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Abstract

This study deals with the spatial dynamics of pushbelt continuously variable transmis-
sions. The basis is a transient non-smooth flexible multibody system, in which measure
differential equations in combination with set-valued force laws are numerically inte-
grated by means of using time-stepping schemes. This model is modularly refined by
means of different enhancements to represent the physical characteristics of the trans-
mission in more detail. The enhancements include both increasing the possibilities to
specify boundary conditions for the model and the geometrical adaptation of single
bodies. Moreover, a reduced hybrid model has been added, which represents the planar
phenomena in a faster computing time and a concept of pre-integration is presented.
Furthermore, the contact model between single bodies has been refined and a spatial
quasi-static coupled contact law enhances the model. A geometric nonlinear Cosserat
rod model is presented and methods of nonlinear model order reduction are tested
in combination with constraints to this rod model. The effects of the different model
enhancements on single phenomena are analysed. Comparisons with measurements
validate the hybrid model resulting in very good results.

iii





Danksagung

Diese Studie fasst die Ergebnisse meiner Arbeit als wissenschaftlicher Mitarbeiter von
Januar 2010 bis April 2013 am Lehrstuhl für Angewandte Mechanik an der Technischen
Universität München zusammen. Sie wurde von Bosch Transmission Technology B.V.
ermöglicht und finanziert.

Herzlicher Dank gebührt meinem Doktorvater Prof. Dr.-Ing. habil. Heinz Ulbrich i. R.
für die Betreuung und stete Unterstützung dieser Arbeit. Das mir entgegengebrachte
Vertrauen und die Freiheit mich in diesem Projekt entfalten zu können trugen zum
Erfolg bei. Herrn Prof. Dr.-Ing. Carlo L. Bottasso danke ich für die Übernahme des
Zweitgutachtens und das große Interesse an meiner Arbeit. Auch möchte ich mich bei
Prof. dr. ir. Daniel J. Rixen für die Übernahme des Prüfungsvorsitzes bedanken.

Bei Bosch Transmission Technology B.V. bedanke ich mich ganz besonders bei Arie
van der Velde, Semih Yildiz und Han Pijpers. Die Zusammenarbeit lief stets reibungslos
und bereitete mir große Freude. Des Weiteren möchte ich mich bei allen Kollegen
insbesondere den Rechneradministratoren am Lehrstuhl für Angewandte Mechanik für
die große Hilfsbereitschaft bedanken. Besonders hervorheben möchte ich Thorsten
Schindler als meinen Vorgänger in diesem Projekt. Er legte nicht nur den Grundstein
für diese Arbeit, sondern unterstützte mich hierin in allen Belangen. Darüber hin-
aus bedanke ich mich bei Kilian Grundl, der das Projekt weiterführt und eine große
Bereicherung für dieses darstellt.

Zudem bedanke ich mich bei den Korrekturlesern Thorsten Schindler, Kilian Grundl,
Arie van der Velde und Isabel Siegel für ihre äußerst akribische Durchsicht und die
konstruktiven Anmerkungen. Zuletzt möchte ich mich bei meinen Eltern und Freunden
für die tatkräftige Unterstützung alle Jahre bis zur Fertigstellung dieser Arbeit bedanken.

v





Contents

1 Introduction 1

2 Non-smooth Flexible Multibody Systems 5
2.1 Functions of bounded variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Measure differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Local contact kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Set-valued force laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Equations of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 Flexible bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.7 Integration schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.8 Software MBSim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Spatial Pushbelt CVT Model 23
3.1 Continuously variable transmissions . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Global market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.2 Functional principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Modelling background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.1 Bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.2 Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.3 Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Enhancements concerning Initialisation 33
4.1 Variable boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.1 Primary end stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.1.2 Secondary end stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.3 No end stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.1.4 Classification of all boundary conditions . . . . . . . . . . . . . . . . . . . . 43

4.2 Tapered elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.1 Geometric calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.2 Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Planar pre-integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3.1 Interface set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3.2 Spatial numerical initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Enhancements concerning Interactions 69
5.1 Unilateral element - ring set contact . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1.1 Free movement in vertical direction . . . . . . . . . . . . . . . . . . . . . . . 70
5.1.2 Free movement in lateral direction . . . . . . . . . . . . . . . . . . . . . . . . 71

vii



viii Contents

5.1.3 Ring tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2 Coupled contact law for element - sheave contact . . . . . . . . . . . . . . . . . . . 75

5.2.1 Demonstration of coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2.2 Maxwell’s reciprocal theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2.3 Local elastic contact kinematics . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2.4 Maxwell force law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2.5 Solution of the Maxwell force law . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2.6 Application to the element - sheave normal contact . . . . . . . . . . . . . 85

6 Model Reduction 89
6.1 Hybrid pushbelt CVT model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.1.1 Bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.1.2 Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.1.3 Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.2 Planar Cosserat rod model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2.1 Continuous equations of motion . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.2.2 Discrete equations of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.2.3 Contour description for set-valued force laws . . . . . . . . . . . . . . . . . 108
6.2.4 Initialisation of Cosserat rod ring sets . . . . . . . . . . . . . . . . . . . . . . 109

6.3 Nonlinear model order reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7 Results and Verification 115
7.1 Hybrid pushbelt CVT model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.1.1 Element contact forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.1.2 Thrust ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.1.3 Spiral running . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.1.4 Computing time reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.2 Tapered elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.2.1 Operational endplay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.2.2 Element contact forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.2.3 Thrust ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.3 Unilateral element - ring set contact . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.3.1 Element contact forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.3.2 Thrust ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.3.3 Computing time reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.4 Coupled contact law for element - sheave contact . . . . . . . . . . . . . . . . . . . 129
7.4.1 Element contact forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.4.2 Thrust ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
7.4.3 Spiral running . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.5 Variable boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8 Conclusions and Future Work 137



1 Introduction

The spatial dynamics of a continuously variable transmission (CVT) are dealt with in
the context a of non-smooth flexible multibody system in this study. It represents the
continuation of a good and long-standing cooperation between the Institute of Applied
Mechanics of the Technische Universität München and Van Doorne’s Transmissie, later
Bosch Transmission Technology B.V., in Tilburg, the Netherlands. The objective of this
cooperation, as well as of this study, is to contribute to the overall optimisation of the
CVT transmission and thus to improve its efficiency. This improvement process has
an impact on the global goal of reducing the fuel consumption and CO2 emissions.
Through the ongoing optimisation at Bosch concerning different technology fields
(e.g. mechanics, hydraulics and control), a concept study on a new CVT prototype has
been presented in [26] with “a weight & size reduction of 10-15% and a fuel economy
improvement of 7% comparing to the current generation” [26, p. 427].

The joint research project with the aim to analyse the dynamics of the pushbelt
continuously variable transmission variator started with [8], where the entire pushbelt
was simplified to a one-dimensional continuum. After that, a planar dynamic multibody
simulation model of the pushbelt CVT variator was accomplished and validated in [17]
and is used at Bosch for the development of their system. Here, the pushbelt is divided
into a nonlinear geometric beam model for the ring set and rigid bodies for the elements.
Further projects originated with the aim to cover also out-of-plane effects by developing
a dynamic multibody variator model in three dimensions. The foundation has been laid
in [45]. Many important technical features of the system have been integrated into the
model and a first validation has been done. However, a model refinement with many
additional functional details as well as an intensified validation of the final system had
yet to be done. The first is approached in this study and the second in its follow-up
project.

As the title of this study already suggests, its objective is to add different model
enhancements to the spatial model to cover the physical characteristics of the pushbelt
CVT variator in more detail. The simulation model had to be enhanced with a unilateral
element - ring set contact to enable a lifting of the ring sets from the element saddle.
In combination with this unilateral element - ring set contact, a lateral movement of
the ring sets on the element saddles should be enabled, controlled by a ring tracking
law. Then, variable boundary conditions should increase the options to specify load
conditions on the pushbelt CVT model. In addition, tapered elements should represent
different element shapes resulting from manufacturing affecting the dynamics of the
system. Last, a coupled contact law for the element - sheave contact had to be added

1



2 1 Introduction

to enable coupling of the elements through the elasticity of the pulley sheaves in a
contact quasi-statically. All the additional technical features had to be added to the
model in a modular way to enable or disable different features and combine them in a
reasonable way. In addition, the computing time had to be reduced employing different
strategies. The planar model [17] had been developed in an older software which was no
longer maintained. Meanwhile, the institute proceeded to a new multibody simulation
software MBSim [31], wherein the spatial model has been developed. So, the desire
was to have a fast state-of-the-art (extended) planar model in the current software to
cover a lot of phenomena in a much shorter computing time. In summary, the model
[45] should be enhanced with these features. An intensified validation of the spatial
model is instructed in the project plan of the follow-up project. Therefore, in this study
not a final but further validation is carried out and comparisons of the different model
enhancements with the existing ones are shown.

So far, extensive research work concerning the simulation of CVTs have been carried
out. A literature survey concerning the dynamics of pushbelt CVTs and multibody
systems is given in [17]. An extensive review paper on the state of the art of dynamics and
control of both belt and chain CVTs is found in [49]. A short survey of CVT simulation
models is presented in [45] with arguments for the need for a spatial simulation model.
Thus, the reader is referred to these sources and it is not necessary to give a literature
review at this point. Examples for newer developments are: In [42], a very simple model
of the belt has been presented focusing on fast calculation. It neglects inertia terms
and bending stiffness and models the pushbelt as a one-dimensional continuum. In
[43], a method has been presented to prognosticate the transmission efficiency of a
pushbelt CVT variator. An accurate model of friction forces and sliding velocities is given
to determine the friction loss. In [50], investigations of the scuffing resistance of belt
and chain CVTs with experiments and a simulation model based on [44, 51] have been
presented. Overall, the spatial transient simulation model [45] represents one of the
most detailed simulation model of a pushbelt CVT. It considers out-of-plane effects, but
has a high computing time because of the large number of degrees of freedom (about
3500) and contacts (about 5500). Further literature references concerning the addressed
topics of this study are given in the respective chapters.

This study is structured as follows. The chapters 2 and 3 are introductory chapters
to expose the background and basis for this study. Chapter 2 sums up existing theory
from literature on non-smooth flexible multibody systems, where the pushbelt CVT
model is embedded. Chapter 3 explains some backgrounds on CVTs, in general, and the
model [45] which is the point of departure of this study. After this introduction to the
topic, the different model enhancements which have been accomplished during this
study are presented in Chapter 4 to Chapter 6. Chapter 4 combines three enhancements
under the umbrella term initialisation. These are the variable boundary conditions,
the tapered elements and the concept of planar pre-integration. Chapter 5 contains
two enhancements under the term interactions, which are the unilateral element - ring
set contact and the coupled contact law for the element - sheave contact. In Chapter



3

6, three enhancements are presented which focus on model reduction. These are the
hybrid pushbelt CVT model, the derivation of a planar Cosserat rod model and an
approach of nonlinear model order reduction for this rod model. After that, results and
verification of the model enhancements are shown in Chapter 7. Chapter 8 closes this
study with conclusions and recommendations for future work.





2 Non-smooth Flexible Multibody Systems

The dynamic behaviour of mechanical systems can be modelled, simulated and ana-
lysed within multibody systems. These methods provide the necessary tools to model
the system with differential equations and to numerically integrate the equations of
motion by means of different integrators. The mechanical system is split into (rigid and
flexible) bodies and the corresponding mass-less links between them, like e.g. contacts,
joints (i.e. hinges or bearings) and spring / damping connections. Each rigid body
can move in space with large translation and rotation restricted by the interactions.
For a more detailed representation of the bodies, methods to model flexible bodies
are integrated into the multibody system. This enables small or large deformations of
selected bodies. The contact between bodies can be modelled in different ways. In this
study, the non-smooth approach was chosen, as introduced in [34]. It has proven itself
in practice cf. [38, 54]. Very detailed references on the non- smooth approach can be
found in [1, 6, 29].

In this chapter, a short summary is given of the state of the art from the existing
literature to supply the necessary background. First, the measure differential equations
(MDEs) are introduced from measure theory with regard to the application in mechani-
cal systems with set-valued force laws. Therefore, they are presented in the composition
with generalised velocities, coordinates, forces etc. The MDEs are the theoretical foun-
dation for the equations of motion of non-smooth multibody systems. Then, the contact
description with set-valued force laws is shown. The unilateral constraints for example
are part of these set-valued force laws and are amongst other things responsible for
discontinuities in the systems’ velocities. The derivation of the equations of motion is
presented and some background on flexible multibody systems is given. Last, some
integration schemes for non-smooth systems are demonstrated.

2.1 Functions of bounded variation

The theory of functions of bounded variation originates from mathematical analysis.
It builds the basis for the MDEs, which model the non-smooth system equations. The
transfer from measure theory to non-smooth mechanics was established by [34]. First of
all, for a detailed explanation of the subject, some definitions from calculus of variations
have to be given following [33, 18, 29].

The right-limit u+(ti ) of a mapping u : I → IRn with a nonempty closed real interval I

5



6 2 Non-smooth Flexible Multibody Systems

at a fixed time ti ∈ IR is defined as

u+(ti ) = lim
s→ti ,s>ti

u(s), (2.1)

if it exists. The right-limit is approached through the course of u(t ) from the right side
of ti in the interval, hence it is not defined on the right end of I . Symmetrically, the
left-limit u−(ti ) is defined as the limit approached from the left side. If the function u is
continuous at ti , the left- and right-limit are equal at this point.

For the theory of functions of bounded variation, a definition of continuity is required
which is more restrictive than ordinary continuity. A function q : I → IRn is absolutely
continuous on I if for every ε> 0 a δ> 0 exists, depending on the respective ε, so that

m∑
i=1

‖q(bi )−q(ai )‖ < ε

holds for every finite number of pairwise disjoint sub-intervals (ai ,bi ) ⊂ I , i = 1, . . . ,m
which fulfil

m∑
i=1

(bi −ai ) < δ.

Ordinary continuity is included for the special case of m = 1, i.e. the set of all absolute
continuous functions is a subset of the set of all continuous functions. The most cited
example of a function that is continuous everywhere but not absolutely continuous is
the Cantor function.

The fundamental theorem of calculus states that an absolute continuous functions q
on the interval [a,b] has a derivative q̇ almost everywhere on [a,b], which is Lebesgue
integrable q̇ ∈ L1([a,b]). The integral of q̇ is given by

q(b)−q(a) =
b∫

a

q̇(t )dt . (2.2)

Therefore, the concepts of differentiation and integration are brought into a relation
with the concept of absolute continuity.

The variation of a multidimensional function u : I → IRn on a one-dimensional
subinterval J ⊂ I ⊂ IR is a map

var(u, J ) = sup
(ti )

m∑
i=1

‖u(ti )−u(ti−1)‖, (2.3)

with m ∈ IN arbitrary and (ti )0≤i≤m denoting all strictly increasing sequences t0 < t1 <
·· · < tm of partitions of J . The supremum is set to infinity if no majorising real number
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can be given. The variation is a measure for the local oscillation behaviour of a function.
If J contains more than one element, it holds

var(u, J ) = 0 ⇔ u is constant on J . (2.4)

Otherwise, if J = {ti } is a singleton, the variation is always zero independent of the
function

var(u, {ti }) = sup∅= 0. (2.5)

The notion of the variation can easily be understood by means of a one-dimensional
example. The variation function g (t) := var( f , [a, t ]) of any real-valued function f (t)
is monotonically increasing. Figure 2.1 shows a function f (t) and the corresponding
variation. The function is composed of different sections (constant, linear, polynomial)
and different links (kinks, jumps). The variation var( f , [a, t ]) summarises figuratively
the altitude difference while running through the graph of f (t) including all jumps.
Therefore, constant resp. increasing sections of f (t ) are represented by constant resp.
increasing sections in var( f , [a, t ]). Decreasing parts are converted to increasing ones
by taking the positive altitude difference. Kinks and discontinuities stay at the same
abscissa position as in f , but result always in an increasing ordinate.

0
ta b

f (t )

var( f , [a, t ])

var( f , [a,b])

Figure 2.1: Variation function var( f , [a, t ]) of function f (t ), cf. [29]

The function u : I → IRn is of bounded variation on I if its variation is finite

u ∈ BV (I ) ⇔ var(u, I ) <+∞ . (2.6)

Descriptively this means that it has only finitely many oscillations in the finite interval I .
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A continuous function is not obligatory of bounded variation. However, every absolutely
continuous function on I is of bounded variation on this interval. A typical example for
a one-dimensional continuous function that is not of bounded variation is

f (t ) =
0, if t = 0

t sin

(
1

t

)
, if t 6= 0 .

(2.7)

Here no upper bound can be given in any interval around 0, which restricts the variation.
Some properties are summarised subsequently similar to [18, p. 59] that are valid for

every function of bounded variation u ∈ BV (I ):

1. It has only jump-type discontinuities.

2. The number of discontinuities in I are at most countable.

3. The left-limit u−(t ) and the right-limit u+(t ) exist for every t ∈ I exempt from the
respective boundary points.

4. A decomposition, called Lebesgue decomposition, exists into

u = u A +uS +uSI , (2.8)

where

a) u A ∈ BV (I ) is an absolutely continuous function,

b) uS ∈ BV (I ) is a step function,

c) uSI ∈ BV (I ) is a singular function, as for instance the Cantor function.

5. It is differentiable almost everywhere.

2.2 Measure differential equations
The states of mechanical systems, more precisely the velocities, are no longer smooth
functions when certain set-valued force laws (like e.g. unilateral constraints and dry
friction) are added to the system. Thus, the states have to be considered as functions of
bounded variation. Standard techniques to describe and solve the equations of motion
fail. The measure differential equations applied to non-smooth mechanics close this
gap. They originate out of the discipline of measure theory. This section presents the
subject from a mathematical point of view following [18, 29].

The assumptions on the time dependent functions (velocities, coordinates and accel-
erations) to describe non-smooth mechanics with MDEs are summarised:

• The generalised velocities u : I → IRm are functions of bounded variation on a
time interval I .
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• The generalised coordinates q : I → IRn are absolutely continuous and related to
the velocities by

q(t ) = q(t0)+
t∫

t0

T (q(τ))u(τ)dτ, t ≥ t0. (2.9)

The matrix T : IRn → IRn×m describes the relationship between the derivative of
the spatial generalised coordinates and the generalised velocities.

• As the generalised accelerations u̇ ∈ L1(I ) exist only almost everywhere, they are
substituted by a differential measure du comprising the overall accelerations.

The assumption that the generalised coordinates q are absolutely continuous is no
restriction, as jumps in position and rotation are not of practical interest. Because of
the bounded variation, the left- and right-limit of u exist everywhere on I apart from
the boundary points. As finitely many discontinuities in u are allowed, the generalised
velocities can not be obtained from u̇ by integration. This would only yield the absolute
continuous fraction of u and would neglect the rest. Therefore, the differential measure
of u is introduced, denoted by du. It is associated with the classical IRn-valued Stieltjes
measure on the interval I , for which∫

[tk ,tl ]

du = u+(tl )−u−(tk ) (2.10)

holds for every compact subinterval [tk , tl ] of I . Details on the differential measure and
the prove of the property (2.10) can be found in [33]. The integral over a singleton {tk }
in I depicts either a possible jump at tk or vanishes if both limits are equal:∫

{tk }

du = u+(tk )−u−(tk ). (2.11)

With this differential measure, all three parts of u (absolutely continuous, step and
singular function) can be gained from integration of du. So it is suited to represent the
generalised accelerations of non-smooth mechanical systems.

According to (2.8), the function of generalised velocities u ∈ BV (I ) can be decom-
posed into three parts. Likewise, the corresponding differential measure du can be
fragmented into

du = du A +duS +duSI , (2.12)

using the Lebesgue decomposition for the measure [29]. The first part du A is the mea-
sure of the absolutely continuous function u A. It takes into account the smooth motion
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of the velocity. The derivative u̇ A, which exists almost everywhere and is integrable,
serves as a density function with the Lebesgue measure dt

du A = u̇ A dt . (2.13)

According to the fundamental theorem of calculus, the integration of du A over any
subinterval of I results in∫

[tk ,tl ]

du A =
∫

[tk ,tl ]

u̇ A dt = u A(tl )−u A(tk ). (2.14)

The second measure duS in (2.12) includes the non-smooth part. The step function uS

has countably many jumps at the discontinuity points {ti }i and is constant elsewhere
on the interval I . Hence, its derivative u̇S is zero for almost every t ∈ I and the corre-
sponding differential measure has to deal with these non-smooth points. It is purely
atomic, as it adds up the Dirac measures at the discontinuities ti of uS weighted with
the respective jump heights

duS =∑
i

(
u+

S (ti )−u−
S (ti )

)
dδti . (2.15)

The definition of the Dirac measure with an arbitrary function f : I → IRn is given by

∫
[tk ,tl ]

f dδti =
{

f (ti ), if ti ∈ [tk , tl ],

0, if ti ∉ [tk , tl ] .
(2.16)

With the abbreviatory notation dη :=∑
i dδti , Equation (2.15) is written as

duS = (u+
S −u−

S )dη. (2.17)

The third term in (2.12), duSI , is a singular measure. It is assumed zero in this study
according to [18], which means the velocities are assumed to have no singular terms.
Hence, the singular part is not treated further.

The generalised forces are substituted by a real measure dΛ, called the reaction
measure. Analogously to the differential measure of the velocity, dΛ can be decomposed
into a Lebesgue measurable and an atomic part1

dΛ=λdt +Λdη . (2.18)

It consists of the smooth contact forcesλ due to persisting or opening contacts and the
impact percussions (or impulses) Λ in the case of a closing contact. The measure of
the impact percussions is purely atomic and can be split up by the Dirac delta into the

1 Again the singular part is assumed zero.
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single impulses at the discontinuities ti

Λdη=∑
i
Λ(ti )dδti . (2.19)

Altogether, the measure differential equations are obtained which contain the smooth
equations of motion and the non-smooth impact equations

M(q)du = h(q ,u, t )dt +W (q)dΛ . (2.20)

The MDEs hold for every t in I . The mass matrix M is symmetric positive definite, the
vector h contains the Lebesgue integrable smooth forces including those resulting from
single-valued force laws. The matrix W specifies the directions of the set-valued contact
reactions. In general these matrix and vector functions are nonlinear in the states.

To show that both systems of equations (smooth and non-smooth) are included,
Equation (2.20) is integrated. By integrating over any time interval J ⊂ I without a
discontinuity, the (smooth) equations of motion are gained. For those intervals the
impact percussions vanish and therefore the velocity is smooth and only the Lebesgue
measurable parts remain. These parts can be combined in one integral equation which
holds for every smooth subinterval∫

J

(
M(q) u̇ −h(q ,u, t )−W (q)λ

)
dt = 0 ∀J \ {ti }i . (2.21)

The notation u̇ := u̇ A is introduced for the smooth part of the generalised accelerations.
Out of this integral version the differential equations are gained

M(q) u̇ = h(q ,u, t )+W (q)λ . (2.22)

The (non-smooth) impact equations emerge by integration over a singleton {ti } with
discontinuity∫

{ti }

(
M(q)

(
u+−u−)−W (q)Λ

)
dη= 0 ∀ti ∈ I (2.23)

⇔ M(q(ti ))
(
u+(ti )−u−(ti )

)=W (q(ti ))Λ(ti ) . (2.24)

This results as the integral (with respect to the Lebesgue measure dt ) over every singleton
{ti } vanishes for every smooth function. Hence, only the atomic part remains. Equation
(2.24) means that in every discontinuity point ti the non-zero impact percussions
effect a velocity jump and therefore the right- and left-limit of the velocity have to be
considered.
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2.3 Local contact kinematics
A contact description is required for the interactions of the bodies. The given description
of the local contact kinematics follows the explanation of [29, 46]. A contour is assigned
to each body, i.e. a surface, which is a two-dimensional manifold uniquely defined by a
contour parameter s ∈ IR2. The surfaces are assumed to be convex. One contour can
be in contact with one or more contours of other bodies. Contacts between bodies are
modelled as discrete point contacts. In order to specify a contact between two contours,
the positions vectors of the two contact points r OCk , k = 1,2 on each body have to be
found out of all potential contact points. This general contact situation is illustrated in
Figure 2.2.

gN

O

Body 1

r OC1

r OC2

Body 2

ġ T

ġ T

C1

C1

C2

C2

T1

T2

n1

n2

t 1

λN

λN

b1

λT

λT

vC1

vC2

Figure 2.2: Contact geometry between two rigid bodies [29, p. 83]

The two contact points C1 and C2 have the minimal distance between all points on
both surfaces, i.e. they are the proximal points. Their position vector

r OCk = r k (q k , sOCk ), k = 1,2 (2.25)

depends on the contour parameter of the contact point sOCk and the generalised posi-
tion q k of the body. The two contact points are the unknowns that have to be found in
the contact search. During the motion q k (t ) of the bodies, the positions of these points
on the contour sOCk and their relative distance may change, so the contact search have
to take place in each time step. Each point possesses a contour normal nk = nk (q k , sOCk )
that is directed outward and two tangents t k (q k , sOCk ), bk (q k , sOCk ), as it can be seen in
Figure 2.2. All three vectors are normalised and form an orthonormal basis (t k ,nk ,bk ).
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The condition for the contact search is as follows. Two points C1 and C2 form a
contact pair if their respective normals are linearly dependent (i.e. they form the same
one-dimensional vector space) and have an opposite sign

n1 =−n2 . (2.26)

Consequently, their tangent planes T1 and T2 are parallel. The distance vector of the
potential contact points Ck have to be orthogonal to both tangent planes

t T
1

bT
1

t T
2

bT
2

 · (r OC2 − r OC1

)= 0 . (2.27)

This forms a system of nonlinear implicit equations in sOCk which is solved numerically
by e.g. a multidimensional fixed-point or Newton iteration. For simple contact pairs, e.g.
sphere-sphere contacts, the required equations can be set up and solved analytically.
The analytical calculation yields the exact solution with in general a faster solution
process than its numerical approximation. The numerical solution of the four nonlinear
equations in (2.27) with the four unknowns sOC1 , sOC2 is not necessarily unique and
therefore the solution with the minimal gap distance

gN = nT
1 (r OC2 − r OC1 ) (2.28)

has to be chosen. The relative location of both bodies is expressed by the sign of the gap
distance. For gN = 0, the two bodies are touching. A positive sign means that they are
separated and a negative sign means that they are penetrated. If gN ≤ 0, the bodies are
said to be in contact. The normal and tangential relative velocities of the contact points
can be calculated out of the vector difference of the absolute velocities (vOCk = ṙ OCk ) of
the contact points

ġN = nT
1 (vOC2 −vOC1 ) , ġ T =

(
t T

1
bT

1

)
· (vOC2 −vOC1 ) . (2.29)

Projecting the local absolute velocities into the global space of generalised velocities
u by the corresponding Jacobian matrices, the relative velocities can be expressed
depending on the generalised velocities, the generalised coordinates and the time

ġN = ġN (u, q , t ) , ġ T = ġ T (u, q , t ) . (2.30)

For details on that issue see [59].
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2.4 Set-valued force laws

Still λ andΛ are unknown in (2.18) and have to be specified with additional equations.
With the preparatory work of the contact kinematics of Section 2.3 this is done by means
of set-valued force laws. Together with the MDEs they form a measure differential
inclusion. The theory of this section is based on the field of set-valued and convex
analysis. Introductorily, some definitions are given following [29].

A set-valued map assigns to each preimage at least one image. More general, it is a
mapping in the set of all nonempty compact subsets of IRm . Therefore, the graph of
these functions can have ’vertical’ segments. A simple example is the planar Coulomb
friction law in the case of no slip, cf. Figure 2.4c.

The normal cone NC (x) of a convex set C ⊂ IRn in x ∈C is given by

NC (x) := {
y ∈ IRn ; y T (x∗−x) ≤ 0, ∀x∗ ∈C

}
. (2.31)

It can easily be seen that the zero vector is always element of the normal cone. An
equivalent definition of the normal cone can be given by means of the prox function,
see [2]. The proximal point of the convex set C ⊂ IRn to a point x ∈ IRn is defined as

prox
C

(x) = arg min
x∗∈C

‖x −x∗‖2 . (2.32)

It is the closest point in C to x , as it minimises the Euclidean distance between the
point x and all points in C . With the prox function the normal cone in x ∈C can also be
written as

NC (x) =
{

y ∈ IRn ; prox
C

(x + r y) = x , ∀r > 0
}

. (2.33)

Further, it holds for x ∈ IRn that [29]

x −prox
C

(x) ∈ NC

(
prox

C
(x)

)
, (2.34)

which is well-defined as proxC (x) ∈C . This shows the close link between the normal
cone and the proximal point formulation. The value r in (2.33) is positive and shows the
characteristic of a cone that, if a vector is contained in a cone then also every positive
multiple is included.

