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ABSTRACT 

The Bayesian network (BN) is a convenient tool for probabilistic modeling of system 

performance, particularly when it is of interest to update the reliability of the system or its 

components in light of observed information. In this paper, BN structures for modeling the 

performance of systems that are defined in terms of their minimum link or cut sets are 

investigated. Standard BN structures that define the system node as a child of its constituent 

components or its minimum link/cut sets lead to converging structures, which are 

computationally disadvantageous and could severely hamper application of the BN to real 

systems. A systematic approach to defining an alternative formulation is developed that 

creates chain-like BN structures that are orders of magnitude more efficient, particularly in 

terms of computational memory demand. The formulation uses an integer optimization 

algorithm to identify the most efficient BN structure. Example applications demonstrate the 

proposed methodology and quantify the gained computational advantage. 
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1. Introduction 

Engineering decisions often involve probabilistic assessment of the state of a system under 

evolving and uncertain information. For example, in the immediate aftermath of a natural 

disaster, such as an earthquake affecting an urban community, decisions must be made 

regarding dispatch of rescue teams and inspection crews, continued operation or closure of 

facilities, and prioritization of repair actions and restoration of services, all of which depend 

on the assessment of the functioning states of various infrastructural systems. Such 

assessment is strongly influenced by the available information, which in the immediate 

aftermath of a natural disaster is highly uncertain and rapidly evolves as the states of various 

system components are observed or measurements of the hazard are made. Another example 

is the management of a deteriorating system, where decisions need to be made on the 

frequency and extent of inspections and on maintenance, repair and replacement actions, 

while future capacities and demands of the system remain uncertain. In both cases, there is 

need for a method to update the probabilistic assessment of the system state as information, 

often of uncertain type, becomes available from measurements, inspections, and other 

observations of the system and its components.  

 The Bayesian network (BN) is an ideal framework for the analysis of such systems, 

particularly when updating of the probabilistic model in light of evolving and uncertain 

information is an important objective. The BN is a graphical model consisting of nodes and 

directed links, which respectively represent random variables and their probabilistic 

dependencies (Pearl 1988, Jensen and Nielsen 2007). The variables may represent the states 

of the components of a system, or their capacities and demands. The BN provides a convenient 

means for modeling dependence between the component states, which is rather difficult in 

most classical system reliability methods (Pagès and Gondran 1986). Furthermore, upon 

entering evidence on one or more variables, e.g., the observed states, capacities or demands of 

a subset of the components, the information propagates throughout the network and updates 

distributions of other random variables, e.g., the states of other components and the system, in 

accordance with the Bayes' rule. Finally, by addition of decision and utility nodes, the BN 

renders a decision graph that facilitates decision-making in accordance with the maximum 

expected utility criterion (Shachter 1986, Jensen and Nielsen 2007).  

This paper focuses on the development of a systematic approach to using BNs for modeling 

the performance of systems that are defined in terms of their minimum link sets (MLSs) or 

minimum cut sets (MCSs). The methodology presented in this paper is motivated by our 

efforts in modeling the performance of spatially distributed civil infrastructure systems (e.g., a 

highway network or water distribution system) subjected to an earthquake hazard, with 

particular emphasis on post-earthquake risk assessment and decision making (see Bensi et al. 

(2011)). For such an application, efficient computations and near real-time inference in 

models of large systems are essential. Furthermore, the considered systems are more easily 

characterized in terms of their MLSs/MCSs than by other means, such as fault trees, event 

trees or reliability block diagrams. While this paper was motivated by this specific application, 

the methods presented are applicable to a broader scope of problems.   

 The BN has been used in the past for system reliability analysis (see, e.g., Torres-

Toledano and Sucar 1998; Mahadevan et al. 2001; Bobbio et al. 2001; Friis-Hansen 2004; Liu 

et al. 2008; Lampis and Andrews 2009; Straub and Der Kiureghian 2010a-b). Some of these 

works consider intuitive approaches to modeling systems as BNs (e.g., Friis-Hansen 2004). 

Others consider the fault tree (e.g., Liu et al. 2008; Bobbio et al. 2001) or the reliability block 
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diagram (e.g., Torres-Toledano and Sucar 1998) as the native source of system information. 

Other papers develop BNs for relatively simple systems, for which computational demands 

are not of particular concern. This work differs from previous efforts by defining a systematic 

approach to developing an efficient BN structure for modeling the reliability of complex 

systems when the MLSs or MCSs are the native source of system information. The approach is 

particularly useful when working with topologically defined systems, in which the system 

decomposition is commonly done through the MLSs and/or MCSs. While other authors have 

used BNs to model systems that are topologically defined through a reliability block diagram 

(e.g., Torres-Toledano and Sucar 1998)), no systematic attempt has been made to optimize the 

BN structure, particularly when working with large, multi-state systems. It turns out that 

conventional BN models rapidly grow in size and density with increasing size of the system, so 

that even for moderately sized systems the computational and memory demands make the 

model infeasible, especially when using exact inference algorithms with multi-state nodes. 

With this shortcoming in mind, in this paper we develop methods for generating efficient BN 

topologies for modeling systems with binary and multi-state components. A discrete 

optimization algorithm is developed that minimizes the density of the BN, thereby providing 

orders of magnitude savings in computational time and memory. This development facilitates 

consideration of systems, which otherwise could not be solved with conventional BN 

formulations.  

 The paper begins with a brief introduction to the BN. The introduction is limited to those 

aspects that are needed to motivate the remainder of the paper. Next, efficient Bayesian 

network formulations for modeling series and parallel systems with binary components are 

presented. These are then extended to general systems with binary and multi-state 

components. To automate construction of the efficient Bayesian network formulations, a 

binary integer optimization problem is formulated. Furthermore, two heuristic augmentations 

are presented to reduce the size of the optimization problem. Several examples demonstrate 

the proposed methodology and its effectiveness.  

