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We present an approach for the stability-preserving model order reduction of switched linear
systems with individual subspaces for arbitrary switching signals. First the high-order subsys-
tems of the switched system are reduced by any reduction method and stabilized if necessary.
Then the reduced subsystems are made contractive by solving low-dimensional Lyapunov equa-
tions. During time simulation the reduced state vector of the active subsystem has to be initial-
ized by the last state vector of the previously active subsystem at the switching points so that
the Lyapunov function of the reduced switched system does not grow. This method has no con-
straints for the structure of the high-order switched systems. The performance of the proposed
approach is demonstrated on the basis of a numerical example.

1 Introduction

The rising complexity of engineered systems (e.g. mechanical components or integrated cir-
cuits) often leads to large-scale and complex mathematical models. Conventionally, the com-
plexity problem can be tackled by model order reduction (MOR) techniques, whereby a high
order system is approximated by a lower order one [1]. However, widely used MOR approaches,
like Truncated Balanced Realization [2] (TBR) or Krylov subspace methods [3], are designed
for LTI system formulations.

Switched systems are a special class of hybrid and nonlinear systems and are useful because
the theory of linear control can be applied [6, 5, 7]. Modeling of nonlinearities by using lin-
ear systems and switching between them is applicable for abrupt changes of system properties.
This is the case, for example, in vibration or starting procedure simulations of a motor whose
damping or stiffness matrices change with the rotational speed as input signal. Consequently, a
switching model enables the principle applicability of conventional and well-understood MOR
techniques for order reduction of nonlinear systems. However, conventional MOR techniques
return a weak performance when directly applied to switched systems [10]. These facts mo-
tivated the extension of MOR methods for handling switched linear systems in the last few
years. Two main strategies have been investigated so far. First, a holistic reduction of the over-
all switched system expression is investigated in [11, 12]. This approach has been focused by
researchers, since the stability of the reduced switched system can be guaranteed based on a
common projection. However, this is at the expense of the obtainable accuracy. Moreover, lin-
ear matrix inequalities (LMI) have to be solved whereby the approach becomes progressively
computationally inefficient with rising order of the original system. Contrary to that approach,
a recently investigated second strategy aims to separately reduce each linear subsystem in order
to minimize the error between the dynamical behavior of the reduced and original switched sys-
tem [13]. The approach achieves accurate results for any kind of switching signal (time-based
and state-based switching) and every projection-based MOR method can be used. However, a
proof of stability still has to be brought for this performance-oriented approach.



This drawback is tackled within this article. We extend the mentioned method from [13] for
arbitrary time-based switching such that the stability is preserved without any constraint for the
structure of high-order switched linear systems. The proof of stability is based on the theory
of impulsive systems [8, 9]. The remainder of the paper is organized as follows: A brief in-
troduction to switched linear systems is given in section 2. The stability-preserving method
is presented in section 3 and demonstrated for a numerical example in section 4, followed by
conclusions in section 5.

2 Preliminaries and state of the art

In the following a short overview of switched linear dynamical systems will be given. Addi-
tionally, two main approaches for model order reduction of switched systems are summarized.

2.1 Switched linear dynamical systems

Switched systems consist of a finite amount £ € N of continuous dynamical LTI subsystems
which are activated and deactivated depending on a piecewise constant switching signal o €
{1,2, ..., k}. The state-space representation of a switched system 3 is:

. { x(t) = Ax(t) + Byu(t),
y(t) = Cax(t),
where the vectors u(t) € R”, y(¢) € R™ and x(¢) € R" denote the input vector, output

vector and state vector of the system, respectively. The matrix tuple {A,, B,, C,} defines the
currently active subsystem. In this paper we apply arbitrary, time-dependent switching signals:

6]
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Time-dependent switching between LTI subsystems is shown in Figure 1. Switching between
the subsystems occurs at arbitrary instants of time ¢, and is independent of the current system
state x. The time intervals where a subsystem remains active can be arbitrarily small, but the
possibility of an infinite number of switches in finite time is excluded [5].
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Figure 1: Time-dependent switching.