The concept of the proximal point is illustrated in Figure 2.3. In the case that x ∉C
then proxC (x) maps on the boundary of C . This mapping is done by a perpendicular
projection of x onto C (cf. x1). If the boundary of C is not smooth but has a kink, then
the image is not unique, see x3. All points of the shaded cone with both lines normal to
the set C are projected onto the same corner. This cone corresponds to the normal cone
shifted from the origin into prox(x3). In the other case, if x ∈C , then the prox function
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maps on itself, see x2.

C

x1

x2 = proxC (x2)

x3

proxC (x1)

proxC (x3)

Figure 2.3: Concept of proximal point with a convex set C [29]

With the help of these definitions, three set-valued force laws are given in equivalent
formulations following [29, 47]. They are illustrated in Figure 2.4. The laws can be
formulated on three kinematic levels - position, velocity or acceleration, cf. [18]. The
contact laws and impact laws have to be distinguished. They are sub-divided into
normal and tangential directions. The contact force in normal direction is denoted with
λN and the tangential contact force with

λT =
(
λT,1

λT,1

)
, (2.35)

their respective directions are shown in Figure 2.2. The contact laws in normal direction
are shown first, which include the unilateral and bilateral laws. After that, a friction law
in tangential direction is given.

The unilateral contact law can be modelled by a complementarity formulation (the
Signorini-Fichera-condition) between the normal gap distance gN and the normal
contact force λN . A push force avoids penetration. The so called unilateral primitive,
i.e. both positive coordinate axes including the origin, is the corresponding set, see
Figure 2.4a. This law is given on position level in three equivalent formulations - the
complementarity, proximal point and normal cone formulation:

UC =
{

(gN ,λN ) ∈ IR× IR; gN ≥ 0, λN ≥ 0, gNλN = 0
}

, (2.36a)

UP =
{

(gN ,λN ) ∈ IR× IR; prox
IR+

(λN − r gN ) =λN , r > 0
}

, (2.36b)
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UN =
{

(gN ,λN ) ∈ IR× IR; −gN ∈ NIR+(λN )
}

, (2.36c)

with IR+ = {x ∈ IR; x ≥ 0}.

λN

gN

(a) Unilateral constraint

λN

gN

(b) Bilateral constraint

λT

ġT

+µ|λN |

−µ|λN |

(c) Planar Coulomb friction

Figure 2.4: Set-valued force laws [45, p. 7]

The bilateral contact law allows no separation of the bodies which is realised by both,
push and pull forces. The equivalent equations on position level are

BC =
{

(gN ,λN ) ∈ IR× IR; gN = 0, λN Q 0
}

, (2.37a)

BP =
{

(gN ,λN ) ∈ IR× IR; prox
IR

(λN − r gN ) =λN , r > 0
}

. (2.37b)

As NIR(λN ) is not defined according to (2.31), the normal cone formulation is not given.
In contrast to the unilateral law, the bilateral constraint causes no discontinuities in the
velocities as no impact can occur.

Coulomb’s friction law is a set-valued friction law for the tangential directions of a
closed contact. Two different cases, sticking and sliding, are distinguished. With the
friction coefficient µ, it holds on velocity level

TC =
{

(ġ T ,λT ) ∈ IR2 × IR2;


‖λT ‖ ≤µ|λN | , if ġ T = 0

λT =− ġ T

‖ġ T ‖
µ|λN | , if ġ T 6= 0

}
, (2.38a)

TP =
{

(ġ T ,λT ) ∈ IR2 × IR2; prox
CT (λN )

(λT − r ġ T ) =λT , r > 0
}

, (2.38b)

TN =
{

(ġ T ,λT ) ∈ IR2 × IR2; −ġ T ∈ NCT (λN )(λT )
}

, (2.38c)

with CT (λN ) = {x ∈ IR2 ; ‖x‖ ≤ µ|λN |}. In general, Coulomb’s friction law invokes a
spatial friction cone, whereof a horizontal cut is shown in Figure 2.5.

The impact laws are the non-smooth analogon to the contact laws. The impulsive
percussionsΛ are used instead of the contact forcesλ. If they are described on velocity
level, then the right-limit of the normal gap resp. tangential velocities have to be used
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CT

λT,1

λT,2

µλN
ġ T

ġ T = 0

λT

λT

Figure 2.5: Planar cut through Coulomb’s friction cone [29, p. 89]

as they effect discontinuities in the velocities. The impact laws are not part of this
introduction and are studied in detail e.g. in [6].

Elastic contacts The (rigid) set-valued formulation of the force laws presented here
is of course not the only modelling possibility of contact forces. Their goal is to avoid
any penetration of the bodies and to allow for possible stick-slip transitions. Single-
valued force laws, also called elastic contacts, are modelled as alternative spring damper
laws. They permit small penetrations and are applied in most commercial multibody
simulation software. The original set-valued maps are regularised to obtain single-
valued functions. Therefore, they can directly be added into the right hand side of the
smooth Newton-Euler equations. No MDEs and no additional constraints are required if
only elastic contacts are applied. By these, the elasticity of a rigid body can be considered
quasi-statically within the interactions. As disadvantage often stiff ordinary differential
equations (ODEs) result because of the required spring stiffness. For some details on
single-valued force laws, see [59]. In this study, a combination of set- and single-valued
force laws is used depending on the specific contact situation.

2.5 Equations of motion
There are several methods to derive the equations of motion of multibody systems,
each with its own advantages and disadvantages. For details on this see e.g. [48, 38].
The projected Newton-Euler formalism results from the prinicple of linear and angular
momentum of the single bodies. It will be modularly extendable if the number of bodies
is increased. The Euler-Lagrange equations build on energetic principles and may be
derived from d’Alembert’s principle. They may also arise from Hamilton’s principle
using the calculus of variations. In this study, Hamilton’s principle is shown as it is used



18 2 Non-smooth Flexible Multibody Systems

to deduce the equations of motion of a Cosserat rod in Section 6.2. It is valid for both,
rigid and flexible bodies. The explanation follows [48].

Consider a multibody system with f bodies, then the vector of the generalised coordi-
nates

q =

q 1
...

q f

 ∈ IRd (2.39)

comprises the generalised coordinates of the single bodies. The dimension d is the sum
of the dimensions of the f bodies. The Lagrangian (functional) is defined as

L := T −V , (2.40)

with the (translatory and rotatory) kinetic energy T and the (strain, curvature and
gravitational) potential energy V . Hamilton’s principle minimises the integral of the
Lagrangian between two points in time

δ

t2∫
t1

L dt +
t2∫

t1

δW nc dt = 0. (2.41)

The virtual work δW nc of non-conservative forces is expressed as

δW nc = (Qe )Tδq , (2.42)

with the external generalised forces Qe and the system virtual displacements δq . Thus,
it follows from calculus of variations

t2∫
t1

[
d

d t

(
∂L

∂ q̇

)
− ∂L

∂q

]
δq dt −

t2∫
t1

(Qe )Tδq dt = 0. (2.43)

Since all δq j are arbitrary, the following equation results with the fundamental lemma
of calculus of variations

d

d t

(
∂L

∂ q̇

)
− ∂L

∂q
− (Qe )T = 0T . (2.44)

In mechanical systems (in particular multibody systems) the following dependency is
valid [59]

L(q , q̇) = T (q , q̇)−V (q). (2.45)
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Therefore, Equation (2.44) can be simplified to

d

d t

(
∂T

∂ q̇

)
− ∂T

∂q
+ ∂V

∂q
= (Qe )T . (2.46)

With an additional damping by the non-conservative dissipation D, the equations of
motion of multibody systems are given by

∂2 T

∂ q̇ 2 q̈ = (Qe )T − ∂2 T

∂ q̇ ∂q
q̇ + ∂T

∂q
− ∂V

∂q
− ∂D

∂ q̇
, (2.47)

M q̈ = h. (2.48)

The terms are summarised in the symmetric positive definite mass matrix M and
the generalised force vector h. This is the same result as obtained by the Lagrangian
formalism. Details on the adding of the constraints to the system (2.47) can be found in
[1].

2.6 Flexible bodies
In flexible multibody systems, both rigid and deformable bodies are interconnected.
Large and small deformations are distinguished for the flexible bodies corresponding
to a geometrical nonlinear resp. linear model. In addition, large and small strains lead
to a physical nonlinear or linear theory of elasticity. Further, different discretisation
methods for the deformable bodies exist, e.g. the method of finite elements. The
equations of motion for rigid and deformable bodies can both be derived with the
energetic principles of Section 2.5. For a detailed explanation of flexible multibody
systems see [48, 59]. A classification and a review of the literature can be found in [57].
Here, only the different ideas are presented according to [7, 57]. The type of frame used
to describe the deformation classifies the models of flexible bodies into three categories.
Either an intermediate reference frame or a global inertial frame is used.

The floating frame formulation splits up the rigid body motion and the deformation
by introducing one floating frame of reference for each flexible body. This intermediate
frame is fixed to the flexible body and moves with the mean rigid body motion of it. The
deformation is described with respect to the floating frame. This approach is classically
used for the simulation of small deformations in combination with a linear material law.

The co-rotational frame formulation uses an intermediate frame fixed on each ele-
ment of the flexible body to describe the deformation. In contrast to the floating frame
formulation, in general more than one frame moves with the flexible body. It is assumed,
“that the local displacements in the element are small with respect to this frame” [7,
p. 22]. The kinematic equations of the elements are linearised, because infinitesimal
coordinates are utilised as nodal coordinates. Finite rotations are modelled by a succes-
sion of small rotations of the individual elements. Classically, a linear material law is
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applied. The advantage of this approach is that large deformations can be described.
The co-rotated approach is used in this study for the pushbelt CVT model. Therefore, it
is illustrated in Figure 2.6 by means of a flexible belt with a number of elements. Their
large motion is given by the translation and rotation of the fixed co-rotated frames
with respect to the inertial frame. The deformation of each element is described in the
intermediate frames.

Figure 2.6: Co-rotated frames on flexible belt

The inertial frame approach describes both, the rigid body motion and the defor-
mation with absolute nodal translation and rotation coordinates in the global inertial
reference frame. One example of this category, the absolute nodal formulation, uses
absolute position and gradient coordinates instead of nodal coordinates [48]. Again, it
can model the large deformation problem. Further, nonlinear material laws are used.

2.7 Integration schemes
Smooth multibody systems can be represented by standard ODEs resp. differential alge-
braic equations (DAE). Their numerical solution strategies are almost fully developed,
see [21, 4]. The non-smooth counterpart on the other side, especially with a multitude
of impacts, has advanced, but is still a research topic today. A very detailed reference
explaining the different methods for non-smooth dynamical systems is found in [1].
The solution strategies for MDEs with set-valued force laws can be separated into the
three categories event-driven schemes and time-stepping schemes with and without
step size control. The first two are described following [46].

Event-driven integration schemes

Event-driven integration schemes track down and calculate the exact periods of tran-
sition of the discontinuities and use smooth solvers for the parts in-between. The
calculation starts with the smooth solver until the first event. Then, these integration
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schemes solve the impact equations and laws at the transition time, update the system
and again invoke ODE resp. DAE integrators until the next discontinuity, see e.g. [1].
They benefit from all the advantages of the highly advanced smooth solvers, e.g. higher
order schemes, step size control and are therefore very accurate. However, as the resolv-
ing of the exact transition period is very costly, event-driven integration schemes are
only feasible for systems with a small number of discontinuities [46]. That is the reason
why they are not used for the described model of the pushbelt CVT system and are not
treated further.

Time-stepping integration schemes

Time-stepping integration schemes discretise the MDEs including the constraints with a
fixed step size and do not resolve the discontinuities. According to [16] they are robust
and efficient in application especially for systems with many discontinuities. However,
the applied time-stepping schemes are only of first order. The main methods applied
in the pushbelt CVT model is the half explicit time-stepping scheme of [16] on velocity
level:

1. Position: q i+1 = q i +T i ui∆t ,

2. Active set a: J =
{

j ∈ {1, . . . ,nc }; g i+1
N , j ≤ 0

}
of all nc contacts,

3. Velocity and constraints:

ui+1 = ui +M(q i+1)−1
(
h(ui , q i+1, t i+1)∆t +W a(q i+1)Λi+1

a

)
, (2.49)

ġ i+1
a = ġ i+1

a (ui+1, q i+1, t i+1), (2.50)

Λi+1
a = proj(ġ i+1

a ,Λi+1
a ). (2.51)

The index set J of all active contacts (index a) at the end of the interval is gained by
the gap distances of all unilateral contacts. If a contact closes or opens in-between the
interval, it is not considered. The constraints are discretised on velocity level at the end
time ti+1 for both normal and tangential direction. The unknown contact reactions of
active contacts are taken at the end of the time step Λi+1

a to ensure that the contact
configuration at the end is again physically consistent, cf. [38]. The set-valued force laws
are calculated with the proximal point formulation according to Section 2.4 denoted by
proj. The r factor inside the proj equation is chosen to guarantee a fast converging and
stable fixed-point or Newton iteration [16].

Time-stepping schemes with step size control

Usually, time-stepping schemes are integrated with a fixed step size. But recently, a
time-stepping scheme with step size control was introduced in [22]. No error estimation
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can be done for the non-smooth case because of discontinuities in the velocities. Thus,
the classical step size control is no longer feasible. The different heuristics for a step size
control of the non-smooth equations suggested from [22] can be categorised into error
tolerances and gap control. For the error tolerances, it is suggested to either exclude the
velocities from the step size control and the error estimation or include the velocities
scaled with the step size. In addition, a gap control is introduced which is a simple
event-detection with different strategies. One can choose between the largest time step,
the largest time step fulfilling a given penetration tolerance or the smallest penetration
and therefore the smallest time step. The selection of the step size in [22] focuses on
robustness and stability rather than accuracy, as for discontinuous sections a real error
estimation is not possible. According to the comparisons in [22], the most promising
method for the current study is to scale the velocities in combination with the gap
control using the largest time step. Higher order schemes gained by the extrapolation
method are not used in this study.

2.8 Software MBSim
MBSim [31] is the software for non-smooth dynamical systems developed at the Institute
of Applied Mechanics of the Technische Universität München. The basis was laid by the
works [16, 59]. An introduction is given in [46]. Practical examples of the used theory
can be found in [38, 60]. This software is utilised for the modelling and simulation of
the spatial CVT model in this study. The visualisation in this study is done by the Open
Multi Body Viewer OpenMBV [36] and the plotting by means of MATLAB2.

2 http://www.mathworks.com/products/matlab/



3 Spatial Pushbelt CVT Model

This chapter focuses on the spatial pushbelt CVT model. First, some basics about CVTs
are summed up. Then, the model [45] is explained, which is the point of departure for
this work.

3.1 Continuously variable transmissions
This section gives a brief view of the global transmission market concerning CVTs
and explains its functional principle. According to [35, p. 69], the global trend in
transmission manufacturing is heading towards individual solutions instead of one
uniform transmission system. This trend is closely connected with the motor market
for passenger cars. Just as there is a great variety of automobiles, many competing gear
box designs exist today. This diversification was rapid and has been taken place in the
last two decades.

3.1.1 Global market
In Europe for example, the predominance of the manual transmission (MT) is declining
but persisting. In 1990, one transmission system, the five speed MT, predominated in
Europe with about 85% of the market. In 2015, however, the five and six speed MTs
together are predicted to have only about 50% market share cf. [35]. This shows clearly
the strong competition posed by the other transmission systems forecasted to share
the other half of the market. Regarding the CVT in Europe, the customer acceptance is
clearly lacking. This is due to a variety of reasons. The lack of knowledge of this concept
is one important factor. Thus, most Europeans have never heard of the CVT nor know
its advantages. Only a handful of people have already driven an automobile with CVT,
most of whom find it unfamiliar, since one does not feel the acceleration in the driver’s
seat and does not hear the ramping up of the engine while accelerating. These are two
important factors for MT drivers. Besides this, the still predominating prejudices about
automatic transmissions in Europe (see e.g. [14]) make it even harder for any automatic
transmission including the CVT. These handful of reasons show why the breakthrough
for the CVT in Europe with a transmission market share of about 3% in 2010 [35] is so
difficult.

However, looking at the continents Asia and North America, where primarily auto-
matic transmissions are used, a different picture can be seen. The share of all different
kinds of automatic transmissions in passenger cars in the United States of America has
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been at about 90% and in Japan at about 85% for many years [14]. An opposite situation
compared to Europe is found and MTs only play a secondary role. Thus, the CVT does
not have to fight against the prejudices about automatic transmissions and has a neutral
field to develop. The CVT is gaining more and more importance there. In Japan it already
has a market share of about 19% and in North America at least about 6% in the year
2010 cf. [35]. So the CVT is the second most important transmission system in Japan
beside the conventional automatic transmission that has a market share of about 60%
in the year 2010 [35] 1. Looking only at the newly produced passenger cars in Japan, [53]
states in 2009 that the CVT has a share of 45% and of the (new passenger) cars with a
four-cylinder engine already a share of 63%. The true advantages of the CVT are the
reason why it succeeds in these areas in such a strong way. The CVT customers value its
high driving-comfort (its smooth continuous acceleration) as well as its fuel economy
compared to other automatic transmissions. Especially in Japan, the wide distribution
can be explained by the specific regional conditions. As the country is only very small,
the population drives less on countryside highways with constant speed than in the city
with a lot of traffic, varying driving speeds and lots of stop and go. In addition, smaller
cars than in Europe or in the US are used. Thereby, the full benefits of the CVT can be
exploited. Nevertheless, the newest generations of CVTs are not restricted to smaller
cars. They can now handle engines with up to 400 N m of torque cf. [52].

Leaving this global view of the CVT market, the following text leads to the functional
principle of CVTs, which is as simple as it is ingenious. The idea already originates from
the 15th century from Leonardo da Vinci. About 400 years later (ca. 1900), the CVT was
introduced into the automotive industry, cf. [8], where some milestones in the history
of development of CVTs can be found. The functional principle is based on a simple
idea, however, it leads to complex processes which is underlined by the still ongoing
research concerning CVTs.

3.1.2 Functional principle
A general transmission is defined according to [25, p. 9] as a machine element that
transmits mechanical power and thereby transforms forces resp. torques and velocities
resp. angular velocities. A CVT is a special automatic transmission for vehicles. In
contrast to other transmissions, CVTs transfer power continuously without interruption
as no discrete ratios are used. The main advantage of the CVT is the optimal usage of
the area between the largest and smallest transmission ratio [14, p. 10]. Consequently,
the engine can generate the required power for each driving speed always in its optimal
operating point concerning economy or performance, cf. [8]. This means, as an example,
that the vehicle can be accelerated at the same engine speed only by changing the
transmission ratio [25, p. 131 f.]. Thereby, the fuel consumption and emissions are

1 Note, that these numbers from [35] on the year 2010 are based on predictions although the 2nd
edition of the book was published in 2011.
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reduced using mainly the large overdrive area to operate the engine at low speeds.
Actually, the CVT is only competitive through this shifting of the engine into its optimal
operating point, as it compensates for its slightly reduced efficiency compared to gear
transmissions cf. [25, p. 132]. A further advantage is the additional comfort resulting
from no gear shifts while changing the transmission ratio and the resulting continuous
acceleration.

CVTs exist in mechanical, electrical and hydraulic versions. Here, only the most
commonly used variant with mechanical power transmission is explained which is
realised through friction. Three different mechanical CVTs are illustrated in Figure 3.1
- the pushbelt, chain and toroid CVT. For series-produced passenger cars usually belt
drives with variable pulleys are utilised [35]. Belt drives can again be subdivided into
a flexible belt, a tension-based chain and a pushbelt. The differences between these
groups are explained e.g. in [24].

a) b) c)

Figure 3.1: Different kinds of CVTs: a) pushbelt, b) chain and c) toroid [8, p. 15]

In belt drives, the belt runs between two pulleys, i.e. the primary and secondary
pulley. Each pulley has two conical V-shaped sheaves. One of them is axially movable
by a hydraulic pressure and thus called the loose sheave. The other sheave is fixed.
To minimise the misalignment, the two loose sheaves are built on opposite sides of
the pulleys, cf. Figure 3.6. To ensure enough friction between belt and pulley for a
power transmission, the pressure on the belt is controlled by a clamping force. The
right pressure is critical, as a too high pressure would lead to less efficiency and a too
low pressure to a slipping of the belt, which would result in scuffing cf. [35, p. 187].
The continuous change of the transmission ratio is done reciprocally. The pushbelt
is forced to a new running radius by increasing the sheave distance on one pulley
and simultaneously decreasing it on the other pulley. Within this study the focus is
on the variator with a pushbelt developed by Van Doorne (today Bosch Transmission
Technology), see Figure 3.2. It consists of two steel ring sets, each with 9 - 12 ring
layers, which guide about 400 steel elements. The power transmission in the pushbelt
is achieved mainly by push forces between the elements and secondary by tension
through the ring sets.
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Figure 3.2: Bosch’s pushbelt CVT variator [5]

3.2 Modelling background
The point of departure for this work is the model [45] which is explained following [9, 45]
to give the necessary background information. The model is based on the theory of
non-smooth flexible multibody system dynamics presented in Section 2. Hence, the
model description can be divided into the modelling of the different bodies and the
associated interactions like e.g. contacts.

3.2.1 Bodies
The pushbelt CVT is modelled with three different bodies with inertia, the elements, the
ring sets and the pulley sheaves, see Figure 3.2. The shaft is modelled as a joint between
two sheaves of one pulley which secures the same angular velocity. Its inertia is added
to the sheaves.

Elements

The slender elements are modelled as rigid bodies. Each element has six rigid degrees
of freedom (DOFs) for the spatial motion. The centre of gravity is defined by three
translational DOFs. Three Cardan angles model the rotation. Elasticity is considered
only in the interactions quasi-statically. The number of elements in the model (NE )
can be freely chosen. As this number can be different than the number of elements
in reality (NE0 ), all parameters depending on the thickness of the elements are scaled
with NE0 /NE , see [45]. The element is depicted in Figure 3.3 with the element reference
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coordinate system situated in the centre of gravity C . The names of the different parts
of the elements can also be found in that figure.
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Figure 3.3: Element - with reference coordinate system [45, p. 14]

Ring sets

The ring sets have to be modelled by spatial flexible bodies with large deformation
as they deform strongly while running from one straight part into a pulley and out of
the pulleys into the other straight part. A dynamic geometrical nonlinear beam model
with large translations and deflections has been chosen. The material laws, however,
are modelled linearly. The relative motion of the different ring layers in one ring set is
neglected and one ring with width w̃R and height h̃R represents the ring set for each
side, see Figure 3.4. Its area moment of inertia, however, considers the structure with
different layers without internal friction. With the neutral fibre and its Frenet frame the
motion of the beam is characterised.

x I

y Iz I

t

n

b

w̃R

h̃R

neutral fibre

Figure 3.4: One ring set [45, p. 20]

One ring set is separated into ÑB beams with large deformation. For each one the
Euler-Bernoulli beam theory in connection with a co-rotational approach has been
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applied. The entire ring is modelled so that the coordinate systems of the finite elements
run with the belt and are not at a fixed position concerning the inertial frame, which is
the idea of the co-rotational approach. Two coordinate sets - an internal and a global one
- are used. Each of this coordinate sets is utilised in the area where it has its advantages.
As only one coordinate set is enough, the method is called redundant coordinate method
(RCM). The rotation is described by a reversed Cardan parameterisation [45], i.e. Cardan
angles with a reversed rotation sequence (z− y −x). The multibody equations of motion
for each element are set in the internal coordinates q i according to the Lagrange II
formalism. This decouples the rigid and elastic body motion and leads to compact
equations of motion [45].
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Figure 3.5: Global coordinates of redundant coordinate method [45, p. 22]

For the assembling, ideas of the finite element method are utilised. Thereby, the
global coordinates

q g := (
xL , yL , zL , ϕL0, ϕL1, ϕL2, cL1 , cR1 , cL2 , cR2 , xR , yR , zR , ϕR 0, ϕR 1, ϕR 2

)T (3.1)

are used with the rigid coordinates at the boundaries of each finite element, cf. Figure 3.5.
Hence, constraint equations are bypassed and a minimal representation of the system
is gained. The global coordinates are, in addition, used for the contact calculation.
The transformation between the two coordinate sets results in a nonlinear system of
equations

F (q i , q q ) = 0, (3.2)

which has to be solved in each time step numerically using a Newton solver. The solver
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does not find a solution if the time step size is too large. So the step size is restricted by
this solution process. As a compromise only 12 finite elements are used for each ring
set which is actually a too coarse discretisation. This is a real drawback of this approach.
In addition, damping strategies have been implemented into the model.

Pulleys

The pulley sheaves are modelled as rigid bodies and elasticity is taken into account
quasi-statically in the interactions. Each pulley consists of two sheaves, a fixed (FS) and
a loose (LS) one, which are arranged opposite, see Figure 3.6. The loose sheaves have
three DOFs for rotation (axial rotation as well as tilting) and one for the translation in
axial direction. The fixed sheaves have one DOF for rotation around the z-axis. The
inertial frame (I ) is positioned at the centre of the secondary pulley. The sheaves’ centres
of gravity are denoted by C . The inertia of the shafts is considered in the inertia tensors
of the sheaves.
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z I

y S
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O

O
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C C
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Figure 3.6: Pulleys and inertial frame [45, p. 27]

3.2.2 Interactions

One element can be in contact with the two neighbouring elements, both ring sets and
each pulley sheave. As the contact configuration and position can change with time,
the contact kinematics have to be calculated at each time step. Hence, the contact
modelling was chosen for each combination in a simple analytical way to reduce the
computing time, yet, simultaneously to secure a high accuracy.
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Element - element contacts

There are five different element - element contact possibilities. One element can be
in contact with the plane rear side of the predecessor at the element top ET and at the
element bottom EB , cf. Figure 3.3. Two circular arcs at the rocking edges, at ER and EL ,
enable a rolling up. The pin-hole contact (EP - EH ) centres the elements and is modelled
by a circle - frustum contact. Hence, the relative movement between the elements is
minor and the contacts are described without friction. As the elements can detach, all
five contacts are unilateral with a flexible force law which considers the elasticity of the
elements in contact.

Element - ring set contacts

The element - ring set contacts are modelled as point - flexible band contacts. The
flexible band is situated around the neutral fibre of the beams in half width resp. half
height distance in binormal resp. normal direction, see Figure 3.4. On each side of
the element two contact points at the saddle RS and the pillar RP guide the two ring
sets without detaching. A mutual rotational dependence is omitted. The contacts are
bilateral rigid with friction in longitudinal direction at the saddle.

Element - pulley contacts

The two circular arcs at the front and rear side of each element, PF and PR , are in contact
with the frustum sheaves. The contacts are modelled unilateral flexible with spatial
friction. Hence, the elasticity is considered within the contact. Altogether, friction
torques and clamping can be described. The tilting of the loose sheaves and the axial
stiffness of the elements enable a representation of the spiral running. However, the
elements in contact are not coupled by the elasticity of the sheave.

ϕ
rO

rI

dA

A

A

sin
(

ϕ
)

dA

A− A

tL

dalign

sin
(

ϕ
)

dA

Figure 3.7: Kinematic initialisation (axial view and view A-A) [45, p. 48]
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3.2.3 Initialisation
The initialisation is done by a kinetic planar belt model [44] for the case of a kinetic
boundary setting at the secondary and a kinematic setting at the primary pulley. The
velocity is initialised out of this model to represent stationary cases, which is the main
focus of the model. Run-up cases can also be depicted but require a much higher
computing time. The kinematic initialisation is done by a simple geometric calculation
as shown in Figure 3.7. By means of a nonlinear system solver, the angle ϕ and the two
radii of primary and secondary, r I and rO , are calculated considering the misalignment.
This reference line is utilised to initialise the neutral fibre of the two ring sets. Then, the
elements are uniformly distributed over the ring sets and the sheave position is adapted
to the specified boundary conditions.

A first validation of the model with measurements has been done resulting in good
correlations. But still a large room for improvements was present.





4 Enhancements concerning Initialisation

After these two introductory chapters, the explanation of the different model enhance-
ments of this study starts in this chapter. It combines three enhancements which are
linked to the initialisation of the CVT model. First, variable CVT boundary conditions
enable the presetting of a multiplicity of new boundary specifications for primary and
secondary pulley to operate and test the CVT model in different situations. This model
enhancement causes a new belt velocity initialisation resulting from a kinetic model.
Second, tapered elements i.e. a changed element geometry lead to a revised geometric
or kinematic initialisation. The overall initialisation process is explained in detail here.
Third, a planar pre-integration concept is shown focusing on computing time which
results in a numerical initialisation of the spatial model. Note that the three enhance-
ments affect not only the initialisation but the whole simulation, e.g. a changed element
geometry changes the motion of single elements and therefore the overall dynamics.
However, the model changes are mainly located in the area of the initialisation.

