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Abstract— Multi-robot cooperative manipulation of a com-
mon object requires precise kinematic coordination of the
attached end effectors in order to avoid excessive forces on the
object and the manipulators. A manipulation task is considered
successful if the desired object motion and forces are tracked
accurately. In this paper we present a systematic analysis on
the effect of uncertain kinematic parameters on the tracking
behavior in a planar manipulation task. An adaptive control
scheme is proposed, which achieves the desired control goal
asymptotically. The presented scheme employs the current
force/motion data of the attached end effectors without relying
on a common reference frame. The algorithm is applicable to
common manipulator types with wrist-mounted force/torque
sensors and implementable in real-time. The performance of
the proposed control scheme is evaluated experimentally with
two 7DoF manipulators who cooperatively manipulate an object
of uncertain length.

I. INTRODUCTION

A variety of manipulation tasks demands the cooperation

of several potentially heterogeneous robots, e.g. in order to

provide different sensing and actuation capabilities in manip-

ulation tasks. A successful manipulation task is characterized

by tracking a desired object motion while applying a desired

force by means of the involved end effectors to the object.

This subject motivated an intensive research on cooperative

control schemes during the last three decades. However, there

is evidence that cooperative control schemes fail to succeed

when kinematic uncertainties arise in the manipulation task.

This is usually the case for inaccuracies in the actual grasp

location/orientation, in the relative pose of the cooperating

manipulators and imprecise kinematic information on the

manipulated object. A potential manipulation task involving

two cooperating robots is depicted in Fig. 1.

Fig. 1. Robots manipulating cooperatively a rigid object
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The kinematic coordination is commonly achieved by

using a common reference frame attached to the object. The

kinematics of the individual manipulators are extended by

a virtual stick [1] pointing to the origin of this reference

frame. It is thus possible to compute the compatible end

effector motion given the desired object motion in the

reference frame. The ubiquitous presence of uncertainties in

manipulation tasks requires the application of a force control

scheme, among which impedance control [2] is probably the

most widespread technique. This approach is used in [3]

for a cooperative manipulation task to achieve compliance

of the object in case of contact with the environment. The

distributed impedance scheme in [4] guarantees asymptotic

tracking of desired motion and force trajectories. In the

presence of kinematic uncertainties, impedance-based control

schemes offer a fair tradeoff between task performance and

control complexity [5]. If the kinematic errors become large

or objects have to be manipulated with a maximum level of

position accuracy requiring a stiff control setting, common

cooperative manipulation schemes should be extended by an

adaptive controller.

Only few works [6]–[8] address the problem of kine-

matic uncertainties in the control design. In [6] an adaptive

controller is presented dealing with uncertain kinematic

parameters of a single robot. An adaptive control scheme for

two cooperating manipulators with geometric uncertainties in

the closed kinematic loop is presented in [7]. A least squares

approach is used to identify the rigid transformation between

the manipulators’ end effector frames. While minimizing the

actuator torques, the actual contact force is not addressed in

the resulting control scheme. The work in [8] deals with

the modeling and the control design for a single manipula-

tor operating an uncertain kinematic mechanism. Although

cooperative manipulators handling a common object are fre-

quently subject to kinematic uncertainties, the consequences

on position and force tracking are widely unexplored.

The contribution of this paper is an adaptive force/velocity

control scheme for cooperative manipulation under uncertain

kinematic parameters. As a first step we provide a thorough

analysis of a planar, cooperative manipulation task. Based on

a simple and comprehensible model we show that asymptotic

force/velocity tracking and thus common control specifi-

cations for cooperative manipulation will generally not be

met for uncertain kinematic parameters. We characterize the

emerging interaction forces as a function of the kinematic un-

certainties by deriving explicit formulas. We further present

an adaptive control scheme for two manipulators and a planar

manipulation task which is guaranteed to achieve the desired



control performance. The presented algorithm is based on

simple trigonometric computations and is thus suitable for

real-time applications. The results are applicable to arbitrary

manipulator types with wrist-mounted force/torque sensors.

The remainder of this paper is organized as follows.

