 seconds to catch
and hold the ball.

For the policy updates, we first executed 20 episodes with exploration
and stored the complete history of states, actions, and rewards in an
episode queue. After executing one learning step with the stored epi-
sodes, the first episode was discarded and one new roll-out was exe-
cuted and added to the front of the queue, followed by another learning
step. With this “online” procedure, a policy update could be executed af-
ter each single step, resulting in smoother policy changes. However, we
did not evaluate each single policy but ran every twentieth a few times
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Figure 19: Results after 100 runs with REINFORCE. Left: The solid and dashed
curves show the mean over all runs, the filled envelopes represent
the standard deviation. While SDE (solid line) managed to learn to
catch the ball quickly in every single case, REX occasionally found a
good solution but in most cases did not learn to catch the ball. Right:
Cumulative number of runs (out of 100) that achieved a certain level.
R ≥ −1 means “good catch”, R ≥ −1.1 corresponds to all “catches”
(closing the hand and holding the ball). R ≥ −1.5 describes all poli-
cies managing to keep the ball on the hand throughout the episode.
R ≥ −2 results from policies that at least slowed down ball contact
to the ground. The remaining policies dropped the ball right away.

without exploration. This yields a return estimate for the deterministic
policy. Training was stopped after 500 policy updates.

6.5 discussion of results

We will first describe the results with REINFORCE. The whole experi-
ment was repeated 100 times. The left side of Figure 19 shows the learn-
ing curves over 500 episodes. Please note that the curves are not per-
fectly smooth because we only evaluated every twentieth policy. As can
be seen, SDE finds a near-perfect solution in almost every case, result-
ing in a very low variance. The mean of the REX experiments indicate
a semi-optimal solution, but in fact some of the runs found a good so-
lution while others failed, which explains the high variance throughout
the learning process.

The best controller found by SDE yielded a return of −0.95, REX reached
−0.97. While these values do not differ much, the chances of producing
a good controller are much higher with SDE. The right plot in Figure 19

shows the percentage of runs where a solution was found that was better
than a certain value. Out of 100 runs, REX only found a mere 7 policies
that qualified as “good catches”, where SDE found 68. Almost all SDE
runs, 98%, produced rewards R ≥ −1.1, corresponding to behaviour
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Figure 20: Results after 100 runs with ENAC. Both learning curves had rela-
tively high variances. While REX often did not find a good solution,
SDE found a catching behaviour in almost every case, but many
times lost it again due to continued exploration. REX also found
slightly more “good catches” but fell far behind SDE considering
both “good” and “average” catches.

that would be considered a “catch” (closing the hand and holding the
ball), although not all policies were as precise and quick as the “good
catches”. A typical behaviour that returns R ' −1.5 can be described
as one that keeps the ball on the fingers throughout the episode but has
not learned to close the hand. R ' −2.0 corresponds to a behaviour
where the hand is held open and the ball falls onto the palm, rolls over
the fingers and is then dropped to the ground. Some of the REX trials
were not even able to reach the −2.0 mark. A typical worst-case be-
haviour is pulling back the hand and letting the ball drop to the ground
immediately.

To investigate if SDE can be used with different gradient estimation tech-
niques, we ran the same experiments with ENAC (Peters et al., 2005) in-
stead of REINFORCE. We used a learning rate of 0.01 here, which lead
to similar convergence speed. The results are presented in Figure 20.
The difference compared to the results with REINFORCE is, that both
algorithms, REX and SDE had a relatively high variance. While REX still
had problems to converge to stable catches (yet showed a 26% improve-
ment over the REINFORCE version of REX for “good catches”), SDE in
most cases (93%) found a “catching” solution but often lost the policy
again due to continued exploration, which explains its high variance.
Perhaps this could have been prevented by using tricks like reducing
the learning rate over time or including a momentum term in the gra-
dient descent. These advancements, however, are beyond the scope of
this paper. SDE also had trouble reaching near-optimal solutions with
R ≥ −1.0 and even fell a little behind REX. But when considering poli-
cies with R ≥ −1.1, SDE outperformed REX by over 38%. Overall the
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experiments show that SDE can in fact improve more advanced gradient
estimation techniques like ENAC.





7 S E Q U E N T I A L F E AT U R E S E L E C T I O N

7.1 introduction

In recent times, an enormous increase in data has been observed, with-
out a corresponding growth of the information contained within them.
In other words, the redundancy of data continuously increases. An exam-
ple of such effects can be found in medical imaging. Diagnostic methods
can be improved by increasing the amount of MRI, CT, EMG, and other
imaging data yet the amount of underlying information does not in-
crease. Even worse, the redundancy of such data seems to negatively
impact the performance of associated classification methods. Indeed,
common engineering practices employ data-driven methods (including
dimensionality reduction, nonlinear PCA, etc.) to reduce data redun-
dancy.

On the other hand, obtaining qualitatively good data gets increasingly
expensive. Again, medical data serves as a good example: not only do
the costs of the above-mentioned medical imaging techniques explode—
MRT scans are performed at the end user price of several thousands of
US dollars per hour—but also diagnostics tests are getting increasingly
intricate and therefore costly, to the point that a selection of the right
diagnostic methods while maintaining the level of diagnostic certainty
is of high value.

Also, from a computer scientist’s perspective, the amount of processable
data grows faster than processor speed. According to various studies1,
recent years showed an annual 40–60% increase of commercial storage
needs and a 40+-fold increase is expected in the next decade. Though
this may, just like the integration density of processors, follow Moore’s
law, the increase of computer speed is well below that.

In short, an improved approach feature selection (FS) is needed, which not
only optimally spans the input space, but optimises with respect to data
consumption. All of these arguments clearly demonstrate the advantage
of carefully selecting relevant portions of data. Going beyond traditional
FS methods, in this paper we lay out and demonstrate an approach of se-
lecting features in sequence, making the decision which feature to select
next dependent on previously selected features and the current internal

1 E.g., Gartner’s survey at http://www.gartner.com/it/page.jsp?id=1460213.
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state of the supervised method that it interacts with. In particular, our
Sequential Online2 Feature Selection (SOFS) will embed Reinforcement
Learning (RL) into classification tasks, with the objective to reduce data
consumption and associated costs of features during classification. The
general question we would like to answer with this work is: “Where do
I have to look next, in order to keep data consumption and expenses low while
maintaining high classification results?”

In this chapter, we will derive common supervised learning tasks, in this
case multi-class classification problems, in a sequential manner and thus
make them accessible to Reinforcement Learning algorithms. Reinforce-
ment Learning is commonly used for control tasks in robotics (Abbeel
et al., 2007), scheduling problems (Zhang and Dietterich, 1995) or game
play (Erev and Roth, 1998). By applying it to general supervised learn-
ing tasks, however, we aim for a hybrid system that can simultaneously
learn an attentive control mechanism to steer focus towards informative
portions of data while learning the supervised mapping function. In-
stead of a static feature selection as a pre-processing step, this approach
can be seen as sequential online feature selection, that chooses features
on the fly, depending on the current state of the supervised task it inter-
acts with.

this not only leads to greatly reduced data consumption in various ex-
periments, speeding up the learning process and improving the results,
it also proves useful in real-world scenarios where data is not a free
resource but its acquisition is time-consuming and/or costly.

Background literature and previous related work is discussed in 7.2. The
SOFS framework is mapped out in Section 7.3. We then formally define
sequential classifiers and rephrase the problem as a Partially Observable
Markov Decision Processes (POMDP). In addition, a novel action selec-
tion mechanism without replacement is introduced. Section 7.5 then
demonstrates our approach, first on two artificially created toy exam-
ples, then on real-world problems, both with redundant (handwritten
digit classification) and costly (diabetes classification) data and discusses
the results.

7.2 background

Feature selection (Liu and Motoda, 2008) with RL has been addressed
previously (Gaudel and Sebag, 2010), yet the novelty of our approach

2 We will occasionally omit the word “Online” for brevity, but all references to this algo-
rithm always select features online, on the fly, while sequentially classifying the input
sample.
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lies in its sequential decision process. Our work is based on and in-
spired by existing research, combining aspects of online FS (Wu et al.,
2010; Perkins and Theiler, 2003) and attentional control policy learning
(Schmidhuber and Huber, 1991; Paletta and Pinz, 2000; Paletta et al.,
2005; Bazzani et al., 2011). A similar concept, Online Streaming FS (Wu
et al., 2010) has features streaming in one at a time, where the control
mechanism can accept or reject the feature. While we adopt the idea of
sequential feature selection, our scenario differs in that it allows access
to all features with the sub-goal of minimising data consumption.

A closely related work (Dulac-Arnold et al., 2011b,a) classifies inputs in
sequential manner based on approximate policy iteration (API). Their
work describes a more integrated approach where both classification
and feature selection is done by a single component, using the features
directly rather than the classifier belief. They solve the classification
problem by giving the agent not only action choices about selecting new
features, but also classifying the the sample into any of the available
classes. The mapping of state-action pairs to values is implemented by
a linear regression that uses block vector coding to encode actions into
the state-action space.

Feature selection on medical data specifically has been published before
(Raymer et al., 2003), using a hybrid Naive Bayes classifier/Evolution-
ary Algorithm. However, this line of work follows the more traditional
approach of extracting features as a separate preliminary step before
classification, therefore yielding significantly lower overall results than
the approach described here.

Related work further includes a system that uses RL for feature learn-
ing in object tracking dependent on visual context (Liu and Su, 2004;
Harandi et al., 2004), and an approach where RL is used to create an
ordered list of image segments based on their importance for a face
recognition task (Norouzi et al., 2010). However, their decision process
is not dependent on the internal state of the classifier, which brings their
method closer to conventional FS. Other approaches describe Reinforce-
ment Learning on raw pixel data (Ernst et al., 2006), circumventing fea-
ture selection all together.

Section 7.5.3 includes experiments manipulating an attentive vision sys-
tem across images of hand-written digits. While quite different in their
approach, Srivastava et al. (2012, 2013) describe some interesting com-
monalities in their work. They, too, control a vision system (in their
case, a fovea with decreasing resolution towards the edges) over images,
manipulated by a learned controller. However, their motivation is a dif-
ferent one. Instead of minimizing data consumption, their algorithm
PowerPlay learns to self-invent new problems and modifications to the
existing controller that can solve these new problems, thus becoming an
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increasingly general problem solver. Another similarity to this work is
the ability of their SLIM NN controller networks (Schmidhuber, 2012)
to learn to stop the computation of a program at any time. We discuss
this problem and our solution to self-halting computation in Section 7.4.
Quantitative evaluations between the two methods were not conducted
due to the very different optimization objective (data minimization vs.
skill generalization).

7.3 sequential online feature selection

7.3.1 General Idea

In Machine learning, solving a classification problem means to map an
input x to one of a finite set of class labels C. Classification algorithms
are trained on labelled training samples I = {(x1, c1), . . . , (xn, cn)}, while
the quality of such a learned algorithm is determined by the generalisa-
tion error on a separate test set. We regard features as disjunct portions
(scalars or vectors) of the input pattern x, with feature labels fi ∈ F
and feature values fi(x) for feature fi. One key ingredient for good clas-
sification results is feature selection (also called feature subset selection):
filtering out irrelevant, noisy, miss-leading or redundant features. FS
is therefore a combinatorical optimisation problem that tries to identify
those features which will minimise the generalisation error. In particu-
lar, FS tries to reduce the amount of useless or redundant data to pro-
cess.

We wanted to take this concept even further and focus on minimising
data consumption, as outlined in the introduction. For this purpose, how-
ever, FS is not ideal. Firstly, the FS process on its own commonly as-
sumes free access to the full dataset, which defeats the purpose of min-
imising data access in most real-world scenarios. But more significantly,
FS determines for any input the same subset of features that should be
used for a subsequent classification. We argue that this limitation is not
only unnecessary, but in fact disadvantageous in terms of minimising
data consumption.

We believe that by turning classification into a sequential decision pro-
cess, we can further reduce the amount of data to process significantly,
as FS and classification then become a closely intertwined process: decid-
ing which feature to select next depends on the previously-selected fea-
tures and the behaviour of the classifier on them. This will be achieved
by using a fully trained classifier as an environment for a RL agent, that
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learns which feature to access next, receiving reward on successful clas-
sification of the partially uncovered input pattern.

7.3.2 Application Scenarios

We will cover three application scenarios, which scientists and engineers
interested in this research may most likely face:

Scenario 1: access to pre-trained classifier

In this scenario, a pre-trained classifier K exists, presumably designed
and tuned carefully with much effort. While we can query K for classifi-
cations, re-training K, or training a new classifier, is not an option. The
goal in this scenario is to use the pre-trained classifier K in the sequential
decision process to train a SOFS agent that utilises the existing K while
learning to access as few features as possible on future classifications
(test dataset). In this scenario, K acts as a fixed black-box environment
for the agent and will not be modified.

Scenario 2: access to training data

This scenario assumes, that a complete training dataset is available, i.e.
for every sample all features are available. The used resources (time and
costs) to acquire this dataset are irrelevant (i.e. already spent), and may
as well be used to train the agent. The task is two-fold: First, train a
classifier K̃ on the full dataset. Unlike Scenario 1, we can train K̃ already
in sequential manner, which will lead to better performance during RL
training. The second task is to train the SOFS agent to minimise data
consumption and expenditure on future classification (test dataset) with
K̃. A typical example of this scenario is in the field of medical trials,
where previous experiments with patients have been collected. The time
and money to conduct these experiments has been spent already but
may help to reduce the required features and therefore the costs for
future experiments.

Scenario 3: limited access to data source

In the third scenario, we have access to a data source, but requesting
samples (or requesting the correct label for a sample) is time-consuming
and/or costly, even for training the classifier. The goal is to use as few
data samples as possible to both train a sequentialized classifier K̃ and
the SOFS agent simultaneously. This scenario represents cases where
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any access to data is associated with some costs and no previously
trained classifier (Scenario 1) or training dataset (Scenario 2) is available.
As an example, think of a satellite that has been launched to earth’s orbit
to take pictures of distant galaxies. To classify the star formations, data
has to be sent through an expensive relay station, where each megabyte
costs hundreds of dollars. The goal is to minimise data consumption
already during training for both the classifier and the SOFS agent.

While these three scenarios cover many use cases and deserve special
attention, the presented approach is of general nature and broadly ap-
plicable beyond the here mentioned use cases.

7.3.3 Additional Notation

For the next sections, we additionally require the following notation:
ordered sequences are denoted (·), unordered sets are denoted {·}, ap-
pending an element e to a sequence s is written as s ◦ e. Related to power
sets, we define a power sequence powerseq(M) of a set M to be the set of
all ordered permutations of all elements of the power set of M, includ-
ing the empty sequence (). As an example, for M = {1, 2}, the resulting
powerseq(M) = {(), (1), (2), (1, 2), (2, 1)}. During an episode, the fea-
ture history ht ∈ powerseq(F) is the sequence of all previously selected
features in an episode up to and including the current feature at time t.
To unclutter the notation, we will introduce the symbol vt, which repre-
sents the sequence of values of a feature history ht, as follows:

vt = (hτ(x))0<τ≤t = (h0(x), h1(x), . . . , ht(x)) (7.1)

Costs associated with accessing a feature f are represented as negative
scalars r−f ∈ R, r−f < 0. We further introduce a non-negative global
reward r+ ∈ R, r+ ≥ 0 for correctly classifying an input. A classifier
in general is denoted with K, and sequential classifiers (defined in Sec-
tion 7.3.4) are written as K̃.