4.1 Variable boundary conditions
The pulley sheaves are the chosen model border in [45]. At the pulleys, the boundary
conditions - kinematic values (positions, speeds) and kinetic values (forces, torques) -
have to be specified. They define the pulley - environment interaction, i.e. the operating
mode of the pushbelt CVT. The boundary conditions are illustrated in Figure 4.1 for the
so-called two extreme transmission settings LOW and OD. The boundary conditions
are specified by means of a timetable to also simulate running-up cases. This table is
linearly interpolated.

For the variable boundary conditions, the structure of describing the input parame-
ters on primary and secondary pulley had to be revised. This has been done together
with the help of the student assistant Kilian Grundl. The new framework makes it possi-
ble to define on each pulley (primary or secondary) one rotational and one translational
input. The rotational input can either be kinematic - an angular velocity - or kinetic
- a torque. In the same way, the translational input can either be kinematic - an end
stop - or kinetic - a clamping force. This distinction is made by means of a rotational
and a translational switch specified by the user. An end stop describes the position
zC of the loose sheave. As the positions of the loose sheaves are already gained by the
kinematic initalisation process of [45], the clamping velocity żC of the loose sheave (in
the following called end stop) is defined instead of the position. To secure the same an-
gular velocity for both sheaves of one pulley, a shaft is used to connect the two sheaves.

33
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Figure 4.1: Boundary conditions for LOW and overdrive (OD) [17, p. 30]

Both sheaves of one pulley are fixed with a bilateral rotational joint around the rotating
axis of the shaft. The rotational input - angular velocity resp. torque - is now applied
directly to the shaft of each pulley. The translational input - end stop or clamping force -
is applied only to the loose sheave of each pulley. Thus, the shafts and loose sheaves are
the system borders between the model and the environment similar to [17].

In the pushbelt CVT model [45] it was possible to predefine a kinetic setting at the
secondary pulley (i.e. secondary torque and clamping force) in combination with a
kinematic setting at the primary pulley (i.e. primary angular velocity and end stop
velocity) as well as a geometric transmission ratio. This boundary condition represents
only one specification of pulley-environment interaction whereby not the entire range of
operation of the CVT is covered. Therefore, the model has been enhanced by increasing
the options for prescribing load conditions on the model to the six different cases in
Table 4.1. They can be classified into the triplet

• primary end stop

• secondary end stop

• without end stop

each in combination either with secondary torque or with secondary speed. The restric-
tion to these six practical relevant cases has been done in agreement with the industrial
partner. Hence, primary and secondary end stop cases as well as cases with primary
torque are not considered.

The main challenge in adding more boundary conditions to the model is the belt
velocity initialisation. For the simulation of stationary and shifting cases, an advanced
model for the velocity initialisation is required to avoid unnecessary computing time
needed for a run-up simulation. For this purpose the Sattler model from [44] is utilised,
which is an analytic stationary kinetic belt model. It describes a planar continuum belt
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Table 4.1: Variable CVT boundary settings

Description secondary torque secondary speed

primary end stop ωI , żC I | MO , FCO ωI , żC I | ωO , FCO

secondary end stop ωI , FC I | MO , żCO ωI , FC I | ωO , żCO

without end stop ωI , FC I | MO , FCO ωI , FC I | ωO , FCO

with longitudinal elasticity by means of an ODE system, resulting from the balance of
forces. In contrast to a pushbelt, it works only with tensile and not push forces.

The kinematic setting for the initalisation is calculated in [45, p. 48 f.] with a simple
geometric model resulting in the circular measure angle ϕ and both radii r I as well as
rO with a given initial transmission ratio

ir = rO

r I
. (4.1)

The kinetic Sattler model, capable to calculate the admissible torque capacity and
necessary clamping forces of a CVT, has been modified in [45] to initialise the belt
velocity v . The velocity of the undeformed part is denoted with v0. The model was
simplified to an Euler-Eytelwein description for the longitudinal force L [45, p. 53]

L (θ) = [L0 −K ]e±µ
∗(θ−θ0) +K , (4.2)

with

µ∗ := µ

sin(δ0)
, K := m∗v2

0E A

E A−m∗v2
0

. (4.3)

The parameters according to [45] are the cross-section A, Young’s Modulus E , the friction
coefficient µ and the undeformed belt’s local mass distribution m∗. The half wedge
angle δ0 is illustrated in Figure 3.6. This description results in nonlinear equations
instead of an ODE system as it is the case in [44]. The longitudinal force equivalence for
the setting of Figure 4.2 is given by [45]

LOi n = L Iout = [LOi n −K ]eµ
∗(ΦO−ΦI ) +K , (4.4)

with the angles of the active partsΦ. The modification of [45] is the basis for the following
enhancements which were accomplished together with student assistant Zhan Wang.
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Figure 4.2: Belt kinematics (adapted after [45])

4.1.1 Primary end stop
The end stop at one pulley always occurs in combination with the clamping force at the
other pulley, see Table 4.1. In the CVT boundary situation with primary end stop, the
input parameters are:

Primary end stop żCI and secondary clamping force FCO with either

• primary angular velocity ωI and secondary torque MO or

• primary angular velocity ωI and secondary angular velocity ωO .

In the modified Sattler model of [45, p. 54], the two unknowns ωO and v0 are gained
by the solution of two nonlinear equations. The first equation results from the sticking
condition at the primary pulley

r IωI = v0

[
1+

(
LOin −K

)
eµ

∗ΦO +K

E A

]
, (4.5)

and the second equation is gained by the axial equality of forces at the secondary pulley

FCO = E A−m∗v2
0

2tan(δ0)E A

[
2LOinϕ+ (

LOin −K
)(eµ

∗ΦO −1

µ∗ −ΦO

)]
− m∗v2

0ϕ

tan(δ0)
. (4.6)

The active wrapped angle at the secondary pulley is given by

ΦO = 1

µ∗ ln

[
MO

rO
(
LOin −K

) +1

]
. (4.7)
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This set of equations has been simplified significantly in the current study to ease the
basis equations of the variable boundary conditions resulting in only one nonlinear
equation. This equation transformation process is shown below.

Simplification of the two equations

Starting with the simplification of Equation (4.5), the equality of torques at the secondary
pulley is given by [45, p. 54]

MO = rO(LOout −LOi n ) . (4.8)

In the same way, the primary torque can be described by

MI = r I (L Iout −L Ii n ) , (4.9)

cf. Figure 4.2. The longitudinal forces at the end of one pulley and at the beginning of
the other are equal LOi n = L Iout and LOout = L Ii n , because the longitudinal force remains
constant in the straight parts [44]. Thereby, a relation between the two torques can be
derived depending on the initial geometric transmission ratio

MO =−rO

r I
MI . (4.10)

By substituting Equation [45, (2.210)] in the following form

(
LOi n −K

)
eµ

∗ΦO = MO

rO
+ (

LOi n −K
)

(4.11)

and Equation [45, (2.212)]

LOi n = E ArOωO

v0
−E A (4.12)

into (4.5), the nonlinear equation can be simplified into a linear relationship

r IωI = v0MO

E ArO
+ rOωO . (4.13)

For the simplification of (4.6), Equation [45, (2.210)] can be reformulated to

(
LOi n −K

)(
eµ

∗ΦO −1
)
= MO

rO
. (4.14)
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From the definition of LOi n in (4.12) and of K in (4.3) another preparatory formula
results in(

LOi n −K
)

E A
= rOωO

v0
− E A

E A−m∗v0
2

. (4.15)

Using the relationships (4.14), (4.15) and (4.12), Equation (4.6) can be simplified to

2FCO tan(δ0) = (
E A−m∗v0

2)[2ϕ

(
rOωO

v0
−1

)
+ MO

µ∗rOE A

−
(

rOωO

v0
− E A

E A−m∗v0
2

)
ΦO

]
−2m∗v0

2ϕ .

(4.16)

Combination of the two equations

For the additional five boundary conditions, the two Equations (4.13) and (4.16) are
combined into one equation depending only on the two angular velocities and the belt
velocity. Therefore, the definition of the active wrapped angle at the secondary pulley
has to be expressed in forms of ωI , ωO and v0 by solving (4.13) for MO :

MO = (r IωI − rOωO)rOE A

v0
. (4.17)

By inserting (4.15) and (4.17) into Equation (4.7), a transformed formulation forΦO is
obtained

ΦO = 1

µ∗ ln

[
r IωI (E A−m∗v0

2)−E Av0

rOωO(E A−m∗v0
2)−E Av0

]
. (4.18)

Substituting (4.17) in (4.16), one general nonlinear equation is derived

2FCO tan(δ0) =(
E A−m∗v0

2)[2ϕ

(
rOωO

v0
−1

)
+ r IωI − rOωO

µ∗v0

−
(

rOωO

v0
− E A

E A−m∗v0
2

)
1

µ∗ ln

[
r IωI (E A−m∗v0

2)−E Av0

rOωO(E A−m∗v0
2)−E Av0

]]
−2m∗v0

2ϕ.

(4.19)

As (4.19) depends only on the two angular velocities and the belt velocity, it can be used
for all boundary conditions where FCO and ωO is given as an input parameter. If the
secondary torque is specified instead of the secondary angular velocity, Equation (4.13)
can be solved for ωO :

ωO = r IωI

rO
− v0MO

E ArO
2

. (4.20)
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Therefore, it becomes possible to also solve the boundary case with primary end stop
and secondary torque from Table 4.1 with (4.19). Finally, it depends only on the un-
known v0 and can be solved e.g. by a one-dimensional Newton method. The starting
value for v0 in the case of a secondary torque unequal to zero is taken from the special
case of a secondary torque equal to zero (4.22).

Special case of a secondary torque equal to zero

In the special case of a zero torque at the secondary pulley, the calculation of v0 is
simplified cf. [45, p. 55f.]. It is ΦI = ΦO = 0, FCO 6= 0, L Ii n = LOi n 6= 0 and a quadratic
equation for v0 is obtained:

r IωIϕm∗v0
2 + (FCO tan(δ0)+E Aϕ)v0 −E Ar IωIϕ= 0. (4.21)

As the velocity is always greater or equal to zero, v0 ≥ 0, the quadratic equation in (4.21)
can easily be solved analytically, cf. [45, p. 55]:

v0 =
√(

FCO tan(δ0)+E Aϕ
)2 +4E Am∗r 2

I ω
2
Iϕ

2 −E Aϕ−FCO tan(δ0)

2m∗r IωIϕ
. (4.22)

4.1.2 Secondary end stop
For the situation with secondary end stop the following boundary parameters are given:

Primary clamping force FCI and secondary end stop żCO with either

• primary angular velocity ωI and secondary torque MO or

• primary angular velocity ωI and secondary angular velocity ωO .

All equations can be derived for this situation similar to the previous subsection resulting
in one formula for FCI where both cases with secondary end stop of Table 4.1 are covered.

Equation for primary clamping force

The sticking equation [45, (2.208)] for the primary pulley can be reformulated to

L Ii n = E Ar IωI

v0
−E A , (4.23)

and the relationship of L Iout and L Ii n is expressed by the Euler-Eytelwein Equation (4.2)

L Iout −L Ii n = (L Ii n −K )(e−µ∗ΦI −1). (4.24)
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As the longitudinal force decreases from L Ii n to L Iout , the negative sign has to be chosen
for the exponent. With (4.24), the equilibrium of torques at the primary pulley satisfies

MI = r I (L Iout −L Ii n ) = r I (L Ii n −K )(e−µ∗ΦI −1) . (4.25)

Finally, the axial equality of forces on the primary pulley is the integral over the derivative
of the sheave expansion force S (cf. [45])

FCI =−
∫
ϕI

S′ dθ

=−
∫
ϕI

L(E A−m∗v0
2)−m∗v0

2E A

2tan(δ0)E A
dθ

=−E A−m∗v0
2

2tan(δ0)E A

π−ϕ∫
−(π−ϕ)

L dθ+ m∗v0
2(π−ϕ)

tan(δ0)

=−E A−m∗v0
2

2tan(δ0)E A

[
2L Ii n (π−ϕ)+ (L Ii n −K )

(
e−µ∗ΦI −1

−µ∗ −ΦI

)]
+ m∗v0

2(π−ϕ)

tan(δ0)
.

(4.26)

Thereby, the integral over the longitudinal force has been split into a constant and non
constant part

π−ϕ∫
−(π−ϕ)

L dθ =
π−ϕ−ΦI∫
−(π−ϕ)

L dθ +
π−ϕ∫

π−ϕ−ΦI

L dθ

= L Ii n (2π−2ϕ−ΦI ) +
π−ϕ∫

π−ϕ−ΦI

(
(L Ii n −K )e−µ∗(θ−(π−ϕ−ΦI ))+K

)
dθ.

(4.27)

Equation (4.26) can be simplified similar to (4.16) resulting in

2FCI tan(δ0) =−(
E A−m∗v0

2)[2(π−ϕ)

(
r IωI

v0
−1

)
+ MI

(−µ∗)r I E A

−
(

r IωI

v0
− E A

E A−m∗v0
2

)
ΦI

]
+2m∗v0

2(π−ϕ).
(4.28)

Combination of the two equations

Again (4.13) is combined with (4.28). This time the torque ratio (4.10) is used to express
the unknown primary torque. If MI 6= 0, then the secondary torque is also unequal to
zero, as the ratio of the radii cannot be zero in (4.10). If the torque at the secondary
pulley is unequal to zero, MO 6= 0, this necessarily impliesΦI =ΦO and LOi n 6= K , see [45].
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Therefore, Equation (4.25) can be solved for the active wrapped angle at the primary
pulley

ΦI =− 1

µ∗ ln

[
MI

r I (L Ii n −K )
+1

]
. (4.29)

The argument of the natural logarithm has to be greater than zero, hence it is only
defined for MI ≥ r I (K −L Ii n ). Analogously to (4.18), Equation (4.29) can be transformed
to

ΦI = 1

−µ∗ ln

[
rOωO(E A−m∗v0

2)−E Av0

r IωI (E A−m∗v0
2)−E Av0

]
. (4.30)

Finally, Equation (4.28) can be expressed depending only on the velocities ωI ,ωO and
v0:

2FCI tan(δ0) =− (
E A−m∗v0

2)(2(π−ϕ)

(
r IωI

v0
−1

)
+ rOωO − r IωI

−µ∗v0

−
(

r IωI

v0
− E A

E A−m∗v0
2

)
1

−µ∗ ln

[
rOωO(E A−m∗v0

2)−E Av0

r IωI (E A−m∗v0
2)−E Av0

])
+2m∗v0

2(π−ϕ).

(4.31)

Equation (4.31) can be used for both cases with secondary end stop. In the case where
the secondary torque is specified, ωO has to be substituted by MO by means of (4.20).
As a result, Equation (4.31) depends only on the unknown v0 and can be solved with the
starting value provided by the following special case (4.33).

Special case of a secondary torque equal to zero

If the torque at the secondary pulley is equal to zero, again the equation for v0 results in
a quadratic relationship. Under the conditionsΦI =ΦO = 0, FCI 6= 0 and L Ii n 6= 0, cf. [45],
it follows

rOωO(π−ϕ)m∗v0
2 + (−FCI tan(δ0)+E A(π−ϕ))v0 −E ArOωO(π−ϕ) = 0. (4.32)

And as v0 ≥ 0, solving (4.32) results in

v0 =
√(−FCI tan(θ0)+E A(π−ϕ)

)2 +4E Am∗rO
2ωO

2(π−ϕ)2

2m∗rOωO(π−ϕ)

+ −E A(π−ϕ)+FCI tan(δ0)

2m∗rOωO(π−ϕ)
.

(4.33)
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4.1.3 No end stop
In the cases without end stop, both clamping forces are specified. The following combi-
nations have been chosen:

Primary clamping force FCI and secondary clamping force FCO with either

• primary angular velocity ωI and secondary torque MO or

• primary angular velocity ωI and secondary angular velocity ωO .

For the calculation of v0 the equation for primary clamping force (4.31) and secondary
clamping force (4.19) are used together. This is in contrast to the cases with end stop
where only one equation for one clamping force was given. This results in an overdeter-
mined nonlinear system with two equations and one unknown. As the initial radii from
the kinematic initialisation change due to the two given clamping forces, they have to
be adapted. Hence, one kinematic equation is added to the kinetic initialisations and a
nonlinear system with three equations and three unknowns is gained. The original two
equations with the two unknowns r I and ϕ from the kinematical initialisation of [45, p.
48] are substituted into one equation, to add one equation and two unknowns to the
nonlinear system. The relation between the transmission radii is solved for r I

r I = rO +cos(ϕ)dA, (4.34)

cf. Figure 3.7. The total length of the ring sets l̃R is composed of the four curve sections
of the geometric setting in the non-tapered cases

l̃R = 2tL +bI +bO . (4.35)

The lengths of the upper and lower straight part tL, the primary arc bI as well as the
secondary arc bO are given by [45]

tL =
√

sin2(ϕ)d 2
A +d 2

al i g n , (4.36)

bI = 2r I (π−ϕ), (4.37)

bO = 2rOϕ, (4.38)

with the alignment dal i g n and the distance of the axes dA, cf. Figure 3.7. Substituted
with the relation (4.34), Equation (4.35) can be reduced to the unknown secondary
transmission radius rO and ϕ. The additional nonlinear equation yields

2
(√

sin2(ϕ)d 2
A +d 2

al i g n + rOπ+cos(ϕ)dA(π−ϕ)
)
− l̃R = 0. (4.39)

The starting values for the secondary radius rO and the angle ϕ are set according to [45,
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p. 48] for the case ir = 1.0:

rOS =
(
0.5l̃R −

√
d 2

A +d 2
al i g n

)
/π, (4.40)

ϕS =π/2. (4.41)

The starting value for v0 is chosen according to (4.33). Equation (4.39) combined with
the two kinetic equations for the clamping forces (4.19) and (4.31) have the unknowns
rO , ϕ and v0.

4.1.4 Classification of all boundary conditions
With the help of the derived equations of this subsection, the initial velocity can be
gained for all six variable CVT boundary settings by means of a nonlinear system solver.
The required equations are shown in Table 4.2.

Table 4.2: Classification of CVT boundary settings to formulas

ωI , MO ωI , ωO

żC I , FCO

substitute (4.20)
solve (4.19) solve (4.19)

FC I , żCO

substitute (4.20)
solve (4.31) solve (4.31)

FC I , FCO

substitute (4.20)
solve (4.39), (4.19), (4.31) solve (4.39), (4.19), (4.31)

The corresponding starting values for the calculation of v0 with the Newton solver are
explained in the respective sections. In the cases where both angular velocities are given,
the initial geometric transmission ratio is calculated from the speed ratio is =ωI /ωO

and has not to be specified separately. To guarantee a robust initialisation process, the
starting value v0S is directly used for v0 if the Newton solver does not converge. The
final belt velocity can be calculated from v0 with the formula from [45]:

v =
[

1+ L

E A

]
v0. (4.42)

4.2 Tapered elements
The thickness t of the elements is not constant over the height resulting from the
manufacturing process. In fact the elements have shaped contact zones or are tapered,
i.e. the element front and rear planes are not perfectly parallel. On the one hand, to
reproduce this variability of the production process in the model, and on the other hand
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to enable an optimisation of the element shape for this process, a new variable tR - the
width at the rocking edge - was introduced in addition to the existing width tT at the top,
see Figure 4.3. This study is restricted to the case tT ≥ tR > 0. The difference between
both thicknesses is in the magnitude of micrometres compared to a physical width of
tR ≈ 1.5mm. The notation ’straight part’ in this context is used synonymously for the

tT

E T

tR

Figure 4.3: Modelling top width tT differently than rocking edge width tR

strand, i.e. the part of the pushbelt between the two pulleys. In a pushbelt CVT there
are two different straight parts, the loose and the push part. Unlike the word indicates,
the run in the straight parts does not have to be straight but can be curved, depending
on the dynamical behaviour of the pushbelt.

As the top contact between two elements is modelled as a point-plane contact, no
further changes have to be made for the contact kinematics than to reposition the
point E T depending on tT . However, the concept of the geometric initialisation of the
pushbelt has to be adapted due to the modified element geometry. The arrangement of
the elements in the straight parts, formerly defined by the respective (straight) tangent
on both circles, is influenced by a larger top width. The elements no longer fit in
a straight run. The resulting course is convex, similar to a cat’s arched back. This
phenomenon is not limited to the initialisation, but is as well formed in the dynamical
simulation. Therefore, it is already included in the initialisation process for the tapered
case. The course in the circular pulley arcs, in contrast, is not influenced by the tapered
elements as the curvature of the circles causes the element top contacts to be open, cf.
Figure 4.4 for an extreme transmission ratio.

The course in the straight parts influences the overall dynamics of the system. In
addition to the cat’s back, the phenomenon of a dog’s back - a concave run - in the
straight parts exists. It results for the case tR ≥ tT > 0. The running-in in the pulleys
from the straight part is smoother with a cat’s back arc compared to a dog’s back arc.
The transmission of forces from element to element is distributed mainly on the rocking
edge in both cases, but the force ratio of the top contact increases in the dog’s back case
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Figure 4.4: Open element-element top contact in arcs and closed contact in straight parts

compared to the cat’s back case. Therefore, the effect of the dog’s back is not desired
and is not treated in this study.

With the changed element geometry the question arises how to describe the curve
in the straight parts analytically. For the geometric initialisation it is assumed that all
elements in the upper and lower straight part are in contact at the top and rocking
edge with the rear plane of the predecessor. Thus, wedges are gained which are placed
tightly next to each other. This results in good approximation in a circular course -
the cat’s back - with a variable radius rst - the cat’s back radius - around the midpoint
Mst , see Figure 4.5a. The radius depends on the taperedness tT . It is the smaller, the
greater the taperedness is. This cat’s back radius is derived in the following in the
element coordinate system. As the in-plane (x, y) and out-of-plane (z) coordinates are
decoupled in the geometric initialisation, only the planar description is shown in the
first parts of this section. In a second step, the belt deflection (z variable) is added.

4.2.1 Geometric calculation

The curve of the neutral fibre of the ring sets is the reference line for the initialisation
process in the spatial model. The ring sets are then initialised around this curve and
the elements adapt to the ring sets. The pulley position does not change by the tapered
elements. Therefore, it suffices to describe the curve of the ring sets and utilise the
same algorithm for the elements and pulleys as in [45]. The relevant quantities for the
initialisation are derived in the following.
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rst

M st

. . .
. . .

(a) Tapered elements together

M R

E T

rR

E RφR

x

y

(b) Tangent on rocking edge circle

Figure 4.5: Taperedness approximated with circle in straight part

Calculation of the cat’s back radius

The cat’s back arc describes the initial position of the neutral fibre of the ring set which
runs through the elements between saddle and pillar, see Figure 4.5a. Then, the ele-
ments are placed perpendicular on the ring set.

In this subsection all vectors are given in the element reference coordinate system E
situated in the element centre of gravity (see Figure 4.6). Therefore, the notation E (·) is
neglected. The deflection coordinate is added later. The element top points at rear and
front are

RT =
(

−tS

hT −hS

)
, E T =

(
tT − tS

hT −hS

)
, (4.43)
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Figure 4.6: Element - side view [45, p. 16]

and the midpoint of the rocking edge arc is (cf. Figure 4.5b)

M R =
(

tR − tS

hR −hS

)
−

(
rR

0

)
. (4.44)

At the rocking edge the elements are in contact with the rear plane of the predecessor at
two circular arcs (left and right). This circle-plane contact enables rolling up, i.e. the
contact point moves along the circle in one direction. With the assumption that all
elements in the straight parts are in contact at the top and rocking edge, the contact
point on the rocking edge has to be found. This point E R is obtained by the tangent
on the rocking edge arc through the point E T which is shown in Figure 4.5b. As the
initialisation is done symmetrically around the x-y-plane, one circular arc around the
midpoint M R in the x-y-plane is used. As E R lies on the circle it can be expressed
depending on the angle φR with rR 6= 0

E R (φR ) = M R + rR

(
cosφR

sinφR

)
. (4.45)
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This angle can be calculated by a nonlinear equation using the fact that both the normal
and the tangent on the circle through E R depend onφR and are orthogonal. An outward
pointing normal in point E R on the circle satisfies

E R −M R = rR

(
cosφR

sinφR

)
, (4.46)

and a tangent can be expressed with E R −E T . The angle φR can now be obtained under
the condition that tangent and normal in E R have to be orthogonal

(E R −E T ) · (E R −M R ) = 0. (4.47)

Inserting the definition of E R yields

rR

(
(M R −E T ) ·

(
cosφR

sinφR

)
+ rR

)
= 0. (4.48)

This leads to the nonlinear system in φR

f (φR ) = a1 cosφR +a2 sinφR + rR = 0, (4.49)

with the abbreviation(
a1

a2

)
:= M R −E T =

(
tR − rR − tT

hR −hT

)
.

The system (4.49) is solved by the Newton method with the starting value φR,0 = 0 from
the case tT = tR . The derivative for the Newton method is given by

f ′(φR ) =−a1 sinφR +a2 cosφR . (4.50)

With the resulting angle φR , the point E R can be calculated by (4.45).

The next step is to find the intersection of the two straight lines, E T E R and the rear
line of the element, as illustrated in Figure 4.5b. The straight line equations are given by

g1 : r 1 = E T +λ1(E R −E T ), (4.51)

g2 : r 2 = RT +λ2

(
0

−1

)
. (4.52)

As the vertical (yaw) axis is parallel to the rear line [45], the rear line is expressed through
the top point RT and the vector in negative y direction to simplify the resulting linear
system. The intersection of both straight lines g1∩g2 yields the midpoint of the cat’s back
circle in the element reference system. Both equations (4.51) and (4.52) are identified
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which leads to a linear system with the two unknowns λ1 and λ2:(
E R −E T

(
0

1

))(
λ1

λ2

)
= RT −E T , (4.53)(

tR − tT + rR (cosφR −1) 0
hR −hT + rR sinφR 1

)(
λ1

λ2

)
=

(−tT

0

)
. (4.54)

The linear system can be solved analytically to

λ1 = −tT

tR − tT + rR (cosφR −1)
, (4.55)

λ2 =−(hR −hT + rR sinφR )λ1 = (hR −hT + rR sinφR ) tT

tR − tT + rR (cosφR −1)
. (4.56)

The absolute value of λ2 is the distance between RT and the midpoint expressed on
the rear line of the element, according to the construction of the straight line equation
(4.52). To obtain the radius rst out of |λ2|, the distance between RT and the level of the
neutral fibre of the ring set has to be subtracted

rst = |λ2|−hT +hP + 1

2
h̃r , (4.57)

with hP describing the height of the element pillar (cf. Figure 4.6) where the ring set is
situated and h̃r the height of the ring set. Thereby, it is assumed that the ring sets are in
contact with the elements on the saddle.

Now the question arises how to calculate the midpoint of the circular arc with the
obtained radius rst . This subject is dealt with in the next subsection.

Calculation of midpoint of the cat’s back arc

The circular arc is put through the former tangent points T O and T I , cf. Figure 4.7. This
is legitimate as the modelling set up should converge for tT → tR in the straight part of
the non-tapered case with the resulting cat’s back radius going to infinity. The vectors
in this subsection are all expressed in the inertial coordinate system (situated in the
centre of the secondary pulley), therefore the addition I (·) has been neglected. The two
transition points from secondary and primary pulley to the upper straight part are

T O = rO

(
−cosϕ

sinϕ

)
, T I =

(
dA

0

)
+ r I

(
−cosϕ

sinϕ

)

with the angle ϕ. The midpoint of the straight connection from T O to T I satisfies

t m = 1

2
(T O −T I ), (4.58)
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and the length of the straight part in the plane (without the misalignment) is

tL = sin(ϕ)dA, (4.59)

cf. Figure 4.7. Together with the radius rst calculated in the previous subsection and the

T O

T I

T m

nm

t m

r I

rO

rst

ϕ

dA

dm

x

y

M st

Figure 4.7: Identifying the midpoint M st of upper circular arc

theorem of Pythagoras the distance dm from the upper straight part midpoint

T m = 1

2
(T O +T I ) (4.60)

to the midpoint of the arc M st can be calculated

dm =
√

r 2
st − (tL/2)2. (4.61)

Finally, only the direction from T m to M st is missing. The normalised normal from T m

to M st can easily be found as the orthogonal complement of t m

nm = 2

tL

(
−t m(2)

t m(1)

)
. (4.62)

Altogether, the midpoint of the upper cat’s back arc satisfies

M st := M st ,u = T m +dmnm . (4.63)
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The midpoint of the lower arc can be gained directly from the upper one for reasons of
symmetry

M st ,l =
(

M st (1)

−M st (2)

)
. (4.64)

The overall curve with all in all four circular arcs is C 0 continuous and takes into account
the taperedness of the elements. However, at the transitions of two neighbouring arcs
a kink is located. The curve for the geometric initialisation of the pushbelt should at
least be as smooth as in the non-tapered case, i.e. C 1 continuous. Then, also a smooth
running-in in the pulley arcs can be guaranteed in the starting phase.