Section II is devoted to the modeling of the manipulation task

and comprises the problem statement. Section III presents the

adaptive controller which achieves the defined control goal

in presence of uncertain kinematic parameters. The results

of an experimental evaluation are illustrated in Section IV.

II. MANIPULATION TASK MODEL

In this paper we focus on a planar manipulation task

involving N independent manipulators as a prototypical case.

Apart from the illustrative aspects of this simpler setting

compared to the setting in the three-dimensional Euclidean

group, a variety of manipulation tasks are either intrinsically

planar, e.g. a transportation task, or can be approximated by

such. Let the individual manipulator kinematics be character-

ized by a vector of joint angles qi ∈ R
Ni and the manipulator

Jacobian Ji(qi) ∈ R
2×Ni for the i-th manipulator with Ni

degrees of freedom. The kinematics of a single manipulator,

i.e. qi and Ji, are assumed to be known. Each manipulator

is considered as velocity-controlled actuator according to

q̇i = J+(qi) v
r
i , (1)

given an individual reference velocity vri ∈ R
2 and the

pseudo-inverse J+(qi) for the i-th manipulator. The refer-

ence velocity

vri = vdi (ẋ
d
o) + v

f
i (∆fi) (2)

comprises two elements. The first element vdi is a feed-

forward velocity incorporating the desired object velocity

ẋdo =

[

~vdo
ϕ̇d
o

]

, (3)

resulting from a trajectory planner, a superposed visual servo

control loop or similar sources. The components ~vdo ∈ R
2

and ϕ̇d
o ∈ R denote the desired translational velocity and

the desired angular velocity of the object respectively. The

second component v
f
i in (2) arises from a force feedback

law controlling the individual force error ∆fi ∈ R
2.

All end effectors are assumed to be tightly attached to

a rigid object by means of a revolute joint. Consequently

only the relative position of the manipulators is constrained

through the object. Let pi ∈ R
2 refer to the current end

effector position of the i-th manipulator, then the constraint

reads as

‖pj − pi‖
2 = d2ji (4)

wherein dji ∈ R
+ is the distance between the end effectors

for j 6= i. Differentiation of (4) with respect to time yields

(pj − pi)
T · (vrj − vri ) = 0. (5)

This means that the relative motion of two arbitrary end

effectors is constrained to the subspace orthogonal to their

connecting line. Assume that the desired relative motion

(vdj−v
d
i ) does not meet the above orthogonality condition. As

a consequence end effector forces emerge which lead to force

errors and propagate in terms of the local feedback signals

v
f
i and v

f
j to satisfy ultimately the constraint (5). Since in

this case the effective end effector velocities are not equal

to the desired velocities, i.e. vri − vdi = v
f
i 6= 0, the actual

object motion ẋo will in general not coincide with its desired

value ẋdo. The desired control goal for the manipulation task,

ẋo → ẋdo , ∆fi → 0 (6)

for t → ∞ and an arbitrary value of ẋdo, is therefore only

met if the commanded velocities vdi satisfy the constraint (5)

asymptotically. This observation suggests that the coordina-

tion model for computing vdi incorporates an estimate of the

relative end effector positions (pj − pi) which ensures com-

pliance to the orthogonality constraint. Achieving the control

goal (6) is indeed a challenging task since equation (5)

for N manipulators implies a total of
N(N−1)

2 constraints

to be met simultaneously. This results in a mathematically

involved description of the emerging end effector forces as

a superposition of all constraint forces associated to (5).

In order to facilitate the integration of uncertain kinematic

parameters and to provide comprehensible results in terms of

compact mathematical expressions, the subsequent analysis

is carried out for N = 2 manipulators.

A. Coordinate frame convention

The desired object motion ẋdo is represented in an orthog-

onal, body-fixed coordinate system denoted by {o} in Fig. 2.