2. Brief introduction to Bayesian networks 

A BN is characterized by a directed acyclic graph consisting of a set of nodes representing 

random variables and a set of links representing probabilistic dependencies. In this paper, we 

limit the treatment to BNs in which all random variables are discrete; the reader interested in 

BNs with continuous random variables is referred to Langseth et al. (2009). Consider the 

simple BN in Figure 1. The directed links from    and    to    indicate that the 

distribution of    is defined conditioned on    and   . In the BN terminology, random 

variable    is said to be a child of random variables    and   , while the latter are the 

parents of   . Similarly,    is a child of   , while    is a child of   . Each node is 

associated with a set of mutually exclusive and collectively exhaustive states, corresponding 

to the outcome space of the discrete random variable. Attached to each node is a conditional 

probability table (CPT), providing the conditional probability mass function of the random 

variable given each of the mutually exclusive states of its parents. For root nodes that have no 

parents, e.g.,    and    in Figure 1, a marginal probability table is assigned.  
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Figure 1. A simple BN 

 The joint distribution of the random variables in the BN is given as the product of the 

conditional distributions, i.e., 

              ∏            
 

   
    (1) 

where        is the set of parents of node   ,  (  |      ) is the CPT of    and   is the 

number of random variables (nodes) in the BN. Thus, for the BN in Figure 1, the joint 

probability mass function is  

                                                        (2) 

 BNs are useful for answering probabilistic queries when one or more variables are 

observed. As an example, suppose for the BN in Figure 1 the observations       and 

      have been made and the conditional distribution           ) is of interest. This 

posterior distribution is computed by first marginalizing the joint distribution in (2) to obtain 

the joint distributions of the subsets of the variables: 

            ∑           
     

 (3) 

         ∑           
        

 (4) 

The desired conditional distribution then is                                 . While it is 

possible to obtain updated distributions by this method, this is not a computationally efficient 

approach for non-trivial BNs. Several efficient algorithms for exact and approximate 

probabilistic inference in BNs have been developed (see, e.g., Dechter 1996; Langseth et al. 

2009; Lauritzen and Spiegelhalter 1988; Madsen 2008; Yuan & Druzdzel 2003; Yuan & 

Druzdzel 2006). The general principles of exact inference algorithms are outlined here to 

highlight the requirements for efficient BN topologies.  

The efficiency of the BN stems from the decomposition of the joint distribution into local 

conditional distributions, as exemplified in Eq. (2). When summing over the joint distribution, 

as in Eqs. (3) and (4), no use of the decomposition is made and computations are inefficient. 

However, by writing the joint distribution in the product form of Eq. (1), it is possible to 

rearrange the summation and product operations due to their distributive and commutative 

properties. As an example, Eq. (3) is written as 

            ∑∑                                     

    

 (5) 

X1 X2

X4

X5

X3
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                                ∑                        ∑        

    

 

The summation operations can be interpreted as node eliminations. Since calculations are 

performed from right to left, Eq. (5) corresponds to an elimination of    followed by the 

elimination of   . Clearly, solving the second line of Eq. (5) is more efficient than solving the 

first, because the summations are performed in smaller domains. The summation over    is 

in the domain of    and    only (and can actually be omitted, since it results in 1). The 

summation over    is in the domain of             and   , for which it is required to 

establish a table (called a potential), whose number of entries is equal to the product of the 

number of states of these variables. In general, the sizes of the potentials over which 

summations are performed determine the efficiency of the inference algorithm.  

The potentials, and consequently the efficiency of the inference algorithm, depend on the 

ordering of node eliminations. However, there exist computationally optimal elimination 

sequences, all of which lead to the same domain set, i.e. the domains of the potentials arising 

in the process are the same. The domains corresponding to the optimal elimination sequences 

are called cliques. The total size of the potentials associated with these cliques is a good proxy 

for the computational effort required for performing inference in the BN and is used in this 

paper to assess and compare efficiencies of various BN system formulations. 

While all exact inference algorithms aim at finding the optimal ordering of node 

eliminations, they follow different strategies for doing so. In particular, some algorithms 

optimize the elimination for a specific inference task, while others, such as the junction tree 

algorithm (Jensen & Nielsen 2007), optimize computations for general inference. With the 

latter, parts of the computations are reused, which becomes efficient when the interest is in 

updated distributions of many variables and when considering multiple evidence cases. Our 

interest is more focused on general inference applications. Several of these algorithms are 

implemented in available software applications (e.g. DSL 2007; Hugin Expert A/S 2008), 

facilitating inference in complex BNs. 

While this paper focuses on improving the computational efficiency of exact inference 

algorithms, it is believed that the approaches developed here will also be useful for 

approximate algorithms by reducing the size of CPTs that must be stored. We do not explore 

computational improvements that might be available for exact inference by consideration of 

deterministic substructures within the BN. As Nielsen et al. (2000) have shown, advanced 

Boolean calculations can be used to improve the efficiency of exact algorithms when the 

deterministic part of a BN model is represented as a Boolean function. It is believed that such 

an approach can be used to further improve the computational efficiency of the BN model 

resulting from our topology optimization scheme. 

3. Modeling system performance via Bayesian network 

Consider a system of    components, with component   having    discrete states. The 

number of distinct configurations of the system is ∏   
  
   . We refer to a BN formulation that 

defines the system state directly in terms of the states of its constituent components as the 

naïve BN formulation. Figure 2 shows one such BN, where node    defines the state of 

component   and node      defines the state of the system. If the system has    discrete 

states, then the CPT associated with the system node has    ∏   
  
    entries. Although this 
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formulation has been used in the past (e.g., see Mahadevan et al. 2001), for a system with even 

a moderate number of components or component states, the size of the CPT for the system 

node becomes so large that the BN becomes computationally intractable. Clearly, a more 

efficient BN formulation is needed.  

 

  

Figure 2: Naïve BN formulation  

 As an alternative to the above naïve approach, in this paper we present four additional BN 

formulations for modeling system performance. The first two formulations make use of 

minimal link sets (MLSs) and minimal cut sets (MCSs) for systems with binary component and 

system states, but employ converging structures as in the naïve formulation. It is shown that 

the MCS formulation is also applicable to a certain class of systems with multi-state 

components. We then develop two additional formulations that employ MLSs/MCSs for 

systems with binary states, but result in chain-like BN topologies that are far more efficient 

for computational purposes. These are first developed for series and parallel systems and 

then extended to general systems. The efficient MCS formulation is shown to be also 

applicable to a certain class of systems with multi-state components.   