7.3.4 Sequential Classification

We define a sequential classifier K̃ to be a functional mapping from the
power sequence of feature values to a set of classes:

K̃ : powerseq
(
{ f (x)} f∈F

)
→ C (7.2)

Our framework assumes that feature values are passed to the classifier
K̃ one at a time, therefore K̃ requires some sort of memory. Recurrent
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Neural Networks (RNN) (Hüsken and Stagge, 2003), for instance, are
known to have implicit memory that can store information about inputs
seen in the past. If the classifier does not possess such a memory, it can
be provided explicitly: at time step t, instead of presenting only the t-th
feature value ft(x) to the classifier, the whole history ( f1(x), . . . , ft(x))
up to time t is presented instead.

As it turns out, the above approach of providing explicit memory can
also be used to turn any classifier, that can handle missing values (Saar-
Tsechansky and Provost, 2007), into a sequential classifier. For a given
input x and a set F1 of selected features, F1 ⊆ F, the values of the fea-
tures not chosen, i.e. F\F1, are defined as missing, which we will denote
as φ. Each episode starts with a vector of only missing values (φ, φ, . . .),
where φ can be the mean over all values in the dataset, or simply consist
of all zeros. More sophisticated ways of dealing with missing values
based on imputation methods (Saar-Tsechansky and Provost, 2007) can
be implemented accordingly. At each time step, the current feature grad-
ually uncovers the original pattern x more. As an example, assuming
scalar features f1, f4 and f6 were selected from an input pattern x ∈ R6,
the input to the classifier K would then be: ( f1(x), φ, φ, f4(x), φ, f6(x)).
This method allows us to use existing, pre-trained non-sequential clas-
sifiers in a sequential manner. Note, that the classifiers will remain
unchanged and only act as an environment in which the SOFS agent
learns. We therefore do not measure the performance of the classifiers
but rather the number of features necessary until correct classification
was achieved.

7.3.5 Classifier State Representation

In order to train a Reinforcement Learning agent based on the state of
the classifier, we need to find a suitable representation of such a state.
This representation is rather arbitrary, but it needs to summarise the
current “situation”, in which the classifier can find itself. Ideally, the
representation should be consistent, so that for similar (or even iden-
tical) situations, the state should be similar (or identical) as well. For
Reinforcement Learning algorithms to work best, the state should also
be as low-dimensional as possible without affecting performance.

Instead of simply stating the representation that was eventually used
for this task, we will quickly describe the thought process that went into
deciding on a suitable representation.

Let’s start off with a suggestion for a classifier state representation: take
all the available information of the classifier (inputs, outputs, architec-
ture, parameters, etc), convert them to binary code and use that (pre-
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sumably very long) bit string as state for the agent. This is a very bad ex-
ample for a classifier representation, because it is very high-dimensional,
and a small change in the bit representation could mean a big change
in the classifier (e.g., if some of its parameters are affected). And while
one could certainly implement a system with this representation, the RL
agent would most likely not be able to learn anything with it.

What would be a more reasonable state representation? Maybe we
should encode what the classifier sees, which is the features that have
been uncovered so far and their values. Thus, the classifier state could be
encoded as a vector of length 2n, where n is the number of available fea-
tures. The first n elements would encode the values of already accessed
features (the values for not yet selected features would be set to the miss-
ing value φ), whereas the last n elements of the vector would represent
the features that have been selected already, encoded as bits. Now the
agent could see what information the classifier gets, and could base its
decision on which feature to select next on that representation3.

However, this representation could still get quite long, especially when
dealing with high-dimensional input spaces. For the experiment de-
scribed in section 7.5.3, we have an input space with 784 features if we
regard each pixel as a feature, our representation length would be dou-
ble that. Another problem with this representation is that the RL agent
sees everything the classifier sees, and therefore has to learn everything
the classifier has to learn, in addition to the state-action value function,
which would be somewhat redundant. And finally, it might perhaps not
be necessary to act differently if there is the slightest difference in the
input pattern.

The key thought that leads to a much shorter state representation is
that samples from the same class all have something in common, and it
may perhaps be enough for the agent to act based on these commonali-
ties. Again, consider the MNIST experiment (described in section 7.5.3)
where we have hand-written digits on a 28× 28 pixel grid. Most 1s will
have a vertical stroke (sometimes slightly tilted) in the middle of the
grid, but so do 7s. What makes 7s different from 1s is the additional
horizontal stroke in the top left corner (see Figure 27, images 2 and 5,
for an example). So to distinguish between these two classes, the agent
should look in the top left corner.

Therefore, a good state representation that helps the agent quickly distin-
guish similar classes is one that captures the class belief of the classifier:
a vector b of length |C|, the number of classes, where each element of b
indicates the probability of the current sample to belong to that class. It

3 In fact, we will use this representation in section 7.4, where we look at how to simulta-
neously select features and classify with the agent.



7.3 sequential online feature selection 81

is independent of the input dimensionality but still reflects an important
property of the classifier.

One problem with such a state representation remains though, which
is its ambiguity. The classifier belief state could be the same for very
different input samples because the input is not part of its representation.
This means that the information accessible to the agent is incomplete.
This moves this problem class out of what is covered by regular MDPs
and into a problem class called POMDP, partially observable MDP. The
next section explains, how we can formally define classification based
on a belief state representation as POMDP.

7.3.6 Classification as POMDP

We will now re-formulate classification as a Partially Observable Markov
Decision Process4 (POMDP) (Monahan, 1982), making the problem se-
quential and thus accessible to Reinforcement Learning algorithms (Ab-
erdeen, 2003).

To map the original problem of classification under the objective to min-
imise data consumption to a POMDP, we define each of the elements of
the 6-tuple (S, A, O,P , Ω,R), which describes a POMDP, as follows: the
state s ∈ S at time step t comprises the current input x, the classifier
K̃, and the previous feature history ht−1, so that st = (x, K̃, ht−1). This
triple suffices to fully describe the decision process at any point in time.
Actions at ∈ A are chosen from the set of features F\ht−1, i.e. previously
chosen features are not available. Section 7.3.7 describes, how this can
be implemented practically.

The observation is represented by the classifier’s internal belief of the
class after seeing the values of all features in ht−1, written as ot =
b(x, K̃, ht−1) = b(st). Most classifiers base their class decision on some
internal belief state. A Feed Forward Network (FFN) for example of-
ten uses a soft-max output representation, returning a probability pi in
[0, 1] for each of the classes with ∑|C|i=1 pi = 1. And if this is not the
case (e.g. for purely discriminative functions like a Support Vector Ma-
chine), a straightforward belief representation of the current class is a
k-dimensional vector with a 1-of-k coding. In the experiments section,
we will demonstrate examples with FFN, RNN and Naive Bayes classi-
fiers. Each of these architectures allows us to use the aforementioned

4 A partially observable MDP is a MDP with limited access to its states, i.e. the agent does
not receive the full state information but only an incomplete observation based on the
current state.
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soft-max belief over the classes as belief state for the POMDP. The prob-
abilities pi for each class serve as an observation to the agent:

ot = b(x, K̃, ht−1) = (p1, p2, . . . , p|C|) (7.3)

Assuming a fixed x and a deterministic, pre-trained classifier K̃, the
state and observation transition probabilities P and Ω collapse and can
be described by a deterministic transition function T, resulting in the
next state and observation:

st+1 = Tx(st, at) = (x, K̃, ht−1 ◦ at) (7.4)
ot+1 = b (st+1) (7.5)

Lastly, the reward function R returns the reward rt at time step t for
transitioning from state st to st+1 with action at. Given c as the correct
class label, and the history of all feature values vt (defined in Eqn. 7.1),
the reward is given as:

rt =

{
r+ + r−at

if K̃(vt) = c
r−at

else
(7.6)

A graphical representation of the information flow for SOFS is depicted
in Fig. 21.

7.3.7 Action Selection without Replacement

In this specific task we must ensure that an action (a feature) is only
chosen at most once per episode, i.e. the set of available actions at each
given decision step is dependent on the history ht of all previously se-
lected actions in an episode. Note that this does not violate the Markov
assumption of the underlying MDP, because no information about avail-
able actions flows back into the state and therefore the decision does not
depend on the feature history.

Value-based RL offers an elegant solution to this problem. By manu-
ally changing all action-values Q(o, at) to −∞ after choosing action at,
we can guarantee that all actions not previously chosen in the current
episode will have a larger value and be preferred over at. A compati-
ble exploration strategy for this action selection without replacement is
Boltzmann exploration. Here, the probability of choosing an action is
proportional to its value under the given observation:

p(at|ot) =
eQ(ot,at)/τ

∑a eQ(ot,a)/τ
, (7.7)

where τ is a temperature parameter that is slowly reduced during learn-
ing for greedier selection towards the end. Thus, when selecting action
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Figure 21: SOFS explained graphically. The data sample (initially consisting
of missing values only) is presented to the classifier, which outputs
the most likely class and a belief state over all classes. The belief
state acts as input to the RL agent, which will choose an action (a
feature f ) based on the belief. The action results in a feature cost r−f .
In addition, a positive reward r+ is added if the classification was
correct. The data sample with the now uncovered feature f is fed to
the classifier and the process is repeated until correct classification
occurred. In the learning phase, the sum of rewards act as feedback
to the agent who will then learn to improve its behaviour to gain
more reward over time.

at+1, all actions in ht have a probability of e−∞ = 0 of being chosen again.
At the end of an episode, the original Q-values are restored.

7.3.8 Solving the POMDP

Having defined the original task of classification with minimal data con-
sumption as a POMDP and solved the problem of action selection with-
out replacement, we can revert to existing solutions for this class of prob-
lems. Since the transition function is unknown to the agent, it needs to
learn from experience, and a second complication is the continuous ob-
servation space. For regular MDPs, a method well-suited to tackle both
of these issues is Fitted Q-Iteration (FQI) (Ernst et al., 2005). The sequen-
tial classifier K̃ then takes care of the PO part of the POMDP, yielding a
static belief over the sequential input stream.
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FQI uses a batch-trained function approximator (FA) as action-value
function. Here, we will use Locally Weighted Projection Regression
(LWPR) (Vijayakumar and Schaal, 2000) as the value function approx-
imator of choice, as it is a fast robust online method that can handle
large amounts of data.

The details of the algorithm are presented in Listing 2. The history is
always initialised with the missing value φ (line 3). This gives the system
the chance to pick the first feature before seeing any real data. The SOFS
agent is trained after every episode (line 16), which ends either with
correct classification (line 9–11) or when the whole input pattern was
uncovered (line 15), i.e. all features were accessed.

Early on, neither K̃ nor the agent A will perform well, so the classifier
is mostly trained with the complete input x. The better K̃ and A get,
the more frequent the episode is stopped early (line 9–11), and the clas-
sifier will be trained with shorter and shorter feature sequences, while
the agent learns, in which order the features need to be selected to be
classified correctly.

In its present form, the algorithm applies to Scenario 3, where both
the classifier and SOFS are trained concurrently. Scenario 1 does not
need to train a classifier (instead using the explicit memory procedure
from section 7.3.4 on the existing classifier K), therefore line 16 can be
skipped. Scenario 2 requires two phases of training. The first phase
trains a classifier sequentially on the full dataset I with randomly per-
muted feature sequences: line 6 is replaced with a random action se-
lection without replacement and line 17 is skipped. After training K̃,
the second phase only trains the agent A (analogous to Scenario 1) by
skipping line 16.

7.4 learning when to stop

In its current state, SOFS learns an attentive model that picks the next
feature, based on expectation to correctly classify the input. There is
currently no mechanism that makes the final decision as to which class
the sample belongs to. Knowing the ground truth, we can make com-
parisons how few features have to be compared until the correct class is
chosen, but in order to have a full equivalent to a classifying system, one
cannot use the ground truth to make this decision. Therefore, a stopping
criterion is required, that tells us “I’m confident that I found the correct
class”. Different strategies were tested in experiments and are discussed
below, ranging from naive ideas that failed towards a working solution
at the end.
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Algorithm 2 Sequential Online Feature Selection (SOFS)

Require: labelled inputs I, agent A, sequential classifier K̃
1: repeat
2: choose (x, c) ∈ I randomly
3: h0 ← (φ)
4: o1 ← b(x, K̃, h0)
5: for t = 1 to |F| do
6: at ← A(ot)
7: ht ← ht−1 ◦ at
8: ot+1 ← b(x, K̃, ht)
9: if K̃(vt) = c then

10: rt ← (r+ + r−at
)

11: break
12: else
13: rt ← r−at

14: end if
15: end for
16: train K̃ with (vt, c)
17: train A with (o1, a1, r1, . . . , rt, ot+1)
18: until convergence

7.4.1 Potential Stopping Criteria

Fixed Number of Features

A very simple stopping decision only counts the accessed features and
stops after a pre-defined number. It would seem that this could be a suc-
cessful strategy, especially when we are willing to accept a high number
of features, possibly close to the total number of features. This is not nec-
essarily the case though, because during learning, the algorithm stops
when the class was correctly identified and no subsequent features are
uncovered anymore. Imagine a very obvious input sample, that can
always be correctly classified after uncovering the first feature. The clas-
sifier has never seen the same sample with more than one feature uncov-
ered, and therefore has no experience with the extra information from
the other features, which likely leads to a wrong classification.

Belief Threshold

SOFS calculates the classifier belief state over all classes which is a vector
of probabilities that the current sample belongs to a given class. This
vector is normalised (sums up to 1). The classifier belief could be used



86 sequential feature selection

as a stopping condition, if one of the class probabilities exceeds a certain
threshold (e.g., 0.7).

Experiments testing this stopping condition failed because the threshold
is chosen arbitrarily and there was no incentive for the classifier to max-
imise the probabilities to be higher than that threshold. For reasonable
threshold, the winning class was often above the threshold, but not all
the time. Choosing the threshold too low resulted in many false posi-
tives, while choosing it too high led to very long episodes that often did
not classify at all (because the threshold was never reached).

Supervised Stopping

Another way of deciding when to stop the classification is to use a sep-
arate supervised binary classifier that learns whether the process of un-
covering features should continue or be stopped and the most probable
class be output as winner. The input to such a stopping classifier could
be a combination of the following: The already accessed features of the
sample, the position of those features, the internal belief state of the clas-
sifier, the number of features accessed. While it is not a problem to train
such a classifier during SOFS learning, experiments indicated that it is
very hard to successfully learn the stopping decision, because in order
to know if classification can be stopped, the classifier would have to un-
derstand what the SOFS agent has learned. The decision to stop cannot
be made independent of the agent’s knowledge.

Stop Action

This idea is based on the argument above, that in order to know when
to stop classifying, one needs to know the decision process of the SOFS
agent. Therefore, we could let the agent make that decision itself.

In addition to the feature actions, the agent has one more action avail-
able at each point in time. Choosing this “stop” action indicates that
the feature selection process should be stopped and the currently high-
est probability in the belief state should be returned as the winning
class.

This approach assumes, that the RL agent knows, when the uncovered
features carry enough information to make the correct decision. But
this means that the agent needs to learn the correct classification just
as the classifier does, which would make the classifier obsolete. Also,
the stop action is fundamentally different from the feature selection ac-
tions, which requires a very flexible function approximator for the value
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estimation. It seems that the agent just does not have enough predic-
tive power to learn both the feature selection task and the stopping
task.

Classifying Actions

It seems that in order to make the stopping decision, all available in-
formation about the task has to be held in one place and the decision-
making process needs access to everything. This means that the two
components—classifier and attentive feature selector—have to be merged
into a single learner. This can be done by having a RL setup with two
different kinds of actions: Those that choose new features, and those
that classify the sample into one of the available classes (and end feature
selection).