Manipulator 1
Manipulator 2

{o}

co

n(co)

{R}

p2p1q1
q2

Fig. 2. Two manipulators carrying cooperatively a rigid object

The coordinate frame {o} is assumed to be rigidly attached

to the object such that its origin is located in the geometric

center of the object and that its principal axis co coincides

with the connecting line of the end effectors, i.e.

co =
p2 − p1

‖p2 − p1‖
. (7)

The vector co defines not only the principal axis of the

object frame but defines uniquely the orientation of the object

in the plane with respect to a reference coordinate sys-

tem {R}. The vector co stands furthermore for the direction

in which the motion of the end effectors is constrained when

holding the object. That is the effective relative motion of



the attached end effectors lies in the subspace orthogonal

to the constrained direction. This subspace is spanned by

the normal vector which results from rotating the original

vector about 90 degrees in terms of the matrix operation n(c)
according to

n(c) =

[

0 −1
1 0

]

c. (8)

With these definitions we determine the axis of the object

frame as

{o} = { co, n(co) }. (9)

For the execution of the manipulation task, the desired

object velocity ẋdo is transformed to compatible end effector

velocities vdi of the attached manipulators referring to the

principle of virtual sticks [1]. The resulting transformation

from the object frame {o} to the origin of the respective

end effector frame {i} is subject to uncertainties. Each

end effector uses consequently an estimate of the object

frame ĉi in its local coordinate frame {i} for the desired

transformation. This situation is depicted in Fig. 3.

{1}

{2}

n(co)

co
co

n(ĉ1)

ĉ1

n(co)

ĉ2

n(ĉ2)

co

n(co)

{R}
ϕo

Fig. 3. End effector coordinate frames and estimates of the constraint

Apparently the estimates ĉi are independent from each

other and do not necessarily coincide with the actual, con-

strained direction co. For notational convenience we identify

the unit vectors cj with the angles ϕj formed with the prin-

cipal axis of the reference frame {R} (cf. Fig. 3) according

to

cj(ϕj) =

[

cosϕj

sinϕj

]

(10)

for j = {o, 1, 2}. By defining the angular errors

εi = ϕi − ϕo (11)

for i = {1, 2} it is straightforward to verify

cTo · ĉi = cos εi (12)

cTo · n(ĉi) = − sin εi. (13)

B. Kinematic coordination model

In order to simplify the kinematic coordination of the

manipulators we assume that the object’s motion consists

solely of a translational component in the non-constrained

direction n(co) such that

~vdo = vdo n(co) (14)

with vdo ∈ R. The presented results straightforwardly extend

to the case with a supplementary, translational velocity

component in the direction of the constraint co. However this

extension does not provide further insights and is omitted for

the sake of compact mathematical expressions.

Given the individual estimates of the constrained direc-

tion ĉi, we may now transform the desired object velocity ẋdo
into compatible end effector motions vdi . This is achieved by

choosing

vd1 = n(ĉ1) · v
d
o − n(ĉ1) · v̂

d
ω (15)

vd2 = n(ĉ2) · v
d
o + n(ĉ2) · v̂

d
ω, (16)

wherein

v̂dω =
1

2
d̂ ϕ̇d

o (17)

denotes the translational end effector velocity due to a

desired rotation. Note that in order to perform a proper

rotation, the computation of v̂dω incorporates an estimate of

the end effector distance d̂ ∈ R
+. We further fix the center

of rotation in the origin of the object frame which, for our

particular choice of the object frame to lie in the geometrical

center of the end effectors, results in minimal required kinetic

end effector energy [9]. The signs for the terms involving v̂dω
in (15) and (16) stem from the fact that the center of rotation

is located in positive ĉ1 and negative ĉ2 direction.

Note further that the computation of the desired end

effector velocities in (15) and (16) does not rely on the

object frame {o} but on the local estimates ĉi of this

frame. These local estimates are commonly represented in

the corresponding end effector frame {i}. When rotating the

object with a desired angular velocity ϕ̇d
o, it is thus self-

evident to rotate the estimates ĉi of the object frame, too. The

vectorial description of this fact expressed in the reference

frame {R} (cf. Fig. 3) reads as

˙̂ci = n(ĉi) ϕ̇
d
o (18)

for i = {1, 2}. The same expression holds when rotating

the individual end effector frame {i} with ϕ̇d
o. In this case

the estimate of the object frame ĉi, represented in the

corresponding end effector frame, is constant.

