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Abstract—The wiretap channel models the communication
scenario where two legitimate users want to communicate in such
a way that a wiretapper is kept ignorant. In this paper, the wiretap
channel with side information is studied, where the wiretapper has
additional side information available. This side information allows
the wiretapper to restrict the transmitted message to a certain
subset of messages before further postprocessing. Two different
criteria are employed to model the secrecy of the confidential
message: the information theoretic criterion of strong secrecy
and a signal-processing-inspired criterion based on the decoding
performance of the wiretapper. For the latter, the wiretapper is
required to have the worst decoding performance regardless of
the specific decoding strategy that is used. It is shown that both
criteria are equivalent in terms of secrecy capacity. Furthermore,
the secrecy capacity equals the one of the classical wiretap channel
without side information available at the wiretapper. In addition,
the corresponding capacity-achieving code structure and optimal
transceiver design are characterized and properties are identified.
Finally, extensions to channel uncertainty and multiple wiretap-
pers are discussed.

Index Terms—Decoding performance, optimal transceiver de-
sign, secrecy capacity, side information, strong secrecy, wiretap
channel.

I. INTRODUCTION

T HE concept of physical layer, or information theoretic,
security is becoming more and more attractive, since it

solely uses the physical properties of a wireless channel to es-
tablish security. In this context, the concept of strong informa-
tion theoretic secrecy is of particular interest, since this implies
that the confidential information cannot be reproduced from
the received signal regardless of the applied postprocessing at
nonlegitimate receivers. Recently, there is growing interest in
physical layer security; for instance see [1]–[4] and references
therein.
Physical layer security was initiated by Wyner, who intro-

duced thewiretap channel [5]. It describes the simplest scenario
involving security with one legitimate transmitter-receiver pair
and one external wiretapper to be kept ignorant. The aim of the
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transmitter is to encode and transmit the confidential message in
such a way that the legitimate receiver is able to decode the mes-
sage and, at the same time, the wiretapper is prevented from in-
ferring the confidential information from the received signal. In
[5] Wyner studied the special case of degraded channels, which
was then generalized to general discrete memoryless channels
in [6] and to Gaussian channels in [7]. The secrecy capacity of
the multiple-input multiple-output (MIMO) Gaussian wiretap
channel is then independently derived in [8], [9] and [10]. Sub-
sequently, the structure of the optimal transmit covariance ma-
trix has been analyzed under the matrix power constraint in [11]
and under the average power constraint in [12].
All these works have in common that the wiretapper has only

the received channel output available for postprocessing. Here
we study the wiretap channel with side information, where we
consider a more powerful wiretapper having additional side in-
formation about the transmitted message available. This models
a priori knowledge about the transmitted message which al-
lows the wiretapper to restrict the message to a certain subset
of all possible messages. Such side information can originate
from previous transmissions due to certain network structures
or from other cooperating wiretappers which share some knowl-
edge with each other.
The classical wiretap channel is briefly reviewed in Section II.

The wiretap channel with side information is then introduced
in Section III. We model the secrecy of the transmitted mes-
sage by two different criteria. The first criterion is based on
(classical) information theoretic secrecy concepts and known
as strong secrecy. The second one is motivated from a signal
processing point of view, where the wiretapper is required to
have the worst decoding performance regardless of the decoding
strategy he (or she) applies. With worst decoding performance
we refer to a wiretapper, which cannot extract any useful in-
formation from the received signal. Thus, the wiretapper only
has his side information available and it remains for him to
choose one message uniformly from this subset of messages.
We show that both secrecy criteria—the information theoretic
concept and the signal-processing-inspired concept—yield the
same secrecy capacity. Moreover, it turns out that the secrecy
capacity of the wiretap channel with side information equals the
one of the classical wiretap channel (without side information).
To this end, we derive necessary and sufficient conditions for
a characterization of the corresponding optimal transceiver de-
sign. This is done in Sections IV and V under the assumption of
perfect channel state information at all users.
After these considerations we move on to more realistic

channel conditions by taking imperfect channel state informa-
tion (CSI) into account. To do so, we assume that the legitimate
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Fig. 1. Wiretap channel with multiple legitimate receivers and multiple wire-
tappers. The sender transmits a common (multicast) message to a group of
legitimate receivers (light gray) in the presence of a group of wiretappers
(dark gray) all to be kept ignorant of the transmitted message.

users do not know the exact channel realization which governs
the transmission. Rather, it is only known that this channel re-
alization belongs to a known set of channels and that it remains
constant during the whole transmission of a codeword. This is
the concept of compound channels [13], [14]. Besides channel
uncertainty due to the nature of the wireless medium, it also
captures implementation issues of practical systems such as
imperfect or quantized channel estimation or limited feedback
schemes. First studies for the (classical) compound wiretap
channel can be found in [15]–[17]. In Section VI we study the
corresponding compound wiretap channel with side informa-
tion and extend results, previously obtained in Sections IV and
V for the case of perfect CSI, to the case of compound chan-
nels. In addition, we discuss how these results can also be used
to obtain results for the practically relevant case of multiple
legitimate receivers and multiple wiretappers as visualized in
Fig. 1. Finally, we conclude the paper in Section VII.