It turns out that this approach works well and the agent is now able to
learn when to uncover more features or when to classify and which class
to choose.

7.4.2 Integrated Classification — Reformulation as MDP

In order to create a fully integrated classification system (including a
stopping mechanism), we will have to reformulate the whole framework
and make some changes. First of all, the agent and the classifier have
to be combined into a single decision-making component. Secondly, be-
cause the agent is also the classifier, it requires access to the full pattern
(or at least the uncovered part of it) instead of just the belief state. This is
a grave difference to the earlier implementation because the state space
for the RL part is now much larger and the learning problem more com-
plex. On the positive side, this means that the process now becomes
Markovian and we can reformulate Sequential Online Feature Selection
with Integrated Classification (SOFS+IC) as an MDP:

To map the problem to a MDP, we need to define the 4-tuple (S, A,P ,R),
with S being the set of states, A the set of actions, P a

s,s′ the transition
probability distribution andRa

s,s′ the reward function when transitioning
from s to s′ with action a.

We define mt as the bit mask consisting of 1 for observed features and
0 for unseen features at time step t. The feature pattern vector pt is the
vector of all feature values of uncovered features at time t and 0 every-
where else and can be calculated by element-wise multiplication (�) of
the input pattern x with the bit mask mt: pt = x�mt (compare Section
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7.3.4). The MDP state st ∈ S at time step t then is the concatenation (◦)
of the feature pattern vector pt and the bit vector mt,

st = pt ◦mt = (x�mt) ◦mt, (7.8)

with a vector consisting of only zeros at time t = 0. In addition, we
introduce a terminal state T that indicates that classification took place
and the episode is finished. The set S of all possible states is then the set
of all states s that can be constructed over the training set I according to
Eqn. (7.8) and the terminal state T.

The action set A is the union of all “uncovering” actions (i.e. those that
access a new, unseen feature) and all “classification” actions (i.e. those
that classify the sample into one of the classes and end the episode).

A = C ∪ F\ht−1 (7.9)

The transition probability P a
s,s′ again collapses to a deterministic transi-

tion function and the next state can be expressed as:

st+1 =

{
(xn �mt+1) ◦mt+1 if at ∈ F\ht−1

T if at ∈ C
(7.10)

Finally, the reward function R defines new rewards as:

rt+1 =





r−at
if at ∈ F\ht−1

+r+ if at ∈ C and at = cn

−r+ if at ∈ C and at 6= cn

(7.11)

The algorithm for SOFS+CI is listed as Alg. 3. The feature-uncovering
process takes place in line 12 where the at-th bit of mt is switched from
0 to 1 and the feature value for fat is then included in the new state in
line 13. Note that it is not necessary to know all the values of vector x
to calculate st+1 in line 13. The element-wise multiplication with the bit
mask is merely a convenient way of expressing the new state mathemat-
ically. Also note that the for loop (line 6) is interrupted early (line 22) as
soon as a classifying (i.e. non-uncovering) action is chosen, otherwise it
is continued in line 14.

With this MDP formulation, we can now solve classification with stan-
dard RL algorithms as before, for example Fitted Q-Iteration (FQI). Be-
cause the system is now a complete classifier it can be compared to regu-
lar classifiers as well. We chose to compare it to a decision tree classifier
(specifically C4.5), as these are most similar to the sequential nature of
SOFS and we can not only compare its classification accuracy but also
how many features each of the methods accessed until correctly classi-
fying the sample. Experiment results based on this implementation on
the Cube dataset are presented in Section 7.5.5 and Table 4.
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Algorithm 3 SOFS with Integrated Classification (SOFS+IC)

Require: labelled inputs I, agent A
1: repeat
2: choose (x, c) ∈ I randomly
3: m1 ←~0
4: s1 ←~0
5: h0 ← (φ)
6: for t = 1 to |F| do
7: at ← A(st)
8: ht ← ht−1 ◦ at
9: if at ∈ F\ht−1 then

10: rt ← r−at

11: mt+1 ← mt
12: mt+1,at ← 1
13: st+1 ← (x�mt+1) ◦mt+1
14: continue
15: end if
16: if at = c then
17: rt ← r+

18: else
19: rt ← −r+

20: end if
21: st+1 ← T
22: break
23: end for
24: train A with (s1, a1, r1, . . . , rt, st+1)
25: until convergence

7.5 experiments

We evaluate the proposed method on four different datasets to demon-
strate and point out certain properties of SOFS: two artificial toy exam-
ples, the MNIST handwritten digits classification task, and a medical
dataset for diabetes prediction. Each experiment was repeated 25 times,
the plots for MNIST and the diabetes task show single runs (grey) and
the mean value over all runs (black). Finally, we ran another set of exper-
iments on the Cube dataset with the SOFS+IC algorithm and compare it
to a regular decision tree classification with a C4.5 algorithm.
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Figure 22: Artificial toy data to investigate whether SOFS bases its decision on
the current state or simply chooses informative features (like regular
FS) independent of the state. Pattern 1 and 2 can be distinguished
with features 8 or 9, while pattern 3 and 4 can be distinguished with
feature 6.

7.5.1 Toy Example I - Shapes

This toy dataset was inspired by the MNIST handwritten digits set (Sec-
tion 7.5.3) but is much simpler, has a lower dimension and only 4 dif-
ferent patterns, illustrated in Figure 22. It was chosen to get an insight
into the decision making process of a trained SOFS agent, which a large
dataset like MNIST cannot provide that easily.

Each pattern consists of 3× 3 pixels, and each pixel was considered a
feature. We used artificially created training data (1000 samples, each
randomly chosen from the four patterns).

We looked at Scenario 2 in this experiment, generating a training dataset
of 1000 samples, randomly chosen from the 4 patterns. In the first phase,
we trained a FFN classifier with a 9-20-4 architecture, sigmoid activa-
tion function in the hidden layer, and soft-max activation in the output
layer. Training was conducted sequentially, using the explicit memory
approach from Section 7.3.4. The class targets used 1-of-n encoding,
training was conducted over the full dataset for 30 epochs with a learn-
ing rate α = 0.1.

In the second phase, the FQI agent was then trained over 600 episodes
according to Algorithm 2 (and modifications for Scenario 2). To evaluate
the learned behaviour, exploration was deactivated, rendering the whole
process deterministic. The system was then presented with all four input
patterns. Figure 23 illustrates its response for each case and the decision
process during an episode.

Since only four patterns were used without any noise, the system quickly
converged to a perfect solution, always classifying the correct pattern af-
ter looking at 2 features at most.
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Figure 23: Decision process of the SOFS agent after training. (a)–(d) each show
the already uncovered features in the explicit memory (left), the be-
lief state histogram (middle) and the action value table for selecting
the next feature (right, white indicates high values). (e) shows the
decision process graphically. Initially the agent always sees the miss-
ing value and chooses to look at feature 4 first. If the feature is white,
the classifier favours class 2, and SOFS proposes to select feature 9,
should it be wrong (a). After looking at feature 9, the classifier then
favours class 1 (b). If feature 4 was black, however, the classifier
favours class 3 and SOFS suggests to select a different feature next,
namely feature 6 (c). After looking at it, the classifier now favours
class 4 (d).

7.5.2 Toy Example II - Cube

In this second toy example, we created an artificial dataset with an arbi-
trary number of features F, which can be set upon creation of the data.
The idea is to have some useful information hidden in each data point
while most of the features are non-informative random values. The
position of the useful features are dependent on the class label, how-
ever.

This is how we created the cube dataset: Three of the features indicate
x-, y-, and z-coordinates in a three-dimensional space. Each of the coor-
dinates was randomly chosen from a Bernoulli distribution with proba-
bility p = 0.5 to be either 0 or 1. Then, some normally distributed noise
ε was added to the coordinates with ε ∼ N (0, 0.1). This places each
of the points around one of 8 corners of a cube, as shown in Figure 24.
All other features carry no information and are initialised with a uni-
formly drawn value between 0 and 1. The goal is to classify each of the
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Figure 24: Visualisation of the cube toy dataset. Each data point is assigned
to one of the 8 corners of a three-dimensional cube with a normally
distributed noise in each dimension added. These three meaning-
ful coordinate features are then combined with a number of non-
informative random features. Furthermore, the indices of the coor-
dinate features are different for each class.

points into its correct cube corner. While it would be an easy task for
any feature selection method to isolate the three information- carrying
features from the random ones, we added one extra processing step to
the dataset: The three coordinate features are not at the same position
in each data point, but shifted depending on their class label. The index
of the x coordinate within a data point for class label ci is (i mod |F|), y
and z are positioned at (i+ 1 mod |F|) and (i+ 2 mod |F|), respectively.
The modulo operator ensures that the coordinate indices are on valid po-
sitions, in case there are less than 10 features in the dataset.

This means that for class 1 with corner coordinate (0, 0, 0), a data point
would be (x, y, z, r1, r2, r3, . . .), with ri being the random features. For
class 4 and corner coordinate (0, 1, 1), the data points are defined as
(r1, r2, r3, x, y, z, . . .), and so on.

Conventional FS methods can only fail with this dataset (it is constructed
that way). None of the features by itself is meaningful across all classes.
The best they can achieve is to pick the 10 features that contain some co-
ordinate information. While this seems to be a very unfair and artificial
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Figure 25: Illustration of the coordinate feature placement for the cube dataset.
The white boxes resemble random features which carry no useful
information for the classification task. The black x, y, and z boxes
are the informative features that describe a coordinate in three-
dimensional space. The coordinate features are shifted by one po-
sition for each class. Conventional FS methods can only select fea-
tures independent of the class and thus their best possible outcome
is to choose the 10 features that carry useful information.

dataset, biased towards SOFS, one should keep in mind that it is quite
common for features to only carry information in a certain class, or in
other words, having class dependency. This experiment demonstrates
that SOFS can use this class dependency to select those features during
the classification process.

For classification, we use a logistic regression classifier with a soft-max
output for multiple classes. We tested datasets with 5, 10, 20 and 30 ran-
dom features added in addition to the 3 meaningful coordinates. Each
experiment was repeated 25 times with feature costs set to r−k = 0.1 ∀k
and r+ = 1.0 and we compare the development of the number of nec-
essary features to access before correct classification occurs. Figure 26

shows the results over 350 episodes of training the SOFS agent. In all
cases, the number of required feature quickly drops significantly below
10, the best possible outcome for conventional FS methods. Initial num-
ber of features and final number of features are displayed at the axis
sides left and right respectively.
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Figure 26: Results of the SOFS training process on the cube dataset. The four
plots show instances of the dataset with a different number of ran-
dom features added (rfa) to the 3 informative features. In all cases,
SOFS learns to ignore most of the random features and mostly fo-
cuses on the informative ones. However, the more random features
were added, the more difficult it is to find the 3 coordinates. Initial
number of features before training and final number of features are
displayed at the axis sides left and right respectively.

Comparison to Traditional Feature Selection

We also applied some conventional feature selection methods on the
Cube dataset with the Machine Learning tool WEKA (Hall et al., 2009)
with 10 random features added on top of the three meaningful coordi-
nates. Two versions of the Cube dataset were converted to the WEKA-
compatible .arff format. The first version named “unshifted” was cre-
ated as described above, but did not contain the last processing step of
shifting the feature indices depending on the class. Thus it contained
the x, y and z coordinates of each point at indices 1, 2 and 3. The second
“shifted” version additionally contained that last step and was in fact
the same dataset used for above experiments with SOFS.

WEKA ships with a variety of feature selection (FS) algorithms. For
this experiment, we first chose a Ranking based FS method, which uses
an Information Gain measure to rank each feature individually (see e.g.
Guyon and Elisseeff, 2003), and then selects the highest ranking features
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based on a cut-off threshold. Table 2 shows the results for both the un-
shifted and the shifted dataset. The results are as expected: Features 1, 2

and 3 are chosen for the unshifted version, as they are the only ones that
carry information (centre column). For the shifted version, the features
with gain rank larger than 0.0 are features 1–10, the ones that, pooled
over all classes, carry coordinate information. Comparing the informa-
tion gain values to the illustration in Figure 25, we can also see that
features that carry usable information more often (features in columns
3–8 carry coordinate information 3 times each), have higher information
gain values, whereas Features 1 and 10 (both are only meaningful for
one class) have lower gain values respectively.

Choosing the selection threshold just above 0.0 would exclude the 3 use-
less features 11–13, but a further reduction in the number of features
(by raising the threshold even higher) would also incur a reduction in
classification performance, as useful (and, in fact: required) information
would be discarded.

While feature selection complexity based on ranking scale linearly with
the number of features (each feature has to be evaluated only once), they
do not factor in subsets of features, which may—in combination—yield
a better classification rate while perhaps performing weakly on an in-
dividual basis. A second approach in feature selection is therefore to
search (and evaluate) the space of feature subsets. This, of course, be-
comes unfeasible quickly with growing feature numbers, as the number
of possible subsets grows as 2n with n features, including the full and
empty set of features. Exhaustive searches in the subset space are thus
not applicable for large problems. There are many different heuristics to
search the space of feature subsets, including Genetic Algorithms, Best-
first hill-climbers or Greedy Stepwise approches.

We chose to add 10 additional random features to the three coordinates
to make up a total of 13 features. Exhaustively searching the complete
subspace (213 = 8192 features) is still doable but already takes many
hours on a current computer, as for each subset, a classifier has to be
trained on the full training set.

Instead, a Greedy Stepwise search was used, starting with the empty
subset, and adding features greedily until performance on the classifica-
tion task decreased. The classifier used for the FS process was a simple
logistic regression based on logistic model tree induction (Sumner et al.,
2005). Experiments on both datasets were repeated 20 times. The result
was always the same: for the unshifted dataset, the feature subset {1, 2, 3}
was chosen, and for the shifted dataset, subset {1, 2, . . . , 10} performed
best, exactly as expected.
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Table 2: Ranked Information Gain Feature Selection on Cube Data

Feature # Gain unshifted Gain shifted
1 1.0 0.333

2 1.0 0.546

3 1.0 0.693

4 0.0 0.867

5 0.0 0.842

6 0.0 0.841

7 0.0 0.84

8 0.0 0.643

9 0.0 0.592

10 0.0 0.318

11 0.0 0.0
12 0.0 0.0
13 0.0 0.0

7.5.3 Handwritten MNIST digit classification

In this experiment we looked at the well-known MNIST handwritten
digit classification task (LeCun et al., 1998), consisting of 60, 000 training
and 10, 000 validation examples. Each pattern is an image of 28 × 28
pixels of grey values in [0, 1], the task is to map each image to one of the
digits 0–9. We split every image into 16 non-overlapping 7×7 patches,
each patch representing a feature.

We present results for a FFN as a non-sequential classifier and a RNN
with Long Short Term Memory (LSTM) cells (Hochreiter and Schmid-
huber, 1997) as a sequential classifier with implicit memory. The FFN
was chosen because it is a well-understood simple method, widely used
for classification. The RNN was chosen to investigate, how naturally
sequential classifiers work with SOFS. Throughout this experiment, re-
wards were set to r+ = 1.0 and r−k = −0.1 ∀k.

