
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 3, MARCH 2013 1405
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Abstract—We derive the capacity region of arbitrarily varying
multiple-access channels (AV-MACs) with conferencing encoders
for both deterministic and random coding. For a complete descrip-
tion, it is sufficient that one conferencing capacity is positive. We
obtain a dichotomy: either the channel’s deterministic capacity re-
gion is zero or it equals the 2-D random coding region. We de-
termine exactly when either case holds. We also discuss the ben-
efits of conferencing. We give the example of an AV-MAC which
does not achieve any nonzero rate pair without encoder coopera-
tion, but the 2-D random coding capacity region if conferencing
is possible. Unlike compound multiple-access channels, arbitrarily
varying multiple-access channels may exhibit a discontinuous in-
crease of the capacity region when conferencing in at least one di-
rection is enabled.

Index Terms—Arbitrarily varying channels (AVCs), base-sta-
tion cooperation, channel uncertainty, compound channels,
conferencing encoders.

I. INTRODUCTION

M ULTIPLE-ACCESS Channels (MACs) and similar
multisender channels with conferencing encoders have

attracted attention recently due to the inclusion of base-station
cooperation methods in standards for future wireless systems
[6], [13], [15], [18]. The original conferencing protocol for the
discrete memoryless MAC is due to Willems [19], [20]. The
conferencing MAC with imperfect channel state information
was modeled as a compound MAC with conferencing encoders
and considered in [17]; a different model for channel state
uncertainty is given in [14].
This paper covers a very high degree of channel uncertainty

in MACs: the channel states may vary arbitrarily over time. The
task is to use coding to enable reliable communication for every
possible state sequence. The corresponding information-theo-
retic channel model is the arbitrarily varying MAC (AV-MAC).
The random coding capacity region of the AV-MAC without
encoder cooperationwas determined in [12]. Building on this re-
sult, the deterministic coding capacity region of someAV-MACs
without cooperation was determined in [4]. In general, it is still
open. We will use the “robustification” and “elimination of
correlation” techniques developed by Ahlswede in [1] and [2],
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and partly already used in [12] in a multiuser setting, in order to
characterize both the deterministic and random coding capacity
regions of any AV-MAC with conferencing encoders, i.e., of
any AV-MAC where encoding is done using a Willems confer-
ence as in [19] and [20] with at least one positive conferencing
capacity. Thus, none of the techniques we apply in this paper is
completely new, but in contrast to the nonconferencing situation,
they allow for the complete solution of the problems considered
here. The rather general “robustification” technique establishes
the random coding capacity region of the AV-MACwith confer-
encing encoders. Both single- and multi-user arbitrarily varying
channels (AVCs) are special in that random coding as commonly
used in information theory does not yield the same results as
deterministic coding. This shows that common randomness
shared at the senders and the receiver is an important additional
resource. There is a dichotomy: either reliable communication
at any nonzero rate pair is impossible with the application of de-
terministic codes, or the deterministic capacity region coincides
with the random coding capacity region, which then is 2-D. In
the latter case, one needs the nonstandard “elimination of corre-
lation” [1] for derandomization. It is a two-step protocol which
achieves the random coding capacity region if this is possible.
The combination of the elimination technique with confer-

encing proves to be very fruitful. Here lies the main difference
between the AV-MAC with and without conferencing. One can
show that there exist channels which only achieve the zero rate
pair without transmitter cooperation, but where derandomiza-
tion using the elimination technique is possible if the transmit-
ters may have a conference. The reason for this is symmetriz-
ability. This can be interpreted in terms of an adversary knowing
the channel input symbols and randomizing over the channel
states. There are three kinds of symmetrizability for MACs. The
capacity region of the AV-MAC without conferencing equals

