
Appeared in: Reliability Engineering & System Safety, 2013, 112: 200–213.

Efficient Bayesian network modeling of systems

Michelle Bensi1*, Armen Der Kiureghian2 and Daniel Straub3

1 U.S. Nuclear Regulatory Commission, Washington, DC20555-0001, USA
2 Department of Civil and Environmental Engineering, University of California, Berkeley,

CA94720, USA
3 Engineering Risk Analysis Group, Technische Universität München, Munich, Germany

ABSTRACT

The Bayesian network (BN) is a convenient tool for probabilistic modeling of system

performance, particularly when it is of interest to update the reliability of the system or its

components in light of observed information. In this paper, BN structures for modeling the

performance of systems that are defined in terms of their minimum link or cut sets are

investigated. Standard BN structures that define the system node as a child of its constituent

components or its minimum link/cut sets lead to converging structures, which are

computationally disadvantageous and could severely hamper application of the BN to real

systems. A systematic approach to defining an alternative formulation is developed that

creates chain-like BN structures that are orders of magnitude more efficient, particularly in

terms of computational memory demand. The formulation uses an integer optimization

algorithm to identify the most efficient BN structure. Example applications demonstrate the

proposed methodology and quantify the gained computational advantage.

Keywords: Bayesian network, integer optimization, max-flow min-cut theorem, minimum

cut sets, minimum link sets, parallel systems, series systems, systems.

* Formerly of University of California ,Berkeley, CA94720, USA.

Disclaimer: Any opinions, findings and conclusions expressed in this paper are those of the author and

do not necessarily reflect the views of the United States Nuclear Regulatory Commission.

Bensi et al. (2013)

- 2 -

1. Introduction

Engineering decisions often involve probabilistic assessment of the state of a system under

evolving and uncertain information. For example, in the immediate aftermath of a natural

disaster, such as an earthquake affecting an urban community, decisions must be made

regarding dispatch of rescue teams and inspection crews, continued operation or closure of

facilities, and prioritization of repair actions and restoration of services, all of which depend

on the assessment of the functioning states of various infrastructural systems. Such

assessment is strongly influenced by the available information, which in the immediate

aftermath of a natural disaster is highly uncertain and rapidly evolves as the states of various

system components are observed or measurements of the hazard are made. Another example

is the management of a deteriorating system, where decisions need to be made on the

frequency and extent of inspections and on maintenance, repair and replacement actions,

while future capacities and demands of the system remain uncertain. In both cases, there is

need for a method to update the probabilistic assessment of the system state as information,

often of uncertain type, becomes available from measurements, inspections, and other

observations of the system and its components.

 The Bayesian network (BN) is an ideal framework for the analysis of such systems,

particularly when updating of the probabilistic model in light of evolving and uncertain

information is an important objective. The BN is a graphical model consisting of nodes and

directed links, which respectively represent random variables and their probabilistic

dependencies (Pearl 1988, Jensen and Nielsen 2007). The variables may represent the states

of the components of a system, or their capacities and demands. The BN provides a convenient

means for modeling dependence between the component states, which is rather difficult in

most classical system reliability methods (Pagès and Gondran 1986). Furthermore, upon

entering evidence on one or more variables, e.g., the observed states, capacities or demands of

a subset of the components, the information propagates throughout the network and updates

distributions of other random variables, e.g., the states of other components and the system, in

accordance with the Bayes' rule. Finally, by addition of decision and utility nodes, the BN

renders a decision graph that facilitates decision-making in accordance with the maximum

expected utility criterion (Shachter 1986, Jensen and Nielsen 2007).

This paper focuses on the development of a systematic approach to using BNs for modeling

the performance of systems that are defined in terms of their minimum link sets (MLSs) or

minimum cut sets (MCSs). The methodology presented in this paper is motivated by our

efforts in modeling the performance of spatially distributed civil infrastructure systems (e.g., a

highway network or water distribution system) subjected to an earthquake hazard, with

particular emphasis on post-earthquake risk assessment and decision making (see Bensi et al.

(2011)). For such an application, efficient computations and near real-time inference in

models of large systems are essential. Furthermore, the considered systems are more easily

characterized in terms of their MLSs/MCSs than by other means, such as fault trees, event

trees or reliability block diagrams. While this paper was motivated by this specific application,

the methods presented are applicable to a broader scope of problems.

 The BN has been used in the past for system reliability analysis (see, e.g., Torres-

Toledano and Sucar 1998; Mahadevan et al. 2001; Bobbio et al. 2001; Friis-Hansen 2004; Liu

et al. 2008; Lampis and Andrews 2009; Straub and Der Kiureghian 2010a-b). Some of these

works consider intuitive approaches to modeling systems as BNs (e.g., Friis-Hansen 2004).

Others consider the fault tree (e.g., Liu et al. 2008; Bobbio et al. 2001) or the reliability block

Bensi et al. (2013)

- 3 -

diagram (e.g., Torres-Toledano and Sucar 1998) as the native source of system information.

Other papers develop BNs for relatively simple systems, for which computational demands

are not of particular concern. This work differs from previous efforts by defining a systematic

approach to developing an efficient BN structure for modeling the reliability of complex

systems when the MLSs or MCSs are the native source of system information. The approach is

particularly useful when working with topologically defined systems, in which the system

decomposition is commonly done through the MLSs and/or MCSs. While other authors have

used BNs to model systems that are topologically defined through a reliability block diagram

(e.g., Torres-Toledano and Sucar 1998)), no systematic attempt has been made to optimize the

BN structure, particularly when working with large, multi-state systems. It turns out that

conventional BN models rapidly grow in size and density with increasing size of the system, so

that even for moderately sized systems the computational and memory demands make the

model infeasible, especially when using exact inference algorithms with multi-state nodes.

With this shortcoming in mind, in this paper we develop methods for generating efficient BN

topologies for modeling systems with binary and multi-state components. A discrete

optimization algorithm is developed that minimizes the density of the BN, thereby providing

orders of magnitude savings in computational time and memory. This development facilitates

consideration of systems, which otherwise could not be solved with conventional BN

formulations.

 The paper begins with a brief introduction to the BN. The introduction is limited to those

aspects that are needed to motivate the remainder of the paper. Next, efficient Bayesian

network formulations for modeling series and parallel systems with binary components are

presented. These are then extended to general systems with binary and multi-state

components. To automate construction of the efficient Bayesian network formulations, a

binary integer optimization problem is formulated. Furthermore, two heuristic augmentations

are presented to reduce the size of the optimization problem. Several examples demonstrate

the proposed methodology and its effectiveness.

2. Brief introduction to Bayesian networks

A BN is characterized by a directed acyclic graph consisting of a set of nodes representing

random variables and a set of links representing probabilistic dependencies. In this paper, we

limit the treatment to BNs in which all random variables are discrete; the reader interested in

BNs with continuous random variables is referred to Langseth et al. (2009). Consider the

simple BN in Figure 1. The directed links from and to indicate that the

distribution of is defined conditioned on and . In the BN terminology, random

variable is said to be a child of random variables and , while the latter are the

parents of . Similarly, is a child of , while is a child of . Each node is

associated with a set of mutually exclusive and collectively exhaustive states, corresponding

to the outcome space of the discrete random variable. Attached to each node is a conditional

probability table (CPT), providing the conditional probability mass function of the random

variable given each of the mutually exclusive states of its parents. For root nodes that have no

parents, e.g., and in Figure 1, a marginal probability table is assigned.

