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Abstract

The probability of a stochastic process to first breach an upper and/or a lower level
is an important quantity for optimal control and risk management. We present those
probabilities for regime switching Brownian motion. In the 2- and 3-state model, the
Laplace transform of the (single and double barrier) first-passage times is – up to the
roots of a polynomial of degree 4 (respectively 6) – derived in closed-form by solving
the matrix Wiener-Hopf factorization2. This extends single barrier results in the 2-state
model by Guo [2001b]. If the quotient of drift and variance is constant over all states, we
show that the Laplace transform can even be inverted analytically.

Keywords: regime switching, Markov switching, first-passage time, first-exit time,
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Classification: 60G40, 60J27, 60J60.

After Hamilton [1989]’s seminal work, the natural and intuitive idea of regime changes has
found applications in a variety of fields, ranging from biology, physics, finance, and insur-
ance to disciplines like hydrology. Conceptionally, regime switching models are rather simple
(conditional on the regimes, the innovations are normally distributed) and thus analytically
tractable. Nevertheless, they can generate many non-linear effects like heavy tails or volatil-
ity clusters. Regime switching models allow us to depart from the unsatisfactory assumption
of stationary increments in Lévy models and are thus a tractable tool to include long-term
trends and structural breaks.

This paper derives analytical expressions for the single and double barrier first-passage time
probabilities of regime switching models. Therefore, the matrix Wiener–Hopf factorization
introduced by, for example, London et al. [1982], Kennedy and Williams [1990], Barlow et al.

1This version may differ from the final published version First-passage times of regime switching models,
Statistics & Probability Letters, Vol. 92 (2014), pp. 148–157, in typographical detail.

2The matrix Wiener-Hopf factors of regime switching models are defined via a set of quadratic matrix
equations (see, e.g., London et al. [1982], Barlow et al. [1990], Kennedy and Williams [1990], Rogers [1994],
Asmussen [1995]). This concept was expanded to regime switching jump diffusions by Jiang and Pistorius
[2008].
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1 Model description

[1990], Rogers [1994], Asmussen [1995], and Jiang and Pistorius [2008] is solved analytically
for the 2- and 3-state model. This yields closed-form results for the Laplace transform of
the first-passage times. Imposing a parameter restriction (the quotient of drift and variance
is constant over all states), we are even able to invert this Laplace transform analytically.
This contributes to the analytical tractability of regime switching models and might help
to increase the popularity of this model class. Related to this work is Guo [2001b] who
derived the Laplace transform of the single barrier first-passage time in the 2-state model,
and Jiang and Pistorius [2008] who present the single and double barrier first-passage time
probabilities in terms of the matrix Wiener–Hopf factorization.

Many authors recently worked on numerical techniques to derive the first-passage time prob-
abilities of regime switching models. Boyle and Draviam [2007], Kim et al. [2008] (and many
others) solve the first-passage time PDE numerically. Hieber and Scherer [2010] and Henriksen
[2011] use a conditional Monte-Carlo technique called Brownian bridge algorithm. Further-
more, some authors work on (matrix) Wiener–Hopf factorizations (see, e.g., London et al.
[1982], Barlow et al. [1990], Boyarchenko and Levendorskĭi [2008], Jiang and Pistorius [2008],
Kudryavtsev and Levendorskĭi [2012], Mijatović and Pistorius [2013], Fourati [2012], and oth-
ers) and solve them numerically (see, e.g., Rogers and Shi [1994], Boyarchenko and Levendorskĭi
[2008], Kudryavtsev [2010]). Kou and Wang [2003] point out that “in general, explicit calcula-
tion of the Wiener–Hopf factorization is difficult”. Its derivation has turned out to be possible
in the related case of exponential jump-diffusion models, i.e. the Cramér–Lundberg model, sin-
gle, double, and hyper-exponential jump-diffusion models (see, e.g., Mordecki [1999], Rogers
[2000], Kou and Wang [2003], Avram et al. [2003], Cai [2009]). Up to a time change, those
models can be seen as special cases of regime switching models: Positive or negative exponen-
tial jumps are included as an additional state with zero volatility and positive, respectively
negative, drift (a technique called “fluid embedding”, see, e.g., Jiang and Pistorius [2008]).

The paper is organized as follows: Section 1 introduces regime switching models; Section 2
the matrix Wiener–Hopf factorization. The main theoretical results on the first-passage times
of regime switching models are given in Section 3. Section 4 presents a numerical example.
Finally, Section 5 concludes.

1 Model description

On the filtered probability space (Ω,F,F ,P), we consider the process B = {Bt}t≥0 described
by the stochastic differential equation (sde)

dBt = µZtdt+ σZtdWt, B0 = x, (1)

where Z = {Zt}t≥0 ∈ {1, 2, . . . ,M} is a time-homogeneous Markov chain with intensity
matrix3 Q0 andW = {Wt}t≥0 an independent Brownian motion. The initial value is B0 = x ∈
R. The filtration F = {Ft}t≥0 is generated by the pair (W,Z), i.e. Ft = σ{Ws, Zs : 0 ≤ s ≤ t}.
The time to a state change from the current state i is an exponential random variable with
intensity parameter Q0(i, i). The probability of moving to state j 6= i is −Q0(i, j)/Q0(i, i).