As far as the stability of switched systems is concerned, it has to be noted that arbitrary switch-
ing may lead to instability even if the subsystems are asymptotically stable [4, 5]. This is
illustrated by the following simple example.



Example: Given are two LTI subsystems X, (t) = A1x;(t), X2(t) = Agxa(t) with
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The eigenvalues of the subsystems are {—0.1 + \/§i, —0.1 — \/51} Hence, the subsystems are
asymptotically stable. Nevertheless, arbitrary switching may lead to instability, see the time
simulation depicted in the state-space shown in Figure 2.
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Figure 2: Unstable switched system.

The stability theory for switched systems is a well-examined. For arbitrary switching between
subsystems the following theorem holds.

Theorem 1 ([4, 5]). A switched system is asymptotically stable under arbitrary switching if and
only if the subsystems share a common Lyapunov function.

As far as a linear switched system (1) is concerned, asymptotic stability is guaranteed if the
linear subsystems « share a common quadratic Lyapunov function:

Vo(x)=x"Px V ac{l,2, ..k}, 4)
where P is a symmetric positive definite matrix.

Another possibility of switched systems are systems with impulse effects [8, 9]. Thereby, the
state vector x(t) is reset at switching times .. The reset of the state vector for switching from
subsystem av = j to o = ¢ is using R;; € R™*™:

x;(t5) = Ryixq(t,). Q)

Thereby, x;(t1) denotes the state vector of the subsystem o = j at the instant of time ¢, and
x;(t. ) describes the state vector of the subsystem o = j at the same instant of time. As far as
the asymptotic stability of switched systems with impulse effects is concerned, the following
theorem holds:



Theorem 2 ([8, 9]). The switched system with impulse effects is asymptotically stable if:

1. The reduced subsystems o have individual Lyapunov functions and, therefore, are asymp-
totically stable: .
Va(xa(t)) >0 and V,(x4(t)) < 0.

2. At switching times t. from subsystem o = j to o = i the value of the Lyapunov function
V,(x,(te)) does not exceed the value of the Lyapunov function V;(x,;(t.)):

Vi(x;(t5) < Vilxi(to)).

2.2 Methods for model order reduction of switched systems

Various methods for model order reduction of switched systems exist. In the following an
overview of two approaches with the respective steps is given.

2.2.1 Reduction with common subspaces

One reduction method was proposed by Shaker et al. [12]. This method uses common subspaces
VY and W for all subsystems. Hence the subsystems have the same reduced state vector. At
first a common generalized controllability and observability gramian is calculated by solving
high-dimensional linear matrix inequalities (LMIs). These can be used to balance and truncate
the subsystems with regard to generalized Hankel Singular Values. Therefore, this approach
inherits the beneficial properties of truncated balanced realization (TBR). The advantages of
this method are:

e Preservation of stability.
e Existence of H, error bound.
e Error is independent of the switching frequency.
The disadvantages of this method are:
e Inaccurate approximation of the individual subsystems as common subspaces are used.
e Existence of a solution of the LMIs is not guaranteed.
e Application is limited to moderate high-order models because high-dimensional LMIs
have to be solved.
2.2.2 Reduction with individual subspaces

In this section an approach of Diepold et al. [13] is presented. Contrary to the method of
Shaker et al. [12] each subsystem is separately reduced. Hence individual subspaces V, and
W, are calculated for each subsystem. Thereby, any projection-based method of model order
reduction such as Krylov subspace methods, POD or TBR can be used. Therefore the reduced
subsystems have different reduced state vectors x,.,(t). For that reason the state vector X, ,(t.")
of the previously active subsystem «(t_ ) has to be projected using Petrov-Galerkin or Galerkin
projection into the subspace of the currently active subsystem a(t}) at each switching time ..
The advantages of this method are:



e Accurate approximation of the subsystems.

e Reduction of very high-order switched systems with Krylov subspace methods or POD.
The disadvantages of this method are:

e Additional error at switching operations due to projection of the state vectors.

e Error depends on the switching frequency.

e No guarantee of stability for arbitrary switching signals.