The FFN has one hidden layer with sigmoid activation, the architecture
is 784-300-10. The output layer uses soft-max activation with a 1-of-n
coding. Pre-training of the classifier was executed online with a learning
rate α = 0.1 on the full training dataset. After 30 epochs of presenting all
60, 000 digits to the network, the error rate on the test dataset is 1.18%,
slightly better than reported in LeCun et al. (1998). However, this re-
sult is secondary, as the network acts merely as an environment for the
SOFS agent. During SOFS training, each episode uses a random sample
from the test dataset. Experience replay (Lin, 1992) is not used, as the
LWPR function approximator is online in nature and can remember pre-
vious data. Figure 28 (left two plots) shows the development of episode
lengths and returns during training of the SOFS agent. The average num-
ber of features required to correctly classify dropped from initially 7.65
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Figure 27: Example of MNIST digits, randomly chosen. Each digit is 28× 28
pixels in size with grey values between 0.0 and 1.0.

(random order) to 3.06 (trained SOFS). The rate of incorrectly classified
images was 0.77%.

The architecture of the RNN classifier is 49-50-10 with LSTM cells in the
hidden layer. The output activation function is soft-max with a 1-of-n
coding. The RNN was pre-trained with Back-Propagation Trough Time
(BPTT) with a learning rate of α = 0.01 and a random order of features.
The results are illustrated in Figure 28 (right two plots). The average
number of required features decreases from 4.91 features (random or-
der) to 1.99 (trained SOFS). The rate of incorrectly classified images was
1.71%.

7.5.4 Diabetes Dataset with Naive Bayes Classification

For the second experiment, we chose a more practical example from the
medical field, the Pima Indians Diabetes data set (Frank and Asuncion,
2011). We also decided on a Naive Bayes classification, to demonstrate
the flexibility of the proposed method in terms of classifiers. The data
set consists of 768 samples with 8 features (real-valued and integer) and
two target classes (diabetes, no diabetes). Pre-training with a Naive
Bayes classifier resulted in 73% correct prediction. There are two inter-
esting aspects in this dataset. Firstly, it contains missing values, which
should be handled well as we already use missing values to turn classi-
fication into a sequential process. Secondly, the features represent very
different attributes of the (all female) patients. Some are simple ques-
tions (e.g. age, number of times pregnant), others are more complex
medical tests (e.g. plasma glucose concentration after 2h in an oral glu-
cose tolerance test). While the MNIST experiment used uniform costs
r−k for all features fk, this experiment demonstrates another property
of SOFS: the feature costs can be weighted, representing cheaper and
more expensive features. To investigate the difference between uniform
and variable feature costs, two sets of experiments were conducted: The
first uses uniform costs r−k = −0.1 ∀k, with a final number of required
features of 3.7 on average. The second variant uses variable, estimated
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Figure 28: Results of MNIST with FFN (left two plots) and RNN (right two
plots). For each classifier, mean episode length and mean return
over training episodes are shown.

costs5 shown in Table 3. Number of features increased from 4.99 to 5.66

on average, while the average return increased from -218 to -141. Fig-
ure 32 shows the results of both variants graphically.

7.5.5 Integrated Classification on Cube Dataset

For the last experiment, we used the SOFS+IC implementation, that
learns to stop the classification process by itself. It is therefore a fully
compatible classifier, while still minimising intra-sample data consump-

5 These costs represent a rough estimate of the time in minutes it takes to acquire the
feature on a real patient. The estimates are based on oral communication with a local
GP.
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Figure 29: Results of MNIST with FFN, simultaneous training of classifier and
RL (Scenario 3). The ratio of supervised to RL training was 20:1
(hence the different scales on the x-axis). Figures from left to right:
episode length, mean return, correct classifications.
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Figure 30: Results of MNIST with LSTM, simultaneous training of classifier
and RL (Scenario3). The ratio of supervised to RL training was 20:1
(hence the different scales on the x-axis). Figures from left to right:
episode length, mean return, correct classifications.

tion. The results are listed in Table 4, where the better number for each
comparison is in bold.

We used the Cube dataset as before (Section 7.5.2) with a varying num-
ber of random features added (#rfa, first column). This time, the agent
decided, after how many features it was sure enough to find the right
label, without any manual intervention based on the true target. We
split the dataset into 2/3 training and 1/3 verification and used the
latter to get the numbers of the third column “% correct” for either
method, averaged over 20 trials. The last column shows the number
of features accessed for both the decision tree method and the SOFS+IC
algorithm.

Most classification algorithms do not select features by themselves but
rely on prior feature selection separate from the actual classification. De-
cision trees are an exception as they, too, look at individual features and
branch out on the most informative one at each level. They are therefore
ideal candidates to compare against SOFS+IC, because we can average
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Figure 31: Histogram of the number of accessed features until correct classifi-
cation occurred in the MNIST with LSTM experiment (Scenario 3).
In most cases, it was sufficient to only look at a very small number
of features. Less than 5% of the input samples required more than
3 features (out of 16) to be identified.

over the depth of the branches for each sample to get the number of
accessed features.

7.6 discussion of results

Early on we wanted to find out, whether the SOFS agent is in fact able
to learn to select features based on a current observation or if the se-
lected features simply improve the results on average, independent of
the belief. The results of the first toy experiment delivered an answer

Table 3: Assigned feature costs for diabetes dataset in the variable-cost case.

# pregnant
2h glucose

concentration
blood

pressure
skin fold
thickness

-1 -120 -5 -5

2h serum
insulin

BMI
diabetes

pedigree fct.
age

-120 -5 -60 -1
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Figure 32: Results of the PIMA diabetes dataset with Naive Bayes classification.
Left two figures: episode lengths and mean returns for uniform
feature costs. Right two figures: episode lengths and mean returns
for feature costs according to Table 3.

to that question: Figure 23 shows two cases (a) and (c) with different
states, leading to the selection of feature 9 and feature 6, respectively. A
first key finding is therefore, that SOFS is superior to any traditional FS
method in that it can select features during a decision sequence depen-
dent on the current observation.

The second toy dataset “Cube” was artificially created to demonstrate
that features with class dependencies are a real issue for conventional FS
methods. We did not include any comparison to other FS methods but
assumed that they would optimally choose the 10 features6 that carried
useful information overall. In all cases, SOFS could beat that number

6 with the exception of the 5rfa experiment, which only has 8 features in total. All of them
carry information and an optimal static FS method would have to choose all 8.
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Table 4: Comparing sequential online feature selection with integrated classifi-
cation (SOFS+IC) with a decision tree algorithm (C4.5). The first col-
umn indicates the number of random features added (rfa) to the three
informative features. The third column presents the average error rate
on a held-out test set, the last column gives the average number of
accessed features over all classifications in the test set.

# rfa classifier % correct mean #feat

3

C4.5 94.9 7.56

SOFS 94.8 4.17

6

C4.5 93.7 8.21

SOFS 93.4 4.79

10

C4.5 92.3 8.46

SOFS 94.3 4.83

20

C4.5 94.5 8.89

SOFS 94.7 5.00

30

C4.5 93.1 9.55

SOFS 93.7 5.03

50

C4.5 94.2 10.34

SOFS 94.3 6.11

and reduce the amount of required features to a significantly lower value
by making the selection process dependent of the class belief.

The MNIST experiment with FFN classifier demonstrates a significant
reduction of data consumption in two ways. Firstly, by making the de-
cision process sequential, which enables the classifier to make decisions
before all features have been looked at. This step alone reduces the
average number of required features from all 16 features down to 7.65

(a reduction to 48%), and indicates that there is in fact a lot of redun-
dancy in the MNIST images. Secondly, consumption is reduced further
by learning the dependency of current belief and next feature, instead
of accessing them in random order. After training the SOFS agent, data
consumption decreases to 3.06 on average, 19% of the full data.

It is important to note that the stated error rates (1.18% for static and
0.77% for sequential classification) cannot be compared directly, because
of the very different nature of the sequential approach. Sequential clas-
sification replaces the conventional error rates as performance measure
based on the binary success of each sample (classified / not classified)
with a scalar value (how many features until classified). In order to
compare both classification methods, we would have to additionally
learn when to stop the decision process, without using the class label.
This could be achieved with a confidence threshold (e.g. if max(belief)
reaches a certain value (Norouzi et al., 2010) or by explicitly learning
when to stop with either supervised or RL methods (Dulac-Arnold et al.,
2011b). In this paper, we focused on the RL feature selection process
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with existing classifiers rather than the performance of sequential classi-
fiers. This issue will be addressed in a future publication.

Another aspect we investigated was the use of RNNs as naturally se-
quential classifiers. Where static classifiers still need to look at a full
input (at least in terms of dimension, even though most of the pattern is
filled with missing values), RNNs can make use of their intrinsic mem-
ory and achieve similar results with significantly fewer nodes in input
and hidden layer and therefore even less data processing. They also con-
verge with lower variance and reduce data consumption to a mere 12%
on the MNIST task.

The Pima diabetes data set illustrates the use of variable feature costs,
a variant that is naturally supported in our framework. The left two
plots in Figure 32 show the development of episode length (i.e. number
of selected features until correct classification) and mean return of the
uniform cost experiment. As expected, episode lengths decrease with
increasing returns, as the only objective for the agent is: select those fea-
tures first, that lead to correct classification. However, if the reward scheme
is changed (right two plots in Figure 32), we witness a growth of episode
lengths in most of the 25 trials and on average. Still, all trials increase
their returns (rightmost plot), which indicates that the agent does indeed
learn and improve its performance. Comparing the final return average
of -141 and the worst final return of -160 to the individual costs of Table
3, it becomes clear that in all runs, only one of the three most expensive
features (number 2, 5 and 7) was selected. This behaviour was caused by
the different objective: minimise the overall costs associated with the features.
In other words, it is okay to select many features, as long as they are
cheap.

Lastly, the results for SOFS+IC show that a reformulation of the prob-
lem allowed us to include classification as part of the decision pro-
cess. SOFS+IC reached comparable results with a standard C4.5 deci-
sion tree algorithm for small numbers of added random features (#rfa),
and slightly outperformed the decision tree algorithm for higher #rfa
in terms of correct classification on the validation set. Looking at the
average number of features accessed per trial, SOFS+IC shows a dra-
matic reduction in numbers, almost half of the features required by the
decision tree algorithm.





8 C O N T E X T L E A R N I N G

8.1 introduction

This chapter discusses a novel approach to sequential classification, us-
ing Reinforcement Learning to build up context during sequence traver-
sal. At each time step, a classifier only considers the current input and
its context. The reinforcement learning agent is rewarded based on the
performance of the classifier, improving the context-building strategy
over time.

Before we get into implementation details, the following sections discuss
the fundamental idea and give some examples.

8.1.1 Spatial Context — Some Introductory Thoughts

To understand the concept behind context learning, let us discuss the
common problem of linear separability in a different light on a very
basic and fundamental level.

Assuming a fictitious collection of two different kinds of objects, that
we will call x and o, and a binary classification task, we would like to
find a rule that separates every x from every o. “Separation” implies
that these objects share an abstract space in which they are embedded,
and each object’s location in this space is defined by projections of its
true form onto the axes of that space. A dimension could be the object’s
size, its colour, the time it existed, its placement in any of the three
spatial dimensions or any other arbitrary measurement that captures a
property of these objects.

What does it mean, then, to separate one group of objects from another?
With infinitely many ways of describing an object, there are infinitely
many possible rules to separate one group from another1. Still, ask-
ing to separate all x objects from o objects seems fairly straight-forward:
“Put the ones that look like a cross on one pile, and the ones that look

1 There are only a finite number of possible partitions into two groups: n objects can be
grouped into two indistinguishable groups in 2n − 1 different ways. Yet the number
of possibilities to describe these partitions is infinite, assuming the number of object
properties is infinite.
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like a circle on the other pile.” This is because they have some obvious
commonalities amongst each group, which differs between groups. But
the term “obvious” is not formally defined and therefore arbitrary. Per-
haps someone else finds it more obvious that some of the objects were
created a year ago (including some xs and some os), while others were
created yesterday. This person would group the objects in different piles.
Who did it right?

We need to introduce another objective to the problem: We would like to
find a simple rule, that separates every x from every o. And adhering to
Occam’s Razor (Blumer et al., 1987) we could define “simple” as being
a straight line (or hyper-plane for high-dimensional space). This brings
us to the issue of linear separability.

It is well-known that with limited amount of information available (finite
number of dimensions), linear separation is not always possible. See
Figure 33 (a) for example. Separating the objects denoted as x from the
objects o is not possible with a straight line. With no further information,
one would have to find a very complex (non-linear) rule (blue dotted
line) to separate the letters from each other so that x and o are separated.
A linear partition (green solid line) is plausible, but it does not provide
the groups we would expect.

This problem is due to the lack of information about these objects and
stems from the fact that everything we know about any object must nec-
essarily be an observation, an image of that object, and not its true form.
Because of that, we never have complete information about any objects,
but only interpreted, incomplete projections. It is these projections that
are not necessarily separable with an easy rule (straight line).

The situation changes if we allow for some context to be added to the
observations. We define the context to be some additional information
that was not observed, yet is still part of the consideration for classifi-
cation (we will explain further below how this is possible). In a way,
the context is similar to closures in some programming languages (like
Lisp). Closures keep the extra state of non-local variables, the context, in
which functions are being evaluated. In Figure 33 (b) (bottom graphic),
the context is plotted on the y-axis of the graph. In this case, the context
reflects the shape of the object. Looking at the observations in the right
context, the objects now look different enough to be separated easily, as
shown with the red solid line in the figure.

This seems like cheating, because we basically just provided the desired
solution and called it “context”, but it does not always have to be that
simple. We could have looked at the amount of ink per pixel, or counted
the corners of each symbol. Each of these additional pieces of informa-
tion would have helped to find a linear separation. There are also oth-
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Figure 33: Illustrating spatial context on a linear separability problem. a) Ob-
servations of x and o symbols are plotted on the x-axis (grey sym-
bols). There is no easy rule (straight line) that can separate the x
and o symbols based on the observations. Instead, a complex rule
(blue dotted line) is required to solve the binary classification task.
The green line does not partition the objects in an acceptable way.
b) Considering the observations in the right context (context plotted
on y-axis), the symbols can now be separated linearly (red line).

ers, that would not have helped. The colour for example, or the person
drawing the symbols were identical across all objects. There is no way
of knowing the correct context and finding it is often a trial-and-error
process. In fact, in what follows, we will build a context of observations
sequentially, without actually knowing what exactly this context state
describes. That is where Reinforcement Learning will come into play.
The agent will guess an arbitrary contextual state, see how well classi-
fication works within the context, and adapt the context appropriately.
In all but the most trivial examples, this contextual state is a black box
and cannot be understood explicitly. This is comparable to the parame-
ter values of many parametric machine learning algorithms, that do not
hold any explicit meaning outside of the algorithm.

Related to this notion of context is the concept of Perceptual Alias-
ing (Whitehead and Ballard, 1991), a term that describes an indistin-
guishable internal state of a RL agent that maps to multiple real-world
states. Such aliased states often lead to noisy credit assignment as
the seemingly unique state is really a conglomerate of multiple out-
side states, usually requiring a different action and yielding different
reward. Approaches to tackle Perceptual Aliasing include algorithms to
build higher-order memory context (Ring, 1993), an idea that can also
be found in the (Noisy) Utile Suffix Memory algorithm (McCallum, 1995;
Shani and Brafman, 2004), Perceptual Distinctions (Chrisman, 1992), the
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CHILD algorithm (Ring, 1997) as well as more traditional approaches
like fixed-size history windows or eligibility traces.

These algorithms focus on the Perceptual Aliasing problem within a Re-
inforcement Learning framework, by splitting aliased states or enhanc-
ing or replacing state information via historical data or preditive models.
In this chapter, we take a different approach and look at context in a
more general angle outside the RL framework, using RL only to create
appropriate context to augment the input into a supervised classification
algorithm.