3An intensity matrix has negative diagonal and non-negative off-diagonal entries. Each row sums up to zero.
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2 Review of the matrix Wiener–Hopf factorization

The model is fully determined if an initial state (or, more generally, an initial distribution
π0 :=

(

P(Z0 = 1),P(Z0 = 2), . . . ,P(Z0 = M)
)

on the states) is defined. The characteristic
function of a regime switching model is given by (see, e.g., Buffington and Elliott [2002];
Elliott et al. [2005])

φt(u) :=E
[

exp
(

iu(Bt − x)
)]

=

〈

exp



Q0t+





iuµ1 − 1
2σ

2
1u

2 0 . . .
0 . . . 0
. . . 0 iuµM − 1

2σ
2
Mu

2



 t



π′0,1

〉

, (2)

where exp( · ) denotes the matrix exponential function, ′ transpose, 1 a vector of ones of
appropriate size, and 〈 · , · 〉 the scalar product. The first-passage times on two constant
barriers b < B0 = x < a are defined as

Tab :=

{

inf {t ≥ 0 : Bt /∈ (b, a)} , if such a t exists,

∞, if Bt never hits the barriers.
(3)

Here, Tab is the first time the Brownian motion Bt hits one of the two barriers a and b. Further
denote

T+
ab := Tab, if BTab

≥ a, T−
ab := Tab, if BTab

≤ b . (4)

The Laplace transform of the first-passage time is defined as

Ψ±
ab(u) := E

[

exp
(

− uT±
ab

)]

. (5)

2 Review of the matrix Wiener–Hopf factorization

The rudiment of this work is the matrix Wiener–Hopf factorization as introduced by many
authors, for example London et al. [1982], Kennedy and Williams [1990], Barlow et al. [1990],
Rogers [1994], Asmussen [1995], and many others. A short review of the results is given in this
section. The first-passage time problem of the Markov process (B,Z) is closely linked to the
up-crossing and down-crossing ladder processes Bt := max0≤s≤tBs and Bt := min0≤s≤tBs.
The ladder processes observe B only when it is at its maximum or minimum, respectively. One
can easily verify that Bt and Bt are again Markov processes on the same state space. Their
generator matrices are linked to the so-called matrix Wiener–Hopf factorization (Q+, Q−) of
the Markov process (B,Z), see Definition 1.

Definition 1 (Matrix Wiener–Hopf factorization)
We denote the class of irreducible M×M generator matrices (non-negative off-diagonal entries
and non-positive row sums) by QM . A tuple (Q+, Q−), where Q+, Q− ∈ QM , is called a
matrix Wiener–Hopf factorization of (B,Z) if Ξ(−Q+) = Ξ(Q−) = 0, u > 0,

Ξ(Q) :=
1

2
Σ2Q2 + V Q+Q0 − u IM , (6)

Σ := diag(σ1, σ2, . . . , σM ), V :=diag (µ1, µ2, . . . , µM ), and IM is an M ×M identity matrix.
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3 First-passage time results

Theorem 2 (First-passage times)
(a) The matrix Wiener–Hopf factorization (Q+, Q−) from Definition 1 is unique.

(b) The Laplace transform of the first-passage time is Ψ±
ab(u) := π0 ψ

±
ab(u, x)1, where π0 ∈

R
1×M is the initial distribution on the states and 1 a vector of ones of appropriate size.

For two constant barriers b < B0 = x < a, we get in the single-barrier case

ψ+
a,−∞(u, x) := lim

b→−∞
ψ+
ab(u, x) = exp

(

Q+(a− x)
)

, (7)

ψ−
∞, b(u, x) := lim

a→∞
ψ−
ab(u, x) = exp

(

Q−(x− b)
)

. (8)

In the double barrier case4

ψ+
ab(u, x) =

(

exp
(

Q+(a− x)
)

− exp
(

Q−(x− b)
)

R+

)

∞
∑

k=0

(

R−R+

)k
, (9)

ψ−
ab(u, x) =

(

exp
(

Q−(x− b)
)

− exp
(

Q+(a− x)
)

R−

)

∞
∑

k=0

(

R+R−

)k
, (10)

where R± := exp
(

Q±(a− b)
)

and exp( · ) denotes the matrix exponential.

Proof
Since Q0 − u IM is transient (its row sums are −u < 0), (a) can be derived from Theorem
4.2(ii) in Jiang and Pistorius [2008]. For part (b), we refer to, for example, Rogers [1994]
and Jiang and Pistorius [2008].

Similar results have been derived in the more general case of regime switching exponential
jump-diffusion models, see, e.g., Jiang and Pistorius [2008]. The first-passage time problems
then rest on solving matrix equations similar to those in Definition 1. Usually, this type of
problem has to be solved numerically. The contribution of this work, however, is to present
certain cases where one can obtain the matrix Wiener–Hopf factors (Q+, Q−) in closed-form,
i.e. the case of 2 and 3 regimes or the case where µZt/σ

2
Zt

is regime-independent.