if all three symmetrizability conditions are satisfied. In
contrast, the elimination of correlation technique works if the
AV-MAC with Willems conferencing encoders does not satisfy
the conditions for the first of the three kinds of symmetrizabili-
ties. The two others do not matter. By conferencing with at least
one positive conferencing capacity, the AV-MAC gets closer to
a single-sender AVCwhere only one symmetrizability condition
exists [8]. This induced change of the channel structure is also
reflected in the counterintuitive fact that conferencing with rates
tending to zero in blocklength can enlarge the capacity region.
The adversary interpretation of symmetrizability highlights the
importance of the AV-MAC for the theory of information-the-
oretic secrecy: if a channel is symmetrizable, an adversary can
completely prevent communication.
This paper is organized as follows: Section II is devoted to the

formalization of the channel model and the coding problems.
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We present the main theorems and several auxiliary coding re-
sults. The direct parts of the random and deterministic coding
theorems are solved in Section III. Section IV gives the con-
verses of the random and deterministic AV-MAC coding theo-
rems. Section V concludes this paper with a discussion. In par-
ticular, the gains of conferencing are analyzed there.

A. Notation

In the information-theoretic setting, we also use the terms
“encoders” for the senders and “decoder” for the receiver. For
any positive integer , we write for the set .
For a set , we denote its complement by . For
real numbers and , we set and

. denotes the set of probability measures on
the discrete set .

II. PROBLEM SETTING

A. Main Coding Problems

Let be finite alphabets, and let be another finite
set. For every , let a stochastic matrix

be given with inputs from and outputs from . is to
be interpreted as the set of channel states. We set

We assume that the channel state varies arbitrarily from channel
use to channel use. Given words ,

, and , the
probability that is received upon transmission of and de-
pends on the sequence of channel states attained during
the transmission. It equals

(1)

Definition 1: The set of stochastic matrices

is called the AV-MAC determined by .
In the traditional noncooperative encoding schemes used for

MACs, none of the senders has any information about the other
sender’s message. The goal here is to characterize the capacity
region of the AV-MAC achievable when limited information
can be exchanged between the encoders. We use Willems con-
ferencing for this exchange [19], [20]. If the encoders’ message
sets are and , respectively, then this can be de-
scribed as follows. Let positive integers and be given
which can be written as products

for some positive integer which does not depend on . A pair
of Willems conferencing functions is determined in an

iterative manner via sequences of functions and
. The function describes what encoder 1 tells

the other encoder in the th conferencing iteration given the
knowledge accumulated so far at encoder 1. Thus, in general,
using the notation

if
if

these functions satisfy for and

These functions recursively define other functions

by

Then, we set

Observe that given a message pair , the conferencing out-
come is known at both transmitters. If all
conferencing protocols were allowed, the encoders could inform
each other precisely about their messages, so this would turn the
MAC into a single-sender channel. Thus for nonnegative num-
bers , if conferencing is used in a blocklength- code,
Willems introduces the restrictions

(2)

are called the conferencing capacities. Having intro-
duced Willems conferencing, we can now define the codes we
are going to consider.

Definition 2:
1) Let be positive integers and . A
deterministic with block-
length , codelength pair , and conferencing
capacities is given by functions .
Here, is a Willems conferencing protocol satis-
fying (2). are the encoding functions

The decoding function is a function

2) A random with block-
length , codelength pair , and confer-
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Fig. 1. AV-MAC with conferencing encoders.

encing capacities is a pair , where
is a finite family of determin-

istic , and where is a
random variable taking values in .

Note that a is a traditional
MAC code without conferencing. An AV-MAC together
with the aforementioned coding procedure is called an
AV-MAC with conferencing encoders (see Fig. 1). A

defined by
gives rise to a family

(3)

where

If the message pair is present at the senders, the code-
words and are sent. The decoding sets

give a partition of which, just like , as-
signs to every channel output a message pair which the
receiver will decide for upon reception of .
Note that every family (3), where the are disjoint, to-

gether with a Willems conferencing protocol satisfying
(2) defines a if

(4)

(5)

Thus, a can equivalently be defined by a family (3)
together with a conferencing protocol such that (4) and
(5) are satisfied.We will often refer to a using the de-
scription (3), and usually without specifying the corresponding
conferencing protocol by just assuming that there is one.
The first example of this convention is encountered in our

definition of the average error, where the explicit form of the
conferencing protocol is irrelevant.