According to Theorem 1, a reduced switched system is asymptotically stable if the subsystems
share the same Lyapunov function. If individual subspaces are used for the subsystems, the
reduced state vectors differ. Therefore the subsystem cannot have the same Lyapunov function
even if the Lyapunov matrix is the same. The Lyapunov function of such a reduced switched
system consists of the Lyapunov functions of the subsystems where only one subsystem with
its corresponding Lyapunov function is active:

Vi(xa(t) if a=1,
Vs, (%ra(t)) = : (6)
Vk(Xnk(t)) if a=k.

2.2.3 Problem formulation

In this paper a method of model order reduction with individual subspaces, which inherits the
advantages of the method of Diepold et al. and extends it to stability preservation, is proposed.
The general idea is based on the theory of systems with impulse effects [8, 9]. For reduced
order switched systems, the state vectors of the reduced subsystems lie in different subspaces.
The reinitialization of the state vectors at switching times is done by projection which can be
interpreted as a reset of the state vector. With analogy to Theorem 2 for switched systems with
impulse effects the following theorem is proposed for reduced switched systems:

Theorem 3. The reduced switched system with individual subspaces is asymptotically stable if
the Lyapunov function Vy, (X, (t)) decreases monotonically:

1. The reduced subsystems o have individual Lyapunov functions and, therefore, are asymp-
totically stable: .
Va(Xa(t) >0 and V,(x,4(t)) <O0.

2. At switching times t. from subsystem o = j to o = i the value of the Lyapunov functions,
which may be discontinuous, will not increase:

Vii(xr5(te)) < Vi(xri(te))-

According to Theorem 3 the concept of this paper is that the Lyapunov function (6) must de-
crease monotonically. Therefore, the paper consists of two main steps. First, asymptotically
stable reduced order subsystems are calculated in section 3.1. Next, it is ensured in section 3.2
and 3.3 that the value of the Lyapunov function does not increase at switching times ..



3 Main part

In this section we propose an approach for the stable model order reduction of switched linear
systems with individual subspaces. The method is based on the approach in [13] and extends
it for stability preservation. The proposed method is inspired by an approach for stability-
preserving parametric model order reduction by matrix interpolation from [15]. In the following
section, the three steps for the proposed method are described, where the calculations of step 1
and 2 are done offline and step 3 is performed online during the simulation.

3.1 Calculation of a set of stable reduced systems

Given is a switched system X comprising £ high-dimensional LTI subsystems. The subsystems
are reduced individually by projection-based model order reduction to the same order ¢ < n
so that proper subspaces V, and W, are calculated for every subsystem «. The projection
matrices V, € R"*? and W, € R"*? are suitably chosen and span the right subspaces ), and
left subspaces W,, respectively. This is called a Petrov-Galerkin projection and leads with the
nonsingular matrix WXV, to the following reduced switched system:

'rat :Ara rat Bra t,
5, { el = Arald) B o
YT,a(t) - Cr,axr,a(t)a
where
Arva = (nga)_IWZAavaa
B,.=(W.V,) 'W/B,, 3

Cro = CuV,.

Well-known projection-based reduction methods are the Truncated Balanced Realization (TBR),
Proper Orthogonal Decomposition (POD) or Krylov subspace methods. For detailed informa-
tion we refer to [1] and references therein. We assume that the projection matrices V, and W,
are orthogonal, which can be achieved with a Gram-Schmidt process.

In the following these low-dimensional subsystems are supposed to be Hurwitz stable, i.e. the
eigenvalues of A, , have negative real parts. This can be achieved by stable reduction meth-
ods like the TBR. The reduction of large-scale systems with POD or Krylov subspace methods
in general does not lead to Hurwitz stable systems. However, several approaches have been
proposed to stabilize the reduced systems via post-processing without significantly affecting
the accuracy, for example by modifying the projection matrix W, in a suitable manner [16].
Consequently, the result of this step is a switched system with £ stable reduced order LTI sub-
systems. As the LTI subsystems are asymptotically stable, there exists a quadratic Lyapunov
function V,, with individual symmetric positive definite Lyapunov matrices P, > 0, see [18]:!