4. BN system models using minimal link and cut sets 

4. 1 Binary components and system 

Consider a system with binary component and system states, say survival/fail states. A 

minimal link set (MLS) is a minimum set of components whose joint survival constitutes 

survival of the system. The minimal link set BN formulation introduces intermediate nodes 

between the component and system nodes, which represent the states of the MLSs, as shown 

in Figure 3. Torres-Toledano and Sucar (1998) used such a BN formulation for modeling 

system performance, though with less formality and generality than described here. The 

binary states of the MLS nodes are defined such that each MLS node is in the survival state 

only if all its constituent components have survived; otherwise, it is in the fail state. The 

system node is in the survival state if any MLS node is in the survival state. Let      denote 

the number of MLSs of the system and        denote the number of components in the  th 

MLS. The size of the CPT of the  th MLS node is          , and the size of the CPT of the 

system node is        . Clearly, when the number of MLSs is large, the size of the CPT 

associated with the system node becomes large. A similar problem occurs for an MLS node 

when the number of its constituent components is large.  

   

C1 Ci CNc
... ...C2

Ssys
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Figure 3: MLS formulation 

The dual of the MLS formulation is the minimal cut set BN formulation. A MCS is a minimum 

set of components whose joint failure constitutes failure of the system. In this formulation, the 

system node is a child of nodes representing MCSs, and each MCS node is a child of nodes 

representing the states of its constituent components, see Figure 4. The system node is a 

series system of all the MCS nodes, (i.e., the system node is in the fail state if at least one MCS 

node is in the fail state), whereas each MCS is a parallel system of its parent nodes (i.e. all 

constituent components must be in the fail state for the MCS node to be in the fail state). As 

with the MLS formulation, the CPTs in this formulation become large as the number of MCSs, 

denoted     , increases and/or the number of components in an MCS, denoted        for 

the  th MCS, becomes large. 

 

 

Figure 4: MCS formulation  

4.2 Multi-state flow systems with multi-state components 

A multi-state flow system with multi-state components can be modeled by the MCS BN 

formulation through application of the Max-Flow Min-Cut theorem (Elias et al. 1956; Ford and 

Fulkerson 1956). We are not aware of a similar theory that allows adaptation of the MLS 

formulation to multi-state flow systems. 

 Consider a system describing flow from a source node to a sink node and identify its MCSs 

assuming components are binary. Each component of the system has a flow capacity, which is 

discretized into a set of distinct states, e.g., 0%, 25%, 50%, 75% and 100% of a maximum 

capacity. Let      denote the capacity state of component  . For a distributed component 

C1
Ci... ...

MLS1 MLSj MLSNMLS
... ...

C2

MLS2

Ssys

CNc

C1
... ...

MCS1 MCSj MCSNMCS
... ...

C2

MCS2

Ssys

CNc
Ci
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with directed flow, we consider the capacity when going from the source side to the sink side 

of the cut. Assign to each MCS a capacity value equal to the sum of the capacities of its 

constituent components. The Max-Flow Min-Cut theorem states that the maximum flow 

capacity from the source to the sink is equal to the minimum value among all MCSs, i.e. the 

bottleneck in the system. The theorem allows adaptation of the MCS BN formulation to multi-

state problems, without changing the topology of the BN created when assuming components 

are binary. It is only necessary to increase the number of states associated with each BN node 

to correspond to the component, MCS or system capacity levels, and use arithmetic 

expressions rather than Boolean logic to define the relationships between the nodes, as 

described below.   

 Nodes    in Figure 4 are modified to represent multiple states corresponding to the 

capacity levels of each component. If the component has a continuous capacity state, then the 

range of possible capacities must be discretized into several small intervals; in such a case, 

node    is said to represent an interval node. Similarly, nodes      have multiple states 

having capacity values defined using the relation 

       
 ∑     

       

 (6) 

The capacity of the system node is obtained using the relation 

          
            

       
 (7) 

When    are interval nodes,      and      are also interval nodes. In constructing the 

CPTs of the latter nodes, the intervals for these nodes must be selected by considering the 

entire range of their possible capacity values as obtained from Eqs. (6) and (7). More details 

about computation of CPTs for interval nodes is given in Bensi et al. (2011).  

5. Efficient BN system models 

5.1 Motivation 

The MLS and MCS formulations described in the preceding section result in converging BN 

structures. In general, BN structures with nodes arranged in chains are significantly more 

efficient than those having converging structures. As we will show later, the two BN structures 

shown in Figure 5 represent the same system. Figure 5a shows a converging structure similar 

to the BN models presented in the previous section, and Figure 5b illustrates a chain 

structure. In both BNs, dependence among the components is considered by introducing a 

common demand node  . A formal description of the construction of the BN in Figure 5b is 

presented later in this section.   
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              (a)                             (b) 

Figure 5: Equivalent BNs with (a) converging structure, and (b) chain structure   

 Figure 6 compares the computational demands, measured in terms of the total clique sizes, 

for the BNs in Figure 5 with converging and chain structures, when the system components 

have 2 and 5 states. As the number of components increase, the computational demand of the 

BN with converging structure increases exponentially, while that of the BN with the chain 

structure increases linearly. However, for 2-state components, the converging structure is 

more efficient than the chain structure when the number of components is less than 4. Thus, 

when the node modeling system performance in Figure 5a has more than 3 parents (i.e. 

constituent components), it is advantageous to model the system as in Figure 5b. 