3 First-passage time results

First, we use Theorem 2 to recover known result for M = 1 states, i.e. Brownian motion.
Here, Equation (6) simplifies to 1

2σ
2
1β

2 + µ1β = u. The unique positive and negative root of

this equation is Q− = (−µ1 −
√

µ21 + 2uσ21)/σ
2
1 and −Q+ = (−µ1 +

√

µ21 + 2uσ21)/σ
2
1. From

Theorem 2, using the identity
∑∞

k=0

(

R−R+

)k
=
(

I −R−R+

)−1
, we find that

Ψ+
ab(u) =

exp
(

Q+(a− x)
)

− exp
(

Q−(x− b)
)

exp
(

Q+(a− b)
)

1− exp
(

(Q+ +Q−)(a− b)
)

4Note that the identity
∑

∞

k=0

(

R−R+

)k
=

(

I − R−R+

)−1
might allow a faster computation; ψ±

ab(u, x) can
then be computed as the solution of a linear equation.
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3 First-passage time results

= exp
(µ1
σ21

(a− x)
)sinh

(

√
µ2
1+2σ2

1u

σ2
1

(x− b)
)

sinh
(

√
µ2
1+2σ2

1u

σ2
1

(a− b)
)

, (11)

Ψ+
a,−∞(u) = exp(Q+(a− x)) = exp

(

µ1(a− x)

σ21

(

1−
√

1 +
2σ21u

µ21

))

. (12)

Lemma 3 inverts the Laplace transforms in Equations (11)–(12) (see, for example, the in-
version tables in Oberhettinger and Badii [1973], p. 295) to obtain the first-passage time
probabilities of Brownian motion.

Lemma 3 (Brownian motion: First-passage time probabilities)
Consider a Brownian motion Bt with drift µ1 and volatility σ1 > 0 and T > 0.

(a) The first-passage time probability on a single-barrier a > x = B0 is given by

P(Ta,−∞ ≤ T ) = Φ

(

(x− a) + µ1T

σ1
√
T

)

+ exp

(

2µ1(a− x)

σ21

)

Φ

(

(x− a)− µ1T

σ1
√
T

)

, (13)

where Φ( · ) denotes the standard normal cumulative density function.

(b) Consider two barriers b < x = B0 < a. If µ1 = 0, the double-barrier first-passage time
probability is

P(T+
ab ≤ T ) =

x− b

a− b
+K∞

T (b− x) , (14)

for µ1 6= 0

P(T+
ab ≤ T ) =

exp
(

−2µ1(b−x)
σ2
1

)

− 1

exp
(

−2µ1(b−x)
σ2
1

)

− exp
(

−2µ1(a−x)
σ2
1

) + exp
(µ1(a− x)

σ21

)

K∞
T (b− x) ,

(15)

where KN
T (k) :=

σ2
1π

(a−b)2
∑N

n=1
n(−1)n+1

µ21
2σ2

1
+

σ2
1n

2π2

2(a−b)2

exp
(

−
(

µ2
1

2σ2
1
+

σ2
1n

2π2

2(a−b)2

)

T
)

sin
(

nπk
a−b

)

.

Proof
Part (a) is the cumulative distribution function of an inverse Gaussian distribution and thus
the Laplace inverse of Equation (12), see, e.g., Folks and Chhikara [1978]. Part (b) fol-
lows by Laplace inversion and integration on (0, T ), see, e.g., Hieber and Scherer [2012] for
more details. A different (but similar) approach using renewal-type equations is presented in
Darling and Siegert [1953]. Note that the expression in Darling and Siegert [1953] contains
two typos: π2 has to be replaced by π and (−1)n by (−1)n+1. �

The next step is the 2-state model (M = 2). The solution depends on the roots of the so-called
Cramér–Lundberg equation given by

(1

2
σ21β

2 + µ1β + q11 − u
)(1

2
σ22β

2 + µ2β + q22 − u
)

− q11q22 = 0 , (16)
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3 First-passage time results

where q11 := Q0(1, 1) and q22 := Q0(2, 2). This equation has 4 unique real roots −∞ < β1,u <
β2,u < 0 < β3,u < β4,u < ∞ (see, for example, Guo [2001b] for a proof). Those roots are
available in closed-form, see, for example, Abramowitz and Stegun [1965], p. 17f.

Main Theorem 4 (2-state model: Matrix Wiener–Hopf factorization)
Consider the regime switching model as defined in Equation (1) with M = 2 states and q11q22 6=
0.

(a) The matrix Wiener–Hopf factorization (Q+, Q−) is given by

Q+ =













−β3,uβ4,u+
2(q11−u)

σ2
1

β3,u+β4,u+
2µ1
σ2
1

−
2q11
σ2
1

β3,u+β4,u+
2µ1
σ2
1

−
2q22
σ2
2

β3,u+β4,u+
2µ2
σ2
2

−β3,uβ4,u+
2(q22−u)

σ2
2

β3,u+β4,u+
2µ2
σ2
2













,

Q− =













β1,uβ2,u−
2(q11−u)

σ2
1

β1,u+β2,u+
2µ1
σ2
1

2q11
σ2
1

β1,u+β2,u+
2µ1
σ2
1

2q22
σ2
2

β1,u+β2,u+
2µ2
σ2
2

β1,uβ2,u−
2(q22−u)

σ2
2

β1,u+β2,u+
2µ2
σ2
2













,

where Q0 := [q11 − q11;−q22 q22] and −∞ < β1,u < β2,u < 0 < β3,u < β4,u < ∞ are the
roots of Equation (16).