8.1.2 Temporal Context

The last section was a very abstract and general introduction to the con-
cept of context. Now we want to look at a more specific example: tem-
poral context.

Where does the context appear in temporal sequence learning problems?
In Section 8.1.1, the context was mere additional information, that was
not covered in the observation. For time series data, the context acts
as the memory for what has been seen so far. The first data sample
appears in an empty context, while subsequent time steps happen in
contexts that each summarise the past experience up to the current time.
Also see the remarks about Sequence Learning in Section 4.7.

The same notion of observation within a context can be found in time
series prediction (Connor et al., 1994; Sapankevych and Sankar, 2009)
or sequence learning (Maes et al., 2007; Graves, 2008; Sun and Giles,
2001). Recurrent neural networks for example store temporal context in
their hidden recurrent units. This approach is not unlike Context Learn-
ing, however the learning algorithms differ significantly. Training RNNs
with any kind of back-propagation algorithm suffers from the vanish-
ing gradient problem, and therefore imposes limitations of the length of
sequence (here corridor length) the network can learn. Methods like Hi-
erarchical Enforced SubPopulations (H-ESP) (Gomez and Schmidhuber,
2005) do not have these limitations, but the computational complexity
is much higher, due to the many iterations required by the genetic al-
gorithm to find a good solution in the gene pool. Here, we present a
method that is much less computationally expensive yet will find gen-
eral solutions not dependent on corridor length.

Here we consider the problem domain called T-Maze (Bakker et al., 2002;
Gomez and Schmidhuber, 2005; Wierstra et al., 2007). An agent walks
through an east-facing corridor of length n, one step at a time. At some
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point t, the agent receives a “road sign” signal2 if it should go north or
south at the end of the corridor. No further information is given. At the
end of the corridor is a T-junction, leading north and south. Based on
the road sign perceived earlier, the agent has to pick the correct direc-
tion.

c c c c c c c xc c... ...n/s

road sign signal

start field T-junction

an

as

Figure 34: T-Maze problem. An agent steps through a corridor (c) from west
to east and receives a road sign signal (n or s) at some point in the
corridor. At the T-junction (x) it has to move north (an) or south (as),
depending on the road sign signal received earlier. This problem is a
well-known partially observable Markov Decision Process (POMDP)
and used as a benchmark for deep memory policies.

We define the following symbols for the states of the T-Maze task: An
empty corridor field is denoted c, a corridor field with road sign signal
is written n for north or s for south, and the corridor T-junction field is
denoted as x. Assuming that the agent moves east through the corridor
by default3, the only required non-standard actions are an and as for
moving north or south, respectively. A few typical sequences with the
correct action at the end could then look like these:

ccncccccx → an

cccccsccx → as

ncccx → an (8.1)
cccccsx → as

cccsccccccx → as

It should become clear from these examples, that the T-Maze problem
in this formulation is a (binary) sequence classification problem. Those
sequences containing an n fall in the class an and those with a s fall in
as.

2 The original T-Maze task is defined with a slightly easier task, where the agent always
receives the “road sign” signal at the start rather than at an unknown point in the
corridor.

3 Adding a separate action ae to move east does not make the task more difficult, but
distracts from the actual problem. Therefore, it is left out in this formulation, without
loss of generality.
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Recent solutions (Bakker et al., 2002; Gomez and Schmidhuber, 2005;
Wierstra et al., 2007) to the T-Maze problem are all formulated as rein-
forcement learning tasks in a POMDP setting, using recurrent policies
to tackle the memory problem. While solutions for short corridors can
usually be found easily, the problem difficulty increases with longer cor-
ridors, because the recurrent policy (in above publications implemented
as LSTM network, refer to Section 4.5.2 for details) must implicitly re-
member longer and longer sequences to find the useful bit of informa-
tion (the road sign signal) in their past experience (Bakker et al., 2002;
Wierstra and Schmidhuber, 2007).

Here, we will take a very different approach to solving the T-Maze prob-
lem, one that starts with a seemingly very simple question leading us
back to the notion of context: Why can’t we treat each of the symbols
in a consistent way? Why are there different actions required when en-
countering the same symbol? In one sequence, an x requires an, and
in another, an x requires as to satisfy the task. Just like with the x in
the x/o example above (Section 8.1.1), the observation was incomplete
and lacking context. Before, the context was of spatial nature, given as
a separate dimension. In the T-Maze task, the context of x is temporal,
summarising the past sequence leading up to x. Had the agent access
to this context, the classification would become trivial, because the T-
junctions would not look the same. They would become distinguishable,
something like xn and xs, and the two different states would always re-
quire the same actions: xn → an and xs → as, where previous time steps
would not matter anymore.

Aside from the fact that we have not yet discussed how to get to this
context, this approach makes the T-Maze a non-sequential problem, be-
cause the input + context at each decision step become independent of
previous inputs. The context acts as a wrapper to cover all temporal de-
pendencies, just like the recurrent policy did in e.g. (Bakker et al., 2002).
One of the problems, that recurrent neural networks often suffer from,
is that of the vanishing gradient (Hochreiter, 1998). The advantage of
using a context is that longer corridors won’t make the problem more
complex and as such do not suffer from vanishing gradients. The solu-
tion is in fact independent on the corridor length, which makes context
learning a very promising and attractive alternative to recurrent policies
for sequence learning tasks.

8.1.3 How to Learn the Context

From above examples, the context seems to be some magical black box
that contains enough information to make the solution trivial. Obvi-
ously, learning the context is not a supervised problem, or else we would
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have to know the correct context for each sample, which is almost as
good as knowing the correct target.

It is furthermore unclear how much and what kind of information the
context should contain to solve a problem in general. In the T-Maze task,
the question of context size at least is trivial: One bit is enough informa-
tion to solve the decision at the T-junction: go north or south.

Our proposal for getting the right context is to use Reinforcement Learn-
ing to build the context while going through a sequence and to reward
those sequences that were correctly classified (they must have had a
good context building policy). Initially, the context will be random, and
correct classification will be sparse at best, but over time, both the classi-
fier and the reinforcement learner will co-improve in parallel and return
better solutions.

Building a context as a RL problem can be done in different ways. One
approach is to have an explicit memory, a bit vector of certain length, and
actions that allow editing the values of this vector. This idea reminds of
the basic principles of a Turing Machine, and is in fact an interesting
extension to the simpler context building strategy that we will use here:
Instead of editing a vector, we define a finite number of disjunct context
states that the agent can switch between. One could imagine concatenat-
ing a representation of the context state to the observation, but another
possibility (one we chose here) is to use a different classifier for each
context state.

In the T-Maze example, the agent would walk trough the corridor and
decide with each input, what context state it wants to change to. Each
context state then uses a separate classifier to classify the current input.
Having two classifiers for x, one for the case where the context is to go
north, and one for going south, is equivalent to having a single classifier
but augmented input states (x, 0) and (x, 1), where the second value in
the tuple represents the 1-bit context. Both make the situation distin-
guishable and the action choice trivial.

While spatial and temporal context learning are not that different from
each other, we will focus on temporal context learning in the next sec-
tions. It is important to point out, however, that the basic idea can be
applied to spatial context as well. Spatial problems would use a similar
approach to Sequential Feature Selection (Chapter 7) and go through the
full sample in some pre-defined order, to incrementally build up some
context. SOFS could even be combined with context learning, where
SOFS learns the order of features to look at while building a good con-
text for the final classification. Below, we will focus on naturally se-
quential input patterns, define context learning formally and look at its
properties more closely.
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8.2 context learning framework

In the following Section 8.2.1, context learning will be formally intro-
duced for discrete states and actions. Section 8.2.2 will then point out
some similarities and key differences to Hidden Markov models (HMM).
Section 8.2.3 gives an analogy of context learning to Deterministic Finite
Automatons (DFA) and regular expressions.

8.2.1 Discrete State Context Learning

Context Learning is a very general concept to augment observations
with contextual information, disambiguating inputs and making them
easier to predict or classify. The contextual information is gained through
a RL component that chooses a new context based on the current input
and context and learns over time to create useful context that helps the
underlying supervised prediction/classification task.

Several variants of context learning are possible and we will discuss
some alternatives in Section 10.3. In this specific implementation of con-
text learning, the following assumptions are made: We assume a classifi-
cation task with a training set of n input sequences with lengths Tn from
a finite alphabet X of possible inputs and output sequences from a finite
alphabet O. Each data sample has an associated same-length vector of
importance factors in

t . The training data I is:

I =
{(

(xn
1 , xn

2 , . . . , xn
t ), (o

n
1 , on

2 , . . . , on
t ), (i

n
1 , in

2 , . . . , in
t )
)}

(8.2)

with xn
t ∈ X , on

t ∈ O, in
t ∈ R and 0 ≤ in

t ≤ 1 ∀t, n.

A set of contexts C is defined with |C| elements K1 . . . K|C|, each represent-
ing a copy of the classifier K with different parameter sets θn. Classifiers
Kn(x; θn) are functional mappings from the input alphabet space X to
the output alphabet space O:

Kn : X 7→ O, xn
t → on

t (8.3)

Note: The classifiers do not map the full sequence xn to the sequence on

but only individual elements of those sequences.

The RL problem of which context state to choose at each given point
in time can be defined as a Markov Decision Process (MDP) with the
4-tuple (S, A, P , R): S is the state space, comprised as the cross product
of context states with the input alphabet: S = C × X , therefore each
RL state consists of a tuple of classifier and input (Kt, xn

t ). The action
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space of the MDP is identical to the space of context states, A = C, thus
choosing an action an is identical to choosing a classifier Kn. Transition
probabilities P of moving from state st to st+1 with action at are defined
by the deterministic transition function st+1 = T(st, at) = (at, xt+1). The
reward function R returns the following rewards when transitioning to
another state st with action at:

rt =

{
in
t if at−1(xn

t ) = on
t

0 else
(8.4)

where at−1(xn
t ) is the classification of the current input element xn

t with
the classifier chosen at the previous time step t− 1 (note that the action
space A is the same as the space of contexts C consisting of classifiers
Kn).

Finally, we define the initial action a0 = K1 (with any arbitrary classifier,
here the first one) and start the MDP at time t = 1, to get a well-defined
reward r1 for the first iteration.

This definition allows for rules of the following structure to be learned:
“If in context c1 and input x is observed, switch to context c2”.

The classifiers and the RL agent are trained concurrently, as illustrated
in Algorithm 4. Training occurs in lines 14 and 15 online. Only the
current classifier (chosen by the last action) is trained with the current
sample. Alternatively, the training samples (associated with the right
classifier) can be stored and classifier and agent are batch-trained after a
number of episodes. The importance value at each time step affects both
classifier and agent. During training of the classifier, the current impor-
tance factor is multiplied with the error. For importance of 0, no error
signal reaches the parameters of the classifier and it remains unchanged.
The importance factor is also the reward for correct classification at each
time step. Only positive importance (usually with value 1.0) influences
the policy during training. Figure 35 shows a graphical representation
of the full system with supervised component above the dashed line and
reinforcement learning component below.

To ensure deterministic behaviour throughout one episode, we use the
discrete variation of state-dependent Exploration, introduced in Chap-
ter 6.3.6. A single context switch can affect all future context decisions
and therefore the end results. It is important to introduce no random-
ness during an episode, but instead explore between episodes. Discrete
value-based SDE as exploration technique has lead to the best results for
discrete context learning.
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Figure 35: Overview of the discrete state implementation of Context Learning.
The part above the dashed line is the supervised classifier. Each
time step is classified individually. This, of course, would not work
without any context. Below the dashed line is the reinforcement
learning component. The agent receives the current input and the
current context and chooses a new context (i.e. classifier). That
classifier is then used to classify the sample.

8.2.2 Differentiation to Hidden Markov Models

Hidden Markov Models (HMM) are stochastic models for time series
recognition. Despite their seemingly very similar function and appli-
cation, there are some key differences to the idea of context learning,
which we will point out here. HMMs are Markov chains where the inter-
nal states of the model are considered hidden, while the outputs, which
depend on the states, are visible. The model has a state transition proba-
bility distribution that defines how transitions from one hidden state to
another occur. Further, each state has output probabilities assigned for
each of the output tokens. The outputs are assumed to be drawn from
the current state’s output probability distribution, before the new state is
drawn from the state probability distribution. HMMs can be efficiently
trained by an algorithm called Baum-Welch (Baum et al., 1970) after its
creators Leonard Baum and Lloyd Welch. It calculates the maximum
likelihood of state transition and output emission probability distribu-
tions given only a set of emissions (output sequences).

HMMs are Markov chains for which the states are only partially visi-
ble, but transitions to new states only depend on the previous state. In
contrast, Context Learning assumes an underlying Markov Decision Pro-
cess, where the transition to a new state also depends on the input and
where outputs are not drawn from a probability distribution but calcu-
lated with (usually more complex) classifiers, again based on the input.
Figure 36 illustrates this relationship graphically.



8.2 context learning framework 115

Algorithm 4 Context Learning for Discrete Inputs

Require: input/output/importance sequence triples I, agent A, classi-
fiers Kc ∈ C

1: repeat
2: choose (x, o, i) ∈ I randomly
3: a0 ← K1
4: s1 ← (K1, x1)
5: for t = 1 to Tn do
6: K = at−1
7: if K(xt) = ot then
8: rt ← it
9: else

10: rt ← 0
11: end if
12: at ← A(st)
13: st+1 ← (at, xt+1)
14: train K with (xt, ot, it)
15: train A with (st, at, rt, st+1)
16: end for
17: until convergence

8.2.3 Relation to Finite State Machines and Regular Expressions

It turns out that the context learning framework as described above is
a generalisation of a well-known construct from the field of theoretical
computer science: A deterministic finite automaton (DFA), also known
as a finite state machine. DFAs (and likewise their non-deterministic
equivalents, NFAs) are proven to accept a certain class of formal lan-
guages, namely regular languages. DFAs are therefore closely related to
regular expressions, that are shown to have the expressive power of pro-
ducing (or accepting) regular languages. Because context learning is a
super-class of DFAs, we now have an indication (a lower bound) of the
problems that context learning ought to be able to solve.

Below, we will prove that a DFA is a special case of discrete context
learning where the classifier is strictly binary and the sequence ends
with a terminal symbol (like in the T-Maze task, where all sequences
ended with a x). We also require a sequence classification task, where
the importance sequence is 0 for all but the last element.

The definition of a DFA goes as follows: Q is a finite set of states and Σ
is a finite alphabet of symbols. δ is a transition function δ : Q× Σ 7→ Q.
q0 ∈ Q is the initial state and F ⊆ Q is a subset of Q of accepting (or final)
states. A DFA is then fully defined as the 5-tuple (Q, Σ, δ, q0, F).
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Figure 36: Hidden Markov Model (left) vs. Context Learning (right), an arrow
marks a dependency from the source. HMMs are Markov chains
where the state transition probability depends only on the previous
state. Context Learning contains a Markov Decision Process at its
core, and state transitions depend on both the previous state and the
input. Another difference is a simple probability distribution over
emissions for each state in the case of HMMs, and a potentially more
complex classifier with its output depending again on the input.