C. Force control model

Each manipulator is endowed with a force control scheme

in order to limit emerging forces and prevent damage of

the object during the manipulation task. We consider the

individual force feedback loop as part of the manipulator



model justified by the strong relation between the kinematic

coordination and the emerging forces. We restrict our anal-

ysis to the particular case of a proportional control given

by

v
f
i = ĉi · kp,i ·∆f̂i (19)

where ∆f̂i ∈ R describes the force error of the i-th manipu-

lator. Note that conventional implementations of impedance

control use a second order filter to generate the desired

motion signal v
f
i from the force error ∆f̂i. In general there is

no immediate relation of the incorporated impedance tuning

parameters denoted by mass, damping and stiffness to the

parameters of a conventional PID controller. However the

proportional control gain in (19) might be thought of as a

non-zero damping with value k−1
p,i if mass and stiffness equal

zero.

The error ∆f̂i is computed by projecting the measured

force values fi ∈ R
2 onto the estimated constraint direc-

tion [8] and comparing those to a desired value fd ∈ R

according to

∆f̂1 = ĉT1 · f1 − fd (20)

∆f̂2 = ĉT2 · f2 + fd (21)

In view of a consistent set point, the desired force values

for the manipulators cannot be chosen independently. The

measured force vectors f1 and f2 are assumed to have the

same magnitude f ∈ R but opposed signs. The direction is

imposed by the object orientation and reads thus as

f1 = −f2 = −f co. (22)

Consequently f1 and f2 represent the internal force com-

ponents applied to the object. In analogy with rod mechanics,

a positive force magnitude f > 0 is assigned when pulling

the object and a negative magnitude f < 0 occurs when

pushing against the object. Given the individual estimates ĉi
of the object frame it is possible to compute an estimate of

gravitational and other external forces acting on the object.

However, this estimate will in general be biased if ĉi 6= co.

D. Kinematic uncertainty

Biased estimates of the kinematic parameters will lead to

undesired stress on the object and prevent accurate tracking

of the desired object motion during the manipulation task.

Both aspects will be detailed in the following.

1) Force analysis: In mechanical systems forces arise no-

tably whenever a constraint tends to be violated. When there

is no compliance, emerging forces become arbitrarily large in

order to satisfy the kinematic constraint. In our manipulation

task active compliance is provided to the manipulators in

terms of a force feedback controller. We will derive an

explicit expression for the occurring force as a function of

the control parameters and the kinematic errors. To this end

we employ (7) to rewrite the constraint equation (5) as

cTo · (vr2 − vr1) = 0. (23)

We recall that vri depends on the force control v
f
i by (2)

and is consequently a function of the measured end effector

force fi as stated in (19). Arbitrary values for the desired end

effector velocities vdi are a priori admissible. Nevertheless

the emerging force magnitude f will always adopt a suitable

value such that the effective end effector velocities vri are

a posteriori compliant to the constraint (23). In this perspec-

tive, the emerging end effector force can also be interpreted

as the Lagrange multiplier for the system in (2) associated to

the constraint (5). More precisely the resulting end effector

force is the sum of all inter-manipulator forces necessary to

respect the kinematic constraints. In case of two manipulators

coupled through a single constraint the resulting end effector

force is equal to the interaction force f along the connecting

line of the two end effectors.

We may explicitly compute its value for any constant fd

by substituting equations (15), (16), (19), (20), (21) and (22)

into (23). Letting fd = 0 and solving for f yields

f = −
cTo [n(ĉ2) + n(ĉ1)] · v̂

d
ω + cTo [n(ĉ2)− n(ĉ1)] · v

d
o

cTo
[

kp,2(ĉT2 co) ĉ2 + kp,1(ĉT1 co) ĉ1
]

(24)

This equation provides the mathematical description for

the following interesting insight. The vector difference

[n(ĉ2) − n(ĉ1)] is orthogonal to co whenever the vectors

ĉ2 and ĉ1 point in the same direction. Performing a pure

translational motion (vdo 6= 0, v̂dω = 0) we have f = fd when

the estimates of the constrained direction are biased by the

same magnitude

ĉ1 = ĉ2. (25)

Less obvious is the fact that for a pure rotational motion

(v̂dω 6= 0, vdo = 0) we have f = fd when [n(ĉ2) + n(ĉ1)] is

perpendicular to co. That is the estimates are biased by the

same magnitude but having opposed signs. This situation is

sketched in Fig. 3 and reads mathematically as

cTo · ĉ1 = −cTo · ĉ2. (26)

In case of v̂dω 6= 0 and vdo 6= 0 we have f = fd for

cTo · [n(ĉ2)− n(ĉ1)] v
d
o = −cTo · [n(ĉ2) + n(ĉ1)] v̂

d
ω (27)

which holds particularly for

ĉ1 = ĉ2 = c0. (28)

This means the estimates of the constrained direction match

perfectly which is rarely the case for some initial estimates.