(b) The matrix exponentials of (Q+, Q−) are, for k ∈ R
+, given by

exp
(

Q+k
)

=
β3,ue

−β4,uk − β4,ue
−β3,uk

β3,u − β4,u

(

1 0
0 1

)

+
e−β3,uk − e−β4,uk

β3,u − β4,u
Q+ , (17)

exp
(

Q−k
)

=
β1,ue

β2,uk − β2,ue
β1,uk

β1,u − β2,u

(

1 0
0 1

)

+
eβ1,uk − eβ2,uk

β1,u − β2,u
Q− . (18)

Proof
For part (a), one has to solve Equation (6), i.e. find the unique solutions Q− ∈ Q2 and
−Q+ ∈ Q2 of

1

2

(

σ21 0
0 σ22

)

Q2 +

(

µ1 0
0 µ2

)

Q+

(

q11 − u −q11
−q22 q22 − u

)

=

(

0 0
0 0

)

. (19)

Parameterizing Q− := [a11 a12; a21 a22], this is a set of 4 quadratic equations with 4 unknowns.
The top left entry in Equation (19) is 1

2σ
2
1

(

a211+a12a21
)

+a11µ1+q11−u = 0 which is equivalent
to

a12a21 = −2(q11 − u)

σ21
− 2µ1

σ21
a11 − a211 . (20)

Furthermore, 1
2σ

2
1a12(a11 + a22) + a12µ1 − q11 = 0, which is equivalent to

a12 =
2q11

σ21
(

a11 + a22 +
2µ1

σ2
1

) . (21)

6



3 First-passage time results

Since Q− ∈ Q2, there have to be two eigenvalues λ1 ≤ λ2 < 0 and corresponding eigenvectors
v1 ∈ R

2×1 and v2 ∈ R
2×1. If Equation (19) holds, we find that

[

1

2

(

σ21 0
0 σ22

)

λ2i +

(

µ1 0
0 µ2

)

λi +

(

q11 − u −q11
−q22 q22 − u

)]

vi =

(

0
0

)

, i = 1, 2.

The latter expression is solved if we choose λ1 = β1,u, v1 = (σ22β
2
1,u/2 + µ2β1,u + q22 − u; q22)

and λ2 = β2,u, v2 = (q11;σ
2
1β

2
2,u/2 + µ1β2,u + q11 − u). Using basic identities from the

characteristic polynomial, we can at once conclude that a11+a22 = β1,u+β2,u and det(Q−) =
β1,uβ2,u. Then, we obtain a12 from Equation (21). From the determinant of Q−, we find that
a11
(

β1,u + β2,u − a11
)

− a12a21 = β1,uβ2,u which is, with the help of Equation (20), equivalent
to

a11 =
β1,uβ2,u − 2(q11−u)

σ2
1

β1,u + β2,u + 2µ1

σ2
1

.

Similarly, exchanging the triplets (µ1, σ1, q11) and (µ2, σ2, q22) in Equations (20) and (21), the
expressions for a21 and a22 are derived. The resulting matrix Q− is a sub-generator matrix
since its determinant β1,uβ2,u is positive, its row sums are non-positive, and its off-diagonal
entries are non-negative. By symmetry (replacing µ1 by −µ1, µ2 by −µ2, β1,u by −β4,u, and
β2,u by −β3,u)4, the same considerations lead to the given representation of Q+.

Knowing that β1,u < β2,u < 0 are the two eigenvalues of Q−, part (b) is straightforward. �

The Laplace transforms of the first-passage times are then a straightforward implication of
Theorems 2 and 4. Corollary 5 presents the Laplace transforms of the single barrier first-
passage times. This result corrects Guo [2001a], see also Hieber [2013].

Corollary 5 (2-state model: First-passage time)
Consider the regime switching model as defined in Equation (1) with M = 2 states and q11q22 6=
0. For an initial distribution on the states π0 = (π, 1 − π) := (P(Z0 = 1),P(Z0 = 2)), the
Laplace transform of the first passage time on an upper barrier a > B0 = x, respectively a
lower barrier b < B0 = x, is given by

Ψ+
a,−∞(u) =

β3,ue
−β4,u(a−x) − β4,ue

−β3,u(a−x)

β3,u − β4,u

− e−β4,u(a−x) − e−β3,u(a−x)

β3,u − β4,u

(

π
β3,uβ4,u + 2u

σ2
1

β3,u + β4,u + 2µ1

σ2
1

+ (1− π)
β3,uβ4,u + 2u

σ2
2

β3,u + β4,u + 2µ2

σ2
2

)

,

Ψ−
∞, b(u) =

β1,ue
β2,u(x−b) − β2,ue

β1,u(x−b)

β1,u − β2,u

+
eβ1,u(x−b) − eβ2,u(x−b)

β1,u − β2,u

(

π
β1,uβ2,u + 2u

σ2
1

β1,u + β2,u + 2µ1

σ2
1

+ (1− π)
β1,uβ2,u + 2u

σ2
2

β1,u + β2,u + 2µ2

σ2
2

)

,

where −∞ < β1,u < β2,u < 0 < β3,u < β4,u <∞ are the roots of Equation (16).