Bensi et al. (2013)

- 4 -

Figure 1. A simple BN

 The joint distribution of the random variables in the BN is given as the product of the

conditional distributions, i.e.,

 ∏

 (1)

where is the set of parents of node , (|) is the CPT of and is the

number of random variables (nodes) in the BN. Thus, for the BN in Figure 1, the joint

probability mass function is

 (2)

 BNs are useful for answering probabilistic queries when one or more variables are

observed. As an example, suppose for the BN in Figure 1 the observations and

 have been made and the conditional distribution) is of interest. This

posterior distribution is computed by first marginalizing the joint distribution in (2) to obtain

the joint distributions of the subsets of the variables:

 ∑

 (3)

 ∑

 (4)

The desired conditional distribution then is . While it is

possible to obtain updated distributions by this method, this is not a computationally efficient

approach for non-trivial BNs. Several efficient algorithms for exact and approximate

probabilistic inference in BNs have been developed (see, e.g., Dechter 1996; Langseth et al.

2009; Lauritzen and Spiegelhalter 1988; Madsen 2008; Yuan & Druzdzel 2003; Yuan &

Druzdzel 2006). The general principles of exact inference algorithms are outlined here to

highlight the requirements for efficient BN topologies.

The efficiency of the BN stems from the decomposition of the joint distribution into local

conditional distributions, as exemplified in Eq. (2). When summing over the joint distribution,

as in Eqs. (3) and (4), no use of the decomposition is made and computations are inefficient.

However, by writing the joint distribution in the product form of Eq. (1), it is possible to

rearrange the summation and product operations due to their distributive and commutative

properties. As an example, Eq. (3) is written as

 ∑∑

 (5)

X1 X2

X4

X5

X3

Bensi et al. (2013)

- 5 -

 ∑ ∑

The summation operations can be interpreted as node eliminations. Since calculations are

performed from right to left, Eq. (5) corresponds to an elimination of followed by the

elimination of . Clearly, solving the second line of Eq. (5) is more efficient than solving the

first, because the summations are performed in smaller domains. The summation over is

in the domain of and only (and can actually be omitted, since it results in 1). The

summation over is in the domain of and , for which it is required to

establish a table (called a potential), whose number of entries is equal to the product of the

number of states of these variables. In general, the sizes of the potentials over which

summations are performed determine the efficiency of the inference algorithm.

The potentials, and consequently the efficiency of the inference algorithm, depend on the

ordering of node eliminations. However, there exist computationally optimal elimination

sequences, all of which lead to the same domain set, i.e. the domains of the potentials arising

in the process are the same. The domains corresponding to the optimal elimination sequences

are called cliques. The total size of the potentials associated with these cliques is a good proxy

for the computational effort required for performing inference in the BN and is used in this

paper to assess and compare efficiencies of various BN system formulations.

While all exact inference algorithms aim at finding the optimal ordering of node

eliminations, they follow different strategies for doing so. In particular, some algorithms

optimize the elimination for a specific inference task, while others, such as the junction tree

algorithm (Jensen & Nielsen 2007), optimize computations for general inference. With the

latter, parts of the computations are reused, which becomes efficient when the interest is in

updated distributions of many variables and when considering multiple evidence cases. Our

interest is more focused on general inference applications. Several of these algorithms are

implemented in available software applications (e.g. DSL 2007; Hugin Expert A/S 2008),

facilitating inference in complex BNs.

While this paper focuses on improving the computational efficiency of exact inference

algorithms, it is believed that the approaches developed here will also be useful for

approximate algorithms by reducing the size of CPTs that must be stored. We do not explore

computational improvements that might be available for exact inference by consideration of

deterministic substructures within the BN. As Nielsen et al. (2000) have shown, advanced

Boolean calculations can be used to improve the efficiency of exact algorithms when the

deterministic part of a BN model is represented as a Boolean function. It is believed that such

an approach can be used to further improve the computational efficiency of the BN model

resulting from our topology optimization scheme.

3. Modeling system performance via Bayesian network

Consider a system of components, with component having discrete states. The

number of distinct configurations of the system is ∏

 . We refer to a BN formulation that

defines the system state directly in terms of the states of its constituent components as the

naïve BN formulation. Figure 2 shows one such BN, where node defines the state of

component and node defines the state of the system. If the system has discrete

states, then the CPT associated with the system node has ∏

 entries. Although this

Bensi et al. (2013)

- 6 -

formulation has been used in the past (e.g., see Mahadevan et al. 2001), for a system with even

a moderate number of components or component states, the size of the CPT for the system

node becomes so large that the BN becomes computationally intractable. Clearly, a more

efficient BN formulation is needed.

Figure 2: Naïve BN formulation

 As an alternative to the above naïve approach, in this paper we present four additional BN

formulations for modeling system performance. The first two formulations make use of

minimal link sets (MLSs) and minimal cut sets (MCSs) for systems with binary component and

system states, but employ converging structures as in the naïve formulation. It is shown that

the MCS formulation is also applicable to a certain class of systems with multi-state

components. We then develop two additional formulations that employ MLSs/MCSs for

systems with binary states, but result in chain-like BN topologies that are far more efficient

for computational purposes. These are first developed for series and parallel systems and

then extended to general systems. The efficient MCS formulation is shown to be also

applicable to a certain class of systems with multi-state components.

4. BN system models using minimal link and cut sets

4. 1 Binary components and system

Consider a system with binary component and system states, say survival/fail states. A

minimal link set (MLS) is a minimum set of components whose joint survival constitutes

survival of the system. The minimal link set BN formulation introduces intermediate nodes

between the component and system nodes, which represent the states of the MLSs, as shown

in Figure 3. Torres-Toledano and Sucar (1998) used such a BN formulation for modeling

system performance, though with less formality and generality than described here. The

binary states of the MLS nodes are defined such that each MLS node is in the survival state

only if all its constituent components have survived; otherwise, it is in the fail state. The

system node is in the survival state if any MLS node is in the survival state. Let denote

the number of MLSs of the system and denote the number of components in the th

MLS. The size of the CPT of the th MLS node is , and the size of the CPT of the

system node is . Clearly, when the number of MLSs is large, the size of the CPT

associated with the system node becomes large. A similar problem occurs for an MLS node

when the number of its constituent components is large.

C1 Ci CNc
... ...C2

Ssys

Bensi et al. (2013)

- 7 -

Figure 3: MLS formulation

The dual of the MLS formulation is the minimal cut set BN formulation. A MCS is a minimum

set of components whose joint failure constitutes failure of the system. In this formulation, the

system node is a child of nodes representing MCSs, and each MCS node is a child of nodes

representing the states of its constituent components, see Figure 4. The system node is a

series system of all the MCS nodes, (i.e., the system node is in the fail state if at least one MCS

node is in the fail state), whereas each MCS is a parallel system of its parent nodes (i.e. all

constituent components must be in the fail state for the MCS node to be in the fail state). As

with the MLS formulation, the CPTs in this formulation become large as the number of MCSs,

denoted , increases and/or the number of components in an MCS, denoted for

the th MCS, becomes large.