Actually (27) admits a solution to f = fd different

from (28). For particular values of v̂dω 6= 0 and vdo 6= 0
the emerging force magnitude will coincide with the desired

value even though the estimates ĉ1 and ĉ2 do not match co.

This fact can be regarded as an excitation condition for force-

based parameter identification in cooperative manipulation

tasks and is further addressed in Section III.
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Fig. 4. Interaction force f for a translational motion vdo with biased
estimates ĉi and varying control parameters kp,i

A numeric example is presented to illustrate the above

findings. Consider again the configuration depicted in Fig. 3

wherein the angular errors are set to ε1 = −10◦ π rad
180◦ and

ε2 = +10◦ π rad
180◦ . The desired force value is set to fd = 0.

The result of a numeric simulation for vdo = ±0.05m
s

, v̂dω = 0
and different values for kp,i = {0.005, 0.0075, 0.010} m

Ns
is

plotted in Fig. 4.

A positive translation vdo > 0 squeezes the object (f < 0)

while a negative translation vdo < 0 causes the attached

end effectors to pull the object (f > 0). Given the desired

motion of the end effectors, the emerging interaction force f

causes the end effectors to respect the kinematic constraint

regardless of the current angular errors εi. Interestingly the

value of f depends not only on the angular errors εi but

on the value of the control gains kp,i, too. Increasing values

for kp,i result in a decreasing force magnitude f . While the

control gains kp,i in the presented simulation were chosen

to be identical for all manipulators, the preceding observa-

tion allows for more sophisticated tuning strategies of the

control parameters depending on the individual estimation

accuracy of the parameters ĉi. Manipulators with inaccurate

estimates ĉi should tend to increase their control gains in

order to limit the emerging force error.

2) Velocity analysis: Whenever undesired forces occur

during the manipulation task, the effectively followed tra-

jectory of the end effectors will diverge from their desired

trajectory. We are now interested in the effective instanta-

neous velocity of the object. The translational velocity of

the virtual object frame is the average of the end effector

velocities projected onto the non-constrained direction

vo = n(co)
T ·

(

1

2
[vr1 + vr2]

)

. (29)

The object’s angular velocity results from the relative mo-

tion of the end effectors projected onto the non-constrained

direction

ϕ̇o =
n(co)

T · (vr2 − vr1)

d
. (30)
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The actual end effector distance d is required to compute

the effective angular velocity of the object. Both velocities,

vo and ϕ̇o, coincide with their desired values vdo and ϕ̇d
o

only if condition (28) holds and the estimated end effector

distance equals the actual one

d̂ = d. (31)

The significance of the parameter d̂ is illustrated by means

of an example. Assume that the initial estimates ĉi are

unbiased and the angular error is thus zero when starting the

manipulation task, i.e. εi(0) = 0. Let the end effector dis-

tance be d = 0.5m and assume that the manipulators rotate

the object with a desired angular velocity of ϕ̇d
o = 0.1s−1

while vdo = 0. The force controllers are tuned with fd = 0
and kp,i = 0.005 m

Ns
. A numeric simulation is conducted

for different values of the estimated end effector distance

d̂ = {0.40, 0.45, 0.50, 0.55, 0.6}m. The result is plotted in

Fig. 5.