Va(%ra(t) = X 0 (P aXpa(t) > 0 and Vi.o(x.a(t)) < 0. ©)

It has to be noted again that the state vectors of the subsystems X, ,,(¢) have a different interpre-
tation as they lie in different subspaces V,,. Therefore, the subsystems do not share a common
Lyapunov function even if the Lyapunov matrices P, are identical.

"We use the following notations. With X > 0 a symmetric positive definite matrix X is denoted and with
X < 0 a symmetric negative definite matrix X is described.



3.2 Adaptation of the Lyapunov matrices

In section 2.1 we have seen that a switched system is not asymptotically stable in general,
although the subsystems are asymptotically stable. If the subsystems share a common Lyapunov
function, the switched system is asymptotically stable. However, for a switched system with
individually reduced subsystems ... it is not possible to find a common Lyapunov function since
the state vectors differ. Consequently we propose the following approach.

We first suggest that the reduced subsystems are transformed in such a way that they share the
Lyapunov matrix P, = 1. This is done by state transformations x, . (t) = L_'X,,(t). The
property P, = Iis - amongst others — known as contractivity [14]. It guarantees that the
reduced state vector X, ,(t) shows no transient growth and its norm |X, ,(¢)| decreases mono-
tonically. Note that the state transformations do not change the transfer behavior of the reduced
subsystems. A similar approach has been applied to linear parameter-varying systems [19].
For the introduction of the algorithm in this section we multiply the subsystems « of the reduced
switched system Y, by regular matrices L, € GL(¢,R) and introduce the changes of basis
X, o(t) = L;'%, o(t). The resulting reduced switched system %, is:

Ar,a Br’a
3 ’_/h_l - —
. { Tra(t) = LaA; oLy Xpa(t) + LoBi o u(t),

’ 10
Vra(t) = Craly’ Zpa(t). (10)
——

Cr,a

%

So far it is unknown how the matrices L, need to be chosen. We demand for the systems f]r
that they share the identity matrix as Lyapunov matrix P, = I:

IA, .+ Al I<0. (11)
Inserting the expression Am = LQAWL;1 leads to:

LA, L+ L TAT LT <o. (12)

T o

Introducing the decomposition P, = LgLa with P, > 0, formula (12) can be written as:
P.A,,+ Al P, <0. (13)

These LMIs can easily be solved since the reduced models are low-dimensional [17]. They have
a solution as the matrices A, , are Hurwitz stable according to section 3.1.

To sum up, for each of the k reduced order subsystems of the reduced switched system >, a
low-dimensional Lyapunov equation needs to be solved. The matrices L, sought after can then
be calculated, for example, via Cholesky decomposition of P,. For this purpose MATLAB
provides the command LYAPCHOL which directly returns the matrices L. The corresponding
procedure is summarized in Algorithm 1. The result of this algorithm is a switched system with
asymptotically stable reduced subsystems which share the same Lyapunov matrix P, = I The
Lyapunov function of the subsystem « is:

—_ (14)



Algorithm 1
Input: k& matrices A, ,
Output: £ matrices L,,
1: fora =1to k do
2: Choose Q, > 0
3: Solve P A, , + AZaPa =-Q,forP, >0
4 Compute P, = LIL,
5: end for

The calculations in section 3.1 and 3.2 are performed offline, which means before simulating
the reduced switched system Y.,.. Therefore, the system matrices of the reduced subsystems
A, ., B, ., C,, from (10) are calculated and stored after the second step.

3.3 Switching condition

This section deals with the time simulation of the reduced switched system 5, During the time
simulation only one reduced subsystem « is active. The switching operation from subsystem
a(t;) to subsystem «(t)) takes place at time ¢.. This is called the online phase. Since the state
vectors of the reduced subsystems are described with different subspaces, the state vector of the
subsystem a(t}) has to be correctly initialized. This is done by projecting the state vector of the
subsystem «(t; ) into the subspace V,,+) of the subsystem «(t) at the time point .. Consider
a subsystem «(t, ) = i with the projection matrices V;, W; and a subsystem «(t; ) = j with
the projection matrices V;, W,. Then the initial state vector x, ;(t1) of the subsystem j at
the switching point ¢, is calculated by projecting the state vector x,;(¢, ) into the subspace
V;. In [13] Petrov-Galerkin projections P are used, which give the initial starting vector with
Rjﬂ' = (W]TV])ilwz—'Vl

x;(t7) = (WIV)T"WIVix, (7). (15)