Definition 3:
1) A defining a family (3) has
an average error probability less than if

2) Let a random with the
form be given. Assume that the deterministic

has the form

Then, for any , define

(6)

to be the average error incurred by under channel
conditions . Assume that has distribution . We say
that the random defined by has an av-
erage error smaller than if

This means that uniformly for every interfering sequence,
transmission using this code is reliable up to the average error
level . The possible state sequences are not weighted by any
probability measure. One can interpret this in a communication
setting with an adversary who knowswhich words are input
into the channel by the senders and then can choose any state se-
quence in order to obstruct the transmission of and .
The goal of the encoders then is to enable reliable communica-
tion no matter what sequence the bad guy might use.
The concept of achievability of a rate pair is the usual one

except that conferencing are allowed for code con-
struction.

Definition 4: A rate pair is achievable by the
AV-MAC with conferencing encoders and conferencing ca-
pacities under deterministic/random coding if for every

and for every , for sufficiently large, there is
a deterministic/random with

and with an average error smaller than . The set of achievable
rates under deterministic/random coding is called the determin-
istic/random capacity region of the AV-MACwith conferencing
encoders and conferencing capacities and denoted by

(for deterministic coding) and (for
random coding).
We can now formulate the coding problems which are at the

center of this study.
Characterize the deterministic/random capacity regions

and of the AV-MAC with
conferencing capacities .

Of course, the main focus is on the deterministic ca-
pacity region as the random capacity region

requires common randomness shared at the
encoders and the receiver. For both and

, we need to consider the convex hull of
. It is parameterized by the set of probability distributions
on , so one can regard as its “state space.” The

stochastic matrix from assigned to the “state” is
the matrix with inputs from and outputs from having
the form
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We have by identifying with the Dirac measure
, so that .

Next, we define a set of rates . Let be the
set consisting of probability distributions ,
where ranges over the finite subsets of the integers and where
has the form

To each and , one can associate a generic
random vector with distribution

(7)

In this way, every and define a set
consisting of those pairs of nonnega-

tive real numbers which satisfy

Then, set

Theorem 5: For the AV-MAC determined by with confer-
encing capacities , we have

More precisely, for every and every
, there is a and a sequence of random

with an average error at
most such that

Additionally, the can be chosen such that for every ,
the constituent deterministic share the same nonit-
erative Willems conferencing protocol given by

(8)

Remark 1: The simple form (8) of conferencing means that
no complicated conferencing protocol needs to be designed.

Remark 2: was analyzed in [17]. It is convex
and the auxiliary sets can be restricted to have cardinality at
most . Moreover, one can determine
finite such that
1) the full-cooperation sum rate, or
2) the full-cooperation capacity region
are achievable. The first statement can be phrased as

If for we set
, then a simple calculation shows that the aforementioned

condition is satisfied if

Statement 2) is valid if both and are
possible. For this, one needs

Remark 3: Theorem 5 has a weak converse.
Determining the general deterministic capacity region

is more complex. We give the solution in The-
orem 7 below for . For , a partial
solution is given in [4] and [10]–[12]. The relation between the
cases and is discussed in detail in
Section V.

Definition 6 ([11]):
1) is called -symmetrizable if there is a stochastic
matrix

such that for every and and

2) is called -symmetrizable if there is a stochastic matrix

such that for every and and

3) is called -symmetrizable if there is a stochastic matrix

such that for every and and

Theorem 7: For the deterministic capacity region of the
AV-MAC determined by with conferencing capacities

, we have

if is not -symmetrizable and

if is -symmetrizable. As for , the
Willems conferencing protocols can be assumed to have the
simple noniterative form (8).
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Remark 4: If is not -symmetrizable, then
is at least 1-D. As ,

in order to show this, it clearly suffices to check that

(9)

if is not symmetrizable. If (9) were violated, then by [7,
Lemma 1.3.2] there would be a such that

for all . Thus, would be
-symmetrizable using the stochastic matrix

But this would contradict our assumption, so (9) must hold.