Figure 4: MCS formulation

4.2 Multi-state flow systems with multi-state components

A multi-state flow system with multi-state components can be modeled by the MCS BN

formulation through application of the Max-Flow Min-Cut theorem (Elias et al. 1956; Ford and

Fulkerson 1956). We are not aware of a similar theory that allows adaptation of the MLS

formulation to multi-state flow systems.

 Consider a system describing flow from a source node to a sink node and identify its MCSs

assuming components are binary. Each component of the system has a flow capacity, which is

discretized into a set of distinct states, e.g., 0%, 25%, 50%, 75% and 100% of a maximum

capacity. Let denote the capacity state of component . For a distributed component

C1
Ci... ...

MLS1 MLSj MLSNMLS
... ...

C2

MLS2

Ssys

CNc

C1
... ...

MCS1 MCSj MCSNMCS
... ...

C2

MCS2

Ssys

CNc
Ci

Bensi et al. (2013)

- 8 -

with directed flow, we consider the capacity when going from the source side to the sink side

of the cut. Assign to each MCS a capacity value equal to the sum of the capacities of its

constituent components. The Max-Flow Min-Cut theorem states that the maximum flow

capacity from the source to the sink is equal to the minimum value among all MCSs, i.e. the

bottleneck in the system. The theorem allows adaptation of the MCS BN formulation to multi-

state problems, without changing the topology of the BN created when assuming components

are binary. It is only necessary to increase the number of states associated with each BN node

to correspond to the component, MCS or system capacity levels, and use arithmetic

expressions rather than Boolean logic to define the relationships between the nodes, as

described below.

 Nodes in Figure 4 are modified to represent multiple states corresponding to the

capacity levels of each component. If the component has a continuous capacity state, then the

range of possible capacities must be discretized into several small intervals; in such a case,

node is said to represent an interval node. Similarly, nodes have multiple states

having capacity values defined using the relation

 ∑

 (6)

The capacity of the system node is obtained using the relation

 (7)

When are interval nodes, and are also interval nodes. In constructing the

CPTs of the latter nodes, the intervals for these nodes must be selected by considering the

entire range of their possible capacity values as obtained from Eqs. (6) and (7). More details

about computation of CPTs for interval nodes is given in Bensi et al. (2011).

5. Efficient BN system models

5.1 Motivation

The MLS and MCS formulations described in the preceding section result in converging BN

structures. In general, BN structures with nodes arranged in chains are significantly more

efficient than those having converging structures. As we will show later, the two BN structures

shown in Figure 5 represent the same system. Figure 5a shows a converging structure similar

to the BN models presented in the previous section, and Figure 5b illustrates a chain

structure. In both BNs, dependence among the components is considered by introducing a

common demand node . A formal description of the construction of the BN in Figure 5b is

presented later in this section.

Bensi et al. (2013)

- 9 -

 (a) (b)

Figure 5: Equivalent BNs with (a) converging structure, and (b) chain structure

 Figure 6 compares the computational demands, measured in terms of the total clique sizes,

for the BNs in Figure 5 with converging and chain structures, when the system components

have 2 and 5 states. As the number of components increase, the computational demand of the

BN with converging structure increases exponentially, while that of the BN with the chain

structure increases linearly. However, for 2-state components, the converging structure is

more efficient than the chain structure when the number of components is less than 4. Thus,

when the node modeling system performance in Figure 5a has more than 3 parents (i.e.

constituent components), it is advantageous to model the system as in Figure 5b.

(a) (b)

Figure 6: Computational demands of system BNs with converging and chain topologies when

components have (a) 2 states and (b) 5 states

 The computational demands associated with inference are influenced not only by the

system size and configuration, but also by the number of common parents to the component

nodes (similar to node in Figure 5). Figure 7 shows a comparison of computational

demands associated with the converging and chain BN topologies with binary component

nodes with 1, 2 and 3 common parent demand nodes. It is observed that increasing the

number of common parent nodes increases the computational demand. However, the chain

structure remains advantageous to the converging structure as the number of components

increases. Note that, as the number of common demand nodes increases, the “cut-off” point at

which the chain structure is more efficient than the converging structure moves slightly

upward. For three common demand nodes, the chain structure is more efficient for 5 or more

components and for one common demand node, it is more efficient for 4 or more components.

D

C1
Ci... ...

Ssys

C2 CNc C1
Ci CNc

... ...

Es,1 Es,i Es,Nc
... ...

C2

Es,2 Ssys

D

0

50

100

150

200

250

300

2 3 4 5 6

T
o

ta
l

C
li

q
u

e
 S

iz
e

(M

e
m

o
ry

 D
e

m
a

n
d

)

Number of Components (Nc)

Converging…
Chain Structure

0

20

40

60

80

100

120

140

160

180

2 3 4 5 6

T
o

ta
l

C
li

q
u

e
 S

iz
e

 (
x

1
0

3
)

(M
e

m
o

ry
 D

e
m

a
n

d
)

Number of Components (Nc)

Bensi et al. (2013)

- 10 -

Figure 7: Comparison of computational demands associated with converging and chain BN

topologies for binary nodes with one or more common parent demand nodes

5.2 Series and parallel systems with binary components

We now describe how the performance of systems with binary components can be modeled

with BNs having the chain topology. Define a survival path sequence (SPS) as a chain of events,

corresponding to a MLS, in which the terminal event in the sequence indicates whether or not

all the components in the MLS are in the survival state. Note that the term “sequence” does not

have any temporal implications. A series system has one MLS and a parallel system has

MLSs. It follows that a series system has one SPS and a parallel system has SPSs. A SPS is

comprised of a chain of survival path events (SPEs), each of which is associated with a

component and describes the state of the sequence up to that event. SPEs are represented in

the BN by nodes labeled , the subscript indicating the association with component .

The state of is defined as

 { } { }

(8)

where defines the state of the SPE node that is parent to ; indicates

that the node is in the survival state and indicates its failure (we use this Boolean

notation throughout this paper). Thus, for a series system, the BN formulation takes the form

shown in Figure 8a. The state of node is equal to the state of node . is in the

survival state only if is in the survival state and is in the survival state. This pattern

continues such that
 is in the survival state only if both and

 are in the

survival state. Consequently, the state of
 describes the state of the entire SPS (i.e. it

indicates whether all components in the MLS have survived) and, therefore, that of the series

system. The state of node is equal to the state of
 in Figure 8a.

0

100

200

300

400

500

600

700

1 2 3 4 5 6

T
o

ta
l

C
li

q
u

e
 S

iz
e

Number of Components (Nc)

Converging, 3 Common Demand Nodes

Converging, 2 Common Demand Nodes

Converging, 1 Common Demand Node

Chain, 3 Common Demand Nodes

Chain, 2 Common Demand Nodes

Chain, 1 Common Demand Nodes

Bensi et al. (2013)

- 11 -

 (a) (b)

Figure 8: BN using SPEs to model performance of (a) series system, (b) parallel system

 A parallel system has a SPS corresponding to each component. The resulting BN

formulation is shown in Figure 8b. The system node indicates system survival if any node

is in the survival state. Like the naïve formulation, the exponential growth in the size of the

CPT associated with the system node renders this BN intractable when the number of

components is large.