Although the reduced subsystems share a common Lyapunov matrix (14), the switched system
can become unstable during simulation. The reason is that the Lyapunov function of the reduced
switched system (6) can grow during the switching operation due to the projection of the state
vector according to (15).

This shall be demonstrated by two examples. Considered are two subsystems ¢ and j for which
subspaces of reduced order ¢ = 1 are calculated. The original state space has order n = 2. In
Figure 3 the two-dimensional original state space and the subspaces of the two reduced subsys-
tems are shown. Depicted are instant switching operations with infinitesimal time between the
switching points . and the initial starting vectors of the new subspaces. They are calculated by
Petrov-Galerkin projections. For example, during the switching from subsystem ¢ to subsystem
J, the state vector x,.;(¢. ) is projected orthogonal to the subspace W, into the V;. This example
demonstrates that the state vector can grow and the switched system can become unstable only
because of switching operations using method from [13].

The next example is illustrated in Figure 4. It shows a sketch of the time simulation of two
reduced subsystems of order ¢ = 2. The figure is depicted in the reduced state space in such
a way that the local coordinate systems of the reduced subsystems, which are generally non-
orthogonal and lie in different subspaces, are mapped in the same two-dimensional space as
orthogonal coordinate systems. Additionally shown are level sets of the Lyapunov functions
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Figure 3: Calculation of new starting vec- Figure 4: Sketch of a time simulation in
tors with Petrov-Galerkin projections for an the reduced state space with Petrov-Galerkin
original 2-dimensional space and two sub- projection for two subsystems of reduced or-

systems of reduced order ¢ = 1 [13]. der ¢ = 2 according to [13].

Va(X:4(t)). According to (14) the level sets are circles. The subsystem ¢ is simulated in the
time interval ¢t € [to,;]. Therein, the Lyapunov function V;(x,;(t)) decreases. At the time
point ¢; it is switched to subsystem j. By projecting the state vector x,;(¢;) to state vector
. j (1) with the Petrov-Galerkin projection P; the Lyapunov function jumps to a higher value.
Afterwards the simulation of subsystem j is carried out until the time point ¢ and the Lyapunov
function decays. The same procedure is done at time point ¢5. Therefore the system becomes
unstable just by switching operations.

The explanations above showed that the calculations in section 3.2 are not sufficient in order to
guarantee asymptotic stability for the reduced switched system. In other words, the subsystems
share the Lyapunov matrix and the switched systems would be asymptotically stable if they had
the same state vectors. Nevertheless, switching might lead to instability as the state vector x,. ,
changes and hence the Lyapunov function might jump during the projection of the state vector
to a higher value, where Theorem 3 is violated.

Owing to section 3.2 it is guaranteed that the Lyapunov function and the energy decreases
for the individual subsystems. Additionally, the Lyapunov function of the reduced switched
systems (6) is not allowed to increase during the switching operation at the time point ¢.. This
requirement is illustrated by the following inequality:

V(x5 () < Vi(xi(t7)) (16)

As a simple choice we demand that there is no jump of the Lyapunov functions during the
switching operation:
V(% (8)) = Vileri(to))- (17)

Inserting the Lyapunov functions from (14) gives:

X () %05 (0F) = () %0 i(t,). (18)
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Figure 5: Calculation of new starting vec- Figure 6: Sketch of a time simulation in re-
tors with formula (19) for an original two- duced state space with formula (19) for two

dimensional space and two subsystems of re- subsystems of reduced order ¢ = 2.
duced order ¢ = 1.