Calculation of smooth transitions

In order to get smooth transitions between two circular arcs, two different concepts have
been worked out. The first approach is to use a clothoid (Euler spiral) which connects
the two circular arcs with a curve starting from the curvature of the first arc (e.g. 1/rst )
and increasing or decreasing linearly to the curvature of the second arc (e.g. 1/r I ).
Hence, the clothoid connection guarantees per definition the equality of the second
derivative (curvature) of the curve at each point. For the special geometric constellation
of the pushbelt CVT where start and endpoint of the curve are fixed, this approach is
not feasible as the clothoid has too few parameters to secure additionally the equality of
the first derivative in both transitions. Only C 0 continuity could be achieved with the
clothoid concept.

The second solution strategy connects two arcs around a transition point with one
tangent to both of them. Thereby, a C 1 curve with circle-straight line-circle transitions
results. This concept has been implemented for the initialisation of the pushbelt CVT
model and is explained below. The geometric task is to find the tangent on two inter-
secting circles next to the specified intersection, see Figure 4.8. This can be restated in
finding the two tangential points T 1 and T 2 of the tangent line on the circles. These two
points can be expressed by the corresponding midpoint M i , a radius ri and an angle γi ,
i = 1,2:

T 1 = M 1 + r1

(
cosγ1

sinγ1

)
,

T 2 = M 2 + r2

(
cosγ2

sinγ2

)
.

Connecting both intersection points with their respective midpoints M 1 and M 2, these
two lines are parallel as they are both at a right angle with the tangent, cf. Figure 4.8.
Then, considering the straight line connecting both midpoints, it follows from the
Euclidean parallelism that the angles are equal. Therefore, also the two parameterising



52 4 Enhancements concerning Initialisation

T 1

T 2

M 1

M 2

r1
r2

γ1

γ2

Figure 4.8: Tangent on two intersecting circles

angles are equal

γ := γ1 = γ2.

This angle γ has to be calculated which is shown using the example of the secondary
pulley, illustrated in Figure 4.9. The two points in this case are the tangential points
at the secondary pulley T Ot and at the straight part T Ot ,st . The vector between the

T Ot

T Ot ,st

M st

MO

rst

rO

‖mO,st‖

bO,st

αOt ,st

αOt ,st

βOt ,st

γOt ,st

x

y

Figure 4.9: Angles for a tangent transition between two intersecting circles
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midpoints M st and MO is denoted with

mO,st := M st −MO .

The distance between MO and the line [M st ,T Ot ,st ] is calculated by the theorem of
Pythagoras to

bO,st =
√
‖mO,st‖2 − (rst − rO)2. (4.65)

This is also the distance between the two tangent intersection points, which is required
to calculate the entire arc length of the initialisation curve. The angle γOt ,st can be
derived from the right angle triangle which results through this perpendicular projection

γOt ,st = arccos

(
rst − rO

‖mO,st‖
)

. (4.66)

For the initialisation explained in Subsection 4.2.2, the angle to the x-axis has to be
specified, too, which is obtained by the dot product between mO,st and the first unit
vector e1 representing the x-axis

βOt ,st = arccos

( ∣∣eT
1 mO,st

∣∣
‖e1‖2 ·

∥∥mO,st
∥∥

2

)
= arccos

(∣∣mO,st (1)
∣∣∥∥mO,st

∥∥
2

)
. (4.67)

Depending on the geometric transmission ratio, two cases have to be distinguished
because of the definition of the angle via the dot product.

αOt ,st =
{
βOt ,st +γOt ,st , for M st (1) ≥ MO(1),

(π−βOt ,st )+γOt ,st , for M st (1) < MO(1).
(4.68)

Analogously, for the primary pulley the values can be calculated to

m I ,st = M st −M I (4.69)

bst ,I =
√
‖m I ,st‖2 − (rst − r I )2 (4.70)

γst ,I t = arccos

(
rst − r I

‖m I ,st‖
)

(4.71)

βst ,I t = arccos

( ∣∣eT
1 m I ,st

∣∣
‖e1‖2 ·

∥∥m I ,st
∥∥

2

)
= arccos

(∣∣m I ,st (1)
∣∣∥∥m I ,st

∥∥
2

)
(4.72)

αst ,I t =
{
βst ,I t −γst ,I t , for M st (1) ≥ M I (1)

(π−βst ,I t )−γst ,I t , for M st (1) < M I (1).
(4.73)

No further cases can occur as M st is always situated within the two parallels MOT O and
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M I T I . Altogether, the overall geometric initialisation for the pushbelt CVT considering
tapered elements is illustrated in Figure 4.10.

T Ot T Ot ,st

T st ,I t

T I t

M st

MO

bO,st
bst

bst ,I

bI

bO

αOt ,st

αOt ,st αst ,I t

αst ,I t

x

y

Figure 4.10: Overall geometric initialisation for pushbelt CVT with tapered elements

The overall planar initialisation curve for the neutral fibre of the ring set is known.
Because of the discretisation with ÑB finite elements, this information is passed to
the neutral fibre in the initialisation only at discrete specific points. To represent the
tapered curve a minimum number of finite elements is required so that at least one knot
is situated in each curve section. These discrete points are interpolated by a smooth
curve. This process is shown in Figure 4.11, where for one exemplary setting the planar
curve is interpolated with a closed cubic spline. The discrete points are displayed and
the tangent transition points are plotted to see each curve section. This shows that a
number of 12 finite elements (FE) do not represent the tapered curve sufficiently, as not
in every tangent transition one FE knot is located.

Adding the belt deflection

Resulting from different transmission ratios the CVT has to operate in, the belt runs not
only in the plane of motion but is deflected according to the misalignment of the pulleys.
The belt deflection in z-direction is assumed to be decoupled in the initialisation.
Therefore, it is added to the planar curve of the neutral fibre derived before. For the
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Spline

FE knots

Transition points

Figure 4.11: Discretisation of a tapered curve with 12 and 32 knots and interpolation with
cubic splines

calculation of the belt deflection, the transition points between pulley and push or
loose part are of interest. These points are shifted in the case of the tapered elements
compared to the non-tapered case. The new transition points between pulleys and
upper straight part are T Ot and T I t (cf. Figure 4.12), as the curve starts to differ at these
points from the circuit paths of the pulleys.
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Figure 4.12: Adding the belt deflection

In the pulleys the z-coordinate is constant, i.e. q0OM
for the secondary and q0IM

for
the primary pulley. In the straight parts (including tangent transition, cat’s back arc,
tangent transition) these values are connected linearly, e.g. for the upper part, the mean
z position of the ring set satisfies

z(s) =
(
1− s

bO,st +bst +bst ,I

)
q0OM

+ s

bO,st +bst +bst ,I
q0IM

, (4.74)

for s ∈ [0,bO,st +bst +bst ,I ]. The variable bst denotes the length of the remaining cat’s
back arc between the two tangents. For the left resp. right ring set only wS+wP

4 has to be
added resp. subtracted, cf. [45, p. 58].

The misalignment has to also be considered in the arc length of the sections between
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the pulleys. The alignment angle for the tapered case is (cf. Figure 4.12)

βal i g n =
∣∣∣∣arctan

(
dal i g n

|T I t (1)−T Ot (1)|
)∣∣∣∣ . (4.75)

Thereby, the adaption of the arc length is done for the three segments bO,st ,bst and bst ,I

with a stretching factor. As the initialisation is based on the planar model [44] the spatial
(sp) arc lengths are gained from the planar (pl) ones with

bsp
∗ = bpl

∗
cos(βal i g n)

. (4.76)

The calculation with the stretching factor is valid under the assumption that the curva-
ture is close to zero which corresponds to a straight line because of the small taperedness
of the elements.

The curve is parametrised by the arc length with ring set length l̃r . This is the length
of the neutral fibre of the ring set in the relaxed state. The different sections added up
for the tapered case are slightly longer than the relaxed length

2bO,st +2bst +2bst ,I +bI +bO > l̃r , (4.77)

that means a prestressing of the belt is indirectly introduced with this approach. How-
ever, this prestressing is not based on kinetic assumptions, e.g. the force equilibrium.

4.2.2 Initialisation

For the initialisation of the spatial RCM beam, the DOFs of the individual finite elements
representing the neutral fibre of the beam have to be set:

q ge
= (

. . . , xi , yi , zi ,αi ,βi ,γi ,ci ,L1 ,ci ,R1 ,ci ,L2 ,ci ,R2 , xi+1, . . .
)

. (4.78)

Note that there are two ring sets which differ only in the z-coordinate as the initialisation
is done symmetrically. This can be seen by the plus-minus sign in the formulas for the
z-coordinate. Each finite element has ten DOFs, six rigid and four flexible ones. In
the first part the six rigid DOFs are shown starting from the secondary pulley at T Ot

going anticlockwise over T Ot ,st . For simplification the following arc length sections are
introduced

s1,Ot ,st = bO,st ,

s2,st ,I t = bO,st +bst ,

s3,I t = bO,st +bst +bst ,I ,

s4,I b = bO,st +bst +bst ,I +bI ,

(4.79)
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which are the sections that have to be distinguished for the initialisation process. For
background information on the initialisation process of the spatial RCM beam see [45,
p. 19 ff.]. The DOFs are set node per node, therefore all nodes i = 0, . . . , ÑB −1 are gone
through with a constant length for each FE of l0 = l̃R /ÑB . As an example, the upper part
is demonstrated in the following.

Rigid coordinates

The two rotational directions are decoupled for |dal i g n | ¿ |dA|, see [45]. The current
node location is denoted by s = i l0. Node per node, the current node location is com-
pared to the arc lengths of the different sections (4.79) to determine where it is situated.
The position is described by the three coordinates xi , yi , zi and the rotation by the
Cardan angles αi ,βi ,γi with reversed rotation sequence (z − y −x).

0 ≤ i l0 < s1,Ot ,st - first tangent between secondary top and upper cat’s back:(
xi

yi

)
= T Ot + i l0

s1,Ot ,st
(T Ot ,st −T Ot ), (4.80)

zi =
(
1− i l0

s3,I t

)
q0OM

+ i l0

s3,I t
q0IM

± wS +wP

4
, (4.81)

αi = 0, (4.82)

βi = arctan

(q0OM
−q0IM

sin(ϕ)dA

)
, (4.83)

γi = 0.5π−αOt ,st . (4.84)

s1,Ot ,st ≤ i l0 < s2,st ,I t - upper cat’s back with αup = i l0−s1,Ot ,st
rst

:(
xi

yi

)
= M st + rst

(
−cos(αOt ,st +αup )

sin(αOt ,st +αup )

)
, (4.85)

zi =
(
1− i l0 − s1,Ot ,st

s3,I t

)
q0OM

+ i l0 − s1,Ot ,st

s3,I t
q0IM

± wS +wP

4
, (4.86)

αi = 0, (4.87)

βi = arctan

(q0OM
−q0IM

sin(ϕ)dA

)
, (4.88)

γi = 0.5π−αOt ,st −αup . (4.89)

s2,st ,I t ≤ i l0 < s3,I t - second tangent between upper cat’s back and primary top:(
xi

yi

)
= T st ,I t +

i l0 − s2,st ,I t

bst ,I
(T I t −T st ,I t ), (4.90)
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zi =
(
1− i l0 − s2,st ,I t

s3,I t

)
q0OM

+ i l0 − s2,st ,I t

s3,I t
q0IM

± wS +wP

4
, (4.91)

αi = 0, (4.92)

βi = arctan

(q0OM
−q0IM

sin(ϕ)dA

)
, (4.93)

γi = 0.5π−αst ,I t . (4.94)

s3,I t ≤ i l0 < s4,I b - primary arc with αI = i l0−s3,I t
rI

:(
xi

yi

)
= M I + r I

(
−cos(αst ,I t +αI )

sin(αst ,I t +αI )

)
, (4.95)

zi = q0IM
± wS +wP

4
, (4.96)

αi = 0, (4.97)

βi = 0, (4.98)

γi = 0.5π−αst ,I t −αI . (4.99)

The second half from s4,I b to the end is done analogously.

Deflection coordinates

Again, both directions are decoupled as |dal i g n | ¿ |dA|. One finite element with arc
length l0 is divided into four equal sections

0 < l0

4
< l0

2
< 3l0

4
< l0. (4.100)

The flexible or deflection coordinates model the relative beam deflection measured
from the points on the neutral fibre at l0/4 resp. 3l0/4 to the tangent on the midpoint
of each finite element which correlates to cL∗ resp. cR∗ (cf. e.g. Figure 4.13). They are
constant (but in general unequal to zero) within each curve section. The deflections
of the out-of-plane motion are denoted with 1 (cL1 ,cR1 ) and the ones of the in-plane
motion with 2 (cL2 ,cR2 ). In the chosen approach with the smooth transitions, only
straight line - circular arc - straight line transitions occur in the plane of motion and
straight line - straight line transitions in the out-of-plane motion. This is similar to the
non-tapered case, and therefore the calculation can be done analytically and follows
[45, p. 58 ff].

If a finite element is situated completely inside one geometric element (straight line
resp. circular arc), the flexible coordinates can easily be calculated from the deflection
of this geometric element. This is shown as an example for one finite element which is
completely inside a circular arc in Figure 4.13. The deflection cR2 is the distance of the
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projection of the point at 3l0/4 to the tangent on the midpoint. This yields

ψ= l0/4

r I
, (4.101)

cR2 =−(r I −cos(ψ)r I ), (4.102)

as the bending is in negative direction. Otherwise, if a finite element is situated between

cR2

r I

l0/4

ψ
cos(ψ)r I

Figure 4.13: Deflection of one finite element in a circular arc

two geometric elements, a combination of the deflection of these has to be applied.
This more complicated case is dealt with below.

In the initialisation process with tapered elements, only two cases are possible for the
in-plane deflections. They are the transition from a straight line to a circular arc and
vice versa from a circular arc to a straight line. The first case describes the run-out of the
straight line which equals the running-in in the circular arc. The second case includes
the run-out of the circular arc, which is the running-in in the straight line. Regarding the
out-of-plane deflections (in the x-z-plane), only the transition points between straight
parts and pulleys are of interest cf. Figure 4.12. In each pulley, the course (restricted to
the x-z-plane) is straight and parallel to the x-axis. Both straight lines have different
z-coordinates and are connected linearly with two identical straight lines for the course
in the straight parts.

x

y

1. 2.

3. 4.

Figure 4.14: Four cases of in-plane deflection for running-in in cat’s back arc
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For the calculation of the flexible DOFs, the ratio at which the transition point divides
the finite element has to be distinguished. Each finite element (0 < s < l0) is divided
into four parts with a length of l0/4. The corresponding four possible cases are shown
in Figure 4.14 for the transition point at the length s1,Ot ,st . The cases are classified as
how much of the finite element is inside the the upper cat’s back arc. These are

1. at most one forth,

2. more than one forth and at most one half,

3. more than one half and at most three forth,

4. at least three forth.

In the cases 2. and 3. the deflections of the straight line and the arc have to be combined.
Again the knots of the finite elements are executed step by step with the variable i
multiplied by the finite element length. The actual length i l0 is used to initalise the
deflection coordinates ci−1,∗ of the last finite element. How far the end knot i l0 has
entered the next section is distinguished by means of the arc length of the individual
sections. Hereby, it is assumed that one fourth of the finite element is smaller than the
arc length of the tangents l0/4 < bO,st ,bst ,I .

To show all the different possible transitions, two examples are chosen from which all
the other cases can be derived. First, one transition inside the straight part is demon-
strated where all ci ,L1 ,ci ,R1 are equal to zero. Considering the in-plane deflection, it
shows the case running from a straight part into an arc.
Transition first tangent - upper cat’s back arc (running-in in cat’s back arc)
i l0 − s1,Ot ,st ≤ l0

4 :

ci−1,L1 = 0, (4.103)

ci−1,R1 = 0, (4.104)

ci−1,L2 = 0, (4.105)

ci−1,R2 = 0. (4.106)

l0
4 < i l0 − s1,Ot ,st ≤ l0

2 :

ci−1,L1 = 0, (4.107)

ci−1,R1 = 0, (4.108)

ci−1,L2 = 0, (4.109)

ci−1,R2 = rst

(
cos

(
i l0 − s1,Ot ,st − l0

4

rst

)
−1

)
. (4.110)
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l0
2 < i l0 − s1,Ot ,st ≤ 3l0

4 :

ci−1,L1 = 0, (4.111)

ci−1,R1 = 0, (4.112)

ci−1,L2 = rst

(
cos

(
i l0 − s1,Ot ,st − l0

2

rst

)
−1

)

−
(

3l0

4
− i l0 + s1,Ot ,st

)
sin

(
i l0 − s1,Ot ,st − l0

2

rst

)
,

(4.113)

ci−1,R2 = rst

(
cos

(
l0

4rst

)
−1

)
. (4.114)

i l0 − s1,Ot ,st ≥ 3l0
4 :

ci−1,L1 = 0, (4.115)

ci−1,R1 = 0, (4.116)

ci−1,L2 = rst

(
cos

(
l0

4rst

)
−1

)
, (4.117)

ci−1,R2 = rst

(
cos

(
l0

4rst

)
−1

)
. (4.118)

The second example shows the out-of-plane deflections of the transition from pulley to
straight part and the run-out of an arc concerning the in-plane deflection.

Transition primary pulley - following tangent (run-out primary arc)

i l0 − s4,I b ≤ l0
4 :

ci−1,L1 = 0, (4.119)

ci−1,R1 = 0, (4.120)

ci−1,L2 = r I

(
cos

(
l0

4r I

)
−1

)
, (4.121)

ci−1,R2 = r I

(
cos

(
l0

4r I

)
−1

)
. (4.122)

l0
4 < i l0 − s4,I b ≤ l0

2 :

ci−1,L1 = 0, (4.123)

ci−1,R1 = sin

(
arctan

(q0IM
−q0OM

sin(ϕ)dA

))(
l0

4
− (i −1)l0 + s4,I b

)
, (4.124)

ci−1,L2 = r I

(
cos

(
l0

4r I

)
−1

)
, (4.125)



62 4 Enhancements concerning Initialisation

ci−1,R2 = r I

(
cos

( l0
2 − i l0 + s4,I b

r I

)
−1

)

−
(
i l0 − s4,I b −

l0

4

)
sin

( l0
2 − i l0 + s4,I b

r I

)
.

(4.126)

l0
2 < i l0 − s4,I b ≤ 3l0

4 :

ci−1,L1 = sin

(
arctan

(q0IM
−q0OM

sin(ϕ)dA

))(
(i −1)l0 − s4,I b +

3l0

4

)
, (4.127)

ci−1,R1 = 0, (4.128)

ci−1,L2 = r I

(
cos

( 3l0
4 − i l0 + s4,I b

r I

)
−1

)
, (4.129)

ci−1,R2 = 0. (4.130)

i l0 − s4,I b ≥ 3l0
4 :

ci−1,L1 = 0, (4.131)

ci−1,R1 = 0, (4.132)

ci−1,L2 = 0, (4.133)

ci−1,R2 = 0. (4.134)

After the initialisation of the ring sets, the elements are set perpendicular on top of them.
This initialisation is done in a similar manner to [45, p. 60 ff.] and is not elaborated any
further.

Velocity initialisation

The initialisation of the planar pushbelt velocities is done via a planar analytic belt
model explained in Section 4.1. The gained longitudinal belt velocity v is assumed to be
constant in the push and loose part but variable in the pulleys. The longitudinal velocity
in the cat’s back is projected by the current angle γ from the rigid coordinates in the x
and y direction via

ẋ =−cos(γ)v (4.135)

ẏ =−sin(γ)v. (4.136)

The angular velocity for the pulleys in the plane is initialised by the given boundary
condition and calculated by the analytic model. The remaining velocities, out-of-plane
and flexible DOFs, are initialised by zero.



4.3 Planar pre-integration 63

4.3 Planar pre-integration

The main goal of the presented concept of a planar pre-integration is to use the fast
planar CVT model of Subsection 6.1 to optimise the initial state of the spatial CVT model.
The planar model is initialised with a geometric and quasi-static approach as described
in Section 4.2 and 4.1 for the tapered or non-tapered case. Then, a dynamical planar
pre-integration is executed. The results are exported and transformed to a spatial curve.
With this information, the states for the spatial model initialisation are gained from the
dynamical planar pre-integration. The flow of the simulation process is illustrated in
Figure 4.15.

initialisation

pre-integration

export

transformation

initialisation

main integration

Figure 4.15: Simulation process with pre- and main integration

4.3.1 Interface set-up

The interface between planar pre- and spatial main integration (export and transforma-
tion) is explained in the following.
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Export result of planar pre-integration

To enable a variable setting in the spatial main integration compared to the planar
pre-integration, the state-vectors of the planar case have to be known continuously and
not only at the nodes. As the initialisation of the pushbelt CVT model is based on the
state of the ring sets, only this state vector is required. A closed NURBS (Non-Uniform
Rational B-Spline) interpolation [39] is chosen to interpolate the discrete positions r n

and velocities v n of the neutral fibre of the planar ring set

I r (s) =∑
n

Nr,n(s)I r n , (4.137)

K v (s) =∑
n

Nv,n(s)AK I I v n . (4.138)

Hereby, {Nr,n}n and {Nv,n}n are the basis functions for the interpolation. The flexible
coordinates and rotations of the beam model are calculated from the position curve.
The variable n denotes the number of nodes of the finite elements in the planar pre-
integration. Note that the planar velocities are rotated into the local Frenet-frame before
interpolation. This is required to successfully initialise the transformed spatial curve
afterwards. The NURBS curves of the position and velocity of the planar ring set at
the end of the pre-integration are written into a file which is the starting point for the
following transformation. The required information for the initialisation of the spatial
RCM beams and the other bodies is calculated from this information numerically. With
this approach, e.g. a different number of finite elements for the ring sets and a different
number of (steel) elements should become possible for the two integrations.

Transformation from planar to spatial

The z-coordinate (belt deflection) for the spatial case has to be added to the interpolated
closed planar curve. For this purpose, the transition points from the pulleys to the
straight parts have to be detected from the NURBS curve. This process has been done
numerically by means of analysing the curvature with the help of student assistant
Kilian Grundl. For the numerical detection of the transition points out of a spatial
closed curve, the curvature of the curve is calculated at nk equidistant points

κ(si ) =
∥∥∥∥r ′′

(
i l

nk

)∥∥∥∥ , for i = 0, . . . ,nk −1. (4.139)

These discrete curvature values are interpolated with NURBS to gain κ(s) and the first
derivative κ′(s) is calculated. With some heuristics from the knowledge of where the
transition points can be situated, they are gained by finding the largest jumps in the
derivatives of the curvature. With the transition points the belt deflection is now added
to the planar curve in the straight parts. Then, the resulting curve is again interpolated
with NURBS resulting in the spatial initialisation curve.
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4.3.2 Spatial numerical initialisation
The translational coordinates at the specified nodes for the spatial case are gained
directly from the continuous position curve. In addition, the derivatives with respect
to the arc length s can be calculated from the NURBS curve which are required for the
next step.

Rotational coordinates

The angles from the reversed Cardan parametrisation are calculated from the position
curve by means of differential geometry. The Frenet frame is derived from the curve by
the derivatives with respect to the arc length and the cross product

I t (s) = I r ′(s)

‖I r ′(s)‖ , I n(s) = I r ′′(s)

‖I r ′′(s)‖ , I b(s) = I t (s)× I n(s). (4.140)

This information can be calculated continuously. A possible setting is shown in Figure
4.16. The three vectors of the numerically calculated Frenet frame form the transforma-

Figure 4.16: Frenet frames in CVT setting

tion matrix from the body fixed system K into the inertial system I

AI K (s) =
a00 a01 a02

a10 a11 a12

a20 a21 a22

=
(

I t (s), I n(s), I b(s)
)
. (4.141)

The matrix AI K of the reverse Cardan parametrisation can be calculated analytically to

AI K =
cosγcosβ cosγsinβsinα− sinγcosα cosγsinβcosα+ sinγsinα

sinγcosβ sinγsinβsinα+cosγcosα sinγsinβcosα−cosγsinα
−sinβ cosβsinα cosβcosα

 .

(4.142)

The three angles are obtained by equating (4.141) with (4.142):

β= arcsin(−a20), (4.143)
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α=
{

arctan
(

a21
a22

)
, if cos

(
β
) 6= 0,

0, else,
(4.144)

γ=
arctan

(
a10
a00

)
, if cos

(
β
) 6= 0,

arctan
(
−a01

a11

)
, else.

(4.145)

The two cases have to be distinguished to avoid dividing by zero. For cos(β) = 0, the two
rotation axes coincide and therefore one DOF for the rotation is lost. This is illustrated
for the case β=π/2 where the rotation matrix reduces to

AI K =
 0 sin(α−γ) cos(α−γ)

0 cos(α−γ) sin(γ−α)
−1 0 0

 , (4.146)

which is obtained by trigonometric identities. So in this case one angle is sufficient and
the angle α is set to zero. In the current application of the pushbelt CVT the singularity
does not occur as the x-y-plane is chosen in such a way that the angle β does not cross
the critical values.

Deflection coordinates

As the in-plane and out-of-plane deflections are decoupled (as explained in Section
4.2.2), the two cases can be treated separately. All information required for the flexible
DOFs can be gained from the position curve. The deviation of the straight run in the
plane of motion (x-y-plane) is described by cL2 and cR2 and the deviation of the straight
run in x-z-plane is described by cL1 and cR1 , see Figure 4.17. In this figure, the vectors are

Pz (P )

Pz (QR )Pz (QL)

Pz (r ′
sP

)

x

y

cL2
cR2

(a) Deflection in-plane

P y (P )

P y (QR )

P y (QL)
x

z

P y (r ′
sP

)

cL1

cR1

(b) Deflection out-of-plane

Figure 4.17: Decoupled deflections of spatial RCM beam
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projected into the correspondent planes, so the projector Pz projects the z-component
to zero and thereby the vector into the x-y-plane

Pz(

rx

ry

rz

) =
rx

ry

0

 . (4.147)

Likewise, the projector P y projects the y-component to zero. The position curve is
known as a continuous curve. Therefore, the coordinates of the midpoint P of a finite
element and the points QL and QR with a distance of ∓l0/4 to P can be obtained from
the NURBS curve. The deflection can now be interpreted as the distance of the points
QL resp. QR to the tangent line through P given by r ′(sP ). Generally, the distance of
a point to a straight line has to be found. A formula from analytical geometry for the
spatial case solves this problem. It results from equating the area of a triangle (cf. dotted
line in Figure 4.17a with standard (half base · height) and cross product formula

1

2
b‖r ′(sP )‖ · c∗ = 1

2
‖(Q∗−P )×br ′(sP )‖, (4.148)

whereby c∗ denotes either the left (L) or right (R) distance which has to be calculated.
Dividing both sides with the length of the base b and solving for c∗, the deflections are
given by

c∗ = ‖(Q∗−P )× r ′(sP )‖
‖r ′(sP )‖ . (4.149)

For the decoupled case, deflections for both directions can be calculated and the indexes
1 and 2 can be generated for c∗. From the spatial curve the two decoupled planes are
derived by projecting the three vectors (Q ,P ,r ′) with Pz into the x-y- resp. with P y into
the x-z-plane (cf. Figure 4.17). After that Equation (4.149) is applied for the in-plane resp.
out-of-plane vectors. In detail, cL2 and cR2 can be calculated from the x-y-components
of the vectors and cL1 and cR1 out of the x-z-components as follows. Because of its
structure, the cross product reduces vectors in the x-y-plane to the z-component and
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vectors in the x-z-plane to the y-component:

(Q −P )× r ′ =




0

0

(qx −px)r ′
y − (qy −py )r ′

x

 , if Q ,P ,r ′ ∈ {w ∈ IR3; wz = 0},


0

(qz −pz)r ′
x − (qx −px)r ′

z

0

 , if Q ,P ,r ′ ∈ {w ∈ IR3; wy = 0}.

(4.150)

Consequently, the deflection coordinates for in-plane (2) and out-of-plane (1) motion
are given by

c∗2 =
|(q∗,x −px)r ′

y − (q∗,y −py )r ′
x |√

(r ′
x)2 + (r ′

y )2
, (4.151)

c∗1 =
|(q∗,z −pz)r ′

x − (q∗,x −px)r ′
z |√

(r ′
x)2 + (r ′

z)2
, (4.152)

for the left resp. right value QL and QR .

Velocity initialisation

The imported velocity vector in the K system is transformed back into the I system by
means of the matrix (4.141). Thereby, the three velocity components ux , uy and uz are
obtainedux

uy

uz

 (s) =
(

I t (s), I n(s), I b(s)
)

K v (s). (4.153)

The transformation of the velocity into the coordinate system K in (4.138) has to be
done because of the geometric transformation from the planar to the spatial curve. As a
result, the z-coordinate and the velocity direction of the curve is changed. Therefore,
the local velocities in the K system are exported which can easily be transformed by the
new transformation matrix of the changed curve position.