 

 

(a)                                 (b) 

Figure 6: Computational demands of system BNs with converging and chain topologies when 

components have (a) 2 states and (b) 5 states  

 The computational demands associated with inference are influenced not only by the 

system size and configuration, but also by the number of common parents to the component 

nodes (similar to node   in Figure 5). Figure 7 shows a comparison of computational 

demands associated with the converging and chain BN topologies with binary component 

nodes with 1, 2 and 3 common parent demand nodes. It is observed that increasing the 

number of common parent nodes increases the computational demand. However, the chain 

structure remains advantageous to the converging structure as the number of components 

increases. Note that, as the number of common demand nodes increases, the “cut-off” point at 

which the chain structure is more efficient than the converging structure moves slightly 

upward. For three common demand nodes, the chain structure is more efficient for 5 or more 

components and for one common demand node, it is more efficient for 4 or more components.  
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Figure 7: Comparison of computational demands associated with converging and chain BN 

topologies for binary nodes with one or more common parent demand nodes  

5.2 Series and parallel systems with binary components 

We now describe how the performance of systems with binary components can be modeled 

with BNs having the chain topology. Define a survival path sequence (SPS) as a chain of events, 

corresponding to a MLS, in which the terminal event in the sequence indicates whether or not 

all the components in the MLS are in the survival state. Note that the term “sequence” does not 

have any temporal implications. A series system has one MLS and a parallel system has    

MLSs. It follows that a series system has one SPS and a parallel system has    SPSs. A SPS is 

comprised of a chain of survival path events (SPEs), each of which is associated with a 

component and describes the state of the sequence up to that event. SPEs are represented in 

the BN by nodes labeled     , the subscript   indicating the association with component  . 

The state of      is defined as  

             {           }   {    } 

                

(8) 

where          defines the state of the SPE node that is parent to     ;        indicates 

that the node is in the survival state and        indicates its failure (we use this Boolean 

notation throughout this paper). Thus, for a series system, the BN formulation takes the form 

shown in Figure 8a. The state of node      is equal to the state of node   .      is in the 

survival state only if      is in the survival state and    is in the survival state. This pattern 

continues such that      
 is in the survival state only if both         and    

 are in the 

survival state. Consequently, the state of      
 describes the state of the entire SPS (i.e. it 

indicates whether all components in the MLS have survived) and, therefore, that of the series 

system. The state of node      is equal to the state of      
 in Figure 8a. 
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                      (a)                            (b) 

Figure 8: BN using SPEs to model performance of (a) series system, (b) parallel system  

 A parallel system has a SPS corresponding to each component. The resulting BN 

formulation is shown in Figure 8b. The system node indicates system survival if any node      

is in the survival state. Like the naïve formulation, the exponential growth in the size of the 

CPT associated with the system node renders this BN intractable when the number of 

components is large.   

 Define a failure path sequence (FPS) as a chain of events, corresponding to a MCS, in which 

the terminal event in the sequence indicates whether or not all components in the MCS are in 

the fail state. For a series system, there are    FPSs, one corresponding to each component. 

For a parallel system, there is only one MCS and thus one FPS. A FPS is comprised of a chain of 

failure path events (FPEs), each of which is associated with a component and gives the state of 

the sequence up to that event. Let      be the node in the BN that represents the FPE 

associated with component  . The state of      is defined as 

             {          }    {    } 

                (9) 

where          defines the state of the FPE node that is parent to     . For a series system, 

the BN formulation using FPSs takes the form shown in Figure 9a, which has the undesirable 

converging structure. For a parallel system, the BN formulation takes the chain form shown in 

Figure 9b. These findings suggest that a combination of SPS and FPS formulations can be used 

to efficiently model general systems. This approach is described in the next section.  

 

 

(a)                                 (b) 

Figure 9: BN using FPEs to model performance of (a) series system, (b) parallel system  
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A MLS is a series system of its constituent components. Therefore, using the above 

formulation, each MLS of the system can be described by an SPS, resulting in a chain-like BN 

structure. Consider the example system in Figure 10a, which has four MLSs:     ={1,7,8}, 

     {2,7,8},      {3,7,8} and      {4,5,6,7,8}. In Figure 10b each MLS is modeled as 

an individual SPS. The SPEs,     
 

, in each SPS are indexed by a subscript corresponding to the 

associated component   and a superscript corresponding to the associated MLS  . The 

dependence between SPEs that share a component is modeled through a common parent 

node. The system node is in the survival state if the terminal node of any SPS is in the survival 

state. For reference, the BN formulation in which the MLSs are arranged in chain structures is 

named efficient MLS BN formulation. Similar logic leads to the creation of an efficient MCS BN 

formulation, whereby strings of FPSs are constructed corresponding to each MCS.   

 The dependence between SPEs or FPEs sharing a component increases the computational 

demand when performing inference in the BN. By coalescing common SPEs/FPEs that appear 

in multiple SPSs/FPSs, the number of nodes and links in the BN, and hence the computational 

demand, are reduced. In the example system, components 7 and 8 appear in all SPSs. We take 

advantage of this observation and introduce only one “instance” of the SPEs associated with 

these components. The resulting BN is shown in Figure 11a. Note that this configuration also 

avoids the converging structure of the system node. It does, however, require a converging 

SPE node (node      in Figure 11a). The states of such SPE nodes having multiple SPEs as 

parents are specified using the Boolean relation 

               [ {          }]   {    } 

                 
(10) 

 

 

Figure 10: (a) Example system; (b) Efficient MLS formulation with distinct SPSs   
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Figure 11: Efficient MLS formulations for the example system with coalesced SPEs associated 

with components 7 and 8 using (a) a converging structure (b) a chain structure  

 A notational change has been introduced in Figure 11a: the superscript on each SPE node, 

which previously indicated the MLS index, now represents the instance of the SPE, i.e. when 

multiple SPEs are associated with the same component, then they are recognized as different 

instances of the SPE and are distinguished through the superscript. For this example system, 

because each component is associated with only one SPE, all superscripts in Figure 11a are 1. 

In the following, we drop the instance index, unless it is required for clarity. 

 Note that the converging structure of node      in Figure 11a arises because of the need to 

represent a parallel sub-system. Since parallel systems are ideally represented using chains of 

FPEs, the converging structure can be modified by replacing the SPE nodes associated with 

components 1, 2 and 3 with FPE nodes arranged in a chain, resulting in the BN in Figure 11b. 

The definition of the FPE nodes with SPE nodes as parents follows the original definition: 

             {          }   {          }    {    } 

                (11) 

where          and          are the FPE and SPE nodes, respectively, that are parents to 

    .    