Clearly the interaction force of the manipulators diverges

from its desired value fd = 0 for any estimate d̂ 6= d. A very

descriptive explanation for the emerging interaction force in

Fig. 5 is that for any d̂ 6= d the resulting diameter of the circle

described by the desired end effector motion vdi is either

too small or too big. As the actual end effector motion vri
is forced to maintain the distance d, the manipulation task

will either result in compressing the object for d̂ < d or

pulling the object for d̂ > d. The mathematical description

of this observation reads as follows. For εi = 0 it follows

from (30) that ϕ̇o = d̂
d
ϕ̇d
o. That is the effective angular

velocity of the object differs from its desired value by the

ratio of estimated and actual end effector distance. Since the

estimates of the object orientation ĉi rotate with the desired

angular velocity ϕ̇d
o 6= ϕ̇o according to (18), the angular

errors εi will consequently increase which in turn leads to

a force error according to (24). The desired force value is

only maintained in case of εi = 0 and d̂ = d and motivates an

adaptive controller which meets the desired control goal (6)

under uncertain kinematic parameters.



III. ADAPTIVE CONTROLLER DESIGN

For the design of the adaptive control law it is convenient

to introduce the reciprocals of estimated and actual end

effector distance

δ̂ =
1

d̂
, δ =

1

d
. (32)

With the definition above and use of equations (12) and (13)

we rewrite (30) as

ϕ̇o = δ ψ(εi, δ̂, ẋ
d
o) (33)

with

ψ(εi, δ̂, ẋ
d
o) = [cos ε2 − cos ε1] v

d
o (34)

+ [cos ε2 + cos ε1] v̂
d
ω

+ ξ(ε1, ε2) [sin ε1 − sin ε2] v
d
o

− ξ(ε1, ε2) [sin ε1 + sin ε2] v̂
d
ω

and

ξ(ε1, ε2) =
kp,1 sin ε1 cos ε1 + kp,2 sin ε2 cos ε2

kp,2 cos2 ε2 + kp,1 cos2 ε1
. (35)

The kinematic coordination model of the manipulation

task written in a compact form becomes

ϕ̇1 = ϕ̇d
o + uϕ1

(36)

ϕ̇2 = ϕ̇d
o + uϕ2

ϕ̇o = δ ψ(εi, δ̂, ẋ
d
o)

˙̂
δ = uδ

where the additional control inputs uϕ1
, uϕ2

and uδ have

been introduced in order to update the estimate of the

kinematic parameters. The design of adaptive controllers for

this class of systems is e.g. addressed in [10].

Proposition 1: The control law

uϕ1
= −ϕ̇d

o + δ̂ ψ(εi, δ̂, ẋ
d
o)− kε1ε1 (37)

uϕ2
= −ϕ̇d

o + δ̂ ψ(εi, δ̂, ẋ
d
o)− kε2ε2

uδ = − kδ (ε1 + ε2) ψ(εi, δ̂, ẋ
d
o)

stabilizes the system (36) asymptotically in the sense of

Lyapunov about the equilibrium point

z0 =





ε1
ε2

δ̂



 =





0
0
δ



 (38)

for kε1 , kε2 > 0 and kδ = 1. Furthermore, the controller

achieves asymptotic tracking of the desired object veloc-

ity ẋdo and the desired end effector force fd for ϕ̇d
o 6= 0

and ‖ẋdo‖ <∞.

Proof:

Straightforward computation of the error dynamics and

substituting uϕ1
, uϕ2

and uδ from (37) yields

ε̇1 =
[

δ̂ − δ
]

ψ(εi, δ̂, ẋ
d
o)− kε1ε1 (39)

ε̇2 =
[

δ̂ − δ
]

ψ(εi, δ̂, ẋ
d
o)− kε2ε2

˙̂
δ = − kδ (ε1 + ε2) ψ(εi, δ̂, ẋ

d
o).

Consider the Lyapunov candidate

V (ε1, ε2, δ̂) =
1

2

(

ε21 + ε22 +
[

δ̂ − δ
]2
)

. (40)

The time derivative is

V̇ (ε1, ε2, δ̂) = ε1 ε̇1 + ε2 ε̇2 +
[

δ̂ − δ
]

uδ (41)

= ε1

([

δ̂ − δ
]

ψ(εi, δ̂, ẋ
d
o)− kε1ε1

)

+ ε2

([

δ̂ − δ
]

ψ(εi, δ̂, ẋ
d
o)− kε2ε2

)

−
[

δ̂ − δ
]

(ε1 + ε2) ψ(εi, δ̂, ẋ
d
o)