4Note that the transformation µ1 7→ −µ1, µ2 7→ −µ2 changes the sign of the roots of Equation (16).
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3 First-passage time results

Proof
If we set k = (x− b) in Theorem 4 and apply the results from Theorem 2 we can conclude that

Ψ−
∞, b(u) :=π0 exp

(

Q−(x− b)
)

(

1
1

)

=π0

(

β1,ue
β2,u(x−b) − β2,ue

β1,u(x−b)

β1,u − β2,u

(

1 0
0 1

)

+
eβ1,u(x−b) − eβ2,u(x−b)

β1,u − β2,u
Q−

)

(

1
1

)

=
β1,ue

β2,u(x−b) − β2,ue
β1,u(x−b)

β1,u − β2,u

+
eβ1,u(x−b) − eβ2,u(x−b)

β1,u − β2,u

(

π
β1,uβ2,u + 2u

σ2
1

β1,u + β2,u + 2µ1

σ2
1

+ (1− π)
β1,uβ2,u + 2u

σ2
2

β1,u + β2,u + 2µ2

σ2
2

)

.

Note that, in contrast to Guo [2001a], µ1 and µ2 can also take positive values. �

In the 3-state model, the matrix Wiener–Hopf factorization can – for β ∈ C – be expressed
by the determinant of 1

2Σ
2β2 + V β + Q0 − u IM . We refer to this 6-degree polynomial as

Cramér–Lundberg equation, for gi(β) := σ2i β
2/2 + µiβ + qii − u, i ∈ {1, 2, 3}, given by

g1(β) g2(β) g3(β)− q23q32 g1(β)− q13q31 g2(β)− q21q12 g3(β) + q13q21q32 + q12q23q31 = 0,
(22)

where −∞ < Re(β1,u) ≤ Re(β2,u) ≤ Re(β3,u) < 0 < Re(β4,u) ≤ Re(β5,u) ≤ Re(β6,u) < ∞
(see, e.g., Barlow et al. [1990] for a proof). In practical applications, it turns out to be
sufficient to consider distinct roots only (see, e.g., Kalbfleisch et al. [1983], Rogers and Shi
[1994]):

Assumption 1 (Uniqueness of roots)
The roots of Equation (22) are distinct, i.e. −∞ < Re(β1,u) < Re(β2,u) < Re(β3,u) < 0 <
Re(β4,u) < Re(β5,u) < Re(β6,u) <∞.

The latter assumption can rather easily be relaxed, but leads to unnecessary complicated
expressions for the matrix Wiener–Hopf factorization. Theorem 6 presents the matrix Wiener–
Hopf factorization in the 3-state model.

Main Theorem 6 (3-state model: Matrix Wiener–Hopf factorization)
Consider the regime switching model as defined in Equation (1) with irreducible intensity
matrix Q0 and M = 3 states. Assume that Assumption 1 holds. The matrix Wiener–Hopf
factorization (Q+, Q−) is given by

Q+ = −Z+





β4,u 0 0
0 β5,u 0
0 0 β6,u



Z−1
+ , Q− = Z−





β1,u 0 0
0 β2,u0
0 0 β3,u



Z−1
− , (23)

vi :=





g1(βi,u)
q12
q13





⊗





q21
g2(βi,u)
q23



 , 6 (24)
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3 First-passage time results

where Z− := [v1 v2 v3], Z+ := [v4 v5 v6], Q0 := [q11 q12 q13; q21 q22 q23; q31 q32 q33],
⊗

denotes
the cross product5, g1( · ) and g2( · ) are defined in Equation (22), and β1,u, β2,u, β3,u, β4,u,
β5,u, β6,u are the roots of Equation (22).

Proof
Again, we have to search for solutions (Q+, Q−) ∈ (Q3,Q3) of

Ξ(Q) :=
1

2
Σ2Q2 + V Q+Q0 − u IM = 0 . (25)

For a given pair of eigenvalues and eigenvectors (βi,u, vi) ∈ (C,C3×1), i ∈ {1, 2, . . . , 6}, we
find that Ξ

(

βi,u
)

vi = 0. Due to Assumption 1, there has to be one (unique) vector vi for
every i ∈ {1, 2, . . . , 6} that fulfills Ξ

(

βi,u
)

vi = 0, i.e. a (unique) eigenvector of Ξ
(

βi,u
)

with
eigenvalue 0.