5 Enhancements concerning Interactions

This chapter treats enhancements concerning the interactions in the pushbelt CVT
model. It is split into the unilateral element - ring set contact and the coupled quasi-
static contact model for the element - sheave interaction. Both enhancements increase
the level of detail of the contact models. A more accurate contact modelling effects
the movement of single elements and hence the global dynamics of the pushbelt CVT
model. Therefore, the contact modelling is of great importance for the quality of the
simulation model. Some ideas of this chapter have been presented by the author in a
compact form in [9].

5.1 Unilateral element - ring set contact

In the previous CVT model the ring sets were fixed in vertical and lateral direction (of the
local element system) to the element by bilateral contacts. The movement of the ring
sets relative to the elements was only possible in longitudinal direction with a friction
law that enables force transmission between rings and elements.

E RS

E RPb

ring set

element half

y

z

Figure 5.1: Bilateral element - ring set contact

The bilateral contact is modelled with two points at element saddle (S) and pillar (P ),

69
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cf. Figure 5.1. They are given distinguishing right and left side [45]:

E RS =
 tR /2− tS

hP −hS

±(wP /4+wS/4)

 , E RPb =
 tR /2− tS

h̃R +hP −hS

±(wP /4+wS/4− w̃R/2)

 . (5.1)

Due to the element symmetry in lateral direction, the plus-minus sign in z-direction
includes both points. Through these bilateral contacts the relative movement of the
ring set to the elements is disabled both in vertical and lateral direction. To lead the
ring sets in a centred lateral position, the two bilateral pillar contact points E RPb are not
placed at the element pillar but shifted laterally, as it can be seen in Figure 5.1.

In this section, these restrictions concerning the relative element - ring movement are
removed in different modular steps. The first step is the free movement in vertical direc-
tion, then additionally, in lateral direction and lastly, a ring tracking law is introduced to
control the lateral movement of the ring sets.

5.1.1 Free movement in vertical direction

The bilateral saddle contact (cf. Figure 5.1) assumes an always closed contact at the
saddle and no contact at the ear of the ring set and therefore no lifting of the ring sets
relative to the element. In reality, the so-called ring-ear play exists and the element can
move relatively to the ring sets in vertical direction. That means, a ring set can loose
contact at the saddle and get into contact at the element ear.

E RS

E RE

E RPb
vertical

y

z

Figure 5.2: Unilateral element - ring set contact

To minimise computing time, only one additional element - ring contact point per
element half is introduced. These two unilateral contact points at the element ear on
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the left and right side are placed at

E RE =
 tR /2− tS

hE −hS

±(wP /4+wE /4)

 . (5.2)

The x-direction is chosen in the middle of the rocking edge thickness, y-direction at
the ear height and z-direction at the half of the ear width, see Figure 5.2. Altogether,
the vertical movement of the ring sets relative to the elements is possible - restricted by
the boundaries element saddle and ear. The force laws at E RS and E RE are modelled
unilateral rigid in normal direction in combination with a friction law in longitudinal
direction. The bilateral saddle contacts E RP remain, hence, the lateral movement of the
ring set is still locked in this configuration.

5.1.2 Free movement in lateral direction
In a second modular enhancement to the movement in vertical direction, the movement
of the ring sets is enabled in lateral direction restricted by the element pillar, see Figure
5.3. To permit this movement, unilateral contact points at the element pillar are added to

E RS

E RE

E RPu

vertical
and

lateral y

z

Figure 5.3: Unilateral pillar at element - ring set contact

the pushbelt CVT model which differ only in the z-coordinate compared to the bilateral
case

E RPu =
 tR /2− tS

h̃R /2+hP −hS

±wP /2

 .

At both points, a unilateral rigid law is applied in normal direction. The contact points
at element saddle and ear are modelled as in the last subsection.
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This element - ring set contact constellation permits to investigate in which boundary
settings the rings slide laterally and get in contact with the element pillar or the sheaves.
These cases should not happen in reality as they cause material damages. By means of
the simulation, these settings can be studied further to avoid costly experiments. This
intermediate stage leads directly to the so called ring tracking.

5.1.3 Ring tracking
By ring tracking, the lateral movement of the ring sets is controlled to prevent them from
contacting the boundaries. The theory behind it comes from the running behaviour of
belts on crowned pulleys resulting from the stress states of a traction ring. For further
information on this phenomenon see [40]. This behaviour is imitated by concave
shaped element saddles, as rings on concave shaped surfaces tend to run on the top of
the surface to find an equilibrium of stresses.

gr p

E RS

E RE

E RPr

y

z

Figure 5.4: Ring tracking at element - ring set contact

In the model, a first approach to integrate this phenomenon has been realised. The
lateral control of the ring is implemented by a regularised bilateral contact in normal
direction including a specific force law without changing the element contour, see
Figure 5.4. The aim of the ring tracking model is to penalise the movement away from
the neutral lateral position by a force function. The penalisation increases with the ring
set offset with respect to the centred position until it reaches a maximum distance. This
maximum distance - the ring-pillar gap - is the difference between the z-coordinate of
the bilateral E RPb and unilateral pillar contact point E RPu

gr p =
(

wP

4
+ wS

4
− w̃R

2

)
− wP

2
= wS −wP

4
− w̃R

2
. (5.3)
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As the ring set is situated in the middle position of the element saddle width, the ring-
pillar gap between ring set and element pillar and between ring set and sheave is equal
in both lateral directions. Because of the element symmetry, gr p is equal on the left and
right side of the element.

The chosen force law enables and tolerates the lateral movement until half of the gap
gr p /2 in a manner of linear relationship with peak L. However, the full gap distance gr p

should not occur. Hence, it is penalised with a huge value F . Thereby, a collision of the
ring sets with the boundaries is prevented. This yields the following symmetric interpo-
lation problem in Table 5.1 which punishes the right and left lateral move identically.
The two force variables F À L are input parameters. This simple ring tracking law is
interpolated below.

Table 5.1: Interpolation table of ring tracking model

i 0 1 2 3 4

xi −gr p − gr p

2 0
gr p

2 gr p

yi F L 0 −L −F

A polynomial of global degree three simplifies because of point symmetry to

P (x) = −4F +8L

3g 3
r p

x3 + F −8L

3gr p
x. (5.4)

The problem that arises with the polynomial approach or a spline approach is the
under- and overshoot in the area [−gr p /2, gr p /2] resulting from the specific data, see
Figure 5.5. Therefore, the monotone piecewise cubic interpolation [15] was applied.
It monotonically interpolates monotone data, as it is required in this case. For each
subinterval [xi , xi+1], the cubic polynomial is given by

p(x) = 3hs2 −2s3

h3
yi+1 + h3 −3hs2 +2s3

h3
yi + s2(s −h)

h2
y ′

i+1 +
s(s −h)2

h2
y ′

i

= H1(x)yi+1 +H2(x)yi +H3(x)y ′
i+1 +H4(x)y ′

i

(5.5)

with a fixed

h = xi+1 −xi = gr p /2 ∀i , (5.6)

because of the equidistant nodes. The slopes y ′
i+1 and y ′

i of this piecewise polynomial
are calculated according to [32]. They simplify as the data is equidistant and monotone.
Outside the interval [−gr p , gr p ] the function is extended C 1 continuous by a linear
function with slope y ′

0 at ±gr p . The implementation is shown in a compact form
combining the positive and negative sections because of the symmetry with respect to
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−grp −grp/2 0 grp/2 grp
−F

−L

0

L

F

 

 
data
polynomial
spline
pchip

Figure 5.5: Different interpolation schemes for ring tracking force function

the origin. In total, the three sections are given by:

1. Section: −gr p /2 ≤ x ≤ gr p /2:

p(x) =−sgn(x)
(
H2(x) L+H3(x) y ′

2 +H4(x) y ′
1

)
(5.7)

with s =−|x|+ gr p /2 .

2. Section: −gr p ≤ x <−gr p /2 and gr p /2 < x ≤ gr p :

p(x) =−sgn(x)
(
H1(x) L+H2(x) F +H3(x) y ′

1 +H4(x) y ′
0

)
(5.8)

with s =−|x|+ gr p .

3. Section: x <−gr p and x > gr p :

p(x) =−sgn(x)
(
F + y ′

0gr p − y ′
0|x|

)
. (5.9)



5.2 Coupled contact law for element - sheave contact 75

The unknown derivatives y ′
i are determined so that the function is shape-preserving to

the data. In this specific case of monotone data with equidistant nodes they equal the
harmonic mean of the two neighbouring slopes. The coefficients of the polynomials are
calculated to

d0 = L−F

h
, d1 = −L

h
, d2 = d1, (5.10)

y ′
0 =

3d0 −d1

2
, y ′

1 =
2

1/d0 +1/d1
, y ′

2 = d1. (5.11)

This approach interpolates the given data monotonically (cf. ’pchip’ in Figure 5.5) and
was implemented into the pushbelt CVT model. The chosen ring tracking laws are
not physically based, thus, a further model refinement would be necessary for a more
detailed representation of this phenomenon.

5.2 Coupled contact law for element - sheave contact
The aim of this section is to derive a spatial coupled quasi-static contact model for the
normal direction of the three-dimensional element - pulley sheave contact in the CVT
model. This normal contact law is combined with a friction law in tangential directions.
By the Maxwell contact model the elements are coupled through the elasticity of the
pulley in the contact. Therefore, the sheaves deform on the whole contact arc which
leads together with the pre-stressed ring sets to the phenomenon of spiral running, i.e.
the running radius is not constant in the pulley arcs cf. [45]. Preliminary work has been
done in the planar case in [8, 17]. This approach has been generalised to the spatial
case. The structure of this section follows Chapter 3 of the supervised diploma thesis
[19]. The idea and a validation on two academic examples of the Maxwell contact has
been presented in [20].

5.2.1 Demonstration of coupling
The principle of a coupled quasi-static contact is demonstrated in Figure 5.6. A can-
tilever beam is in contact with two sticks at point 1 and 2, cf. [17]. The undeformed
contours are dotted. In the case of a non-coupled contact law the two sticks are not
linked by the elasticity of the beam. One contact with a rigid distance smaller than zero
does not influence another contact with rigid distance smaller than zero. That means
both sticks would be in contact with the beam in its undeformed position. However,
in reality for the static case, the contact force of the stick 1 closer to the clamped end
bends the beam so that stick 2 is not in contact. This coupling can be realised in two
ways. Either the deformation is considered only quasi-statically in the contact time, as
the Maxwell contact does, or dynamically by means of flexible bodies. The advantage of
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the Maxwell contact is that rigid body dynamics can be used which is not as expensive
in calculation time as flexible body dynamics.

Figure 5.6: Coupling illustrated on a cantilever beam [19, p. 10]

In order to distinguish between position and contour the following notation is intro-
duced. The left subscript denotes the position (point 1 or 2) and the right subscript the
contour of the body that is in contact (beam, stick 1 and stick 2). For contact 1 shown in
the bottom left of Figure 5.6 the following equation holds

1g = 1wbeam + 1w1 + 1g̃ = 0,

with the elastic distance g , the deformations w of both contours and the rigid distance g̃ .
The elastic distance is measured between both deformed contours and the rigid distance
between the undeformed contours. As both undeformed contours are penetrated, g̃
is negative. The deformations of the beam, 1wbeam , and stick 1, 1w1, are both positive.
The elastic distance as the sum of these three variables is zero which means that contact
1 is closed. A positive contact force acts and deforms the beam and stick 1.

In contact 2, on the bottom right of Figure 5.6, also both undeformed contours are
penetrated. However, because of the coupling with contact 1 and the resulting bending
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of the beam, contact 2 is not closed. Therefore, the deformation of stick 2, 2w2, is equal
to zero

2g = 2wbeam + 2w2︸︷︷︸
=0

+2g̃ > 0.

The model, demonstrated on this simple example, is derived in general for the spatial
case in the following.

5.2.2 Maxwell’s reciprocal theorem

Maxwell’s reciprocal theorem is derived out of the two principles of superposition and
conservation of energy, cf. [37]. It specifies the influence between forces and deforma-
tions of linear elastic bodies in a static equilibrium. The influence matrix

C = (i C j )i j ∈ IRn×n

stores the influence numbers i C j , which describe the linear relationship between a
single force jλ acting on a point j and the resulting deformation i w( jλ) at a point i in
direction of λi given by the formula

i w( jλ) = i C j jλ, (5.12)

shown in Figure 5.7. As a consequence of the principle of superposition, the deformation

jλ

iλ

j w(iλ)

i w( jλ)

Figure 5.7: Influence between forces and deformations for a linear elastic body [19]

at a point i resulting of n forces at different points on the body is given as the sum

i w := i w(λ) =
n∑

j=1
i C j jλ= i cλ. (5.13)
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The vector i c is the i -th row vector of the influence matrix

C =

1c
...

nc


and the vectorλ= (1λ, . . . , nλ)T comprises the single forces. That means the deforma-
tion at one point depends on all forces applied on the body. For the desired application
of the Maxwell contact the resulting deformations are only of interest at the points where
the single forces act on the body. Therefore, C is a square matrix. The n deformations
are stored in the vector

w = w (λ) =Cλ ∈ IRn . (5.14)

Considering two forces on the points i and j of a body, their corresponding deformations
and the principle of conservation of energy, then Maxwell’s theorem specifies that the
influence numbers i C j and j C i are equal. Thus, the influence matrix is symmetric

i C j = j Ci ⇔C =C T . (5.15)

From the physical point of view it shows the reciprocity that the deformation at a point
i caused by a force at a point j is the same as the deformation on the point j caused by
a force acting on a point i .

5.2.3 Local elastic contact kinematics

To derive the Maxwell force law, appropriate local contact kinematics for the elastic case
in addition to the rigid case of Section 2.3 have to be predefined. A contact situation
is considered where two contours (1 and 2) are in contact at a point i , cf. Figure 5.8. It
shows both the undeformed and deformed state of each contour. Letλ be the vector
of all contact forces that act on both bodies. Due to the contact forces both contours
deform in point i and the resulting deformations of contour 1 and 2 are i w1 (λ) and

i w2 (λ). The elastic normal distance at point i is the sum of both deformations and the
rigid normal distance i g̃

i g (λ) = i w1 (λ)+ i w2 (λ)+ i g̃

= i c 1λ+ i c 2λ+ i g̃

= i cλ+ i g̃ . (5.16)

The row vector i c 1 comprises the influence numbers of all single forces acting on point
i concerning contour 1 and i c 2 those concerning contour 2. Both influence vectors are
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Figure 5.8: Local elastic contact kinematics [19, p. 12]

summed up in one row vector which is possible because of the linearity

i c = i c 1 + i c 2. (5.17)

Hence, every row vector i c contains the contribution of both contours involved in a
contact point i .

5.2.4 Maxwell force law
The Maxwell force law is a linear complementarity problem (LCP) on the basis of
Maxwell’s reciprocal theorem for the contact situation of Subsection 5.2.3 and a com-
plementarity condition. The elastic distances i g are set up for all contact points i and
summarised in a matrix vector notation

i g = i cλ+ i g̃ ∀i = 1, . . . ,n

⇔ g =Cλ+ g̃ . (5.18)

The result is a linear equation with the symmetric influence matrix C where each row
vector correlates to one contact point. In addition, the constraints that both the elastic
distances and the contact forces are non-negative, have to be satisfied. That means
the bodies cannot penetrate and only push each other. For this case the inequality
conditions in the following element-wise notation are introduced

i g ≥ 0 ∀i = 1, . . . ,n ⇔ g ≥ 0 (5.19)

iλ≥ 0 ∀i = 1, . . . ,n ⇔λ≥ 0. (5.20)

In a third step the complementarity condition is demanded. It regulates the relationship
between the elastic distance and the contact force for the possible cases of an open
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and a closed contact. If a contact is closed the contact force can be positive and if the
contact is open the contact force has to be zero

i g = 0 ∧ iλ≥ 0, (5.21)

i g > 0 ∧ iλ= 0. (5.22)

Therefore, either the entry of the distance or the force vector or both entries vanish,
which means that the vectors are orthogonal

g Tλ= 0 ⇔ g ⊥λ. (5.23)

Non-negativity and complementarity are summarised to an inequality complementarity
condition similar to the unilateral contact, but now for the elastic distances

0 ≤ g ⊥λ≥ 0. (5.24)

Altogether the Maxwell force law contains the LCP with the linear system and the
constraints derived in the previous steps

g =Cλ+ g̃ , (5.25a)

0 ≤ g ⊥λ≥ 0. (5.25b)

5.2.5 Solution of the Maxwell force law
The Maxwell force law is expressed by a LCP with the unknowns g andλ. For its solution
many strategies exist. They can be categorised in two sections, the direct and indirect
methods. The direct methods are pivoting methods which test different solutions until
the exact solution is found. As a special case of the pivoting methods the Lemke solver
will be outlined below. The indirect methods are iterative methods which approximate
the solution. Starting with an initial value, they try to get closer to the solution in each
step. Here, the reformulated proximal point version of the LCP resulting in a nonlinear
system is shown which is solved by a fixed-point or Newton method. Note that in the
following for reasons of simplicity the subscript has been adapted so that the right
subscript denotes the index of a vector.

Pivoting methods and Lemke’s algorithm

Lemke’s algorithm is a direct method to solve a LCP using pivoting strategies. The main
ideas of pivoting methods and Lemke’s algorithm are described in the following similar
to [30, 58].

A pivoting method works as follows. In the case of g̃ ≥ 0, a solution of the LCP (5.25)
can easily be given by settingλ= 0 and g = g̃ . Otherwise, variables have to be exchanged
(pivoted) in a certain way until the conditions of (5.25) are satisfied. Let I ⊂ {1, . . . ,ng }
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and K ⊂ {1, . . . ,nλ} denote two index sets which are subsets of the indexes of g and λ
with the same number of elements |I | = |K |. Let I C and K C denote the corresponding
set complements. Then, a partition of the linear system is obtained by changing rows
and columns of (5.25a)(

g I
g I C

)
=

(
C I K C I K C

C I C K C I C K C

)(
λK

λK C

)
+

(
g̃ I

g̃ I C

)
, (5.26)

so that C I K is non-singular. By exchanging g I and λK , having the same number of
elements, a pivoted system(

λK

g I C

)
=C ′

(
g I
λK C

)
+ g̃ ′ (5.27)

is gained, in which the variables are mixed. To distinguish between them, the variable
set {λK , g I C } is termed basic and {g I ,λK C } non-basic variables. The transformed matrix
C ′ and the vector g̃ ′ can be calculated by simple linear algebra to

C ′ =
(

C−1
I K −C−1

I K C I K C

C I C K C−1
I K C I C K C −C I C K C−1

I K C I K C

)
,

g̃ ′ =
(

g̃ ′
I

g̃ ′
I C

)
=

( −C−1
I K g̃ I

g̃ I C −C I C K C−1
I K g̃ I

)
. (5.28)

Altogether, the goal of the pivoting strategies is to partition the LCP and pivot it so that
the two index sets I and K are equal and the transformed vector g̃ ′ in (5.27) is greater or
equal to zero:

I = K ∧ g̃ ′ ≥ 0. (5.29)

If condition (5.29) is satisfied, the solutions can easily be found by setting the vector of
the non-basic variables to zero and the basic variables to g̃ ′. For the original LCP this
results in the form

g =
(

0
g̃ ′

I C

)
, λ=

(
g̃ ′

I
0

)
. (5.30)

Trying all possible combinations by pairwise pivoting the variables will result in the
solution in a finite number of steps.

This exchanging of variables is done in a strategic way in Lemke’s algorithm. The LCP
is augmented by an auxiliary variable λ0 and a covering vector greater than zero, here
1= (1, 1, . . . , 1)T :

g = C̄
(
λ

λ0

)
+ g̃ , C̄ = (C 1) . (5.31)
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Through this additional variable the number of elements relate subsequently

nλ = ng +1.

The algorithm is splitted into the following three sections, only slightly adapted from
[30, 58]. It is assumed that g̃ � 0, i.e. it has at least one negative entry, otherwise the
solution can directly be given by λ= 0.

1. Initial pivot step: Determine r = arg mini {g̃i }, pivot λ0 with gr and assign the
driving variable yr to λr . Compute g̃ ′ and the column c ′

r of C̄
′

corresponding to
the driving index r .

2. Termination criteria: If c ′
r ≥ 0, then terminate without solution. Otherwise,

calculate s = arg mini {−g̃ ′
i /c ′i ; c ′i < 0} and set ys to the basic variable with index s.

If ys =λ0, then pivot ys and yr and terminate succesfully - the resulting g̃ ′′ solves
the LCP. Otherwise, proceed with next step.

3. Pivot step: Pivot ys and yr . Assign yr to the complement of ys (i.e. the corre-
sponding entry in the non-basic variable) and go to previous step.

To find a solution it is required that the column c ′
r has at least one negative entry cf.

[13]. Otherwise, the Maxwell force law has either no solution or is not solvable by this
method. After the initial pivot step, g̃ ′ ≥ 0 is always valid as the covering vector has been
chosen to be greater than zero. But the other condition of (5.29), that the two index sets
are identical, has still to be fulfilled by removing 0 out of I and r out of J which is done
if ys =λ0 in the second step above to gain a complementary solution.

For practical cases the total complexity of Lemke’s algorithm typically is polynomial
with O(n3), however, there are some problems where the complexity ’explodes’ to
O(2n) cf. [30]. The explained method is the standard Lemke’s algorithm. More advanced
versions of it exist. For a more robust variant see [58], where amongst others the possible
tie in the second step is resolved as the minimum in the test

arg min
i∈{1,...,ng }

{−g̃ ′
i /c ′i ; c ′i < 0} (5.32)

can occur at several arguments i . In addition, numerical problems in the inversion of the
matrix C I K are addressed, which could lead to inaccurate results. Another enhancement
shown in [30] focuses on a faster implementation of Lemke’s algorithm.

Iterative schemes using proximal point formulation

As the complementarity and proximal point formulation is equivalent [47], the con-
straints can be reformulated using the projection functions of Section 2.4. This yields a
nonlinear system comprising the linear equation and the prox functions which can be
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solved by a non-smooth Newton or fixed-point iterator. In general, the iterative schemes
are faster than the pivoting methods.

The reformulation of one line of the constraints yields

gi ≥ 0, λi ≥ 0, giλi = 0 (5.33a)

⇔ λi = prox
IR+

(λi − r gi ), (5.33b)

with the one-dimensional set IR+ := {x ∈ IR; x ≥ 0} and a positive coefficient r . To point
out the equivalence in (5.33), as an example, the direction (5.33b) → (5.33a) is pictured.
The other direction and a deeper insight in this can be found in [47]. Two cases have to
be distinguished: If λi − r gi < 0, the prox function is mapped to zero and it follows

λi = prox
IR+

(λi − r gi ) = 0 ∧ gi > 0. (5.34)

Otherwise, if λi − r gi ≥ 0, the preimage is mapped onto itself and therefore

λi = prox
IR+

(λi − r gi ) =λi − r gi ≥ 0 ⇒ gi = 0 ∧ λi ≥ 0. (5.35)

Altogether, the whole LCP in element-wise notation with the proximal point formulation
consists of a linear and a nonlinear system

gi =
n∑

j=1
i C j λ j + g̃i ∀i = 1, . . . ,n (5.36a)

λi = prox
IR+

(λi − r gi ) ∀i = 1, . . . ,n. (5.36b)

The system (5.36) is solved by two different solution strategies, the fixed-point and
Newton iteration. With the definition

x :=
(

g
λ

)
, (5.37)

the vector notation for the multidimensional fixed-point iteration is given by

x = F F (x) :=
[

C λ+ g̃
proxIRn+(λ− r g )

]
. (5.38)

For this special case of the set IRn+ := {x ∈ IRn ; x ≥ 0}, the components xi are decou-
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pled. Thus, the elements of the prox functions can be assembled into one vector

prox
IRn+

(λ− r g ) =

proxIR+(λ1 − r g1)
...

proxIR+(λn − r gn)

 . (5.39)

The scheme for the fixed-point iteration has the form

x i+1 = F F (x i ), i ≥ 0. (5.40)

The starting value x0 =
(g 0
λ0

)
is calculated as

gi ,0 =
{

g̃i , for g̃i ≥ 0,

0, for g̃i < 0,
(5.41)

λi ,0 =
{

0, for g̃i ≥ 0,

− n
tr(C ) g̃i , for g̃i < 0,

(5.42)

with some knowledge taken from the pivoting methods. Hereby, the arithmetic mean of
the trace of C is a measure for the mean eigenvalue, as the trace is equal to the sum of
the eigenvalues µi of C

tr(C ) =
n∑

i=1
i Ci

!=
n∑

i=1
µi . (5.43)

The system (5.36) in root formulation for the Newton method in element-wise notation
satisfies

0 = gi −
n∑

j=1
i C j λ j − g̃i ∀i = 1, . . . ,n, (5.44a)

0 =λi −prox
IR+

(λi − r gi ) ∀i = 1, . . . ,n. (5.44b)

With the multidimensional function

F N (x) :=
[

g −C λ− g̃
λ−proxIRn+(λ− r g )

]
, (5.45)

the compact matrix vector notation for the multidimensional Newton method is given
by

DF N (x i )∆x i =−F N (x i ). (5.46)
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The Jacobian matrix is denoted with DF N (x i ) and the increment is given by

x i+1 = x i +∆x i .

The Jacobian matrix can either be calculated numerically or analytically. In regard to
the analytical way, the problem arises that the one-dimensional prox function with the
set IR+ is indeed continuous but has a kink at the origin:

prox
IR+

(x) =
{

0, for x < 0,

x, for x ≥ 0.
(5.47)

Therefore, its derivative has a jump at zero and can there be set to 0 or 1:

d

d x
prox

IR+
(x) =

{
0, for x < 0,

1, for x > 0.
(5.48)

5.2.6 Application to the element - sheave normal contact
The general spatial Maxwell contact is applied in the pushbelt CVT model to the el-
ement - sheave normal contact. This application is valid under the assumption that
the deformation of the pulley-axle system is linear elastic. Thereby, the elements get
coupled quasi-static in the contact by the elasticity of the sheave. In contrast to an
elasto-dynamic model, no dynamic influence of the oscillation is considered. The
influence of the sheaves is identical to that of the planar model [17]. The influence
concerning the elements is new, as it becomes feasible only by the two contact points
on each side of the element used in the spatial model.

Because of the principle of superposition, it is possible to analyse the response on the
sheave resulting from the linear combination of simple point forces. In addition, the
sheave is rotationally symmetric, so that the response to a rotated load is the rotated
response to that load at the previous position around the same angle. The overall pulley
axle system deformation is the combination of the sheave deformation and the sheave
tilting because of axle and hub bending. The axial deformation can be expressed as [17]

wi = i C j cos(δ0)λ j , (5.49)

with the half wedge angle δ0 projecting the normal force into the axial direction. The
fixed and loose sheaves are different, as the tilting due to bending of the hub occurs
only at the loose sheave, modelled by a rotational stiffness. The influence coefficient

i C j can be described by the product of two influence functions for azimuthal and radial
direction, see [17]

i C j = cr ad (r̄ j ) · caz(∆φi j ), (5.50)
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with the mean running radius r̄ j and the relative angle ∆φi j =φi −φ j . The radial part is
a polynomial function of degree m

cr ad (r̄ j ) = a0 +a1r̄ j +a2r̄ 2
j +·· ·+am r̄ m

j . (5.51)

The azimuthal function is 2π-periodic because of the rotation symmetry and is approxi-
mated by a Fourier series

caz(∆φi j ) =
nk∑

k=0
Ak cos

(
k∆φi j

)
. (5.52)

Together, the influence coefficient i C j , which describes the deformation at (r̄i ,φi ) due
to a load at (r̄ j ,φ j ), is the product of the polynomial and the Fourier series. As the
elements in the pulley run in good approximation on a circular arc, the radii r̄i are
assumed to be constant with value r̄ :

i C j =
(
a0 +a1r̄ +·· ·+am r̄ m) nk∑

k=0
Ak cos

(
k∆φi j

)
. (5.53)

All the parameters are obtained by a finite element method analysis of the pulley-axle
system. The overall influence matrix for n contact forces at different angles φ j on a
circular arc for one sheave satisfies (cf. [17])

C sh = cr ad (r̄ )
nk∑

k=0
Ak


cos

(
k∆φ11︸ ︷︷ ︸

=0

)
. . . cos

(
k∆φ1n

)
...

