

Table-Top Electron-Beam Induced Plasma Chemistry

Novel Method of Plasma Chemistry Application: Recycling of CO₂

Andreas Himpsl, Thomas Dandl, Thomas Heindl, Andreas Ulrich

3rd MSE Colloquium, 2013

Final Goal: Processing of CO₂

$CO_2 \rightarrow CO + O$

$CO_2 + X \rightarrow Fuel$

Content

- 1. Electron Beam for Plasma Chemistry
- 2. Experimental Setup
- 3. Reference Data from Literatur
- 4. Preliminary Results
- 5. Outlook

Plasma Induced by a 15 keV Electron Beam

Advantages

- 86 % of electrons above 20 eV
 able to break chemical bonds
- High power densities in the 15 keV range
 o due to penetration depth (≈ 1 mm)
- No hard x-rays

 easy shielding
- Compact table-top devices
- Plasma formation under all target conditions
 o no ignition conditions
 - $\circ~$ independent from gas composition
 - \circ independent from gas pressure

Plasma Induced by a 15 keV Electron Beam Electron Energy Distribution Function

Instead of

- Thermal induced plasma
 2300 K => 200 meV
- Discharge plasma
 - Peak below 10 eV
 - needs certain ignition conditions

Plasma Chemistry at Atmospheric Pressure

Summary

- Table-Top Device for Radiolysis
- Desired trend observable
- G-value still too low

Next Steps

- Optimize process parameters
 - Increasing the flow to avoid back reaction
 - Testing catalytic effects
- Using field emission as electron source

Outlook: The Vision

CO₂ from industrial emissions

Power from renewable energies

P. Lenard, Ann. d. Phys. u. Chem., Neue Folge 51, Seite 15 (1894)

 CO_2 , 1 bar: V ~ 1 mm³ m ~ 2×10⁻⁶ g

Reaction Volume

25mm

Febetron 706 600 keV, ns pulses 0.69 Mrad delivered / pulse = 4.3×10^{21} eV/g results in ~ 10^{30} eV/gs (ns pulse)

9 ml target volume

250 µm (unspecified material)

1 shot / min

 $G_{observed} \sim 8$

R. A. Lee, "Febetron Radiolysis of CO_2 in the Presence of Oxygen and Carbon Monoxide", Radiat. Res. **77**, 233 (1979)