Notation

Discrete random variables are denoted by capital letters
and their realizations and ranges by lower case and script
letters, respectively; and are the sets of positive in-
tegers and nonnegative real numbers; and are
the traditional entropy and mutual information; is the
Kullback-Leibler (information) divergence and is the
total variation distance of measures and on defined by

; denotes a Markov
chain of random variables , , and in this order; all loga-
rithms and information quantities are taken to the base 2;
is the set of all probability distributions; , , and
are the complement, cardinality, and Cartesian product of the
sets and , respectively; the product distribution is
defined by the product marginal distributions of its components
and , i.e., for all elements

and from their respective ranges and ; means
the value of the right hand side (rhs) is assigned to the left hand
side (lhs), is defined accordingly.

II. CLASSICAL WIRETAP CHANNEL

In this section we start with the assumption of perfect channel
state information (CSI) at all users and further assume that there
is only one wiretapper to be kept ignorant. Later in Section VI,

we will extend these results to the case of imperfect CSI and
multiple wiretappers.
In practical systems, a transmitter usually uses a finite mod-

ulation scheme. For example, in a MIMO system, the signal to
transmit is limited by a per-antenna power constraint so that fi-
nite modulation schemes, such as BPSK or QAM, are applied.
Further, on the receiver side, the received signal is quantized be-
fore further processing. Thus, it is reasonable to assume finite
input as well as finite output alphabets denoted by and ,
in the following. Then the channels and

represent the communication links to the legitimate
receiver and the wiretapper respectively. For input and output
sequences and , of block length ,
the discrete memoryless channels are given by

and . Here,
and , are the input and output symbols at corresponding
time instant , . The wiretap channel is given by the
pair of channels with common input.
In the classical wiretap channel, the task is to establish a reli-

able communication between the transmitter and the legitimate
receiver and, at the same time, to keep the confidential informa-
tion secret from the wiretapper. Most important, the wiretapper
only has its channel output available to infer the confidential
communication. This is formalized as follows.
Definition 1: An - code for the wiretap channel

consists of a stochastic encoder at the transmitter

i.e., a stochastic matrix, with a set of messages and a decoder
at the legitimate receiver described by a collection of disjoint
decoding sets

(1)

Note that every transmitter-receiver strategy as specified
above results in a certain partition of the output alphabet as

with for , cf. Equation
(1). It is clear that the actual partition depends on the applied
transmit and receive processing strategies.
Then for an -code , the average and maximum

probability of decoding error at the legitimate receiver are
given by

(2)

and

(3)

To keep the transmitted message secret from the nonlegiti-
mate wiretapper, the usual approach in the context of informa-
tion theoretic security is to require

(4)

with the random variable uniformly distributed over the set of
messages and the channel output at
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Fig. 2. Wiretap channel with side information. The side information
available at the wiretapper restricts the message to the subset with

.

the wiretapper. This criterion is known as strong secrecy [18],
[19].
Definition 2: A nonnegative number is an achievable se-

crecy rate for the wiretap channel if for all there is an
and a sequence of -codes such that

for all we have and (4)
is verified while (or respectively)
and as . The secrecy capacity is given by the
supremum of all achievable secrecy rates .
The discrete memoryless wiretap channel is well studied

under several aspects and its secrecy capacity can be found for
instance in [5], [6], [18], [19].
Theorem 1: The secrecy capacity of the wiretap channel

is

where the random variables form a Markov
chain.
Remark 1: The seminal works [5], [6] considered the weak

secrecy criterion for the wiretap channel. More recently, the se-
crecy capacity of the wiretap channel has also been established
for the strong secrecy criterion, cf. for example [17]–[19].
Remark 2: The secrecy capacity in Theorem 1 has been estab-

lished for the average error criterion (2) as well as for the more
stringent maximum error criterion (3), cf. also Definition 2. But
from now on, we solely stick to the maximum error criterion for
the analysis of the wiretap channel with side information.