After training the agent (with exploration) to convergence, the agent
contains a final policy that maps states to actions. In value-based RL,
this is achieved with a value table, where each (s, a)-tuple has a certain
value assigned to it. After training has completed, the agent is switched
to a fully greedy policy, disabling any exploration and only exploiting
the learned behaviour. Therefore, the policy π becomes a deterministic
function π(s) = maxaQ(s, a) returning the action with the highest value
for each state. Applying the following substitutions

Q←− C
Σ←− X
δ←− π

q0 ←− K1

F ←−
{

K
∣∣ K(xTn) = 1

}

we can create a one to one mapping from our previous definition of con-
text learning (with slight limitations, i.e. binary classifier and terminal
symbol) to a finite state machine. Policy π (without exploration) maps
deterministically from states to actions. The context learning state space
was defined as C × X which becomes Q× Σ, and the action space is C
which is equivalent to Q. Therefore, the new δ maps from Q× Σ to Q,
just as required. After training all classifiers, we can query them with the
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terminal symbol. All classifiers that return 1 (chosen arbitrarily, without
loss of generality) are “accepting” states and members of F.

The reason for the limitations of a terminal symbol and a binary classi-
fier are there because the context learning framework as described above
is more powerful and represents a generalisation of DFAs. Allowing
multi-class classification would introduce final states other than “accept-
ing” and “rejecting” the input word. And having sequences end on non-
terminal symbols would allow states to change their mind of being ac-
cepting on the fly, based on the last seen symbol. If these variants indeed
offer richer language representations than regular languages remains to
be answered through further investigation. Knowing that DFAs are a
special case of context learning at least reveals the class of problems that
can be solved with context learning, namely regular languages.

8.3 experiments

8.3.1 T-Maze

The first experiment is the T-Maze task, which was introduced as an
example in Section 8.1.2. We will describe the experiment setup again
briefly, together with the algorithms and parameters used, and then list
the results.

Experiment Setup

The T-Maze task describes a sequence learning problem that can be in-
terpreted as an agent walking east along a corridor of length l (see Fig-
ure 34). At some point along the way it receives a road sign signal
indicating either north or south. At the end of the corridor is a T-junction
where the agent has to make a choice of either going north or south. If
it chooses the same direction received as the road sign signal, it receives
a positive reward of +1, else the reward is 0.

Formally, the problem describes a dataset of n sequences of (possibly)
different lengths Ti with 2 ≤ i ≤ n over an alphabet {c, n, s, x}. Each
sequence must end with x and contain exactly one instance of either n
or s as a non-terminal symbol. The remaining positions are filled with
c. Each sequence is associated with a label from C = {n, s}. Since we
already know that the class of problems solvable by context learning are
identical with the problems of formal regular languages, we can give a
regular expression in POSIX notation describing the class of sequences
as “c*[ns]c*x”, with * being the Kleene star operator, indicating 0 or
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more repetitions of the previous symbol, and the square brackets [·]
represent a set, wherefrom one of the containing symbols is chosen. Ex-
ample sequences of this class are shown in Eqn. (8.1) on page 109.

The idea behind this problem scenario is that the agent requires a mem-
ory and must remember the signal until the end of the corridor. Tra-
ditional methods of solving such deep memory tasks involve recurrent
neural networks that are known to store information over a long period
until it is needed. The problem for such methods becomes more diffi-
cult, the longer the sequence is. In contrast, context learning removes the
sequential dependencies and generalises over the corridor length.

Context learning is comprised of two components: a set of supervised
classifiers (one for each context state) and the reinforcement learning
agent, choosing the context state based on last state and current input
(refer to Figure 35 for a visual representation). For the classifiers, we
used logistic regression, the reinforcement learning algorithm is a table-
based Q(λ) algorithm, (e.g. Sutton and Barto, 1998), with discrete state-
dependent exploration (Section 6.3.6). The RL agent uses the following
parameters throughout all experiments: α = 0.5, λ = 0.5, γ = 0.9 (see
Sutton and Barto (1998) for details on these parameters) and initial explo-
ration ε0 = 0.5, decaying to εT = 10−4 over the length of each episode.
For all experiments, the size n of the training dataset was 100, and a
separate test dataset with which the algorithm was evaluated contained
another 100 independent corridor samples.

The first set of experiments tests Context Learning on the T-Maze task
with varying corridor lengths of 50, 200, and 1000 steps before the T-
junction. The context size for these experiments is fixed to two possible
states (1 bit) in this experiment. Figure 37 shows the results.

The second experiment then investigates the effect of varying context
size with a fixed corridor length of 20 steps. Context sizes of 2, 3, 5, 10,
15, 20, and 50 states were compared. Figures 38 and 39 illustrate the
results.

All experiments were repeated 30 times and the mean values over all
runs are presented.

Results

Context Learning does not have to back-propagate the reinforcement sig-
nal through time (i.e., back through the corridor) as recurrent networks
do (Wierstra et al., 2007), therefore we expect to see similar convergence
times for all three sets independent of corridor length. Indeed, Figure 37

demonstrates this nicely. All three curves (representing corridor lengths
of 50, 200 and 1000) exhibit the same convergence rates. Convergence
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is achieved between 200 and 250 iterations through the training dataset,
which contains 100 random corridor instances. Thus, the algorithm re-
quires 20,000–25,000 attempts of the T-Maze to learn the task. Compared
to Wierstra et al. (2007); Gomez and Schmidhuber (2005); Bakker et al.
(2002), that each need millions of iterations to learn a policy for corri-
dor lengths of up to 100 steps, it shows that Context Learning vastly
outperforms these methods on the T-Maze benchmark. Not only does
Context Learning requires two magnitudes less evaluations to learn the
task, it does so independent of the corridor length. With the excep-
tion of Gomez and Schmidhuber (2005), which similarly learns a policy
independent of time, none of the methods was reported to be trained
successfully for a corridor length of more than 100.
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Figure 37: T-Maze results for varying corridor lengths. The three curves repre-
sent the mean return over 30 experiments for corridors of lengths 50,
200, and 1000. All three plots converge equally fast, showing that
Context Learning solves the task independent of corridor length and
does not have to back-propagate the reward signal back through
time, as for example recurrent neural networks do (Wierstra et al.,
2007).

As mentioned before, the T-Maze task can be solved with the minimum
amount of context: One bit (two context states) is enough to store the
necessary information at the road sign, retrieved at the T-junction to
make the decision where to go. Still, the question remains how large
to choose the context size for any given problem, and if bigger context
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sizes have adverse effects on convergence. The next set of experiments
investigated this issue. For a corridor length of 20, the context size was
varied. Experiments with 2, 3, 5, 10, 15, 20, and 50 context states were
conducted, 30 independent repetitions for each context size. The mean
values over these 30 runs are reported in Figures 38 and the variances in
39.

On first sight, it seems that convergence is not affected by different con-
text sizes, as all curves in Figure 38 converge nicely with the same rate.
Looking at the plots more closely, however, one can see that the runs
with less context states seem to converge smoother than the ones with
many states. In particular, the black plot (50 context states) looks a
lot more erratic. Since these plots resemble the mean over 30 indepen-
dent runs, we plotted the variance of the experiments in Figure 39, top
graph. In this plot, it becomes quite apparent, that there seems to be
a significant difference between the number of context states, all other
variables kept constant. Low numbers of states have high variance at
early stages but converge quickly and variance fluctuations reduce over
time, whereas the experiments with the highest numbers of states start
off with lower variance fluctuations but keep a steady variation even in
the late phase of the experiments. The bottom plot in Figure 39 shows
this effect even more clearly, where the cumulative variance is plotted,
each point in the graph representing the total sum of all variance val-
ues up to this point. Again, the variance of runs with low numbers of
context states increases quickly, but reaches a plateau soon, while more
context states show steady growth. In particular, the two experiments
with 20 (yellow) and 50 (black) states do not seem to reach a plateau at
all within 200 steps. What does this mean in terms of the convergence
of the experiments? It appears that the closer one gets to the minimum
number of context states required to solve the problem (here: two), the
harder it is initially to get the right solution. There is less room for
any errors, and no redundancies (i.e., multiple possible solutions) there-
fore the variance is high initially. Once the problem is solved, variance
drops to almost zero and all repetitions converge equally. Increasing the
number of context states means to add more flexibility to the policy con-
troller. The problem can now be solved in many different ways, similar
to an over-determined system of linear equations. There are more de-
grees of freedom to solve the problem, and finding an initial solution is
easy, hence the variation in reward is lower initially. However, many of
these initial solutions may not be perfect and could end in local minima,
from which there is no way to recover. Therefore, for large numbers
of context states, some of the trials may lead to sub-optimal solutions
and not converge perfectly, and the variance over time remains high.
This points to a known problem of many machine learning techniques:
Meta-parameter optimisation. Just like neural networks have a tunable
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Figure 38: T-Maze convergence plots for varying numbers of context states.
The mean over 30 repeated trials is plotted. All experiments con-
verge at the same rate. Runs with large numbers of states exhibit
erratic convergence curves towards the end. This phenomenon be-
comes more apparent when comparing the variances for these ex-
periments (Figure 39).

parameter in the number of hidden nodes (amongst many other tunable
parameters), Context Learning seems to express a meta-parameter in the
number of context states. The minimum number of states can be gath-
ered for simple problems like the T-Maze task, but for complex learning
problems it is not clear what the number of context states should ideally
be set to. The only proven boundary is that all regular languages (being
a subclass of problems solvable with context learning) require only a
finite number of states (Straubing, 1994).

8.3.2 Digits

In this experiment we classify 10 sequences of length 15 of binary values.
The sequences are very well known and most people can instantly recog-
nise and correctly classify each of them, when presented in a 3× 5 grid,
despite the fact that most of the sequences are very similar to each other
and sometimes only differ by a single element. Figure 40 on page 123

shows the sequences both in grid and linear form. The linear form is a
row-first linearization of the grid version. This experiment differs from
the T-Maze problem in that it is not a binary but 10-class classification
task.

Experiment Setup

The ten binary sequences (illustrated in Figure 40 bottom) are each se-
quentially presented to the context learning agent repeatedly. The val-
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Figure 39: T-Maze convergence plots for varying numbers of context states.
The variance (top graph) and cumulative variance (bottom graph)
over 30 repeated trials is plotted. Trials with lower numbers of
states start off with higher variance but converge faster and reach a
plateau (close to zero change in variance), while more states lead to
lower variance initially but do not reach the plateau as quickly.

idation set was identical to the training set in this case, consisting of
all 10 episodes. We did not test for generalisation in this experiment
because of the limited number of sequences. Instead, we look at con-
vergence rate with different numbers of context states. As with the
previous experiment, we use simple logistic regression classifiers for
each context state. As this is again a sequence classification task (al-
beit with 10 instead of 2 classes), the importance vector for each se-
quence is 0.0 everywhere except for the last element, which is 1.0. Un-
less stated otherwise, the parameters for the Q-Learning agent are as
follows: α = 0.1, λ = 0.9, γ = 0.9. For exploration, discrete state-
dependent exploration was used with ε0 = 0.5 decaying exponentially
to εT = 10−4.
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Figure 40: Digit sequences in 3 × 5 grid form above, and linear (row-major)
below. The grid representation of digits is well-known for their use
in alarm clocks and stop-watches with LCD displays. Despite their
universal recognition, the sequences in linear form are very similar
to each other, especially the 0, 2, 3, 5, 6, 8, 9 group of digits and the
1, 4, 7 group of digits.
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Figure 41: Convergence graphs for different context sizes in the Digit experi-
ment (classifier learning rate was fixed at α = 0.1). The larger the
number of context states, the quicker the agent reaches convergence
and with a higher end result. An agent with less than 20 context
states was only able to marginally improve in performance. Since
all sequences end with the same value (black pixel), it is impossible
to solve the task with less than 10 context states. An interesting arte-
fact of the experiment is the initial performance bump at around 50

iterations. The bump is higher the more context states are available.
It can be explained as a premature convergence of the classifiers
without corresponding improvement in the agent.

Results

The Digits experiment is more complex than the T-Maze task for several
reasons: it is a multi-class problem with 10 different classes, rather than
a binary decision problem, and the sequences are very similar to each
other and do not have an obvious signal, which the T-Maze had. While
the sequences of the T-Maze task were much longer in some cases (up to
a 1000 steps), this actually does not impact the complexity of the prob-
lem for context learning, because context learning removes the temporal
dependencies and solves the problem orthogonal to the sequence learning
approaches, delivering a fixed point solution that works for any length
of sequences.

Each of the digit sequences ends in a black pixel, therefore the classifier
can only use information drawn from the context to decide on the class.
This means that a minimum of 10 context states are required to solve the
problem and we must therefore have 10 unique classifiers to perfectly
solve the problem. While 10 states is the minimum, it is not clear if 10

are enough to solve the problem and we may even need more than 10

states.
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Figure 42: The same experiment as displayed in Figure 41 but with a lower
learning rate of α = 0.001 for all classifiers. The early bump in
the convergence plots disappears, but overall performance suffers
slightly.

This reasoning is confirmed in the plot in Figure 41, showing that 5

(black plot) or 10 (yellow plot) context states are not enough to get close
to an optimal solution. Even though the 10-state graph is not fully satu-
rated yet after 500 iterations, it is unlikely that the results would exceed a
mean return of 0.45, which is a 45% rate on average of correctly recognis-
ing the digit sequence. Going up to 20 context states, however, there is a
big increase in performance, yielding close to 80% correctness. The more
context states we add, the better the results get, yet the difference in per-
formance gain quickly decreases, to a point where doubling the number
of states from 50 to 100 does only increase the final result by about 2%
(compare blue and green curve at 500 iterations in Figure 41).

An unusual and interesting artefact of this experiment manifests as an
initial bump in the convergence plots at around 50 iterations, being more
prominent the more context states were used. A possible explanation
for this bump is that there are two processes co-converging simultane-
ously: the reinforcement learning agent and the classifier. Initially, the
transitions between states is random, and so is the final state for each
sequence. However, because the exploration strategy is state-dependent
and therefore deterministic with respect to a fixed sequence of states,
the same sequences end up in the same final states. With more context
states available, the chance of scattering all ten digits into disjunct final
states is high, and the classifiers at these final states can adapt quickly to
a sub-optimal solution of classifying the digits correctly. Once the agent
becomes better in learning the state transitions, the final states change
and other classifiers have to learn the correct target. This is where per-
formance drops again, at around 100 iterations.
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In short, because of the deterministic nature of the sequences, the clas-
sifiers adopt too quickly and are ahead of the agent. To verify this as-
sumption, we ran the same experiment again but with a much smaller
learning rate for the classifiers. Reducing the learning rate from α = 0.1
for the original experiment series in Figure 41 to α = 0.001, the sub-
optimal bump disappears (Figure 42). While the plots look more con-
ventional with such a low learning rate, the reduction also has an effect
on the final result, reducing the overall recognition rate of all runs by
a few percentage points. Since the higher learning rate had no adverse
effects other than an unusual convergence, it is therefore recommended
to keep the learning rate high for optimal results.

Finally, the Digits task, while more complex than T-Maze, still is at a
combinatorical level that allows introspection into the internals to un-
derstand what the agent actually learns. After the learning process has
completed, we can switch off exploration and feed each sequence of
digits into the deterministic agent and observe its behaviour. In particu-
lar, we are interested in the action choices, i.e., what state transition the
agent proposes for different inputs. Mapping these action traces in a dif-
ferent colour for each of the digits, we get an interesting transition graph
in Figure 45 that shows the agent’s reasoning about different sequences.
Not surprisingly, with a limited number of available context states, the
agent was forced to re-use some of the nodes and paths through the
graph efficiently. Figure 45 shows an experiment with 50 available con-
text states, of which the agent only used 36. All sequences but the one
for digit 1 start at the black square, and digit one (having a white pixel
at its top left corner) starts at the white square. Gray squares stand for
intermediate states, and the doubly lined circles represent final states, la-
belled with their matching digit class (learned by the classifier). Similar
sub-sequences are re-used by several of the digits, for example sequence
2 (light green) and 7 (brown) share their initial 6 nodes, but the remain-
ing sequence of 7 looks more like the sequence of 1 (white, white, black,
white, white, black). As can be seen in the graph, the brown path then
joins digit 1 (red), exiting the final node for 4, until it reaches its end
in final node 7, whereas the red path continues for another white, white,
black sequence until it reaches its own final node. It is interesting to see
how resourceful nodes are re-used almost as if by design.