While all three BN models of the example system (Figures 10b, 11a and 1b) are termed 

efficient MLS formulations, their efficiency is in fact quite variable. The total clique size 

associated with the BN in Figure 10b is 224, the one associated with the BN in Figure 11a is 

108 and the one associated with the BN in Figure 11b is 64. This illustrates the potential 

efficiency gain when coalescing multiple instances of SPEs in different SPSs. 

 Thus far, the SPEs in a SPS (FPEs in a FPS) corresponding to a particular MLS (MCS) have 

been arranged in an arbitrarily selected order. For complex systems, the arrangement of the 

SPEs in the SPSs may strongly influence our ability to coalesce multiple instances of SPEs in 

different SPSs (analogously FPEs in FPSs). The order in which SPEs (FPEs) appear can be 

optimized such that SPEs in as many SPSs (FPEs in as many FPSs) as possible are coalesced. 

As demonstrated earlier, this reduces the number of nodes and links in the BN. This 

optimization problem is described next. For brevity, only the formulation employing SPSs is 

presented; a dual formulation applies to FPSs. Since the focus is on SPEs only, the possibility 
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to combine SPEs and FPEs is not considered. Such a combination can be performed as an 

additional step after the optimization of the SPEs (or FPEs), similar to the example shown in 

Figure 11b. 

6. Optimal ordering of survival path events 

The aim of this section is to formalize the problem of finding the optimal arrangement of SPEs 

in SPSs for a general system. Let            indicate the existence of a directed link from 

node     
  to node     

  in the efficient MLS BN formulation and            indicate the 

absence of such a link, where   and   are component indices and   and   are indices 

denoting the instances of these SPE nodes in the BN. Also, let   
    indicate a directed link 

between the node representing component   and node     
  and   

    indicate a 

directed link between     
  and the system node (with   

    and   
    respectively 

denoting their absences). The decision variables in the optimization problem are the links 

between the SPE nodes,         . The remaining links,   
  and   

 , follow from the 

        , as described later. Formulation of this optimization problem assumes the use of 

only SPE nodes as defined in Eq. (10) and a converging structure at the system node. To 

further increase computational efficiency of the resulting BN, the converging structure at the 

system or any other node can be replaced by a chain structure by use of FPEs in the manner 

described in Figure 11.  

 Using the number of links in the BN as a proxy for computational demands required when 

performing inference, the objective of the optimization problem is to minimize the number of 

links in the BN. This is formulated as 

   [∑∑ ∑ ∑         

  

   

 ∑ ∑   
 

  

   

 ∑ ∑   
 

  

   

  

   

  

   

  

   

  

   

  

   

] (12) 

where    is the maximum number of instances of any SPE. It is desirable that    be as 

small as possible, but its value is not known prior to solving the optimization problem.  

Thus, an iterative procedure is used to find the smallest    for which the optimization 

problem has a feasible solution. To ensure that the BN structure represents the system 

through SPEs in the manner described in the preceding section, a number of constraints on 

the optimization problem are formulated, as follows. 

 First, every SPE node must have a link pointing to it from the corresponding component 

node. Specifically,   
    if node     

  exists in the BN, which occurs if the decision 

variables indicate a link going into or out of node     
 . (A node without links going into or out 

of it can be removed from the BN.) Mathematically, this is formulated as a constraint on the 

optimization problem, written as  

[∑ ∑ {                 }   
  
   

  
   ]    

     (13) 

Second, if     
  exists and has no other SPE node as a child, then it is a terminal node in a SPS. 

Such a node must have a link to the system node, i.e.   
   . This leads to the second 

constraint on the optimization problem, written as 

[∑ ∑           
  
   

  
   ]  [∑ ∑           

  
   

  
   ]    

     (14) 
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Well known techniques are available for modeling “if-then” propositions, as in the preceding 

two equations, into constraints in numerical optimization, e.g., see Sarker & Newton (2008).  

 Third, there are two constraints governing the arrangement of the SPE nodes in the BN: (a) 

each MLS must be represented by a SPS, and (b) no SPS may exist that is not strictly a MLS. 

Violation of the first constraint results in exclusion of one or more MLSs, causing 

underestimation of the system reliability. Violation of the second constraint results in a BN 

that includes one or more fictitious MLSs, thus causing overestimation of the system 

reliability. 

 Constraint (a) requires that each MLS be represented as a SPS, i.e. at least one permutation 

of the SPEs associated with the components in the MLS must be connected as a chain. Let 

       denote the number of components in     . For the example system in Figure 10a, we 

have                        and         . Let    denote the set of permutations, 

without replacement, of the component indices in      and define  

  
  {    

      
             

 } as its     member. As an example, for the system in Figure 10a, 

we have    {  
             

            
             

            
            

  

       }. 

 Next, let    denote the set of permutations with replacement of        draws from the 

index set {      } and define   
 

 {    
 

     
 

            

 
} as its     member. Using the 

example in Figure 10a and assuming     , we have    {  
            

             
  

           
             

             
             

             
         } . Note that    

has         members, while    has   

       members.    

 Define the set   
   

      
   

     
   

            

   
 , which combines the elements of   

  and   
 

. 

Specifically,   
   

 includes the component indices in   
  with superscripts specified 

according to   
 

. For the example system,   
    {        } ,   

    {        } ,   
    

{        }, etc. Overall, for this particular MLS, there are          possible ways to 

arrange the component indices and the instance superscripts.  

 For convenience, define the sum 

  
   

 ∑       
   

       
   

 
        

   ,  (15) 

where     
   

 is the     element of   
   

.   
   

          only if the SPEs corresponding 

to the components in      form a SPS in the order specified by   
  and with instance 

indices according to   
 

. For a SPS associated with the  th MLS to exist in the BN, we must 

have   
   

          for at least one component/instance index ordering from the set 

  
   

. The constraint is written as 

   
   

  
   

                                            

       (16) 

where,   is used rather that than equality for convenience of the optimization algorithm.  

 Constraint (b) requires that no SPS exist in the BN that does not correspond to a MLS. 