 Define a failure path sequence (FPS) as a chain of events, corresponding to a MCS, in which

the terminal event in the sequence indicates whether or not all components in the MCS are in

the fail state. For a series system, there are FPSs, one corresponding to each component.

For a parallel system, there is only one MCS and thus one FPS. A FPS is comprised of a chain of

failure path events (FPEs), each of which is associated with a component and gives the state of

the sequence up to that event. Let be the node in the BN that represents the FPE

associated with component . The state of is defined as

 { } { }

 (9)

where defines the state of the FPE node that is parent to . For a series system,

the BN formulation using FPSs takes the form shown in Figure 9a, which has the undesirable

converging structure. For a parallel system, the BN formulation takes the chain form shown in

Figure 9b. These findings suggest that a combination of SPS and FPS formulations can be used

to efficiently model general systems. This approach is described in the next section.

(a) (b)

Figure 9: BN using FPEs to model performance of (a) series system, (b) parallel system

5.3 General systems with binary component states

C1 Ci CNc
... ...

Es,1 Es,i Es,Nc
... ...

C2

Es,2 Ssys

C1 Ci CNc
... ...

Es,1 Es,i Es,Nc
... ...

C2

Es,2

Ssys

C1 Ci CNc
... ...

Ef,1 Ef,i Ef,Nc
... ...

C2

Ef,2 Ssys

C1 Ci CNc
... ...

Ef,1 Ef,i Ef,Nc
... ...

C2

Ef,2

Ssys

Bensi et al. (2013)

- 12 -

A MLS is a series system of its constituent components. Therefore, using the above

formulation, each MLS of the system can be described by an SPS, resulting in a chain-like BN

structure. Consider the example system in Figure 10a, which has four MLSs: ={1,7,8},

 {2,7,8}, {3,7,8} and {4,5,6,7,8}. In Figure 10b each MLS is modeled as

an individual SPS. The SPEs,

, in each SPS are indexed by a subscript corresponding to the

associated component and a superscript corresponding to the associated MLS . The

dependence between SPEs that share a component is modeled through a common parent

node. The system node is in the survival state if the terminal node of any SPS is in the survival

state. For reference, the BN formulation in which the MLSs are arranged in chain structures is

named efficient MLS BN formulation. Similar logic leads to the creation of an efficient MCS BN

formulation, whereby strings of FPSs are constructed corresponding to each MCS.

 The dependence between SPEs or FPEs sharing a component increases the computational

demand when performing inference in the BN. By coalescing common SPEs/FPEs that appear

in multiple SPSs/FPSs, the number of nodes and links in the BN, and hence the computational

demand, are reduced. In the example system, components 7 and 8 appear in all SPSs. We take

advantage of this observation and introduce only one “instance” of the SPEs associated with

these components. The resulting BN is shown in Figure 11a. Note that this configuration also

avoids the converging structure of the system node. It does, however, require a converging

SPE node (node in Figure 11a). The states of such SPE nodes having multiple SPEs as

parents are specified using the Boolean relation

 [{ }] { }

(10)

Figure 10: (a) Example system; (b) Efficient MLS formulation with distinct SPSs

C1

Es,1
1 Es,7

1 Es,8
1

C2

Es,2
2 Es,7

2 Es,8
2

C3

Es,3
3 Es,7

3 Es,8
3

C6

Es,6
4 Es,7

4 Es,8
4

C5

Es,5
4

C4

Es,4
4

C7

C8

Ssys

123

4

5

6

7

8

Source

Sink

(a) (b)

Bensi et al. (2013)

- 13 -

Figure 11: Efficient MLS formulations for the example system with coalesced SPEs associated

with components 7 and 8 using (a) a converging structure (b) a chain structure

 A notational change has been introduced in Figure 11a: the superscript on each SPE node,

which previously indicated the MLS index, now represents the instance of the SPE, i.e. when

multiple SPEs are associated with the same component, then they are recognized as different

instances of the SPE and are distinguished through the superscript. For this example system,

because each component is associated with only one SPE, all superscripts in Figure 11a are 1.

In the following, we drop the instance index, unless it is required for clarity.

 Note that the converging structure of node in Figure 11a arises because of the need to

represent a parallel sub-system. Since parallel systems are ideally represented using chains of

FPEs, the converging structure can be modified by replacing the SPE nodes associated with

components 1, 2 and 3 with FPE nodes arranged in a chain, resulting in the BN in Figure 11b.

The definition of the FPE nodes with SPE nodes as parents follows the original definition:

 { } { } { }

 (11)

where and are the FPE and SPE nodes, respectively, that are parents to

 .

While all three BN models of the example system (Figures 10b, 11a and 1b) are termed

efficient MLS formulations, their efficiency is in fact quite variable. The total clique size

associated with the BN in Figure 10b is 224, the one associated with the BN in Figure 11a is

108 and the one associated with the BN in Figure 11b is 64. This illustrates the potential

efficiency gain when coalescing multiple instances of SPEs in different SPSs.

 Thus far, the SPEs in a SPS (FPEs in a FPS) corresponding to a particular MLS (MCS) have

been arranged in an arbitrarily selected order. For complex systems, the arrangement of the

SPEs in the SPSs may strongly influence our ability to coalesce multiple instances of SPEs in

different SPSs (analogously FPEs in FPSs). The order in which SPEs (FPEs) appear can be

optimized such that SPEs in as many SPSs (FPEs in as many FPSs) as possible are coalesced.

As demonstrated earlier, this reduces the number of nodes and links in the BN. This

optimization problem is described next. For brevity, only the formulation employing SPSs is

presented; a dual formulation applies to FPSs. Since the focus is on SPEs only, the possibility

C1 Ef,1
1 Es,7

1 Es,8
1

C2 Ef,2
1

C3 Ef,3
1

C6

Es,6
1

C5

Es,5
1

C4

Es,4
1

C7 C8

Ssys

C1 Es,1
1

Es,7
1 Es,8

1

C2 Es,2
1

C3 Es,3
1

C6

Es,6
1

C5

Es,5
1

C4

Es,4
1

C7 C8

Ssys

Bensi et al. (2013)

- 14 -

to combine SPEs and FPEs is not considered. Such a combination can be performed as an

additional step after the optimization of the SPEs (or FPEs), similar to the example shown in

Figure 11b.

6. Optimal ordering of survival path events

The aim of this section is to formalize the problem of finding the optimal arrangement of SPEs

in SPSs for a general system. Let indicate the existence of a directed link from

node
 to node

 in the efficient MLS BN formulation and indicate the

absence of such a link, where and are component indices and and are indices

denoting the instances of these SPE nodes in the BN. Also, let
 indicate a directed link

between the node representing component and node
 and

 indicate a

directed link between
 and the system node (with

 and
 respectively

denoting their absences). The decision variables in the optimization problem are the links

between the SPE nodes, . The remaining links,
 and

 , follow from the

 , as described later. Formulation of this optimization problem assumes the use of

only SPE nodes as defined in Eq. (10) and a converging structure at the system node. To

further increase computational efficiency of the resulting BN, the converging structure at the

system or any other node can be replaced by a chain structure by use of FPEs in the manner

described in Figure 11.

 Using the number of links in the BN as a proxy for computational demands required when

performing inference, the objective of the optimization problem is to minimize the number of

links in the BN. This is formulated as

 [∑∑ ∑ ∑

 ∑ ∑

 ∑ ∑

] (12)

where is the maximum number of instances of any SPE. It is desirable that be as

small as possible, but its value is not known prior to solving the optimization problem.