III. WIRETAP CHANNEL WITH SIDE INFORMATION

In this paper the focus is on more powerful wiretappers. Ad-
ditionally to his received channel output, the wiretapper has
side information about the transmitted message available as de-
picted in Fig. 2. Such side information can be based on certain a
priori knowledge at the wiretapper, but can also originate from
prior transmissions due to a certain network structure or from
other cooperating wiretappers which help each other inferring
the confidential communication.

A. System Model

The side information at the wiretapper is modeled with the
help of a deterministic function

with the set of all subsets of with cardinality at least
2. This means for transmitted message , the wiretapper
is aware of so that he can restrict the trans-
mitted message to a subset , i.e., he knows that the mes-
sage belongs to . The restriction avoids the trivial
case , where the transmitted message would be com-
pletely known to the wiretapper.
The case corresponds to the scenario with smallest

uncertainty, since the wiretapper can narrow the transmitted
message down to only two alternatives. In addition, the scenario
of no side information available at the wiretapper is included
in the model by the special case .
To model the secrecy of the transmitted message in the pres-

ence of side information available at the wiretapper, we study
two alternative approaches: an information theory-based crite-
rion and a signal-processing-inspired criterion.

B. Information Theoretic Security Approach

A natural extension of the information-theoretic-based ap-
proach of strong secrecy in (4) is the following. For any side
information with , we require

(5)

where is the random variable uniformly distributed on the
side information set and the
corresponding output at the wiretapper with side information.
Definition 3: A nonnegative number is an achievable se-

crecy rate for the wiretap channel with side information if for all
there exists an , a universal sequence

(in the sense that it is independent of the actual side information
), and a sequence of -codes such that for all

we have and (5) is verified
for all subsets with , while
and exponentially fast as . The strong secrecy
capacity is given by the supremum of all achievable se-
crecy rates with strong secrecy.
Remark 3: In Definition 3we explicitly require to decrease

exponentially fast, i.e., to be of the form for some
. As we will see in the following, the applied methods

actually provides an exponentially fast decrease so that this will
be no restriction.

C. Signal Processing Approach

Instead of defining the secrecy by mutual information terms
as done in (5), we also consider a criterion motivated from the
signal processing point of view.
Similarly as for the legitimate receiver, cf. Definition 1, for

any side information with , we can charac-
terize every decoding strategy of the wiretapper by a collection
of decoding sets

with and for . Note that
the decoding sets at the wiretapper depend on the side informa-
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tion and, in general, are not the same for different side infor-
mation. Then the average probability of decoding error at the
wiretapper is

To ensure secrecy of the message, we require worst behavior
of decoding performance at the wiretapper regardless of the de-
coding strategy that is used. In more detail, for any side informa-
tion with , the average probability of decoding
error has to satisfy

(6)

for some with as (we will specify
later in Proposition 1). This means, for the decoding
performance of the wiretapper is the same as if the wiretapper
ignores his received signal and guesses the transmitted message
based on his side information . Thus, we require that,
asymptotically, the wiretapper does not take any advantage from
his observation and simply selects a message uniformly
at random (regardless of his received ). In this case,
the probability of success is , which is, in fact, the best
the wiretapper can hope for. A wiretapper verifying (6) is said
to be a wiretapper with maximum uncertainty.
Remark 4: We require (6) to hold for any decoding strategy

the wiretapper may use. In particular, there are no restrictions
imposed on the complexity of the decoding strategy. This will
lead to universal results which hold for any postprocessing at
the wiretapper.
Remark 5: The requirement of a high average decoding error

at the wiretapper, cf. Equation (6), immediately implies that the
maximum decoding error at the wiretapper is high as well.
Definition 4: A nonnegative number is an achiev-

able secrecy rate with maximum uncertainty for the wiretap
channel with side information if for all there is an

, a universal sequence , and a sequence of
-codes such that for all we have

and (6) is verified for all subsets
with , while and

exponentially fast as . The secrecy capacity with max-
imum uncertainty is given by the supremum of all
achievable secrecy rates with maximum uncertainty.

D. Vanishing Output Variation

In the following we want to analyze the secrecy capacity of
the wiretap channel with side information under the strong se-
crecy and maximum uncertainty criterion in more detail. For
this purpose, we extensively use the vanishing output variation
property of a wiretap code, which has already been shown to be
essential for the classical wiretap channel (without side infor-
mation) [17].
Definition 5: A code for the wiretap channel (with side infor-

mation) has exponentially fast vanishing output variation at the

Fig. 3. Relations between the strong secrecy criterion, the maximum uncer-
tainty criterion, and the property of vanishing output variation. The arrows show
the corresponding implications and indicate where it is proved.

wiretapper if there exists a measure1 on and some
such that for all and

it holds for all

(7)