Consider the BN segment shown in Figure 12a. Let the shaded nodes (    
      

      
  

    
 ) represent a particular permutation of component/instance indices   
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{           } resulting in a valid SPS. Constraint (b) must prohibit a SPE     
 , for any    

from “branching-off” the SPS at any node, i.e. being a child of any node in the chain, unless the 

component   exists in a MLS with all the preceding components in the sequence. For 

example, in Figure 12a,     
  cannot exist as a child of     

  unless components 1, 2, 3 and   

exist together in a MLS. If components 1, 2, 3 and   do not exist in a MLS, then the false 

survival path shown by nodes with dashed edges is introduced into the BN. The associated 

constraints for all valid SPSs are written as 

{[  
   

         ]     [    
   

   ]        {    
        

   }         }                  (17) 

 

 

Figure 12: BN used to illustrate constraint (b)  

Furthermore, constraint (b) must prohibit SPE     
 , for any  , from being a parent to any 

node in a valid SPS, unless component   exists in a MLS with all subsequent components in 

the sequence. For example, in Figure 12b,     
  cannot be a parent of     

  unless 

components 2, 3, 4 and   exist together in a MLS. The second constraint for all valid SPSs 

takes the form 

{[  
     

         ]   

 [       
     

]             {      
   

            

   
}          }                

(18) 

Combining (17) and (18) results in constraint (b), written as 

{[  
     

          ]   

∑ ∑ ∑ ∑  [    
     

   ]  

    {    
   

       
   

  }     

      

   

  

   

    

       

 

∑ ∑ ∑ ∑  [       
     

]   

    {      
   

            

   
}     

      

   

  

   

    

       

}
 
 

 
 

             

(19) 

Constraint (b) along with the objective function, the minimization of which ensures that 

links that are not necessary for constructing the required SPSs are not in the BN, prohibits 

formation of invalid SPSs in the BN. 

 The efficient MCS formulation is the dual of the efficient MLS formulation, where strings of 

FPSs are constructed corresponding to each MCS. Therefore, for constructing an FPS 

formulation, an optimization problem identical to the above with SPEs replaced by FPEs can 

be formulated.  

 The integer optimization problem described above requires consideration of permutations 

of component indices and instances. Consequently, the size of the problem rapidly grows with 

Es,1
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the number of components. To overcome this difficulty, several heuristics are introduced in a 

later section of this paper.  

6.1 Extension to multi-state flow systems 

As with the standard MCS formulation, the efficient MCS formulation can be adapted to handle 

multi-state problems through the application of the Max-Flow Min-Cut Theorem. The topology 

of the BN need not differ from the topology used for the binary state problem. It is only 

necessary to increase the number of states associated with each node and use arithmetic 

expressions instead of Boolean relations to define the CPTs. The states of the FPE nodes are 

associated with capacity values defined by 

       
    

       (    )
       

      (20) 

That is, the capacity value assigned to node      is equal to the minimum of the capacity 

values of its parent FPE nodes, plus the capacity of the associated component. Thus, the 

capacity of each FPE node can be thought of as representing the “running total” of the 

capacities of the MCSs that it is a part of. The capacity of node     , representing the 

maximum operating level of the system, is the minimum capacity among all MCSs. Thus, it is 

defined as 

          
            

       
 (21) 

6.2 Example Application 

To illustrate the computational advantages of using the proposed efficient BN formulation, 

consider the system in Figure 13a consisting of 10 labeled components. In this example, a 

source and a sink are connected, by default, by two connectivity paths. One connectivity path 

is represented by a solid line and the other by short dashed lines. In this configuration, the 

system has three MLSs: {   }, {   }, and {         }. Component 10 represents a switch, 

which can be used to change from the default configuration to an alternate configuration 

represented by long dashed lines in Figure 13a. This alternate configuration can be “switched 

to,” provided component 10 is working. This adds 4 more connectivity paths through the 

system:{      }, {      }  {      }, {      }. Thus, overall, the system has 7 MLSs.  The BN 

obtained using the proposed optimization algorithm is shown in Figure 13b, where the SPS 

corresponding to the MLS {         } is highlighted by shaded nodes. Figure 13c shows the 

same BN with the SPSs corresponding to each of the remaining MLSs similarly highlighted. 

The total clique size associated with this BN is 184. The total clique size of the MLS BN 

formulation with the converging structure (similar in form to the general configuration in 

Figure 4) is 5,140, and it is          with the naïve BN formulation. When intermediate 

nodes are introduced in the MLS BN formulation to ensure no node has more than three 

parents (a common approach for reducing the number of parents in BNs, see Straub and Der 

Kiureghian 2010a), the total clique size reduces to 804, but remains substantially higher than 

that achieved with the efficient MLS BN topology. Thus, the optimized BN is over an order of 

magnitude computationally more efficient than the alternate approaches. Furthermore, note 

that node      is a parallel system of its four parent SPS nodes. A small additional 

computational advantage is achieved by modifying the converging structure with a chain 

structure, as demonstrated in Figure 11b for the earlier example application. 
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(a) 

 

(b) 

 

 

(c) 

Figure 13: (a) Example network system; (b) efficient MLS BN formulation with one SPS 

highlighted; (c) BNs showing SPSs corresponding to remaining MLSs 
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7 Heuristic Augmentation 

As mentioned earlier, the binary optimization problem described above rapidly grows in size 

due to the requirement to consider all permutations of component indices and instances. To 

overcome this problem, in this section we present two heuristics: One aims at reducing the 

number of components that need to be considered, and one aims at reducing the number of 

permutations. Additional heuristics can be developed to further improve the performance and 

scalability of the optimization algorithm described in this paper. 

7.1 Heuristic employing super components 

Der Kiureghian and Song (2008) introduced the idea of multi-scale modeling of systems, 

whereby subsets of elementary components are grouped into “super components.” Analysis is 

performed for individual super components and results are then aggregated at the system 

level. The super components typically comprise simple sub-systems, such as components that 

exist in series or in parallel along a system link. Use of super components reduces the effective 

number of components and, thereby, permutations of their indices. It also facilitates the 

combining of SPSs and FPSs. 

 Once again, consider the simple system shown in Figure 10a. Components   ,    and    

exist in series as do components    and   . We replace these subsets of components by two 

super components     and    , respectively, as shown in Figure 14. The system still has 4 

MLSs, but the number of components in them is reduced: {1,   }, {2,   },{3,    },{   ,   }. 