Thus, an iterative procedure is used to find the smallest for which the optimization

problem has a feasible solution. To ensure that the BN structure represents the system

through SPEs in the manner described in the preceding section, a number of constraints on

the optimization problem are formulated, as follows.

 First, every SPE node must have a link pointing to it from the corresponding component

node. Specifically,
 if node

 exists in the BN, which occurs if the decision

variables indicate a link going into or out of node
 . (A node without links going into or out

of it can be removed from the BN.) Mathematically, this is formulated as a constraint on the

optimization problem, written as

[∑ ∑ { }

]

 (13)

Second, if
 exists and has no other SPE node as a child, then it is a terminal node in a SPS.

Such a node must have a link to the system node, i.e.
 . This leads to the second

constraint on the optimization problem, written as

[∑ ∑

] [∑ ∑

]

 (14)

Bensi et al. (2013)

- 15 -

Well known techniques are available for modeling “if-then” propositions, as in the preceding

two equations, into constraints in numerical optimization, e.g., see Sarker & Newton (2008).

 Third, there are two constraints governing the arrangement of the SPE nodes in the BN: (a)

each MLS must be represented by a SPS, and (b) no SPS may exist that is not strictly a MLS.

Violation of the first constraint results in exclusion of one or more MLSs, causing

underestimation of the system reliability. Violation of the second constraint results in a BN

that includes one or more fictitious MLSs, thus causing overestimation of the system

reliability.

 Constraint (a) requires that each MLS be represented as a SPS, i.e. at least one permutation

of the SPEs associated with the components in the MLS must be connected as a chain. Let

 denote the number of components in . For the example system in Figure 10a, we

have and . Let denote the set of permutations,

without replacement, of the component indices in and define

 {

 } as its member. As an example, for the system in Figure 10a,

we have {

 }.

 Next, let denote the set of permutations with replacement of draws from the

index set { } and define

 {

} as its member. Using the

example in Figure 10a and assuming , we have {

 } . Note that

has members, while has

 members.

 Define the set

 , which combines the elements of

 and

.

Specifically,

 includes the component indices in
 with superscripts specified

according to

. For the example system,
 { } ,

 { } ,

{ }, etc. Overall, for this particular MLS, there are possible ways to

arrange the component indices and the instance superscripts.

 For convenience, define the sum

 ∑

 , (15)

where

 is the element of

.

 only if the SPEs corresponding

to the components in form a SPS in the order specified by
 and with instance

indices according to

. For a SPS associated with the th MLS to exist in the BN, we must

have

 for at least one component/instance index ordering from the set

. The constraint is written as

 (16)

where, is used rather that than equality for convenience of the optimization algorithm.

 Constraint (b) requires that no SPS exist in the BN that does not correspond to a MLS.

Consider the BN segment shown in Figure 12a. Let the shaded nodes (

) represent a particular permutation of component/instance indices

Bensi et al. (2013)

- 16 -

{ } resulting in a valid SPS. Constraint (b) must prohibit a SPE
 , for any

from “branching-off” the SPS at any node, i.e. being a child of any node in the chain, unless the

component exists in a MLS with all the preceding components in the sequence. For

example, in Figure 12a,
 cannot exist as a child of

 unless components 1, 2, 3 and

exist together in a MLS. If components 1, 2, 3 and do not exist in a MLS, then the false

survival path shown by nodes with dashed edges is introduced into the BN. The associated

constraints for all valid SPSs are written as

{[

] [

] {

 } } (17)

Figure 12: BN used to illustrate constraint (b)

Furthermore, constraint (b) must prohibit SPE
 , for any , from being a parent to any

node in a valid SPS, unless component exists in a MLS with all subsequent components in

the sequence. For example, in Figure 12b,
 cannot be a parent of

 unless

components 2, 3, 4 and exist together in a MLS. The second constraint for all valid SPSs

takes the form

{[

]

 [

] {

} }

(18)

Combining (17) and (18) results in constraint (b), written as

{[

]

∑ ∑ ∑ ∑ [

]

 {

 }

∑ ∑ ∑ ∑ [

]

 {

}

}

(19)

Constraint (b) along with the objective function, the minimization of which ensures that

links that are not necessary for constructing the required SPSs are not in the BN, prohibits

formation of invalid SPSs in the BN.

 The efficient MCS formulation is the dual of the efficient MLS formulation, where strings of

FPSs are constructed corresponding to each MCS. Therefore, for constructing an FPS

formulation, an optimization problem identical to the above with SPEs replaced by FPEs can

be formulated.

 The integer optimization problem described above requires consideration of permutations

of component indices and instances. Consequently, the size of the problem rapidly grows with

Es,1
1

Es,j
n

Es,2
1 Es,3

1 Es,4
1

Es,1
1 Es,2

1 Es,3
1

Es,j
n

Es,4
1(a) (b)

Bensi et al. (2013)

- 17 -

the number of components. To overcome this difficulty, several heuristics are introduced in a

later section of this paper.

6.1 Extension to multi-state flow systems

As with the standard MCS formulation, the efficient MCS formulation can be adapted to handle

multi-state problems through the application of the Max-Flow Min-Cut Theorem. The topology

of the BN need not differ from the topology used for the binary state problem. It is only

necessary to increase the number of states associated with each node and use arithmetic

expressions instead of Boolean relations to define the CPTs. The states of the FPE nodes are

associated with capacity values defined by

 ()

 (20)

That is, the capacity value assigned to node is equal to the minimum of the capacity

values of its parent FPE nodes, plus the capacity of the associated component. Thus, the

capacity of each FPE node can be thought of as representing the “running total” of the

capacities of the MCSs that it is a part of. The capacity of node , representing the

maximum operating level of the system, is the minimum capacity among all MCSs. Thus, it is

defined as

 (21)

6.2 Example Application

To illustrate the computational advantages of using the proposed efficient BN formulation,

consider the system in Figure 13a consisting of 10 labeled components. In this example, a

source and a sink are connected, by default, by two connectivity paths. One connectivity path

is represented by a solid line and the other by short dashed lines. In this configuration, the

system has three MLSs: { }, { }, and { }. Component 10 represents a switch,

which can be used to change from the default configuration to an alternate configuration

represented by long dashed lines in Figure 13a. This alternate configuration can be “switched

to,” provided component 10 is working. This adds 4 more connectivity paths through the

system:{ }, { } { }, { }. Thus, overall, the system has 7 MLSs. The BN

obtained using the proposed optimization algorithm is shown in Figure 13b, where the SPS

corresponding to the MLS { } is highlighted by shaded nodes. Figure 13c shows the

same BN with the SPSs corresponding to each of the remaining MLSs similarly highlighted.

The total clique size associated with this BN is 184. The total clique size of the MLS BN

formulation with the converging structure (similar in form to the general configuration in

Figure 4) is 5,140, and it is with the naïve BN formulation. When intermediate

nodes are introduced in the MLS BN formulation to ensure no node has more than three

parents (a common approach for reducing the number of parents in BNs, see Straub and Der

Kiureghian 2010a), the total clique size reduces to 804, but remains substantially higher than

that achieved with the efficient MLS BN topology. Thus, the optimized BN is over an order of

magnitude computationally more efficient than the alternate approaches. Furthermore, note

that node is a parallel system of its four parent SPS nodes. A small additional

computational advantage is achieved by modifying the converging structure with a chain

structure, as demonstrated in Figure 11b for the earlier example application.