Hence, owing to switching at the time point ¢. the state vector of the new active subsystem is
initialized by the state vector of the previously active subsystem with R;; = I € R

X (t5) = %p4(t). (19)

This kind of initialization guarantees stable switching but is not in agreement with projection-
based model order reduction like Petrov-Galerkin (15) or Galerkin projection. Therefore the
approximation of the original switched system might be less accurate at the time period after
the switching operations. It is a conservative choice as it prevents the Lyapunov functions from
jumping. The reduced switched system would be asymptotically stable as well if the Lyapunov
functions jumped to smaller values during the switching operation.

With the result of this section, the two examples above shall be considered again. The instant
switching between subsystems of reduced order ¢ = 1 is plotted in Figure 5. As the reduced
state vectors remain unchanged for infinitesimal time simulation between the switching points,
the reduced switched system cannot become unstable. In Figure 6 the sketch of a time simu-
lation of two reduced subsystems of order ¢ = 2 is shown. The subsystem ¢ is simulated in
the time interval ¢ € [to, t1], where the Lyapunov function decreases. At the time point ¢; it is
switched to subsystem j and the state vector of the subsystem 7 is initialized with formula (19).
It can be seen that a jump of the Lyapunov function is impossible. Next the simulation of sub-
system 7 is carried out until the time point ¢, and the Lyapunov function decays. Therefore the
reduced switched system is asymptotically stable. It also becomes clear why it is important that
the reduced subsystems share the same Lyapunov matrix. According to formula (14) the level
sets of the Lyapunov functions V,(x, ) are circles. Otherwise the level sets could be different
ellipses and hence the reduced switched system could become unstable even if the initialization
is done as proposed according to (19) as the Lyapunov function of subsystem ¢ could decrease
whereas the Lyapunov function of subsystem j grows.



4 Numerical Results

In this section a numerical example is given for the proposed method which shall be compared
to the current methods from Diepold et al. [13] and Shaker et al. [12]. In the following a
benchmark SISO model from [12] which consists of two subsystems of order 5 is used for
evaluating the new method. The benchmark system is:

| { x(t) = A x(t) + byu(t),

y() = x(t), 20

with the first subsystem o = 1:

—4.23  0.4654 1.305 0.313  —1.461 —0.1721
0.4654 —4.418 0.8745 —0.9324 —0.7062 —0.336

A, = 1.305 0.8745 —1.839 —0.0083 0.6652 , by = 0.5415 ,
0.313 -0.9324 -0.0083 —1.801 —0.4979 0
—1.461 —-0.7062 0.6652 —0.4979 —2.355 —0.5703

cf = ( —1.499 —0.0503 0.553 0.0835 1.578 ),

and the second subsystem o = 2:

—5.055 0.4867 0.7761 —3.765 —2.702 —0.5081
0.4867 —3.034 0.0537  0.6768  0.6030 0.8564

Ay, = | 07761 0.0537 —1.392 —0.0739 0.8858 |, by = 0.2685 ,
—3.765 0.6768 —0.0739 —5.26 —1.886 0.625
—2.702 0.603 0.8858 —1.886 —3.909 —1.047

cl = ( 1.536 0.4344 —-1.917 0 O )

The switched system which comprises the two subsystems is asymptotically stable as the sub-

systems share the same Lyapunov function V(x) = xT P x = xTPyx = xTIx = xx.

In [12] the original switched system (20) is reduced to a switched system of order ¢ = 3
applying the respective stability-preserving method. This results in a reduced switched system
whose subsystems have the same reduced state vector x,.(t):

Er : {Xr(t> - Ar,axv‘(t) + bT,au(t)7 (21)

y.(t) = czax(t).

The first reduced subsystem o = 1 is:

—1.031 0.0061 —0.0811 —0.4154
A, =1 —0.1413 —-1.606 0.7891 , b= 0.595 ,
—0.1708 1.028 —2.723 0.7314

c/y = ( —02443 —1.076 0.1176 ),

and the second reduced subsystem o = 2 is:



—0.8714 0.0209 0.1824 0.315
A o= —-0.153 —-1.652 —-0.864 |, b= | 1.136 |,
0.0540 —0.6046 —2.7 2.371

cly = (05949 0.5316 —0.5847 ).