 

 

Figure 14: System in Figure 10a with component sets       ,    and          

respectively replaced by super components     and     

Examination of Figure 14 reveals that components          and     exist in parallel.  

These components are next replaced by a single super component resulting in the system 

representation shown in Figure 15. Now, components     and     exist in series and can 

be replaced by another super component. The BN resulting from this sequential procedure for 

identifying components that may be grouped and replaced by a super component is shown in 

Figure 16. For super components containing less than 4 constituent components, a converging 

structure is used. For super components with 4 or more constituent components, a chain 

structure is utilized. 
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Figure 15: System in Figure 14 with components                replaced by a  

super component 

 

 

Figure 16: BN constructed for system in Figure 10a using the super component heuristic 

 Note that components in a super component need not be contiguous. For example, in the 

system in Figure 17, components 1 and 4 can be put into a super component because, with 

regard to formation of MLSs and MCSs, they have the same effect as if they physically existed 

in series. 

 

Figure 17: Example system illustrating non-contiguous components that can be  

combined into a super component. 

 We now present an algorithm for sequential identification and replacement of elementary 

components by super components, or sets of super components by higher level super 

components. The first step in the algorithm is construction of an initial "correspondence" 

matrix    that contains a row corresponding to each MLS (MCS) and a column 

corresponding to each elementary component. The elements    
  of this matrix are defined 

by  
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(22) 

For the example system in Figure 10a, matrix    is as given at the top of Figure 18. In each 

subsequent step of the algorithm, the correspondence matrix is updated by eliminating 

columns corresponding to components that are grouped into a super component, and creating 

a new column to represent the new super component. Let    denote the correspondence 

matrix in the  th step of the algorithm with its elements denoted     
 

. 

 Two types of super components are identified. Class A super components are made up of 

groups of components (or previously formed super components) that always appear together 

in a MLS (MCS) and never appear separately. In a MLS(MCS)-based formulation, Class A super 

components correspond to components that exist in series (parallel). To identify such super 

components in the     iteration of the algorithm, we assign to each component (or 

previously formed super component)   the quantity   
     

 defined by 

  
   

 ∑   

    

   

    
 

 (23) 

This quantity is identical for different components only when the components always appear 

together in certain MLSs (MCSs) and never separately in different MLSs (MCSs). For example, 

for the system in Figure 10a, we have   
     ,   

     ,   
     ,   

      
      

    

   and   
      

      . Each set of components having identical   
   

 can be grouped to 

form a Class A super component. Matrix    must then be updated to      by removing 

columns corresponding to components that were grouped and adding a column to represent 

the new super component. Let     denote the newly formed super component. The elements 

of the new column of the updated matrix are defined by   

      

   
          ∑     

 
  

      
 

 

                 

(24) 

where     
 

 is the set of components that were grouped to form the new super component. 

We perform this operation repeatedly until all super components of Class A are formed. For 

the example system in Figure 10a, using an MLS formulation, two super components of Class A 

are identified and the updated matrices    and    are as shown in the middle of Figure 

18. 
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Figure 18: Correspondence matrices of example system before and after  

identification and formation of Type A and Type B super components. 

 The second class of super components, Class B, comprises components that appear in 

different MLSs (MCSs), but share these MLSs with the same set of other components. For a 

MLS (MCS)-based formulation, these correspond to components in parallel (series). To 

identify such super components in the     iteration of the algorithm, we assign to each 

component (or previously formed super component)   the quantity   
   

 defined by  

  
   

 ∑[    
 

 (∑      
 

   

)]

 

 (25) 

One can easily verify that components (or super components) that have identical   
   

 

values satisfy the above conditions for a Class B super component and can be so grouped. As 

an example, for the system in Figure 10a, we have   
      

      
        

      . Matrix 

   is now updated by removing columns corresponding to the grouped components and 

adding a column for the new super component with elements defined by Eq. (24). Since the 

combined components come from different MLSs (MCSs), this process renders some rows of 

the matrix zero, which can be removed. For the example system, this process leads to the 

updated correspondence matrix   , which is shown in the bottom of Figure 18. 

 The above iterative procedure for finding and replacing components with super 

components of Class A and Class B is repeated until no super components remain. The matrix 

   that corresponds to the last iteration is then used to specify the components and the 

MLSs or MCSs required for defining the optimization problem. 

Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6 Comp 7 Comp 8

MLS 1 1 0 0 0 0 0 1 1

MLS 2 0 1 0 0 0 0 1 1

MLS 3 0 0 1 0 0 0 1 1

MLS 4 0 0 0 1 1 1 1 1

Comp 1 Comp 2 Comp 3 Comp 7 Comp 8 SC 1

MLS 1 1 0 0 1 1 0

MLS 2 0 1 0 1 1 0

MLS 3 0 0 1 1 1 0

MLS 4 0 0 0 1 1 1

Comp 1 Comp 2 Comp 3 SC 1 SC 2

MLS 1 1 0 0 0 1

MLS 2 0 1 0 0 1

MLS 3 0 0 1 0 1

MLS 4 0 0 0 1 1

SC 2 SC 3

MLS 1 1 1
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7.2 Heuristic for reducing the number of permutations  

Recall that the optimization algorithm considers all permutations of component indices and 

instances as specified in the sets   
   

 [    
   

     
   

            

   
],           . (Everywhere 

in this section the acronym MLS can be exchanged with MCS.) The aim of the second heuristic 

is to drop selected members of these sets. Observe that if a set of components appear in all 

MLSs, then it is not necessary to consider permutations of their indices. (In fact, such a set of 

components would be identified and combined as a super component.). The present heuristic 

identifies components that appear in several (but not all) MLSs and locks the order of 

appearance of their indices, thus removing selected members of   
   

. This heuristic is likely 

to result in a BN topology that is suboptimal, but is necessary if the size of the optimization 

problem is larger than can be handled by the available resources. The heuristic should be used 

after reducing the size of the problem through identification of super components.  