In [17] the property of vanishing output variation was used to
characterize the secrecy capacity of compound wiretap channels
for the strong secrecy criterion, cf. Equation (4). Here, we show
that it also allows realizing maximum uncertainty according to
Definition 4, cf. also (6).
For clarity of presentation, Fig. 3 visualizes the relations

between the previously introduced secrecy criteria and the van-
ishing output variation property for the analysis of the secrecy
capacity of the wiretap channel with side information. The
strong secrecy criterion (8) implies the maximum uncertainty
criterion (6), which basically follows from Pinsker’s inequality,
see the following Remark 6. It is not obvious that the reverse
implication also holds, since the strong secrecy criterion is
in general a stronger assertion than the maximum uncertainty
criterion.
In the following we show that the property of vanishing

output variation allows establishing equivalence of both criteria
in terms of secrecy capacity. We want to stress that this is only
one possible strategy to realize equivalence of strong secrecy
and maximum uncertainty in terms of secrecy capacity and
there might be other approaches as well. However, the use of
the vanishing output variation property is not only be suitable
to prove the desired results, but also to highlight the practical
relevance, since it characterizes the optimal preprocessing at
the transmitter.
Proposition 1: For any given code of Definition 1, the wire-

tapper with side information has arbitrary decoding
sets with . If the code
has vanishing output variation according to Definition 5, i.e.,
there is measure on such that for
all , cf. Equation (7), then the following two assertions
hold:
i) The strong secrecy criterion satisfies

(8)

1A measure on is assumed to satisfy the standard properties of non-
negativity, i.e., for all , null empty set, i.e., , and
countable additivity, i.e., for all collections of pairwise disjoint sets it
holds . We do not require , i.e., is
not necessarily a probability measure.
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with universal exponentially fast as
.
ii) The average probability of decoding error at the wire-
tapper satisfies

(9)

with universal exponentially fast as .
Proof: We start with the proof of the first assertion. Let

for all and
be the joint distribution and and be the corresponding
marginals where the latter is the uniform distribution over the
restricted set . If a code has the vanishing output variation
property, i.e., it satisfies (7), then we have

(10)

where the first inequality follows from the triangle inequality
and the second and third inequalities from (7).
Now, from the continuity of the entropy function, cf. for ex-

ample [20, Lemma 1.2.7], we get

where the last inequality holds for large enough which proves
the first assertion (8). Note that the term can be bounded
from above by so that there is a universal independent
of the actual side information .
Next we move on to the proof of the second assertion (9).

Therefore we write the average probability of decoding error at
the wiretapper as

(11)

Now, with and as , cf.

Equation (10), we can bound in (11) from below by

Note that is universal in the sense that it does not depend on
the actual side information , cf. also (10).
Remark 6: From Proposition 1 follows that strong secrecy

(8) immediately implies maximum uncertainty at the wiretapper
with side information, cf. Equation (9). This can easily be seen
by applying Pinsker’s inequality, cf. for example [20, Problem
3.18], as

so that with . With
this, the desired implication follows immediately as from (10)
onwards. This further gives strong secrecy the operational
meaning in the sense that it implies worst behavior of decoding
performance at the wiretapper according to(6).
Proposition 1 analyzed suitable preprocessing strategies for

the transmitter to keep the message secret from the wiretapper.
It established the property of vanishing output variation as a
sufficient condition for strong secrecy and, in particular, max-
imum uncertainty. In addition, both can be achieved exponen-
tially fast, cf. also Remark 3.

IV. STRONG SECRECY CRITERION

In this section we study the wiretap channel with side infor-
mation for the information-theoretic-secrecy-based criterion of
strong secrecy. To this end, we derive the corresponding strong
secrecy capacity region and characterize the optimal (i.e., ca-
pacity-achieving) transceiver design.

A. Strong Secrecy Capacity

First, we analyze the strong secrecy capacity of the wiretap
channel with side information and show that available side in-
formation at the wiretapper has no impact on the strong secrecy
capacity.
Theorem 2: The strong secrecy capacity of the wiretap

channel with side information equals the strong secrecy ca-
pacity of the wiretap channel without side information, i.e.,