8.3.3 6-Bit Parity

This experiment compares Context Learning with Probabilistic Incre-
mental Program Evolution (PIPE) (Salustowicz and Schmidhuber, 1997;
Salustowicz, 2003). The publication evaluates PIPE in the 6-bit parity
experiment, where the algorithm has to discover if a sample of length 6
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bits has an odd or even number of 1 values. To be able to directly com-
pare the PIPE against Context Learning, the experiment is repeated as
described in the original publication. It should be noted, however, that
simple experiments like 6-bit (or even n-bit) parity have a small search
space and can actually be solved by simply guessing the parameters (e.g.
the weights of an RNN) repeatedly until an adequate solution is found
(Hochreiter and Schmidhuber, 1996; Schmidhuber et al., 2001).

Experiment Setup

Following the experiment setup described in Salustowicz and Schmid-
huber (1997), the training and validation dataset was identical, consist-
ing of 64 samples, one for each binary 6-bit representation. The target
for each sample is 1 if the number of 1s in the sample bit string was
odd, otherwise the target is 0. Some example samples and their target
values:

010110→ 1
000110→ 0
010000→ 1 (8.5)
000000→ 0
111111→ 0

The fitness of a program is calculated by evaluating the program on all
64 samples. The worst (best) fitness is 0 (64) for getting all targets wrong
(correct). Likewise, we will evaluate the agent performance by counting
the correct answers when presenting all 64 samples.

The remaining setup for Context Learning is straight forward and simi-
lar to the T-Maze task. The agent walks through the bit string, building
up context as it sees the individual bit values. Each bit string ends with
a terminal symbol, upon which the agent has to make a decision, which
is a simple classification task of the context value into the classes 0 and
1. To classify correctly, the agent has to rely solely right context, as all
terminal symbols are identical and no information based on the terminal
can be gained. The problem can be solved with 2 context states, which
is the number being used in this experiment. Larger numbers did not
worsen the results as determined in preliminary experiments with up to
10 context states.

The experiment was repeated 100 times, each run was executed for 300

episodes. These episodes can be seen as the equivalent to PIPE’s pro-
gram evaluations (PE), where the maximum was set to 500,000. The
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Table 5: Results on the 6-bit Parity Experiment

Algorithm Perfect Solution Found # Evaluations
min median max

Context Learning 93% 105 163 289
PIPE 70% 9,432 52,476 482,545

GP 60% 64,000 120,000 396,000

computational complexity of the two algorithms are not being compared
in this experiment, instead we assume that a PIPE program evaluation
is equally expensive to a Context Learning episode as both require to
inspect all 64 samples once. One PIPE learning episode requires sev-
eral computational steps after a program evaluation, namely “Learning
from Population”, “Mutation of the Prototype Tree” and “Prototype Tree
Pruning”. Context Learning has to evaluate all returns and update the
Q-Table as well as the classifier parameters. Without going into very
low-level implementation details, the assumption that one iteration for
each method is equally computationally expensive should be fairly rea-
sonable and not disadvantage either method.

All other Context Learning parameters were identical to the T-Maze task
(see Section 8.3.1).

Results

Table 5 sums up the quantitative results for Genetic Programming (GP),
PIPE, and Context Learning. The results for GP and PIPE are taken from
Salustowicz and Schmidhuber (1997). A more detailed version of the
algorithm and experiment description can be found in Rafal Salustowicz’
Doctoral Thesis (Salustowicz, 2003).

Context Learning finds the perfect solution (classifying all 64 samples
correctly) within the maximum allowed 300 iterations in 93 out of 100

runs. This number is 23% higher than PIPE’s result, which was further
allowed to execute many more program evaluations (500,000 instead of
300). This shows two things: Context Learning finds a perfect solution
more frequently, and does so with far fewer computations and less data
consumption (as both a Context Learning episode and a PIPE program
evaluation have to look at each sample of the dataset once). The graph
in Figure 43 shows the average convergence of the 100 repetitions of the
Context Learning algorithm visually.

The n-bit parity problem is a great example for a problem that benefits
from learning explicit context. It has discrete state values (only 0 and
1) and a perfect solution only requires two context states. It is not sur-
prising, that Context Learning is ideally suited for this kind of problem
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Figure 43: Convergence graph of Context Learning applied to the 6-bit parity
problem. The graph shows average returns (maximum is 64) over
100 repetitions. Each repetition runs for 300 iterations (x-axis). 93

out of the 100 repetitions converge to a perfect solution with score
64, the remaining 7 are included in this graph and explain the over-
all result of just above 60.

and outperforms any kind of genetic programming approach, including
PIPE, by far.

PIPE additionally uses an Elitist approach, protecting the fittest solution
in the population from being destroyed by random exploration (permu-
tation). Context Learning does not have this mechanism, and during the
experiment it was often the case that a perfect solution was found early
on but destroyed again due to exploration. Across all 100 repetitions,
the average timestep at which a perfect solution was evaluated for the
first time is after only 27.39 steps. It is a property of the algorithm that
exploration is still fairly high early on (it is reduced exponentially over
time) and that a good solution will temporarily be lost again. There-
fore, having an elitist mechanism gives PIPE an unfair advantage in this
comparison. Despite that, Context Learning still outperforms PIPE by
several orders of magnitude, finding a perfect solution more than 20%
more frequently, and using a fraction of the evaluations (0.31% in the
median) that PIPE needs.

It should be pointed out though that Context Learning is currently lim-
ited to problems with discrete states that are classification tasks, whereas
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PIPE can be applied to a more broad range of problems including regres-
sion.

8.4 discussion

This chapter introduced the concept of Context Learning as a novel way
to classify sequences. At each time step through the sequence, a Rein-
forcement Learning agent guesses a context based on previous context
and current input. A classifier then processes the context-enhanced in-
put and feeds the success/failure back to the reinforcement agent as
reward signal.

We’ve demonstrated its capabilities on three different tasks, the T-Maze
benchmark, a digital digit recognition problem and 6-bit parity. The re-
sults of T-Maze showed that context learning — unlike other popular so-
lutions like Recurrent Neural Networks — solves the problem indepen-
dent of time by creating a fix-point solution that works for any corridor
length. Algorithms using recurrent gradient-based policies are limited
by the number of steps they can remember, due to the vanishing gradi-
ent problem. Context Learning does not suffer from the same limitation.
It also required a vastly reduced number of iterations to learn the prob-
lem, two orders of magnitudes less, than the reference algorithms.

The second task was a binary sequence multi-class task, classifying dig-
ital clock digit sequences (3× 5 matrix) into their corresponding digits
0–9. This problem let us explore the algorithm’s behaviour on a more
complex task, in particular the effect of different numbers of context
states, and the close relationship between Context Learning and Finite
State Machines.

Finally, the results on the 6-bit parity benchmark show the superiority
of Context Learning over the related algorithm PIPE, but is currently
limited to discrete problems, whereas PIPE can handle regression task
as well.

For the remainder of this section, we discuss some aspects of Context
Learning, implementation choices, their reasoning and possible alterna-
tives.

8.4.1 Context Representation

In the introduction (Section 8.1.1) context was described as unobserved
information that is used for classifying an object. What that means is
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that the context does not tell us more about the object itself. Rather,
it helps distinguish two objects, that appear the same (due to missing
information) but are actually different. Going back to the T-Maze task,
the agent only sees one of four symbols at each time step: c, n, s, x. In
particular, every sequence ends with an x, yet the decision needs to be
different depending on the history. The context needs to enhance the
input of x and make it distinguishable for the two different cases. This
can be achieved in different ways.

For this particular implementation of Context Learning, we used a sim-
ple state representation of context: the context is always in one of n
disjunct states. The context by itself is meaningless (it is equivalent to a
single integer number). But it helps distinguish inputs. For example, in
context state 1, x can be perceived as x1, and in context state 2, x is per-
ceived as x2. The numbers could be reversed, yet the outcome would be
the same: The two x are now distinct from each other and the classifier
can learn to act differently when confronted with either of them.

We’ve decided to use separate classifiers for each context state, that learn
independently from the others. This gives the greatest flexibility for each
of the cases, but it also means that the classifiers are not able to share
any joint knowledge. Context could be represented in a different way,
for example by concatenating input and context value, and feeding the
combined input to a single classifier. This would have the added advan-
tage that the classifier can contain “common knowledge”, that is valid
for all sequences, in addition to context-dependent knowledge.

An implementation of this idea shows that the context representation
doe not matter much. For the results below (Figure 44), a single clas-
sifier (green line) received the input together with a one-of-n coded bit
vector representing the current context state. It converges after ca. 300

episodes, similar to the original context representation with multiple
classifiers (blue line). The early convergence bump is less strongly ex-
pressed, probably due to the fact that all solutions share a single classi-
fier and early solutions are not as easy to learn as before, where each
classifier was trained separately.

8.4.2 Sub-Sequence Classification

One of the characteristics of context learning is that each trace through
context state space is unique (except for collisions; we will discuss this
below) to the underlying sequence. Each prefix of a sequence influences
the next context state, and subsequently the final context state. In the
previous experiments, we used this property to classify full sequences.
Even the slightest difference within a sequence would result in a differ-
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Figure 44: Two different implementations of context. The blue curve shows
results for multiple classifiers, one per context state. Each classifier
receives the same input, but can be trained with different targets
depending on the context. The green line shows the implementation
with a single classifier, but context-enhanced input. The context is
encoded as a one-of-n vector (1 bit active) and concatenated to the
input before passing it on to the classifier. Both implementations
converge with similar overall rate.

ent final context state. This trait is useful for some applications, but the
cases where we have perfectly measured, noise-free sequences from be-
ginning to end are rare. Furthermore, it is often the case that not the
full sequence, but rather short sub-sequences are indicative of a class.
Many sequential problems are of this kind: letters form words in a sen-
tence, words form sentences in a text, notes form melodies in music,
nucleotides form genes in our DNA genome. In all these cases, rather
short (compared to the full sequence) sub-sequences are the building
blocks of the whole sequence. Due to the combinatorial variety, two se-
quences are almost never exactly identical to one another. Classification
of the full sequence is therefore not feasible.

One approach to tackle this problem (one that works reasonably well for
text) is the bag of words approach. The English language consists of es-
timated over 600,000 words according to the Oxford English dictionary
(Simpson and Weiner, 1989). One can build a sparse vector of all the
words, where each element represents the number of occurrences of the
particular word in a text. Usually, stop words (like “the”, “a”, “with”,
etc.) are removed first and the remaining words are stemmed, which
means their endings are removed and only the word stem is used. Com-
mon stemmers are available and implemented in many programming
languages, for example the Porter stemmer (Van Rijsbergen et al., 1980).
The remaining very sparse word vector can then be used for classifi-
cation of texts, and simple classifiers like Naive Bayes work reasonably
well. This approach, however, removes any positional information about
the words. They are taken out of their sequential order and are replaced
by simple counts of their frequency in the text.
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While natural languages have enough words to make this strategy work,
this would not be possible for music (“bag of notes”) or DNA (“bag
of nucleotides”), because the alphabet is much smaller. Arguably, the
order of words in a sentence, while useful, does not seem to matter too
much if a text is to be classified by its topic. But for other language
tasks, like translation, bag-of-words does not help. One key difficulty
in automated text translation is the disambiguation of words. Compare
these two sentences.

I’m looking forward to a warm spring.

My bed could use a new spring.

We understand right away, that one of the springs refers to a season, and
the other refers to a metal spiral. Machine text translation algorithms
often try to solve this problem with n-grams, considering translations of
tuples of n words instead of single words. But what about sentences that
have the key operative words far apart from each other? An algorithm
that would build a unique context while walking through the sentence
might help to disambiguate the meaning of the word spring.

A “bag-of-notes” approach would not work for music recognition either.
The modern diatonic scale consists of only 7 distinct notes. With such
a small alphabet, the order is much more relevant than it was for text.
Ordered sequences of notes are the essence of music and without the
order it would be very hard if at all possible to distinguish characteristic
songs. The same applies for the 4 nucleotides in DNA.

As described above, Context Learning assigns a specific context to each
sequence. This is also true for any prefix of a sequence. At each point
in time t within a sequence, we can view the current context state ct as
a hash of the sub-sequence from start to t (Attenberg et al., 2009). One
single walk through a sequence of length T would give us hashes of all
prefixes {(x1, . . . , xt)}T

t=1. To get a hash of every sub-sequence in a se-
quence of length n, we would have to walk the sequence n times, each
time starting at a different element. This would make for a quadratic al-
gorithm complexity. Limiting the hashes to sub-sequences of maximum
length k, the algorithm requires k · n steps, making it linear in big-O
notation. Similar to bag-of-words, this “bag-of-subsequences” approach
would create a frequency count of sub-sequences in the full sequence
and would allow to classify noisy sequence patterns.
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Figure 45: Learned decision graph of a fully trained context learning agent.
Entry points are the black (all digits except 1) and white square
(digit 1). The grey squares represent intermediate states, double
circles are final states, labelled with the digit class. The agent had
50 context states available, of which it used 36. All final states are
disjunct, making it very easy for the classifier to decide on the class.
Sub-paths in the graph are efficiently re-used in some cases, for
example for digit 3 (orange) the path sequence of 0, “grey square”,
2, 3 is traversed several times.
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9 D I S C U S S I O N

In Chapter 6, we introduced a novel form of exploration for Reinforce-
ment Learning (RL) as an alternative to the commonly used random
exploration. While its main focus was the application to Policy Gradient
Reinforcement Learning, an alternative version for Value-Based RL was
presented as well.

State-Dependent Exploration (SDE) creates policy variations rather than
adding additive randomness to each individual action. This approach
inserts considerably less variance into each episode leading to faster
convergence. SDE is also much more robust to environmental noise
and exhibits advantages especially during longer episodes. In prob-
lems involving many tunable parameters it not only converges consid-
erably faster than conventional exploration, but can also overcome local
minima where random exploration can get stuck. In a robotics sim-
ulation task, SDE could clearly outperform state-of-the-art exploration
techniques and delivered a stable, near-optimal result in almost every
trial. Furthermore, SDE is simple and elegant, and easy to integrate into
existing policy gradient implementations. The toy experiments serve to
illustrate basic properties of SDE, while the physics-based ball catching
simulation gives a first hint of SDE’s performance in real-world applica-
tions.

While State-Dependent Exploration is not directly related to the follow-
ing chapters, it turns out to be a helpful, if not necessary pre-requisite
for subsequent algorithms which require an efficient deterministic ex-
ploration strategy.

The ongoing inspiration for Chapters 7 and 8 was drawn from the curios-
ity and fascination about the mechanics of human information process-
ing and understanding. This research does in no way attempt to explain
any aspects of the human mind, it is purely bio-inspired. Chapter 7 and
8 each contain one building block of a process, that on a high abstraction
level may resemble that of human perception. Below we will map out
how these ideas relate to the contents of the two Chapters.