. . .
...

cos
(
k∆φn1

)
. . . cos

(
k∆φnn︸ ︷︷ ︸

=0

)
 . (5.54)

In the spatial case a further element coupling is possible as there are two instead of one
contact point on each element flank and the element can move in axial pulley direction.
That means that the four contact points on the two flanks of the element (two left and
two right) are all coupled through the element elasticity. Because of computing time
reasons, the coupling of the right and left pulley through the element has not been
investigated. However, the coupling of the two contacts (element rear and front) of one
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element flank has been analysed. The corresponding element influence matrix satisfies

C el =
1

cel



1 1 0 · · · 0
1 1

0 1 1
. . .

...
1 1

...
. . . . . . 0

1 1
0 · · · 0 1 1


, (5.55)

with the material stiffness of the element cel . The 2×2 block matrices of ones show
that at the two contact points of one element flank the same flexibility 1/cel is assumed.
However, other partitions of the element flexibility to the two contact points can be
chosen. If no influence on the element flank is modelled, the matrix reduces to

C el =
1

cel
E . (5.56)

The overall linear equation of one pulley including fixed (f) and loose (l) sheave for a
coupling on the sheaves and one element flank is given by(

g l
g f

)
=

([
C sh,l 0

0 C sh, f

]
+

[
C el 0

0 C el

])(
λl

λ f

)
+

(
g̃ l
g̃ f

)
. (5.57)





6 Model Reduction

As the computing time is a big issue in [45], different strategies have been applied to
reduce the model. A hybrid (planar - spatial) CVT model has been developed which
covers the planar phenomena with a much lower computing time, cf. Chapter 7. For
this hybrid model, a planar Cosserat rod model has been derived. In addition, nonlinear
model order reduction techniques are used to truncate high numerical frequencies of
the Cosserat rod model and allow for larger time step sizes during the integration.

6.1 Hybrid pushbelt CVT model
A new hybrid model (also called planar model in the following) based on [17, 45] has
been modelled and implemented inside the software framework MBSim. It is an ex-
tended planar model as it consists of both planar and spatial bodies. The main advan-
tage of the hybrid model is a significant reduction of the computing time, with a factor
of about nine, compared to the spatial model. The hybrid model has been integrated
into the framework of the spatial pushbelt CVT model to enable the possibility to switch
between a planar or spatial simulation. Only the differences to the spatial model (as
summarised in Section 3.2) and not the entire planar model is explained in this sec-
tion subdivided into bodies, interactions and initialisation. The plane of motion is the
x-y-plane, in the following also called in-plane.

6.1.1 Bodies
Similar to the spatial model, the hybrid model is built with the three different bodies -
elements, ring sets and pulley sheaves.

Elements

The elements in the planar model have 3 rigid DOFs for the plane motion.

Ring sets

The ring set is modelled with the planar redundant coordinate beam model [59]. It is also
based on the co-rotational approach and is able to describe large planar deformations.

89
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The global coordinate vector of one finite element with two nodes left and right reduces
to

q g = (
xL , yL ,ϕL , cL2 ,cR2 , xR , yR ,ϕR

)T . (6.1)

The transformation between the internal q i and global q g coordinates can be evaluated
in an analytic way [59]

q i = f
(

q g

)
. (6.2)

No nonlinear system has to be solved numerically. Hence, the time step size is not
restricted by the internal transformation as in the spatial case. Thus, a larger number
of finite elements than in the spatial case can be used to describe the ring sets more
accurately.

As the pushbelt can move only in the plane of motion, one single ring set is chosen
for the planar model. This ring set with the double width 2w̃r - of the spatial ring set
- is placed in the middle of the elements, cf. Figure 6.1. The in-plane area moment of

x I

y Iz I

E RE

E RS

Figure 6.1: Planar centred ring set with double width

inertia is adapted with the double width to

Ĩ1 =
2w̃R h̃3

R

12ÑR
. (6.3)

Pulleys

As the planar pushbelt cannot move in the axial pulley direction, the same approach as
in the spatial model with fixed and loose sheave is not possible. As in case of shifting,
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starting with an element on both sides in contact with the pulley sheaves, the contact
on the fixed sheave would either detach or prevent the transmission change. In the
first case, if the distance of the loose sheave decreases and the element is pushed to
a larger running radius, the contact on the fixed sheave detaches. In the second case,
if the distance of the loose sheave increases, the element stays in contact on the fixed
sheave which would prevent the planar pushbelt of decreasing its running radius. The
planar pushbelt cannot be pushed onto the fixed sheave and the clamping force of the
loose sheave is not transferred by the belt from the loose to the fixed sheave.

To solve this problem, either only one sheave or two symmetric sheaves for one pulley
are possible which both lead to different assumptions and solutions. In this study it
has been chosen to model both sheaves of one pulley as two symmetric loose sheaves.
Hence, both have the four DOFs for tilting, rotating and axial movement. They always
move symmetrically with respect to the x-y-plane, i.e. when one sheave decreases the
sheave distance, the other moves also towards it and vice versa, cf. Figure 6.2. Hence,
the element-pulley contact is symmetrical on both sides of the element. In the chosen
approach, the sheaves are modelled as full spatial bodies and thus, the overall model is
a combination of the planar and the spatial model and therefore called hybrid model.

zCO /2 zCI /2

zCO /2 zCI /2

Figure 6.2: Two symmetric sheaves in the hybrid model

6.1.2 Interactions

For the planar case, the interactions of [45] have been simplified in a natural manner
similar to [17].

Element - element contacts

The contacts at element top and bottom simplify to point - line contacts. At the rocking
edge one circular arc (in the x-y-plane) is in contact with the line of the front element.
For the pin-hole contact only three point - line contacts are necessary according to
[17]. This contact is visualised in Figure 6.3. The three direction matrices of the contour
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E 1

E 2

E 3

n1

n2

n3

rP1
rP2rH1

rH2

tH

tP

tS

tR

x

y

C

hH −hS

Figure 6.3: Planar element - element pin-hole contact

lines (including outward pointing normal, tangent and binormal) of one element in the
element coordinate system are given by

A(φi ) = (ni , t i , b) =
cos(φi ) −sin(φi ) 0

sin(φi ) cos(φi ) 0
0 0 1

 , i = 1,2,3 (6.4)

with the three angles

φ1 = 3π

2
−arctan

(
rH1 − rH2

tH

)
, (6.5)

φ2 = π

2
+arctan

(
rH1 − rH2

tH

)
, (6.6)

φ3 =−π
2
+arctan

(
rP1 − rP2

tP − tR

)
. (6.7)

The corresponding points E 1, E 2 and E 3 of one element are obtained from its geometry

E 1 =
 tP − tS

(hH −hS)+ rP2

0

 , E 2 =
 tP − tS

(hH −hS)− rP2

0

 , (6.8)

E 3 =
 −tS

(hH −hS)− rH1

0

 , (6.9)
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with hH denoting the height from bottom to the dotted line in the middle of the pin.
The positions of the contact points at element top and bottom remain. For the rocking
edge only one circular arc in the plane of motion is used. Thus, the rear side of the
predecessor element is modelled by a line and not a plane. The contact points are
chosen to be unilateral with a flexible force law.

Element - ring set contacts

Only one point (E RS) is required for the bilateral and two points (E RS and E RE ) for the
unilateral element - ring set contacts, cf. Figure 6.1

E RS =
tR /2− tS

hP −hS

0

 , E RE =
tR /2− tS

hE −hS

0

 . (6.10)

The lateral movement of the ring set is not possible in the planar case. Hence, no
contact restriction in lateral direction is required. A friction law is applied in longitudinal
direction.

Element - pulley contacts

As the pulley sheaves are full spatial bodies, also the contour is modelled spatial with
a frustum contour. For the element - pulley contacts either the full spatial contact of
the model [45] or a simplified point - frustum contact can be used. Both options are
depicted in Figure 6.4. The extended contact is modelled with two circle - frustum
contacts on each flank. In the simplified contact, only one fixed contact point P R per
element flank is in contact with the frustum contour of the sheave. With this approach
the contact position on the element does not have to be calculated in each time step.
The simplified contact is also applicable in the spatial model. The positions of the fixed
contact points on the element flanks are chosen according to [17].

x Ix I

y Iy I

z Iz I

CC

PFR

PRR

P R

Figure 6.4: Extended or simplified element - pulley contact
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Regarding the contact law in normal direction, either the decoupled law of [45] or the
coupled regularised law explained in Section 5.2 can be applied in combination with a
regularised spatial friction law.

6.1.3 Initialisation

The initialisation process described in Subsection 3.2.3 and Chapter 4 is used for the
planar model. The ring set is initialised according to the Sattler model [44] and the ele-
ments are placed on the ring set. The pulleys adapt according to the given transmission
ratio.

Ring sets

The planar DOFs of the ring set are extracted from the spatial initialisation according to
Chapter 4. The entire band distance l̃r of the planar ring set is slightly shorter than of
the spatial ring sets as the belt deflection (in z-direction) is neglected.

Elements

The elements are initialised according to the spatial model with only the plane DOFs.
Hereby, the arc length of the neutral fibre of the ring set where the element should be
positioned is calculated heuristically to distribute the elements over the whole length.
Then, the position of the element’s centre of gravity is gained from this position of the
neutral fibre of the ring set I r O and a fixed vector between both of them E r O,S given in
the elements frame E

I r S = I r O + I E A E r O,S . (6.11)

The element’s velocity is gained by the velocity of the ring package by

I v S = I vO + I E Å E r O,S + I E A E r̊ O,S = I vO + I Eω× I E A E r O,S . (6.12)

Pulleys

The initial positions of the centres of gravity of the sheaves have to be determined. In
the spatial model [45] the two fixed sheaves have a fixed position and the loose sheave
positions are depending on the transmission ratio and the curved element geometry.
The positions for the planar initialisation is done symmetrically for both sheaves. Thus,
the z-distance of two pulley sheaves for the spatial case is calculated and divided into
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two halves for each sheave in the planar model. The initial sheave positions satisfy

I r I∗ =

 dA

0

± |zIL−zIF |
2

 , I r O∗ =

 0
0

± |zOL−zOF |
2

 . (6.13)

The z-positions zIL , zIF , zOL , zOF of the four sheaves at primary and secondary pulley
(each time loose and fixed) are calculated as in the spatial model.

Pulley - Environment

Because of the symmetric sheave concept, the boundary settings have to be adapted.
The kinematic clamping force FCI /O is applied on both sheaves of one pulley. The half
clamping distance and velocity than in the spatial model is applied for the end stop,
because both sheaves of one pulley move, cf. Figure 6.2.

6.2 Planar Cosserat rod model

A fast and accurate rod model discretised with finite differences has been presented in
[28]. This presentation of a geometrically exact spatial Cosserat rod model was decisive
to try another rod model for the ring sets in the CVT model. As the step size of the
spatial RCM beam model in [45] is restricted by the internal transformation between
the two coordinate systems, this model was promising to solve this problem. The theory
and implementation of a spatial Cosserat rod model in MBSim has been done in a
joint work with Thorsten Schindler [10] resulting out of the supervised term paper [27].
The spatial Cosserat rod model is not presented here, as it would go beyond the scope
of this study. Nevertheless, the planar Cosserat rod model is shown in the following
which has been derived out of the spatial model [10] in the supervised diploma thesis
[56]. Only the closed structure is presented which is relevant for the application in the
CVT. The t -n-plane is chosen as the plane of motion. The contour of the spatial case is
used also for the planar rod. The basis for this section is found in [28], however, many
changes have been made in this derivation. For the industrial application of a pushbelt
CVT which nearly runs in-plane, the quaternionic parameterisation for the rotation is
not required as the singularity does not occur. Hence, a Cardan parameterisation was
chosen which avoids additional constraints. A closed structure has been introduced.
A NURBS contour description was implemented for the rod to enable interactions of
the ring sets and the elements. For the assembling in the object-oriented framework
MBSim a finite element description has been applied for the discretised beam segments.
Parts of the text of this section are taken from the joint paper [10].
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6.2.1 Continuous equations of motion

In this subsection, the energy terms in the continuous case are shown briefly according
to [28] for the spatial case. The transfer to the planar case can easily be done out of this.
For a full description of the continuous case see [28], where in contrast unit quaternions
are used for the parameterisation of the rotation.

A rod is a slender body considered as a one dimensional continuum which is much
larger in one direction than in the other two directions. The motion of the rod is de-
scribed by means of the Lagrange description. The Lagrange parameter s ∈ [0,L] refers
to the undeformed length of the neutral fibre of the rod L. Two fields in inertial descrip-
tion depending on the time t and the coordinate s are introduced for the kinematics of
the flexible body. Both are unit speed curves concerning the Lagrange parameter s. The
position field

(s, t ) 7→ I r (s, t ) =
x(s, t )

y(s, t )
z(s, t )

 ∈ IR3 (6.14)

describes the spatial motion of the centre line. The rotation field parametrised with
Cardan angles

(s, t ) 7→ϕ(s, t ) =
α(s, t )
β(s, t )
γ(s, t )

 ∈ IR3 (6.15)

defines the spatial orientation of a body-fixed frame K with respect to the inertial frame
I . The rotation matrix between the two coordinate systems is associated with the
tangent, normal and binormal of the centre line given in the inertial system. It is the
result of three successive rotations [38]

ϕ 7→ I K A(ϕ) := (
I t (ϕ), I n(ϕ), I b(ϕ)

)
=

 cosβcosγ −cosβsinγ sinβ
cosαsinγ+ sinαsinβcosγ cosαcosγ− sinαsinβsinγ −sinαcosβ
sinαsinγ−cosαsinβcosγ sinαcosγ+cosαsinβsinγ cosαcosβ

 .
(6.16)

The vectors n and b span the cross-section area of the rod. The relationship between
the time derivative of position and angles as well as velocity v ∈ IR3 and angular velocity
ω ∈ IR3 is given by(

I ṙ
ϕ̇

)
=

(
E 0
0 I Y

)(
I v

Iω

)
, (6.17)

with the unity matrix E ∈ IR3×3 and the matrix Y ∈ IR3×3 whose inverse is shown below.
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The angular velocity vector in the inertial coordinate system is gained from the skew
symmetric matrix

I ω̃= I K Ȧ I K AT (6.18)

in the following form

Iω= I Y −1ϕ̇=


I t2

∂ I t3
∂ϕ

+ I n2
∂ I n3
∂ϕ

+ I b2
∂ I b3
∂ϕ

I t3
∂ I t1
∂ϕ

+ I n3
∂ I n1
∂ϕ

+ I b3
∂ I b1
∂ϕ

I t1
∂ I t2
∂ϕ

+ I n1
∂ I n2
∂ϕ

+ I b1
∂ I b2
∂ϕ

ϕ̇, (6.19)

for an arbitrary angle parameterisation.

Potential energies

The strain, curvature and gravitational energy form the potential energies.

Strain energy The Cosserat beam includes shear compared to the Kirchhoff beam
theory. The spatial strain vector is modelled by the difference of the first derivative with
respect to the arc length of the curve and the tangent. In the inertial frame I , it is given
by

Iε= ∂ I r

∂ s
− I t . (6.20)

Transformed to the material or body-fixed frame K , it has the form

Kε= I K AT ∂ I r

∂ s
−

1
0
0

 . (6.21)

Due to the choice of the columns of the rotation matrix in (6.16), the first unit vector has
to be subtracted in (6.21). For interpretation, e.g. the elongation in the material system
is calculated to

ε1 = I t T
I r ′−1. (6.22)

Thus, for the arrangement of the constitutive values, the stiffness E A is in the first
diagonal element of the material matrix

Cε =
E A

Gσ1 A
Gσ2 A

 . (6.23)
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The appearing parameters are Young’s modulus E , the shear modulus G , the cross-
section area A and the shear corrections 0 < σ1,σ2 < 1. The strain energy with strain
vector in the body-fixed system is given by

VSE = 1

2

L∫
0

Kε
T Cε

Kεds. (6.24)

Curvature energy To derive the curvature vector, a skew symmetric matrix resulting
from the rotation matrix is required. For every rotation matrix it holds

I K AT
I K A = 0. (6.25)

Therefore, the derivative of (6.25) with respect to s

I K AT
I K A′+ (I K AT

I K A′)T = 0, (6.26)

yields a skew symmetric matrix by the product rule. This matrix is interpreted as the
tilde matrix κ̃ of the curvature vector κ

K κ̃= I K AT
I K A′ =−(I K AT

I K A′)T . (6.27)

The curvature vector can be extracted of K κ̃:

Kκn =
I bT

I n′

I t T
I b′

I nT
I t ′

 . (6.28)

The corresponding constitutive matrix Cκ has the form

Cκ =
G I0

E I1

E I2

 (6.29)

with the polar moment of inertia I0 = I1 + I2 around the torsional axis and the area
moments of inertia I1 in t −b−plane and I2 in t −n−plane. Finally, the curvature energy
has the form

VBT = 1

2

L∫
0

Kκ
T Cκ

Kκds. (6.30)
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Gravitational energy The last potential energy, the gravitational energy, is calculated
straightforward to

VG =−ρA I g T

L∫
0

I r ds. (6.31)

The parameters are the density ρ and the gravitational vector g .

Kinetic energies

The kinetic energy is divided into the translatory and rotatory part.

Translatory kinetic energy The translatory kinetic energy satisfies

TT = ρA

2

L∫
0

‖ I ṙ ‖2 ds. (6.32)

Rotatory kinetic energy The derivative of (6.25) with respect to the time t yields a
skew symmetric matrix. This is interpreted as the tilde matrix of the material angular
velocity

K ω̃= I K AT
I K Ȧ =−(I K AT

I K Ȧ)T . (6.33)

The material angular velocity has the form

Kω=
I bT

I ṅ

I t T
I ḃ

I nT
I ṫ

 . (6.34)

The corresponding inertia tensor is constant for the material angular velocity and is
given by

I =
I0

I1

I2

 . (6.35)

Finally, the rotatory kinetic energy is calculated as

TR = ρ

2

L∫
0

Kω
T I Kωds. (6.36)
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Strain dissipation

The strain dissipation is introduced to damp the strains as the stiff DOFs according to
[28]

DSE =
L∫

0

K ε̇
T C ε̇

K ε̇ds. (6.37)

The corresponding material damping matrix is given by

K Cε
D =

cε0D
cε1D

cε2D

 , (6.38)

with the shear damping parameters cε0D ,cε1D ,cε2D .

6.2.2 Discrete equations of motion

For the discretisation of the equations of motion a staggered grid

0 = s0 < s 1
2
< s1 < . . . < sN−1 < sN− 1

2
< sN = L (6.39)

as in [28] is applied with vertices sn and midpoints sn− 1
2
= sn−1+sn

2 . The two main reasons

to choose a staggered grid are the required finite difference approximations of the deriva-
tives with respect to s and the interpretation of the variables (like strain and curvature
vector) for the energy expressions, see later in this subsection. For the evaluation of
the internal dynamics, only the discrete degrees of freedom (DOFs) at these points are
required. The discrete DOFs of the elements reduce to the three degrees for the plane
motion. The inertial positions are given by

I r n(t ) =
(

x(sn , t )

y(sn , t )

)
∈ IR2, (6.40)

and are positioned at the vertices, cf. Figure 6.5. The rotation about the binormal vector
b is described by the inertial Cardan angle at the midpoints

γn− 1
2

(t ) = γ(sn− 1
2

, t ) ∈ IR. (6.41)

The discrete rotation matrix (around the vector b) for the planar case yields

I K An− 1
2
=

(
I t n− 1

2
, I nn− 1

2

)
=

(
cos(γn− 1

2
) −sin(γn− 1

2
)

sin(γn− 1
2

) cos(γn− 1
2

)

)
. (6.42)
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It depends on the angles located at the midpoints. Two different staggered element
types are introduced for the evaluation of the energies. One translation element consists
of five DOFs

q el ,tr,n =

I r n−1

γn− 1
2

I r n

 , (6.43)

and describes potential strain and gravitational energy, translatory and rotatory kinetic
energy as well as strain dissipation. One rotation element has four DOFs

q el ,r o,n =

γn− 1
2

I r n

γn+ 1
2

 , (6.44)

cf. Figure 6.5. It is used once only for the potential curvature energy.

γ 1
2

γ 3
2

γN− 3
2γN− 1

2

q el ,r o,0

q el ,r o,1

q el ,r o,N−1

I r 0

I r 1

I r N−2

I r N −1

q el ,tr,1

q el ,tr,N−1

q el ,tr,N

. . .

. . .

Figure 6.5: Translation and rotation elements in a closed structure [10]

The overall vector of the discrete DOFs for the closed structure (r N = r 0) is given by

q T =
(

I r T
0 , γ 1

2
, . . . , I r T

N−1, γN− 1
2

)
. (6.45)

The position at the Lagrange parameter L, I r N , is not part of the vector as it is equal
to the starting position I r 0 because of the closing condition. Due to the staggered
grid, two different weight factors occur for the approximation of the energy expressions
corresponding to two quadrature rules. For the midpoint rule it is the arc length of the
n-th translation element

∆sn− 1
2

:= sn − sn−1. (6.46)
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For the trapezoidal rule it is the arc length of the n-th rotation element

δsn := sn+ 1
2
− sn− 1

2
, (6.47)

with the exception of the first and last weight factor which are constructed different

δs0 := s 1
2

, δsN := L− sN− 1
2

. (6.48)

The discrete equations of motion are gained by Hamilton’s principle according to Section
2.5. The corresponding discrete energy expressions are derived in the following.

Discrete potential energies

The potential energies are the strain, curvature and gravitational energies.

Discrete strain energy In the planar case, only extension and shearing in normal
direction remain. The discrete strains are situated on the midpoints between two
positions, as they are a measure of the deformations. Thus, the discrete strain energy is
approximated by the midpoint rule to

VSE = 1

2

N∑
n=1

∆sn− 1
2

Kε
T
n− 1

2

(
E A 0

0 GσA

)
Kεn− 1

2
=

N∑
n=1

VSE ,el ,n , (6.49)

with the material strain vector

Kεn− 1
2
= I K AT

n− 1
2

I∆r n− 1
2

∆sn− 1
2

−
(
1
0

)
. (6.50)

It is approximated by a finite difference of first order with the abbreviation

I∆r n− 1
2

:= I r n − I r n−1. (6.51)

Like in the finite elements theory, the energies are expressed in element energy terms.
The n-th energy element depends on the translation element and reduces to

VSE ,el ,n(q el ,tr,n) = 1

2∆sn− 1
2

[
E A

(
I t T

n− 1
2

I∆r n− 1
2
−∆sn− 1

2

)2 +GσA
(

I nT
n− 1

2
I∆r n− 1

2

)2
]

.

(6.52)
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The contribution to the equations of motion of the strain energy satisfies

∂VSE

∂q el ,tr,n
= 1

∆sn−1

{
E A

[
I t T

n− 1
2

I∆r n− 1
2
−∆sn− 1

2

](
−I t T

n− 1
2

, I∆r T
n− 1

2

d I t n− 1
2

dγn− 1
2

, I t T
n− 1

2

)

+GσA
[

I nT
n− 1

2
I∆r n− 1

2

](
−I nT

n− 1
2

, I∆r T
n− 1

2

d I nn− 1
2

dγn− 1
2

, I nT
n− 1

2

)}
,

(6.53)

with the derivatives

d I t n− 1
2

dγn− 1
2

=
(−sin(γn− 1

2
)

cos(γn− 1
2

)

)
, (6.54)

and

d I nn− 1
2

dγn− 1
2

=
(−cos(γn− 1

2
)

−sin(γn− 1
2

)

)
. (6.55)

Discrete curvature energy The planar curvature energy reduces significantly as only
bending in the t -n-plane remains. As bending considers the rotation between two
different frames, the discrete curvature is situated in the middle of two rotation matrices
on the vertices of the staggered grid. The discrete curvature energy is given by

VBT = 1

2

N∑
n=0

δsn K κ̂
T
n E I K κ̂n =

N∑
n=0

VBT,el ,n , (6.56)

The integral is approximated by means of the trapezoidal rule because the curvatures
are given at the vertices. The Cardan angles required at the vertices are gained by
interpolation

γ̂n = 1

2

[
γn− 1

2
+γn+ 1

2

]
, (6.57)

and the finite difference satisfies

γ̂′n = 1

δsn

[
γn+ 1

2
−γn− 1

2

]
. (6.58)

The interpolated curvature simplifies to

κ̂n = I nT
n I t ′n = I nT

n (γ̂n)
d I t

dγ
(γ̂n)γ̂′n =

(−sin(γ̂n)
cos(γ̂n)

)T (−sin(γ̂n)
cos(γ̂n)

)
γ̂′n = γ̂′n . (6.59)
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The n-th curvature energy element, depending only on the rotational element has the
form

VBT,el ,n(q el ,r o,n) = 1

2
δsnE I

(
κ̂n −κ0)2

, (6.60)

with the precurvature κ0. The contribution to the equations of motion is given by

∂VBT,el ,n

∂q el ,r o,n
= δsn

[
E I (κ̂n −κ0)

∂κ̂n

∂q el ,r o,n

]
= E I (γ̂′n −κ0)

(−1, 0, 0, 1
)

. (6.61)

Hereby, the following equation has been used

∂κ̂n

∂q el ,r o,n
=

(
∂γ̂′n
∂γn− 1

2

,
∂γ̂′n
∂r n

,
∂γ̂′n
∂γn+ 1

2

)
= 1

δsn

(−1, 0, 0, 1
)

. (6.62)

Discrete gravitational energy The discrete gravitational energy is approximated by
means of the trapezoidal rule to

VG =−ρA I g T
N∑

n=0
δsn I r n , (6.63)

with the planar gravity vector g ∈ IR2. The n-th energy element depending on the
translational element yields

VG ,el ,n(q el ,tr,n) =−ρA I g T
[
δsn−1 I r n−1 +δsn I r n

]
, (6.64)

with δsn the new weight

δs0 := δs0, δsn := δsn

2
, δsN := δsN . (6.65)

The contribution to the equations of motion satisfies

∂VG ,el ,n

∂q el ,tr,n
=−ρA

(
δsn−1 I g T , 0, δsn I g T

)
. (6.66)

Discrete kinetic energies

The translatory and rotatory energies form the kinetic energies.
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Discrete translatory energy The discrete energy expression (with the trapezoidal
rule) satisfies

TT = ρA

2

N∑
n=0

δsn‖ ˙I r n‖2. (6.67)

The n-th energy element depending on the time derivative of the translational element
is given by

TT,el ,n(q̇ el ,tr,n) = ρA

2

[
δsn−1‖I ṙ n−1‖2 +δsn‖I ṙ n‖2

]
. (6.68)

The contribution to the right hand side of the equations of motion vanish

∂TT,el ,n

∂q el ,tr,n
= 0T , (6.69)

∂2 TT,el ,n

∂ q̇ el ,tr,n ∂q el ,tr,n
= 0, (6.70)

and the contribution to the mass matrix yields

∂2 TT,el ,n

∂ q̇ 2
el ,tr,n

=

diag[ρAδsn−1]
0

diag[ρAδsn]

 . (6.71)

Discrete rotatory energy The discrete rotatory energy simplifies significantly com-
pared to the spatial case as the angular velocity becomes scalar. By means of the
midpoint rule it is given by

TR = ρ

2

N∑
n=1

∆sn− 1
2
ω2

n− 1
2

I =
N∑

n=1
TR,el ,n . (6.72)

The angular velocity is gained by

ωn− 1
2
= I nT

n− 1
2

I ṫ n− 1
2
= I nT

n− 1
2

d I t

dγ
(γn− 1

2
)γ̇n− 1

2
= γ̇n− 1

2
. (6.73)

The n-th energy element depends only on the translational element

TR,el ,n(q̇ el ,tr,n) = ρ

2
∆sn− 1

2
I γ̇2

n− 1
2

. (6.74)
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The contributions to the right hand side vector vanish

∂TR,el ,n

∂q el ,tr,n
= 0T , (6.75)

∂2 TR,el ,n

∂ q̇ el ,tr,n ∂q el ,tr,n
= 0. (6.76)

The contribution to the mass matrix is constant in the planar case

∂2 TR,el ,n

∂ q̇ 2
el ,tr,n

=

0
ρ∆sn− 1

2
I

0

 . (6.77)

Discrete strain dissipation

The discrete strain dissipation reduces to the components in extension and normal
shearing direction

DSE =
N∑

n=1
∆sn− 1

2
I ε̇

T
n− 1

2
I Cε

D I ε̇n− 1
2
=

N∑
n=1

DSE ,el ,n . (6.78)

Hereby, the integral is approximated by means of the midpoint rule and the inertial
strain rate is given by

I ε̇n− 1
2
=

I∆ṙ n− 1
2

∆sn− 1
2

− I ṫ n− 1
2

. (6.79)

The damping matrix in the body fixed frame has the form

K Cε
D =

(
cε0D

cε1D

)
. (6.80)

It is transformed to the inertial coordinate system according to

I Cε
D = I K An− 1

2
Cε

D I K AT
n− 1

2
. (6.81)

The n-th element dissipation term is given by

DSE ,el ,n(q el ,tr,n , q̇ el ,tr,n) = 1

∆sn− 1
2

{
cε0D

([
I∆ṙ T

n− 1
2
− I ṫ T

n− 1
2
∆sn− 1

2

]
I t n− 1

2

)2

+cε1D

([
I∆ṙ T

n− 1
2
− I ṫ T

n− 1
2
∆sn− 1

2

]
I nn− 1

2

)2 }
.