Remark 5: One can regard symmetrizability as the single-let-
terization of the adversary interpretation of the AV-MAC given
previously. There, a complete input word pair has to be known
to the adversary who can then choose the state sequence. In
the definition of -symmetrizability, the stochastic matrix

means that given a letter , the adversary
chooses a random state . If is -symmetriz-
able, the adversary can thus produce a useless single-state MAC

defined by

is useless because it is symmetric in and . Thus,
for word pairs and , the receiver cannot decide
which of the pairs was input into the channel by the senders and
which was induced by the adversary’s random state choice.

Remark 6: The aforementioned adversary interpretation of
symmetrizability makes AV-MACs relevant for information-
theoretic secrecy. Clearly, we do not say anything about the
decodability of communication taking place in an AV-MAC
for nonlegitimate listeners. However, reliable communication
can be completely prevented in the case the AV-MAC is sym-
metrizable. A discussion of the single-sender arbitrarily varying
wiretap channel can be found in [5].

Remark 7: By the definition of Willems conferencing, set-
ting yields the traditional MAC coding, i.e., no
conferencing at all is allowed. An inspection of the elimination
technique applied in Section III-D shows that actually it suffices
to have conferencing with , so (or, by
symmetry, ). Using conferencing with this nonconstant
rate tending to zero in non- -symmetrizable AV-MACs
yields the capacity region .

Remark 8: If is -symmetrizable, then Theorem 7
almost has a strong converse: it is possible to show that every
code that encodes more than one message incurs an average
error at least 1/4. If is not -symmetrizable, then we
have a weak converse.
Theorem 7 does not carry over to the case ,

which is the traditional AV-MAC with noncooperative coding.
To our knowledge, the full characterization of the deterministic

capacity region of the AV-MACwithout cooperation
is still open. We summarize here what has been found out in [4],
[10], [11], and [12]. For notation, observe that

where in the last term, the random vector has the dis-
tribution .

Theorem 8:
1) If is neither - nor - nor -symmetrizable, then

and has nonempty
interior.

2) If is neither - nor -symmetrizable, but -sym-
metrizable, then

3) If is neither - nor -symmetrizable, but -sym-
metrizable, then

4) If is -symmetrizable, then
.

In particular, if is both - and -symmetrizable, then
.

Remark 9: Point 1) from Theorem 8 is due to [4] and [12].
The other points are due to [10] and [11]. The precise character-
ization of in points 2) and 3) is still open.

Remark 10: The relation between the three kinds of sym-
metrizability from Definition 6 is treated in Section V. There,
we provide the example of an AV-MAC which is both - and
-symmetrizable but not -symmetrizable.

B. Related Coding Results

The set also determines a compound MAC. This channel
differs from the AV-MAC in that it does not change its state
during the transmission of a codeword, only constant state se-
quences are possible. Thus, the probability that is re-
ceived given the transmission of words , only
depends on the given state . It equals

(10)

where we denote elements of by and set
.

Definition 9: The set of stochastic matrices

is called the compound MAC determined by .
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One uses the same deterministic as for the
AV-MAC. Let

be such a . It has an average error less than for the
compound MAC determined by if

for every . Using this average error criterion, the con-
cept of achievability and the definition of the capacity region is
analogous to that for deterministic coding for AV-MACs.

Remark 11: Comparing the error criteria for the AV-MAC
and the compound MAC from the adversary perspective, one
observes that the AV-MAC yields a significantly more robust
performance. Theorem 7 describes the region achievable if
transmission is reliable for every possible sequence the adver-
sary might choose, whereas Theorem 10 describes the region
which is achievable if the adversary is restricted to constant
state sequences.
In [17], the following theorem was proved.

Theorem 10: The capacity region of the compound MAC de-
termined by with conferencing capacities equals

. More precisely, for every achievable rate pair
and every , there is a

and a sequence of with an
average error at most and

These can be chosen such that their conferencing
protocols have the form (8).
Finally, we have to recall the definition and a corollary of the

deterministic coding result for single-user AVCs. Let be a
finite input alphabet, a finite output alphabet, and a finite
state set. Let a family

of stochastic matrices

be given. As for AV-MACs, every state sequence
determines a new stochastic matrix

Definition 11: The set of stochastic matrices

is called the AVC determined by .