Proof: To prove the desired result, we have to show the
converse and achievability. The inequality is ob-
viously true, since additional side information at the wiretapper
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cannot increase the corresponding secrecy capacity. This im-
mediately establishes the converse and it only remains to prove
that is actually achievable also in the case of side informa-
tion available at the wiretapper.
For the achievability we have to construct a wiretap code that

realizes simultaneously reliable communication at the desired
rate to the legitimate receiver, i.e., as ,
and secrecy at the wiretapper, i.e., for all
with as .
In [17] it is shown by random coding arguments that there

exist wiretap codes with exponentially fast decreasing vanishing
output variation, cf. Definition 5, which achieve the strong se-
crecy capacity of the wiretap channel (without side infor-
mation). In particular, for the maximum probability of error we
have as for all , which im-
mediately implies for all subsets with that

holds as well. Note that [17] treats the com-
pound wiretap channel, but clearly, this code construction also
works for the noncompound case.
Remark 7: We want to emphasize that it is important to

have for the original set vanishing maximum probability
of error and not only vanishing average
probability of error . Only this ensures that the
maximum probability of error for all subsets

vanishes as well. Furthermore, if we would require
vanishing average probability of error for the subsets, i.e.,

for all subsets (instead of the maximum error cri-
terion), we also would end up with the need of vanishing
maximum probability of error for the original
set . This is because vanishing average probability of error

for does not imply for all .
Thus, the requirement of is no restriction as it
is necessary to control the average and maximum probability
of error for all subsets as well.
Thus, we only have to check that this code also satisfies the

strong secrecy requirement at the wiretapper with side infor-
mation. Since the used code has the vanishing output variation
property, cf. Definition 5, we know that there is a measure on

such that for all we have ,
. Then Proposition 1 immediately implies that
with independent of the actual side information and

exponentially fast as .
This shows that additional side information at the wiretapper

does not have an impact on the strong secrecy capacity. More-
over, a code with vanishing output variation property originally
developed for the wiretap channel without side information is
also suitable to protect the transmitted message in the event of
additional side information at the wiretapper.

B. Optimal Preprocessing

The previous analysis showed that a wiretap code with van-
ishing output variation is sufficient to achieve the strong secrecy
capacity of the wiretap channel with side information. Here we
want to show that the reverse statement is also true. In more
detail, the following result shows that an optimal code for the

wiretap channel with side information necessarily has to have
the vanishing output variation property.
Theorem 3: Let be a sequence of wiretap codes

achieving the strong secrecy capacity of the wiretap channel
with side information and be the corre-
sponding stochastic encoder. Then, there exists a measure
on and some such that for all it holds

, cf. Equation (7). This means, the
optimal code has the vanishing output variation property ac-
cording to Definition 5.

Proof: Let be an arbitrary message
subset with two elements. Since the code is optimal for the
wiretap channel with side information by assumption, we have

with exponentially fast as and
independent of , cf. Definition 3 and (5). Let

for all and be the joint distri-
bution and and be the corresponding marginals.
Writing (5) in terms of Kullback-Leibler (information) diver-

gence as

we get by Pinsker’s inequality, cf. for example [20, Problem
3.18], for some constant the following

Here, the first equality follows from the definition of total varia-
tion distance and the fact that has only two elements, and the
second equality from the fact that is uniformly distributed on
. Thus, for each we have

Since

we have

Thus, by the definition of total variation distance we have for
arbitrary
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Now, we set

for all , so that for any we have

(12)

This means an optimal code for the wiretap channel with side
information always has the vanishing output variation property.
Finally, since decreases exponentially fast by assumption,
it is ensured that (12) is of the form
as desired, cf. Equation (7). This completes the proof of the
theorem.
From Proposition 1 we already know that the vanishing

output variation property is a sufficient condition for realizing
strong secrecy. Now, Theorem 3 establishes this also as a
necessary condition by showing that an optimal code neces-
sarily has to have this property. This characterizes the optimal
preprocessing of the transmitter to establish strong secrecy in
wiretap channels with side information.

V. MAXIMUM UNCERTAINTY CRITERION

In this section we study the wiretap channel with side infor-
mation for the signal-processing-inspired criterion of maximum
uncertainty. To this end, we derive the corresponding secrecy
capacity with maximum uncertainty and characterize the op-
timal (i.e., capacity-achieving) transceiver design.

A. Secrecy Capacity With Maximum Uncertainty

Theorem 4: The secrecy capacity with maximum uncer-
tainty of the wiretap channel with side information equals the
corresponding strong secrecy capacity of the classical wiretap
channel without side information (and therewith also equals
the strong secrecy capacity of the wiretap channel with side
information), i.e.,