As we already noted in the 2-state case, βi,u, vi, i ∈ {4, 5, 6} are the eigenvalues, respectively
eigenvectors, of the (diagonalizable) matrix Q+. Basic algebraic theory on the diagonalization
of matrices then yields

Q+ = −Z+





β4,u 0 0
0 β5,u 0
0 0 β6,u



Z−1
+ , (26)

where Z+ := [v4 v5 v6]. Similar arguments lead to the expression for Q−. �

In the M -state case, we want to refrain from complicated semi-analytical expressions for
the matrix Wiener-Hopf factors and instead present an efficient numerical algorithm by
Rogers and Shi [1994], Jobert and Rogers [2006]. The basic idea of this algorithm is the
fact that for any eigenvalue/eigenvector pair (βi,u, vi) ∈ (C,CM×1), i = {1, 2, . . . , 2M}, the
(quadratic) eigenvalue problem

[

1

2
Σ2Q2 + V Q+

(

Q0 − u IM
)

]

vi =

[

β2i,u + 2Σ−2V βi,u + 2Σ−2
(

Q0 − u IM
)

]

vi = 0

can be transformed to

wi = βi,uvi, (27)

−2Σ−2(Q0 − uIM )vi − 2Σ−2V wi = βi,uwi, (28)

where wi ∈ C
M×1. This yields the linear eigenvalue problem

(

0 IM
−2Σ−2(Q0 − uIM ) −2Σ−2V

)(

vi
wi

)

= βi,u

(

vi
wi

)

.

This eigenvalue problem has obviously 2M solutions. If u > 0, half of the eigenvalues βi,u lie
in the left open half plane, the other half in the right open half plane, see Barlow et al. [1990].
Algorithm 1 presents the necessary steps to obtain the matrix Wiener–Hopf factors (Q+, Q−)
numerically.

5The cross product is defined as [a1; a2; a3]
⊗

[b1; b2; b3] := [a2b3 − a3b2; a3b1 − a1b3; a1b2 − a2b1].
6In some rare or artificial cases (e.g. µ1 = µ2 = µ3, σ1 = σ2 = σ3), this cross product might be 0. If this is

the case vi is instead set to vi :=
(

q21 g2(βi,u) q23
)
⊗

(

q31 q32 g3(βi,u)
)

. Due to the fact that the roots βi,u
are distinct, one of these cross products has to be non-zero.
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3 First-passage time results

Algorithm 1 (Rogers [1994]: Matrix Wiener–Hopf factorization)
This algorithm computes the matrix Wiener–Hopf factors (Q+, Q−) by diagonalization. As an
input, the matrices Σ :=diag(σ1, σ2, . . . , σM ), V :=diag(µ1, µ2, . . . , µM ), the intensity matrix
Q0, and u > 0 are needed.

1. Determine the eigenvalue/eigenvector pairs (βi,u, vi) ∈ (C,CM×1), i = {1, 2, . . . , 2M},
of

(

0 IM
−2Σ−2(Q0 − uIM ) −2Σ−2V

)(

vi
wi

)

= βi,u

(

vi
wi

)

(29)

and sort them according to their real value
(

Re(β1,u) < Re(β2,u) < . . . < Re(β2M,u)
)

.

2. Set7 Z− :=
[

v1 . . . vM
]

and Z+ :=
[

vM+1 . . . v2M
]

to get

Q+ = −Z+





βM+1,u 0 0
0 . . . 0
0 0 β2M,u



Z−1
+ , Q− = Z−





β1,u 0 0
0 . . . 0
0 0 βM,u



Z−1
− .

However, for a regime switching model with more than three states over-fitting may occur in
some cases. That is why it might make sense to restrict the parameter space. In the following,
we assume that the quotient µZt/σ

2
Zt

is constant over all states. The matrix Wiener–Hopf
factorizaton is then given in closed-form, see Theorem 7.

Main Theorem 7 (µZt
/σ2

Zt
constant: Matrix Wiener–Hopf factorization)

Consider the regime switching model (1) with µ1/σ
2
1 = µ2/σ

2
2 = . . . = µM/σ

2
M =: c ∈ R.

(a) The matrix Wiener–Hopf factorization (Q+, Q−) is given by

Q± = ±c IM −
√

c2 IM − 2Σ−2
(

Q0 − u IM
)

. (30)

(b) The Laplace transform of the single barrier first-passage time on an upper barrier a >
B0 = x is then given by

ψa,−∞(u) = exp
(

Q+(a− x)
)

= exp

(

c(a− x)

(

IM −

√

IM +
2Σ−2

(

Q0 − u IM
)

c2

))

.

Proof
For c := µ1/σ

2
1 ∈ R, we conclude from Equation (6) that

0 = 2Σ−2 Ξ(Q) := Q2 + 2Σ−2V Q+ 2Σ−2
(

Q0 − u IM
)

=
(

Q+ c IM )2 − c2 IM + 2Σ−2
(

Q0 − u IM
)

,

From this, we immediately obtain

Q− = −c IM −
√

c2 IM − 2Σ−2
(

Q0 − u IM
)

,

7This contains the implicit assumption that the eigenvectors vi form a basis, an assumption that turned out
to be sufficient in practical applications (see, e.g., Rogers and Shi [1994] or Assumption 1). It is possible
to construct artificial examples where such a basis does not exist. The following steps of Algorithm 1 can
then be modified using a basis of Jordan vectors.
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3 First-passage time results

Q+ = −
(

− c IM +
√

c2 IM − 2Σ−2
(

Q0 − u IM
)

)

. �

Part (b) is a straightforward corollary to Theorem 2.