The admissible codes are classical single-user codes as used
for discrete memoryless channels. If such a code with block-
length and codelength has the form

then the average error incurred by this code is smaller than
if

Then, it is obvious what is meant by “achievable rates” and “ca-
pacity” for . The capacity of single-user AVCs, which was de-
termined in [8], exhibits a dichotomy similar to the one claimed
in Theorem 7. It is described by the original symmetrizability
concept from [9].

Definition 12: is called symmetrizable if there is a sto-
chastic matrix

such that for every and

Remark 12: Clearly, the -symmetrizability of the
MAC means nothing but symmetrizability of when
considered as a set of stochastic matrices with inputs from the
alphabet .

Theorem 13 ([8], Th. 1): The deterministic capacity of the
single-user AVC determined by is positive if and only if is
not symmetrizable. If is symmetrizable, then every code with
at least two codewords incurs an average error at least 1/4.

III. DIRECT PARTS

We derive the direct part of Theorem 5 from Theorem 10 in
Sections III-A and III-B. Then, if is not -symmetriz-
able, we derandomize in Sections III-C and III-D to obtain the
direct part of Theorem 7.

A. From Compound to Arbitrarily Varying

Here, we prove the direct part of Theorem 5. We use
Ahlswede’s “robustification lemma.” Let be the symmetric
group (the group of permutations) on the set . operates
on by for any and

. Further recall the notation defined
in (10).

Lemma 14 ([3, Lemma RT]): If satisfies for
a and for all the inequality

(11)
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then it also satisfies the inequality

Now let . Theorem 10 states that
for any , there is a such that for sufficiently large
there is a with an average error
at most and satisfying

Writing this in the form (3), this means for every
that

(12)

We would like to apply Lemma 14 with to the func-
tion defined by

Thus, we need to show that satisfies (11). Let . By
(12), one obtains

and (11) is satisfied. Applying Lemma 14, one obtains

(13)
Recall that also is an element of . Writing

, the left-hand side of (13) equals

(14)

Because of the bijectivity of , the family of sets
is disjoint. Thus, (14) is the average

error expression of the random code when applied in the

AV-MAC determined by , where is uniformly distributed
on and where for every

The conferencing protocol remains the same for every , as
the conference only concerns the messages and not the code-
words. By (13), the average error of this random code is less
than ; hence, it tends to zero exponentially. Thus,

, which proves the direct part of
Theorem 5.

B. Bounding the Amount of Correlation

As a first derandomization step to proving the direct part of
Theorem 7, we have to show the following lemma.

Lemma 15: To every random
with average error at most

which is given as a pair , there exists a random
with an average error smaller

than given as a pair where and
and where is uniformly distributed on .
For the proof of Lemma 15, we need a simple result from [12,

Sec. IV].

Lemma 16: Let i.i.d. random variables with
values in and underlying probability measure be given.
Let . Denote by the expectation corresponding to .
Then

Proof of Lemma 15: Let a random with
blocklength and average error smaller than . Recalling our
notation (6), the fact that has an average error less than
can be stated as

Let be independent copies of . This induces a
family of independent copies of . The goal is to show

(15)

Given (15), there is a realization of
such that

(16)

for every . Then, one defines a random code by
setting



1412 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 3, MARCH 2013

and by taking to be uniformly distributed on . The ex-
pression (16) then is nothing but the statement that the average
error of the random code is smaller than , and we are
done.
It remains to prove (15). is finite by assumption, so

grows exponentially with blocklength. Hence, it suffices to
show that

(17)

is superexponentially small uniformly in . Let us fix an
. The are i.i.d. copies of , so by Lemma 16, the

term (17) is smaller than

(18)

By assumption

so the exponent in (18) is negative. This gives the desired su-
perexponential bound on (17).

Remark 13: Note that we cannot require the with
at most values of to have an exponentially small proba-
bility of error. This is due to the fact that the exponent in (18)
must not decrease exponentially in order for the proof to work.
Thus, there is a tradeoff between the error probability and the
number of deterministic component of the random

used to achieve the random capacity region of the
AV-MAC with conferencing encoders.