Proof: We start with the achievability part and prove
the following inequality by giving an explicit
construction of a transceiver design. To do so, we need a
wiretap code that realizes two tasks simultaneously: reliable
communication at the desired rate to the legitimate receiver,
i.e., as , and maximum uncertainty at
the wiretapper, i.e., for all with

as .
Similarly as in the proof of Theorem 2, we use a wiretap

code with exponentially fast decreasing vanishing output vari-

ation, cf. Definition 5, which achieves the strong secrecy ca-
pacity of the wiretap channel (without side information), cf.
[17]. In particular, for the maximum probability of error we have

as for all , which further im-
plies for all subsets with that
holds as well.
Thus, it remains to check, if the second task, i.e., the max-

imum uncertainty at the wiretapper with side information, is
also satisfied. Since the code has the vanishing output vari-
ation property, cf. Definition 5, we immediately obtain from
the second assertion of Proposition 1 that the average decoding
error at the wiretapper with side information satisfies

with exponentially fast as , cf.
Equation (9). Thus, the maximum uncertainty at the wiretapper
is simultaneously guaranteed by the vanishing output variation
property. This completes the proof of achievability.
It remains to prove the converse. If we would analyze the

wiretap channel with side information under the corresponding
strong secrecy criterion (5), the inequality would
immediately follow as in Theorem 2, since additional side infor-
mation at the wiretapper cannot increase the secrecy capacity.
But here we consider secrecy based on the maximum uncer-
tainty criterion (6), which relies on the decoding performance
at the wiretapper and not on mutual information quantities. This
makes the corresponding inequality by no means self-evident
and is therefore devoted to the next subsection.

B. Optimal Preprocessing

The previous analysis has shown that for the wiretap channel
with side information under the maximum uncertainty crite-
rion (6), we can achieve the same rates as for classical wiretap
channel (without side information) under the strong secrecy cri-
terion (4).
The following theorem allows to show that the inequality

holds also under the maximum uncertainty crite-
rion. In addition, the result is interesting in itself as it character-
izes the optimal preprocessing at the transmitter and establishes
the vanishing output variation property also as a necessary con-
dition for maximum uncertainty at the wiretapper.
Theorem 5: Let be a sequence of wiretap codes

achieving the secrecy capacity withmaximum uncertainty of the
wiretap channel with side information and
be the corresponding stochastic encoder. Then, there exists a
measure on and some such that for all it
holds , cf. Equation (7). This means
the optimal code has the vanishing output variation property
according to Definition 5.

Proof: Let be an arbitrary message
subset with two elements. By the assumption of maximum un-
certainty we have at the wiretapper for arbitrary decoding sets

and (with and )

(13)
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with universal exponentially fast by assumption. Let
for all and

be the joint distribution and and be the corresponding
marginals. Since the messages are uniformly distributed, we
have . We can write (13) as

(14)

where the equality follows from the substitutions
and (recall that there are only two disjoint de-
coding sets). This can easily be rewritten as

(15)

Since the decoding set can be arbitrary by assumption, we
obtain from (15) for an arbitrary set that

Now, interchanging the roles of and and substituting

in (14), we similarly obtain

so that we end up with

Let us define the sets

with and . Then

(16)

and similarly

(17)

With we conclude from (16) and (17) on

Now, we set

for all , so that for any we have

(18)

This means an optimal code for the wiretap channel with side
information and maximum uncertainty at the wiretapper always
has the vanishing output variation property. Finally, since
decreases exponentially fast by assumption, it is ensured that
(18) is of the form as desired, cf. Equa-
tion (7). This completes the proof of the theorem.
Now we go back to the proof of converse of Theorem 4.

Therefore, we consider any code that achieves the secrecy
capacity with maximum uncertainty of the wiretap
channel with side information. Now, from Theorem 5 we know
that this code has the vanishing output variation property. From
Proposition 1 we know that if for all

, then for all . Thus, this code is
also a good code for the wiretap channel with side information
under the strong secrecy criterion so that this code cannot
achieve higher rates than , cf. Theorem 2. This finally
proves and completes the proof of
Theorem 4.

VI. EXTENSIONS TO CHANNEL UNCERTAINTY AND MULTIPLE
WIRETAPPERS

In the previous analysis we assumed that transmitter and re-
ceiver both have perfect channel state information (CSI) and
that there is only one wiretapper to be kept secret. In this sec-
tion we extend these results to more realistic communication
scenarios by taking channel uncertainty at the legitimate users
into account. In contrast to this, we allow the wiretapper to have
perfect CSI, but it is shown that the wiretapper will not take
any advantage from this knowledge. Further, we discuss how
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these results yield also robust processing strategies to keep mul-
tiple wiretappers ignorant of the confidential communication.
The aim of this section is to demonstrate the universality of the
derived techniques in the sense that they immediately apply to
much more involved problems as well.