Bensi et al. (2013)

- 18 -

(a)

(b)

(c)

Figure 13: (a) Example network system; (b) efficient MLS BN formulation with one SPS

highlighted; (c) BNs showing SPSs corresponding to remaining MLSs

1

2

3

4

5

Source sink

6 7 8 9

10

C1

Es,2
1

C2

Es,1
1Es,1

2

C10Es,10
1

Es,3
2

C4Es,4
1

Es,3
1

C3Ssys

C5

Es,5
1

C6

Es,6
1

C7

Es,7
1

C8 C9

Es,8
1 Es,9

1

C1

Es,2
1

C2

Es,1
1Es,1

2

C10Es,10
1

Es,3
2

C4Es,4
1

Es,3
1

C3Ssys

C5

Es,5
1

C6

Es,6
1

C7

Es,7
1

C8 C9

Es,8
1 Es,9

1

C1

Es,2
1

C2

Es,1
1Es,1

2

C10Es,10
1

Es,3
2

C4Es,4
1

Es,3
1

C3Ssys

C5

Es,5
1

C6

Es,6
1

C7

Es,7
1

C8 C9

Es,8
1 Es,9

1

C1

Es,2
1

C2

Es,1
1Es,1

2

C10Es,10
1

Es,3
2

C4Es,4
1

Es,3
1

C3Ssys

C5

Es,5
1

C6

Es,6
1

C7

Es,7
1

C8 C9

Es,8
1 Es,9

1

C1

Es,2
1

C2

Es,1
1Es,1

2

C10Es,10
1

Es,3
2

C4Es,4
1

Es,3
1

C3Ssys

C5

Es,5
1

C6

Es,6
1

C7

Es,7
1

C8 C9

Es,8
1 Es,9

1

C1

Es,2
1

C2

Es,1
1Es,1

2

C10Es,10
1

Es,3
2

C4Es,4
1

Es,3
1

C3Ssys

C5

Es,5
1

C6

Es,6
1

C7

Es,7
1

C8 C9

Es,8
1 Es,9

1

C1

Ef,2
1

C2

Ef,1
1Ef,1

2

C10Ef,10
1

Ef,3
2

C4Ef,4
1

Ef,3
1

C3Ssys

C5

Es,5
1

C6

Es,6
1

C7

Es,7
1

C8 C9

Es,8
1 Es,9

1

Bensi et al. (2013)

- 19 -

7 Heuristic Augmentation

As mentioned earlier, the binary optimization problem described above rapidly grows in size

due to the requirement to consider all permutations of component indices and instances. To

overcome this problem, in this section we present two heuristics: One aims at reducing the

number of components that need to be considered, and one aims at reducing the number of

permutations. Additional heuristics can be developed to further improve the performance and

scalability of the optimization algorithm described in this paper.

7.1 Heuristic employing super components

Der Kiureghian and Song (2008) introduced the idea of multi-scale modeling of systems,

whereby subsets of elementary components are grouped into “super components.” Analysis is

performed for individual super components and results are then aggregated at the system

level. The super components typically comprise simple sub-systems, such as components that

exist in series or in parallel along a system link. Use of super components reduces the effective

number of components and, thereby, permutations of their indices. It also facilitates the

combining of SPSs and FPSs.

 Once again, consider the simple system shown in Figure 10a. Components , and

exist in series as do components and . We replace these subsets of components by two

super components and , respectively, as shown in Figure 14. The system still has 4

MLSs, but the number of components in them is reduced: {1, }, {2, },{3, },{ , }.

Figure 14: System in Figure 10a with component sets , and

respectively replaced by super components and

Examination of Figure 14 reveals that components and exist in parallel.

These components are next replaced by a single super component resulting in the system

representation shown in Figure 15. Now, components and exist in series and can

be replaced by another super component. The BN resulting from this sequential procedure for

identifying components that may be grouped and replaced by a super component is shown in

Figure 16. For super components containing less than 4 constituent components, a converging

structure is used. For super components with 4 or more constituent components, a chain

structure is utilized.

1

2

3

SC1

Source SinkSC2

Bensi et al. (2013)

- 20 -

Figure 15: System in Figure 14 with components replaced by a

super component

Figure 16: BN constructed for system in Figure 10a using the super component heuristic

 Note that components in a super component need not be contiguous. For example, in the

system in Figure 17, components 1 and 4 can be put into a super component because, with

regard to formation of MLSs and MCSs, they have the same effect as if they physically existed

in series.

Figure 17: Example system illustrating non-contiguous components that can be

combined into a super component.

 We now present an algorithm for sequential identification and replacement of elementary

components by super components, or sets of super components by higher level super

components. The first step in the algorithm is construction of an initial "correspondence"

matrix that contains a row corresponding to each MLS (MCS) and a column

corresponding to each elementary component. The elements
 of this matrix are defined

by

SC3Source SinkSC2

ES,1 ES,2 ES,3

C1 C2 C3

ES,SC1 SC3

ES,SC3

C4 C5 C6

SC1

C7C8

SC2 ES,SC2 Ssys

1

1111

1

2

4

3

1Source Sink

Bensi et al. (2013)

- 21 -

(22)

For the example system in Figure 10a, matrix is as given at the top of Figure 18. In each

subsequent step of the algorithm, the correspondence matrix is updated by eliminating

columns corresponding to components that are grouped into a super component, and creating

a new column to represent the new super component. Let denote the correspondence

matrix in the th step of the algorithm with its elements denoted

.

 Two types of super components are identified. Class A super components are made up of

groups of components (or previously formed super components) that always appear together

in a MLS (MCS) and never appear separately. In a MLS(MCS)-based formulation, Class A super

components correspond to components that exist in series (parallel). To identify such super

components in the iteration of the algorithm, we assign to each component (or

previously formed super component) the quantity

 defined by

 ∑

 (23)

This quantity is identical for different components only when the components always appear

together in certain MLSs (MCSs) and never separately in different MLSs (MCSs). For example,

for the system in Figure 10a, we have
 ,

 ,
 ,

 and

 . Each set of components having identical

 can be grouped to

form a Class A super component. Matrix must then be updated to by removing

columns corresponding to components that were grouped and adding a column to represent

the new super component. Let denote the newly formed super component. The elements

of the new column of the updated matrix are defined by

 ∑

(24)

where

 is the set of components that were grouped to form the new super component.

We perform this operation repeatedly until all super components of Class A are formed. For

the example system in Figure 10a, using an MLS formulation, two super components of Class A

are identified and the updated matrices and are as shown in the middle of Figure

18.

Bensi et al. (2013)

- 22 -

Figure 18: Correspondence matrices of example system before and after

identification and formation of Type A and Type B super components.