(6.82)
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The contribution to the equations of motion satisfies

∂DSE

∂q̇ el ,tr,n

= 2

∆sn−1

{
cε0D I t T

n− 1
2

[
I∆ṙ n− 1

2
− I ṫ n− 1

2
∆sn− 1

2

](
−I t T

n− 1
2

,− I t T
n− 1

2

d I t n− 1
2

dγn− 1
2

∆sn− 1
2

, I t T
n− 1

2

)

+ cε1D I nT
n− 1

2

[
I∆ṙ n− 1

2
− I ṫ n− 1

2
∆sn− 1

2

](
−I nT

n− 1
2

,− I nT
n− 1

2

d I t n− 1
2

dγn− 1
2

, I nT
n− 1

2

)}
.

(6.83)

In the planar case, the following derivatives can be simplified to

I ṫ n− 1
2
=

(−sin(γn− 1
2

)

cos(γn− 1
2

)

)
γ̇n− 1

2
, (6.84)

and

d I t n− 1
2

dγn− 1
2

=
(−sin(γn− 1

2
)

cos(γn− 1
2

)

)
. (6.85)

The equations of motion have the following form

M q̈ = h. (6.86)

The block diagonal mass matrix satisfies

M(q) =

M 0 0 0

0
. . . 0

0 0 M N−1

 , (6.87)

with the n-th matrix element

M n =
(

diag[ρAδsn] 0
0T ρ∆sn+ 1

2
I

)
. (6.88)

The right hand side vector h simplifies to

h(q , q̇) =−∂ (VSE +VBT +VG )

∂q
− ∂DSE

∂ q̇
. (6.89)
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6.2.3 Contour description for set-valued force laws

The text of this subsection equates an only slightly modified part of the joint paper [10].
Whereas for the internal dynamics the DOFs are required only at discrete points, they
have to be interpolated for the contour description. As internal dynamics and contour
specification are conceptually independent, only the interpolated position and rotation
curves of the neutral fibre are used for the contour characterisation. It is assumed that
sufficient elements are used so that the differences between the Frenet-frame and the
trihedral gained from the rotation grid are negligible and therefore the trihedral is almost
perpendicular to the curve. The angle information can therefore be calculated out of
the rotation grid. In addition, the Jacobian matrices are parametrised. The NURBS
interpolation [39] is chosen as global interpolation method. The position curve satisfies

I r (s) =∑
n

Nr,n(s)I r n (6.90)

with the basis functions
{

Nr,n
}

n .

The Frenet frame is derived by means of differential geometry out of I r (s). The
tangent and normal are the first respectively second normalised derivatives with respect
to the arc length s of the position curve. The binormal is obtained by means of the cross
product:

I t (s) = I r ′(s)

‖I r ′(s)‖ , I n(s) = I r ′′(s)

‖I r ′′(s)‖ , I b = I t × I n. (6.91)

Another approach to obtain the angles searches for the two closest angle DOFs (left and
right) and applies a local linear interpolation

ϕ(s) =ϕL +
s − sL

l0
(ϕR −ϕL). (6.92)

A linear interpolation has been chosen for the angles like in the internal dynamics, cf.
(6.57). This approach can be chosen if the Frenet frame method fails. For the velocity
and the angular velocity

I v (s) =∑
n

Nv,n(s)I v n , (6.93)

Iω(s) =∑
n

Nω,n+ 1
2

(s)Iωn+ 1
2

. (6.94)

different basis functions
{

Nv,n
}

n ,
{

Nω,n+ 1
2

}
n

may be used. The angular velocity vector

is gained from the time derivatives of the angles by (6.19).

The Jacobian matrices on the staggered grid are calculated from internal dynamics.
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The following definition for the element DOFs is introduced:

q n :=
(

I r n

ϕn+ 1
2

)
, (6.95)

for n = 0, . . . , N −1. The Jacobians of translation are located on the vertices

I J T,n = ∂ I r n

∂q
=

(
∂ I r n

∂q 1
, . . . ,

∂ I r n

∂q N−1

)
=

(
(0,0), . . . , (I ,0)︸ ︷︷ ︸

n

. . . , (0,0)
)

(6.96)

and the Jacobians of rotation are situated at the midpoints

I J R,n+ 1
2
=
∂ Iωn+ 1

2

∂ q̇
=

(
∂ Iωn+ 1

2

∂ q̇ 1
, . . . ,

∂ Iωn+ 1
2

∂ q̇ N−1

)
=

(
(0,0), . . . , (0,Y n+ 1

2
)︸ ︷︷ ︸

n

. . . , (0,0)
)
.

(6.97)

By means of the NURBS interpolation, the parametrised Jacobians are obtained

I J T (s) =∑
n

NT,n(s)I J T,n , (6.98)

I J R (s) =∑
n

NR,n+ 1
2

(s)I J R,n+ 1
2

, (6.99)

with basis functions
{

NT,n
}

n ,
{

NR,n+ 1
2

}
n

. This information is used for either a descrip-

tion of the neutral fibre or a description of a flexible band. The flexible band is a flexible
contour of a beam with cross-section that is placed perpendicular to the neutral fibre at
a horizontal distance b

2 and a vertical distance dN (cf. [45]):

I B : [0,L]×
[
−b

2
,

b

2

]
→ IR3 ,

(
s,µ

) 7→ I r (s)+dN
θ1 I n (s)+θ2 I b (s)√

θ2
1 +θ2

2

+µθ1 I b (s)−θ2 I n (s)√
θ2

1 +θ2
2

. (6.100)

The parameters θ1,θ2 ∈ {−1,0,1} depend on the relative band location with respect to
the neutral fibre: top, bottom, left or right. With the formulas of this section and the
set-valued force laws a point - flexible band contact can be calculated which is used for
the application in the CVT.

6.2.4 Initialisation of Cosserat rod ring sets
The initialisation is described for the non tapered case and for the general case of the
spatial Cosserat rod model, whereof the planar DOFs are extracted. Four sections - push
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part, secondary pulley, loose part and primary pulley - exist as in [45]. The initialisation
is performed similar to Subsection 4.2.2 for the spatial RCM beam with the difference
that the Cosserat beam model has only six rigid DOFs per finite element and no flexible
coordinates. In addition, the angles in the Cosserat case are staggered which results
in different cases for the initialisation of the two Cardan angles β and γ. It has to be
distinguished if the rotation grid of the current element is situated in the same section
as the position grid or already in the next section.

Position and rotation initialisation

The initialisation of the beam model is implemented anti-clockwise and against the
running direction with the angle ϕ from Figure 4.2. It starts at the transition between
secondary pulley and push part and leads over the pushpart and the primary arc. Only
the first two parts are shown below as the other two are implemented likewise
0 ≤ i l0 < tl - node on push part (upper straight part):(

xi

yi

)
= i l0

(
sin(ϕ)

cos(ϕ)

)
+ rO

(
−cos(ϕ)

sin(ϕ)

)
, (6.101)

zi =
(
1− i l0

tl

)
q0OM

+ i l0

tl
q0IM

± wS +wP

4
, (6.102)

αi+ 1
2
= 0, (6.103)

βi+ 1
2
=

arctan

(q0OM
−q0IM

sin(ϕ)dA

)
, if tl − i l0 > 0.5l0,

0, else,
(6.104)

γi+ 1
2
=

0.5π−ϕ, if tl − i l0 > 0.5l0,

0.5π−ϕ− (i +0.5)l0 − tl

r I
, else.

(6.105)

(6.106)

tl ≤ i l0 < tl +bI - node on primary arc with αI = i l0 − tl

r I
and αI ,R = (i +0.5)l0 − tl

r I
:

(
xi

yi

)
=

(
dA

0

)
+ r I

(
−cos(ϕ+αI )

sin(ϕ+αI )

)
, (6.107)

zi = q0IM
± wS +wP

4
, (6.108)

αi+ 1
2
= 0, (6.109)

βi+ 1
2
=

0, if tl +bI − i l0 > 0.5l0,

arctan

(q0IM
−q0OM

sin(ϕ)dA

)
, else,

(6.110)
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γi+ 1
2
=

0.5π−ϕ−αI ,R , if tl +bI − i l0 > 0.5l0,

−3

2
π+ϕ, else.

(6.111)

(6.112)

Two different angles for the position αI and rotation αI ,R in the arcs have to be used
because of the staggered grid. Loose part and secondary arc are initialised likewise.

Velocity initialisation

The velocities are initialised as in [45] with the kinetic Sattler model explained in Section
4.1. The belt velocity v depends on the angle inside the pulley. The components uz,i ,
ωx,i+ 1

2
and ωy,i+ 1

2
are initialised zero for simplification.

0 ≤ i l0 < tl - node on push part (upper straight part):(
ux,i

uy,i

)
=

(
−cos(0.5π−ϕ)

−sin(0.5π−ϕ)

)
v(−ϕ), (6.113)

uz,i = 0, (6.114)

ωx,i+ 1
2
= 0, (6.115)

ωy,i+ 1
2
= 0, (6.116)

ωz,i+ 1
2
= 0. (6.117)

(6.118)

tl ≤ i l0 < tl +bI - node on primary arc with αI = i l0 − tl

r I
:

(
ux,i

uy,i

)
=

(
−cos(0.5π−ϕ−αI )

sin(0.5π−ϕ−αI )

)
v(2π−αI −ϕ), (6.119)

uz,i = 0, (6.120)

ωx,i+ 1
2
= 0, (6.121)

ωy,i+ 1
2
= 0, (6.122)

ωz,i+ 1
2
=

{
ωI , if tl +bI − i l0 > 0.5l0,

0, else.
(6.123)

(6.124)

By this approach, the ring sets with the Cosserat rod model can be initialised success-
fully. Both (planar and spatial) Cosserat rod models have already been successfully
validated by means of academic examples [56, 11]. However, as they turned out to be
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very stiff, the application of the Cosserat rod model into the pushbelt CVT model leads
to impracticable small time step sizes in the numerical integration and thus a large
computing time. A possible remedy is the nonlinear model order reduction shown in
the next section.

6.3 Nonlinear model order reduction
In model order reduction, a large-scale (linear or nonlinear) dynamical system is ap-
proximated by a low order system with only a small number of DOFs with the same
system characteristics. Thereby, the approximation algorithm should be fast, the error
should be small and an a priori error estimator is desired to control the dimensionality
of the reduced system. As the Cosserat rod model turned out to be very stiff, a method
of nonlinear model order reduction is applied to truncate high numerical frequencies
from the system. The number of DOFs used for the ring sets is with about 100−300 not
very large compared to typical systems in model order reduction. Thus, the model order
reduction technique is used in this study primarily to filter out high frequencies and
only as a side product to lower the DOFs.

The most commonly used method for nonlinear dynamical systems, the proper
orthogonal decomposition (POD), has been chosen to reduce the nonlinear equations
of motion and obtain a low order model. This method is explained in detail in [3]. The
presented concept is general and works for the planar as well as the spatial Cosserat rod
model. The POD method requires a full simulation of the original model, which can be
done offline. It uses the calculated information of the state of the system at pre-specified
time-instances. The matrix X stores the n time snapshots of a full simulation of the
model

X = (
q(t1), . . . , q(tn)

) ∈ IRN×n , (6.125)

with N > n. That means less snapshots than the DOFs of the system are used. Starting
from this matrix X , a basis for a subspace of the solution of a lower dimension has to be
found. The snapshots are not used as a basis because of possible linear dependency
of some columns of X . Hence, the singular value decomposition (SVD) is applied to
calculate this basis. The SVD is a matrix decomposition which provides the optimal
rank k approximation of a rectangular matrix in the 2-norm [3]. The singular value
decomposition of the snapshot matrix has the form

X =UΣV T , Σ= diag(σ1, . . . ,σn) ∈ IRN×n , (6.126)

with the orthogonal matrices U = (u1, . . . ,uN ) ∈ IRN×N and V = (v 1, . . . , v n) ∈ IRn×n . The
singular values σi are sorted according to their size

σ1 ≥σ2 ≥ ·· · ≥σn ≥ 0. (6.127)
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The remaining entries of the matrixΣ are zeros. Orthogonal matrices in general have the
advantage that their numerical condition is equal to 1 and therefore round-off errors are
not magnified and a robust algorithm is obtained. Their inverse is just the transposed of
the matrix. The relationship between singular values σi and eigenvalues λi is given by

σi (X ) =
√
λi (X T X ) i = 1, . . . ,n. (6.128)

Hence, the squares σ2
i , i = 1, . . . ,n are the eigenvalues of X T X resp. X X T to the eigen-

vectors v i resp. ui , i = 1, . . . ,n. Assume, that the decay of the singular values of X in the
application is rapid and only the first k < n are significant to represent the model. Then,
the first k columns of U are extracted into the projection matrix

P = (u1, . . . ,uk ) ∈ IRN×k . (6.129)

The matrix P consists now of the POD basis with the most important generalised
eigenfunctions of the system whose linear span approximates the linear span of the
set of the snapshots best concerning the 2-norm, cf. [12] for details. By means of the
projection matrix, the vector of DOFs is projected

q̂ = P T q . (6.130)

This projection is applied to the equations of motion (6.86)

M P ¨̂q = h(P q̂ ,P ˙̂q). (6.131)

In a second step, the equations are projected by the same matrix called a POD-Galerkin
approximation and the reduced system is gained

(P T MP ) ¨̂q = P T h(P q̂ ,P ˙̂q). (6.132)

In the evaluation of the nonlinear vector h, still the full vector q and its time derivative q̇
have to be known. Different techniques exist for an intelligent evaluation only on special
points, such as the discrete empirical interpolation method cf. [12]. These strategies are
not of great importance in this application as the number N of the DOFs is relatively
small and this evaluation does not take much CPU-time. The main goal is to use a larger
time step size for the integration. In the test with academic examples, this was possible
for systems with contacts [56]. However, this approach has not yet been tested for the
pushbelt CVT model.





7 Results and Verification

In [45], a first validation of the spatial model explained in Section 3.2 has been done. The
different element contact forces, the thrust ratio, the spiral running and the alignment
setting have been investigated and compared with measurements. In these compar-
isons, there is still room for improvement, e.g. in terms of the element contact forces,
which is further approached in this study. For this purpose, the local element contact
forces, and the global phenomena spiral running and thrust ratio are analysed with
regard to the different model enhancements. In a follow-up of this study, an intensified
validation of the overall spatial model will be carried out where these phenomena and
others like efficiency, slip curves, bearing forces and noise - vibration - harshness will be
validated with measurements from Bosch. Therefore, this chapter intends to not supply
a complete but rather a further validation. In addition, it means to demonstrate where
the individual model enhancements have an effect on and what the explicit changes
are. As this study contains a large number of multifaceted enhancements, not all effects
of every possible combination of the enhancements can be provided. Nonetheless, the
major impact is presented. The reduced hybrid model of Section 6.1 is applied for the
comparisons of this chapter. It represents the analysed planar phenomena with a much
lower computing time than the spatial model according to the following verification.

Different realistic boundary settings in the ratios OD (ir < 1), MED (ir = 1) and LOW
(ir > 1) have been chosen for the verification. The boundary conditions for the element
contact forces are shown in Table 7.1, those for the thrust ratio in Table 7.2 and those
for the spiral running in Table 7.3. Measurements of Bosch for the element - pulley
normal contact force, the thrust ratio and the spiral running are available for these
settings. In addition, measurements of Honda for the six element contact forces exist in
the literature in comparable settings [23]. In the following, the torque ratio ξ is defined
by

ξ= MI

MI ,max
, (7.1)

with the maximum transmittable torque MI ,max at the primary pulley specified by the
measurements. Through the applied cases, large spectra of the geometric and torque
ratios are covered and many details of the pushbelt CVT can be obtained. As measure-
ments on the running belt are very complex and also describe a large intervention into
the physical system (e.g. change of the elements for application of strain gauges or
transmitters on the belt), most often only qualitative statements can be made. This
applies in particular to the comparison with the Honda measurements, which have
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been performed with unrealistic low speeds and therefore also for different boundary
settings than in Table 7.1. However, as the element contact forces depend mainly on
the transmission and torque ratio, a qualitative comparison is possible, cf. [45]. Even if
these measurements are from 1994, they are still one of the most reliable measurements
available in literature for the element contact forces.

Figure 7.1: Simulation model of the pushbelt CVT variator for LOW

In the simulation 220 elements and 52 (RCM) finite elements for the ring sets are
used. The number of elements in reality NE0 is set to 432 in the OD and MED cases and
433 in the LOW cases. One drawback of the simulation model is its design to specify
the geometric ratio, in contrast to the measurements where most often the speed ratio
(is =ωI /ωO) is used. These ratios are not exactly the same, but depend in addition on
the relative slip sr [55]:

is = ir + sr · ir . (7.2)

Therefore, depending on the case, the geometric ratio has to be adapted. For the OD
and MED cases it is approximately equal to the speed ratio and thus also equally chosen.
However for the case LOW, it is chosen different (ir = 2.25). If nothing else is stated, the
half explicit time-stepping scheme of Section 2.7 is applied with an integrator step size
∆t = 10−6s and a plot step size of 10−4s. The end time of the integration is set between
0.07s and 0.12s depending on the setting. To reduce the computing time, the results of
only 10 elements uniformly distributed over the pushbelt are plotted. These 10 elements
are drawn as ’filled’ in Figure 7.1 in contrast to the remaining 210 elements where only
the contour lines are drawn. The green element is denoted with ’Element 1’ and the
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numbering is done anti-clockwise (which is also the running direction of the pushbelt).
’Element 1’ is situated in the transition from pushpart to secondary pulley. At least
one complete cycle is simulated which corresponds to the time as only steady states
are regarded. In this cycle each element traverses the four sections primary (pulley) -
pushpart - secondary (pulley) - loosepart at different time instances. In the process of
these four sections, the contact forces of the 10 elements with the other possible contact
partners (pulleys, elements, ring sets) are plotted. This results in the six element contact
forces: the element - pulley normal contact as well as longitudinal and radial friction
force, the element - element normal contact force and the element - ring set normal
contact as well as longitudinal friction force.

7.1 Hybrid pushbelt CVT model
At the beginning of this chapter, the hybrid pushbelt CVT model is validated, as it is used
to demonstrate the effects of the different model enhancements later on. The analysed
phenomena are the element contact forces, the thrust ratio and the spiral running.

7.1.1 Element contact forces
The six element force components of the hybrid model are qualitatively compared
with the measurements of the Doshisha University Kyoto and Honda R&D [23]. The
measurements are only available in a qualitative setup without any quantitative values,
axes, zero level or other lines to show respective sections and are presented exactly as
they are. The analysed boundary settings OD, MED and LOW are given in Table 7.1. In
LOW two different speed ratios are applied, which are 2.0 in the Honda measurements
and 2.36 in the Bosch measurements.

Table 7.1: Boundary settings for element contact forces

OD MED LOW

is [−] 0.5 1.0 {2.0, 2.36}

ωI
[
s−1

]
1000 · 2π

60 2000 · 2π
60 2000 · 2π

60

MO [N m] 0 74.58 198.24

FCO [N] 6128 10520 33420

ξ [−] 0.0 0.65 0.81

The Honda setting with a speed ratio of 0.5 and a torque ratio of 0.0 correlates with
the OD case. A primary angular velocity of 15.7[s−1] and a secondary clamping force
of 2670[N] are used in this setting. For the simulation model, the coupled element -



118 7 Results and Verification

pulley and bilateral element - ring set normal contact laws are chosen. In Figure 7.2, the
element contact force measurements and simulation results are shown.
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Figure 7.2: Measurement and simulation of element contact forces for OD

The results are very good. All contact forces and their different phenomena are
depicted. The force peaks at the beginning and the end of the element - pulley normal
contact are present in the model. The force increase and sagging in the larger arc is
represented. In the smaller arc the sagging can already be seen in combination with a
force decrease as in [17]. Also the course of the friction forces equates the measurements.
Especially the larger arc in the radial friction is represented in detail. Unlike in the
measurements, the element - pulley longitudinal friction is mainly negative in the
smaller arc. Further, the level of the larger arc of the element - pulley longitudinal friction
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and of the smaller arc of the radial friction is too low compared to the measurements.
This variance of results is similar to the ones gained in [17]. In the simulation of the
element - element normal force, a middle rise in the pushpart occurs because the
element top force is additionally considered in the model, which acts primarily in the
pushpart. This is in contrast to the measurements where only the rocking edge force is
measured, see [45]. Both element - ring set forces depict the measurements in detail.
In the normal contact all phenomena are present. In the longitudinal friction in the
smaller arc a decrease can be seen instead of an increase in the measurements. Again,
the variance is similar to the model [17].
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Figure 7.3: Measurement and simulation of element contact forces for MED

For the MED case, the Honda setting with a speed ratio of 1.0 and a torque ratio of
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0.77 is taken for a qualitative comparison. The primary angular velocity is 20.5[s−1] and
the secondary clamping force is 3480[N] in this setting. Measurements and simulation
are presented in Figure 7.3.

Again, a very detailed correlation can be seen. All six element contact forces reflect
the measurements very well. Likewise, the level of all friction forces in both arcs is in
accordance with the measurements. The peaks and sagging in the element - pulley
normal contact are represented.
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Figure 7.4: Measurement and simulation of element contact forces for LOW

For the LOW case, the measurement setting with a speed ratio of 2.0 and a torque
ratio of 0.77 is taken for a qualitative comparison. There, a primary angular velocity of
31.4[s−1] and a secondary clamping force of 5340[N] are used. In the simulation the
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geometric ratio has been set to ir = 1.9 for this comparison. In Figure 7.4, the element
contact forces of the measurements and simulation are shown.

For all six contacts, the larger arc is represented in detail. In the element - pulley
normal contact, the force increase and sagging in the larger arc is represented. The
larger arc of the radial contact correlates very well with the measurements. However,
in the smaller arc there is still room for improvement. The three force peaks in the
element - pulley normal contact are not present in the smaller arc. In the longitudinal
and radial friction an oscillation is present in the smaller arc. In the larger arc of the
element - pulley longitudinal friction a force increase from negative to positive can be
seen in the simulation similar to the model [17]. The course of the element - element
normal contact force in the model results again from the additional top contact closed
in the pushpart and depicts the expected behaviour. The element - ring set contact and
friction forces matches with the measurements in detail. Even the change of sign in the
longitudinal friction in the larger arc is present.

Altogether, the element contact forces are depicted very well and the model quality
has been significantly improved by the model enhancements. Yet, still some areas with
potential for improvement can be seen for single forces in the smaller arc especially in
the LOW case. The different effects of each enhancement will be developed step by step
in the following.

7.1.2 Thrust ratio
The thrust ratio

kpks =
FCI

FCO

(7.3)

describes the ratio between primary and secondary clamping force and is essential for
the pulley slip cf. [45].

Table 7.2: Boundary settings for thrust ratio

OD-KpKs MED

is [−] 0.5 1.0

ωI
[
s−1

]
2000 · 2π

60 2000 · 2π
60

MO [N m] {2, 15.44, 30.88, 46.32, 61.76, 72.5, 77} {2, 24.86, 49.72, 74.58, 99.43, 116}

FCO [N] 11140 10520

ξ [−] {0.025, 0.19, 0.39, 0.58, 0.78, 0.91, 0.97} {0.017, 0.22, 0.43, 0.65, 0.86, 1.0}

Quantitative measurements in different transmission ratios from Bosch Transmission
Technology B.V. are available and are used to validate the model. In Table, 7.2, the cases
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OD-KpKs and MED are summarised. For each case the entire spectrum of the torque
ratio is applied. The comparison between simulation and measurements for the cases
OD-KpKs and MED are shown in Figure 7.5. The thrust ratio is plotted over the torque
ratio. For the simulation, the thrust ratio values of the fixed torque ratios of Table 7.2 are
drawn with a circle and connected linearly. The unilateral element - ring set contact
and the coupled element - pulley normal contact laws are used in the model. Also for
quantitative values, a very good agreement can be seen in both cases.
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Figure 7.5: Measurement and simulation of thrust ratio for OD-KpKs and MED

7.1.3 Spiral running
The spiral running is the deviation of the pushbelt’s run in the pulleys from the circular
arc. It is “mainly influenced by the sheave flexibility and the prestressing of the ring
packages” [45, p. 78]. The setting OD-SpiRun for the spiral running is given in Table 7.3.
The entire torque ratio from zero to one is applied with four discrete values.

Table 7.3: Boundary settings for spiral running

OD-SpiRun LOW-SpiRun

is [−] 0.5 2.4

ωI
[
s−1

]
2000 · 2π

60 2000 · 2π
60

MO [N m] {0, 32.4, 56.7, 81} {0, 104, 208, 260}

FCO [N] 18000 35000

ξ [−] {0.0, 0.4, 0.7, 1.0} {0.0, 0.4, 0.7, 1.0}

The comparisons between measurements from Bosch and simulation for the case
OD-SpiRun are shown in Figure 7.6. The radial distance from the sheave centre to
the top of the ring set is plotted over the angle in the pulley. For the primary pulley
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the four torque ratios of Table 7.3 are in top-down and for the secondary pulley in
bottom-up assembly. The unilateral element - ring set and coupled element - pulley
normal contacts laws are used in the simulation. With the coupled element - pulley
normal contact law, this behaviour is improved significantly. For both, primary and
secondary pulley, the characteristic behaviour can be seen. Only the level of the radii
differs. It is too low in the primary and too high in the secondary pulley. That means the
transmission ratio of simulation and measurement is different.
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Figure 7.6: Measurements and simulation of spiral running for OD-SpiRun

The comparison between measurements and simulation for the case LOW-SpiRun is
shown in Figure 7.7. The course in the secondary pulley is in very good agreement to
the measurements. In the primary pulley a different behaviour can be seen. Again, the
ratio of primary and secondary radii is different, leading to a different level of the spiral
running.

7.1.4 Computing time reduction
Overall, the hybrid model reflects the phenomena element contact forces, thrust ratio
and spiral running very well. This validates the hybrid model and shows its capability to
represent these phenomena and therefore not the entire spatial model is required. In
addition, this model reduction significantly decreases the computing time. The hybrid
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Figure 7.7: Measurements and simulation of spiral running for LOW-SpiRun

model is about nine times faster than the full spatial model. Of course, most spatial
phenomena such as alignment cannot be represented by the hybrid model. Thus, it is
an extreme computing time reduction in regards to the planar phenomena. With the
simple element - pulley contact which uses only one fixed contact point per element
flank, described in Subsection 6.1.2, an additional computing time reduction between
about 4% and 8% (depending on the setting) in the hybrid model can be obtained.

7.2 Tapered elements
Regarding tapered elements, the expected changes are in the areas of operational end-
play, element - element normal forces and curvature of the straight parts. The oper-
ational endplay is the sum of all positive contact distances of the element - element
normal contact points. In general, one expects less operational endplay for the tapered
case. This can also be seen in the element - element normal forces. Here, for torques
beyond transition (which all analysed cases are part of), the region on the primary
pulley where the force is zero should decrease with increasing taperedness. In addition,
in the push part the cat’s back should increase the more tapered the elements are.
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7.2.1 Operational endplay
In the simulation, the ’non-tapered’ case (tT = tR ) with coupled element - pulley and
unilateral element - ring set contact is compared to the cases ’tapered 05’ (tT = tR+5µm)
and ’tapered 08’ (tT = tR +8µm). The operational endplay at the element top contact
is plotted in Figure 7.8 for the cases OD and LOW. For both cases a similar behaviour
can be seen. The operational endplay at the top decreases the more the elements are
tapered, as expected.
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Figure 7.8: Operational endplay at element top for OD and LOW

7.2.2 Element contact forces
The element contact forces do not change significantly comparing these three cases.
Only a slightly horizontal shifting of the graphs from right to left can be observed
the more the elements are tapered. This means that the individual sections primary -
pushpart - secondary - loosepart occur earlier the more taperedness is applied. However,
in the element - element normal forces differences can be seen. In addition to the
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Figure 7.9: Element-element normal contact force for OD (left) and LOW (right)

explained shifting, the force level increases the more the elements are tapered, see
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Figure 7.9. Further, the push force starts earlier in the primary for the tapered case. This
is caused also by the less endplay.

A comparison of the start and end positions of the ring set in the visualisation shows
that the start position of the non-tapered case fits the best with the end position of the
ring set. At the end, all three cases are located approximately at this position. The cat’s
back at the end is more distinct the more tapered the elements are. A consequence is that
the transient effect at the beginning of the simulation lasts longer and the oscillations of
the pushbelt have larger amplitudes for the tapered cases as the approximation of the
steady state is better for the non-tapered case.