A. Compound Wiretap Channel

Robust processing strategies are desirable in practical sys-
tems as there is always uncertainty in the channel state infor-
mation due to the nature of the wireless medium but also due
to implementational issues such as imperfect channel estima-
tion or limited feedback schemes. A reasonable model is to as-
sume that the exact channel realization is not known; rather, it
is only known that it belongs to a prespecified set of channels.
If this channel remains fixed during the whole transmission of a
codeword, this corresponds to the concept of compound chan-
nels [13], [14]. This model captures the nature of the wireless
medium, but also includes implementational issues of practical
systems.
To model the compound wiretap channel, let be a

finite index set. Then for fixed , the discrete mem-
oryless channels to the legitimate receiver and the wire-
tapper are given by and

.
Definition 6: The discrete memoryless compound wiretap

channel is given by

Remark 8: This includes the widely adopted model of the
form with as we can
always construct a new set of the form .
Since transmitter and receiver do not know the exact channel

realization, they have to use universal encoder and decoder not
depending on the actual channel realization similarly as already
given in Definition 1. The only difference is that we have to
ensure that the legitimate receiver can decode the transmitted
message for all channel realizations so that the average
probability and maximum probability of error become

and

Accordingly, since the exact channel realization to the wire-
tapper is not known at the legitimate users, we have to ensure
that the message is kept secret for all possible channel realiza-
tions . Thus, the strong secrecy requirement in (5) reads
now as

(19)

for all subsets with and
the corresponding output at the wire-

tapper for channel realization . On the other hand, the
maximum uncertainty criterion in (6) is independent of the

actual channel realization. Thus, it remains the same also in the
compound setting, i.e.,

(20)

for all subsets with .
With these extensions the definition of an achievable secrecy

rate for the compound wiretap channel with side information
and the corresponding strong secrecy capacity and
secrecy capacity with maximum uncertainty follow
accordingly from Definitions 3 and 4.
The previous analysis for perfect CSI has shown that the

property of vanishing output variation at the wiretapper, cf. Def-
inition 5, plays an important role. And so it does for the com-
pound wiretap channel so that we slightly adapt it as stated in
[17].
Definition 7: A code for the compound wiretap channel (with

side information) has exponentially fast vanishing output vari-
ation if for all there are measures on and some

such that for all and

it holds for all

The difference to Definition 5 is that it is sufficient to have
for each channel realization a different measure which
need not be the same for different channel realizations. This is
can be justified by the observation that for a certain channel
realization we have to ensure that the output at the wiretapper
looks “similar” for all possible messages. But it is not important
that it is the same for all different channel realizations. With this
and [17] we get the following.
Theorem 6: An achievable secrecy rate for the compound

wiretap channel with side information (for both strong secrecy
and maximum uncertainty) is given by

(21)

where the random variables form a Markov
chain, where and are the corresponding output random
variables for channel realization .

Sketch of Proof: Basically, the achievability of the rate
given in (21) follows the one in Theorem 2, where we again
make use of the code construction given in [17]. In more detail,
it already presents the construction of a code for the wiretap
channel (without side information) which establishes a reliable
communication to the legitimate receiver at the desired rate.
Thus, as in the proof of Theorem 2, it remains to check, if

the corresponding security requirements (19) and (20) are ful-
filled. Since the code from [17] has the vanishing output varia-
tion property, cf. Definition 7, it can easily be verified that for
each the property implies

as well as , cf. Propo-
sition 1. We omit the details for brevity.
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For the following discussion, we stick to the strong secrecy
criterion (19). Since additional side information at the wire-
tapper can only decrease the secrecy capacity, every upper
bound on the strong secrecy capacity of the compound wiretap
channel (without side information) immediately yields an upper
bound on the corresponding capacity for the case with side
information at the wiretapper. Accordingly, from [17] we get
the following multiletter upper bound.
Theorem 7: An upper bound on the strong secrecy capacity

of the compound wiretap channel with side information is given
by

where the random variables form aMarkov
chain.
Applying the achievability result given in Theorem 7 to the
-th memoryless extension of the channels, i.e., ,
yields the corresponding multiletter case. Together with the
converse result given in Theorem 7 we conclude on the fol-
lowing.
Corollary 1: A multiletter description of the strong secrecy

capacity of the compoundwiretap channel with side information
is given by

where the random variables form aMarkov
chain.
In addition, it is straight forward to show, similarly as in The-

orem 3, that for the compound wiretap channel with side infor-
mation, the optimal code must have the vanishing output varia-
tion property.
Corollary 2: Let be a sequence of wiretap codes

achieving the secrecy capacity of the compoundwiretap channel
with side information. Let and be the corre-
sponding stochastic encoder. Then, there exists for all
measures on and some such that for all
it holds . This means, the optimal code
has the almost vanishing output variation property, cf. Defini-
tion 7.