Part (b) in Theorem 7 already indicates that the first-passage time problem in Theorem 7
is closely linked to the case of Brownian motion. Example 8 and Lemma 9 establish the
connection.

Example 8 (Bacterial growth)
It is commonly accepted that there is a positive impact of temperatures on bacterial growth,
see, for example, Ratkowsky et al. [1982]. We assume a very simplistic relationship and
consider bacteria whose growth rate follows a regime switching model: If the temperature
is between 0 and 45 degrees Celsius, the growth rate is described by a Brownian motion
with parameters (µ1, σ1) = (10%, 5%); if it rises above 45 degrees Celsius, it quadruples to
(µ2, σ2) = (40%, 10%). Then, the quotient µZt/σ

2
Zt

is constant, i.e. µ1/σ
2
1 = µ2/σ

2
2 = 40.

There exists another – slightly different – viewpoint on Example 8: Assume that the growth
rate is constant at (µ1, σ1) = (10%, 5%), but as soon as the temperature exceeds 45 degrees
Celsius, we get the impression that time runs µ2/µ1 = 4 times faster than before. Time
returns to the original pace if we return to temperatures below 45 degrees Celsius. What we
found is a representation of the restricted model (µ1/σ

2
1 = µ2/σ

2
2 = . . . = µM/σ

2
M =: c) as a

time-changed Brownian motion (µ = µ1, σ = σ1) BΛT
. Lemma 9 gives a formal proof.

Lemma 9 (Time-change representation)
Consider the regime switching model (1) with µ1/σ

2
1 = µ2/σ

2
2 = . . . = µM/σ

2
M =: c ∈ R and

initial distribution on the states π0 := (P(Z0 = 1),P(Z0 = 2), . . . ,P(Z0 = M)). Then, the
model can be represented as a time-changed Brownian motion BΛT

, where the time change
{Λt}t≥0 is independent of B. The Laplace transform of the time change ΛT is given by

ϑT (u) :=E

[

exp(−uΛT )
]

=

〈

exp



Q0T − u

σ21





σ21 0 . . .
0 . . . 0
. . . 0 σ2M



T



 π′0,1

〉

, (31)

where exp( · ) denotes the matrix exponential function, ′ transpose, and 〈 · , · 〉 the scalar prod-
uct.

Proof
From Equation (2), we conclude that

φT (u) =

〈

exp



Q0T +





iuµ1 − 1
2σ

2
1u

2 0 . . .
0 . . . 0
. . . 0 iuµM − 1

2σ
2
Mu

2



T



π′0,1

〉

=

〈

exp



Q0T +
iuµ1 − 1

2σ
2
1u

2

σ21





σ21 0 . . .
0 . . . 0
. . . 0 σ2M



T



π′0,1

〉

= ϑT

(

−
(

iuµ1 − σ21u
2/2
)

)

,

where iuµ1 − 1
2σ

2
1u

2 is the characteristic exponent of a normal distribution. From φT (u) =
ϑT
(

−(iuµ1−σ21u2/2)
)

, we can conclude that the regime switching model can be represented as
a time-changed Brownian motion, where the Laplace transform of the time change is ϑT (u).�
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4 Numerical comparison and applications

For time-changed Brownian motion, the Laplace transform of the first-passage time was de-
rived by, e.g., Hurd [2009]. For the double barrier first-passage time, this Laplace transform
can even be inverted to obtain a rapidly converging infinite series, see Hieber and Scherer
[2012]. Theorem 10 applies those results to regime switching models. This extends Lemma
3.

Main Theorem 10 (M-state model, µZt
/σ2

Zt
constant: First-passage probabilities)

Consider the regime switching model (1) with µ1/σ
2
1 = µ2/σ

2
2 = . . . = µM/σ

2
M =: c ∈ R and

initial distribution on the states π0 :=
(

P(Z0 = 1),P(Z0 = 2), . . . ,P(Z0 =M)
)

.

(a) The first-passage time probability on a barrier a > x = B0 is given by

P(Ta,−∞ ≤ T ) =
1 + exp

(

2µ1(a−x)
σ2
1

)

2

− 1

π
Re

(

∫ ∞

0

exp
(

2µ1(a−x)
σ2
1

+ iu(a− x)
)

− exp
(

− iu(a− x)
)

iu
φT (u) du

)

,

where the characteristic function φT (u) is defined in Equation (2) and Re(z + iy) = z
denotes the real part of the complex number z + iy, z, y ∈ R.

(b) Consider two barriers b < x = B0 < a. If µ1 = 0, the double-barrier first-passage time
is

P(T+
ab ≤ T ) =

x− b

a− b
+K∞

ΛT
(b− x) ,

for µ1 6= 0

P(T+
ab ≤ T ) =

exp
(

−2µ1(b−x)
σ2
1

)

− 1

exp
(

−2µ1(b−x)
σ2
1

)

− exp
(

−2µ1(a−x)
σ2
1

) + exp
(µ1(a− x)

σ21

)

K∞
ΛT

(b− x) ,

where KN
ΛT

(k) :=
σ2
1π

(a−b)2

N
∑

n=1

n(−1)n+1

µ21
2σ2

1
+

σ2
1n

2π2

2(a−b)2

ϑT

(

µ2
1

2σ2
1
+

σ2
1n

2π2

2(a−b)2

)

sin
(

nπk
a−b

)

and the Laplace trans-

form ϑT (u) is given in Lemma 9.