 The second class of super components, Class B, comprises components that appear in

different MLSs (MCSs), but share these MLSs with the same set of other components. For a

MLS (MCS)-based formulation, these correspond to components in parallel (series). To

identify such super components in the iteration of the algorithm, we assign to each

component (or previously formed super component) the quantity

 defined by

 ∑[

 (∑

)]

 (25)

One can easily verify that components (or super components) that have identical

values satisfy the above conditions for a Class B super component and can be so grouped. As

an example, for the system in Figure 10a, we have

 . Matrix

 is now updated by removing columns corresponding to the grouped components and

adding a column for the new super component with elements defined by Eq. (24). Since the

combined components come from different MLSs (MCSs), this process renders some rows of

the matrix zero, which can be removed. For the example system, this process leads to the

updated correspondence matrix , which is shown in the bottom of Figure 18.

 The above iterative procedure for finding and replacing components with super

components of Class A and Class B is repeated until no super components remain. The matrix

 that corresponds to the last iteration is then used to specify the components and the

MLSs or MCSs required for defining the optimization problem.

Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6 Comp 7 Comp 8

MLS 1 1 0 0 0 0 0 1 1

MLS 2 0 1 0 0 0 0 1 1

MLS 3 0 0 1 0 0 0 1 1

MLS 4 0 0 0 1 1 1 1 1

Comp 1 Comp 2 Comp 3 Comp 7 Comp 8 SC 1

MLS 1 1 0 0 1 1 0

MLS 2 0 1 0 1 1 0

MLS 3 0 0 1 1 1 0

MLS 4 0 0 0 1 1 1

Comp 1 Comp 2 Comp 3 SC 1 SC 2

MLS 1 1 0 0 0 1

MLS 2 0 1 0 0 1

MLS 3 0 0 1 0 1

MLS 4 0 0 0 1 1

SC 2 SC 3

MLS 1 1 1

Bensi et al. (2013)

- 23 -

7.2 Heuristic for reducing the number of permutations

Recall that the optimization algorithm considers all permutations of component indices and

instances as specified in the sets

 [

], . (Everywhere

in this section the acronym MLS can be exchanged with MCS.) The aim of the second heuristic

is to drop selected members of these sets. Observe that if a set of components appear in all

MLSs, then it is not necessary to consider permutations of their indices. (In fact, such a set of

components would be identified and combined as a super component.). The present heuristic

identifies components that appear in several (but not all) MLSs and locks the order of

appearance of their indices, thus removing selected members of

. This heuristic is likely

to result in a BN topology that is suboptimal, but is necessary if the size of the optimization

problem is larger than can be handled by the available resources. The heuristic should be used

after reducing the size of the problem through identification of super components.

 To facilitate the explanation of the heuristic, an example system is used to illustrate each

step of the procedure. Consider an arbitrary system with seven MLSs:

 { }

 { }

 { }

 { }

 { }

 { }

 { }

Step 1: Create an ordered list of the component indices based on the number of times they

appear in the various MLSs. Call this list . For the example system, the number of

occurrences of each component within a MLS is shown in the following table:

The above table leads to the ordered list { }. In the case of ties, the order

is based on component index value.

Step 2: Re-order the components within the MLSs based on the order . For the example

system, the new MLS component orders are:

 { }

 { }

 { }

 { }

Component

number of

appearances

in a MLS

1 5

2 3

3 2

4 3

5 3

6 1

7 3

8 1

9 2

Bensi et al. (2013)

- 24 -

 { }

 { }

 { }

Step 3a: Determine all pair-wise intersecting sets between the MLSs:

 (26)

For the example system, we have { }, { }, { },

 { }, { }, , , and are

sets of cardinality 1 and .

Step 3b: Define as a set containing the unique sets with cardinality greater than 1.

For the example system, {{ } { } { } { } { }} This set contains sets of

components that appear together in two or more MLSs with the component indices ordered

according to Step 1.

Step 4: Sequentially assign to each MLS a set from within whose intersection with the MLS

has the largest cardinality. Let be the intersection of the MLS with the

member of , , i.e.,

 (27)

Define
 as the set which has the largest cardinality:

 { | |

 } (28)

In the case of ties in the cardinality, the set within that appears first is selected. is the

set assigned to the MLS. Once a set from within has been assigned to a MLS, place it

in a new set , if it has not already been placed there. Define
 as the number of times

component appears within the sets in . When a component has appeared in sets

within (where is the maximum allowed number of instances of SPEs in the

optimization problem), remove from all remaining sets containing that component, unless

the set is already a member of . This step is necessary because, if
 for any

component, the optimization problem may become infeasible.

 For the example system, using , the sets within with the longest intersection

with are {1,4}, {1,2}, and {2,3}. Because set {1,4} appears first in , it is assigned to

 . Therefore,
 { } and this set is added to the set of sets . It follows that

 and
 for components . These results for MLS1 are

summarized as follows:

For , { }:

 { } {{ }}

 {{ } { } { } { } { }}

The results for the remaining MLSs are:

For , { }:

 { } {{ }}

Bensi et al. (2013)

- 25 -

 {{ } { } { } { } { }}

For , { }:

 { } {{ }}

 {{ } { } { } { } { }}

For , { }:

 { } {{ } { }}

 {{ } { } { } { } { }}

For , { }:

 { } {{ } { } { }}

 {{ } { } { }}

For , { }:

 {{ } { } { }}

 {{ } { } { }}

For { }:

 {{ } { } { }}

 {{ } { } { }}

Note that, when is considered, component 1 appears twice in the set . Because

component 1 has appeared times, all sets containing component 1 are removed from

the set , unless they already appeared in .

Step 5: The last step of the heuristic is to modify the optimization problem so that

permutations on components not contained within the sets
 , are not

considered. Recall that

 [

] combines component indices according

to set
 with instance indices according to the set

. To reduce the size of the

optimization problem, we remove from the set
 all permutations of component indices

that are not consistent with the order specified in
 . Furthermore, we remove from the set

 all instance indices that are greater than
 .

7.3 Example Application

Once again consider the system in Figure 13a consisting of 10 components and 7 MLSs. The

super component heuristic is employed to obtain the solution in Figure 13b. The only super

component for this system is the one including components 5-9, which are arranged in a

single SPS. The arrangement of the remaining SPSs is found through the full optimization

algorithm described in section 6. The formulation of Figure 13b was obtained without using

Bensi et al. (2013)

- 26 -

the heuristic described in section 7.2. This idealized network system is sufficiently simple that

it is possible to obtain a solution without requiring the heuristic, but for larger systems this

may not be case. The BN obtained for this system using the optimization algorithm augmented

by the heuristic of section 7.2 is shown in Figure 19. The solution obtained is suboptimal. It

contains 29 links, whereas the optimal solution contains 26 links. The total clique size for this

BN is 252 (as opposed to 184 for the optimal BN). However, using the Tomlab optimization

environment (Holmström 2008), it took over 12 times longer to obtain a solution without the

heuristic than when the heuristic was invoked. Thus, in using the heuristic, there is a trade-off

between the amount of time required to solve the optimization problem and the optimality of

the resulting BN topology. However, even with the heuristic, the efficient MCS formulation is

substantially more efficient than the standard MCS formulation.

Figure 19: Efficient MCS BN formulation for example system in Figure 13a obtained using the

optimization algorithm with both heuristics

8. Conclusions

This paper develops efficient BN formulations for modeling the performance of general

systems for which the MLSs or MCSs are known. We show that BNs with nodes in chain

structures are more efficient than when nodes are arranged in converging topologies. We

demonstrate how BNs with nodes arranged in chain structures are constructed for series and

parallel systems. This idea is then extended to develop similar topologies for general systems.