= −kε1ε
2
1 − kε2ε

2
2

≤ 0

In order to conclude on the convergence of ε1 and ε2 one

considers

V̈ (ε1, ε2, δ̂) = −2kε1ε1ε̇1 − 2kε2ε2ε̇2 (42)

which is bounded on a domain containing z0 and given a

bounded ẋdo. Barbalat’s Lemma implies V̇ → 0 and thus

εi → 0 as t→ ∞. Employing this fact for ε̇i in (39) for

t→ ∞ leads to (1− δ

δ̂
)ϕ̇d

o = 0, which can only hold true if

δ̂ → δ for ϕ̇d
o 6= 0. Convergence of the error dynamics to the

equilibrium point z0 implies ∆fi → 0 by means of equation

(24) and further ẋo → ẋdo in terms of equations (29) and

(30).

A few remarks which further characterize the presented

result are in place:

• Asymptotic convergence of the control law (37) relies

implicitly on the boundedness of ξ(ε1, ε2) in (35). However

this term is infinite for εi = ±π
2 . By choosing initial values

ε21(0) + ε22(0) + [δ̂(0)− δ]2 < (
π

2
)2 (43)

sufficiently close to the equilibrium point z0 one can guar-

antee the boundedness for t ≥ 0 by some invariance-

like property [11]. This indicates the local character of the

stability proof.

• Application of the control law demands the computation of

the angular errors εi. Given the constraint estimates ĉi in the

particular end effector frame (cf. Fig. 3), each manipulator

infers its individual angular error from the measured end

effector force fi. According to (22) the end effector forces

are collinear to the actual constraint direction co such that

the desired computation of εi is achieved via

εi = atan2(ĉ2i , ĉ
1
i )− atan2(σi · f

2
i , σi · f

1
i ) (44)



wherein the upper index denotes the projection of the vector

to the first and second axis of the local end effector frame

respectively. The function σi = sgn(ĉTi fi) in (44) takes care

of computing always the smallest angle between ĉi and the

line defined by fi. The computation of εi is well-defined for

non-zero end effector forces ‖fi‖ 6= 0 which can be enforced

by letting fd 6= 0. A particular situation arises for fd = 0. A

concise conclusion on εi = 0 from the observation ‖fi‖ = 0
is only admissible if the additional excitation condition

tan(
ε1 − ε2

2
) vdo 6= tan(

ε1 + ε2

2
) v̂dω (45)

is met. This condition stems from equation (27) which

characterizes the null-space of a desired object motion given

the measured end effector forces as the output. Furthermore

it should be noted that the angular error computation as

proposed in (44) is increasingly sensitive to potential sensor

noise as ‖fi‖ tends to zero.

IV. EXPERIMENTAL EVALUATION

An experimental study of the presented control scheme is

conducted involving two anthropomorphic manipulators with

Ni = 7 degrees of freedom. The low-level control scheme of

each manipulator is a joint-space position controller which

provides an interface to track a Cartesian reference velocity

similar to (1). The control loops are closed with a sampling

rate of Ts = 1ms. The manipulators are equipped with a

wrist-mounted JR3 67M25 6-dimensional force/torque sen-

sor and a Schunk PG70 end effector. Both end effectors are

rigidly connected to an aluminum bar of length d = 0.485m

via revolute joints. The experiment is conducted by means

of a dual-arm manipulator depicted in Fig. 6.

Fig. 6. Experimental setup with two 7DoF manipulators

No common reference frame is used in order to guaran-

tee the effectiveness of the approach for the case of two

completely independent manipulators as depicted in Fig. 1.

The force measurements are filtered by a low-pass filter with

cutoff frequency fc = 125Hz. The desired force value is set

to fd = −5N. The force control gains are kp,i = 0.001 m
Ns

.

The control gains relevant to the angular errors are set to

kεi = 0.5s−1. A first experiment is conducted in order to

illustrate the performance of the presented computations.