C. Positive Rate

In the second derandomization step, we show that if is not
-symmetrizable and or , then the encoder

with the positive conferencing capacity achieves a positive rate
by deterministic coding. Without loss of generality, we may as-
sume that .

Theorem 17: Let . If is not -symmetrizable,
then there exists an with such that the rate pair

is deterministically achievable using
with conferencing capacity pair such that

the conferencing function is the identity on the message set.
Proof: By Remark 12 and Theorem 13, considered as

a single-user AVC with vector inputs from the alphabet
has positive capacity. The idea of the proof is to construct

from a code for this single-user AVC a such that the
first transmitter achieves a positive rate. There is a positive rate

which is deterministically achievable by the single-user
AVC determined by . This means that for every
and every , for large enough, there is a single-user code

for with

and with

By setting to be the identity on , this code be-
comes a . This is allowed because

. The encoding and decoding functions
are defined in the obvious way. Thus, the positive rate pair

is achievable.

D. From Random to Deterministic

Finally, we can show that if is not -symmetriz-
able, then . To do so, we follow
Ahlswede’s “Elimination Technique” [1], whose idea is to use
random codes and to replace the randomness needed there by
a prefix code with small blocklength which encodes the set of
constituent deterministic codes. We again assume that .
Theorem 17 implies that there is a such that

for any and any , if is large, there is a

with blocklength

(19)

with codelength pair and with average error smaller than
. Further, the conferencing function is the identity on the set

.
For any , let for

some and all . By Theorem 5, this rate pair is
achievable with conferencing capacities and under
random coding. For every , , and large , this
implies the existence of a random

defined by a pair such that

and with an average error smaller than . Again by Theorem
5, we may further assume that the deterministic component

of share the same conferencing protocol
. As we do not need an exponential decrease of the av-

erage error, we may by Lemma 15 assume that is uniformly
distributed on . Let every deterministic component

be given as

We now construct a deterministic
with blocklength

, message sets and (yielding
the codelength pair ), conferencing capacities

, and average error smaller than . It is defined via
concatenation. We define the conferencing functions to be
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Note that has the form (8). It is a permissible confer-
encing protocol if

because then

If the encoders have the messages and , respectively,
they use the codewords

Together with the conferencing protocol defined previ-
ously, this fixes encoding functions and , as (4) and (5) are
satisfied. The decoding set of the deciding for the
pair is defined to be . Thus, the
deterministic achieving the rate pair is used
as a prefix code which distinguishes the deterministic compo-
nent of the random . In this way, deran-
domization can be seen as a two-step protocol. Setting

, the rates of the new code are

where the second inequality holds for all large enough such
that

The randomness of the random code is needed in the esti-
mation of the average error incurred by this coding procedure.
Recall Ahlswede’s Innerproduct Lemma [1].

Lemma 18: Let and be two vec-
tors with for which for some

satisfy

(20)

then

We use this lemma with and replace the index by
. Fix an and set

Then, the conditions in (20) are satisfied because both the de-
terministic prefix code and the random code

with constituent codes have an av-
erage error smaller than . Lemma 18 now implies that the

constructed previously has an av-
erage error probability smaller than .

This shows that the rate pair is achievable for
with conferencing capacities . Consequently, one obtains

As the capacity region is closed, , which
is the closure of the set on the left-hand side, is contained in

as well. This proves the direct part of Theorem 7.

IV. CONVERSES FOR THE AV-MAC WITH
CONFERENCING ENCODERS

Here, we prove the converses claimed in Remark 3 and 8. Re-
call that a weak converse means that, depending on the situation,
any deterministic or random
such that the real 2-D vector is
at least distance from the achievable rate region incurs
an average error at least if is large.

A. Random Coding

Here, we prove the weak converse for Theorem 5 (see Re-
mark 3). The idea of the proof is to reduce it to the weak con-
verse for the compound MAC with conferencing encoders de-
fined by where the use of random codes is allowed. This is
proved in the Appendix.
Every induces a product measure via

. The notation (10) carries over to these general
. Further, recall the notation introduced in (6). We generalize
this notation by setting

The following lemma is a generalized version of Lemma 2.6.3
in [7].