Proof
The interested reader is referred to Hurd [2009], Hieber and Scherer [2012]. �

4 Numerical comparison and applications

The theoretical results are in this section compared to the Brownian bridge algorithm (origi-
nally by Metwally and Atiya [2002], extended to regime switching models by, e.g.,
Hieber and Scherer [2010]), to a finite elements scheme8 (see, e.g., Boyle and Draviam [2007],

8A possible implementation is given, e.g., in the Appendix of Kim et al. [2008].
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4 Numerical comparison and applications

Matrix Wiener–Hopf Brownian bridge

P(Ta,−∞ < T ) time P(Ta,−∞ < T ) time

L = 1.4 billion 82.143% 2ms 82.136%± 0.062% 2.18s
L = 1.5 billion 61.999% 2ms 61.952%± 0.079% 2.19s
L = 1.8 billion 40.912% 2ms 40.935%± 0.082% 2.21s
L = 2.0 billion 08.012% 2ms 08.004%± 0.043% 2.30s

Finite elements Monte Carlo on grid

P(Ta,−∞ < T ) time P(Ta,−∞ < T ) time

L = 1.4 billion 82.088% 5.18s 82.089%± 0.006% 16.1min
L = 1.5 billion 62.126% 5.17s 61.704%± 0.008% 30.5min
L = 1.8 billion 40.844% 5.15s 39.805%± 0.008% 42.5min
L = 2.0 billion 07.849% 5.18s 7.831%± 0.004% 49.7min

Table 1 The probability P(Ta,−∞ < T ) that the Chinese population exceeds certain upper
thresholds L := ea by the year 2050 is given comparing the matrix Wiener–Hopf
factorization (top left), the Brownian bridge algorithm (top right, 107 simulation
runs), a finite element scheme (bottom left, △t = 10−3, △p = 2 · 10−2), and a
brute-force Monte Carlo simulation (bottom right, 107 simulation runs, mesh 10−3

years). The chosen parameters of the regime switching model are 1/q11 = −26,
1/q22 = −100, µ1 = 1.484%, µ2 = −0.341%, σ1 = σ2 = 0.663%, T = 2050− 2010 =
40, P(Z0 = 1) = 1, a = log(L), x = log(P0), and P0 = 1354 815 000. The given
computation time was calculated using Matlab on a 2.0 GHz PC; 95% confidence
intervals are given.

Kim et al. [2008]), and to a brute-force Monte-Carlo simulation on a grid. As an example,
we consider the modeling of population growth (for similar studies using Brownian motion,
see, for example, Lutz et al. [1997], Lutz et al. [2001]). Thereby we want to explicitly focus
on structural break(s) that significantly and persistently change population growth.

Therefore, we assume that the vital rates follow a regime switching Brownian motion (model
(1))

dBt = µZtdt+ σZtdWt , B0 = 0, (32)

where Zt ∈ {1, 2}. The evolution of the population is then described by Pt = P0 exp(Bt). We
apply this model to real data on the Chinese population9. The initial year t = 0 is 2010 with
an estimated population of P0 = 1354 815 000. We set −1/q11 = 26 (years) and

(

µ1
µ2

)

=

(

1.484%
−0.341%

)

,

(

σ1
σ2

)

=

(

0.663%
0.663%

)

.

Table 1 gives some numerical results on the one-sided first-passage time probability in a
2-state model. The matrix Wiener–Hopf technique is compared to the Brownian bridge algo-
rithm, to a finite elements scheme, and to a brute-force Monte-Carlo simulation discretizing

9The data is provided by the Statistics Division ESCAP of the United Nations and is publicly available on
http://www.unescap.org/stat/data/.
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5 Conclusion

the underlying process B. For the matrix Wiener–Hopf approach, the Laplace transform in
Theorem 5 was inverted10. This yields both the fastest (first-passage time probabilities are
computed within fractions of seconds) and most accurate results. Although the simulation
was performed on a very fine grid of 1000 data points per year, a significant discretization
bias is observed for the brute-force Monte-Carlo simulation. The same problem arises for the
finite elements scheme.

5 Conclusion

We showed how the Laplace transform of the regime-switching first-passage times can be
derived in the 2- and 3-state model by solving the matrix Wiener–Hopf factorization analyt-
ically. If µZt/σ

2
Zt

is constant over the states, this Laplace transform can even be inverted,
leading to rapidly converging infinite series. The matrix Wiener–Hopf factorization turned
out to be both faster and more accurate than numerical alternatives (finite elements schemes,
the Brownian bridge algorithm, or a brute-force Monte-Carlo simulation). Regime switching
models are – unlike Lévy models – able to capture persistently changing trends in the under-
lying model parameters and have thus recently attracted considerable interest, for example,
in macroeconomics, biology, physics, and finance.
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