To this end the estimates of the constrained direction ĉi

are intentionally biased resulting in ε1(0) = 30◦ π rad
180◦ and

ε2(0) = −15◦ π rad
180◦ . These values may result from an

ordinary visual servo control routine for the end effector

positioning assuming a conservative error bound. While

keeping the manipulators at rest, i.e. ẋdo = 0, the adaptive

controller is enabled at time instant t = 1s. Note that the

choice of fd 6= 0 enables the computation of the angular

errors even without any object motion. The graph of the

resulting experimental angular errors is depicted in Fig. 7.
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Fig. 7. Convergence of the angular errors to zero after switching on the
adaptive controller at t = 1s

As expected both angular errors εi converge perfectly to

zero. For a non-zero angular velocity ϕ̇d
o convergence of εi

to zero occurs only if δ̂ = δ. This will be studied in the

following assuming small initial angular errors εi(0) ≈ 0.

Due to the workspace constraints of the manipulators, a

periodic signal with zero mean is chosen for the desired an-

gular velocity of the object according to ϕ̇d
o(t) = ˆ̇ϕ sin(ωϕ̇t)

with ˆ̇ϕ = 0.06s−1 and ωϕ̇ = 2π
20 s

−1. The translational

velocity is kept at vdo = 0. The remaining parameter of

the adaptive controller is set to kδ = 33. The choice of

kδ > 1 turned out to increase the convergence speed for the

parameter δ̂ in the experiments significantly. According to
˙̂
δ

in equation (39), faster convergence of δ̂ is expected for a

growing magnitude of ϕ̇d
o, too.

The estimate of the end effector distance d̂ is plotted for

two distinct runs with different initial values. The result of

a first run with d̂(0) = 0.7m is depicted along the result of

a numeric simulation with identical parameters in Fig. 8.

The convergence of d̂ from the experimental data is clearly

visible. Nevertheless the convergence speed expected from

the simulation is not reached. This may have several reasons.

A delay between commanded and performed motion in

combination with a perceptible backlash of manipulators and

object might not only cause an amplification of the periodic

bumps. It causes simultaneously the convergence rate to

differ from its prediction.

A second run is performed with an initial estimate of

d̂(0) = 0.2m. The results are illustrated in Fig. 9.

Again we observe convergence of the estimated end ef-
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Fig. 9. Estimated end effector distance for d̂(0) = 0.2m

fector distance. This time the convergence rate is slightly

faster than predicted by the numeric simulation. However,

the estimate tends to d̂ ≈ 0.45m and the actual value

d = 0.485m is not reached. This observation is mainly

attributed to inaccuracies in the kinematic calibration of the

manipulator. Moreover, mechanical oscillations due to the

Harmonic Drive gears in use for the manipulators counter-

acted the usability of the force data and prevented thus an

experimental evaluation for increased end effector velocities.

A. Discussion

We observed in the experiments that condition (43), de-

scribing an invariant sublevel set for V in (40), might be

conservative. While the initial value d̂(0) = 0.7m is compli-

ant to condition (43), the convergence for d̂(0) = 0.2m is not

covered by the presented criterion. There might be situations

for εi close to ±π
2 where δ̂ 6= δ and a sufficiently large ϕ̇d

o

leads to εi = ±π
2 . Less conservative sets are supposed to be

found by taking into account the actual values of the control

gains kεi and further assumptions on the desired velocity ϕ̇d
o.

The convergence rate for δ̂ is shown to depend on the

value of the desired velocity ϕ̇d
o by means of equation (39).

However, the choice of the parameters kεi has an impact on

the convergence of δ̂, too. Large values for kεi will keep

the angular errors εi small and lead consequently to a small
˙̂
δ in equation (39). This observation further motivates the

selection of kδ > 1 for an increased convergence rate of δ̂

during the experiments. A stability proof for increased values

of kδ is the subject of ongoing research.

V. CONCLUSION

In this paper a planar, cooperative manipulation task

subject to uncertain kinematic parameters is investigated. A

systematic analysis of force and velocity signals reveals the

disturbing impact of kinematic uncertainties on the desired

control goal in terms of position and force tracking. We

present an adaptive controller which achieves provably the

postulated control goal for uncertain kinematic parameters

and provide experimental results which confirm the relevance

and the applicability of our findings. Future research will

include the analysis of additional disturbances to the system

and the transfer to a general, three-dimensional manipulation

task.
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