Lemma 19: For any random which is defined by
and whose components have the form

one has

Proof: The direction “ ” is clear. In order to prove “ ,”
let . Clearly

Thus

Upon taking the supremum over on the left-hand
side, the lemma is proved.
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Now let a random be given
defined by and with average error at most . Assume
that the pair is at distance at least
from . Because of Lemma 19

(21)

Thus, the random has an average error at
most for the compound MAC with conferencing encoders
defined by . But the weak converse for the compound
MAC with conferencing encoders and random coding, which
is proved in the Appendix, implies that (21) can only hold
if . This concludes the weak converse
for the AV-MAC with conferencing encoders using random

, and Theorem 5 is proved.

B. Deterministic Coding

1) If is -Symmetrizable: If is -sym-
metrizable, then by Remark 12, it is also symmetrizable if
considered as a single-user AVC with input alphabet .
Thus, Theorem 13 implies that any single-user code with at
least two codewords incurs an average error greater than 1/4.
Finally, note that every for the AV-MAC with
conferencing encoders determined by also is a code for
the single-user AVC determined by , so this carries over
to the multiuser situation. This proves Theorem 7 if is

-symmetrizable.
2) If is Not -Symmetrizable: We show that the

weak converse for the compound MAC determined by
implies the weak converse for the AV-MAC determined by
. Let a be given. If the rate

pair is at least distance away from
and if is sufficiently large, then there is a

such that

for some because of the weak converse for the com-
pound MAC. Lemma 19 now implies that

must hold. Thus, the proof of Theorem 7 is complete.

V. DISCUSSION AND CONCLUSION

The goal of this paper was to characterize the capacity re-
gion of an AV-MAC whose encoders may exchange limited
information about their messages. This topic is motivated by
the increasing interest of cooperative networks which are sub-
ject to exterior interference. For example, spectrum sharing has
been discussed for inclusion into future wireless system stan-
dards. We saw above that the AV-MAC can be interpreted as a
channel suffering from attacks by an adversary who may choose
the state sequence given the channel inputs. The reliability re-
quirements for AV-MACs are very strict—coding is done such

that the average error is small for every possible state sequence.
The resulting capacity region is the same as that for the con-
ferencing compound MAC determined by the convex hull of
the set of channel matrices of the original AV-MAC if the latter
is not -symmetrizable. Otherwise, the AV-MAC is use-
less. In contrast, for AV-MACs without conferencing, the com-
plete characterization of the deterministic capacity region is still
open.
The dichotomy in the form of the deterministic capacity re-

gions of AV-MACs does not occur if random coding is used.
However, using a random code requires both the senders and
the receiver to have access to a common source of randomness.
Thus, random coding is usually only used as a mathematical tool
for finding good deterministic codes. It is well known that de-
randomization is no problem for compound channels (including
discrete memoryless channels as a special case)—this is nothing
but the well-known “random coding method.” It builds on the
fact that the finite number of channel states does not increase
with blocklength. This is not so in the case of AVCs. The number
of states per channel use remains constant, but the number of
states per transmission of a codeword increases exponentially in
blocklength. This is the reason why the deterministic capacity
region of AV-MACs may be strictly contained in the random
coding capacity region. In fact, if derandomization is not pos-
sible, then no positive rates are achievable at all.
In contrast to the derandomization technique used for sim-

pler channels, Ahlswede’s elimination technique gives rise to a
two-step protocol. In order to approximate a given achievable
rate pair , one only needs the constituent deterministic
codes of a random code whose rate pair approximates .
The randomness of the random code is used in the average error
estimate. (On the other hand, this shows how much weaker the
average error criterion is compared with the maximal error re-
quirement—the randomized part can be “hidden” in the average
error.)
It is noteworthy that for the AV-MAC, the conferencing pro-

tocols needed to achieve any rate pair within the capacity region
remain as simple as for the compound MAC with conferencing
encoders. There are no iterative steps, so the implementation of
such a conference is straightforward.
Finally, we would like to analyze the benefits of Willems