7.2.3 Thrust ratio
Looking at the thrust ratio, it can be seen that the taperedness influences this value
depending on the transmission ratio. In Table 7.4 the thrust ratio is given for the cases
OD and LOW for different levels of taperedness. For the OD case, if the taperedness

Table 7.4: Thrust ratio for different taperedness

non-tapered tapered 05 tapered 08

OD 1.4854 1.4828 1.4722

LOW 1.1797 1.2014 1.2122

increases (and thus the endplay reduces) the thrust ratio decreases. For the LOW case,
in contrast, if the taperedness increases (and also the endplay reduces) the thrust ratio
increases. Both results confirm the expectations.

Altogether, the tapered model enhancement depicts the expected phenomena. A
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Figure 7.10: Operational endplay and element-element normal contact force for different
NE0 in case OD

method to adapt the operational endplay in the simulation model has been developed
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thereby. This enhancement is different from the possibility to change the number of
elements in reality NE0 which virtually adds another element and adapts the scaling
factor for the elements in the model. By increasing NE0 , too, the operational endplay
can be decreased, see Figure 7.10 (left) for the case OD and different numbers of NE0 .
However, this also lifts the overall force level of the element - element normal contact to
an unrealistic setting, which is shown on the right side of Figure 7.10.

7.3 Unilateral element - ring set contact
This section shows the effects of the two different element - ring set normal contact
models - the bilateral and unilateral contact at the element saddle.

7.3.1 Element contact forces
The element contact forces for the OD case with the bilateral and unilateral contact are
shown in Figure 7.11 for ’Element 199’. In the element - pulley normal contact, when
entering the small arc, the force peak is larger with the bilateral contact model and
therefore the sagging is better represented. In the element - pulley longitudinal friction
in the larger arc, the decline at the end is better reproduced with the unilateral contact.
Whereas in the smaller arc the switch from positive to negative friction force takes place
earlier with the bilateral contact which correlates with the measurements. For the radial
friction in the smaller arc the force between the two peaks increases to the positive
area in the unilateral case, which is closer to the measurements. A large difference can
be seen in the element - element normal contact forces. There, the contact force rises
earlier in the primary with the bilateral model and has an elevation (local maximum)
in the primary, in the pushpart and the secondary. With the unilateral contact model,
the force increase in the primary occurs later, then stays constant in the pushpart and
increases in the end of the pushpart in the transition to the secondary. For the element
- ring set forces in the two straight parts where the contact force level is around zero,
the oscillations nearly vanish with the unilateral contact model. The contact forces in
primary and secondary do not change significantly.

For the case LOW the changes are not as extensive as in the OD case. In Figure 7.12,
the element contact forces are depicted for the LOW case for ’Element 177’. In the
element - element normal contact force two elevations can be seen in the pushpart for
the unilateral case. Again, the oscillations in the two straight parts of the element - ring
set contact forces vanish with the unilateral contact.

7.3.2 Thrust ratio
In Table 7.5, the thrust ratio is shown for the bilateral and unilateral element - ring set
normal contact law. The thrust ratio for the case OD is lifted with the unilateral contact
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Figure 7.11: Element contact forces with unilateral and bilateral saddle for OD

law to the realistic setting. For the LOW case, the difference is not as significant.

Table 7.5: Thrust ratio for bilateral and unilateral law

bilateral unilateral

OD 1.2174 1.4854

LOW 1.3009 1.2929

7.3.3 Computing time reduction
In the unilateral saddle, the contact at the element saddle can lift and the ring set
can get into contact with the element ear. This can be depicted with the simulation
model. The contact element ear with the ring set occurs only in the two straight parts
where the normal force on the element saddle is zero. The possible lifting leads also
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Figure 7.12: Element contact forces with unilateral and bilateral saddle for LOW

to a significant computing time reduction, as the element - ring set contact has to be
calculated only when the contact is closed, in contrast to the bilateral case where it
has to be calculated for every time step. Using the time-stepping scheme with step
size control, the hybrid model with unilateral element - ring set contact is 1.55 times
faster than with the bilateral contact (for OD). This is a huge computing time reduction.
For the time-stepping scheme with fixed step size, which is applied in practice, it is
even 1.7−2.2 times faster depending on the setting (OD and LOW). Thus, both the
unilateral and the bilateral model have their advantages. However, considering the
faster computing time, the unilateral model is the model of choice.

7.4 Coupled contact law for element - sheave contact
For the element - pulley coupled and non-coupled normal contact law the element
contact forces, the thrust ratio and the spiral running are investigated.
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7.4.1 Element contact forces
For the element - pulley normal contact forces, quantitative measurements from Bosch
exist. Therefore, a detailed and not only qualitative analysis can be made for this case.
In Figure 7.13, the measurements, the coupled and the non-coupled element - pulley
normal contact are shown for the boundary setting OD of two different elements. In
the simulation the unilateral element ring set contact model is used. The force increase
in the larger pulley arc with the peak at the end is expressed much better through the
coupled contact model. In the smaller pulley arc both cases already include the force
peak at the end, but the peak at the beginning is only rudimentary present. Here, it can
also be seen that different elements may have different force curves. For ’Element 177’
e.g. the sagging in the smaller arc is already visible for both force laws, in contrast to
’Element 199’, where no sagging is present.
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Figure 7.13: Measurement and simulation of element-pulley normal contact force for OD

The modelling of the element - pulley normal contact has not only effects on this
force profile but great influence on the other contacts. For the case OD, the remaining
element contact forces are shown in Figure 7.14 for ’Element 199’. Concerning the
element - pulley friction, again, a considerable improvement is achieved with the
coupled contact law in the larger pulley arc. Especially the course of the radial friction
changes significantly to the correct behaviour by the coupled law. The course of the
larger arc for the longitudinal frictions is slightly better reproduced by the non-coupled
law. For the smaller arc in the radial friction both contact laws are in line with the
measurements and in the longitudinal friction the unilateral behaviour is seen in both.
For the element - ring set longitudinal force the elevation in the beginning of the primary
pulley is better reproduced by the coupled law. A significant change can be seen in the
element - element normal contact force where the force decreases at the end of the
primary with the non-coupled law and increases again in the pushpart. Whereas in the
coupled case the forces stay nearly constant from the end of the primary until the end
of the pushpart.

Regarding the LOW case, again considerable improvements are achieved by means of
the coupled law. In Figure 7.15, the element - pulley normal contact force measurements
are compared to the simulation for two elements. Again, in the larger pulley arc the
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Figure 7.14: Remaining element contact forces coupled and non-coupled for OD
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Figure 7.15: Measurement and simulation of element-pulley normal contact force for LOW
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force peak at the end is present with the coupled law in contrast to the decoupled
case. In addition, the force level in the smaller pulley arc comes much closer to the
measurements in the coupled case. Nevertheless, the sagging in the smaller arc can not
be depicted with both contact models.

The comparison of the remaining element contact forces for the LOW case can be seen
in Figure 7.16 for ’Element 155’. In the larger pulley arc in the element - pulley frictions
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Figure 7.16: Remaining element contact forces coupled and non-coupled for LOW

the coupled law represents the measurements very well in contrast to the decoupled law
where oscillations are present. The force increase in the element - element normal force
in the secondary is depicted with the coupled law. With the decoupled law, the force
decreases in the secondary pulley. Therefore, only by the coupled law this significant
pushbelt behaviour of the force elevation in the secondary could be achieved. Also, the
force level of the element - ring normal force is changed by the coupled law. For the
longitudinal contact in the larger arc the right behaviour is reproduced with the coupled
law, whereas oscillations are present for the non-coupled one. This shows clearly that
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the changes of this model enhancement have a range far beyond the element - pulley
contact.

7.4.2 Thrust ratio
In Table 7.6, the thrust ratio for two boundary settings is given for the non-coupled and
coupled element - pulley normal contact law. With the coupled law the thrust ratio
is lifted in the LOW cases to the realistic level. Thus, a large improvement has been
achieved. In the OD case also a small increase can be seen with the coupled law.

Table 7.6: Thrust ratio for non-coupled and coupled law

non-coupled coupled

OD 1.4172 1.4854

LOW 0.77436 1.1797

7.4.3 Spiral running
The comparison of the spiral running for the coupled and non-coupled law for the
OD-SpiRun case can be seen in Figure 7.17. In the primary the characteristic decrease is
obtained with the coupled law in contrast to the non-coupled case where the running
radius stays nearly the same. For the secondary pulley a similar behaviour can be seen
for both laws but the non-coupled law is a little closer to the measurements.
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Figure 7.17: Spiral running at primary and secondary pulley for OD

Overall, the coupled contact law takes slightly more computing time of about 1.05,
but compared to the great impovements this is of little importance.
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7.5 Variable boundary conditions
The variable boundary conditions make the model more flexible. In particular, they
solve the problem that in the simulation model only the geometric transmission ratio
ir could be specified, yet, in the measurements the speed ratio is is given. Thus, the
geometric ratio had to be adjusted manually by running a full simulation for each setting
to obtain the final speed ratio from the simulation results. In the boundary cases with
two angular speeds, the speed ratio is implicitly specified. However, the torque can no
longer be specified in these cases, as both rotational boundary conditions are given
kinematically.
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Figure 7.18: Measurement and simulation of element contact forces for OD
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As a first validation, the six element contact forces are shown in Figure 7.18 with
primary end stop and secondary speed. The speed ratio, primary angular velocity and
secondary clamping forces are taken from the case OD. The appeared secondary torque
of 31.85N m in the simulation (averaged between loose and fixed sheave) correlates with
a torque ratio of 0.75. Thus, they are compared with the Honda measurement setting of
speed ratio 0.5 and torque ratio 0.77. In the simulation the unilateral element - ring set
contact and the coupled element - pulley law are used.

A very good correlation can now be seen in all contact forces. All force peaks in the
element - pulley normal contact force are depicted. Moreover, the sagging in the smaller
arc can be seen. The rising, starting from a positive value, in the smaller arc of the
element - pulley longitudinal friction is for the first time present with this enhancement.
Both larger arcs of the element - pulley friction are represented in detail. The element -
element normal force depicts the expected behaviour with the additional top contact
acting in the pushpart. The element - ring set normal contact and longitudinal friction
are in very good alignment with the measurements. Overall, a large improvement,
especially in the smaller arc, is achieved with the specification of the two angular
velocities.





8 Conclusions and Future Work

Several model enhancements have been presented in this study to further improve
the pushbelt CVT model. Altogether, most enhancements achieve their purpose and
contribute to a functional refinement of the variator model. In particular, comparisons
of the hybrid model with measurements show a very good representation of the local
element contact forces as well as the global phenomena spiral running and thrust
ratio. This validates the hybrid model. Additionally, a large computing time reduction
could be achieved by means of the hybrid model when one is only interested in planar
phenomena. The effects of the different model enhancements on the element - element
contact forces have been shown in this study. The enhancement to depict tapered
elements in the simulation adds a method to adapt the operational endplay and to
influence the element - element normal contact force, e.g. that it starts earlier in
the primary pulley with increased taperedness. By means of the unilateral element
- ring set contact a representation of another technical feature of the CVT could be
achieved. Thus, the ring sets can lose contact with the element saddle and get into
contact with the element ear. This model enhancement reduces the oscillations in
the element - ring set contact forces in the two straight parts and additionally the
calculation time. The planar pre-integration works for academic examples. However,
it is not feasible in the presented way in the CVT model, as small inaccuracies in the
numerical calculation of the flexible RCM beam coordinates result in an incorrect
solution of the internal nonlinear transformation to the internal coordinate set. The
coupled element - pulley sheave normal contact law significantly improves the element
contact forces; in particular the element - element normal forces and all three element -
pulley contact forces. In addition, the spiral running and the thrust ratio are brought to
the expected behaviour. The variable boundary concept presented in this study shows
good improvements in first validations; especially the small arcs in the element contact
forces could be significantly improved. The Cosserat rod model has been validated by
means of academic examples. It turns out to be very stiff and thus difficult to be applied
in the CVT setting because of a too small integration time step size resulting in too long
computing times. Nonlinear model order reduction techniques have been applied to
filter out higher frequencies and allow for a larger time step. These concepts worked for
academic examples, however, they have yet to prove themselves in practice.

These enhancements represent a large step forward to a detailed spatial pushbelt CVT
model. Yet, as the time period of this study is limited, it is not the final step. Some topics
have to be done in the follow-up project. In particular, the ring tracking law has to be
validated and can be refined with a physical based model. The pre-integration concept

137
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can be revised to make it function for the CVT model. Further approaches have to be
tried to get rid of the stiffness of the Cosserat rod model. As for the POD, the limiting
factor is that a full simulation is required for the snapshot matrix. This full simulation
with a large computing time has to be done for each CVT setting. Thus, also different
methods should be tried to solve the problem. A possible solution strategy could be
to split the solution into a low and high spectrum component and extract the higher
frequency modes to use a larger time step size for explicit time-stepping schemes as
proposed in [41]. Further boundary cases are possible with two end stops or primary
torque or a different concept with two speeds in combination with secondary clamping
and secondary torque to adjust the torque ratio. Finally, an intensified validation for the
overall spatial pushbelt CVT model, already in work for the follow-up project, should be
carried out. There, additionally to the phenomena presented here, others like efficiency,
slip curves, bearing forces and noise - vibration - harshness will be validated intensively
with measurements obtained from Bosch.



Bibliography

[1] Vincent Acary and Bernard Brogliato. Numerical methods for nonsmooth dynamical
systems : applications in mechanics and electronics, volume 35 of Lecture notes in
applied and computational mechanics. Springer, Berlin, 1st edition, 2008.

[2] Pierre Alart and Alain Curnier. A mixed formulation for frictional contact problems
prone to Newton like solution methods. Comput Methods Appl Mech Engrg, 92:353
– 375, 1991.

[3] Athanasios C. Antoulas. Approximation of large-scale dynamical systems, volume 6.
SIAM, 2009.

[4] Martin Arnold. Numerical methods for simulation in applied dynamics. In Martin
Arnold and Werner Schiehlen, editors, Simulation Techniques for Applied Dynam-
ics, number 507 in CISM International Centre for Mechanical Sciences, pages
191–246. Springer, Wien, 2009.

[5] Bosch Transmission Technology B.V. Continuously variable transmission –
drive into a stepless world. Leaflet: http://www.bosch.nl/transmission_
technology/nl/downloads/GS_CVT_Leaflet_En_final.pdf.

[6] Bernard Brogliato. Nonsmooth mechanics: models, dynamics and control. Commu-
nications and control engineering. Springer, London, 2nd edition, 1999.

[7] Olivier Brüls, Alberto Cardona, and Michel Géradin. Modelling, simulation and
control of flexible multibody systems. In Simulation Techniques for Applied Dy-
namics, pages 21–74. Springer, 2009.

[8] Markus Bullinger. Dynamik von Umschlingungsgetrieben mit Schubgliederband.
Number 593 in Fortschrittberichte VDI: Reihe 12. VDI Verlag, Düsseldorf, 2005.

[9] Thomas Cebulla, Kilian Grundl, Thorsten Schindler, Heinz Ulbrich, Arie van der
Velde, and Han Pijpers. Spatial Dynamics of Pushbelt CVTs: Model Enhancements.
SAE Transmissions & drivelines, SP 2334(2012-01-0307):97–106, April 2012.

[10] Thomas Cebulla and Thorsten Schindler. Application of Cosserat rods in the
non-smooth spatial simulation of pushbelt CVTs. In preparation.

139

http://www.bosch.nl/transmission_technology/nl/downloads/GS_CVT_Leaflet_En_final.pdf
http://www.bosch.nl/transmission_technology/nl/downloads/GS_CVT_Leaflet_En_final.pdf


140 Bibliography

[11] Thomas Cebulla, Thorsten Schindler, and Heinz Ulbrich. Spatial Dynamics of
Cosserat Rods with Set-Valued Force Laws. In 84th Annual Scientific Conference
of the International Association of Applied Mathematics and Mechanics, Novi Sad,
Serbia, 2013.

[12] Saifon Chaturantabut and Danny C. Sorensen. Nonlinear model reduction via
discrete empirical interpolation. SIAM Journal on Scientific Computing, 32(5):2737
– 2764, 2010.

[13] Richard Cottle. The linear complementarity problem. Classics in applied mathe-
matics ; 60. SIAM, Philadelphia, 2009.

[14] Hansjörg Dach, Wolf-Dieter Gruhle, and Peter Köpf. Pkw-Automatgetriebe: Sicher,
komfortabel und wirtschaftlich fahren, volume 88 of Die Bibliothek der Technik.
Verl. Moderne Industrie, Landsberg/Lech, 2nd edition, 2001.

[15] F. N. Fritsch and R. E. Carlson. Monotone piecewise cubic interpolation. SIAM
Journal on Numerical Analysis, 17(2):238–246, 1980.

[16] Martin Förg. Mehrkörpersysteme mit mengenwertigen Kraftgesetzen: Theorie und
Numerik. Number 411 in Fortschritt-Berichte VDI: Reihe 20. VDI Verlag, Düsseldorf,
2007.

[17] Thomas Geier. Dynamics of push belt CVTs. Number 654 in Fortschrittberichte
VDI: Reihe 12. VDI Verlag, Düsseldorf, 2007.

[18] Christoph Glocker. Set-valued force laws in rigid body dynamics : dynamics of non-
smooth systems, volume 1 of Lecture notes in applied and computational mechanics.
Springer, Berlin, 1st edition, 2001.

[19] Kilian Grundl. The Maxwell Contact. Diploma thesis, Technische Universität
München, 2011. Supervisors: Thomas Cebulla, Thorsten Schindler and Heinz
Ulbrich.

[20] Kilian Grundl, Thomas Cebulla, Thorsten Schindler, and Heinz Ulbrich. The
Maxwell-Contact. PAMM, 12(1):73–74, 2012. http://dx.doi.org/10.1002/
pamm.201210028.

[21] Ernst Hairer and Gerhard Wanner. Solving Ordinary Differential Equations II: Stiff
and Differential-Algebraic-Problems, volume 14 of Springer series in computational
mathematics. Springer, Berlin, 2nd rev. edition, 2010.

[22] Robert Huber and Heinz Ulbrich. Higher order integration of non-smooth dy-
namical systems using parallel computed extrapolation methods based on time-
stepping schemes. In Proceedings of 1st Joint International Conference on Multibody
System Dynamics, Lappeenranta, May 2010.

http://dx.doi.org/10.1002/pamm.201210028
http://dx.doi.org/10.1002/pamm.201210028


Bibliography 141

[23] Shigeru Kanehara, Toru Fujii, and Takashi Kitagawa. A study of a metal pushing
V-belt type CVT - part 3: what forces act on metal blocks. SAE Technical Paper
Series, 940735:139–169, 1994.

[24] Tim Willem Gerard Leo Klaassen. The empact CVT: dynamics and control of an
electromechanically actuated CVT. PhD thesis, Technische Universiteit Eindhoven,
2007.

[25] Werner Klement. Fahrzeuggetriebe. Fahrzeugtechnik. Hanser Verlag, München,
2nd edition, 2007.

[26] Martin Krüssmann. Driving CVT into a new area - Demonstrating a new bench-
mark for fuel consumption and cost for all markets. In Transmissions in Vehicles;
International VDI Congress Friedrichshafen, number 2130 in VDI-Berichte, pages
427–442, Düsseldorf, 2011. VDI Verlag.

[27] Christian Käsbauer. Dynamics of Cosserat rods. Term paper, Technische Univer-
sität München, 2012. Supervisors: Thomas Cebulla, Thorsten Schindler.

[28] Holger Lang, Joachim Linn, and Martin Arnold. Multi-body dynamics simulation
of geometrically exact cosserat rods. Multibody System Dynamics, 25(3):285–312,
2011.

[29] Remco Ingmar Leine and Nathan van de Wouw. Stability and convergence of
mechanical systems with unilateral constraints, volume 36 of Lecture notes in
applied and computational mechanics. Springer, Berlin, 1st edition, 2008.

[30] John E. Lloyd. Fast Implementation of Lemke’s Algorithm for Rigid Body Contact
Simulation. In Proceedings of the 2005 IEEE International Conference on Robotics
and Automation, pages 4538–4543. IEEE, 2005.

[31] MBSim - multi-body simulation software. GNU Lesser General Public License
http://code.google.com/p/mbsim-env/.

[32] Cleve B. Moler. Numerical computing with MATLAB. SIAM, 2004.

[33] Jean Jacques Moreau. Bounded Variation in Time. In Topics in Nonsmooth Me-
chanics, pages 1–74. Birkhäuser, Basel, 1988.

[34] Jean Jacques Moreau. Unilateral contact and dry friction in finite freedom dynam-
ics. In Nonsmooth Mechanics and Applications, volume 302 of CISM Courses and
Lectures, pages 1–82. Springer, Wien, 1988.

[35] Harald Naunheimer, Bernd Bertsche, Joachim Ryborz, and Wolfgang Novak. Auto-
motive Transmissions: Fundamentals, Selection, Design and Application. Springer,
Berlin, 2nd edition, 2011.

http://code.google.com/p/mbsim-env/


142 Bibliography

[36] OpenMBV - open multi body viewer. GNU General Public License
http://code.google.com/p/openmbv/.

[37] G. S. Pandit and S. P. Gupta. Structural Analysis: a Matrix Approach. Tata McGraw-
Hill, 1981.

[38] Friedrich Pfeiffer. Mechanical system dynamics, volume 40 of Lecture notes in
applied and computational mechanics. Springer, Berlin, 1st edition, 2008.

[39] Les Piegl and Wayne Tiller. The NURBS book. Monographs in visual communica-
tions. Springer, Berlin, 2nd edition, 1997.

[40] Dilip Prasad and Brice N. Cassenti. Development and validation of a model for flat
belt tracking in pulley drive systems. J. Dyn. Sys., Meas., Control, 134(1):011006–
011006–8, 2012.

[41] Daniel J. Rixen. Explicit-implicit time-stepping for non-uniformly meshed models.
In H. Boden and A. Nilsson, editors, Proceedings of the 10th International Congress
on Sound and Vibration, pages 3949–3956, Stockholm, July 2003.

[42] Jesus Rodriguez, Frederic Brix, and Tomohisa Kumagai. A Fast-Running Model of a
Van Doorne (Push-Belt) CVT Including Belt Tension and Compression Compliance.
SAE Transmissions & drivelines, SP 2334(2012-01-0628):199–214, April 2012.

[43] Toshihiro Saito. Finite Element Analysis Coupled with Feedback Control for Dy-
namics of Metal Pushing V-Belt CVT. In Farzad Ebrahimi, editor, Finite Element
Analysis - Applications in Mechanical Engineering. InTech, 2012.

[44] Heiko Sattler. Stationäres Betriebsverhalten stufenlos verstellbarer Metallumschlin-
gungsgetriebe. PhD thesis, Universität Hannover, 1999.

[45] Thorsten Schindler. Spatial dynamics of pushbelt CVTs. Number 730 in Fortschritt-
Berichte VDI: Reihe 12. VDI Verlag, Düsseldorf, 2010. http://mediatum.ub.tum.
de/node?id=981870.

[46] Thorsten Schindler, Martin Förg, Markus Friedrich, Markus Schneider, Bastian
Esefeld, Robert Huber, Roland Zander, and Heinz Ulbrich. Analysing dynamical
phenomenons: introduction to MBSim. In Proceedings of 1st Joint International
Conference on Multibody System Dynamics, Lappeenranta, May 2010.

[47] Thorsten Schindler, Binh Nguyen, and Jeff Trinkle. Understanding the difference
between prox and complementarity formulations for simulation of systems with
contact. In IROS, pages 1433–1438, 2011.

[48] Ahmed Shabana. Dynamics of multibody systems. Cambridge University Press,
New York, 3rd edition, 2005.

http://code.google.com/p/openmbv/
http://mediatum.ub.tum.de/node?id=981870
http://mediatum.ub.tum.de/node?id=981870


Bibliography 143

[49] Nilabh Srivastava and Imtiaz Haque. A review on belt and chain continuously
variable transmissions (CVT): Dynamics and control. Mech Mach Theor, 44:19–41,
2009.

[50] Karsten Stahl, Hermann Pflaum, and Sebastian Idler. Investigation on the scuffing
resistance of belt and chain continuously variable transmissions. In Transmis-
sions in Vehicles; International VDI Congress Friedrichshafen, number 2071 in
VDI-Berichte, Düsseldorf, 2009. VDI Verlag.

[51] Armin Sue. Betriebsverhalten stufenloser Umschlingungsgetriebe unter Einfluss von
Kippspiel und Verformungen. PhD thesis, Universität Hannover, 2003.

[52] Schaeffler Technologies. LuK’s CVT chain provides continuously variable driving
comfort. Press release: http://www.schaeffler.de/content.schaeffler.de/
de_2/_global/download/pdf/pressrelease_31630848.pdf.

[53] André Teubert, Andreas Englisch, Andreas Götz, André Linnenbrügger, and
Thomas Endler. Luk cvt technology–efficiency, comfort, dynamics. In Trans-
missions in Vehicles; International VDI Congress Friedrichshafen, number 2071 in
VDI-Berichte, Düsseldorf, 2009. VDI Verlag.

[54] Heinz Ulbrich. Some selected research activities in mechatronic applications -
case studies. In International Conference on Engineering Mechanics, Structures,
Engineering Geology, Rhodos, July 2009.

[55] Erik van der Noll, Francis van der Sluis, Tom van Dongen, and Arie van der Velde.
Innovative self-optimizing clamping force strategy boosts effiency of the pushbelt
CVT. In 7th International CTI Symposium: Innovative Automotive Transmissions,
Berlin, December 2008.

[56] Robert von Zitzewitz. Fast planar dynamics of cosserat rods with set-valued force
laws. Diploma thesis, Technische Universität München, 2013. Supervisors: Thomas
Cebulla, Thorsten Schindler.

[57] Tamer Wasfy and Ahmed Noor. Computational strategies for flexible multibody
systems. Appl Mech Rev, 56:553–613, 2003.

[58] Katsu Yamane and Yoshihiko Nakamura. A numerically robust LCP solver for
simulating articulated rigid bodies in contact. In Proceedings of Robotics: Science
and Systems IV, Zurich, Switzerland, June 2008.

[59] Roland Zander. Flexible multi-body systems with set-valued force laws. Number
420 in Fortschritt-Berichte VDI: Reihe 20. VDI Verlag, Düsseldorf, 2009. http:
//mediatum2.ub.tum.de/node?id=654788.

http://www.schaeffler.de/content.schaeffler.de/de_2/_global/download/pdf/pressrelease_31630848.pdf
http://www.schaeffler.de/content.schaeffler.de/de_2/_global/download/pdf/pressrelease_31630848.pdf
http://mediatum2.ub.tum.de/node?id=654788
http://mediatum2.ub.tum.de/node?id=654788


144 Bibliography

[60] Roland Zander, Thorsten Schindler, Markus Friedrich, Robert Huber, Martin Förg,
and Heinz Ulbrich. Non-smooth dynamics in academia and industry: recent work
at TU München. Acta Mech, 195:167–183, 2008.


	Titlepage
	Introduction
	Non-smooth Flexible Multibody Systems
	Functions of bounded variation
	Measure differential equations
	Local contact kinematics
	Set-valued force laws
	Equations of motion
	Flexible bodies
	Integration schemes
	Software MBSim

	Spatial Pushbelt CVT Model
	Continuously variable transmissions
	Global market
	Functional principle

	Modelling background
	Bodies
	Interactions
	Initialisation


	Enhancements concerning Initialisation
	Variable boundary conditions
	Primary end stop
	Secondary end stop
	No end stop
	Classification of all boundary conditions

	Tapered elements
	Geometric calculation
	Initialisation

	Planar pre-integration
	Interface set-up
	Spatial numerical initialisation


	Enhancements concerning Interactions
	Unilateral element - ring set contact
	Free movement in vertical direction
	Free movement in lateral direction
	Ring tracking

	Coupled contact law for element - sheave contact
	Demonstration of coupling
	Maxwell's reciprocal theorem
	Local elastic contact kinematics
	Maxwell force law
	Solution of the Maxwell force law
	Application to the element - sheave normal contact


	Model Reduction
	Hybrid pushbelt CVT model
	Bodies
	Interactions
	Initialisation

	Planar Cosserat rod model
	Continuous equations of motion
	Discrete equations of motion
	Contour description for set-valued force laws
	Initialisation of Cosserat rod ring sets

	Nonlinear model order reduction

	Results and Verification
	Hybrid pushbelt CVT model
	Element contact forces
	Thrust ratio
	Spiral running
	Computing time reduction

	Tapered elements
	Operational endplay
	Element contact forces
	Thrust ratio

	Unilateral element - ring set contact
	Element contact forces
	Thrust ratio
	Computing time reduction

	Coupled contact law for element - sheave contact
	Element contact forces
	Thrust ratio
	Spiral running

	Variable boundary conditions

	Conclusions and Future Work