B. Multiple Wiretappers

Finally, we want to outline how the results derived for the
compound wiretap channel immediately yield solutions for the
multicast channel with multiple wiretappers. In this scenario,
the transmitter wants to transmit a common (multicast) message
to group of legitimate receivers while keeping the information
secret from a group of nonlegitimate users as depicted in Fig. 1.
The concept of compound wiretap channels provides a frame-
work which also includes this scenario. In this case, the number
of possible channel realizations corresponds to the number of le-
gitimate users and wiretappers respectively. Thus, each channel
realization can be interpreted as a certain legitimate receiver or
wiretapper.

Fig. 4. Wiretap channel with multiple wiretappers. Each wiretapper has his
own side information available, which restricts the message to a cer-
tain subset with .

Let us start with the scenario with only one legitimate user but
a group of wiretappers to be kept secret. Then the corresponding
compound wiretap channel, cf. Definition 6, becomes

and each channel realization , , corresponds to another
wiretapper which has to be kept secret. Intuitively, it is clear that
keeping one wiretapper with an unknown channel realization ig-
norant is the same task as keeping a whole group of wiretappers
with known channel realizations ignorant. The only difference
is that in the case of multiple wiretappers, each wiretapper may
have different side information about the transmitted message
available. This is called the wiretap channel with multiple wire-
tappers and visualized in Fig. 4.
The criteria of strong secrecy and maximum uncertainty for

compound wiretap channels already incorporate all possible
side information, cf. Equation (19) and (20). In more detail, for
strong secrecy we require to be small for all
and, more important, for all possible side information ,

. Similarly, for maximum uncertainty we require
for all possible side information

, . Thus, this framework immediately captures
the scenario with multiple wiretappers with different side
information. We obtain from Theorem 6 the following result.
Corollary 3: An achievable secrecy rate for the wiretap

channel with multiple wiretappers with side information (for
both strong secrecy and maximum uncertainty) is given by

where the random variables form a Markov
chain.
Next, we extend the scenario by transmitting the confidential

message not only to one receiver but to a whole group of legit-
imate receivers, the so called multicast channel with multiple
wiretappers. Then, the communication scenario is described by
the compound wiretap channel as given in Definition 6, where
each possible channel realization to the legitimate receiver
corresponds to one legitimate receiver of the group and each
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possible channel realization to the wiretapper to one additional
wiretapper. Then, we immediately obtain the following.
Corollary 4: An achievable secrecy rate for the multicast

channel with multiple wiretappers with side information (for
both strong secrecy and maximum uncertainty) is given by

where the random variables form a Markov
chain.

VII. CONCLUSION

Previous works on wiretap channels focused on wiretappers
which solely use their received channel output to infer the con-
fidential information. In this paper we studied more powerful
wiretappers which have additional side information available
for postprocessing. To do so, we considered two different con-
cepts to measure the secrecy of the transmitted message: the
information-theoretic-security-based criterion of strong secrecy
and the signal-processing-inspired criterion of maximum uncer-
tainty at the wiretapper. We derived the corresponding secrecy
capacities and showed that both criteria yield the same secrecy
capacity. Moreover, this secrecy capacity equals the secrecy ca-
pacity of the classical wiretap channel without side information.
Thus, regardless of the considered secrecy criterion, side infor-
mation at the wiretapper does not affect the performance of the
system in terms of secrecy capacity.
In addition to this, we studied the optimal transceiver design

which achieves the secrecy capacity. For this, it is shown that
the code property of vanishing output variation at the wiretapper
plays a crucial role. This property is established as a necessary
and sufficient condition to ensure secrecy under the strong se-
crecy criterion and the maximum uncertainty criterion. Thus, it
characterizes the optimal preprocessing at the transmitter. Fi-
nally, it is discussed how these results carry over to the practi-
cally relevant cases of channel uncertainty as well as multiple
legitimate receivers and multiple wiretappers.
Especially the identification of the vanishing output varia-

tion property as the optimal preprocessing at the transmitter
yields valuable insights why the secrecy capacity of the wiretap
channel does not change whether there is side information at the
wiretapper or not. Roughly speaking, the vanishing output vari-
ation property guarantees that the output at the nonlegitimate
wiretapper is always the same regardless of the actual message
that is transmitted and how much side information is available
at the wiretapper. The side information does not help the wire-
tapper to extract further information from the received signal.
Thus, the received signal at the wiretapper is always useless
regardless of the amount of available side information. Conse-
quently, the secrecy capacity does not change whether there is
side information or not.
For future work, it will be interesting to extend these results

and the obtained insights to more realistic communication sce-
narios. This includes the impact finite block lengths to charac-
terize the secrecy rate penalty due to finite block lengths com-
pared to the (asymptotic) secrecy capacity result, cf. for instance

[21]. But it includes also more realistic channel models which
then requires other metrics such as secrecy outage capacity or
ergodic secrecy capacity.
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