The reduced switched system of the proposed method and the method from Diepold et al. [13]
consists of subsystems with different state vectors x,. ,(¢) and is of the form:

{ Xra(t) = Ay oXpo(t) + brou(t),
. Yralt) = CZaxr,a(t)-

We consider in the following various types of projection-based model order reduction methods
and calculate reduced switched systems of order ¢ = 3.

(22)

4.1 Comparison of stability

In order to compare the behavior of the different methods in terms of stability, a time-dependent
switching signal with frequency 5Hz is used, which is depicted in Figure 7.
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Figure 7: Time-dependent switching signal.

In the following only the methods which calculate different reduced state vectors — the pro-
posed method and the method from [13] — are compared. In both cases the high-dimensional
subsystems are reduced using TBR to subsystems of order ¢ = 3. The Lyapunov function for
the reduced switched system consists of the Lyapunov functions of the subsystems:

Vi(x,1(t)) if a=1,

In Figure 8 the value of the Lyapunov function of the reduced switched systems according
to the method from [13] is shown for a time simulation with u(¢) = 0. The value of the
Lyapunov function jumps to a higher level at the switching time points and decreases between
the switching operations. Therefore, the reduced switched system is unstable for the switching
signal from Figure 7. This is in accordance with Figure 4. In Figure 9 the value of the Lyapunov
function is shown for the proposed method. The Lyapunov function decreases monotonically.
Hence the reduced switched system is asymptotically stable, which agrees with Figure 6.

(23)
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Figure 8: Development of the Lyapunov
function of the low-dimensional switched
system with the approach of [13].
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Figure 9: Development of the Lyapunov
function of the low-dimensional switched
system with the proposed approach.

4.2 Comparison of accuracy

For the comparison of the accuracy of the various methods a time-dependent switching signal,
which is shown in Figure 10, is employed. The frequency of the signal decreases so that the
methods can be evaluated for transient and steady-state behavior.

H (o)) o]
T T T

Switching signal

=
N
T

Time(s)
Figure 10: Time-dependent switching signal.

For the proposed method and the method from Diepold et al. [13] the subsystems were reduced
using a one-sided Krylov subspace method with the reduced order ¢ = 3 and an expansion point
so = 0. The step responses with u(¢) = 1 of the output of the original switched system y (¢)
and the different reduced switched systems y,.(t) (ROMs) are shown in Figure 11.

In terms of transient behavior, which means the accuracy directly after the switching operations,
the proposed method delivers an inaccurate approximation of the original switched system. The
reason is that condition (19) is rather conservative. The method from Diepold et al. [13] gives
accurate results for switching from subsystem 1 to subsystem 2. There is a small error for
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Figure 11: Step responses for the original switched system and various reduced switched sys-
tems (ROMs) for time-dependent switching.

switching from subsystem 2 to subsystem 1. The method from Shaker et al. [12] shows an
accurate transient behavior except for a small error for switching from subsystem 1 to subsystem
2. In terms of steady-state behavior the method from Shaker et al. [12] is not stationary accurate.
The method from Diepold et al. [13] and the proposed method deliver stationary accurate
reduced switched systems as for both subsystems individual and, therefore, proper subspaces
are chosen.

5 Conclusion and outlook

In this paper an approach has been proposed for stability-preserving model order reduction of
switched systems. This approach is based on a method which uses different subspaces for the
reduced subsystems and extends it to stability preservation for arbitrary switching. The pro-
posed method needs the calculation of individual subspaces for the subsystems and the solution
of low-dimensional Lyapunov equations. Additionally, the initialization of the reduced state
vectors was proposed in such a way that the Lyapunov functions have the same value at the
switching operation.

Although the proposed method delivers asymptotically stable reduced switched systems, the
approximation becomes inaccurate for fast switching. In order to improve the accuracy at the
switching time points less strict conditions concerning the Lyapunov function, which are at the
moment quite conservative, might be found in step 3. Possible future work could also focus
on step 2. In this paper the reduced subsystems share the identity matrix as Lyapunov matrix.
Using optimization methods a common Lyapunov matrix could be found which delivers more
accurate results.
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