 To facilitate the explanation of the heuristic, an example system is used to illustrate each 

step of the procedure. Consider an arbitrary system with seven MLSs: 

     {       } 

     {         } 

     {     } 

     {     } 

     {     } 

     {     } 

     {   } 

Step 1: Create an ordered list of the component indices based on the number of times they 

appear in the various MLSs. Call this list  . For the example system, the number of 

occurrences of each component within a MLS is shown in the following table: 

 

The above table leads to the ordered list   {                 }. In the case of ties, the order 

is based on component index value.  

Step 2: Re-order the components within the MLSs based on the order  . For the example 

system, the new MLS component orders are:  

     {       } 

     {         } 

     {     } 

     {     } 

Component

number of 

appearances 

in a MLS

1 5

2 3

3 2

4 3

5 3

6 1

7 3

8 1

9 2
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     {     } 

     {     } 

     {   } 

Step 3a: Determine all pair-wise intersecting sets between the MLSs: 

                                             (26) 

For the example system, we have                {   },      {   },      {   }, 

     {   },      {   },                                         ,     ,       and      are 

sets of cardinality 1 and                  . 

Step 3b: Define   as a set containing the unique sets      with cardinality greater than 1. 

For the example system,   {{   } {   } {   } {   } {   }}  This set contains sets of 

components that appear together in two or more MLSs with the component indices ordered 

according to Step 1. 

Step 4: Sequentially assign to each MLS a set from within   whose intersection with the MLS 

has the largest cardinality. Let      be the intersection of the     MLS with the     

member of  ,   , i.e., 

             (27) 

Define   
  as the set      which has the largest cardinality: 

    {       |      |     
 

      }  (28) 

In the case of ties in the cardinality, the set within   that appears first is selected.     is the 

set assigned to the     MLS. Once a set from within   has been assigned to a MLS, place it 

in a new set   , if it has not already been placed there. Define     
  as the number of times 

component   appears within the sets in   . When a component has appeared in     sets 

within    (where    is the maximum allowed number of instances of SPEs in the 

optimization problem), remove from   all remaining sets containing that component, unless 

the set is already a member of   . This step is necessary because, if     
     for any 

component, the optimization problem may become infeasible.  

 For the example system, using     , the sets within   with the longest intersection 

with      are {1,4}, {1,2}, and {2,3}. Because set {1,4} appears first in  , it is assigned to 

    . Therefore,   
  {   } and this set is added to the set of sets   . It follows that 

    
      

    and     
    for components            . These results for MLS1 are 

summarized as follows:  

For    ,      {       }:  

  
  {   }     {{   }} 

    
        

        
                

  {{   } {   } {   } {   } {   }} 

The results for the remaining MLSs are: 

For    ,      {         }:   

  
  {   }     {{   }} 
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  {{   } {   } {   } {   } {   }} 

For    ,      {     }:   

  
  {   }     {{   }} 

    
        

        
                

  {{   } {   } {   } {   } {   }} 

For    ,      {     }:   

  
  {   }     {{   } {   }} 

    
        

        
        

        
            

  {{   } {   } {   } {   } {   }} 

For    ,      {     }:  

  
  {   }     {{   } {   } {   }} 

    
        

        
        

        
        

            

  {{   } {   } {   }} 

For    ,      {     }:   

  
        {{   } {   } {   }} 

    
        

        
        

        
        

            

  {{   } {   } {   }} 

For          {   }:   

  
        {{   } {   } {   }} 

    
        

        
        

        
        

            

  {{   } {   } {   }} 

Note that, when      is considered, component 1 appears twice in the set   . Because 

component 1 has appeared      times, all sets containing component 1 are removed from 

the set  , unless they already appeared in   . 

Step 5: The last step of the heuristic is to modify the optimization problem so that 

permutations on components not contained within the sets   
             , are not 

considered. Recall that   
   

 [    
   

     
   

            

   
] combines component indices according 

to set   
  with instance indices according to the set   

 
. To reduce the size of the 

optimization problem, we remove from the set   
  all permutations of component indices 

that are not consistent with the order specified in   
 . Furthermore, we remove from the set 

  
 

 all instance indices that are greater than     
 . 

7.3 Example Application 

Once again consider the system in Figure 13a consisting of 10 components and 7 MLSs. The 

super component heuristic is employed to obtain the solution in Figure 13b. The only super 

component for this system is the one including components 5-9, which are arranged in a 

single SPS. The arrangement of the remaining SPSs is found through the full optimization 

algorithm described in section 6. The formulation of Figure 13b was obtained without using 
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the heuristic described in section 7.2. This idealized network system is sufficiently simple that 

it is possible to obtain a solution without requiring the heuristic, but for larger systems this 

may not be case. The BN obtained for this system using the optimization algorithm augmented 

by the heuristic of section 7.2 is shown in Figure 19. The solution obtained is suboptimal. It 

contains 29 links, whereas the optimal solution contains 26 links. The total clique size for this 

BN is 252 (as opposed to 184 for the optimal BN). However, using the Tomlab optimization 

environment (Holmström 2008), it took over 12 times longer to obtain a solution without the 

heuristic than when the heuristic was invoked. Thus, in using the heuristic, there is a trade-off 

between the amount of time required to solve the optimization problem and the optimality of 

the resulting BN topology. However, even with the heuristic, the efficient MCS formulation is 

substantially more efficient than the standard MCS formulation.  

 

 

Figure 19: Efficient MCS BN formulation for example system in Figure 13a obtained using the 

optimization algorithm with both heuristics 

8. Conclusions 

This paper develops efficient BN formulations for modeling the performance of general 

systems for which the MLSs or MCSs are known. We show that BNs with nodes in chain 

structures are more efficient than when nodes are arranged in converging topologies. We 

demonstrate how BNs with nodes arranged in chain structures are constructed for series and 

parallel systems. This idea is then extended to develop similar topologies for general systems. 

Additionally, the idea is extended to consider multi-state flow problems. To automate the 

construction of efficient BN formulations for general systems, a binary integer optimization 

program is developed with the goal of automatically constructing the BN such that the 

number of links is minimized. An example application highlights the advantage gained from 

the efficient BN formulation. To improve computational efficiency, two heuristic approaches 

are offered. One employs the concept of super components; the other reduces the number of 

component permutations that need to be considered. Use of the second heuristic substantially 

reduces the size of the optimization problem, but may result in a suboptimal BN topology. 
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