conferencing. We compare the gains obtained in AV-MACs to
the gains obtained in compound MACs. For both compound
and AV-MACs, conferencing may help to achieve positive rates
where only the rate pair is achievable without transmitter
cooperation. This effect is similar to the “superactivation” of
quantum channels as observed in [16], where it was shown that
there are pairs of quantum channels with zero quantum capacity
each which achieve positive rates when used together.
Every compound MAC with conferencing capacities

and

(22)

has at least 1-D capacity region. If (22) is not satisfied, then
the capacity region equals . No matter what dimension
the corresponding has, the gains of conferencing are
continuous in , in particular in . This is
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in contrast to the AV-MAC. The changes in the deterministic ca-
pacity region are continuous in all with

because either for
all with or for
all . However, there may be a discontinuity in

.
This corresponds to the two roles conferencing plays in

AV-MACs. The “traditional” role is to generate a common
message and to use the coding result for the (compound)
MAC with common message to enlarge the capacity region.
For AV-MACs, it does even more—it changes the channel
structure. Recall Remark 7. For a conferencing rate pair with

, the capacity region of the com-
pound MAC stays as it is. Under the conditions that is not

-symmetrizable and , though,
we can strictly enlarge the capacity region of the AV-MAC
with this kind of conferencing.
General conditions for to hold

cannot be given because an exact characterization of
is generally unavailable. We certainly know by Theorem 8 that
if is 2-D, then . We can
further say that if in addition to not being -sym-
metrizable, is both - and -symmetrizable, then

, again by Theorem 8. This is a sit-
uation where already the conferencing from Remark 7 helps.
With the same argumentation as in Remark 4, it can easily be
seen that

so is at least 1-D. Thus, there is a discontinuity in
in this case. Gubner [11] has found the ex-

ample of a which is both - and -symmetrizable, but not
-symmetrizable.

Example 1: Let and .
For , set

where if and else. An equivalent
description of this is

Gubner shows that is not -symmetrizable, but that it
is both - and -symmetrizable. Thus, this channel is useless
if coding is done without conferencing, even though the inter-
fering signal is only added to the sum of the transmitters’ sig-
nals—the reliable transmission of messages through the channel
is completely prevented. This shows that even the structure of
rather simple AV-MACs can be changed by conferencing so as
to produce discontinuous jumps at .

APPENDIX

Here, we prove the weak converse for the compound MAC
with conferencing encoders defined by and with random
coding. Let a random be given
which is defined by the pair . Let this code have average

error at most . Denote the conferencing function of the deter-
ministic component with index by . The set
maps into is denoted by .
We assume that the pair is at

least distance away from . As all norms are
equivalent on the plane, we can without loss of generality work
with the -norm. That means that we assume that

This statement is equivalent to the fact that for every ,
there is some such that one of the following inequal-
ities holds:

(23)

(24)

(25)

(26)

Our goal is to mainly use arguments already known from the
weak converse for deterministic coding, so that we can refer to
[17]. From the random , we define several random
variables in addition to :
1) the pair , which is uniformly distributed on

and independent of ;
2) the pair taking
values in , where for we define

;
3) , ;
4) a random variable which satisfies

Every corresponds to a deterministic code with
average error at most . For each of these codes, we can pro-
ceed as in [17]. That means that we first apply Fano’s inequality
and then obtain single-letter bounds on the code rates. More pre-
cisely, writing , we can construct
for each a probability distribution on
which is contained in . This is due to the fact proved in [19]
that conditional on and , the random variables and
are independent. Thus, we have

Further, for each , we construct the random vector
which together with has the distribution

(27)
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By construction, this random vector satisfies for every

where

Next, we take the expectation over . Using the concavity of
and (27), this can be transformed into

(28)

(29)

(30)

with

As , the concavity
of entropy implies that the bound in (30) is relaxed if one re-
places by .We now set
and observe that the distribution of is contained in
. Comparing the resulting set of inequalities with a valid one
among (23)–(26) and using the same simple arguments as in
[17], we can now show that . This finishes the
proof of the weak converse.
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