Additionally, the idea is extended to consider multi-state flow problems. To automate the

construction of efficient BN formulations for general systems, a binary integer optimization

program is developed with the goal of automatically constructing the BN such that the

number of links is minimized. An example application highlights the advantage gained from

the efficient BN formulation. To improve computational efficiency, two heuristic approaches

are offered. One employs the concept of super components; the other reduces the number of

component permutations that need to be considered. Use of the second heuristic substantially

reduces the size of the optimization problem, but may result in a suboptimal BN topology.

C1

Ef,2
1

C2

Ef,1
1

Ef,1
2

C10

Ef,10
1

C4 Ef,4
1

Ef,3
1

C3

Ssys

C5

Es,5
1

C6

Es,6
1

C7

Es,7
1

C8 C9

Es,8
1 Es,9

1

super component

Ef,4
2

Ef,10
2

Bensi et al. (2013)

- 27 -

9. Acknowledgment

This research was supported by the State of California through the Transportation Systems

Research Program of the Pacific Earthquake Engineering Research Center (PEER). Additional

support was provided by the Taisei Chair in Civil Engineering at the University of California,

Berkeley. The first author also gratefully acknowledges support from a National Science

Foundation graduate research fellowship. Any opinions, findings, and conclusions or

recommendations expressed in this paper are those of the authors and do not necessarily

reflect those of the funding agencies.

References

Bensi, M., Der Kiureghian, A. & Straub, D. 2011. A Bayesian network methodology for infrastructure
seismic risk assessment and decision support. Report No. 2011/02, Pacific Earthquake
Engineering Research Center, University of California, Berkeley, March.

Bobbio, A. et al., 2001. Improving the analysis of dependable systems by mapping fault trees into
Bayesian networks. Reliability Engineering & System Safety, 71(3), 249-260.

Dechter, R., 1996. Bucket Elimination: A unifying framework for probabilistic inference. Uncertainty in
Artificial Intelligence, UA1996, 211-219.

Der Kiureghian, A. & Song, J., 2008. Multi-scale reliability analysis and updating of complex systems by
use of linear programming. Reliability Engineering & System Safety, 93(2), 288-297.

DSL, 2007. GeNIe 2.0 by Decision Systems Laboratory, Available at: http://genie.sis.pitt.edu/.

Elias, P., Feinstein, A. & Shannon, C., 1956. A note on the maximum flow through a network. Information
Theory, IRE Transactions on, 2(4), 117-119.

Ford, L.R. & Fulkerson, D.R., 1956. Maximal flow through a network. Canadian Journal of Mathematics,
8(3), 399-404.

Friis-Hansen, P., 2004. Structuring of complex systems using Bayesian Networks. In O. Ditlevsen & P.
Friis-Hansen, eds. Proceedings of Two Part Workshop at DTU. Technical University of
Denmark.

Holmström, K., 2008. Tomlab Optimization Environment, Available at: http://tomopt.com/tomlab/.

Hugin Expert A/S, 2008. Hugin Researcher API 7.0, Denmark: Hugin Expert A/S. Available at:
www.hugin.com.

Jensen, F.V. & Nielson, T.D., 2007. Bayesian Networks and Decision Graphs second ed., New York:
Springer Science+Business Media, LLC.

Kjaerulff, U.B. & Madsen, A.L., 2008. Bayesian Networks and Influence Diagrams: A Guide to Construction
and Analysis, New York: Springer Science+Business Media, LLC.

Lampis, M. & Andrews, J.D., 2009. Bayesian belief networks for system fault diagnostics. Quality and
Reliability Engineering International, 25(4), 409-426.

Langseth, H. et al., 2009. Inference in hybrid Bayesian networks. Reliability Engineering & System Safety,
94(10), 1499-1509.

Lauritzen, S. L., & Spiegelhalter D. J., 1988., Local Computations with Probabilities on Graphical
Structures and Their Application to Expert Systems, Journal of the Royal Statistical Society.
Series B (Methodological), 50(2), 157–224.

Liu, X., Li, H. & Li, L., 2008. Building method of diagnostic model of Bayesian networks based on fault
tree. In Seventh International Symposium on Instrumentation and Control Technology: Sensors
and Instruments, Computer Simulation, and Artificial Intelligence. Beijing, China: SPIE.

Madsen, A.L., 2008. Belief update in CLG Bayesian networks with lazy propagation. International Journal
of Approximate Reasoning, 49(2), 503-521.

Mahadevan, S., Zhang, R. & Smith, N., 2001. Bayesian networks for system reliability reassessment.
Structural Safety, 23(3), 231-251.

Nielsen, T.D., Wuillemin, P., Jensen, F.V, Kjaerulff, U., 2000. Using ROBDDs for inference in Bayesian
Networks with troubleshooting as an example, Uncertainty in Artificial Intelligence Proceedings,
p. 426-435.

Bensi et al. (2013)

- 28 -

Pagès, A. & Gondran, M., 1986. System Reliability, Springer-Verlag.

Pearl, J., 1988. Probabilistic reasoning in intelligent systems : networks of plausible inference. The Morgan
Kaufmann series in representation and reasoning, Morgan Kaufmann Publishers, San Mateo,
Calif.

Sarker, R.A. & Newton, C.S., 2008. Optimization modelling: a practical approach, Boca Raton, Florida:
CRC Press, Taylor and Francis Group, LLC.

Shachter, R. D., 1986. Evaluating Influence Diagrams, Operations Research, 34(6), 871–882.

Straub, D. & Der Kiureghian, A., 2010a. Bayesian network enhanced with structural reliability methods:

Methodology. Journal of Engineering Mechanics, ASCE, 136(10):1248-1258.

Straub, D. & Der Kiureghian, A., 2010b. Bayesian network enhanced with structural reliability methods:

Application. Journal of Engineering Mechanics, ASCE, 136(10):1259-1270.

Torres-Toledano, J. & Sucar, L., 1998. Bayesian Networks for Reliability Analysis of Complex Systems. In
Progress in Artificial Intelligence - IBERAMIA 98.Lecture notes in computer science, vol. 1484.
Springer-Verlag Berlin Heidelberg, pp. 195-206.

Yuan, C. & Druzdzel, M., 2003. An importance sampling algorithm based on evidence pre-propagation.
In Proceedings of the 19th Annual Conference on Uncertainty in Artificial Intelligence (UAI-03).

Yuan, C. & Druzdzel, M., 2006. Importance sampling algorithms for Bayesian networks: Principles and
performance. Mathematical and Computer Modelling, 43(9-10), 1189-1207.

	1. Introduction
	2. Brief introduction to Bayesian networks
	3. Modeling system performance via Bayesian network
	4. BN system models using minimal link and cut sets
	4. 1 Binary components and system
	4.2 Multi-state flow systems with multi-state components

	5. Efficient BN system models
	5.1 Motivation
	5.2 Series and parallel systems with binary components
	5.3 General systems with binary component states

	6. Optimal ordering of survival path events
	6.1 Extension to multi-state flow systems
	6.2 Example Application

	7 Heuristic Augmentation
	7.1 Heuristic employing super components
	7.2 Heuristic for reducing the number of permutations
	7.3 Example Application

	8. Conclusions
	9. Acknowledgment
	References