The human mind is capable of making sense of its inherently continuous,
multi-dimensional and sequential environment. And while our sensory
organs can process large amounts of raw information in parallel, there
seems to be an information bottleneck in our conscious processing. This
bottleneck becomes evident in many ways, be it through the subjective
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feeling of current awareness that seems to separate past from future
events, or even the simple fact that we constantly trick our brains into
perceiving a continuous stream of images (a movie) by presenting pic-
tures with a frequency of 25 frames per second or higher.

To overcome the spatial information overload in the visual system, for
instance, evolution developed an attentive process that focuses on small
portions of our visual field, retrieving bits of information sequentially,
despite the illusion of processing visual information as a whole. Accord-
ing to Kandel et al. (2000), the foveal region in the human eye, respon-
sible for sharp vision and colour sensation, covers less than 1% of the
retinal surface yet contains approximately 50% of optical nerves. It is
only that small area that has a high enough resolution to recognise let-
ters of text. Our eyes constantly execute saccades of rapid eye movement,
processing word by word, or image by image, in sequence.

One of the research questions proposed in the Introduction in Chapter 1

was:

How can Machine Learning methods overcome the data processing
bottleneck, focusing on relevant data and ignoring noise and useless
information? How can we apply the concepts of human attention
and selective cognition to learning algorithms?

Chapter 7 centres around the attempts of integrating such a selective
attention mechanism into general supervised learning tasks like classi-
fication to overcome potential bottlenecks in a data processing pipeline
and to act as a filter for incoming information. We found that this can be
achieved in the context of the Reinforcement Learning framework where
an agent optimises its behaviour in a defined environment over time
based on a sparse and scalar reward signal. While Reinforcement Learn-
ing is commonly used for control tasks in robotics, scheduling problems
or game play, here we applied it to supervised learning tasks. We cre-
ated a hybrid system that can simultaneously learn an attentive control
mechanism to steer focus towards informative portions of data while
learning the mapping function from input to class. Instead of relying
on commonly used static feature selection as a pre-processing step, this
approach can be seen as sequential online feature selection, that chooses
features on the fly, depending on the current state of the supervised task
it interacts with.

In more detail, we have derived classification as a (Partially Observable)
Markov Decision Process and thus made it accessible to RL methods.
The application we focused on was minimisation of data consumption,
by training an RL agent to pick features first that lead to quick clas-
sification. We presented results for different classifiers (both static and
sequential) on vision and medical tasks. Our approach reduces the num-
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ber of necessary features to access to a fraction of the full input, down
to 12% with RNN classifiers. We also demonstrated that this approach
is able to deal with weighted feature costs, a property that is useful
in plenty of real-world applications. Furthermore, a new action selec-
tion method was introduced that draws actions without replacement. It
should prove useful in other ordering tasks as well, such as scheduling
problems.

The resulting system is capable of processing spatial information sequen-
tially, filtering out irrelevant, noisy, misleading or redundant informa-
tion and focusing on the portions of data that help with the supervised
learning task.

Human processing of sequential information seems to have no measur-
able limitation to the length or amount of data, nor the time period
between connected pieces of information. Once observed, relevant data
can be recalled and used for understanding or decision making minutes,
days or sometimes years later.

To give an example, attentive readers who made it through the full
length of this thesis may remember1 the leading quote about recursion
from the Introduction in Chapter 1. At the time of reading that spe-
cific sentence for the first time, it was not obvious that a later part of this
book would refer back to it. Yet the memory of reading this quote is now
readily available and helps comprehend this self-referential thought ex-
periment.

This ability indicates that information is not processed in a fixed time
window (keyword: n-grams), but rather that current information is eval-
uated in a context that encapsulates the history as a whole, giving access
to any memory if your attention mechanism deemed it relevant enough
to be remembered (which may or may not have been the case for you
here).

The second research question addressed this specific point:

How can we learn an explicit representation of context independent
of sequence length? Are there any alternatives to sequence learning
that do not suffer from memory limitations?

Chapter 8 takes after this idea and addresses the problem of sequential
information processing in supervised problem domains. The proposed
approach builds an explicit contextual state while traversing through
the sequence. Unlike many alternative methods (like RNNs), Context
Learning does not attempt to learn this context in supervised fashion,
but rather treats it as opaque black box, aimed to distinguish current

1 Those who don’t remember reading it (or remember not reading it) may cheat at this
point and look it up on page 3.
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ambiguous inputs. Reinforcement Learning again offers a convenient
framework to describe the task as a reward-driven problem, exploring
contextual states and improving the choices through feedback from the
supervised component.

Context Learning can be regarded as the continuation of the work pre-
sented in Chapter 7, taking sequenced information as input and pro-
cessing it further, to a point where it can be dealt with by regular, non-
sequential supervised learning methods.

Finally, all three Methodology chapters (Chapters 6–8) share in common
a tight integration of Reinforcement Learning and Supervised Learning
components. In Chapter 6 we use a function approximator to represent
the state-dependent exploration function for direct RL. Chapter 7 uses
a supervised classifier as source of reward for a RL controller to learn
to select the next feature. Finally, in Chapter 8 a RL agent builds a
context state to augment the input to a supervised learning algorithm to
distinguish states without their temporal dependencies.

This brings us to the third research question, which is not confined to a
single chapter but is threaded throughout all of Part III:

Can state-of-the-art Supervised Learning algorithms be improved
by infusing them with Reinforcement Learning? And will the
resulting hybrid algorithms perform qualitatively and/or quanti-
tatively better on established benchmarks than the standard algo-
rithms alone?

To answer this final question, we have compared each of the algorithms
with existing state-of-the-art methods and showed how such hybrid al-
ternatives outperform their purebred counterparts. It was further shown
that Reinforcement Learning can successfully be applied in predom-
inantly data-driven environments outside of its usual fields of appli-
cation like robotics or game play. Removing slow real-life interaction
(i.e. the feedback loop of physical robot control) allows the state-action-
reward cycle to be executed purely on computer processors, an ideal
habitat for such data-hungry algorithms. Another interesting and re-
occurring theme was the iterative co-convergence between RL and Su-
pervised methods, conceptually similar to Expectation-Maximisation al-
gorithms (Dempster et al., 1977), here, however, alternating between su-
pervised training and policy improvement. Finally, we hope that this
work has laid the foundation for future hybrid Reinforcement/Super-
vised learning implementations and has helped to mature Reinforce-
ment Learning into a true alternative for solving problems that were
traditionally approached only with supervised learning.



10 F U T U R E W O R K

This thesis presented three major contributions: State-Dependent Explo-
ration (Chapter 6), Sequential Feature Selection (Section 7) and Context
Learning (Chapter 8). While they can be regarded as parts of a greater
system, they also stand as independent contributions, with their own
unresolved questions and open problems. As such, for this final chapter,
we will give an outlook on future work for each part separately, before
we close with remarks on the combined system in Section 10.4.

10.1 state-dependent exploration

10.1.1 Extending Exploration Functions

In its current implementation, SDE only considers addition as the op-
erator to combine the controller with the exploration function, see Eqn.
(6.7). Future research could investigate alternative operations, like multi-
plication and function chaining, leading to actions determined by:

a = f (s, Θ) ε(s, Θ̂) (10.1)
a = ε ◦ f = ε( f (s, Θ), Θ̂) (10.2)

Eqn. (10.1) describes a strategy that scales the original actions based
on some exploration parameters Θ̂ for each state s. This could lead
to interesting possibilities, like disabling exploration in certain areas of
state space, having ε(s, Θ̂) return constant 1 for certain values of s, and
strengthening and weakening actions with a simpler family of explo-
ration functions than would otherwise be required.

Eqn. (10.2) is probably the most flexible approach, chaining exploration
and controller together. The exploration function ε would take the de-
terministic output of the controller as input. Depending on the choice of
ε, any result would be possible, and it’s hard to say what properties and
benefits (if any) this approach has, but it is certainly worth investigating
in the future.
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10.1.2 Learning Exploration Variances

Another shortcoming with any non-linear exploration function is that
the variance to control the amount of exploration may no longer be
derivable from the log likelihood. The nice property of adaptive explo-
ration that holds for linear exploration functions is then not available,
and manual hand-tuning was suggested as the alternative. But linear
exploration functions are limited in how they can modify the agent’s
behaviour. One interesting line of future research would be to see if
exploration variances can be learned, either in supervised fashion (al-
though it is not immediately clear what the target would be) or with
Reinforcement Learning. For the latter, it may be possible to come up
with a modified reward function, that takes exploration variance into
account as a secondary objective.

10.2 sequential online feature selection

10.2.1 Stopping Criterion Alternatives

One of the main difficulties for Sequential Feature Selection was to find
a suitable stopping mechanism. SOFS has interesting properties by it-
self, without knowing by itself when to classify, but it felt like an incom-
plete method without this ability. Especially when comparing to existing
methods, SOFS does not fit into the usual pre-process and classify pattern.
One way out of this dilemma was to re-formulate SOFS as a MDP and
combining classifier and feature selector into one inseparable algorithm.
This lead to a method that was able to selectively choose features and
classify the input pattern, but another initial design choice, that of mod-
ularity got lost on the way. Future work on SOFS could explore the
possibilities of finding another way to learn when to stop accumulating
features and to classify the existing pattern, despite the various unsuc-
cessful attempts presented in Section 7.4. A desirable outcome would
keep the attention mechanism separate from the classifier while still in-
trinsically knowing when enough information is available to predict the
class.

10.2.2 Classifier State Representation

In its current form SOFS (without integrated classification) uses the be-
lief state of the classifier as input to the attention learning agent. This
decision, while motivated (see Section 7.3.5), was a somewhat arbitrary
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choice that happened to work well. The state is limited to what the
classifier believes to see, but does not reveal any information about the
current input. By giving the RL agent access to current input, it could po-
tentially make use of that information directly, rather than channelling
it through the classifier into the belief state. However, there is a fine line
here between revealing too little and too much information. In the case
of Integrated Classification (SOFS+IC), the RL state must contain all sen-
sory input as the agent is both in charge of attention and classification.
This increases the input space for the RL component tremendously, as
pointed out in Section 7.4.2, making the learning problem much more
complex. Here, future work should focus on finding alternative classi-
fier representations and finding a good middle ground between the two
extremes.

10.2.3 Suitability for Regression Tasks

One aspect that both Chapters 7 and 8 have in common is the focus
on Classification tasks as supervised learning component. For Context
Learning, the choice of supervised task does not make any difference, as
the only feedback to the RL agent is how well the task was solved across
all samples. Adapting Context Learning to regression tasks only re-
quires a simple drop-in replacement of the supervised learning method.
For Sequential Feature Selection, however, the procedure is more in-
volved. The reason for this is that the SOFS agent requires an internal
state of the supervised learning component as its input. In its original
form, SOFS uses the vector of beliefs over all class memberships as in-
put. Such a vector is not available in regression. One could think of
an adapted version using expected mean and variance for the predicted
value as input to the agent, but such changes need to be thoroughly
assessed theoretically and evaluated through experiments.

10.3 context learning

Chapter 8 only touched the surface of the idea of Context Learning.
There are many still unexplored dimensions that are not covered in this
thesis, and many more tests and experiments are necessary to prove its
usefulness and validity. We will discuss some of these aspects in the
sections below.
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10.3.1 Real-World Applications

The experiments presented in this chapter can only be considered a
proof of concept. They demonstrated the basic properties of Context
Learning and let us see some interesting aspects in regard to chang-
ing context size. We also showed their superiority over temporal meth-
ods like RNNs for the T-Maze benchmark. The next step now is to
apply Context Learning to more complex tasks. A few well-suited fields
were mentioned before: word sense disambiguation and text translation,
song recognition and DNA sequence classification are promising candi-
dates for context learning, as they all require contextual information or
work on small alphabets, where a sole frequency based bag-of-words ap-
proach is not an option. Sub-sequence context learning as discussed in
8.4.2 will likely play an important part in the application of this method
to real-world problems.

10.3.2 Continuous Outputs

Chapter 8 has only looked at classifiers as the supervised learning com-
ponent. But Context Learning is not limited to classification. Sequence
prediction and generation are more closely related to regression meth-
ods, where based on the history of the sequence and the current input,
one tries to predict the next element in the input sequence, or an ele-
ment of a target sequence. In both cases, building context while walking
through the sequence would remain identical, with a regression method
taking the place of the classification method. The key difference is that
the supervised target becomes a continuous value, whereas it was dis-
crete for the classification version of Context Learning.

10.3.3 Continuous Inputs

Our examples in this chapter contained discrete input sequences. Many
time series tasks have continuous real-valued and multi-dimensional in-
puts, however. This affects both the supervised and the reinforcement
learning component. Replacing the discrete RL algorithm with a contin-
uous alternative is possible, but as described in Section 5.3.2 continuous
RL algorithms do not have the same convergence guarantees that dis-
crete methods have. Direct RL methods (Section 5.4) may be a viable
alternative here. In general, they are more data-hungry, but this is less
of a problem in pure data-processing applications like these, where no
physical hardware (e.g., a robot) is involved, and where data is available
in abundance.
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10.3.4 Continuous Context

The representation of context in its current implementation is discrete.
Context is always one of a finite number of states. This assumption made
the Reinforcement Learning part easier, as we could pick a method work-
ing on discrete actions. Continuous Context does have some appealing
properties, and exploring its feasibility is certainly worthwhile. Contin-
uous context could be defined on a similarity metric, leading to similar
context for similar input states. Function approximators could make use
of this property and learn a smooth distribution of actions. Knowledge
transfer from unseen but similar past situations would speed up learn-
ing as well.

Section 5.3.2 describes methods for continuous action space and explains
the difficulty of finding the action with highest expected reward. Yet
some methods exist and would be suitable for this task. Direct Rein-
forcement learning algorithms again could be a good match here.

10.3.5 Beyond Deterministic Finite Automata

Section 8.2.1 derived Chomsky Type-3 regular languages and determin-
istic finite automata as a special case of Context Learning (as it was
defined in this chapter). An interesting extension of this work could
explore the possibility of climbing up the Chomsky hierarchy of formal
languages further, for instance by implementing equivalent algorithms
for Push-down Automata (Type-II context-free languages). An RL agent
would at each point in the sequence decide, based on current input, to
store information on a stack or to retrieve information from the stack, at
which point it would be made available to the classifier as part of the
input. This path could potentially lead to the ultimate goal of training
Turing machines to construct the necessary context, which are known
for their universal computational properties.

10.4 combining sofs with context learning

Lastly, while the here presented methods (mainly Chapters 7 and 8)
are designed to work hand in hand with each other, the combined
system of SOFS and Context Learning has not been implemented and
tested yet. In theory, the overall system should be able to process high-
dimensional information by turning it into a sequence of relevant data
points, then processing those by building meaningful context through-
out the sequence. An evaluation against methods like MDRNNs (Graves
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et al., 2007) would be of interest, since they also sequentialize and clas-
sify multi-dimensional data. MDRNNs consume the entire sample mul-
tiple times, therefore SOFS would be of great benefit in terms of data
consumption.

Another interesting aspect to investigate would be if a parallel execution
of the two algorithms can also mitigate the need for an explicit stopping
criterion (as discussed under Section 10.2.1), as the classification would
happen simultaneously to the online feature selection, classifying what-
ever is currently available in the feature pipeline.

Overall, as it is often the case in scientific studies, this research has an-
swered some questions but raised many more. We believe that the work
presented here, in particular the youngest (and least refined) topic of
Context Learning, still has significant undiscovered potential worth in-
vestigating further. It is our hope that the ideas presented in this thesis
inspire other researchers to continue this quest to bring us closer to a
much sought-after general, human-level Artificial Intelligence.
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